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ABSTRACT: The transport sector is one of the most greenhouse gas emitting sectors, and users waste a
lot of time in transport due to congestion, with relevant socio-economic consequences. Understanding
the spatio-temporal traffic patterns could help traffic forecasts and allow to adjust the transportation
infrastructure more efficiently in order to cope with these challenges. Deep learning has had a huge
success in recent years due to its ability to capture patterns to make predictions that were not able to be
properly assimilated by older regression models. More recently, Graph Neural Networks (GNN) have
emerged as the state of the art in capturing spatio-temporal traffic patterns thanks to their capability to
model the structure of the traffic network and to capture its dynamics. The present study analyzes the
impact of weather scenarios in the case of bike-sharing orgin-destination matrix prediction. In this
study, a type of Graph Neural Network (ST-ED-RMGC) has been employed. We consider real world
bike-sharing data related to urban areas. The results of the study show a strong impact of the weather on
the quality of the prediction, whether it is an atypical temperature, a strong wind or the presence of rain.
This suggests the need for introducing as input features contextual information about weather conditions
as well as data from other sources, such as historical demand information on transport modes alternative
to the one being predicted, in order to quickly identify the onset of atypical events

1. INTRODUCTION
With the advancement of neural network algo-

rithms and, more recently, graph neural networks,
traffic metrics prediction has been constantly im-
proving in the last decade. However, these algo-
rithms demonstrate limitations in predicting atypi-
cal events (An et al. (2019)), as they learn to rec-
ognize patterns and adapt their responses based
on prior experiences. With climate change and
other hazards such as the Covid crisis, atypical
events are increasingly frequent, making it imper-

ative to identify and address the challenges faced
by forecasting models. To address these limita-
tions in traditional neural-network forecasting so-
lutions, one idea is to generate data associated with
atypical scenarios using simulation tools, and in-
tegrate more targeted contextual information into
our inputs. In this paper, we focus on the state-of-
the-art Origin-Destination (OD)-based forecasting
model proposed by Ke et al. (2021), which is one of
the most recent and powerful OD-based forecasting
models. Herein, we apply the model to bike-sharing
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data of the city of Lyon, France, contrary to their
study which refers to for-hire vehicles in Manhat-
tan. The main objective of this study is to evaluate
the performance of forecasting models in atypical
scenarios, compared to typical reference scenarios.

The main contributions of this study are summa-
rized as follows :

1. We introduce a custom spatial aggregation ap-
proach and describe briefly how the flows are
distributed in the identified zones.

2. We define multiple weather-related atypical
scenarios in order to evaluate the perfor-
mance of the selected forecasting algorithm.
We prove that rainfall is the factor with the
strongest impact on prediction quality. Wind
also affects the quality of the prediction, but to
a lesser extent.

In Sec. 2, we present recent literature on the topic
of traffic forecasting and performance evaluation
of neural-network based solutions. In Sec. 3, we
present the overall structure of the ST-ED-RMGC
proposed by Ke et al. (2021), the differences we
made in the spatial dependency modeling between
OD pairs, our spatial aggregation and our test sce-
narios. In Sec. 4, we detail the results obtained on
all our tested scenarios. Sec. 5 concludes the work
and highlights future research directions.

2. RELATED WORK
Graph Neural Networks (GNNs)

Previous research has examined multiple as-
pects of traffic flow forecasting, and graph neural
networks (GNNs) are considered the cutting-edge
technology in traffic prediction due to their abil-
ity to capture spatial-temporal dependencies. The
primary technique is graph convolution, which was
first introduced by Bruna et al. (2014) and later
applied to transportation forecasting by Yu et al.
(2017). Derivatives such as the diffusion graph con-
volution have also been developed Li et al. (2017).

Concerning bike-sharing prediction, different ap-
proaches can be utilized, including predictions by
station, as in Chai et al. (2018), or through dy-
namic station aggregation via clustering before pre-
dicting demand, as proposed by Chen et al. (2016).
Region-based approaches involve using a deep neu-
ral network to predict inflow and outflow for each

cell of the grid, as presented by Zhang et al. (2016).
Due to the lack of real-time data and the inher-

ent complexity of OD prediction - with the desti-
nation being unknown until arrival - the forecast-
ing of ODs is particularly challenging (see Ke et al.
(2021), Zhang et al. (2021)). Furthermore, data
sparsity represents a relevant challenge (Wang et al.
(2019)), as the number of ODs is quadratic in the
number of zones, along with the current limitations
of traffic forecasting. As a result, limited research
exists on the subject, especially in the context of
bike-sharing prediction.

Taking into account contextual information
GNNs were used to capture spatial information,

and then methods were developed to integrate ex-
ternal factors or inter-modal links. Geng et al.
(2019a) use POIs data to add similarity relation-
ship between zones and apply a multi graph con-
volution, while Zhu et al. (2021) proposed a neu-
ral network model that includes static information
such as POIs, and dynamic contextual informa-
tion such as weather. Ma et al. (2021) proposed
a model that incorporates contextual information
such as inter-day and intra-day traffic pattern by
using day of the week, season, weather and holi-
day to enhance traffic flow prediction. However,
the article treats the sensors independently by not
using GNN. Generally these data are integrated in
inputs by weighted matrices that extract relation-
ships from graphs. Studies are therefore interested
in multi-graph convolution. Geng et al. (2019b)
proposed a model for heterogeneous spatial units,
but did not emphasize the links between transport
modes. On the contrary, Ye et al. (2019) have em-
phasized the relationships between two transport
modes by proposing a co-prediction of bike-sharing
and taxi pick-up and drop-off demand. Also, Liang
et al. (2022b), and Liang et al. (2022a) addressed
the issue of station-based demand prediction by
involving multi-relational graph relations between
bike and other modes.

Taking into account atypical values
Castro-Neto et al. (2009) developed a support

vector regression-based model for forecasting flow
under typical and atypical conditions, but results
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were limited and the model did not use neural net-
works or contextual information.

3. METHODOLOGY
This section presents the operation of the ST-ED-

RMGC in more detail, by focusing on our adapta-
tion of the algorithm to the context of bike-sharing
OD demand prediction. We also describe the per-
formed spatial aggregation of the bike-sharing sta-
tions.

Problem statement
Let Z be the set of areas corresponding to

a partitioning of the analyzed city and ODZ =
{(zi,z j)∀(zi,z j) ∈ Z 2|i ̸= j} be the set of all pairs
of zones. Y t

(zi,z j)
∈ R is the demand between (zi,z j)

at t time-step. It is defined as the outflow de-
mand for destination z j that left from zi at t. Let
X t
(zi,z j)

∈ RS be the associated historical sequence
which allows to predict Y t

(zi,z j)
and S is the historical

sequence length. Let Gu(V,E,Au) a graph associ-
ated to a relationship u and Au its adjacency matrix
which takes into account the spatial dependency.
The temporal dependencies are instead taken into
account thanks to historical demand and its peri-
odicity. Let Y t = [Y t

(zi1 ,z j1)
, ...,Y t

(ziN ,z jN )], where N is

the number of ODs and X t = [X t
(zi1 ,z j1)

, ...,X t
(ziN ,z jN )].

The problem can be described as follow :

Y t = F(X t , Ä) (1)

where F is the prediction function and Ä is the con-
catenation of all adjacency matrices.

3.1. ST-ED-RMGC
We have chosen to work on Ke et al. (2021) al-

gorithm as it is one of the few addressing the is-
sue of forecasting by OD. Figure 1 displays the
overall architecture of the model. The model is an
encoder-decoder based model, where the encoder
is composed by a temporal encoder which takes
into account the spatial structure of the OD graph,
and a spatial encoder with a Residual-Multi-Graph-
Convolutional network (RMGC) which takes sev-
eral adjacency matrix and the graph OD demand
as inputs. The RMGC combines a residual mod-
ule with a multi-graph convolution, to capture the

spatial correlation between OD pairs. The residual
module is introduced to tackle the issue of gradient
explosion in complex deep networks. The multi-
graph convolution allow apply graph convolution
on stacked weighted adjacency matrices.

Figure 1: framework of the ST-ED-RMGC model,
adaptated from Ke et al. (2021)

3.2. Modelling spatial dependencies between OD
pairs

Adjacency matrices allow to take into account
of the spatial dependency. Research papers usu-
ally use neighborhood relationship graph, similar-
ity graph between zones, correlation graph or other
kinds of graph built via other spatial relationship.
Defining adjacency matrices that make sense in a
OD approach is less intuitive. As for non symmetri-
cal relationship, Ke et al. (2021) define origin-based
and destination-based adjacency matrices to cope
with this issue. In this paper, we use the same type
of adjacency matrices, including: the neighborhood
relationship graph, the centroid-distance graph, the
functional similarity graphs and the mobility pat-
tern correlation graph. Only the centroid distance
graph and the similarity graph have been modified
compared to Ke et al. (2021). Thus, these are the
only ones we detail in the following.
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3.2.1. Centroid distance graphs
Centroid distance graphs have been introduced to

treat irregular areas, or areas that are close but not
necessarily adjacent. Let c(∗) be the function ex-
tracting the centroid from the polygon describing
the geometry of a generic area. Centroid distance
graphs are built following Shuman et al. (2013) via
a Gaussian kernel weighting function:

f (x,y) = exp(−
dist(x,y)

δ2 ) (2)

where ’dist’ is the euclidean distance, x and y are
positions vector, and δ is the standard deviation of
the euclidean distance matrix, which are different
between the origin-based one and the destination-
based one. Let k, l ∈ ODZ such that k = (ok,dk)
and l = (ol,dl). AO

d and AD
d are respectively the

origin-based and destination-based distance matrix:

[AO
d ]k,l = f (c(ok),c(ol)) (3)

[AD
d ]k,l = f (c(dk),c(dl)) (4)

3.2.2. Functional similarity relationship graph
Functional similarity represents the probability

that traffic patterns are similar in two given areas
ai,a j based on contextual information related to the
two areas. The context features considered here-
inafter are: population density, housing density,
amount of train stations and road density. Popula-
tion density is defined as the number of people per
unit of area, while house density is defined as the
number of housing units per unit of area. These
two features can provide an indication about the
transport demand. Road density is defined as the
ratio of the total length of roads within a defined
area to the total area, this can provide an indication
of the accessibility and connectivity of the urban
transport network. As train stations are transit ar-
eas, the amount of train stations can provide an in-
dication about transport demand and public trans-
port accessibility. We define the origin-based and
destination-based functional similarity matrices as
follows:

[AO
f ]i, j =

[√
(FO

i −FO
j )(F

O
i −FO

j )
T
]−1

(5)

[AD
f ]i, j =

[√
(FD

i −FD
j )(F

D
i −FD

j )
T
]−1

(6)

where FO
i , FO

j , FD
i and FD

j are vectors of function-
alities.

3.3. Feature vector
Let k ∈ ODZ . The input feature vector at time t

for the generic OD pair k, i.e., X t
k, includes the his-

torical demand in the form of tendency, daily peri-
odic pattern and weekly periodic pattern.

1. Tendency: the demand in the OD graph at the
last two time intervals Y (d,t−1)

k ,Y (d,t−2)
k on the

day ’d’.
2. Daily periodic feature: the demand in the OD

graph at the same time interval in the last day:
Y (d−1,t)

k .
3. Weekly periodic feature: the demand in the

OD graph at the same time interval in the last
week: Y (d−7,t)

k .
Formally:

X t
k = [Y (d−7,t)

k ,Y (d−1,t)
k ,Y (d,t−1)

k ,Y (d,t−2)
k ] (7)

X t = [X t
1, ...,X

t
N ]

T (8)

3.4. Spatial Aggregation
First, the bike-sharing stations have been aggre-

gated according to the French IRIS segmentation,
developed by the French Institute of Statistics. This
segmentation divides the conurbation of Lyon into
small geographical areas, called IRIS sectors, each
grouping approximately 2000 inhabitants1. IRIS
areas are thus used to group bike-sharing stations
according to socio-economic criteria. Then, in or-
der to reduce data sparsity, we decided to further
aggregate pairs of IRIS zones according to an iter-
ative procedure based on three criteria maintaining
the spatial homogeneity of the division: the prox-
imity between two IRIS zones, the sum of their area
and the common perimeter between two adjacent
areas. At each iteration, we are looking for the two
IRIS zones i∗ and j∗ minimizing the following ob-
jective:

(i∗, j∗) = argmin(i, j)∈Zadj

({ 1
Pi, j

(si + s j)
})

(9)

1https://www.insee.fr/fr/metadonnees/
definition/c1523
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where Zadj is the set of adjacent pairs of zones in
the current spatial aggregation, si the surface of the
zone i, and Pi, j is the common perimeter between i
and j. Zones are aggregated up to a fixed number
of zones.

Figure 2: Histogram of the flow from the 130 selected
ODs

Figure 3: Bike-sharing Flow distribution between the
130 selected ODs in 2019

3.5. Scenarios
It is known that weather conditions may have

strong impact on transport demand. In the follow-
ing, we determine scenarios and combinations of
scenarios related to weather conditions to exper-
imentally evaluate their impact on the prediction
quality of ST-ED-RMGC, used herein as a repre-
sentative of state-of-the-art GNN-based approaches
for OD traffic prediction with bike sharing data.

Each of the considered scenarios will be presented
and analyzed below. Among these scenarios, only
the dates corresponding to a period from 7am to
9pm have been retained.

3.5.1. Scenarios related to atypical weather
To build our scenarios, we use the weather data

detailed in table Table 1. We define atypical
weather values the highest (or lowest) 3% of the
value set of a weather variable. Specifically:

1. A temperature is atypically cold if it belongs to
the set of the 3% coldest temperature recorded
over the winter 2019-2020.

2. A wind is atypically strong if it belongs to the
set of the 3% strongest winds over the winter
2019-2020.

3. A rainfall is atypically strong if among all the
dates with actual rainfall, it belongs to the 3%
strongest rainfall over the winter 2019-2020.

On a milder scale, we also define as strong weather
values those in the 8% to 12% highest (or lowest)
range of the value set of the considered weather
variable (Table 1). Based on these considera-

Table 1: Weather variables

mark (unit) meaning strong values
T (C) shade temperature T < 3

w (m.s−1) hourly wind speed w > 8
r (mm.h−1) hourly rainfall r > 0

dr (mm.h−1per day) daily cumulative dr > 5
rainfall intensity per hour

dd (hper day) daily cumulative rainfall dd > 300
duration per hour

dw (m.s−1per day) daily cumulative wind dw > 100
speed per hour

tions, we then defined scenarios and combination
of scenarios for which we have evaluated their pre-
diction accuracy from the ST-ED-RMGC model on
Table 2.

4. EXPERIMENTS
4.1. Dataset

We use multi-source data such as bike-sharing
transport data provided by the operator JCDecaux2,
The French Institute of Statistics INSEE provides
public socio-economic data3, and weather data pro-
vided by Meteo France4. Two years of data (2019-
2020) have been used. Since 2020 was quickly

2https://www.jcdecaux.fr
3https://www.insee.fr/fr/statistiques
4https://meteofrance.com
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marked by the consequences of the COVID-19 pan-
demic, we are training the algorithm with bike-
sharing data from 01/01/2019 to 09/11/2019, using
the data between 09/11/2019 and 01/12/2019 for
validation purposes, and the data from 01/12/2019
to 15/03/2020 as the testing dataset (on top of
which our weather-related scenarios are defined).
We selected and hourly aggregated demand data re-
lated to the bike sharing stations of 220 IRIS zones
around the center of the city of Lyon (including
its neighbouring area of Villeurbanne), which we
further aggregated into 50 larger zones according
to the iterative spatial aggregation procedure de-
scribed in Sec. 3.4.

Volume of Bike sharing data
We noticed that more than 90% of the transits

takes place between 7am and 9pm. In order to ob-
tain ODs with an average of at least 3 exchanges
per hour between 7am and 9pm, we decide to keep
the ODs with at least 17 000 exchanges over the
year. Figure 2 and Figure 3 present the distribution
of flows of the 130 selected ODs.

Weather data
The weather data are collected hourly from 2

weather stations in the city of Lyon from January
1st, 2019 to December 31th, 2020. Weather sce-
narios from Table 2 are defined with respect to the
mean value of the considered variable(s) from both
stations.

4.2. Experimental results
Table 2 describes the set of considered weather

scenarios (1:27) along with the related perfor-
mance metrics. The testing set is split according to
multiple criteria related to the considered weather
variable(s) in order to allow for a fair comparison
in the presence or not of an atypical or strong
weather-related situation. For instance, considering
the rain situation, we split the testing set into a
subset where we observe extreme rain, i.e., atypical
rain scenario; a second subset where strong rain
(but not extreme) is observed and a final subset with
no rain at all. The idea is to comparatively analyze
accuracy metrics in such splits to determine the
impact of the weather situation with respect to the

Table 2: Accuracy prediction on test set 01/12 - 15/03.

n° Scenario MSE MAE MAPE dates
01/12 - 15/03 tested

0 test set 8.85 2.13 0.57 1485
1 Atypical r 9.71 2.37 1.49 4
2 r > 0 9.54 2.18 0.75 159
3 r = 0 8.76 2.13 0.55 1326
4 Atypical w with r=0 7.45 2.03 0.60 42
5 typical w with r = 0 8.81 2.13 0.55 1282
6 w > 8 among r = 0 8.74 2.16 0.57 159
7 w < 8 among r = 0 8.77 2.12 0.55 1167
8 T > 3 among r = 0 9,07 2,18 0,55 1161
9 T < 3 among r = 0 6.59 1.78 0.55 165

10 T < 3 6.63 1.78 0.55 166
11 Atypical T among r=0 8.52 2.02 0.60 31
12 dr = 0 8.83 2.13 0.54 930
13 dr = 0 and dw > 100 8.63 2.10 0.56 165
14 dr = 0 and dw < 100 8.87 2.13 0.54 765
15 dr > 0 8.88 2.14 0.62 555
16 dr > 0 and dw < 100 8.89 2.14 0.62 465
17 dr > 0 and dw > 100 8.85 2.15 0.62 90
18 0 > dr > 1 8.58 2.11 0.58 120
19 1 > dr > 3 9.12 2.17 0.60 255
20 3 > dr > 5 8.55 2.11 0.61 45
21 dr > 5 8.82 2.13 0.70 135
22 1 > dr > 3 and dd > 200 8.33 2.06 0.63 135
23 dd = 0 8.86 2.13 0.54 765
24 dd > 0 8.84 2.14 0.61 720
25 dd > 60 8.97 2.15 0.63 510
26 dd > 200 8.65 2.11 0.66 300
27 dd > 300 8.96 2.15 0.68 135

baseline (no weather event). The table also reports
the performance results when no atypical or strong
weather situation is considered at all, and all time
slots are therefore collapsed into one testing dataset
(scenario 0). We first assess the impact of rain on
the quality of the prediction (scenarios 1:3). We
look at the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) which are absolute errors
linked to the application. That is, they are generally
greater when the demand is higher, but this does
not necessarily indicate poor prediction quality.
The Mean Absolute Percentage Errror (MAPE) is
a relative error, so we will use it to compare the
performance of the scenarios prediction toward the
baseline.
The results from the table shows that scenarios with
rain are more difficult to predict. Those without
rain but with strong wind or atypical temperature
are also more difficult to predict.

Using scenario 3 as a baseline, we see from sce-
nario 2 that the presence of rain is inversely related
to the quality of the prediction with an MAPE 36%
higher (i.e., MAPE of 0.75 for scenario 2 versus
0.55 for scenario 3).
Atypical heavy rainfall scenarios have the worst
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prediction accuracy, with an MAPE 170% higher
than the baseline (scenario 3). In these scenarios,
rainfall intensity is measured per hour, and sce-
narios (18:21) represent a gradation of increasing
rainfall intensity over the day. Results found that
the more rain that falls during the day, the worse
the prediction quality is, with even light rain lead-
ing to a 7% increase in MAPE. As rainfall inten-
sity increases, so does the MAPE, with scenario 21
leading to a 30% higher MAPE than the baseline.
These findings suggest that the algorithm struggles
to adapt to rainfall, even if historical demand shows
an anomaly. Figure 4 highlights this phenomenon.
The duration of rain is highly correlated with its
cumulative intensity. Same conclusion can then be
drawn on scenarios (23:27). Rainfall has then a sig-
nificant impact on prediction accuracy, leading us
to examine scenarios without rain. In the absence
of rain, strong wind increases the MAPE by 4%
(compare scenarios 13 and 14). Similarly, an atyp-
ical wind leads to an MAPE increase of 9% com-
pared to the baseline. This suggests that wind has
an impact on demand and prediction quality, espe-
cially with atypically strong winds in the absence of
rain. When rain is present, scenarios (16:17) show
no link between wind intensity and prediction ac-
curacy when compared to the baseline scenario 15,
indicating that rain is the dominant weather factor.
In Figure 4 we have a window comparing the actual
demand and the predicted demand on a day when it
rains all day long. Compared to the other figures
presented, the prediction is globally bad, whatever
the rain intensity. It is possible that the behavior of
bike users was strongly influenced by the expected
rainfall intensity rather than by the actual rainfall
intensity received. The comparison between sce-
nario 22, which reflects a rainy day of low inten-
sity, and scenario 19, which reflects all days with a
low cumulative intensity, supports this hypothesis.
Compared to the reference scenario 3, predicting
bike demand in the atypical temperature scenario
11 was more challenging, with a 9% increase in
MAPE. No difference was observed in the case of
cold temperatures. It is possible that there is a tem-
perature threshold at which bike sharing demand is
significantly affected, but this could not be studied

further in the context of this paper and will be mat-
ter of future investigation.

Figure 4: Bike-sharing demand and prediction over
time on all ODs and on certain days. Duration is
the rainfall duration expressed from 0 (0 min) to 10
(60min).

5. CONCLUSIONS AND FUTURE WORK
Our study has allowed us to highlight forecasting

problems related to weather conditions when us-
ing a state-of-the-art deep learning framework with
bike-sharing demand data. The presence of rain ap-
pears as the most challenging factor of error, with
a variation of up to a 170% variation compared to
a baseline scenario. Other factors such as an atypi-
cal temperature, an atypical wind, or a strong wind
during the day appear as conditions deteriorating
the quality of the prediction. Our study also em-
phasizes the impact on forecasting accuracy of the
timing, the intensity and duration of the weather
events.

It is worth to highlight that this study is a pre-
liminary work with multiple limitations. First, each
bike station presents a limited capacity and, con-
sequently, bounded demand over time. It has been
therefore necessary to aggregate stations together in
order to have a statistically viable representation of
the demand per ODs. We have chosen to work with
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aggregate IRIS zones in order to integrate similar-
ity graphs. However, the spatial aggregation per-
formed groups small areas adjacent to the city cen-
ter. Some of these areas have a large number of
stations that are important transit points. The de-
mand is thus not evenly distributed among the ODs.
One direction of future work would be to propose
another type of aggregation that would smooth the
distribution of flows among ODs.

As another important research direction, we
think of integrating contextual information with the
help of attention mechanisms and hope for a net
improvement of the accuracy. It would also be in-
teresting to study the correlation with other modes
(e.g., public transport) as well as the interactions
between bike sharing and road traffic to integrate
them as inputs and improve the global accuracy.
Noticing that the error is high even with the pres-
ence of rain during several time-steps, we also con-
sider the possibility of integrating the previous error
as an input feature, and thus allow it to correct the
shot.
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