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ABSTRACT: In this paper, we propose two approaches to build support vector machines classifiers for
structural reliability. By exploiting a posteriori error estimators, the discretization error is controlled and
bounds on the exact probability of failure can be obtained. The two approaches are illustrated on crack
propagation two-dimensional mechanical problem.

1. INTRODUCTION

As industrial structures may be subjected to un-
certain loads and as their geometric or material
properties may be uncertain, a deterministic ap-
proach for design is limited and reliability analysis
is preferred. During this analysis, a performance
function G is associated to a failure scenario. This
function is usually defined as the difference be-
tween resistance and solicitation. A negative limit
state function corresponds to failure and a strictly
positive state function corresponds to safety. If the
uncertainties are modeled as random variables, it
is therefore possible to compute sensitivity factors,
probability of failure or reliability indexes. In this
work, we focus on the probability of failure.

The Finite Element Method (FEM) is a widely
spread numerical method that allows to simulate
and predict the mechanical response of a struc-
ture. Thus, Monte Carlo estimators (Metropolis and
Ulam (1949)) can be easily employed to estimate
the probability of failure from calls to the finite
element code for different realizations of the ran-
dom variables. However, the poor convergence rate

of Monte Carlo estimators leads to huge computa-
tional costs. This is the reason why variance reduc-
tion techniques (Rashki et al. (2018); Giles (2008);
Au and Beck (2001)) and meta-modeling methods
have been proposed. Some methods consists in
building a meta-model Ĝ that would be a satisfying
cheap approximation of G through Kriging (Echard
et al. (2011)), response surfaces (Schoefs (2008)),
neuronal networks (Teixeira et al. (2021),) ... Sup-
port vector machines (SVM) have been thoroughly
developed in reliability analysis, see Most (2007);
Pan and Dias (2017); Song et al. (2013); Bourinet
et al. (2011); Basudhar and Missoum (2010). They
enable to metamodeling the limit state G= 0, which
is the only information necessary for the computa-
tion of the probability of failure.

Taking into account the discretization error in-
troduced by the FEM (Babuška and Rheinboldt
(1978)) is a major concern in reliability analysis
(Mell et al. (2020); Ghavidel et al. (2020)). In-
deed, since FEM outputs are used to build the meta-
model, the discretization error pollutes the estima-
tion of the probability of failure. However, few
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works take into account this discretization error
(Morse et al. (2019); Alvin (2000); Yi et al. (2020)).

In this paper, we propose to exploit a posteriori
error estimators (Babuška and Rheinboldt (1978))
during the construction of an adaptive SVM-based
classifier. We give two algorithms that compute the
probability of failure. The first one builds two clas-
sifiers in parallel and enables to compute upper and
lower bound of the probability of failure. The sec-
ond algorithm update the classifiers with points ob-
tained on different meshes, in order to guarantee the
correct classification. It results in a multi-fidelity
meta-model because its construction relies on com-
putations done on two different meshes.

Section 2 defines the reliability mechanical prob-
lem. Section 3 give the principles of support vec-
tor machines classifiers. Section 4 present the two
new algorithms and numerical examples are given
in Section 5.

2. DEFINITION OF THE RELIABILITY MECHAN-
ICAL PROBLEM

In this section, we present the mechanical frame-
work. We also give the discretized formulation
of the mechanical problem we solve thanks to the
FEM. Finally, we derive bounds on the perfor-
mance function from a posteriori error estimators
based on the error in constitutive relation.

2.1. Continuous mechanical problem
The structure occupies the open domain Ω and is

subjected to a force f vol , a pressure F on ∂FΩ. On
∂uΩ, the displacement ud is imposed. We consider
small strains and linear elasticity characterized by
the Hooke tensor H. σ is the Cauchy stress tensor,
u is the displacement field and ε (u) = 1

2(grad(u)+

gradT (u)) is the linearized strain tensor.
We introduce the space of kinematically admissi-

ble fields KA =
{

u ∈
(
H1(Ω)

)d
, u = ud on ∂uΩ

}
and

note KA0 the associated vectorial space. We also
defined the space of statically admissible stress
fields:

SA = {τ ∈
(
L2(Ω)

)d×d
sym ;∀v ∈ KA0,∫

Ω

τ : ε (v)dΩ =
∫
Ω

f vol · vdΩ+
∫

∂F Ω

F · vdS}. (1)

The error in constitutive relation is
eCRΩ

(u,σ) = ∥σ − H : ε (u)∥H−1,Ω where

∥κ∥H−1,Ω =

√∫
Ω

(
κ : H−1 : κ

)
dΩ (see Lade-

vèze and Leguillon (1983)).
We model the uncertainties by random variables

gathered in the vector X : ζ ∈ Z → X(ζ ) = x ∈ Rq

where Z is the Universe and x ∈ Rq is a realization
of the random variable. p is the joint distribution of
X . Uncertainties may concern the applied loads or
displacement ( f vol , F , ud , ∂uΩ, ∂FΩ), the material
properties (H) or the geometry (Ω). To avoid heavy
notations, we do not specifically write the depen-
dence on X (or ζ ) in the rest of the paper. The fol-
lowing equalities are defined written almost surely:

Find u and σ such that

u = ud on ∂Ω
⋂

∂uΩ

div(σ)+ f vol = 0 on Ω and σn = F on ∂FΩ

σ =H : ε (u) on Ω

(2)
The exact solution

(
uex,σ ex

)
exists and is

unique. In this paper, we consider that the perfor-
mance function Gex can be written Gex =R−S (uex)
where R is the resistance (deterministic or random)
and S is the solicitation. We assume that S is a lin-
ear form of the displacement. If it is not the case
(Von Mises equivalent stress for examples), bounds
given in (6) are not guaranteed. The probability of
failure reads Pf ,ex =

∫
Gex(x)≤0

p(x)dx. The exact so-

lution is unknown and discretization techniques are
used to approximate the solution.

2.2. Discretized problem
The finite element method consists in searching

the solution into a subspace of finite dimension
KAH =

{
u ∈

(
H1(ΩH)

)d
, u = ud on ∂uΩH

}
. The

discretized problem reads:

Find uH ∈ KAH such that σ
H
=H : ε (uH) and∫

ΩH

σ
H

: ε (vH)dΩ =
∫

ΩH

f
vol

· vHdΩ+
∫

∂F ΩH

F · vHdS

(3)
Because of the discretization error introduced by

the FEM, S (uH) ̸= S (uex) so GH = R− S (uH) ̸=
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Gex. Using a posterior error estimators based on
the constitutive error relation (Ladevèze (2008))
and techniques to build statically admissible stress
fields (Parés et al. (2006); Pled et al. (2011); Lade-
vèze and Leguillon (1983)), it is possible to obtain
bounds on the exact value Gex.

Let defined the following space:

S̃A= {τ ∈
(
L2(Ω)

)d×d
sym ; ∀v∈KA0,

∫
Ω

τ : ε (v)dΩ= S(v)}

(4)
The adjoint problem is

Find
(

ũex, σ̃ ex

)
∈ KA0(Ω)× S̃A(Ω) such that

eCRΩ
(ũex, σ̃ ex

) = 0
(5)

This problem is solved using the FEM on a mesh
that can differ from the mesh used to solve the di-
rect problem. The obtained solution is noted ũH̃ .
We note σ̂

H
(respectively ˆ̃σ

H̃
) the statically admis-

sible stress field built from σ
H

(resp. σ̃
H̃

). Then,
the following upper and lower bounds of Gex can be
computed:

G− ≤ Gex ≤ G+ (6)

with

G− := Gm − 1
2

eCRΩ
(uH , σ̂H

)eCRΩ
(ũH̃ ,

ˆ̃σ
H̃
) (7)

and

G+ := Gm +
1
2

eCRΩ
(uH , σ̂H

)eCRΩ
(ũH̃ ,

ˆ̃σ
H̃
) (8)

and

Gm =GH −
∫
Ω

1
2
( ˆ̃σ

H̃
+H : ε

(
ũH̃

)
) :H−1 : (σ̂

H
−H : ε (uH))dΩ

(9)
Note that it is possible that GH /∈ [G−;G+] and that
Gm might be a better approximation of Gex than GH .

3. SUPPORT VECTOR MACHINES (SVM)
CLASSIFICATION FOR RELIABILITY

In this Section, we briefly explain the construc-
tion of SVM classifiers. More details can be found
in Vapnik (2013). The objective is to build a
classifier D : Rq → {−1;1} from n observations
(xi,yi)i=1..n.

3.1. Linear classifier
If data is linearly separable, the classifier D can

be built from function f (x) = vT x + a with a ∈
R and v ∈ Rq where vT x is the scalar product be-
tween v and x. Thus D(x) = sign( f (x)). The
margin m between observations and the hyper-
plane ∆ = {x ∈ Rq such that f (x) = 0} is m =

mini=1..n

(
|vT xi+a|

||v||

)
. Parameters v are a sought to

maximise the margin m. In order to obtain a unique
solution, the optimization problem is written with
the variables w = v

m||v|| and b = a
m||v|| and the pri-

mal formulation reads :

Find w and b such that
1
2
||w||2 is minimum

and yi(wT xi +b)≥ 1 ∀i = 1. .n
(10)

The associated Lagrangien is L (w,b,α) =
1
2 ||w||

2 −
n
∑

i=1
αi
(
yi(wT xi +b)−1

)
where αi are

Lagrange multipliers. It enables to define the
following dual formulation:

Find αi with i ∈ [1;n] such that

1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxT
i x j −

n

∑
i=1

αi is minimum and

n

∑
i=1

αiyi = 0 and αi ≥ 0 ∀i = 1. .n

(11)
Both primal and dual formulations can be solved
with standard quadratic programming solvers.

3.2. Non-linear classifier
In case the data is not linearly separable, the

scalar product xT
i x j is replaced by κ(xi,x j) repre-

senting a measure of the influence of xi on x j. In
this paper, we use a Gaussian kernel κ(xi,x j) =

exp
(
||xi−x j||

2σ2

)
where σ is an hyperparameter usu-

ally obtained by cross-validation. The dual formu-
lation of the optimization problem reads:

Find αi pour i ∈ [1;n] such that

1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jκ(xT
i x j)−

n

∑
i=1

αi is minimum

n

∑
i=1

αiyi = 0 and 0 ≤ αi ≤C ∀i = 1. .n

(12)
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where C is the penalty. The smaller C, the more
misclassification is allowed. In this paper, we do
not authorize misclassification and choose a very
large value for C such that αi are not bounded.

4. MULTI-FIDELITY SUPPORT VECTOR MA-
CHINES CLASSIFIERS EXPLOITING DIS-
CRETIZATION ERROR ESTIMATORS

In this section, we propose to improve the esti-
mation of the probability of failure by exploiting
a posteriori error estimators during the construc-
tion of the classifier. We give two algorithms based
on Pan and Dias (2017). The first one consists in
building a multifidelity classifier from calls to the
solver on two different meshes. The second one
aims at building two classifiers bounding the exact
unknown limit state.

4.1. First approach: guaranteed state classifier
In this approach, two mesh sizes hmax and hmin

are defined a priori. The design of experiment DOE
and the Monte Carlo population U are generated
during the initialization. For each point xi of the
DOE we compute G+(xi) and G−(xi) for h = hmax.
If G+G− > 0, sign(GH(xi)) = sign(Gex(xi)) and
this observation can be used for the construction
of the classifier. On the contrary, if G+G− < 0,
the discretization error pollutes the observations.
Therefore the FE simulation is done again on the
finer mesh h = hmin and we use the result obtained
on the fine mesh for the construction of the classi-
fier.

Once the classifier is built, the Monte Carlo pop-
ulation is separated into two sub-populations and
the probability of failure is estimated as illustrated
in algorithm 1.

To control the meta-modelling error, new obser-
vations can be added to improve the classifier. This
is done as suggested in Pan and Dias (2017) with
the learning function ξ being the ratio between the
number of points of U located inside the margin of
the classifier over the size of U . If ξ >η1, the learn-
ing criterion is not satisfied. Therefore, the enrich-
ment of the meta-model is done by adding observa-
tion at a new point xnew defined by:

xnew = argmin
x∈U

s(x)max(d)
d(x)max(s)

(13)

where s(x)is the distance between x and the separa-
tor. d(x) is the distance between x and the closest
point in the DOE.

The Monte Carlo population is enlarged if the co-
efficient of variation COV is too large, which en-
ables to control the sampling error.

The first approach is described in algorithm 2.

Algorithm 1: Evaluation SVM
Separate U into two sub-populations

U f = {xi ∈U |D(xi) =−1} and
Us = {xi ∈U |D(xi) = +1};

Compute the probability of failure P =
card(U f )

nMC
;

Compute COV =
√

1−P
P×nMC

;

Compute the learning function ξ ;

Algorithm 2: Guaranteed state approach
Generate the Monte Carlo population U (size nMC) ;
Generate the design of experiment DOE (size nDOE );
for i = 1..nDOE do

Compute G+(xi) and G−(xi) for h = hmax;
if G+(xi)G−(xi)< 0 then

Compute G+(xi) and G−(xi) for h = hmin;
end
Append observations with yi = sign(Gm(xi)) ;

end
Build the classifier D from observations ;
Run the algorithm Evaluation SVM;
while ξ > η1 or COV > η2 do

if ξ > η1 then
Select the next learning point xnew ;
Compute G−(xnew) and G+(xnew) for

h = hmax;
if G+(xnew)G−(xnew)< 0 then

Compute G+(xnew) and G−(xnew) for
h = hmin;

end
Append observations with sign(Gm(xnew)) ;
Build the classifier D from observations ;

else
Enlarge Monte Carlo population ;

end
Run the algorithm Evaluation SVM;

end

The proposed approach can be done with more
than two mesh sizes (the user may define a family
of nested meshes for instance). It is possible that
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even for the finest mesh, G+G− < 0. Note that min-
imal finest mesh has to be defined in order to avoid
infinite loop in the case Gex(xi) (the point is located
exactly on the limit state).

4.2. Second approach: double classifier
In this second approach, we consider a unique

mesh size and we propose to build 2 classifiers: the
first one separates points certainly safe Ucs = {xi ∈
U |G−(xi) > 0} from the rest; the second one sep-
arates the points leading certainly to failure Uc f =
{xi ∈U |G+(xi)< 0} from the rest. The subroutine
3 indicates how the classifiers are exploited to ob-
tain two bounds on the probability of failure P+ and
P−.

Algorithm 3: SVM classifiers
Define the populations Ucs = {xi ∈U |D−(xi) = +1}

and Uc f = {xi ∈U |D+(xi) =−1};

Compute the failure probabilities P+ =
card(Uc f )

nMC
;

P− = 1− card(Ucs)
nMC

and P = P++P−
2 ;

Compute the coefficient of variation COV =
√

1−P
PnMC

;

Compute the learning functions ξ+ and ξ−;

As in the previous approach, the learning cri-
terion enables to control the meta-modeling error
and the coefficient of variation is used to control
the sampling error. Since upper and lower bounds
G−(xnew) and G+(xnew) are always computed to-
gether, both classifiers are updated from this ob-
servations even if only one classifier triggered the
learning criterion. The final procedure is given in
Algorithm 4.

This second approach enables to steer the estima-
tion of the probability of failure by an objective of
precision. If the ratio 2(P+−P−)

P++P−
is larger than the de-

sired precision, the procedure could be done again
on a new mesh size hnext =

h
2 . Only the uncertain

population Uuc =U−Ucs
⋃

Uc f will have to be clas-
sified.

5. NUMERICAL ILLUSTRATIONS
In this section, we apply the two proposed ap-

proaches on the two-dimensional mechanical prob-
lem of a cracked plate. Only two random variables
are considered to ease the illustration of the limit
states.

Algorithm 4: Double classifier
Generate the Monte Carlo population U (size nMC) ;
Generate the design of experiment DOE (size nDOE );
for i = 1..nDOE do

Compute G+(xi) and G−(xi) ;
Append the observations with y+ = sign(G+)

and y− = sign(G−) ;
end
Build the classifiers D+ and D− from y+ and y− ;
Run the algorithm SVM classifiers;
while ξ+ > η1 or ξ− > η1 or COV > η2 do

if ξ+ > η1 or ξ− > η1 then
if ξ+ > η1 then

Select the next learning point xnew ;
Compute G−(xnew) and G+(xnew) ;
Append the observations with

y+ = sign(G+(xnew)) and
y− = sign(G−(xnew)) ;

Build the classifiers D+ and D− ;
end
if ξ− > η1 then

Select the next learning point xnew ;
Compute G−(xnew) and G+(xnew) ;
Append the observations with

y+ = sign(G+(xnew)) and
y− = sign(G−(xnew)) ;

Build the classifiers D+ and D− ;
end

else
Enlarge the Monte Carlo population;

end
Run the algorithm SVM classifiers;

end

5.1. Cracked plate

Let consider a rectangular plate (w = 7mm, L =
16mm) with a horizontal crack of length a ∈ [2;5]
following a Beta-distribution B(2,2). We consider
isotropic elasticity with Poisson coefficient ν = 0.3
and Young modulus E = 210 GPa. This plate is
subjected to traction. The failure scenario is the
crack opening according to Griffith criterion: G =
Klim −KI with the deterministic resistance Klim =
22MPa

√
mm. the stress intensity factor KI is a lin-

ear functional of the displacement computed thanks
to the integral on a crown of inner radius Ri = 1mm
and outer radius Re = 1.5mm (Stern et al. (1976)).
The direction of the force is given by θ ∈ [−π

2 , π

2 ]
following a Beta-distribution B(3,2). This mechan-
ical problem is illustrated in Figure 1 and the joint
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distribution of the two independent random vari-
ables is given in Figure 2.

Figure 1: cracked plate

Figure 2: joint distribution of a and θ

We set η1 = 10−4 and η2 = 0.02. We consider
a factorial design of experiment with nDOE = 12 as
all random variables are bounded. 5 Monte Carlo
populations are considered.

5.2. Standard mono-fidelity approach
The standard monofidelity approach from Pan

and Dias (2017) was done on an overkill mesh of
size hoverkill = 0.02 to obtain a reference probability
of failure Pre f =5.89 10−3 with the first Monte Carlo
population. This simulation required 69 calls to the
finite element solver that last 16 184 seconds. The
classifier built during the computation is referred as
overkill limit state and is plotted in blue in the fig-
ures in the next subsections.

5.3. Multi-fidelity classifier
We apply Algorithm 2 to construct the multi-

fidelity classifier with hmax = 0.5 and hmin = 0.1.
The limit state obtained for the first Monte Carlo
population is plotted in Figure 3. We observe that
the fine mesh is used only close to the limit state,

which illustrates the multi-fidelity strategy. The
limit state obtained with the multifidelity approach
is close to the reference (blue).

Figure 3: Left: limit state obtained for the first ap-
proach; Right: zoom

In Table 1, we give the probabilities of failure,
number of call to the FE code and computational
times for the five populations. The time neces-
sary for the error estimation terr is very large com-
pared to the time to build and solve the FE problem
tEF . However, since Gm(xi) is a better approxima-
tion of Gex(xi) than GH(xi), the estimation of the
probability of failure is better than with the stan-
dard monofidelity approach for an equivalent total
computational time.

Pf (×10−3) Nb calls tEF(s) terr(ks)
hmax hmin

6.7 73 58 326 16.2
6.8 71 56 389 20.4
7.0 66 53 326 15.1
6.6 90 74 414 17.1
6.9 93 73 362 14.9

Table 1: Multi-fidelity classifier: results for 5 Monte
Carlo populations

5.4. Bounding classifiers
We apply Algorithm 4 to construct the two clas-

sifiers in parallel with h1 = 0.28 and also with
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h2 = 0.1. The limit states obtained for the first
Monte Carlo population are plotted in Figure 4. We
observe that the reference limit state is always be-
tween the two classifiers. We also observe that ap-
plying the algorithm with h2 = 0.1 enables to re-
duce the size of the uncertain population.

Figure 4: Limit states obtained for the second approach

We also give the bounds on the probability of
failure and number of calls to the FE code in Ta-
ble 2. The use of the finer mesh h2 improves the
bounding of the probability of failure.

h1 h2
Nb calls P− P+ Nb calls P− P+

194 9.3 10−3 2.3 10−2 65 4.0 10−3 1.0 10−2

171 9.2 10−3 2.2 10−2 52 4.2 10−3 1.0 10−2

110 9.4 10−3 2.2 10−2 52 3.8 10−3 1.0 10−2

164 9.6 10−3 2.2 10−2 61 4.0 10−3 1.0 10−2

156 9.2 10−3 2.2 10−2 69 3.9 10−3 1.1 10−2

Table 2: Bounding classifiers: bounds of the probability
of failure

In Table 3, we give the computational time for
this approach. Once again, the error estimation pro-
cedure is expensive but it enables to provide bounds
P+ and P− on Pex instead of a unique approxima-
tion P.

6. CONCLUSIONS AND PROSPECTS
In this paper, we present two strategies to esti-

mate the probability of failure using SVM classi-
fiers and controlling the discretization error by ex-
ploiting a posteriori error estimators. The first strat-
egy consists in exploiting the bounding G−≤Gex ≤

h1 h2
tEF(s) terr(ks) tEF(s) terr(ks)

223 5.293 202 11.069
244 6.499 188 11.580
151 3.938 206 13.017
289 7.553 277 19.177
303 7.878 519 27.717

Table 3: Bounding classifiers: Numerical cost for 5
Monte Carlo populations

G+ to built a multifidelity classifier: the computa-
tional effort is made close to the limit state by us-
ing the fine mesh only when required and by autho-
rizing the use of results on coarse mesh if the dis-
cretization error does not pollute the sign of G. The
second strategy consists in building two classifiers
from the bounds G+ and G− to exhibit the uncer-
tain population composed of points for which the
discretization error prevents the classification into
safe or failure domain. Future work will consist in
articulating the two criteria (on the learning process
and on the size of the Monte Carlo population) to
adapt the precision and balance the three different
errors: discretization error, metamodeling error and
sampling error.
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