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ABSTRACT: Assessing impacts of threats to critical infrastructures is challenging due to the high 

complexity. Using probabilistic simulations seems adequate to capture the uncertainty but makes it at the 

same time more challenging to compare different situations. Such comparison is particularly important 

when actions for improved protection are considered. We here propose a simulation that gives a 

probability distribution over a (finite) set of states and to compare the probability distributions in such a 

way that actions with lower chance of worst-case damage are preferred. The approach is illustrated with 

data from the H2020 project PRECINCT where the impact of a flooding on a city is investigated. 

1. INTRODUCTION 

Comparison of two situations with uncertain 

consequences is the first step to understand which 

protective actions should or should not be taken in 

case of a dangerous event. Assessing the effects 

of natural hazards, such as floods, on critical 

infrastructures (CIs) is challenging since a precise 

prediction of the consequences is impossible due 

to the high complexity of CIs and their 

environment. In particular, the interdependencies 

among CIs yield many indirect consequences and 

cascading effects, of which we are often unaware. 

Numerous factors influence these consequences, 

such as the magnitude, the duration, or the time of 

the initial event (day or night), or whether other 

events are taking place simultaneously, such as an 

epidemic as we have experienced it during the last 

three years with COVID19. In the light of all this, 

a probabilistic model seems most suitable to 

describe the effects of an incident. 

Once it is possible to estimate the impact of 

an incident for a given situation, it is interesting to 

see how this impact changes for different settings. 

The situation can change due to  

 
1 https://www.precinct.info/ 

- different threats, incl. different types of 

threats, but also different magnitudes of 

floodings 

- different reactions of the system to the 

same threat, e.g., due to protective 

actions taken by the CI operator 

In this paper, we mainly focus on the second 

point. The motivation behind this is to evaluate 

different potential actions to reduce the impact of 

a specific threat and evaluate which actions 

reduce the impact the most. Therefore, we 

describe a probabilistic approach for the 

simulation of cascading effects in Section 2.1 by 

highlighting how different scenarios can be 

evaluated and compared as well as discussing the 

advantage and main challenges of this approach. 

Further, we illustrate our approach with an 

example from the research project PRECINCT1 in 

Section 2.2. Therein, we provide an overview of 

how a flooding in a metropolitan area can be 

described and how its cascading effects on the CIs 

in that area can be simulated. By analyzing the 

effects of different setups (based on the 

implementation of different countermeasures), we 

show how comparing these effects can be used to 

https://www.precinct.info/
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support decision makers in finding optimal 

strategies to prepare against such a flooding.   

2. PROBABILISTIC SIMULATION OF 

CASCADING EFFECTS  

The intrinsic uncertainty about the effects of 

natural hazards on CIs calls for a probabilistic 

model. In this paragraph, we demonstrate how a 

simulation based on such a probabilistic model 

helps compare different situations (due to 

different threats or various protective measures). 

2.1. Cascading Effects Simulation 

2.1.1. Build-up 

Probabilistic models for the impact of incidents 

such as natural hazards are frequently applied 

(Schaberreiter et al. 2013; Sun et al. 2016; Zhang 

et al. 2020). Many of these models are inspired by 

spreading models of infectious diseases (Cohen et 

al. 2001; König et al. 2016), and therefore, in 

general, only consider a binary impact (“affected” 

or “not affected”). When dealing with CIs, such a 

binary representation is not sufficient. A model 

that describes the condition of a CI in more detail 

is (König et al. 2019). It uses multiple states 

(typically 3 or 5) to represent different levels of 

functionality or availability of the individual CIs 

(or their relevant components). This state may 

change due to an incident, e.g., the respective 

infrastructure may not function as before the 

incident happened. This change is described 

probabilistically because, in general, it is 

influenced by too many factors to be described 

deterministically. A CI or one of its components 

is a highly complex ecosystem, which cannot (and 

should not) be described in every detail; the model 

is designed to rather capture the behavior of the 

CI or the component on a higher level of 

abstraction.  

Formally, this model is a directed graph, 

called the interdependency graph, describing CIs 

(or relevant components of CIs) through nodes 

and the dependencies between them through 

directed edges. In order to describe the state 

changes in a CI, each node contains a probabilistic 

Mealy automaton. This automaton receives an 

input (such as a notification of a dangerous event) 

and describes the change of state depending on the 

input. If the state changes, i.e., there is a problem 

in the node due to the input, a notification is sent 

to all neighbors. The current implementation 

provides the following output.  

(1) Statistics including the relative 

frequencies of all states for each node 

over all simulation runs 

(2) A visualization of the network for every 

time unit for each simulation run with 

nodes colored according to their state 

(3) A timeline of events for each simulation 

run.  

 

It is possible to include artificial nodes, too, 

to describe the impact of an incident, e.g., a 

“people” or “society” node that measures how 

strongly humans are affected by the incident, both 

directly and indirectly. 

2.1.2. Evaluation of different scenarios 

The existing simulation model supports risk 

management in at least two ways. On the one 

hand, it allows comparison of different scenarios, 

e.g., the consequences of different levels of 

flooding. For this, the initial event, i.e., the 

“trigger”, is different for each scenario because it 

causes a specific damage to the first node than for 

other scenarios. In this case, the network model 

remains unchanged, including the local dynamic 

described by the Mealy automaton inside the 

nodes. The results of the different simulations 

show how the impact on the entire network 

changes for different threats. 

On the other hand, it is possible to evaluate 

the effect of different proactive and protective 

measures that can be taken by CI operators. Such 

protective measures can change the reaction of 

one or more nodes, which are described in the 

model through the probabilistic Mealy automaton. 

Such protective actions focus on a few nodes since 

each operator can only influence a part of the 

network and since budget is limited. To evaluate 

the benefit of a preventive action, the simulation 

is run with the corresponding changes in the 
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model and the simulation results are compared 

with the results before the changes.  

As described in the previous subsection, the 

simulation provides as a result a set of statistics on 

how frequently each node is in each state, i.e., a 

probability distribution (𝑝1, … , 𝑝5)  over all 

possible states, e.g., from 1, … , 5, where 1 is the 

best and 5 the worst state. To compare two 

scenarios, we now compare the vectors of 

probabilities using a lexicographic order. In this 

case, the highest priority is put on the worst state 

5 in the sense that the scenario with the lowest 

probability for ending up in the worst case is 

preferred. In case the probabilities for the worst 

case are equal, the probabilities of the second 

worst case are compared and so on. This 

corresponds to the idea that the probability of the 

worst case should be minimized.  

With this lexicographic ordering of the 

probabilities of the states, it is possible to rank 

different scenarios or different actions and to 

identify choices that minimize the probability for 

the worst state of a node. The decision on which 

node is used for this analysis is up to the user since 

it depends on the value of each node for a CI. If 

the focus is on the entire network, it is possible to 

average the probabilities with weights that 

represent the importance of each node.  

A comparison of two different scenarios in 

the way described above paves the way for 

optimization. In a situation where the goal is to 

protect a network against multiple threats, game 

theory identifies optimal actions. When the 

payoffs are vector-valued (as in the situation 

considered here), a generalized framework can be 

applied to identify optimal actions (Rass et al. 

2020) .  

2.1.3. Advantages 

The main advantage of such an evaluation and 

comparison of different scenarios using 

simulation is the low cost in terms of resources. 

Once the model is set up, it can be used by the 

security or risk officers within the CI operators 

after a short training and does not require special 

knowledge or equipment on the very technical 

details of the CI. Compared to a digital twin, it is 

not necessary to touch the real system or 

understand it to it very technical detail, which is 

more expensive and might even be dangerous as 

defining or training a digital twin could interfere 

with the operation of the CI’s systems.  

2.1.4. Contrast 

The approach described above differs from 

existing methods in two main points. First, it 

compares different situations not just heuristically 

but in a formal way. The focus on the worst case 

agrees with a conservative view that is often used 

in the context of CIs. An optimal protection 

strategy identified with a game-theoretic model is 

provably optimal since deviations do not yield to 

a better result.  

Second, the approach considers intrinsic 

uncertainty but provides more information on the 

components than most other models. As already 

mentioned above, in many models, only two states 

are considered for a node (i.e., “healthy” or 

“infected”), but our approach provides a broader 

distinction and describes the functionality or 

availability in more detail. Using probability 

distributions, we decide based on the full 

knowledge available rather than aggregating, e.g., 

using an expected value. 

2.1.5. Disadvantages 

The main disadvantage of the proposed method is 

that – depending on the complexity of the network 

that needs to be described – some or a large 

amount of effort may be required to build up a 

useful model. On the one hand, the individual 

nodes, i.e., CIs and their components, need to be 

identified together with the interdependencies 

among the CIs, which might be explicitly visible 

but could also be implicit. In recent projects, it 

showed that discussions with experts from 

different domains are one of the best ways to 

obtain this information, but it can also be rather 

time consuming. However, such discussions are 

essential for a common understanding of the 

dependencies among CIs.  

Further, the parametrization of the local 

dynamics (i.e., the transition probabilities of the 

Mealy automaton) also requires some time since 
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experts need to be interviewed about the behavior 

of the individual systems (CIs or relevant 

components of them).  However, this effort may 

be reduced by grouping similar nodes (König and 

Shaaban 2022) or by using already existing 

simulation models such as digital twins of the CIs’ 

components. The parametrization of the local 

dynamics could then be learned from these 

existing models.  

For both aspects, one of the main 

disadvantages is that the quality of the simulation 

model and its outputs heavily relies on the 

information available and provided by the experts. 

Usually, CI operators are reluctant to share much 

information about their systems since this 

information is highly sensitive and could be used 

by adversaries to attack the respective CIs. 

2.2. Application 

2.2.1. Case selection 

To illustrate the idea, we give an overview of a 

use case from the H2020 EU project PRECINCT. 

A description of this use case in full detail is not 

possible due to the sensitivity of the data. Still, a 

high-level analysis already provides valuable 

insights into (potentially unknown) 

interdependencies. The threat scenario considered 

is a flooding hitting a city, and the focus lies on 

how impacted people are by the incident, both 

directly and indirectly.  

2.2.2. Scenario description 

The considered scenario of a flooding affecting a 

city is described through an interdependency 

graph. It has been developed based on discussions 

with end users of the PRECINCT project and is 

shown in Figure 1. The star in the upper left corner 

represents the threat (flood) and triggers the 

cascading effects. 

 

 
Figure 1: Interdependency graph for flooding 

scenario. 

 

It represents the threat (star node) and the 

main components of the involved CIs: 

- Transportation: tunnel, city center streets, 

peripheral roads (in/out) 

- Water: raw water network, drinking 

water network, sewer system 

- Energy: power generation, power 

network, high-voltage cabin, gas 

distribution network 

- Health and emergency services: hospital 

(with emergency power supply), 

nursing/children care, dispatching of 

emergency services, emergency station, 

emergency staff, police, fire department 

- Telecommunication 

An artificial node representing people has 

been introduced to measure how strongly and how 

fast the people living in the city are affected. 

The local dynamics of each node are 

described through the probabilistic Mealy 

automaton it contains. All nodes have the same 

number of states, but the transition probabilities 

are specific to each node (or group of nodes to 

reduce the parametrization effort) as they describe 

its characteristics. Since this reaction to threats is 

considered sensitive data of the CI, it is not 

possible to provide a full description of the 

transition probabilities here.  
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2.2.3. Simulation of a flooding 

Running 100 simulations yields statistics on the 

state of each of the nodes, as shown in Figure 2. 

 

 
Figure 2: Simulation results for each node in the 

graph. 

 

The simulation results for the people node are 

shown in Table 1. State 5 is by far the most likely 

case, so people are expected to be impacted very 

strongly. In only 4% of the simulation runs the 

impact on people has remained low. 

 
Table 1: Distribution over states of people node. 

State 1 2 3 4 5 

Probability 0.0 0.04 0.11 0.22 0.63 

 

For each simulation run, it is possible to have 

a closer look on when people become affected and 

why. Figure 3 shows an extract of the timeline of 

events. 

 

 
Figure 3: Timeline of events for simulation of 

original scenario. 

 

At timestep 2, people are impacted directly 

(e.g., it is impossible to enter or leave houses). At 

timestep 4, people are affected indirectly since the 

peripheral roads are blocked and because the 

emergency station is only partially available.  

The statistics in Figure 2 shows that the node 

‘emergency station’ end up most frequently in the 

worst state (in 67 out of 100 cases). Since this 

node also impacts people (in the example from 

Figure 5 in timestep 4), it might be beneficial to 

consider options to increase the protection of this 

node. In the first setup, blocked roads in the city 

center influenced the emergency station strongly 

(if everything works fine before the flooding, the 

most likely new state is 3, but also 2 or 4 are 

possible). If this could be reduced such that the 

most likely state is 2, e.g., through an additional 

station at another location, it would be less likely 

to go to the worst state and therefore affect people 

less frequently or less strongly. To investigate if 

this change indeed improves the situation for 

people, we rerun the simulation with modified 

transition probabilities. 
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The results with adapted transitions 

probabilities of the node ‘emergency station’ are 

shown in Table 2.  

 
Table 2: Distribution over states of people node 

for modified simulation model. 

State 1 2 3 4 5 

Probability 0.00 0.01 0.12 0.14 0.73 

 

In the 100 simulation runs under the modified 

model, the people node was still very frequently 

in the worst state 5. Comparing the two simulation 

results in a lexicographic way in Eq. (1). 

 
(0, 0.04, 0.11, 0.22, 0.63 ) ≤𝑙𝑒𝑥 (0, 0.01, 0.12, 0.14, 0.73) 

(1) 

shows that the new situation is not preferred 

to the original one. This shows that in complex 

situations, it is not always clear for the user how a 

situation can be improved and supports the 

simulation approach that we follow.  

The timeline of a simulation of the modified 

scenario in Figure 4 shows that people are still 

strongly affected by limited hospital capacity or 

limited nursing capacity, so protecting the 

‘emergency station’ node is not sufficient to 

improve the situation.  

 

 
Figure 4: Timeline of events for simulation of 

modified scenario. 

 

2.2.4. Visualization  

An overview on the state of the entire network 

after the simulation of a flooding event is shown 

in Figure 5. 

 
Figure 5: Simulation results for flooding scenario 

(current setup). 

2.2.5. Discussion 

The main insights from the considered example is 

that an action cannot always easily be judged as 
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‘good’ or at least better than another action if it 

has both direct and indirect consequences. In the 

considered situation of a network of CIs, 

uncertainty about the impact and especially 

cascading effects make it very hard to foresee the 

impact of an action. Therefore, the choice of 

protection actions should be guided by 

mathematical analysis. 

2.2.6. Comparison with earlier work 

This paper extends earlier work in at least two 

ways. First, it provides a more detailed simulation 

model to assess the impact of an incident than the 

one used in (König et al. 2018). Second, it 

illustrates the multi-categorial risk assessment 

framework proposed in (König et al. 2022) with 

data from a research project with several CI 

operators rather than using dummy data.  

3. CONCLUSIONS 

Cascading effects of incidents in interdependent 

CIs make it challenging to assess the impact for 

each CI. Due to the high complexity, the impact is 

not fully described by a single number. Instead, 

we propose to use probability distributions over 

all possible outcomes. Comparison of different 

situations, e.g., due to protective measures, is 

required to judge which action is better or to 

measure how much the current situation 

improves. Once it is possible to compare the 

consequences of two actions, it is possible 

compare any finite number of actions and thus 

identify the best action(s) among multiple options. 

If protective actions are supposed to protect a CI 

against more than one threat, game theoretic 

optimization is recommended (with an adapted 

notation of equilibrium such as (Rass et al. 2015)). 

This will be our major focus of future work, based 

on the information collected in the PRECINCT 

project.  

 

4. ACKNOWLEDGEMENT 

The PRECINCT project has received funding 

from the European Union’s HORIZON 2020 

research and innovation program under Grant 

Agreement No 101021668.  

5. REFERENCES 
Cohen, R., K. Erez, D. ben-Avraham, and S. Havlin. 

2001. “Breakdown of the Internet under 

Intentional Attack.” Physical Review Letters, 

86 (16): 3682–3685. 

König, S., A. Gouglidis, B. Green, and A. Solar. 2018. 

“Assessing the Impact of Malware Attacks in 

Utility Networks.” Game Theory for Security 

and Risk Management, S. Rass and S. 

Schauer, eds., 335–351. Cham: Springer 

International Publishing. 

König, S., S. Rass, B. Rainer, and S. Schauer. 2019. 

“Hybrid Dependencies Between Cyber and 

Physical Systems.” Intelligent Computing, 

550–565. Cham: Springer. 

König, S., S. Schauer, and S. Rass. 2016. “A 

Stochastic Framework for Prediction of 

Malware Spreading in Heterogeneous 

Networks.” Secure IT Systems: 21st Nordic 

Conference, NordSec 2016, Oulu, Finland, 

November 2-4, 2016. Proceedings, B. B. 

Brumley and J. Röning, eds., 67–81. Cham: 

Springer International Publishing. 

König, S., S. Schauer, M. Soroudi, I. Ko, P. Carroll, 

and D. McCrum. 2022. “Risk Management 

with Multi-categorical Risk Assessment.” 

Grenoble, France. 

König, S., and A. M. Shaaban. 2022. “Parametrization 

of Probabilistic Risk Models.” Proceedings of 

the 17th International Conference on 

Availability, Reliability and Security, 1–6. 

Vienna Austria: ACM. 

Rass, S., S. König, and S. Schauer. 2015. “Uncertainty 

in Games: Using Probability-Distributions as 

Payoffs.” Decision and Game Theory for 

Security: 6th International Conference, 

GameSec 2015, London, UK, November 4-5, 

2015, Proceedings, M. Khouzani, E. 

Panaousis, and G. Theodorakopoulos, eds., 

346–357. Cham: Springer International 

Publishing. 

Rass, S., König Sandra, and A. Alshawish. 2020. 

HyRiM: Multicriteria Risk Management using 

Zero-Sum Games with vector-valued payoffs 

that are probability distributions. 

Schaberreiter, T., P. Bouvry, J. Röning, and D. 

Khadraoui. 2013. “A Bayesian Network 

Based Critical Infrastructure Risk Model.” 

EVOLVE - A Bridge between Probability, Set 

Oriented Numerics, and Evolutionary 

Computation II, O. Schütze, C. A. Coello 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 8 

Coello, A.-A. Tantar, E. Tantar, P. Bouvry, P. 

Del Moral, and P. Legrand, eds., 207–218. 

Berlin, Heidelberg: Springer Berlin 

Heidelberg. 

Sun, X., J. Dai, P. Liu, A. Singhal, and J. Yen. 2016. 

“Towards probabilistic identification of zero-

day attack paths.” 2016 IEEE Conference on 

Communications and Network Security 

(CNS), 64–72. Piscataway, NJ: IEEE. 

Zhang, L., Y. Wang, Y. Chen, Y. Bai, and Q. Zhang. 

2020. “Drought Risk Assessment in Central 

Asia Using a Probabilistic Copula Function 

Approach.” Water, 12 (2): 421. 

https://doi.org/10.3390/w12020421. 

 


