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ABSTRACT: A novel stochastic incremental dynamics analysis methodology is developed for nonlinear
structural systems with fractional derivative elements exposed to seismic excitation consistently aligned
with contemporary aseismic codes provisions (e.g. Eurocode 8). Rendering to the concept of
non-stationary stochastic processes, the vector of the imposed seismic excitations is characterized by
evolutionary power spectra compatible in a stochastic sense with elastic response acceleration spectra of
specified modal damping ratio and scaled ground acceleration. The proposed stochastic dynamics
technique relies on a combination of the stochastic averaging and statistical linearization methods,
which permits the determination of the response displacement probability density function in an
efficient and comprehensive manner. The commonly encountered in the literature incremental dynamics
analysis curves have been replaced by a stochastic incremental dynamics analysis surface providing
with reliable higher order statistics of the system response. A significant attribute of the method pertains
to the derivation of an associated response evolutionary power spectrum as a function of spectral
acceleration. The method retains the coveted attribute of a particularly low associated computational
cost. A structural system comprising the nonlinear model endowed with fractional derivative terms
subject to a Eurocode 8 elastic design spectrum serves as a numerical example for demonstrating the
reliability of the proposed methodology, whose accuracy is demonstrated by comparisons with pertinent
Monte Carlo simulation data.

1. INTRODUCTION
In the engineering discipline of earthquake resis-

tant structures nonlinearities arise naturally in var-
ious forms. In this setting, there is a well-detected

need for rigorous and consistent representation of
the system model by considering thoroughly the
underlying mechanisms which determine the over-
all system behavior. Constant needs for enhanced
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modeling purposes dictate a reasonable transition
to more advanced mathematical tools such as frac-
tional calculus. Notably, structural engineering
has significantly benefited from the utilization of
fractional calculus concepts. The emerged num-
ber of research efforts pertaining to seismic isola-
tion, vibration control and energy harvesting appli-
cations reveals the capabilities of fractional calcu-
lus to offer upgraded system modeling services in
numerous cases of structural engineering interest
(Makris and Constantinou, 1991; Rüdinger, 2006;
Koh and Kelly, 1990; Kougioumtzoglou et al.,
2022; Di Paola et al., 2013; Rossikhin and Shi-
tikova, 2010). Further, an appropriate stochastic
representation of seismic excitation in conjunction
with nonlinear system modeling and in alignment
with aseismic codes provisions secures a solid basis
for formulating a realistic structural analysis proce-
dure (Mitseas and Beer, 2021).

Reliable numerical estimations related to the per-
formance of structural systems necessitate a proper
quantitative treatment of uncertainties. The emerg-
ing concept of performance-based earthquake en-
gineering (PBEE) advocates the assessment of the
structural system performance in a comprehensive
and rigorous manner by properly accounting for the
presence of uncertainties (Mitseas et al., 2016; Mit-
seas and Beer, 2020). Specifically, basic notions
pertaining to PBEE comprise the definition of ex-
citation related variables, known as intensity mea-
sures (IMs) (e.g., spectral acceleration, peak ground
acceleration, etc.), and of system response related
variables known as engineering demand parame-
ters (EDPs) (e.g., peak story drift, inter-story drift
ratio, etc.). Moreover, the information provided
via the functional relationship between the IMs and
the EDPs in conjunction with judicially defined
damage-state rules (DSs), is utilized for quantify-
ing a decision variable (DV) (e.g. financial loss).

In the earthquake engineering field, one of the
customarily employed methodologies for estimat-
ing the functional relationship between the IMs
and the EDPs is the incremental dynamic analysis
(IDA) (Vamvatsikos and Cornell, 2002). IDA aims
at assessing the structural performance of systems
subject to a suite of ground motion records, each

scaled to several levels of seismic intensity; thus,
conducting a nonlinear response time-history anal-
ysis (RHA) for each and every scaled record. It is
noteworthy that each IDA curve is related to a spe-
cific ground motion record whereas each point of
the curve corresponds to a specific ground motion
intensity level and respective structural system re-
sponse magnitude. Clearly, the determination of
the above-mentioned functional relationship is as-
sociated with a significant computational cost. Fur-
ther, IDA provides with simple statistics of the se-
lected EDP such as the standard deviation and the
mean whereas potential higher order statistics re-
quirements under a fully probabilistic framework
could render the whole process computationally
prohibitive. Notably, some recent research efforts
have been made in the area harnessing the potential
of advanced random vibration concepts (dos Santos
et al., 2016; Mitseas and Beer, 2021).

The developed stochastic incremental dynamics
analysis methodology pertains to nonlinear struc-
tural systems with fractional derivative elements
exposed to seismic excitation consistently deter-
mined with contemporary aseismic codes provi-
sions (e.g. Eurocode 8). Specifically, the imposed
scaled seismic excitation is characterized by a se-
ries of evolutionary power spectra (EPS) compat-
ible in a stochastic sense with an elastic response
acceleration spectrum of specified modal damp-
ing ratio and scaled ground acceleration (Cacci-
ola, 2010). At the core of the proposed technique
lies a combination of the stochastic averaging and
statistical linearization methodologies (Roberts and
Spanos, 2003; Fragkoulis et al., 2019), which per-
mits the determination of the response displace-
ment probability density function (PDF) in an effi-
cient manner. The generated stochastic incremen-
tal dynamics analysis surface provides with reli-
able higher order statistics of the system response.
In addition, a significant attribute of the proposed
method is the derivation of the associated response
EPS as a function of spectral acceleration. Notably,
the method keeps the associated computational cost
at a minimum level. An illustrative numerical ex-
ample pertaining to a bilinear hysteretic structural
system with fractional derivative elements subject
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to a Eurocode 8 elastic design spectrum serves as a
numerical example for demonstrating the reliability
of the proposed methodology, while comparisons
with relevant Monte Carlo simulation (MCS) data
are included as well for assessing its accuracy.

2. MATHEMATICAL FORMULATION
2.1. Equivalent linear system determination

The governing equation of motion of a nonlinear
single-degree-of-freedom (SDOF) system endowed
with fractional derivative elements subject to a non-
stationary excitation is given by

ẍ(t)+βDα
0,tx(t)+g(t,x, ẋ) = ag(t), (1)

where x is the response displacement and a dot
over a process denotes differentiation with respect
to time. g(t,x, ẋ) is an arbitrary nonlinear/hysteretic
function and Dα

0,t(·) represents the Caputo frac-
tional derivative of fractional order α (0 < α < 1)

Dα
0,tx(t) =

1
Γ(1−α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ, (2)

where Γ(·) is the Gamma function and β is a damp-
ing coefficient. Lastly, ag(t) is a stochastic seis-
mic excitation process whose evolutionary power
spectrum (EPS) Sag(ω, t) is compatible with a pre-
scribed design spectrum S(ω,ζ0) (Cacciola, 2010).

Next, a recently developed approximate analyt-
ical technique (Fragkoulis et al., 2019), which re-
lies on a combination of statistical linearization and
stochastic averaging methods, is applied to deter-
mine the non-stationary response amplitude PDF
of the oscillator in Eq. (1). Considering that the
oscillator is lightly damped, its response follows a
pseudo-harmonic behavior, given by

x(t) = A(t)cos(ω(A)t +ψ(t)), (3)
ẋ(t) =−ω(A)A(t)sin(ω(A)t +ψ(t)), (4)

where ψ(t) and A(t) = A denote the response phase
and amplitude, respectively. The latter vary slowly
with respect to time, and thus, can be regarded as
constant over one cycle of oscillation (Roberts and
Spanos, 1986). Taking into account Eqs. (3)-(4), a

decoupling of the corresponding differential equa-
tions is attained in the form

A2(t) = x2(t)+
(

ẋ(t)
ω(A)

)2

, (5)

ψ(t) =−ω(A)t − arctan
(

ẋ(t)
x(t)ω(A)

)
. (6)

Then, applying a statistical linearization scheme,
Eq. (1) is recast into

ẍ(t)+(β0 +β (A)) ẋ(t)+ω
2(A)x(t) = ag(t), (7)

where β0 = 2ζ0ω0 with ω0 and ζ0 denoting the
natural frequency and damping ratio of the corre-
sponding linear oscillator. Further, defining an error
function as the difference between Eqs. (1) and (7)
and minimizing it in a mean square sense, leads to
the equivalent linear amplitude-dependent elements

β (A) =−β0 +
S(A)

Aω(A)
+

β sin
(

απ

2

)
ω1−α(A)

, (8)

ω
2(A) =

F(A)
A

+βω
α(A)cos

(
απ

2

)
, (9)

where

S(A) =− 1
π

∫ 2π

0
g0(A,φ)sinφdφ , (10)

F(A) =
1
π

∫ 2π

0
g0(A,φ)cosφdφ , (11)

with g0(A,φ) = g(Acosφ ,−Aω(A)sinφ) and
φ(t) = ω(A)t + ψ(t). Since Eqs. (8) and (9) are
amplitude-dependent, β (A) and ω(A) are also non-
stationary processes. Hence, taking expectations
on Eqs. (8) and (9) yields the time-varying mean
values (Kougioumtzoglou and Spanos, 2009)

βeq(t) =
∫

∞

0
β (A)p(A, t)dA, (12)

ω
2
eq(t) =

∫
∞

0
ω

2(A)p(A, t)dA, (13)

where p(A, t) denotes the non-stationary response
amplitude PDF. In passing, note that Eqs. (12) and
(13) correspond to the equivalent linear system

ẍ(t)+
(
β0 +βeq(t)

)
ẋ(t)+ω

2(t)x(t) = ag(t). (14)
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Clearly, p(A, t) is required for evaluating the
time-varying equivalent elements in Eqs. (12)-(13),
which is given by (Fragkoulis et al., 2019)

p(A, t) =
sin
(

απ

2

)
A

ω
1−α

0 c(t)
exp

(
−

sin
(

απ

2

)
ω

1−α

0

A2

2c(t)

)
.

(15)

In Eq. (15), c(t) denotes an unknown time-
dependent coefficient, which is determined by
resorting to a stochastic averaging treatment of
Eq. (14). In this regard, first, a first-order stochastic
differential equation for A(t) is derived. Then, sub-
stituting Eq. (15) into the corresponding Fokker-
Planck partial differential equation governing the
evolution in time of p(A, t), i.e.,

∂ p(A, t)
∂ t

=− ∂

∂A

{(
− 1

2
(β0 +βeq(t))A

+
πSag(ωeq(t), t)

2ω2
eq(t)A

)
p(A, t)

}

+
1
4

∂

∂A

{
πSag(ωeq(t), t)

ω2
eq(t)

∂ p(A, t)
∂A

+
∂

∂A

(
πSag(ωeq(t), t)

ω2
eq(t)

p(A, t)

)}
,

(16)

and manipulating yields

ċ(t) =−
(
β0 +βeq (c(t))

)
c(t)

+

(
sin
(

απ

2

)
ω

1−α

0

)
πSag(ωeq(c(t)), t)

ω2
eq(c(t))

.
(17)

Eq. (17) constitutes a deterministic first-order non-
linear ordinary differential equation, which can be
readily solved by the Runge-Kutta numerical inte-
gration scheme; the interested reader is directed to
Fragkoulis et al. (2019); Kougioumtzoglou et al.
(2022); Fragkoulis and Kougioumtzoglou (2023)
for more details on the derivation of Eqs. (7)-(17).

Lastly, considering Eqs. (8)-(9) and following
Kougioumtzoglou (2013), the amplitude-dependent
response EPS is determined by

Sxx(ω, t) =
∫

∞

0

Sag(ω, t)p(A, t)dA
(ω2(A)−ω2)2 +(ωβ (A))2 . (18)

2.2. Code-compliant stochastic incremental dy-
namics analysis methodology

Numerous systems of real engineering inter-
est can be modeled adequately as SDOF systems
(Roberts and Spanos, 2003). Consider a quies-
cent nonlinear SDOF system base-excited by a re-
sponse spectrum compatible acceleration stochas-
tic process ag(t) whose dynamic behavior is gov-
erned by Eq. (1). Following Cacciola (2010), the
non-stationary acceleration process ag(t) is charac-
terized in the frequency domain by an associated
EPS Sag(ω, t), compatibly defined with Eurocode 8
provisions. An incremental mechanization analo-
gous to that used in normal IDA is adopted herein,
where a0

g stands for the scaled image of the ex-
citation magnitude leading to the introduction of
the definition of Sag(ω, t;a0

g). In the present study,
the selected EDP is that of the response displace-
ment amplitude A at the most critical time instant
tin, which stands for the time instant when the pa-
rameter c(t) found in Eq. (17) reaches its maximum
value. In this regard, the response amplitude PDF
at tin with respect to specific level of the scaled ex-
citation a0

g is given by

p(A, tin;a0
g) =

sin
(

απ

2

)
A

ω
1−α

0 c(tin)
exp

(
−

sin
(

απ

2

)
ω

1−α

0

A2

2c(tin)

)
.

(19)
The generated p(A, tin;a0

g) for each and every
scaled level of the excitation a0

g leads to the effi-
cient determination of the stochastic IDA response
amplitude PDF surface, comprising valuable higher
order statistics under a fully probabilistic consider-
ation. Manipulating Eqs. (18)-(19) yields the re-
sponse power spectrum with respect to a specified
level of excitation a0

g and time instant,

Sxx(ω,a0
g) =

∫
∞

0

Sag(ω, tin;a0
g)

(ω2(A)−ω2)2 +(ωβ (A))2

× p(A, tin;a0
g) dA,

(20)
where Sxx(ω,a0

g) is the system response EPS at the
time instant when the response variance reaches its
maximum value for a given ground acceleration a0

g.
The above quoted relation leads to the efficient

determination of the coveted response power spec-
trum which pertains evolutionary characteristics as
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a function of spectral acceleration. The mechaniza-
tion of the proposed methodology is provided in the
following steps:

1. Derive the excitation EPS Sag(ω, t;a0
g) in a

stochastically compatible manner with an as-
signed elastic response acceleration spectrum
of specified modal damping ratio and scaled
ground acceleration a0

g; see Cacciola (2010)
for more details.

2. Following the proposed stochastic averaging
and linearization method shown in section 2.1,
determine the maximum value cmax(tin) and
the corresponding time instant tin. Practically,
this is achieved by employing Eqs. (12)-(13)
and Eq. (17).

3. For a specific level of excitation a0
g, estimate

the response EDP PDF and the response EPS
at tin by Eqs. (19) and (20), respectively.

4. Repeat steps 1-3 for all scaled images of the
excitation a0

g to determine the stochastic IDA
response amplitude PDF surface and the re-
sponse EPS as function of the spectral accel-
eration.

3. NUMERICAL APPLICATION

Employing the bilinear hysteretic force-
deformation law is a common practice to capture
the behavior of structural members and structures
under seismic excitation (Mitseas and Beer, 2019;
Giaralis and Spanos, 2010). Therefore, in this
section, a bilinear hysteretic oscillator with frac-
tional derivative elements subject to a Eurocode
8 elastic pseudo-acceleration response spectrum
is utilized to demonstrate the reliability of the
proposed stochastic IDA framework. The obtained
results are compared and found in good agreement
with corresponding results derived from nonlinear
RHA in a MCS-based context.

3.1. Bilinear hysteretic SDOF system with frac-
tional derivative elements

The equation of motion of a nonlinear bilinear
hysteretic SDOF system with fractional derivative
elements is considered. The restoring force of the

system is given by

g(t,x(t), ẋ(t)) = γω
2
0 x(t)+(1− γ)ω2

0 xyz(t), (21)
xyż(t) = ẋ{1−Φ(ẋ(t))Φ(z(t)−1)

−Φ(−ẋ(t))Φ(−z(t)−1)}, (22)

where Φ(·) denotes the Heaviside step function.
Further, z(t) is an auxiliary state representing the
hysteretic component, γ denotes the post- to pre-
yield stiffness ratio and xy is the yielding displace-
ment.

Next, taking into account Eq. (21), Eqs. (10) and
(11) become

S(A) =

{
4xyω2

0
π

(
1− xy

A

)
, A > xy

0, A ≤ xy
(23)

F(A) =

{
Aω2

0
π

(
Λ− 1

2 sin(2Λ)
)
, A > xy

Aω2
0 , A ≤ xy

(24)

with cos(Λ) = 1− 2xy
A . Thus, Eq. (12) yield

βeq(c(t)) =−β0 +
β sin2(απ

2 )

ω
1−α

0 c(t)

×
∫

∞

0

A
ω1−α(A)

exp

(
−

sin(απ

2 )

ω
1−α

0

A2

2c(t)

)
dA

+
4xyω2

0 (1− γ)sin(απ

2 )

πω
1−α

0 c(t)

×
∫

∞

xy

1− xy
A

ω(A)
exp

(
−

sin(απ

2 )

ω
1−α

0

A2

2c(t)

)
dA,

(25)

whereas Eq. (13) leads to

ω
2
eq(c(t)) = ω

2
0 − (1− γ)ω2

0

×

{
exp

(
−

xy
2 sin(απ

2 )

2c(t)ω1−α

0

)
−

sin(απ

2 )

πω
1−α

0 c(t)

×
∫

∞

xy

2Λ− sin(2Λ)

2A−1 exp

(
−

sin(απ

2 )

ω
1−α

0

A2

2c(t)

)
dA

}

+
β sin(απ

2 )cos(απ

2 )

ω
1−α

0 c(t)

×
∫

∞

0
ω

α(A)Aexp

(
−

sin(απ

2 )

ω
1−α

0

A2

2c(t)

)
dA.

(26)
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3.2. Response statistics stochastic IDA surfaces
determination

The elastic pseudo-acceleration design spectrum
S(ω,ζ0 = 0.05) for soil type B according to Eu-
rocode 8 is selected as the reference input spec-
trum. In addition, the recorded time history at
the El Centro site corresponding to the SOOE (N-
S) component of the Imperial Valley earthquake
of May 18, 1940, is used to model the excita-
tion’s non-stationary attributes. The scaled images
of the excitation are determined as a0

g = 0.35g ×
[0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6] where g stands
for the acceleration of gravity.

The following parameters pertaining to the bilin-
ear SDOF system under consideration have been
employed: m = 1, ω0 = 8, ζ0 = 0.05, a = 0.5,
γ = 0.2 and xy = 0.02 m. It can be readily seen
that following the mechanization presented in sec-
tion 2.2, the stochastic IDA response EDP PDF sur-
face and the response EPS stochastic IDA surface
can be efficiently determined at a particularly low
computational cost. Note, in passing, that the corre-
sponding time instants tin differ with respect to the
scaled image of the ground acceleration a0

g follow-
ing the criterion of the maximum value cmax(tin).

Fig. 1 shows the response EDP PDF surface of
the bilinear SDOF system with fractional deriva-
tive order α = 0.5. Note that the red solid line
depicts the modes of the EDP. To assess the accu-
racy of the developed approach, the response EDP
PDF surface from MCS data is plotted as well in
Fig. 2. In this regard, utilizing the spectral represen-
tation method of Liang et al. (2007), an ensemble
of 10,000 acceleration time histories is generated,
compatible with the reference design spectrum cor-
responding every time to a specified scaled image
of the excitation a0

g. Subsequently, the governing
equation of motion Eq. (1) subject to the above
ensemble of accelerograms is numerically solved
by resorting to an L1-algorithm (Koh and Kelly,
1990). Considering the approximations involved
in the proposed approach, it can be clearly stated
that the results obtained by the proposed method-
ology are in good agreement with the MCS-based
estimates.

The response EPS stochastic IDA surface is
shown in Fig. 3. It is noted that exceeding an in-

tensity threshold signals a gradual transition from
elastic into the plastic region. The noted break,
which is expressed with a transition to lower val-
ues of frequency, is indicative of the system stiff-
ness degradation. It is noteworthy that the proposed
method provides with an insight into the underlying
dynamic character of the system; this significant
operation cannot be determined following typical
nonlinear RHA.

Figure 1: Response EDP PDF surface of a bilinear
hysteretic oscillator with fractional derivative elements
by the proposed method: (a) 3D view; (b) planar view.

4. CONCLUSIONS
In this paper, a novel stochastic incremental dy-

namics analysis methodology has been developed
for nonlinear systems with fractional derivative el-
ements subject to a seismic excitation vector con-
sistently aligned with contemporary aseismic codes
provisions. In this regard, an incremental mecha-
nization analogous to the one used in normal incre-
mental dynamic analysis is adopted to ensure the
necessary compatibility for pertinent applications
in structural engineering field. Specifically, ren-
dering to the concept of non-stationary stochastic
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Figure 2: Response EDP PDF surface of a bilinear
hysteretic oscillator with fractional derivative elements
by MCS method (10,000 realizations): (a) 3D view; (b)
planar view.

processes, the vector of the imposed seismic exci-
tations is characterized by EPS stochastically com-
patible with elastic response acceleration spectra of
specified modal damping ratio and scaled ground
acceleration. Harnessing the potential of a com-
bination of the stochastic averaging and statistical
linearization methods, the response displacement
PDFs are determined in an efficient and compre-
hensive manner. The proposed methodology pro-
vides with reliable higher order statistics of the se-
lected EDP rather than simple estimates only of the
mean and standard deviation, which is currently
the norm in the IDA relevant literature. Further,
a particularly interesting attribute of the proposed
methodology is the derivation of the associated re-
sponse EPS as a function of spectral acceleration.
This coveted element has a twofold meaning; it
performs structural behavior monitoring consider-
ing intensity, whereas it provides with an insight
into the underlying dynamic character of the sys-
tem. The efficient identification of the latter cannot
be determined following nonlinear RHA. Lastly,

Figure 3: Response EPS stochastic IDA surface of a
bilinear hysteretic oscillator with fractional elements:
(a) 3D view; (b) planar view.

the associated low computational cost renders the
proposed methodology particularly useful for re-
lated performance-based engineering applications.
A structural system comprising the bilinear model
endowed with fractional derivative elements serves
as a numerical example for demonstrating the reli-
ability of the proposed methodology, whereas com-
parisons with relevant MCS data demonstrate the
accuracy of the proposed code-compliant stochas-
tic IDA technique.
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