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ABSTRACT: In the long-term structural health monitoring (SHM) of bridges, seasonal changes such as 

temperature affect the vibration characteristics of bridges. This study aims to investigate the influences 

of temperature changes on the vibration characteristics of bridges through in-house moving vehicle 

experiments on an artificially damaged model bridge. Instead of conventional modal parameters, the 

system matrix of a state space model is proposed as a damage-sensitive feature. Considering uncertainties 

in vibration data and the state space model, the system matrix is identified by Bayesian inference in terms 

of Bayesian system identification. Changes in the damage-sensitive feature under artificial damage are 

detected using the Bayes factor (BF) as a Bayesian hypothesis test. 

1. INTRODUCTION 

The importance of maintenance and management 

of bridge stock for safe and long-term use is 

becoming increasingly important worldwide. In 

Japan as an example, the bridge condition 

assessment for the maintenance and management 

of bridge stock is based on visual inspections 

despite its time and labor-consuming processes. 

As an alternative for visual inspection, 

structural health monitoring (SHM) of bridges 

utilizing sensor information has been investigated.  

Different from the visual inspection, it is expected 

that sensor information could provide objective 

information as it is directly relevant to physical 

quantities such as strain, displacement, 

acceleration, etc. Among these sensors, utilizing 

accelerometers has been popular in SHM 

campaign of bridges because they are easy to 

install and do not require a fixed point (Farrar et 

al. 1994; Magalhaes et al. 2012; Kim et al. 2013). 

In particular, long-term monitoring, which 

focuses on changes in vibration characteristics 

over a long period of time, is also gaining more 

attention as a practical SHM for bridges. However, 

seasonal changes in the vibration characteristics 

of bridges in long-term vibration monitoring are 

well-known phenomena and are mainly caused by 

temperature changes. It is therefore necessary to 

have a better understanding of the effects of 

temperature variations on bridge vibration 

characteristics. 

The aim of this study is thus to investigate 

the effects of temperature changes on the 

vibration characteristics of bridges by means of 

in-house moving vehicle experiments on an 

artificially damaged model bridge. The modal 

characteristics of the model bridge were identified 

from the measured accelerations using the 

stochastic subspace identification (SSI) method 

(Van Overschee and De Moor 1996) and changes 

in vibration characteristics were investigated. 

Instead of conventional modal parameters, the 

system matrix of a state space model is proposed 

as a damage-sensitive feature. Considering 

uncertainties in vibration data and the state space 

model, the system matrix is identified by 

Bayesian inference in terms of Bayesian system 

identification (Goi and Kim 2019). Changes in the 

damage-sensitive feature under artificial damage 

are detected using the Bayes factor (BF) (Kass and 

Raftery 1995) as a Bayesian hypothesis test. 
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2. BAYESIAN ANOMALY DETECTION 

WITH VAR MODEL 

2.1. Vector autoregressive model of dynamic 

system  

Assuming that a discrete acceleration time series 

with m degrees of freedom is measured for a 

bridge, and consider a column vector 𝒚𝑘 ∈
ℝ𝑚×1 that consists of these time series in which 𝑘 

denotes the time step of the discrete-time series 

and m is the number of observation points or the 

number of sensors. It is known that the 

acceleration time series 𝒚𝑘 can be approximated 

by a vector autoregressive (VAR) process with an 

appropriate model order 𝑝 as Eq. (1). The mode 

frequency, mode damping, and mode shape can be 

identified from the coefficient matrix of the VAR 

model (Kim et al. 2012). 

𝒚𝑘 = ∑ 𝛂𝑖𝒚𝑘−𝑖 + 𝒆𝑘

𝑝

𝑖=1
 (1) 

where 𝛂𝑖 ∈ ℝ𝑚×𝑚  is the i-th order autoregressive 

coefficient matrix and 𝒆𝑘 ∈ ℝ𝑚×1  is the time 

series of white Gaussian noise vectors. To 

simplify the discussion, let 𝐖 = [𝛂1, … , 𝛂𝑝] ∈

ℝ𝑚×𝑚𝑝 and rewrite Eq. (1) as Eq. (2). 

𝒚𝑘 = 𝐖{𝒚𝑘−1 … 𝒚𝑘−𝑝}𝑇 + 𝒆𝑘

= 𝐖𝝓𝑘 + 𝒆𝑘 
(2) 

where 𝝓𝑘 ∈ ℝ𝑚𝑝×1  is the column vector of 

𝒚𝑘−1, … , 𝒚𝑘−𝑝  arranged vertically. Let 𝜮  be the 

covariance matrix of the noise vector 𝒆𝑘 , the 

probability density function (PDF) of 𝒚𝑘  is 

expressed as follows. 

p(𝒚𝑘|𝝓𝑘, 𝑾, 𝜮) = 𝒩(𝒚𝑘|𝑾𝝓𝑘 , 𝜮) (3) 

where p(⋅ | ⋅)  represents the conditional 

probability density function and 𝒩(𝒙|𝝁, 𝚺) 

stands the PDF of 𝒚𝑘  following the vector 

Gaussian distribution with expectation 𝐖𝝓𝑘 and 

covariance matrix 𝚺. 

Consider the problem of estimating the 

regression coefficients 𝑾 and the covariance 𝚺 of 

the regression error from the observed values of 

the target variable 𝒚 using Bayes' theorem. Let n 

target variables 𝒚1, … , 𝒚𝑛  correspond to inputs 

𝝓1, … , 𝝓𝑛 , and consider the data set 𝐘 =

[𝐲1, … , 𝐲𝑛] ∈ ℝ𝑚×𝑛  and 𝝓 = [𝝓1, … , 𝝓𝑛] ∈
ℝ𝑚𝑝×𝑛 for simplicity. Eq. (3) leads to Eq. (4) for 

the parameters 𝑾  and 𝚺  are obtained. The 

conditional PDF in Eq. (3) is the likelihood 

function of 𝐘 for parameters 𝐖 and 𝚺. According 

to Bayes theorem, the PDF of 𝐖  and 𝚺 

conditioned to 𝐘 is estimate. 

p(𝐘|𝐖, 𝚺)

= p(𝝓𝑝+1) ∏ 𝒩(𝒚𝑘|𝐖𝝓𝑘, 𝚺)

𝑛

𝑘=𝑝+1

 
(4) 

2.2. Optimal model of VAR process 

The optimal order of the VAR process is 

determined using the Bayesian Information 

Criterion (BIC). The acceleration of the healthy 

bridge is used as reference data and the 

acceleration of the damaged bridge as test data. 

The BIC of the reference data 𝑌𝑟 is expressed as 

Eq. (5). 

𝐵𝐼𝐶 = −2𝑙𝑛p(𝑌𝑟|𝑾̂𝑟 , 𝚺̂𝑟)

+ (𝑚2𝑝 +
𝑚(𝑚 + 1)

2
) 𝑙𝑛(𝛴𝑖=1

𝑙 𝑛𝑖 − 𝑝)
 (5) 

where 𝑾̂𝑟  and 𝚺̂𝑟  are the maximum likelihood 

estimators that maximize the likelihood function 

p(𝑌𝑟|𝑾, 𝜮), m is the number of sensors, 𝑙 is the 

length of acceleration time series and 𝑛𝑖  is the 

length of all data sets. BIC is calculated starting 

from p =1, and the p with the smallest BIC value 

is adopted as the optimal VAR order. 

2.3. Bayesian Inference 

The parameters 𝑾  and 𝚺  are denoted as the 

regression parameters. As mentioned in Section 

2.1, the mode frequencies, mode damping, and 

mode shapes are identified from the coefficient 

matrix 𝑾  of the VAR model. Therefore, the 

regression parameter 𝑾 is used as the damage-

sensitive feature, and its posterior distribution is 

obtained using Bayes’ theorem as follows. 

P(𝑾, 𝜮|𝒀)
= p(𝒀|𝑾, 𝜮)p(𝑾, 𝜮)p(𝒀)−1 

(6) 

where p(𝑾, 𝜮) on the right-hand side is the prior 

probability density function of the regression 

parameters. On the other hand, p(𝑾, 𝜮|𝒀) on the 

left side represents the posterior distribution of the 
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regression parameters obtained conditional on the 

observations. Bayesian damage detection focuses 

on the ratio of the posterior distribution in terms 

of Bayesian hypothesis testing, which is described 

in Section 2.4. The process of calculating the 

posterior distribution is called Bayesian inference. 

  In Bayesian inference, it is known that a 

closed solution to the probability density function 

of the posterior distribution can be obtained by 

assuming a prior distribution called a conjugate 

prior distribution (Bishop 2006). In addition, from 

the viewpoint of numerical analysis, the conjugate 

prior distribution is known to be effective in terms 

of computational efficiency for high-speed 

calculations for in-service damage detection. For 

the likelihood function in Eq. (4), the conjugate 

prior distribution of the regression parameters is 

known to be a matrix-normal inverse Wishart 

distribution defined by the following Eq. (7) 

(Dzunic et al. 2017). 

P(𝑾, 𝜮)
= ℳ𝒩(𝑾|𝑴, 𝜮, 𝑳−1)ℐ𝒲(𝜮|𝜳, 𝝂) 

(7) 

where ℳ𝒩(𝐖|𝐌, 𝚺, 𝐋−1)  and ℐ𝒲(𝚺|𝚿, 𝜈)  are 

probability density functions that follow a matrix 

normal distribution and an inverse Wishart 

distribution, respectively, and are defined as 

follows. 

𝓜𝓝(𝑾|𝑴, 𝜮, 𝑳−𝟏) =

(𝟐𝝅)−(𝒎𝒑×𝒎) 𝟐⁄ |𝑳−𝟏|
−𝒎 𝟐⁄

|𝜮|−𝒎𝒑 𝟐⁄  

× 𝒆𝒙𝒑 {−
𝟏

𝟐
𝒕𝒓[𝑳(𝑾 − 𝑴)𝑻𝜮−𝟏(𝑾 − 𝑴)]}

 

 

 

(8) 

𝓘𝓦(𝜮|𝑸, 𝝂)

= 𝟐−𝝂𝒎 𝟐⁄ 𝜞𝒎 (
𝝂

𝟐
) |𝑸|𝝊/𝟐|𝜮|−(𝝂+𝒎+𝟏)/𝟐

× 𝒆𝒙𝒑 {−
𝟏

𝟐
𝒕𝒓[𝑸𝜮−𝟏]}

 

 

 

(9) 

The parameters 𝐌 ∈ ℝ𝑚×𝑚𝑝 , 𝐋 ∈ ℝ𝑚𝑝×𝑚𝑝 , 𝑸 ∈
ℝ𝑚×𝑚 and 𝜈 ∈ ℝ are called the hyperparameters. 

The probability density function of the posterior 

distribution is known to be expressed as follows. 

P(𝑾, 𝜮|𝒀)

= ℳ𝒩(𝑾|𝑴′, 𝜮, 𝑳′−1
)ℐ𝒲(𝜮|𝑸′, 𝝂′) 

(10) 

The hyperparameters 𝐌′, 𝐋′, 𝑸′and 𝜈′in Eq. (10) 

are calculated as follows. 

𝐋′ = 𝐋 + ∑ 𝝓𝑘𝝓𝑘
T

𝑛

𝑘=𝑝+1

 (11) 

𝐌′ = (𝐌𝐋 + ∑ 𝒚𝑘𝝓𝑘
T

𝑛

𝑘=𝑝+1

) 𝐋′−1
 (12) 

𝜈′ = 𝜈 + 𝑛 − 𝑝 (13) 

𝑸′ = 𝑸 + 𝐘 ∑ 𝒚𝑘𝒚𝑘
T

𝑛

𝑘=𝑝+1

+ 𝐌𝐋𝐌T

− 𝐌′𝐋′𝐌′T 

(14) 

The hyperparameters shown in Eqs. (11), 

(12), (13) and (14) can be updated sequentially 

using observed data. However, in the first step of 

the sequential algorithm, the observed values are 

not available, and it is common to use non-

informative prior distribution (Jeffreys 1946) as 

the prior distribution of the unknown regression 

parameters. To represent the non-informative 

prior in the first step of the sequential update, the 

initial values of the hyperparameters are set as 

𝐋 = 𝐎, ν = 0, and 𝑸 = 𝐎. 

2.4. Bayes Hypothesis Tests with Bayes Factors 

The Bayes factor (BF) is used in Bayesian 

hypothesis testing, where the BF is defined as the 

ratio of the likelihood functions. Let 𝒀  be the 

observed data set, and 𝜽 = (𝑾, 𝜮)  be the 

regression parameter. The likelihood function for 

Hk is defined as Eq. (15). 

p(𝒀|Hk) = ∫ p(𝒀|𝜽, Hk)p(𝜽|Hk) 𝑑𝜽 (15) 

where p(𝒀|𝜽, Hk) and p(𝜽|Hk) are the likelihood 

function and prior distribution under the 

hypothesis Hk , respectively. The posterior 

distribution under the hypothesis Hk is expressed 

as follows by Bayes theorem. 

p(Hk|𝒀) = p(𝒀|Hk)p(Hk)p(𝒀)−1 (16) 

Two hypotheses, the null hypothesis H0 and 

the alternative hypothesis H1, are defined as the 

hypothesis Hk . The null hypothesis H0  is "the 

statistical model that observed values follow is 

identical to that of the bridge in a healthy 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 4 

condition. Since it is difficult to model the prior 

distribution of the alternative hypothesis H1, it is 

assumed for convenience that "the priori 

information is uncertain about the statistical 

model that the observed values follow". The ratio 

of the posterior distribution, Bayes factor (BF), 

for each hypothesis obtained from Eq. (16) is 

expressed as follows. 

p(H1|𝒀)

p(H0|𝒀)
=

p(H1)

p(H0)

p(𝒀|H1)

p(𝒀|H0)
 (17) 

From Eq. (17), the ratio of the posterior 

distribution can be expressed as the ratio of the 

prior distribution and the likelihood function. 

Assuming that the probabilities of the null 

hypothesis H0  and the alternative hypothesis H1 

are equal, i.e., p(H0) =  p(H1) , the BF can be 

expressed as the ratio of the likelihood function. 

In other words, the BF is an indicator to evaluate 

whether the dataset 𝐘 follows the null hypothesis 

H0  or the alternative hypothesis H1 . Kass and 

Raftery (1995) proposed that  the BF shown in Eq. 

(18) is considered on a natural logarithm scale, 

and if 2𝑙𝑛𝐵  is greater than 0, the evidence is 

strong that there is "very strong" evidence to reject 

the null hypothesis.  

𝐵𝐹 = 2𝑙𝑛𝐵 = 2𝑙𝑛 (
p(𝒀|H1)

p(𝒀|H0)
) (18) 

3. IN-HOUSE EXPERIMENT 

3.1. Vibration and damage experiment  

Moving vehicle experiments were conducted with 

a model bridge of a simple supported H-shaped 

steel girder. The span length of the bridge is 5400 

mm, the width is 287 mm, and the depth is 66 mm.  

The detail of the model bridge, sensor 

placement, and artificial damage are shown in 

Figure 1. The supports denoted Ab1 and Ab2 in 

Figure 1 adopt pin and roller supports respectively. 

In the experiment, accelerations, displacement, 

and surface temperature were measured. The 

triaxial accelerometers, M-A552AC10 (Epson), 

were placed on the bottom surface of the bridge at 

five points (from A1 to A5). Both contact-type 

displacement transducer (Tokyo Measuring 

Instruments Lab.)  and laser displacement 

transducer, IL-065 (Keyence), were used. A 

contact-type displacement transducer was 

installed span center of the bridge, denoted as D1 

in Figure 1, and the laser displacement 

transducers were installed at the roller support 

Ab2 in the longitudinal direction that is denoted 

L1 and L2 in Figure 1. The laser displacement 

transducers were deployed to measured 

longitudinal movement of the bridge during 

temperature changes. Thermocouples (Tokyo 

Measuring Instruments Lab.) were placed on the 

underside of the flooring with equal spacing at six 

points (from T1 to T6) spaced in 4 equal divisions 

of the span length. For measuring displacement, 

the NR-600 (Keyence) was used as the data logger 

and for measuring surface temperature, the TDS-

530 (Tokyo Measuring Instruments Lab.) was 

used. 

In damage experiments, the bridge was 

artificially damaged in the center of the span and 

at the ends, as shown in Figure 1. The damage was 

created by applying three slits in the middle of the 

span, as shown in Figure 2 a), and the flanges of 

the bridge ends were trimmed off in a triangular 

shape, as shown in Figure 2 c). The damage was 

reinforced as shown in Figure 2 b) and d) and 

deemed a healthy state. As damage scenarios, 

DMG0, DGM1, DGM2, and DMG12 denote the 

healthy state, the damage state with artificial slits 

at the center of the span, the damage state with 

trimmed web plate at the end of the bridge, and 

the damage state with both artificial slits and 

trimmed plate.  

The flexural rigidities of the bridge under 

DMG0, DGM1, DGM2, and DMG12 scenarios 

were 1.4777E + 11 (N ∙ 𝑚𝑚2) , 1.2611E +
11 (N ∙ 𝑚𝑚2) , 1.4354E + 11 (N ∙ 𝑚𝑚2) , 

1.2617E + 11 (N ∙ 𝑚𝑚2) , respectively. It is 

noted that the flexural rigidity of the bridge was 

not reduced due to DMG2, i.e., only a 3% 

reduction of the flexural rigidity, while a 15% 

reduction of the flexural rigidity due to DMG1 

was observed. 
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Rubber heaters were used to vary the surface 

temperature of the bridge. During the moving 

vehicle experiment on the bridge, the surface 

temperature was set at 25℃, 35℃, 45℃, and 

55℃. These temperature scenarios are denoted as 

T25, T35, T45, and T55.  

In the moving vehicle experiments on the 

model bridge, the weight of the model vehicle was 

approximately 135N. The vehicle speed was 

determined to be consistent with the 

dimensionless parameter 𝛼 shown in Eq. (19) for 

both the model bridge and an actual bridge with a 

span length of 36 m.  

𝛼 =
𝑣

2𝑓𝐿
 (19) 

where v denotes the vehicle speed (m/s), f is the 

natural frequency of the first bending mode of the 

bridge (Hz), and L is the span length (m).  

In this experiment, the model vehicle was 

operated at a speed of 0.84 m/s, equivalent to 20 

km/h on the actual bridge. The number of trials for 

each run was 20 for all scenarios. The direction of 

travel was between Ab1 and Ab2 in Figure 1, with 

one-way being considered as one trial and the 

sampling frequency was 200 Hz. 

The total number of experiments is 320 

trials: four temperature scenarios, four damage 

scenarios, and 20 runs of the moving vehicle test. 

Hereafter, the notation of the experiment scenario 

is defined as “(DMGn, Tm)” in which n denotes 

the ID of damage scenarios, i.e., 0, 1, 2, or 12, and 

m denotes the planned temperature. 

 
 

 
Figure 1: Model bridge, position of the sensors, and artificial damage. 

 

                 
a) Damage scenario: DMG1                                  b) Damage reinforcement of DMG1 

 
c) Damage scenario: DMG2                                  d) Damage reinforcement of DMG2 

Figure 2: Artificial damages and healthy states subject to damage reinforcement. 
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Table 1: Identified Frequency at T25(Hz). 

Bending 

Mode 

DMG0 DMG1 DMG2 DMG12 

1st  3.49 3.66 3.45 3.41 

2nd   9.73 9.47 9.56 9.38 

3rd   23.18 22.75 22.63 22.50 

 

 
Figure 3: PSD of acceleration (DMG0, T25). 

 

 
Figure 4: Optimal AR order by BIC. 

 

 
Figure 5: BF (DMG0, T25 is reference data.) 

 

 

3.2. Vibration characteristics of model bridge 

Vibration characteristics were identified by the 

SSI utilizing accelerations. The mean values of 

the identified frequencies at 25℃ are summarized 

in Table 1, which shows changes in the natural 

vibration frequencies associated with the damage 

state. Frequencies of the second and third bending 

modes decreased due to the damage states (DMG1, 

DMG2, DMG12). On the other hand, the 

frequency of the first bending mode increased 

from DMG0 to DMG1 despite the damage.  

One reason for the increasing trend of the 

first bending frequency due to damage in the 

DMG1 scenario is in difficulty to select the proper 

frequency relevant to the first bending mode as 

shown in the PSD curve in Figure 3. The PSD 

curve shows multiple peaks around the first 

bending frequency, and the cause of the increase 

in the frequency of the first bending mode was the 

extraction of a vibration mode other than the first 

bending mode. The cause of appearing multiple 

peaks could be the influence of the vehicle-bridge 

interaction (Chang et al. 2014). 

4. ANOMALY DETECTION USING BAYES 

FACTOR 

As discussed in Section 3.2, it was found that 

sensitivity to damage varies depending on the 

vibration mode. However, it was not easy to 

determine the vibration modes that were sensitive 

to damage beforehand. Therefore, the coefficient 

matrix of the VAR model is used as a damage-

sensitive feature, and the Bayesian hypothesis test 

with BF is carried out as anomaly detection.  

4.1. Variations of BF under temperature changes 

In order to investigate the feasibility of damage 

detection under changing temperatures, the 

change in BF is examined. First, the optimal 

model order of the VAR model is determined 

using the BIC in Eq. (5). Figure 4 shows BIC with 

respect to the model order of the VAR model, and 

the minimum BIC was observed at p = 44. p = 44 

is thus deemed the optimal autoregressive order.  

BFs estimated considering the optimal 

autoregressive order, p = 44, are illustrated in 

Figure 5 in which data from (DMG0, T25) is used 
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as reference data. Figure 5 shows that the effect of 

temperature changes on the BF was small in 

DMG0 and DMG2 scenarios, while the BFs of 

DMG1 and DMG12 are affected by the 

temperature changes. However, in terms of 

damage detection, the BFs of DMG1 and DMG12 

are clearly higher than DMG0 even taking 

temperature effects into account. 

Considering real-world applications, the 

reference BF could be estimated from at least one 

year of monitoring data so that seasonal changes 

can be included in the reference BF. Therefore, 

the reference BF is estimated using all data of the 

DMG0 considering four temperature scenarios. 

Figure 6 shows the plot of BFs of different 

damage scenarios under different temperatures. It 

is observed that the BFs of DMG1 and DMG12 

scenarios clearly indicate "very strong" evidence 

to reject the null hypothesis, i.e., healthy state, 

although temperature changes influence the BF. 

For DMG2, where the reduction in bending 

stiffness is negligible even after trimming the web 

plates at the bridge ends, the BF shows 'very weak' 

evidence to reject the null hypothesis, as expected. 

5. CONCLUSIONS 

This study investigates the effects of temperature 

changes on the vibration characteristics of bridges 

by means of in-house moving vehicle experiments 

on an artificially damaged model bridge. Changes 

in the damage-sensitive feature under artificial 

damage and varying temperatures using are also 

investigated using the Bayes factor (BF) as a 

Bayesian hypothesis test. 

Observations demonstrated that temperature 

changes affect the BF when the reduction of 

flexural rigidity is big. However, for the damaged 

bridge under damage at the span center resulted in 

around a 15% reduction of flexural rigidity BFs 

showed clear changes even taking temperature 

effects into account. In other words, the BF of the 

damaged bridge clearly indicates "very strong" 

evidence to reject the null hypothesis, i.e., a 

healthy state, although temperature changes have 

some effect on the BF. 
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