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ABSTRACT: The Life Quality Index (LQI), a composite social indicator, was proposed as a basis for
evaluating the effectiveness of investments in safety measures to enhance life quality. In the structural
reliability field, the life cycle cost (LCC) minimization method is widely used to optimize the structural
safety and LQI has often been considered to provide a lower bound to the target safety. This study
presents a systematic formulation of an LQI-based approach to optimize structural safety and
demonstrates that the LCC minimization that excludes life safety considerations is a subset of the LQI
optimization problem. This unified approach shows that a consideration of the life safety objective is the
dominant criterion for optimization in contrast to the minimization of the LCC function alone. In other
words, the LQI approach demonstrably leads to a higher level of target reliability than that obtained
from the LCC approach.

1. INTRODUCTION

Strategic principles for managing risk and im-
proving human safety include accountability, max-
imizing of net benefit to society and life measure
that reflects the health and safety benefit by in-
creased life expectancy in good health. The Life
Quality Index (LQI) is a compound social indicator
intended to capture the life safety benefit and can
be interpreted as the total utility of consumption de-
rived over the lifetime, Th, by a statistically repre-
sentative individual in the society. Using the gross
domestic product (GDP), g $/year/person, as a mea-
sure of available personal consumption rate, and gq,
q < 1, as an associated utility function, the total
lifetime utility can be quantified as, gqTh. Since the
lifetime utility is a function of a single random vari-

able, Th, the LQI is defined as its expected value,

L = gqE [Th] = gq e (1)

where e = E [Th] is the mean lifetime or life ex-
pectancy (LE) at birth. Although different ways
to derive LQI have been presented in the literature
(Nathwani et al., 1997; Pandey et al., 2006), this is
the most concise derivation of the index. LQI is
also considered as a composite social indicator, as
it includes two commonly used measures of social
development, g and e.

The LQI-based optimization of a safety program
includes both the economic and life safety impacts
through changes in g and e. For example, if the
implementation of a safety improvement program
is expected to change the GDP by an amount dg
$/person/year, and the life expectancy by de years,
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then the change in LQI, dL can be estimated as

dL
L

= q
dg
g

+
de
e

(2)

It should be noted that dg and de are algebraic
quantities, i.e., a positive or negative sign needs to
be assigned to them to distinguish an increase or
decrease in their magnitudes.

In the literature, Eq.(2) is widely utilized as a ba-
sis to optimize a safety program and structural de-
sign codes (Van Coile et al., 2019; Fischer et al.,
2019). However, what is lacking in the literature is
a clear discussion about definitions of the base case
and an alternate case to allow a rigorous quantifi-
cation of a change in LQI via changes in g and e.
However, what is lacking in the literature is a clear
discussion about definitions of the base case and an
alternate case to allow a rigorous quantification of
a change in LQI changes in dg and de. Without a
clear elucidation of the base case and the alterna-
tives, use of the LQI method for optimization can
lead to counter-intuitive results. An example of this
can be seen in the LQI-based optimization of struc-
tural safety. Since LQI integrates a life measurfe of
safety in addition to economic costs, it is expected
to yield a more stringent level of reliability than that
obtained by a pure cost-based optimization. How-
ever, some studies in the literature report a contra-
dictory result, i.e., a pure cost-based optimization
dominates the LQI-based optimization of structural
design (Rackwitz, 2002). A detailed discussion on
compatibility between the economic and societal
optimal solutions was presented by Van Coile and
Pandey (2017).

Thus, the central objective of this paper is to
resolve this anomaly that exists in the literature
through reformulating the LQI optimization crite-
rion in a clear manner that is also consistent with
the stochastic nature of a hazard process and the
definition of life expectancy.

2. LQI OPTIMIZATION: CONCEPTUAL AP-
PROACH

2.1. Background
When a regulatory authority or a decision maker

identifies an existing hazard that poses an increased
risk of mortality, a safety improvement program is

often undertaken to reduce the the risk. For exam-
ple, the impacts of seismic hazard can be reduced
by design improvements, chemical hazards can be
reduced by banning the usage of toxic substances,
and the risk of fire hazard can be reduced by sev-
eral interventions, namely, installing of fire detec-
tion and extinguishing systems or stand-by capabil-
ity for limiting consequences.. A specific safety re-
lated intervention is expected to cost money but at
the same time it will enhance life safety by reduc-
ing the mortality risk. For simplicity, assume that a
safety measure can be optimized with respect to a
single design parameter, y.

2.2. Problem Definition
This section describes three cases that are rele-

vant to the formulation of the LQI-based optimiza-
tion of a safety improvement program, with respect
to a design variable, y.

1. A hypothetical state in absence of the hazard.
When the hazard in question is completely ab-
sent from the society, the GDP, the mortality
rate, and the LE at birth are denoted as g0,m0,
and e0, respectively. This is a hypothetical
state, since the hazard in question, such as a
seismic hazard, is already present in the soci-
ety for a long period of time. Therefore, ac-
tual values of these (hidden) variables are un-
known to the decision maker. This state is in-
troduced in the discussion for the sake of clar-
ity in defining the optimization problem. Ac-
tual values of these variables are not required
for LQI optimization.

Although the mortality rate depends on a per-
son’s age (u), it is not written here explicitly
for the sake of brevity. In short, m0(u) is de-
noted as m0.

2. Base Case: Present state with the hazard.
Suppose the existing hazard has increased the
mortality risk by a magnitude, ∆m1, such that
the prevailing mortality risk in the society
can be thought of as a sum, m1 = m0 +∆m1,
which leads to current LE, e1. The hazard
may cause some economic losses, ∆g1 $/per-
son/year, such that the current GDP can be
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written as, g1 = g0 −∆g1. Information about
g1 is available from current economic data.
Similarly, current mortality risk, m1 and LE,
e1 are known from current life table data.

The LQI optimization is performed with ref-
erence to this case. It is important to note
that only the information about g1, m1, and e1
are needed and actual magnitudes of ∆m1 and
∆g1 are not required to formulate the LQI op-
timization problem.

3. Alternate case: Safety improvement program
The safety program is expected to reduce the
hazard induced mortality from ∆m1 to ∆m2(y).
In other words, ∆m2(y), is the residual mor-
tality risk caused by the hazard, which de-
pends on the design parameter. Also note that
0 ≤ ∆m2(y)≤ ∆m1.

The overall mortality rate in the alternate case
is expected to be m2 = m0+∆m2(y). Since m0
is unknown, m2 can be re-expressed as

m2(y) = (m0 +∆m1)−∆m1 +∆m2(y)
= m1 +(∆m2(y)−∆m1)

The reason for using this expression is that
m1 is known from the current life table in the
base case and ∆m2(y) can be estimated from
an analysis of the safety measure. For ex-
ample, expected mortality risk after a seismic
retrofitting of a structure can be estimated us-
ing models for structural collapse and building
usage (FEMA, 2018).

With a similar reasoning, the expected GDP in
this case can be estimated as, g2(y) = (g0 −
c(y) = (g0−∆g1)−c(y)+∆g1, which leads to

g2(y) = g1 − c(y)+∆g1, ($/person/year)
(3)

where c(y) denotes the annualized losses (i.e.,
∆g2(y)) per person associated with the safety
program over its life cycle, (0, t] . These losses
can be estimated by the life cycle cost analysis,
as shown in Section 4.2.

It will be shown in Section 4.3 and Eq. (21)
that if increments in the mortality rate, ∆m1

and ∆m2(y) are constant and independent of
the age, the modified LE can be estimated as

e2(y)≈ e1 [1−µA (∆m2(y)−∆m1)] (4)

where µA is referred to as the average age of
the life table (or stationary) population in the
base case.

2.3. Formulation of LQI Optimization
2.3.1. Derivation

Here the objective is to find an optimum value
of the design parameter, y = y∗, which will maxi-
mize the LQI in the alternate case as compared to
the base case. The analysis starts with the LQI ex-
pression in the alternate case,

L2(y) = [g2(y)]q e2(y)
= [g1 − (c(y)−∆g1)]

q e1 [1−µA (∆m2(y)−∆m1)]
(5)

Since it is expected that (c(y)− ∆g1) << g1, the
binomial approximation, (1 + ε)q ≈ (1 + qε) for
ε << 1, can be used to simplify the first term and
noting that L1 = gq

1 e1, the above equation can be
rewritten as

L2

L1
≈
(

1−q
c(y)−∆g1

g1

)
[1−µA (∆m2(y)−∆m1)] (6)

Now the product of the above two terms in paren-
theses is approximated by keeping only the first or-
der terms in the multiplication, which leads to an
expression for the first-order change in LQI in al-
ternate case with reference to the base case as

L2(y)−L1

L1
=

∆L12(y)
L1

≈

−
(

q
c(y)
g1

+µA∆m2(y)
)

︸ ︷︷ ︸
Decrease

+

(
q

∆g1

g1
+µA∆m1

)
︸ ︷︷ ︸

Increase
(7)

In summary, the change in LQI has the following
two components:
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1. A potential decrease in LQI due to the cost of
safety program, c(y), and the residual mortal-
ity risk due to hazard, ∆m2(y). Since this de-
crease alone is a function of the design param-
eter, y, it can solely serve as the optimization
function.

2. Since the potential increase in the LQI,
(q∆g1/g1) + (µA∆m1), is independent of the
design parameter, this term does not play any
role in the optimization.

Based on the expression (7) and above observa-
tions, the total reduction in LQI, ∆LR, is proposed
as an objective function for the design optimization:

∆LR

L1
≈ q

c(y)
g1

+µA∆m2(y) (8)

To conclude, Eq.(8) defines a normalized loss func-
tion and its minimization with respect to the design
parameter would ensure that LQI achieves its opti-
mum value in the alternate case as compared to the
base case. Further, this loss minimization problem
primarily requires information about the expected
annual losses associated with the safety program,
c(y), and the residual mortality rate, ∆m2(y) due to
the hazard after the implementation of the safety
program, which is bounded as 0 ≤ ∆m2(y) ≤ ∆m1.
In addition, the life table in the base case is required
for computing the mean age, µA (see Section 4.3).

2.3.2. Remarks
• If the residual risk can be completely elimi-

nated for all values of y, i.e., ∆m2(y) = 0, then
the LQI optimization reduces to the cost mini-
mization problem.

• If life safety effects are achieved by a safety
investment but ignored within the optimiza-
tion, i.e., ∆m2(y)−∆m1 = 0, then the result-
ing optimum design would be less stringent as
compared to that obtained by including the life
safety considerations.

3. STOCHASTIC RELIABILITY ANALYSIS
3.1. Basic Terminology

A structure is exposed to recurring hazards
throughout its service life, such as those result-
ing from earthquakes, wind gusts, and flooding.

0

Load

Timet

Xmax

Tf

y Failure

Figure 1: A stochastic model of a hazard

Such randomly occurring events are modelled as
a stochastic shock process, as shown in Figure 1.
A shock process consists of independent and iden-
tically distributed (iid) sequences of random vari-
ables (RVs), Xi and Ti, i = 1,2, . . ., representing the
magnitude and inter-arrival time of load events, re-
spectively (Pandey and van der Weide, 2017).

For any random variable X , FX(x) and FX(x) =
1 − FX(x), denote the cumulative distribution
(CDF) and the survival function, respectively.

In this study, the Homogeneous Poisson Process
(HPP) is used to model a stochastic hazard. The
distribution of the number of events, N(t), in a time
interval, (0, t], is given by the Poisson probability
mass function as

fN(k; t) =
[λ t]k

k!
e−λ t , (0 ≤ k < ∞) (9)

where λ is the rate of occurrence of events. The
expected number of events in this interval is given
as λ t. The inter-arrival time follows an exponential
distribution with a survival function, FTi(t) = e−λ t .

3.2. Structural reliability analysis
Consider a structural component of strength, y,

which is assumed to be a deterministic variable to
simplify the analysis. The probability of failure of
this component under a random shock load, Xi, is
given as, p f x(y) = P [Xi > y] = FX(y). A failure
event, X > y, does not necessarily mean a complete
destruction of the structure. Rather, it is expected
to cause some damage that would require repair to
restore its condition to the original state after each
shock. In short, the structural damage/failure events
are appropriate to model as a stochastic renewal
process.

A structural failure can result in fatalities. The
conditional probability, pd| f , of occurrence of a fa-
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tality given a failure event can be estimated using
models of the structure and its usage.

Based on the decomposition property of the Pois-
son process presented by Serfozo (2009, Section
3.9, Theorem 36), the original stochastic hazard
process can be decomposed into into various inde-
pendent sub-processes, such as the following two
that are relevant to the LQI optimization problem:

1. A sub-process causing structural failures and
fatalities with the rate, pd| f p f x(y)λ , which is
relevant to the life safety analysis.

2. A sub-process causing structural failures (with
and without fatalities) with a rate, p f x(y)λ ,
which is relevant to the life cycle cost analy-
sis.

There is another sub-process of events with a rate,
(1− p f x(y))λ ,that does not not cause any structural
failure, i.e., Xi ≤ y, and it is not relevant to the reli-
ability analysis.

The expected number of failures, NF(t), is re-
quired to estimate cost of repair over the life cycle
of the structure. It is given based on a decomposed
HPP as

E [NF(t)] = p f x(y)λ t (10)

The lifetime reliability of the structure is given as
e−p f x(y)λ t .

3.3. Life Safety Considerations
The life safety impact of the hazard is a result

of the sub-process that causes a failure and fatality
with the rate, pd| f p f x(y)λ . The lifetime distribu-
tion of a person facing this hazard is equivalent to
the distribution of the first time of occurrence of
the fatality event, denoted as Td . Note that the LQI
does not consider "renewals" or "rebirths" after a
fatality, as it is based on a single lifetime of a sta-
tistically representative individual. In other words,
only a "single" generation model is implicit in the
definition of LQI.

The survival function of Td follows an exponen-
tial distribution:

FTd(t) = e−pd| f p f x(y)λ t = e−δ (y)t (11)

where δ (y) = pd| f p f x(y)λ is a constant residual
mortality rate to a person associated with a design
of strength y over an interval, (0, t] .

4. LQI OPTIMIZATION OF STRUCTURAL

SAFETY
4.1. Approach

This Section will apply the LQI-based objective
function, Eq.(8), to optimize the structural strength,
y. This requires the estimation of the annualized
cost of structural safety and the change in life ex-
pectancy over a reference time interval of the anal-
ysis, (0, t] . For simplicity, no discounting is con-
sidered as this adds compexity to the formulations
without adding to the essence of the discussion pre-
sented in this paper.

4.2. Cost of Structural Safety
The total cost of a structure, Ctot over its life, t,

includes the initial cost, CI(y), and the cost of re-
pairing damages caused by the stochastic load pro-
cess, as discussed in the previous Section.

The initial cost is commonly modelled as a lin-
ear function of the design parameter (Fischer et al.,
2019):

CI(y) =C0 +C1 y (12)

The fixed initial cost, C0, includes the cost of land,
cost of design and other services that are indepen-
dent of y. The second components, C1y, represents
the construction cost and depends on the design pa-
rameter.

In case of each failure event, the repair cost in-
cludes two components. The first one is equal to
construction cost, C1y, and the second is the con-
sequential economic losses, CF , which includes the
loss of contents and services provided by the struc-
ture. It can also includes other losses, such as loss
of reputation, litigation cost, and compensations.
Economic benefits generated by the structure are
typically assumed to be independent of the design
parameter, y. Therefore, they are not included in
the life cycle cost analysis. Thus, the total life cy-
cle cost (LCC) considering NF(y, t) potential fail-
ures can be computed as

Ctot(y, t) = (C0 +C1y)+(C1y+CF)NF(y, t) (13)

As the only element of randomness in this function
is NF(y, t), the expected LCC is evaluated as

E [Ctot(y, t)] = (C0 +C1y)+(C1y+CF)E [NF(y, t)]
(14)
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Substituting from Eq.(10) and omitting the expec-
tation sign for the sake of brevity leads to the fol-
lowing expression:

Ctot(y, t) = (C0 +C1 y)+(C1 y+CF) p f x(y)λ t
(15)

The design optimization can be carried out
purely on basis of minimization of LCC using the
first-order condition as,

d
dy

(Ctot(y, t)) = 0

which leads to

C1 +C1λ t p f x(y)+(C1 y+CF)λ t
dp f x(y)

dy
= 0

(16)
Finally, the optimum design parameter, y = y∗, is
obtained by either minimizing the LCC function,
Eq.(15), or by directly solving Eq.(16) for y.

Since discounting of cost is not considered in this
paper, the annualized cost can be simply obtained
as

ctot(y) =
Ctot(y, t)

Nt
($/person/year) (17)

where N is the number of people who are exposed
to hazards due to structural failures and expected to
share the cost of improving the structural safety.

4.2.1. Remarks on Time Horizon of Analysis
The time horizon of optimization is also an im-

portant element of the problem (Fischer et al.,
2013). Most studies have adopted an infinite time
horizon for the optimization, since costs and bene-
fits of many infrastructures are expected to continue
over a very long period of time (Rackwitz, 2000).
In the infinite time horizon, the asymptotic limits
of cost rate derived for a renewal process model are
used. However, the life expectancy is defined as the
mean of a single lifetime. Therefore, the compu-
tation of a change in life expectancy caused by a
renewal hazard process over an infinite time hori-
zon must be carefully formulated as a "first-failure"
problem, as illustrated in Section 3.3.

In a general setting, the consideration of a finite
time horizon is necessary for a safety program for

which the cost is amortized over t1 years and its
life safety benefits are expected to last for t2 years,
t1 ̸= t2. In this case, an evaluation of the life safety
impact would consider a change in the mortality
rate over an age interval of length t2. As an ex-
ample, consider a safety instrumentation system,
which enhances safety by providing an advanced
warning of an accident. Such a system is likely to
have a finite life, since a more advanced technology
is expected to replace this system after t1 years.

In this paper, LQI optimization is formulated
over a finite time horizon with an equal period of
costing and mortality reduction,i.e., t1 = t2 = t. Fur-
ther, the time horizon of the analysis, t, is assumed
to be close to the mean human lifetime, of the order
of 80- 90 years. This simplifies the analytical eval-
uation of change in life expectancy, as discussed in
the next Section.

4.3. Life Safety Analysis
In the mathematical demography, the human life-

time is modelled as a random variable, Th, and the
corresponding survival curve is given in the form
of a life table of the population. Since the human
survival function is related to the mortality rate, it
can be defined for the base case in terms of m1(u)
as (Maes et al., 2003),

FTh(u) = e−
∫ t

0 m1(u)du (18)

The life expectancy (LE), or the mean lifetime,
E [Th] = e1, is defined as

e1 =
∫

∞

0
FTh(t)dt =

∫
∞

0
e−

∫ t
0 m1(u)du dt (19)

Suppose an HPP hazard process increases the
mortality rate by an amount, δ , over the entire life-
time of the individual. The distribution of lifetime,
Td , under this hazard would follow an exponential
distribution. The distribution of lifetime, Tc, under
the prevailing mortality, m1(u), and an additional
mortality, δ , can be obtained as a "competing risk"
problem:

P [Tc > s] = P [Td > s,Th > s]
⇒ FTc(s) = FTd(s)FTh(s)
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The second equation is based on an assumption that
Td is independent of Th. The corresponding life ex-
pectancy, e2, can be evaluated by substituting the
survival function of Td as

e2 =
∫

∞

0
e−δ sFTh(s)ds (20)

Note that in reality the upper limit of integration
should be the upper limit of human lifetime, of the
order of 100 years. Since this analysis is using a
continuous exponential distribution, ∞ is used as
the upper limit to simplify the integration.

Using a first order approximation, e−ε ≈ 1− ε

for ε < 1, an approximate expression for e2 can be
derived as

e2 ≈
∫

∞

0
(1−δ s)FTh(s)ds

≈
∫

∞

0
FTh(s)ds−δ

∫
∞

0
sFTh(s)ds

≈ e1 −δ e1

∫
∞

0
s fA(s)ds

where fA(s) = FTh(s)/e1 denotes the stationary age
distribution. This leads to the final expression for
the modified LE as

e2 ≈ e1(1−δ µA) (21)

with µA the mean age of the stationary life table
population in the base case.

4.4. LQI Optimization Criterion
In the objective function, Eq. (8), the following

substitutions are made, c(y) = ctot(y) from Eq. (17)
and ∆m2(y) = δ (y) = pd| f p f x(y)λ from Eq.(11),
which lead to the following function:

∆LR

L1
≈ q

Ctot(y, t)
N t g1

+µA pd| f p f x(y)λ (22)

This expression can be rearranged as:

Ng1t
∆LR(y)

qL1
≈Ctot(y, t)+KL(nd| f p f x(y)λ t) (23)

Here, nd| f = pd| f N, denotes the expected number
of fatalities conditioned on a structural failure un-
der a shock load. KL = g1µA

q is a socio-economic
constant. The minimization of the above function
with respect to y would lead to an LQI optimal de-
sign strength of the structure.

4.4.1. Remarks
As seen from Eq.(23), the LQI optimization cri-

terion includes the life cycle cost (LCC) minimiza-
tion criterion and a function that corresponds to
the minimization of the residual risk to life safety.
Thus, LQI optimization criterion is expected to re-
quire a higher level of reliability than that based on
the minimization of LCC alone. This aspect will be
further illustrated by an example.

5. EXAMPLE

Figure 2: Variation of cost functions with the design
parameter

An illustrative example is presented using the
following normalized cost parameters: C1/C0 =
0.1, CF/C0 = 2. The loading frequency is assumed
as λ = 1/year and the time horizon as t = 75 years.
The shock load is assumed to follow an exponen-
tial distribution with a unit mean value, such that
the probability of failure per shock is given as,
p f x = e−y. The LQI parameters are based on 2019
Canadian data as, g1 = 46,291 $/person, e1 = 82
years, and q = 0.2. The socio-economic parame-
ter is also normalized as KL/C0 = θL = 2. The life
cycle cost (LCC) optimization leads to an optimal
value of the design parameter as y∗C = 7.59 and the
corresponding lifetime reliability index of 1.78.

The LQI optimization problem with expected
number of fatalities, nd = 1, leads to an optimal de-
sign parameter, y∗L = 8.17, and the corresponding
lifetime reliability index of 2.03. Figure 2 shows
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the variation of LCC and LQI cost functions with
the design parameter. If the expected number of fa-
talities is increased to nd = 10, it leads to y∗L = 9.75
and the lifetime reliability index of 2.62.

This example shows that for any value of nd > 0,
the design value and the reliability level obtained
by the LQI optimization would exceed than those
obtained from the LCC optimization.

6. CONCLUSIONS

The Life Quality Index (LQI) was proposed as
a basis for optimizing investments in a safety pro-
gram by balancing the objectives of enhancing life
safety and minimizing the program cost. For im-
proving the integrity and reliability of structures,
LQI has been applied to optimize structural safety
targets, in addition to a more commonly used
method of minimizing the life cycle cost (LCC). In
this context, some studies in the literature have re-
ported a rather counter-intuitive result that the LQI
approach, despite an explicit consideration of life
safety, leads to a lower safety target as opposed
to a pure cost based optimization embedded in the
LCC method. To investigate this matter, this study
presents a logical formulation of the LQI-based
safety optimization problem.

The paper presents clear definitions of the base
case and the alternate case to document a rigorous
basis for the LQI optimization problem. An analyt-
ical expression is derived for a first-order change in
LQI in the alternate case with reference to the base
case. Using this expression, a minimization func-
tion is developed, which implies the maximization
of LQI in the alternate case.

A remarkable results of this analysis is that the
LCC minimization turns out to be a subset of the
LQI optimization problem, as seen from Eq.(23),
with LQI additionally including a function that rep-
resents the life safety impact of the program. Thus,
a consideration of the life safety objective will in-
crease the optimum safety level as compared to the
minimization of LCC alone. In conclusion, the LQI
approach leads to a higher -or more stringent- level
of target reliability than that obtained using a pure
cost-based minimization.
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