
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

PSimPy: GP emulation-based sensitivity analysis, uncertainty
quantification and calibration of landslide simulators

Hu Zhao
Postdoctoral researcher, Methods for Model-based Development in Computational
Engineering, RWTH Aachen University, Aachen, Germany

Anil Yildiz
Postdoctoral researcher, Methods for Model-based Development in Computational
Engineering, RWTH Aachen University, Aachen, Germany

Nazanin Bagherinejad
Scientific assistant, Methods for Model-based Development in Computational
Engineering, RWTH Aachen University, Aachen, Germany

Julia Kowalski
Professor, Methods for Model-based Development in Computational Engineering, RWTH
Aachen University, Aachen, Germany

ABSTRACT: Computer simulations are widely used to study real-world systems in many fields of
science and engineering, such as earth science, life science, energy engineering, civil engineering, etc.
Such simulators may be subject to a variety of uncertainties resulting from many sources, e.g. uncertain
input parameters. These uncertainties need to be properly quantified in order to achieve reliable
simulation-based prediction and design. However, simulators are often computationally too expensive
for uncertainty-related analyses, such as uncertainty quantification, global sensitivity analyses, and
parameter calibration. In the recent decades, Gaussian process (GP) emulation has been shown to be
effective in overcoming computational bottlenecks. This work presents the newly developed
open-source Python package, PSimPy, for sensitivity analysis, uncertainty quantification, and parameter
calibration of simulators using GP emulation. It is built upon recent progress in GP emulation for
simulators with massive outputs, GP emulation-enabled global sensitivity analyses, and Bayesian active
learning for parameter calibration. The structure of PSimPy is presented herein, and case studies from
landslide run-out modelling are performed to demonstrate the feasibility of PSimPy for the above
mentioned computationally costly tasks. Due to the data-driven nature of GP emulation, PSimPy is
potentially applicable to computationally expensive simulators in many fields.

Various fields of science and engineering use com-
puter simulations to describe and study real-world
systems and processes. Notable examples include
climate science, earth science, life science, energy
engineering, civil engineering, and geohazards en-
gineering, etc. Such simulation models, so called
simulators, are subject to various uncertainties re-

sulting from a variety of sources, e.g. uncertain
input parameters and observation error (Kennedy
and O’Hagan, 2001). The presence of uncertain-
ties implies the need of uncertainty-related analyses
including sensitivity analysis (Saltelli et al., 2010),
uncertainty quantification (Dalbey et al., 2008), and
parameter calibration (Allmaras et al., 2013). These

1

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

analyses are often computationally expensive or
even infeasible due to the large number of neces-
sary simulator executions.

One way of overcoming this challenge is to uti-
lize surrogate models that aim at substituting the
simulator by a faster to evaluate approximation.
Many surrogate modelling methods have been de-
veloped over last decades, see Asher et al. (2015)
for an overview. Among them, Gaussian process
(GP) emulation has been widely used due to its
rich theoretical background (Girard et al., 2016)
and robustness, e.g. Bounceur et al. (2015) and
Sun et al. (2021). Recent progress includes GP
emulation for simulators with massive outputs (Gu
and Berger, 2016), GP emulation-enabled global
sensitivity analyses (Le Gratiet et al., 2014; Zhao
et al., 2021), and GP emulation-based Bayesian ac-
tive learning for parameter calibration (Kandasamy
et al., 2017; Wang and Li, 2018; Zhao and Kowal-
ski, 2022). It is now desirable to leverage these new
capabilities in a unified framework that can be eas-
ily employed by the community to efficiently per-
form above uncertainty-related computationally ex-
pensive analyses.

This work presents the newly developed open-
source Python package, PSimPy. It integrates re-
cent progress in the field of Gaussian process em-
ulation and provides a user-friendly toolbox to fa-
cilitate uncertainty-related analyses. In section 2,
the methods are briefly introduced. In section 3,
the structure of PSimPy and its implementation are
presented. Section 4 shows how it can be employed
using a case study.

1. METHODOLOGY

1.1. Gaussian process emulation
A simulator, y= f (x), defines a mapping of input

x = (x1, . . . ,xp)
T ∈X ⊂Rp to output y ∈R. Note,

that here we consider y as scalar output for simplic-
ity. For each x, a computer simulation needs to be
run in order to obtain the corresponding output. As
soon as uncertainty-related analyses are conducted,
the simulator has to be evaluated many times, which
renders a computationally infeasible task even for
efficient simulators. GPs are introduced to speed up
the evaluation. GP emulation treats the simulator as
an unknown function and assumes that its output is

unknown at any input before running the simula-
tion. The simulator is then modeled by a Gaussian
process

f (·)∼ G P(m(·;β),K(·, ·;σ
2,γ)), (1)

where m(·) and K(·, ·) are the mean and kernel
function respectively and β , σ2, and γ are unknown
hyperparameters of the Gaussian process.

From a Bayesian perspective, we can evaluate the
simulator at a small number ntr of input points to
obtain so called training data (input-output pairs of
ntr simulator evaluations). Based on the training
data, we can update the above Gaussian process,
hence, specify the GP’s hyperparameters. The up-
dated Gaussian process provides the Gaussian pro-
cess emulator which allows us to almost instantly
predict output y∗ at any new input x∗. The new pre-
diction y∗ will be exact whenever the input x∗ cor-
responds to one of the training data pairs, and oth-
erwise yield an approximation to the simulator. The
strength of Gaussian processes furthermore is, that
they yield not only the output, but in fact a complete
probability distribution, which will later be used for
error-control.

There are different ways to learn the unknown
hyperparameters β , σ2, and γ , ranging from non-
Bayesian methods to fully Bayesian methods, see
Zhao (2021). PSimPy adopts the work of Gu et al.
(2018) and Gu et al. (2019), which is a robust partial
Bayesian method. For cases where the simulator
output is not a scalar but high-dimensional, PSimPy
relies on the parallel partial GP emulator developed
by Gu and Berger (2016).

1.2. Sensitivity analysis
Given a simulator y = f (x), the aim of a sensitiv-

ity analysis is to find out how sensitive the output
varies with changing input. The Sobol’ sensitiv-
ity analysis is a type of global sensitivity analysis
method. It decomposes the overall variance of y
into contributions resulting from the individual in-
put parameters xi, i = 1, . . . , p alone, as well as their
interactions. The independent contribution of xi is
represented by its first-order Sobol’ index

Si =
Vxi[Ex−i[y|xi]]

V [y]
, (2)

2

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

and the overall contribution of xi is represented by
its total-order Sobol’ index

STi = 1−
Vx−i[Exi[y|x−i]]

V [y]
, (3)

where V denotes the variance operator and E de-
notes the expectation operator; x−i represents the
collection of all input factors except xi.

Equations (2)-(3) include tedious integrals,
hence, are impossible to be solved analytically if
the simulator is complex, which is often the case
for real-world processes. PSimPy adopts a numer-
ical method proposed by Saltelli et al. (2010). It
requires nbase · (p+ 2) simulator executions where
nbase denotes the base sample size. This is com-
putationally expensive since nbase must be suffi-
ciently large. Le Gratiet et al. (2014) proposed a
GP emulation-based Sobol’ analysis method which
overcomes the computational bottleneck. It pro-
vides a means to account for additional uncer-
tainty introduced by GP emulation. Zhao et al.
(2021) extended the method to simulators with
high-dimensional output by leveraging the parallel
partial GP emulator. PSimPy adopts these recently
developed methods.

1.3. Uncertainty quantification
The aim of a uncertainty quantification in a nar-

row view is to quantify the uncertainty in simulator
output y induced by its uncertain input x using rel-
evant statistics such as the mean

µy = E[y] (4)

and the standard deviation

σy =
√

E[(y−µy)2]. (5)

Again, equations (4)-(5) are analytically imprac-
tical if the simulator is complex. In that case,
different flavours of Monte Carlo methods are
widely used to numerically approximate the statis-
tics. They require evaluating the simulator at a large
number of randomly picked input points and then
compute the statistics based on corresponding sim-
ulation output values. To improve the computa-
tional efficiency, one can first build a GP emulator
to substitute for the simulator and then perform the
Monte Carlo approximation using the emulator.

1.4. Parameter calibration
In some fields, simulators are used in an inverse

manner to learn unknown parameters x based on
observation data d of concerned output y, known as
parameter calibration or inference. Following the
Bayes’ theorem, a posterior probability distribution
of the unknown parameters x can be derived based
on prior knowledge of x and d, namely

p(x | d) =
L(x | d)p(x)∫
L(x | d)p(x)dx

, (6)

where p(x), p(x | d), and L(x | d) are prior prob-
ability distribution, posterior probability distribu-
tion, and likelihood function respectively.

The likelihood function contains the simulator
and is needed to evaluate for the posterior. For
a complex simulator, the posterior cannot be an-
alytically computed and has to rely on numeri-
cal approach. Numerical approximation strategies,
such as grid approximation or Markov Chain Monte
Carlo (MCMC) methods, require evaluating the
likelihood function (thus the simulator) at a large
number of x values and are therefore computation-
ally costly. Kandasamy et al. (2017) and Wang
and Li (2018) combined Gaussian process emula-
tion and active learning with Bayesian inference to
improve the computational efficiency significantly.
PSimPy implements these newly developed meth-
ods for parameter calibration.

2. STRUCTURE OF PSIMPY

PSimPy, standing for Predictive and Probabilistic
Simulation with Python, is an open-source Python
package. It implements a GP emulation-based
framework to efficiently facilitate uncertainty-
related analyses associated with simulators, includ-
ing sensitivity analysis, uncertainty quantification,
and parameter calibration. It is hosted at the
GitLab project under the link https://git-ce.
rwth-aachen.de/mbd/psimpy. The installation
is straightforward following the guideline on the
GitLab page.

Figure 1 shows the main structure of PSimPy,
including modules simulator, emulator, sensitivity,
inference, and sampler. As for uncertainty quan-
tification (the dashed box), computing the statistics

3

https://git-ce.rwth-aachen.de/mbd/psimpy
https://git-ce.rwth-aachen.de/mbd/psimpy

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

(section 1.3) can be easily done using functionali-
ties provided by NumPy and therefore does not re-
quire a dedicated module. PSimPy is implemented
in a modular way. One can conveniently combine
different modules to realize a desired uncertainty-
analyses workflow. It is also easily extendable.
Namely, one can implement new classes or mod-
ules, such as other MCMC methods, and use them
together with existing functionalities provided by
PSimPy.

Figure 1: Main structure of PSimPy

2.1. Sampler
The sampler module hosts sampling methods for

emulator training, Sobol’ sensitivity analysis, and
inference (parameter calibration). The following
classes are implemented:

• psimpy.sampler.LHS: Latin hypercube sam-
pling. It is a commonly used space-filling sam-
pling method to draw training input points for
Gaussian process emulation.

• psimpy.sampler.Saltelli: Saltelli’s ver-
sion of Sobol’ sampling for Sobol’ sensitiv-
ity analysis (Saltelli et al., 2010). This class
is built upon Saltelli sampling implemented
in the Sensitivity Analysis Library in Python
(SALib) (Herman and Usher, 2017).

• psimpy.sampler.MetropolisHastings:
Metropolis Hastings sampling. It is a straight-
forward MCMC method to numerically
approximate the posterior in parameter
calibration (section 1.4).

2.2. Simulator
The simulator module hosts functionality for

running simulators. Users can implement simu-
lators of their interest and use functionality pro-
vided by psimpy.simulator.RunSimulator to
run multiple simulations either serially or in par-
allel. Two simulators frequently used in the field of
landslide run-out simulation are also included in the
simulator module as demonstrators. The following
classes are currently available:

• psimpy.simulator.RunSimulator: Se-
rial and parallel execution of simula-
tors. The parallel execution relies on
ProcessPoolExecutor class from Python
concurrent.futures module.

• psimpy.simulator.MassPointModel:
Mass point model for landslide run-out
simulation.

• psimpy.simulator.Ravaflow24Mixture:
Voellmy-type shallow flow model for land-
slide run-out simulation. This class is built
upon the GIS-based open source mass flow
simulation tool r.avaflow (Mergili et al., 2017).

2.3. Emulator
The emulator module hosts functionality for em-

ulation methods. Currently implemented classes
are:

• psimpy.emulator.ScalarGaSP: GP emula-
tion for single-output simulators. Parameters
of GP emulator can be robustly estimated fol-
lowing Gu et al. (2018).

• psimpy.emulator.PPGaSP: GP emulation
for multi-output simulators. It is based on the
parallel partial Gaussian process emulation de-
veloped by Gu and Berger (2016).

The implementation of classes ScalarGaSP and
PPGaSP relies on the R package RobustGaSP (Gu
et al., 2019) and the package rpy2 (Interface to use
R from Python). ScalarGaSP and PPGaSP provide
a Python interface to directly use RobustGaSP from
within Python.

2.4. Sensitivity
The sensitivity module hosts functionality for

computing sensitivity indices. Currently imple-
mented class is:

4

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

• psimpy.sensitivity.SobolAnalyze:
Compute Sobol’ indices. This class is based
on Sobol’ analysis implemented in SALib.

2.5. Inference

The inference module hosts functionality for
parameter calibration. It contains two Bayesian
inference methods, namely grid estimation and
Metropolis Hastings estimation. Moreover, ac-
tive learning is implemented which can be com-
bined with the Bayesian inference methods to real-
ize Bayesian active learning methods (Kandasamy
et al., 2017; Wang and Li, 2018). Currently avail-
able classes are:

• psimpy.inference.GridEstimation: Grid
estimation to numerically approximate the
posterior distribution. The denominator in
equation (6) is estimated by numerical inte-
gration on a regular grid. This method is only
suitable for low-dimensional problems.

• psimpy.inference.
MetropolisHastingsEstimation:
Metropolis Hastings estimation to numer-
ically approximate the posterior distribution.
The posterior is estimated by samples drawn
from the unnormalized posterior (numerator
of equation 6) using Metropolis Hastings
sampling.

• psimpy.inference.ActiveLearning: Ac-
tively pick training input points to construct a
GP emulator for the unnormalized posterior.

3. USAGE EXAMPLE

To demonstrate how PSimPy is used for
uncertainty-related analyses, this section shows an
example in the field of landslide run-out assess-
ment. We assume a Voellmy-type shallow flow pro-
cess model (Christen et al., 2010; Mergili et al.,
2017). It is governed by balance laws for mass and
momentum that describe flow dynamics (i.e., flow
height and velocity) of triggered mass along a to-
pography given initial mass distribution. Examples
below are based on the 2017 Bondo landslide event
(Zhao et al., 2021), see figure 2 for its topography
and initial mass distribution.

Figure 2: Topography and initial mass distribution of
the 2017 Bondo landslide event.

3.1. Sensitivity analysis and uncertainty quantifi-
cation

To set up the sensitivity analysis and uncertainty
quantification example, consider the simulator y =
f (x) = f (µ,ξ ,v0), where y represents the output
of interest, here the impact area. µ , ξ , and v0 are
Coulomb friction coefficient, turbulent friction co-
efficient, and release volume respectively. They are
treated as uncertain input parameters. Ranges of µ ,
ξ , and v0 are set as 0.02–0.3, 100–2200 m/s2, and
1.5–4.5 million m3 following Zhao et al. (2021).

A Sobol’ sensitivity analysis assesses the contri-
bution of each uncertain factor to the variation of
the impact area (section 1.2). Listing 1 shows how
a GP emulation-based Sobol’ analysis may be per-
formed using PSimPy:

1 import numpy as np
2 from psimpy.sampler import LHS ,

Saltelli
3 from psimpy.simulator import

RunSimulator
4 from psimpy.simulator import

Ravaflow24Mixture
5 from psimpy.emulator import ScalarGaSP
6 from psimpy.sensitivity import

SobolAnalyze
7

8 def voellmy_model(mu , xi, v0, ...):
9 """ Define Voellmy model based on

Ravaflow24Mixture."""
10 ...
11 return impact_area
12

13 ndim = 3 # number of uncertain
parameters

14 bounds = np.array
([[0.02 ,0.3] ,[100 ,2200] ,[1.5 ,4.5]])

5

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

15 # Draw training input points using
Latin hypercube sampling

16 lhs_sampler = LHS(ndim , bounds , ...)
17 lhs_samples = lhs_sampler.sample(

nsamples =200)
18 # Run simulations at training input

points and extract outputs
19 run_model = RunSimulator(simulator=

voellmy_model , ...)
20 run_model.parallel_run(lhs_samples ,

...)
21 impact_areas = np.array(run_model.

outputs)
22 # Build GP emulator
23 emulator = ScalarGaSP(ndim , ...)
24 emulator.train(design=lhs_samples ,

response=impact_areas , ...)
25 # Draw samples for Sobol’ analysis
26 saltelli_sampler = Saltelli(ndim ,

bounds , ...)
27 saltelli_samples = saltelli_sampler.

sample(nbase =6000)
28 # Draw realizations of the simulator

at saltelli_samples using the
trained emulator

29 Y = emulator.sample(saltelli_samples ,
nsamples =50, ...)

30 # Perform Sobol ’ analysis
31 analyzer = SobolAnalyze(ndim , Y, ...)
32 sobol_indices = analyzer.run (...)

Listing 1: Code snippet of a GP emulation-based
Sobol’ analysis using PSimPy

In listing 1, lines 8–11 define the
Voellmy type shallow flow model based on
psimpy.simulator.Ravaflow24Mixture. It
takes the µ , ξ , and v0 triple as input and returns the
simulated impact area. The rest is self-explanatory.

Figure 3 shows results of the Sobol’ analysis.
The workflow in listing 1 can be easily extended to
multi-output simulators by replacing ScalarGaSP
with PPGaSP, see Zhao et al. (2021) for how the re-
sults look like.

For GP emulation-based uncertainty quantifica-
tion, the workflow is very similar. For example, to
quantify the impact of uncertainties of the three un-
known parameters on the impact area, one may re-
place lines 26–28 with a Monte Carlo sampling and
lines 31–32 with NumPy commands to compute the
statistics.

Figure 3: Sobol’ indices for the impact area regarding
three uncertain parameters µ , ξ , v0. The green and
blue bars represent first-order and total-effect Sobol’
indices respectively. The Coulomb friction coefficient
µ clearly contributes the most to the variation of the
impact area.

3.2. Inference
The example of parameter calibration follows the

setting of Zhao and Kowalski (2022). Namely, we
consider the simulator y = f (x) = f (µ,ξ), where
y represents maximum flow velocity at location L3
(figure 2). In the context of parameter calibration,
the aim is to use observed data to update our knowl-
edge of unknown parameters using Bayes’ theorem
(section 1.4. Here, we would like to learn about
Coulomb friction coefficient µ and turbulent fric-
tion coefficient ξ based on an (synthetic) observa-
tion of maximum flow velocity at L3 via Bayesian
active learning. Listing 2 presents how such an
analysis may be conducted using PSimPy:

1 import numpy as np
2 from psimpy.sampler import LHS
3 from psimpy.simulator import

RunSimulator
4 from psimpy.simulator import

Ravaflow24Mixture
5 from psimpy.emulator import ScalarGaSP
6 from psimpy.inference import

ActiveLearning
7 from psimpy.inference import

GridEstimation
8

9 def voellmy_model(mu , xi, ...):
10 """ Define Voellmy model based on

Ravaflow24Mixture."""
11 ...
12 return maxv_L3
13

6

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

14 # number of uncertain parameters which
need to be calibrated

15 ndim = 2
16 bounds = np.array

([[0.02 ,0.3] ,[100 ,2200]])
17 # define a Latin hypercube sampler to

draw initial training input points
18 lhs_sampler = LHS(ndim , bounds , ...)
19 # create a RunSimulator object to run

simulator
20 run_model = RunSimulator(simulator=

voellmy_model , ...)
21 # create a ScalarGaSP object to train

emulator
22 scalar_gasp = ScalarGaSP(ndim , ...)
23 # observed data for parameter

calibration
24 data = ...
25 # define prior probability

distribution
26 def prior (...):
27 ...
28 return

prior_probability_density_value
29 # define likelihood function
30 def likelihood (...):
31 ...
32 return likelihood_value
33 # create an ActiveLearning object to

actively train a GP emulator for
the unnormalized posterior

34 active_learner = ActiveLearning(ndim ,
bounds , data , run_model , prior ,
likelihood , lhs_sampler ,
scalar_gasp , ...)

35 n0 = 40 # number of initial
simulations

36 niter = 80 # number of iterative
simulations

37 # run initial simulations
38 init_var_samples , init_sim_outputs =

active_learner.initial_simulation(
n0 , ...)

39 # run iterative simulations and
sequentially build and improve
emulator

40 var_samples , sim_outputs ,
ln_pxl_values = active_learner.
iterative_emulation(n0 ,
init_var_samples , init_sim_outputs ,
niter , ...)

41 # use grid estimation to approximate
the posterior based on the final GP
emulator

42 grid_estimator = GridEstimation(ndim ,
bounds , ln_pxl=active_learner.

approx_ln_pxl)
43 posterior , _ = grid_estimator.run(

nbins =100)

Listing 2: Code snippet of a parameter calibration
using PSimPy

In listing 2, lines 9–33 define required inputs to cre-
ate an ActiveLearning object. Once it is created,
we can call its initial_simulation method to
prepare initial training data (line 38) and then call
its iterative_emulation method to iteratively
build the GP emulator for the unnormalized poste-
rior (line 40). In lines 42–43, we use grid estimation
to approximate the posterior based on the final GP
emulator . Figure 4 shows the results.

Figure 4: Bayesian active learning for calibrating µ

and ξ based on an (synthetic) observation of maxi-
mum flow velocity at L3. The black cross represents the
underlying truth values of µ and ξ and the colormap
shows the estimated posterior. Blue asterisk denotes
the initial training input points and red triangle denotes
actively picked training input points. The resulting ba-
nana shaped posterior distribution is well known for
this type of shallow flow based landslide models.

4. CONCLUSION

This paper presents the recently developed open-
source Python package, PSimPy, for sensitivity
analysis, uncertainty quantification, and parameter
calibration of simulators using GP emulation. It
takes advantage of recent GP emulation for simu-
lators with massive outputs, GP emulation-enabled
global sensitivity analyses, and Bayesian active

7

14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

learning for parameter calibration. PSimPy is im-
plemented in a highly modular way which means
different modules can be easily combined to real-
ize desired workflows, as shown by the usage ex-
amples. The modular characteristic also makes it
easily extendable. Users can simply implement
their own classes or modules and combine them
with existing building blocks of PSimPy. To obtain
up-to-date information about the package, please
refer to our GitLab project at https://git-ce.
rwth-aachen.de/mbd/psimpy.

5. REFERENCES
Allmaras, M., Bangerth, W., Linhart, J. M., Polanco,

J., Wang, F., Wang, K., Webster, J., and Zedler, S.
(2013). “Estimating parameters in physical models
through Bayesian inversion: A complete example.”
SIAM Review, 55(1), 149–167.

Asher, M. J., Croke, B. F. W., Jakeman, A. J., and
Peeters, L. J. M. (2015). “A review of surrogate mod-
els and their application to groundwater modeling.”
Water Resources Research, 51(8), 5957–5973.

Bounceur, N., Crucifix, M., and Wilkinson, R. D.
(2015). “Global sensitivity analysis of the cli-
mate–vegetation system to astronomical forcing: an
emulator-based approach.” Earth System Dynamics,
6(1), 205–224.

Christen, M., Kowalski, J., and Bartelt, P. (2010).
“RAMMS: Numerical simulation of dense snow
avalanches in three-dimensional terrain.” Cold Re-
gions Science and Technology, 63(1), 1–14.

Dalbey, K., Patra, A. K., Pitman, E. B., Bursik, M. I.,
and Sheridan, M. F. (2008). “Input uncertainty prop-
agation methods and hazard mapping of geophysical
mass flows.” Journal of Geophysical Research: Solid
Earth, 113(B5), B05203.

Girard, S., Mallet, V., Korsakissok, I., and Mathieu, A.
(2016). “Emulation and Sobol’ sensitivity analysis
of an atmospheric dispersion model applied to the
Fukushima nuclear accident.” Journal of Geophysical
Research: Atmospheres, 121(7), 3484–3496.

Gu, M. and Berger, J. O. (2016). “Parallel partial Gaus-
sian process emulation for computer models with
massive output.” Annals of Applied Statistics, 10(3),
1317–1347.

Gu, M. Y., Palomo, J., and Berger, J. O. (2019). “Ro-
bustgasp: Robust Gaussian stochastic process emula-
tion in R.” The R Journal, 11(1), 112–136.

Gu, M. Y., Wang, X. J., and Berger, J. O. (2018). “Ro-

bust Gaussian stochastic process emulation.” Annals
of Statistics, 46(6A), 3038–3066.

Herman, J. and Usher, W. (2017). “SALib: An open-
source Python library for sensitivity analysis.” The
Journal of Open Source Software, 2(9).

Kandasamy, K., Schneider, J., and Póczos, B. (2017).
“Query efficient posterior estimation in scientific ex-
periments via Bayesian active learning.” Artificial In-
telligence, 243, 45–56.

Kennedy, M. C. and O’Hagan, A. (2001). “Bayesian cal-
ibration of computer models.” Journal of the Royal
Statistical Society: Series B (Statistical Methodol-
ogy), 63(3), 425–464.

Le Gratiet, L., Cannamela, C., and Iooss, B. (2014). “A
bayesian approach for global sensitivity analysis of
(multifidelity) computer codes.” SIAM/ASA Journal
on Uncertainty Quantification, 2(1), 336–363.

Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P.
(2017). “r.avaflow v1, an advanced open-source com-
putational framework for the propagation and inter-
action of two-phase mass flows.” Geoscientific Model
Development, 10(2), 553–569.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F.,
Ratto, M., and Tarantola, S. (2010). “Variance based
sensitivity analysis of model output. Design and es-
timator for the total sensitivity index.” Computer
Physics Communications, 181(2), 259–270.

Sun, X. P., Zeng, P., Li, T. B., Wang, S., Jimenez, R.,
Feng, X. D., and Xu, Q. (2021). “From probabilis-
tic back analyses to probabilistic run-out predictions
of landslides: A case study of Heifangtai terrace,
Gansu Province, China.” Engineering Geology, 280,
105950.

Wang, H. Q. and Li, J. L. (2018). “Adaptive Gaussian
process approximation for Bayesian inference with
expensive likelihood functions.” Neural Computation,
30(11), 3072–3094.

Zhao, H. (2021). “Gaussian processes for sensitivity
analysis, Bayesian inference, and uncertainty quan-
tification in landslide research.” Ph.D. thesis, RWTH
Aachen University, Aachen.

Zhao, H., Amann, F., and Kowalski, J. (2021).
“Emulator-based global sensitivity analysis for flow-
like landslide run-out models.” Landslides, 18, 3299–
3314.

Zhao, H. and Kowalski, J. (2022). “Bayesian active
learning for parameter calibration of landslide run-out
models.” Landslides, 19, 2033–2045.

8

https://git-ce.rwth-aachen.de/mbd/psimpy
https://git-ce.rwth-aachen.de/mbd/psimpy

	Methodology
	Gaussian process emulation
	Sensitivity analysis
	Uncertainty quantification
	Parameter calibration

	Structure of PSimPy
	Sampler
	Simulator
	Emulator
	Sensitivity
	Inference

	Usage example
	Sensitivity analysis and uncertainty quantification
	Inference

	Conclusion
	REFERENCES

