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ABSTRACT: In this paper, the presented process is based on event-based simulations where specific
traffic scenarios are parametrized, simulated and analyzed by a set of criteria. By using predefined
distribution functions for each input parameter a safety statement can be given by approximating the
probability of failure for each traffic scenario by determining the unsafe region in the parameter space.
Therefore, multiple steps of different algorithms are combined to ensure trustworthy results by being
very efficient in reducing the number of required simulation runs.

1. SCENARIO-BASED SAFETY ASSESSMENT

As discussed in Kalra and Paddock (2016), the
safety assessment of autonomous vehicles would
require an evaluation of several billions of miles
to assure that the failure rate is similar or less then
this of a human driver. Since this is impossible to
reach in field operational tests, in this study a sce-
nario based approach is applied as recommended in
Wood et al. (2019). Within this approach the re-
quired mileage needed to proof an assistance sys-
tem is subdivided in critical scenarios and no-event
situations, where no critical event occurs.

The validation of Advanced Driver Assistance
Systems is performed with a simulation for each
logical scenario. Simulation in this context means
that the control device, on which the ADAS are run-
ning, is present as a simulation tool, running the
real ECU code and thus software-in-the-loop simu-
lations are performed. All inputs for the simulated
controller are generated by a simulation environ-
ment. These include sensors, vehicle data as well
as data from other ECU’s installed in the vehicle.
In order to generate plausible input data, a virtual
environment is simulated in which the system ve-
hicle moves and other road users (objects) are de-
tected by sensor models. Thus, the virtual world is

processed and captured, and control quantities cal-
culated therefrom are delivered back to the vehicle
model. For the scenario-based approach, a num-
ber of logical scenarios describable by parameters
are defined Menzel et al. (2018). The scenarios are
derived from the system requirements, from the re-
search project PEGASUS (Joint project to develop
new methods for validating and testing ADAS) as
well as observations from the field. A logical sce-
nario is typically a specific traffic situation. For in-
stance, a cut in maneuver of other objects or a jam
end situation on a highway as shown in Figure 1. To
describe such a logical scenario the 6-Layer model
can be used Bock et al. (2018). For demonstration
purposes, only the road layer and the moving ob-
jects layer are considered in this study. With the
help of the corresponding parameters, these logi-
cal scenarios can be varied in their characteristics.
Hence it is possible to vary speeds of the vehi-
cles, distances from objects or the dynamics of lane
change maneuvers. These so-called specific scenar-
10s resulting from different parameter combinations
are simulated and the system reaction of the ADS
is evaluated. This is done through evaluation crite-
ria that reflect the criticality of a specific scenario.
For example, the Time-To-Collision (TTC) or the
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Figure 1: Jam end traffic scenario on the highway. By altering the input parameters this logical scenario can be varied in its

characteristic.

distance between two vehicles can be used as eval-
uation criteria. The intention of the methodology
described in the following is to determine the prob-
ability of failure for each logical traffic scenario by
using well-known reliability methods (Rasch et al.,
2019). Therefore, the parameter space is investi-
gated with search and sampling algorithms to deter-
mine the probability that a critical situation or even
an accident can occur. The probability distributions
of the input parameters as well as the probability
of occurrence of the respective scenario are deter-
mined on the basis of real measured data and by
using the PEGASUS database (Piitz et al., 2017).

2. DEFINITION OF UNCERTAINTIES

In our study, the individual parameters of a log-
ical scenario are defined as scalar random param-
eters. Additionally to the parameter distributions,
the dependence of the scattering parameters needs
to be considered in the uncertainty model. The indi-
vidual parameters are assembled in a random vector

X =[X1,X2,..., Xk, (1)
which contains the continuous and discrete random
numbers X;. The marginal distributions of the indi-
vidual random numbers are derived directly from
categorized fleet data by using standard distribu-
tion types, such as normal, log-normal, truncated
normal and uniform types as well as more flexi-
ble types, such as the beta distribution, the gen-
eralized lamba distribution (Karian and Dudewicz,

2000) and a piecewise-uniform distribution func-
tion, which is called here multi-uniform distribu-
tion. The parameters of this multi-uniform distri-
bution are directly derived from the histogram of
the investigated data. Discrete parameters are resp-
resented using either Bernoulli or general discrete
distribution types. In Dynardo GmbH (2022) a de-
tailed overview of different continuous and discrete
distribution types is given.

For normally-distributed variables, the depen-
dence between the scalar random input parame-
ters can be represented with the Gaussian copula
in closed form

1 1
—exp
(2m)k|Cxx|

fx(x)=

2

(2)
where fx(x) is the joint probability density func-
tion of random vector X and X is the correspond-
ing mean vector and Cxx the covariance matrix. In
this study, the Nataf model (Nataf, 1962) is used
to extend the Gaussian correlation model to non-
Gaussian distribution types. In the Nataf approach
the marginal distributions of the random variables
are transformed to the standard Gaussian distribu-
tion. In this transformed space, a Gaussian copula
as given in equation 2 is assumed. The correlation
coefficients of the standardized Gaussian spaced
are obtained from the correlation coefficients of
the original distributions by an iterative procedure
(Bucher, 2009) or analytical regression function
(Liu and Der Kiureghian, 1986). The Nataf ap-

(x—X)"Cxx(x—=X)|,
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proach requires a unique mapping of the marigi-
nal distributions from the original to the Gaussian
space and back. Therefore, it is not applicable for
the discrete distribution types and therefor all dis-
crete input parameters are assumed to be indepen-
dent in this study.

In Figure 2 original measurements of a two-
dimensional random vector are compared with the
randomly generated samples using the Nataf model.
As marginal distributions, a piecewise-linear dis-
tribution function and a truncated normal distribu-
tion have been chosen. The figure indicates, that
although linear dependencies are assumed in the
standard-normal space, the non-linear dependen-
cies in the original space can be sufficiently rep-
resented by the Nataf model.

Cut in vehicle deceleration start time

Cut in vehicle deceleration start time

4 6 8 10
Cut in vehicle deceleration duration

Figure 2: Example of a 2D joint probability distribution
using the Nataf model: measurements (top) and generated
samples (bottom) of two random parameters of a cut-in sce-
nario

3. RELIABILITY ANALYSIS

For a given set of jointly distributed random vari-
ables X; and a limit state function g(X) the probabil-
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ity of failure Pr can be determined via integration

Pr=P[X:g(X) <0
— /---/fx(x)dx.
8(X)=<0

The limit state function divides this random vari-
able space into a safe domain S = {x: g(x) > 0}
and a failure domain F = {x: g(x) <0}. The com-
putational challenge in determining the integral of
Eq. (3) lies in evaluating the limit state function
g(x) at a specific position x, which for non-linear
systems usually requires an incremental/iterative
numerical approach.

The most simple and robust method for the evalu-
ation of Eq. (3) is the Monte Carlo Simulation (Ru-
binstein, 1981) where the estimated failure proba-
bility is obtained from a set of N samples x; as

3)

.

Pp = N Y 1(g(xi))

i=1

4

where the indicator function 7 (g(x;)) is one if g(x;)
is negative or zero and zero else. The variance of
the MCS estimator depends directly on the failure
probability
2 _Pr

9 B = N (5)
which results in an increasing number of samples
for decreasing failure probability. However, the
Monte Carlo Simulation can be applied indepen-
dently of the model non-linearity and the number
of input parameters. This method is very robust and
can detect several failure regions with highly non-
linear dependencies. In the scenario based safety
assessment the MCS will require an extremely large
number of model evaluations since we have to proof
quite rare events, which limits this methods mainly
for verification purposes.

In our study more advanced sampling strate-
gies like Importance Sampling have been applied,
where the sampling density is adapted in order to
cover the failure domain sufficiently and to obtain
more accurate probability estimates with much less
solver calls. Other methods like the First or Sec-
ond Order Reliability Method (FORM and SORM)
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are still more efficient than the sampling methods
by approximating the boundary between the safe
and the failure domain, the so-called limit state.
In contrast to a global low order approximation
of the whole response, the approximation of the
limit state around the most probable failure point
(MPP) is much more accurate. Classically, only
one dominant failure point could be found and eval-
uated. This limitation holds even for the Impor-
tance Sampling Procedure Using Design points (IS-
PUD), where the non-linearity of the limit state can
be considered by a sampling around the MPP. A
good overview of these “classical” methods is given
in Bucher (2009). Recently, some of these meth-
ods have been extended for multiple failure regions
(Der Kiureghian and Dakessian, 1998), Geyer et al.
(2019).

In reliability analysis where small event proba-
bilities have to be estimated, we have to pay special
attention that the algorithms obtain an acceptable
level of confidence in order to detect the important
regions of failure. Otherwise, they may estimate a
much smaller failure probability and the safety as-
sessment will be much too optimistic. The avail-
able methods for an efficient reliability analysis try
to detect where the dominant failure regions are lo-
cated and concentrate the simulation effort in those
regions in order to drastically reduce the necessary
CAE simulations. Of course, there is always a risk
that experimenting with such approaches will lead
to inappropriate short cuts, perhaps missing the fail-
ure domain and providing too optimistic an estima-
tion of failure probability. Therefore, we strongly
recommend that at least two different types of re-
liability methods are used to verify variance-based
estimates of the failure probability in order to make
reasonable design decisions based on CAE-models.

3.1. Adaptive Importance Sampling

In our study we have investigated several meth-
ods. Since the simulation results may contain
numerical distortions and bifurcations, response
surface-based approaches could be used only for
a first estimate. One reliable and robust method
for our application is the adaptive importance sam-
pling strategy (Bucher, 1988). The failure probabil-
ity is estimated from a modified importance sam-
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pling density as follows

SR R , N fx(x)
Pr= 5 LWl (g(), wix) = 3 2.

(6)

The corresponding variance of the estimator can be
derived as
N p2
2 1 Pr

cp = miZIWZ(Xi)I (8(xi)) — =~

(7

In the adaptive importance sampling approach
the modified importance sampling density /x (X;) is
obtained by iterative adjustment of a modified sam-
pling density. Based on an initial step, where the
original sampling density is blown-up in the stan-
dard normal space, the position of the most dom-
inant failure region is estimated. In the following
steps, the sampling density is adapted according
the estimated center and covariance of the previous
failure samples.
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Figure 3: Adaptive Importance Sampling for a linear limit
state function considering discrete random variables (sam-
ples in the standard Gaussian space)

This method becomes inefficient with increasing
number of random variables due to the less accu-
rate estimates of the density statistics. Therefore, it
is recommended to apply this method for problems
with up to twenty random variables. Furthermore,
it can analyze only one dominant failure region.
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Extensions for multiple failure regions have been
published recently e.g. in Geyer et al. (2019). In
our studies, where discrete distribution types have
been used together with continuous random vari-
ables, we observed an additional numerical effort to
obtain a similar accuracy of the failure probability
estimates as in pure continuous problems. This is
caused in artificial discontinuities of the limit state
function in the standard normal space as shown in
Figure 3. Even for continuous limit state functions
such discontinuities occur due to the discrete dis-
tributions. This phenomenon causes multiple most
probable failure points, which makes the normal
sampling density less efficient.

3.2.  Importance Sampling using Design Points
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Figure 4: Importance Sampling using designs points by us-
ing a multi-modal sampling density which consists of several
standard normal densities

In order to overcome the limitation of a sin-
gle adapted failure region, we extended the origi-
nal Importance Sampling using Design Point (IS-
PUD)(Bourgund and Bucher, 1986) by a multi-
modal density according to Geyer et al. (2019). The
modified sampling density is generated in the stan-
dard Gaussian space by a given number of individ-
ual standard normal sampling densities m with cor-
responding center points [ ;. In Figure 4 the sam-
pling is shown for the Katsuki test function Katsuki
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and Frangopol (1994) with four individual failure
regions. The corresponding original and modified
sampling density in the standard Gaussian space
reads

Y= L e (Xl
o = zen (31 ;
hx(x;) = 1 iexp(—_uxi_“jH) ®

In order to detect the individual failure regions with
sufficient confidence, we extended the multiple
FORM algorithm (Der Kiureghian and Dakessian,
1998): Based on given start points or an initial pre-
sampling similar to the first iteration of the Adap-
tive Importance Sampling approach, we perform
a local optimization several times. With help of
a local gradient-based optimizer the closest point,
where the limit state turns from safe to unsafe and
which has the smallest distance to the median point
on the standard normal space, is detected. Since the
start points are selected using a density criterion by
considering the previous optimization runs, we can
assure that with a given number of local optimiza-
tion runs, the important failure regions could be
found. In situations where some of the input param-
eters are modeled with discrete distribution types,
the local optimization is performed only in the re-
duced continuous subspace, but different combina-
tions of the discrete values are investigated. In Fig-
ure 5 such a search is illustrated: from 100 presam-
ples 10 candidates are selected for local optimiza-
tion runs until all four failure regions are found.
After the most important failure regions have been
detected, the corresponding most probable failure
points are used as centers for the sampling densities
in the multi-modal ISPUD approach. Since the fail-
ure probability is not estimated by the beta-distance
analogous FORM but by the more accurate Impor-
tance Sampling, even non-linear limit state func-
tions can be accurately evaluated. Furthermore, the
local optimizer needs not to be very accurate in the
estimate of the local most probable failure point.

4. APPLICATION EXAMPLE:

NARIO
In this example a jam end scenario as shown in
Figure 1 is investigated. In this scenario an ego ve-

JAM END SCE-
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Figure 5: Multiple design point search by using the First
Order Reliability Method with multiple start points

hicle including a lead vehicle drive to the end of
a traffic jam on a highway. At a certain time, the
lead vehicle will change the lane and the ego ve-
hicle has to detect the last vehicle of the jam in
order to perform an accident-free braking. In the
simulation software the Time-To-Collision (TTC)
is estimated w.r.t. the given input parameters. We
consider this TTC as limit state and investigate sev-
eral limits with the reliability algorithms. As input
scatter we assume nine continuous scattering pa-
rameters as lead vehicle and jam end speed, pull
out time, lead vehicle braking deceleration as well
as a lane offsets of the traffic jam and the lead ve-
hicle. The number of road lanes, the lead vehicle
class and the pull out direction have been modeled
with discrete random distributions.

In order to perform the analysis and verification
more efficiently, in a first step a global meta-model
was created based on 1000 samples. In order to
obtain more samples and thus higher accuracy in
the relevant regions a local adaptation strategy was
used (Adaptive Metamodel of Optimal Prognosis,
Most and Will (2011); Most (2011)). Based on this
fast meta-model we investigated the multimodal
and the adaptive importance sampling in compar-
ison to the brute-force Monte Carlo Simulation. In
figure 6 one subspace of the 12-dimensional meta-
model is shown. As result of the sensitivity analy-
sis, the lead vehicle speed and the jam end speed are
indicated to be most important in this scenario. Fur-
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Figure 6: Jam end scenario: adaptive meta-model used for
the verification of the reliability algorithms

thermore, the relation of the Time-To-Collision and
the input parameters is almost monotonic. Thus,
we would expect to obtain different failure regions
mainly due to different combinations of the discrete
parameters.
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Figure 7: Jam end example: convergence of the multi
FORM-search assuming a limit of 0.5s for the Time-To-
Collision

In Figure 7 the convergence of the multiple
FORM is shown for one specific failure limit. It
can be seen, that the optimizer converged to dif-
ferent reliability index values, which correspond to
different most probable failure points. Altogether,
20 failure points have been detected which are used
as sampling centers for the importance sampling.
In Figure 8 the convergence of the corresponding
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Figure 8: Jam end example: identified failure region and
convergence of the multi-modal importance sampling assum-
ing a limit of 0.5s for the Time-To-Collision

multi-modal importance sampling is shown. The
figure clearly indicates, that in the subspace of the
three most important parameters, all failure samples
are located in a concentrated domain.

In Table 1 the obtained estimates of the failure
probability are given for the different limit values.
The multi-modal and adaptive Importance Sam-
pling strategies are compared to the results of the
Monte Carlo Simulation. As indicated in the table,
we could obtain a very excellent agreement of the
results. Furthermore, the multi-modal ISPUD is the
most efficient algorithm, especially for small fail-
ure probabilities, which is the expected application
field. Next, the multi-modal and adaptive Impor-
tance Sampling are applied using the traffic simula-
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tion software directly. The Monte Carlo Simulation
could not be applied due to the large numerical ef-
fort. In Table 1 the results are compared. Again,
the results of both methods agree very well, while
the ISPUD approach needs less samples. Since
the FORM method is applied on the meta-model
only, all together 1000 samples for the meta-model
plus 5000 importance samples are needed. How-
ever, the estimates with the real solver indicate a
much larger failure probability as estimated using
the meta-model. Therefore, in our applications we
always apply the ISPUD approach using the direct
solver. If the most probable failure points are not
estimated very accurately, we obtain still valid re-
sults since the ISPUD algorithms is running the
sampling procedure until a certain accuracy of the
estimated failure probability is obtained.

Samples Pr CoV Pr B
Meta-model
Limit state 77C < 1.0
MCS 30.000 1.58-1072 4.6% 2.15
AS 8.000 1.54-1072 4.8% 2.16
FORM + ISPUD 7.300 + 3.000 1.51-1072 4.4% 2.17
Limit state TTC < 0.5
MCS 4.250.000 2.35-107° 10.0% 4.07
AS 12.000 2.71-107° 8.1% 4.04
FORM + ISPUD 4.500 + 3.000 2.50-107° 10.0% 4.06
Limit state 77C < 0.4
MCS 31.170.000 3.12.107° 10.0% 4.51
AS 18.000 3.19-10°6 9.2% 451
FORM + ISPUD 5.500 + 9.000 2.90-107° 9.7% 4.53
Traffic simulation
Limit state TTC < 0.5
MCS Not possible - - -
AS 26.000 5.30-1073 9.2% 2.55
FORM + ISPUD (4.500) +5.000  4.40-1073 20.1% 2.62

Table 1: Jam end example: estimated failure probabilities
for different limit state limits using the global meta-model
and the the traffic simulation software

5. CONCLUSIONS

In this paper we have presented an automatic ap-
proach for the reliability evaluation of specific traf-
fic scenarios for the validation of Advanced Driver
Assistance Systems. In this analysis the control
device is represented as a simulation model using
software-in-the-loop technology. Specific inputs of
this simulated controller are modeled as random in-
puts in a stochastic analysis. Based on a definition
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of a failure criterion well known reliability algo-
rithms could be applied. In our study we have used
classical Monte Carlo Simulation only for verifica-
tion due to its enormous numerical effort to proof
small event probabilities. In order to reduce the
number of necessary simulation runs, variance re-
duced importance sampling was applied. For this
purpose, we used a multiple design point search
approach to detect the important failure regions.
Based on this result a multi-modal importance sam-
pling density was automatically generated in order
to quantify the contribution of each failure region to
the overall failure probability. Based on a confident
error estimate we could ensure, that the sampling
loop was continued until a required accuracy of the
probability estimate was obtained. The presented
approach enables the automatic reliability proof of
an Advanced Driver Assistance System for a spe-
cific scenario with minimum manual input. How-
ever, one very important point is the quantification
of the input uncertainties of the investigated sce-
nario. These assumptions strongly influence the
finally estimated failure rate, therefore, attention
should be paid in order to derive suitable assump-
tions about distribution type, scatter and event cor-
relations from real world observations.
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