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ABSTRACT: Traffic load models provided by standard regulations play a major role in both design and 
management of road infrastructure. Considering the persistent change in the traffic load characteristics, 
a proper validation of code-based models with real traffic data becomes necessary, especially for their 
implementation in safety checks and monitoring of existing bridges. In this context, this study presents 
a comparative assessment of present Italian road traffic obtained from two weigh-in-motion stations 
located along European route E45 close to Naples, Italy, with existing European traffic. The traffic data 
was filtered to remove erroneous data and then classified based on the number and spacing of vehicle 
axles. Suitable unimodal and multimodal probabilistic models were then identified for major vehicle 
parameters such as gross vehicle weight, vehicle speed, axle weight, axle distance and relative axle 
weight. The paper ends with a preliminary comparison between measured traffic loads and existing traffic 
load models from bridge design standards. The results clearly indicate a significant variation in the 
available traffic load models with the present-day traffic. This comprehensive assessment considering 
different types of vehicles and traffic flow characteristics lay the basis for a future study to investigate 
the distribution of real traffic effects and its variation with respect to code-based traffic models. 

1. INTRODUCTION 
Traffic loads based on real traffic data are 
necessary for the proper construction and 
management of road infrastructures. The traffic 
load models (TLMs) provided by the standard 
codes are based on the traffic data obtained 
decades ago, like the TLMs of Eurocode 1 (EC1) 
which was developed based on the traffic data 
from various locations of Europe from 1980 to 
1994 (Croce, 2020; EN1991-2, 2003). The 
recorded traffic data was associated with higher 
lorry flows with the recording time over a number 
of weeks and the motorway was considered one of 

the heaviest loaded infrastructures in Europe at 
that time (Bruls et al., 1996, Maljaars, 2020). In 
recent years, the frequency of heavy vehicles and 
traffic flow has changed considerably due to the 
circulation of long and heavy vehicles (LHVs) to 
reduce transportation costs. Studies that evaluated 
the effect of LHVs on the existing road 
infrastructure revealed 8% increase in lifetime 
maximum loading for European bridges (OBrien 
& Enright, 2011). The TLMs from the standard 
codes fail to consider the traffic load variation and 
the LHVs, leading to a major issue. Hence, the 
continuous update of TLMs of the current 
regulations from the traffic data obtained using 
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weigh-in-motion (WIM) systems is necessary.  
WIM systems are an advanced technology 

that yield highly useful information to study the 
traffic loads (Chen et al., 2014). Further, WIM 
systems are also helpful in semi-permanent 
monitoring for overload vehicles detection and 
fatigue assessment of bridges (Jacob & Cottineau, 
2016). With recent advances in measurement 
technologies, the quality of traffic data obtained 
via WIM systems improved significantly (Burnos 
et al., 2021). However, a proper calibration and 
preliminary assessment of WIM systems are 
required to avoid errors on vehicle weights and 
axle distances (Tarefder & Ruiz, 2013).  

Available WIM information on major 
parameters such as axle weights, inter-vehicle 
distance, vehicle length and vehicle speed are 
particularly useful in the simulation of traffic-
dependent phenomena. Further, understanding 
variations in the statistical distribution of different 
vehicle classes is important for probabilistic 
evaluation of the traffic effects on existing bridges 
and roads (Tabatabai et al., 2017). The statistical 
analysis of road traffic and development of 
simulated traffic loading for numerical analysis 
would increase structural reliability of existing 
bridges (Caprani & O’Brien, 2010). 

In this context, the present study aims at 
developing the probabilistic models for vehicle 
parameters based on the data collected by WIM 
systems installed in South Italy. WIM systems 
were installed to enforce a total weight limitation 
of 440 kN recently imposed according to safety 
assessment of critical road bridges located in-
between the monitored stations (Cosenza & 
Losanno, 2021; Miluccio et al., 2023). The study 
involves the filtering of WIM data, followed by 
the classification of vehicles based on number of 
axles and axle distances. Statistics and probability 
distribution of traffic data of the classified 
vehicles and a comparison of the traffic data with 
code-based TLMs are presented. 

2. PRELIMINARY DATA ASSESSMENT 
WIM data sets were collected from two stations 
with different traffic conditions, which are named 
‘Fratte’ and ‘Pontecagnano’ as shown in Figure 1. 

The stations are located on two motorways in 
Southern Italy, which are a part of E45 European 
road and were installed in 2021 after safety checks 
of some existing bridges which required traffic 
load limitations. Fratte WIM system was installed 
on A3 Napoli–Salerno motorway to prevent 
vehicles having total mass higher than 44 t 
passing on critical bridges, with a proper 
derailment system involving signalling and traffic 
police. Pontecagnano WIM system was installed 
15 km south on A2 Salerno–Reggio Calabria 
motorway (also called ‘Mediterranean 
motorway’) where allowable legal mass is 44 t 
without systematic overload traffic derailment. 
The WIM data at the selected locations contains 
information on vehicle crossing time, license plate 
number (for illegal vehicle tracking), vehicle 
acceleration, gross vehicle weight (GVW), 
vehicle speed (V), vehicle length (L), number of 
axles, axle weight, axle distance (d) and vehicle 
width. The WIM data measured in the slow lane 
at the selected locations was considered for the 
study. Traffic data includes both low-weight 
vehicles and heavy-weight trucks. To avoid a 
hefty pool of data in traffic load analysis, the 
traffic data was broadly classified in two 
categories based on GVW. Vehicles with GVW < 
75 kN were considered as low-weight vehicles.  

 

 
Figure 1: Location of WIM stations along A2 
(Pontecagano) and A3 (Fratte) motorways, Italy  

 
The WIM data was filtered as per the 

conditions listed below, to remove erroneous data 
that arises due to uncertainties on electromagnetic 
interference and extreme weather conditions: 
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• Minimum axle distance = 0.92 m 
• Maximum axle weight = 392 kN 
• Maximum vehicle length = 18.75 m 
• Maximum gross vehicle weight = 1500 kN 
• Maximum vehicle speed (V) = 170 km/h 
• Number of axles = 2 to 7 
The major representative traffic parameters (such 
as GVW, and V) at the selected locations are listed 
in Table 1. As seen from the traffic data, the 
maximum GVW measured at Pontecagnano is 
9.80% larger than that at Fratte. At Fratte, 3.23% 
of total vehicles (i.e. 112) were found to be 
heavier than 40 t. In case of Pontecagnano, 5.53% 
of recorded vehicles (i.e. 102) were found to be 
heavier than 44 t. The minimum vehicle speed of 
3.00 km/hr was observed at the Fratte station 
during a traffic jam condition. 
 
Table 1: Main traffic characteristics at 
Pontecagnano and Fratte. 

Vehicle 
Parameters 

Pontecagnano Fratte 
Min Max Min Max 

GVW (kN) 1.9 558.6 1.9 503.7 
V (km/h) 6.0 152.0 3.0 159.0 

 
The comparison of the GVW distribution of 

the vehicles at Pontecagnano and Fratte for low-
weight and heavy-weight vehicles are shown in 
Figures 2 and 3, respectively. The GVW 
distribution of heavy trucks at the selected 
locations follows a trimodal distribution with 
mean values of unimodal distributions (assumed 
to be normal) generating the multimodal 
distribution of GVW approximately equal to 99 
kN, 198 kN, and 327 kN at Pontecagnano, and 128 
kN, 183 kN, and 308 kN at Fratte. In case of low-
weight vehicles, the mean values were around 
18.81 kN, 32.22 kN, and 98.36 kN at 
Pontecagnano, and 16.29 kN, 23.88 kN, and 70.54 
kN at Fratte. 

3. CLASSIFICATION OF VEHICLES 
The vehicles are classified based on the GVW as 
low weight and heavy weight vehicles. Based on 
such classification, the total number of low-
weight vehicles recorded at Pontecagnano and 

Fratte were 100,656 and 162,966, respectively for 
a sampling period of two weeks.  The total number 
of heavy vehicles measured at Pontecagnano and 
Fratte were 1846 and 3472, respectively. The 
frequency of heavy trucks (GVW > 75 kN) at 
Pontecagnano and Fratte was respectively about 
1.8% and 2.1% of the vehicles measured in the 
slow lane. The low-weight vehicles at 
Pontecagnano and Fratte were about 98.2% and 
97.9% of the total vehicle traffic recorded in the 
slow lane. The average GVW of the low-weight 
vehicles at Pontecagnano and Fratte was around 
25.04 kN and 18.82 kN, and their average speed 
was around 92.74 km/h and 74.84 km/h, 
respectively.  

 

 
Figure 2: GVW distribution of low-weight vehicles  
 

 
Figure 3: GVW distribution of heavy-weight vehicles  

 
Commonly, the vehicles are classified based 
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on the number of axles and axle distance. Based 
on the standard vehicle classification groups 
reported in the literature (Guo et al., 2012; 
Tabatabai et al., 2017), the vehicles at the selected 
locations were classified into nine vehicle classes 
as listed in Table 2. The most frequent vehicle 
classes with a frequency greater than 20% at both 
stations were found out to be 2A and 5F. The 
vehicle classes 2A, 3B, 4D and 5F constitute 
about 94% and 92% of total vehicles at 
Pontecagnano and Fratte, respectively. Average 
GVW values at Fratte are lower than those 
measured at Pontecagnano for all vehicle classes, 
further remarking the effects of traffic restrictions. 
In the same trend, the average speed range of 2A 
and 5F vehicles at Pontecagnano were found to be 
[82.6 km/h, 88.3 km/h], which is higher than that 
associated with Fratte (i.e. [55.6 km/h, 73.2 
km/h]) due to influence of urban traffic and port 
area in the latter case. 

 
Table 2: Classification of vehicles at Pontecagnano 
and Fratte. 

Vehicle 
class 

Silhouette Frequency (%) 
Ponte-

cagnano 
Fratte 

2A 
 

32.3 41.4 

3B 
 

15.9 11.9 

3C 
 

1.3 1.0 

4D 
 

20.2 16.1 

4E 
 

2.9 2.6 

5F 
 

25.5 22.9 

5G 
 

1.3 0.8 

6H 
 

0.3 0.9 

7I 
 

0.1 0.2 

 

4. PROBABILISTIC MODELS FOR MAJOR 
TRAFFIC PARAMETERS 

A detailed statistical analysis of traffic data was 

thus carried out to understand the different load 
conditions and dependency upon traffic 
restrictions at the selected locations. The vehicle 
parameters may follow different probability 
distributions due to the variation in the type of 
vehicles and the carrying load (Lan et al., 2011; 
Obrien et al., 2009). Hence, the different vehicle 
parameters assumed as random variable are 
analysed to identify the suitable probability 
distribution. Comparison was made using various 
statistical models, namely normal (N), lognormal 
(Logn), logistic (Log), loglogistic (Loglog), 
kernel (K), and Weibull (W), using maximum 
likelihood estimation to estimate model 
parameters in case of unimodal distributions. In 
addition, multimodal distribution is also 
considered. The model parameters were estimated 
using the expected maximum (EM) algorithm 
which is one of the most frequently used methods 
for the estimation of model parameters with 
required accuracy (Xia et al., 2012). The 
validation of the unimodal and multimodal 
distributions was carried out using Kolmogorov-
Smirnov (K-S) test with significance level of 0.05. 

4.1. Gross vehicle weight 
The GVW distribution of the vehicle classes 
associated with heavy-weight vehicles tend to 
follow loglogistic, lognormal and multimodal 
distributions. The comparison of the probability 
density functions (PDFs) of GVW of one of the 
most frequent vehicle classes 5F at Pontecagnano 
and Fratte are shown in Figure 4. GVW 
distribution of vehicle class 5F follows loglogistic 
distribution with the mean weight around 268 kN 
at Pontecagnano and the multimodal distribution 
with the mean values around 167 kN and 285 kN 
at Fratte. In case of low-weight vehicles, GVW 
can be described by trimodal distributions at both 
WIM stations. Similar to heavy-weight vehicles, 
the mean GVW at Pontecagnano was found to be 
comparatively larger than that related to Fratte. 

4.2. Vehicle speed 
In most cases, vehicle speed was found to be 
described by logistic and loglogistic distributions. 
The PDF of vehicle speed for the same vehicle 
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class is shown in Figure 5. Both GVW and V 
measured at Pontecagnano tend to be larger than 
those at Fratte. A similar trend was confirmed by 
other vehicle classes. Vehicle speed of low-
weight vehicles follows loglogistic distribution 
with mean value around 92.76 km/h and 73.70 
km/h at Pontecagnano and Fratte, respectively. 
 

 
Figure 4: Probability density functions of GVW for 
vehicle class 5F 
 

 
Figure 5: Probability density functions of vehicle 
speed for vehicle class 5F 

4.3. Axle weight and axle distance 
The axle weight was represented as wi, where the 
subscript denotes the number of the axle from 
front to rear. The axle distance was represented as 
dij, where the subscripts denote the number of the 
axles between which the distance was measured. 
The axle weight in most of the vehicle classes 
follows the normal and loglogistic distributions. 

Few axle weight distributions from Fratte stations 
were found to follow bimodal distribution. While 
comparing the axle weight distributions of all the 
vehicle classes, the average axle weight recorded 
in Pontecagnano is larger than Fratte over all the 
axle weights. The axle weight of low-weight 
vehicles follows a trimodal distribution at both 
WIM stations, with the major proportion of the 
axle weight approximately equal to 9.38 kN and 
8.16 kN at Pontecagnano and Fratte, respectively. 
The PDFs of axle weight w1 for vehicle class 5F 
are shown in Figure 6. For heavy-weight vehicle 
classes, the axle distance distribution tends to 
follow normal, logistic, loglogistic and bimodal 
distributions. The PDFs of axle distance d23 for 
vehicle class 5F are shown in Figure 7.  
 

 
Figure 6: Probability density functions of axle weight 
(w1) for vehicle class 5F 
 

 
Figure 7: Probability density functions of axle 
distance (d23) for vehicle class 5F 
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In case of low-weight 2-axle vehicles, the 
axle distance was found to follow a trimodal 
distribution at both locations. The major 
proportion of the axle distance at Pontecagnano 
were concentrated around 1.70 m and 1.72 m. In 
case of Fratte, the axle distances of 1.78 m and 
2.16 m constitute the major proportion of the 
recorded vehicles. 

4.4. Relative axle weight 
A relative axle weight (RW) is defined for the ith 
axle as the ratio of the axle weight (Wi) to GVW 
for every vehicle class. The statistical 
distributions of vehicle class 5F tend to follow 
unimodal and multimodal distributions. The RW 
distributions of vehicle class 5F at Pontecagnano 
are shown in Figure 8. The mean 𝑅𝑅𝑅𝑅 of axles 3, 
4 and 5 were found to be close to each other at 
both locations, with the mean RW varying 
between 0.16 and 0.17. While comparing the 
distribution of RW1 between stations, the mean 
values of the multimodal distribution were almost 
similar with a slight variation in the standard 
deviation and the proportions. In case of RW2, the 
mean values of the multimodal distribution were 
found to be between 0.26 and 0.28 at both stations. 
The cumulative distribution functions (CDFs) of 
the relative axle weights for vehicle class 5F are 
shown in Figure 9. 

 

 
Figure 8: Probability density functions of the relative 
axle weights of vehicle class 5F at Pontecagnano 
 

 
Figure 9: Cumulative probability functions of the 
relative axle weights of vehicle class 5F 

5. COMPARISON OF LOAD MODELS 
Even if according to modern reliability criteria 
TLMs are established based on given return 
periods for limit state verifications, a preliminary 
comparison is proposed between WIM collected 
data and most common TLMs. Structural analyses 
will have to be developed for an effective 
comparison between different models and 
calibration of WIM-based TLMs.  

5.1. Fatigue load models in Eurocode 1 
As per Eurocode 1 (EC1; EN1991-2, 2003), the 
fatigue load model 2 (FLM2) was represented by 
a set of five idealized “frequent” lorries. The 
vehicle classes 2A, 3B, 4D and 5F considered in 
the present study are similar to the first four 
frequent lorries mentioned in EC1. It is also 
important to point out that these vehicle classes 
represent about 94% and 92% of the total traffic 
at Pontecagnano and Fratte, respectively. Only a 
slight variation in the axle distance was observed 
between traffic data considered in the present 
study and EC1 recommended values. However, 
considerable differences arise in terms of axle 
loads for all vehicle classes. The fatigue load 
model 4 (FLM4) is represented by sets of standard 
lorries which together produce equivalent effects 
to those of typical traffic on European roads. 
Similar to FLM2, a significant variation in the 
axle loads between EC1 and the different vehicle 
classes at both WIM stations was observed.  
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5.2. Design load model in Eurocode 1 
According to EC 1 – Part 2 (EN1991-2, 2003), the 
traffic load model 1 (LM1) describes the 
concentrated and uniformly distributed loads 
(UDL) including dynamic amplification factors of 
traffic for global and local verifications having a 
return period of 1000 years. The equivalent 
uniformly distributed loads (eUDL) for the 
different vehicle classes at Pontecagnano and 
Fratte were calculated from the mean GVW 
considering a conventional width of 3.0 m and a 
total length equal to the sum of the axle distances. 
In case of vehicle class 2A, the eUDL value was 
close to 11 kN/m2 at both the WIM stations, which 
is about 18% to 20% higher than that of the code 
recommended value. In case of vehicle class 5F, 
the eUDL values at Pontecagnano and Fratte were 
9.68 kN/m2 and 7.69 kN/m2, respectively. 

5.3. Heavy load traffic model of the new Italian 
guidelines for existing bridges 

In 2020, new guidelines for safety assessment of 
existing bridges were issued by the Italian 
Ministry of Infrastructures and Transportation 
including standard vehicles (i.e. based on actual 
traffic vehicles as per Italian road code) for novel 
TLMs (Cosenza & Losanno, 2021) to be adopted 
in case of non-compliant bridges with respect to 
LM1. The heaviest 5% range (H5P) GVW of the 
vehicle class 5F at Pontecagnano (452.8 kN) is 
close to the GVW suggested by the Italian 
guidelines with a variation of +2.82% which is 
also within 5% tolerance to maximum legal value 
of 440 kN. In case of vehicles at Fratte, H5P GVW 
of vehicle 5G is 415.1 kN (i.e. the peak H5P value 
among different vehicle classes) close to 440 kN 
with –5.65% variation but higher than legal limit 
of 400 kN by 3.78%. 

5.4. Design load model of AASHTO guidelines 
As per the AASHTO-LRFD regulations, the 
design vehicular load is represented by three load 
types such as design truck, design tandem and 
design lane load. The design lane load is 
represented by a uniform distributed load of 0.64 
klf (corresponding to 9.34 kN/m) in the 
longitudinal direction (AASHTO, 2010). The load 

is assumed to spread for 10 ft (i.e. 3.05 m) width 
transversely. The transverse width is very close to 
the width of the notional lane (equal to 3.0 m). By 
considering the eUDL values multiplied by the 
notional lane width (equal to 3.0 m), a 
significantly higher distributed load is obtained, 
i.e. approximately 2.5 and 4.0 times higher in 
terms of average and H5P values, respectively.  

The design truck provided by AASHTO 
guidelines consists of three axles with axle 
weights. The GVW of the design truck is 320 kN, 
with the axle weights of 8 kips (36 kN), 32 kips 
(142 kN) and 32 kips (142 kN) each. The spacing 
between the first two axles is 14 feet (4.27 m), and 
spacing of next two axles varies from 14 feet (4.27 
m) to 30 feet (9.14 m) to be selected to achieve the 
maximum effect. Usually, the minimum axle 
distance of 4.27 m controls design and values 
greater than 4.27 mm are selected in case of 
continuous short-span bridge where the maximum 
negative moment at the pier is being computed. 

The H5P values of the vehicle classes 3B and 
6H were found to be closer to that the GVW of the 
design truck load by AASHTO, with the variation 
of 2.82% and 3.56%, respectively. In case of 
Fratte, smaller variations with the AASHTO 
design truck load were observed with that of the 
vehicle classes 4D (3.71%) and 6H (3.56%). 
Further, the design truck axle weights were 
compared with the axle weights of the vehicle 
classes 4D and 5F representing 40–45% 
frequency of total traffic. 

6. CONCLUSIONS 
The probabilistic models of the traffic parameters 
of the current Italian traffic, along with the 
comparison of the traffic load models of standard 
regulations is presented in this study. The WIM 
data were obtained from two stations on the E45 
European highway close to Naples, Italy, over a 
period of two weeks. The data was filtered 
initially, followed by the classification of vehicles 
based on GVW, number of axles and axle 
distances. Based on the results, the two-axle 
vehicle class 2A and five-axle vehicle class 5F 
were identified as the most frequent vehicles with 
frequency greater than 20% at both the stations. 
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The statistical distribution of major vehicle 
parameters, such as axle weight, axle distance, 
GVW, and vehicle speed, were then identified. 
The vehicle parameters tend to follow unimodal 
and multimodal distributions. The traffic data was 
then compared with the traffic load models and 
design vehicles provided by the standard 
regulations. While comparing EC1-conforming 
fatigue load models, a significant variation in the 
axle loads of the frequent lorries (fatigue load 
model 2) and standard lorries (fatigue load model 
4) were identified at both WIM stations selected 
in this study. Considerable variation is also 
observed between the H5P GVW of the most 
frequent vehicle class 5F and the GVW suggested 
by the Italian guidelines. Based on collected WIM 
data, a traffic load simulation procedure will be 
developed for structural analysis.  
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