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ABSTRACT: The performance of conventional damage detection systems depends mainly on the
physical and geometrical damage characteristics and the choice of damage classifier. Some works
directly use Convolutional Neural Networks (CNN) for damage pattern recognition analysis of
experimentally measured vibration signals. This work proposes a method that combines wavelet
transform and CNN for Structural Health Monitoring (SHM). Firstly, we obtain numerically simulated
structures with sensors arranged on them to collect data and perform the cut-off; then, we perform the
wavelet transform to the acceleration signals of different simulated damage patterns and use them to
train the CNN; finally, the trained CNN can predict the structural damage patterns. A four-level
benchmark building introduced by the IASC-ASCE Structural Health Monitoring Working Group is
used to validate this damage identification method. The numerical results show that the proposed
method can effectively solve the problem of quantifying structural damage.

1. INTRODUCTIONS

Structural Health Monitoring (SHM) is essential
to assess the condition and safety of engineering
structures during their life cycle. One of the core
tasks in establishing a practical and efficient SHM
system is to improve its structural damage identi-
fication capability. In the early stages, structural
damage is mild and usually does not affect the reg-
ular use of the structure; however, if it is not de-
tected and effectively repaired in time, the damage
will gradually increase and eventually lead to se-

vere damage. Therefore, it is crucial to identify
and quantify the structural damage promptly. Dam-
age identification methods based on vibration infor-
mation have been widely studied for decades (Das
and Saha (2018)). However, due to complex and
variable operating and environmental conditions, as
well as various engineering structural forms and
damage types, there are significant challenges in
practice.

In recent years, deep learning algorithms have
also been increasingly used in vibration-based
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structural damage recognition studies due to the
dramatic increase in computational power and a
significant reduction in sensor fabrication costs
(Zhao et al. (2019)). Due to its excellent feature
extraction capability, the application of CNN has
gone beyond the traditional field of computer im-
age recognition to become a versatile feature ex-
traction tool (Xu et al. (2020), Abdeljaber et al.
(2018)). Cofre-Martel et al. (2019) proposed a new
deep CNN-based method for localization and quan-
tification of structural damage. It operates on im-
ages generated by the transmission function of a
structure and uses the image processing capability
of CNN that automatically extracts and selects fea-
tures relevant to the structural degradation process.
Abdeljaber et al. (2017) proposed a structural dam-
age detection system using a one-dimensional CNN
with an inherently adaptive design that fuses feature
extraction and classification blocks into a single,
compact learning body. Yu et al. (2019) proposed a
deep CNN-based identification and localization of
damage to building structures equipped with intel-
ligent control devices. All these works successfully
implemented damage pattern recognition analysis
of vibration signals using CNN.

To overcome the limitation of small data size col-
lected during the shake-table test that hindered the
use of artificial neural networks and recurrent neu-
ral networks. Khodabandehlou et al. (2019) intro-
duced a novel vibration-based SHM approach that
uses two-dimensional deep CNN. The CNN ex-
tracts the features from acceleration response his-
tories and reduces the dimension of response his-
tory to make damage state classification possible
with limited number of acceleration measurements.
Mantawy and Mantawy (2022) explored the use of
time-series acceleration or displacement data col-
lected from a shake-table experiment of a two-span
bridge utilizing pretensioned rocking columns to
predict the damage state of each bridge bent, where
the major identified damage was the fracture of the
longitudinal bars. The time-series data were en-
coded into images using three methods: Gramian
angular summation field, Gramianan gular differ-
ence field, and Markov transition field. Then, the
encoded images were used as an input for CNN

models. However, these data conversion methods
cannot achieve high accuracy and few computation
at the same time when facing large volume of data.

This work presents a method to accurately as-
sess structural health by combining wavelet trans-
forms and CNN. With its multi-resolution signal
analysis capability, the wavelet transform can si-
multaneously analyze signals in both time and fre-
quency domains. It is particularly suitable for han-
dling non-stationary signals, and is widely used
in research in various disciplines. A four-level
benchmark building introduced by the IASC-ASCE
Structural Health Monitoring Working Group was
used to validate this damage identification method
(Johnson et al. (2004)). Firstly, we simulate dif-
ferent levels of structural damage on a finite ele-
ment model of the structure and collect acceleration
signals at fixed points of the structure. Then, we
slice the collected acceleration signals under dif-
ferent simulated damage patterns, perform wavelet
transform calculations, and feed them to the CNN
for training; finally, the trained CNN can accurately
predict the structural damage patterns. The nu-
merical results show that the proposed method ef-
fectively solves the problem of structural damage
recognition.

Section 2 outlines the proposed structural dam-
age estimation method, including wavelet trans-
form theory and CNN. Section 3 describes the
benchmark structure of IASC-ASCE, the adopted
CNN network structure and the hyperparameters
used for training, and the training and test sets of
the CNN. Conclusions are given in Section 4.

2. DESCRIPTION OF THE PROPOSED
METHOD

2.1. Wavelet Transform
Analyzing signals in the time domain is a com-

mon and effective way of modern signal process-
ing. Fourier transform is a powerful tool, and it can
reflect the overall spectral characteristics of the sig-
nal well. However, the Fourier transform can only
obtain information about the frequency components
of the signal to be processed, but not time informa-
tion of each frequency component, which results
in two signals with very different time domains
may have the same spectrum. For non-smooth sig-
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nals such as structural fault vibration signals, the
signal frequency changes with time, and the in-
stantaneous frequency and amplitude information
at each moment are also important, which will in-
crease the success rate of damage identification.
The wavelet transform is very effective in denoising
non-stationary signals, extracting characteristic pa-
rameters of signals, and numerical analysis (Wang
et al. (2010)). A wavelet is a particular type of
waveform with finite length and zero means. It is
called a "wavelet" because the function that can be
used as the basic wavelet has two characteristics:
first, it has the property of fast decay, i.e., it has a
tight branching or near tight branching in the time
domain; second, it has the form of oscillation with
alternating positive and negative amplitudes, i.e.,
the DC component is zero. The wavelet has very
concentrated energy in the time domain, which is
finite and concentrated near a certain point.

Mathematically, when the function ψ(t) satisfies
the following two conditions:

• function ψ(t) can be square integrable, i.e.

ψ(t) ∈ L2(R), (1)

• ψ̂(ω) is the Fourier transform of the function
ψ(t), i.e.∫ +∞

−∞

|ψ̂(ω)|2|ω|−1dω <+∞, (2)

then ψ(t) can be called a Mother Wavelet. Once
a mother wavelet is obtained, it can be translated
and scaled to obtain:

ψa,b(t) =
1√
a

ψ

(
t −b

a

)
(a > 0,b ∈ R), (3)

ψa,b(t) is called the wavelet basis function, where a
represents the scale factor, b means the scale trans-
lation factor. Also, if a and b are continuous, then
ψa,b(t) is called the continuous wavelet basis func-
tion.

Let ψ(t) be a mother wavelet, and ψa,b(t) be
a continuous wavelet basis function obtained by
stretching and translating, then for any function
x(t), its wavelet transform is:

WTx(a,b) =
1√
a

∫ +∞

−∞

x(t)ψ̄
(

t −b
a

)
dt, (4)

where WTx(a,b) is called Continuous Wavelet
Transform (CWT) of x(t), where: ψ̄(t) is the conju-
gate operation of ψ̄ . As Equation 4 shows, the func-
tion after the wavelet transform is two-dimensional;
that is, when we perform the wavelet transform
of the original one-dimensional signal into a two-
dimensional signal, realizing the analysis of the
signal in the time-frequency domain. Essentially,
the wavelet transform is a superposition of projec-
tions on ψa,b(t) with different translation and scal-
ing factors for any function x(t) in L2(R) space.
The Fourier transform can only project x(t) onto
the frequency domain. Moreover, the wavelet trans-
form maps a one-dimensional time-domain signal
onto a two-dimensional "time-frequency" domain,
so the wavelet transform has a multi-resolution fea-
ture. By adjusting the scaling factor and transla-
tion factor, wavelet transform with different time-
frequency widths can be obtained, which can be
matched with the original signal at any time to com-
plete the time-frequency localized two-dimensional
analysis of the signal, as shown in Figure 1. From

Figure 1: Basic flow of wavelet transform.

the definition of the continuous wavelet transform,
it is clear that the information of continuous wavelet
transform of a signal x(t) is redundant when the
stretching factor a and translation factor b continu-
ously vary. From the perspective of computational
convenience and saving computational effort, we
want to minimize the redundancy of wavelet trans-
form coefficients without losing the original signal
x(t) information. In practice, the factors a and b of
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the continuous wavelet transform are usually dis-
cretized.

To demonstrate the effect of wavelet transform
on non-stationary signals, we defined three sinu-
soidal signals with 1000 Hz sampling frequency,
a sampling time of 1000 s, and center frequencies
of 10 Hz, 20 Hz, and 30 Hz. Then we added ran-
dom normally distributed noise with amplitudes be-
tween 0 and 1 to simulate the non-stationary state.
We perform the wavelet transform of the simulated
non-stationary sinusoidal signal, as shown in Fig-
ure 2, where the horizontal coordinate represents
the main components of the frequency, and the ver-
tical coordinate represents the change of frequency
with time. Label 1 represents a sine signal with a
defined center frequency of 10 Hz, label 2 denotes
a sine signal with a defined center frequency of 20
Hz, and label 3 means a sine signal with a defined
center frequency of 30 Hz. As seen in Figure 2,
even though we have added noise to the sinusoidal
signal after the wavelet transforms, we can still see
very clearly the main components of the frequen-
cies and how they change with time.

Figure 2: Wavelet transform of simulated non-
stationary sinusoidal signal (Label 1: 10 Hz, Label
2: 20 Hz, Label 3: 30 Hz).

2.2. CNN Training
The CNN model originated from biological

neuro-vision research, it has been widely used in
object detection in images, videos, and the classifi-
cation of images (Li 2021). Each CNN mainly in-
cludes the input layer, the convolutional layer, the
pooling layer, the fully connected layer, and the
output layer modules. The CNN extracts the sig-
nal feature information in the convolution process.
Its basic principle is as follows:

Z(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n), (5)

y = g(ZW +b), (6)

g(x) = max(x,0), (7)

Zsub = subsampling(y), (8)

Equation 5 is the convolution process, where one
convolution layer can include multiple convolution
kernels for extracting different features (e.g., edge,
texture, color) of the image, where I is the input pa-
rameter, K is the convolution kernel, (m,n) is the
size of the convolution kernel, and (i, j) is the con-
volution position. Equation 6 is the calculation of
the convolution result y after inputting the convolu-
tion result Z into the activation function g(x), where
W is the weight matrix, and b is the bias. Equa-
tion 7 is the expression of the activation function.
Equation 8 represents the process of downsampling
the signal in the pooling layer of the model, where
Zsub is the output result of the pooling layer, and
subsampling() is the expression of the activation
function.

In this study, a CNN with four convolutional lay-
ers (kernel size = 3), four max pooling layers (ker-
nel size = 2), one fully connected layer (number of
neurons = 9), and a softmax layer as the output layer
is adopted, see Table 1 for details.

Table 1: Hyper-parameters used in the proposed CNN.

Hyperparameter Value

Number of convolutional layers 4

Number of MaxPooling layers 4

Activation function SoftMax

Loss function Negative Log Likelihood Loss

Learning rate 0.001

Maximum number of epochs 1000

3. RESULTS AND DISCUSSIONS
3.1. Benchmark Description

The IASC-ASCE benchmark was constructed at
the Seismic Research Laboratory at the University
of British Columbia, and the benchmark problem
was described by Johnson et al. (2004). Figure 3
shows the geometry of this benchmark structure,
which is a four-store, quarter-scale (grade 300W)
steel frame with a footprint of 2.5 m × 2.5 m and a
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Figure 3: Model of the benchmark structure, the floor
beams are marked with violet bars, the columns are
noted by blue bars, and the braces are represented by
red bars.

frame height of 3.6 m. The sections are specifically
designed for this scale model: the columns are in-
dicated in blue, their section type is B100 × 9; the
floor beams are shown in purple, their type is S75 ×
11; the support system is marked in red and consists
of two 12.7 mm diameter threaded steel rods placed
diagonally. The damage introduced in the bench-
mark was obtained by removing diagonal bracing at
specific locations or loosening bolts at several con-
nection locations.

Caicedo et al. (2004) introduced two benchmark
FEM models, the simple numerical model 12-DOF
and the complex numerical model 120-DOF, for the
numerical simulation of the structure’s dynamic be-
havior. Specifically, every single layer of the 12-
DOF shear frame is described by three DOFs. The
120-DOF model introduces both out-of-plane mo-
tion and rotation of the floor slab on top of the 12-
DOF, which is more in line with the real world. As
Johnson et al. (2004) reported, the numerical model
simulates the presence of 16 single-axis accelerom-
eters, two in each of the X and Y directions for each
floor. The proposed method is applied to a 120-
DOF Benchmark FEM model.

3.2. CNN Training & Testing dataset
To test the performance of the proposed method,

we use nine damage patterns to train and test the
CNN, as shown in Table 2. For each damage pat-

Table 2: Damage Patterns of benchmark structure for
CNN Training and Testing.

Patterns Configuration

0 Undamaged

1
Removed braces on 1st floor in one bay on southeast
corner

2
Removed braces on 1st and 4th floors in one bay on
southeast corner

3
Removed braces on all floors in one bay on southeast
corner

4 All east side braces removed

5
Removed braces on all floors on east face, and 2nd
floor braces on north face

6 All braces removed on all faces

7
Configuration 7 + loosened bolts on floors 1 and 2 at
both ends of beam on east face, north side

8
Configuration 7 + loosened bolts on all floors at both
ends of beam on east face, north side

tern, the number of channels of the sampled signal
is 16, the sampling frequency is 1000 Hz, and the
sampling time is 400 s (i.e. 40,000 data points). We
divide the data for each channel into "Frames", by
defining the "Frame" length as 128∗128. For each
data "Frame", we perform the Wavelet Transform.
When the structural damage varies, the "images"
of the corresponding vibration signal also changes.
Therefore, for one channel of data (400 s), we can
get 40,000/(128∗128)/2 ≈ 48 "images"; for each
damage pattern i, we have 16 channels so that we
can get 16∗48 = 768 "images"; for all damage pat-
terns, we can get 9 ∗ 16 ∗ 48 = 6912 "images". We
divide 70% of the processed data into a training set
and 30% into a test set. That is, the training set
6912∗0.7 ≈ 4838 is used to train our CNN and the
testing set 6912∗0.3 ≈ 2074 is used to test the per-
formance of our CNN.

Confusion matrix of the trained CNN prediction
failure mode results is shown in Figure 4. We can
find that the prediction accuracy is 100% for dam-
age pattern 0, 1, 3, 4, 5; the prediction accuracy is
99% for damage pattern 7 and 98% for damage pat-
tern 2; damage patterns 6 and 8 are easily confused
with each other for CNN, the accuracy of damage
recognition is not as high compared to other dam-
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age patterns. In summary, the final training time is
36 s and the overall accuracy is 97%.

Figure 4: Confusion matrix of the trained CNN predic-
tion failure mode results.

4. CONCLUSIONS
To maximize the beneficial effects of structural

reliability on the occurrence of catastrophic events
and to reduce structural repair and maintenance
costs, there is an urgent need to predict structural
damage with a high degree of accuracy. This pa-
per proposes a new damage detection method that
includes wavelet transform and CNN to address
this goal. The method outputs the learned dam-
age features and predicts unknown damage, while
the wavelet transforms further enhance the process-
ability of the data. The performance and feasibil-
ity of the proposed technique in real-time SHM
and structural damage detection processes are il-
lustrated by validating the IASC-ASCE structure.
The results show that the proposed CNN can auto-
matically learn to extract the best features without
manually extracting or adjusting parameters. Also,
due to the simple structure and low computational
cost of CNN, its mobile and low-cost hardware im-
plementation is feasible and can be easily applied
to other engineering structures (e.g., civil, mechan-
ical, or aerospace) for real-time structural health
monitoring. We believe that an interesting future
research is to use useful information provided by
different types of sensors (e.g. temperature, hu-
midity, displacement, etc.) together with dynamic
monitoring data from acceleration signals as input

to the damage detection method. Further extending
the effectiveness of the method to different service
conditions without the risk of masking the presence
of damage.
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