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ABSTRACT: Road infrastructure systems play a critical role in economic development by facilitating
access to markets, jobs, and social services. However, they are vulnerable to various natural hazards and
threats that have led to infrastructure failures and significant economic losses in the past. As a result,
there is growing awareness of the need to build more resilient transportation systems. This paper
addresses the challenge of modeling and assessing the risk and resilience of road infrastructure systems
for optimal decision-making. This is facilitated by the generic system modeling framework for decision
analysis proposed in Faber et al. (2017), which accounts for both the generation of benefits and losses.
By using this scenario-based modeling approach, it is possible to gain a thorough understanding of the
infrastructure failures that have the most significant impact on the expected total consequences at the
road network level. In addition, the application of the modeling framework allows the comparison of
different decision alternatives, such as decisions on the level of preparedness and decisions on the
percentage of benefit to be saved as reserves. The modeling approach is illustrated for a roadway
network, with bridges being considered the most vulnerable assets. The effect of climate change on the
probabilistic life-cycle performance of the bridge network is investigated, and the probability of
resilience failure is assessed through the event where reserves are insufficient for re-establishing the
functionality of the transportation systems after a flood event.

1. INTRODUCTION

There are numerous socio-economic benefits of
resilient road infrastructure systems. When mod-

eling and assessing the resilience of these systems,
great attention has been paid to defining a measure
that adequately describes the system functionality
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(or performance or level of service) over time after
a disruptive event. Several metrics have been pro-
posed, such as connectivity, centrality, throughput,
travel time, among others (Vishnu et al., 2018). If
the network functionality is defined in terms of ac-
cessibility, it may contribute to identifying the loss
of access to critical facilities. Whereas if it is de-
fined in terms of total travel time, it may facili-
tate the quantification of monetary losses of users
due to trip delays, rerouting costs, amongst oth-
ers. The majority of studies select the most suit-
able functionality metric according to their main
goal and quantify resilience as the loss of that met-
ric after a disturbance event until the system is fully
recovered. However, the choice of the function-
ality metric influences the measured resilience it-
self ( Vishnu et al. (2018)). Then, if multiple func-
tionality metrics are defined, it becomes difficult to
compare the effects of decision alternatives in dif-
ferent functionality recovery curves and to select
the most optimal strategy. In this paper, a proba-
bilistic decision analysis framework is introduced
(Faber et al., 2017, 2020), to facilitate the modeling
of risk and resilience of roadway networks subject
to flood events. This framework allows compar-
ing different decision alternatives, including deci-
sions on the level of preparedness and decisions on
the percentage of benefit which should be accumu-
lated to address adaptation and recovery after dis-
ruptive events. The methodology is demonstrated
for a roadway network where bridges are assumed
the most vulnerable assets. Their life-cycle perfor-
mance is represented probabilistically, and the ef-
fects of climate change are incorporated into the
probabilistic hazard representation through the in-
crease in the annual rate of occurrence of flood
events. The probability of resilience failure, formu-
lated as the exhaustion of the road network’s capac-
ity to restore functionality, is calculated for differ-
ent decision alternatives to analyze their potential
to increase system resilience.

2. PROBABILISTIC RISK AND RE-
SILIENCE FRAMEWORK FOR DECI-
SION SUPPORT

When providing decision support for the man-
agement of systems, it is crucial to identify and
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Figure 1: Illustration of systems modeling framework
for decision analysis. Source: Faber et al. (2020)

establish a representation of the system which en-
ables the ranking of different decision alternatives,
consistent with the available knowledge, and coher-
ent with the objectives and preferences of decision-
makers and stakeholders (see JCSS (2008)). A
modeling framework that facilitates decision anal-
ysis of systems is proposed in Faber et al. (2017,
2020), and it is illustrated in Figure 1. This de-
cision support framework takes into account both
risks in the sense of the expected value of losses of
various metrics (e.g., loss of lives, damages to the
environment, and economic losses), as well as ben-
efits associated with decision alternatives. Thereby,
this framework can be applied to rank different de-
cision alternatives for the design and management
of systems according to their expected value of util-
ity in accordance with the Bayesian decision analy-
sis (Schlaifer and Raiffa, 1961).

The modeling framework from Figure 1 utilizes
the scenario-based system representation proposed
by the JCSS (2008). This generic system repre-
sentation subdivides scenarios of events into three
parts: i) the exposure events acting on the con-
stituents of the system (e.g., natural hazards, opera-
tional loads), ii) direct consequences that are asso-
ciated with damages or failures of the constituents,
and iii) indirect consequences that are related to
the loss of functionality of the system as a result
of one or more constituent failures. In general,
a system is comprised of an ensemble of n con-
stituents interacting jointly to provide the desired
functionality. In the case of roadway networks, the
system can be modeled at different spatial scales.
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At a network level, different infrastructure assets,
namely bridges, tunnels, pavements, among others,
interact with each other to provide their intended
service, i.e., transportation for people and goods.
At the asset level, each infrastructure is a system
that provides connectivity at one specific location
in the network. The asset system is comprised
of several interacting constituents, namely struc-
tural components (e.g., bridge components might
be deck, piers, abutments, foundation), and non-
structural components. Each component can be
considered a subsystem itself. For instance, in a
bridge system, the superstructure subsystem pro-
vides support for transferring the operating loads
from cars and trucks, while the foundation subsys-
tem provides support to the superstructure subsys-
tem and transfers the loads to the soil. The defini-
tion of the scale of the system is especially relevant
for risk-informed decision-making. Depending on
the decision alternatives at hand, the appropriate
scale of the system, which facilitates differentiat-
ing the expected value of benefit associated with the
distinct decision options, should be chosen. In the
present paper, the decision alternatives investigated
in Section 3, correspond to decisions to be made at
the network level scale.

2.1. Flood hazard under climate change
The flood hazard assessment is comprised of the

characterization of the hazard process to determine
the probability and magnitude of flood events in
time and space, and the modeling of the flood ac-
tion (load intensity measured through indices such
as water depth, flow velocity, discharge) impacting
the infrastructure system. The occurrence of flood
events is commonly modeled via a homogeneous
Poisson process, i.e., a process with independent
and stationary increments (Shane and Lynn, 1964).
According to this model, denoting with λ0 the rate
of flood events of magnitude Q > q0, the probabil-
ity that the number N of event occurrences during
time t equals n is:

Pr[N(t) = n] =
(λ0 t)n

n!
exp(−λ0 t),n = 0,1,2, ...

(1)
Nevertheless, there is evidence that the frequency

and intensity of floods are likely to increase due

to changes in precipitation patterns, sea level rise,
early snow melt, and extreme cyclonic events, as
a consequence of the warming of the climate sys-
tem due to anthropogenic emissions of greenhouse
gases (GHG) (Seneviratne et al., 2021). In this
manner, flood event occurrences may follow a non-
stationary behavior which may be better described
by a non-homogeneous Poisson process where the
occurrence rate is a function of time λ (t) (Lin and
Shullman, 2017):

λ (t) = λ0(1+ rH · t) (2)

Equation 2 assumes a linear increasing relation-
ship over time, where rH is the annual percentage of
increment of the initial stationary occurrence rate
λ0. The linear assumption is made for reasons of
simplicity in modeling and lack of information sup-
porting other assumptions.

2.2. Vulnerability of roadway infrastructures
As illustrated in Figure 1, the relationship be-

tween exposure or hazard events and the direct con-
sequences is termed vulnerability. Essentially, the
vulnerability of a system indicates the degree to
which exposures generate direct consequences. The
vulnerability of roadway networks can be defined
as the risk due to all direct consequences from all
infrastructure assets in the system (RD), and may be
assessed through the expected value of the condi-
tional risk due to direct consequences, over all pos-
sible hazard events and all asset damage states as
(Bayraktarli and Faber, 2011):

RD = ∑
i

∑
j

P(D j|Hi) P(Hi)CD,ij (3)

where P(Hi) is the probability of hazard Hi, with
i = 1,2, ...,ns possible different scenarios of hazard
events; P(D j|Hi) is the probability of damage D j
given the hazard Hi, with j = 1,2, ...,ncsta possible
set of infrastructure damage states; and CD,ij is the
expected consequences (costs) of damage D j due to
hazard Hi.

2.3. Functionality loss in roadway networks
Indirect consequences in roadway networks are

associated with the loss of functionality of the sys-
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tem caused by the effect of one or more infrastruc-
ture failures. Functionality can be measured by sev-
eral metrics which relate to the different functions
provided by the transportation system. Traffic flow
capacity, travel time, and connectivity are among
the most common metrics to describe the function-
ality of transportation systems and estimate the in-
direct monetary consequences. Essentially, in the
case of failure of infrastructure assets, there will
be a prolongation of travel since traffic flow is no
longer possible through failed links. This will re-
sult in increased costs due to longer travel times for
users, as well as additional vehicle operating costs
as a result of fuel consumption and vehicle mainte-
nance. These indirect costs due to the prolongation
of travel (CID,pt) can be estimated using Equation 4,
where Utt is the value of travel time, Uov are the ve-
hicle operating costs, tl,0 and xl,0 are the travel time
and the traffic flow at link l, respectively, when the
network is fully functional, and tl,t and xl,t are the
travel time and the traffic flow at link l, respectively,
at time t after a disturbance event, for each given
network system scenario k (Hackl et al., 2018):

CID,pt(k) = (tl,t(k) · xl,t(k)− tl,0 · xl,0) ·Utt+

(xl,t(k)− xl,0(k)) · l ·Uov
(4)

In addition, the failure of certain infrastructure
assets in the network may lead to a loss of connec-
tivity between origin and destination (OD) pairs.
This unsatisfied demand causes indirect costs due to
decreased labor productivity during a time period,
which can be estimated as (Hackl et al., 2018):

CID,lc(k) = ∑
Pod ∈P lc

od,t(k)

ODm,n(k) ·Ult (5)

where P lc
od,t(k) represents the OD-paths where no

flow is possible (i.e., loss of connectivity between
OD-pairs) for a given network system scenario k;
ODm,n is the travel demand from origin m to desti-
nation n; Ult is the monetary loss due to the missed
trips.

Based on the quantification of indirect conse-
quences, it is possible to assess the risk due to indi-
rect consequences (RID) through the expected value

of the indirect consequences in regard to all possi-
ble hazard events and all asset damage states as:

RID = ∑
k

∑
i

∑
j

P(Sk|D j ∩Hi)P(D j|Hi)P(Hi)CID,ijk

(6)
where P(Sk|D j ∩Hi) is the probability of different
network system states Sk given the damage of in-
frastructure assets D j due to hazard event Hi; and
CID,ijk is the expected consequences (costs) of indi-
rect damages due to system state Sk.

2.4. Resilience modeling and quantification
Following the decision analytical framework

proposed by Faber et al. (2017), systems resilience
models and assessments should concern not only
the loss of functionality and recovery but also the
generation of the system recovery capacity, which
is critical for successfully and rapidly reorganizing,
adapting, and recovering from disturbance events.
Essentially, socio-technical systems such as road-
way networks generate a benefit over time that fa-
vors economic growth. A percentage of that benefit
should be collected as an economic reserve to re-
spond to disturbances. Thus, the economic capacity
Rr of the road infrastructure system over time may
be described as the accumulation of the reserves
(Liu et al., 2022):

Rr(X,a,χ, t) = R0
r +

∫ t

0

χ b(X,a,τ)
(1+ rγ)τ

dτ (7)

where R0
r represents the starting capital reserve,

which may be assumed to correspond to some per-
centage of the expected value of total benefits gen-
erated during the service life of the road infrastruc-
ture system; χ represents the percentage of benefit
savings; b(X,a,τ) corresponds to the benefit gen-
eration over time; rγ is the discount rate. The quan-
tification of benefits of a roadway network should
be based on considerations of the relationship be-
tween the choice of quantity and quality of trans-
portation infrastructure and its impact on society’s
economic growth. In Nishijima and Faber (2009),
this relationship was established using macroeco-
nomic production functions to determine the opti-
mal investments in infrastructures exposed to nat-
ural hazards that would ensure sustainable societal
development.
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Figure 2: Resilience model in terms of benefit genera-
tion and economic capacity

Figure 2 illustrates a realization of benefit gener-
ation and the accumulated economic capacity. For
simplicity, the evolution of benefit generation is as-
sumed to be constant over time when the transporta-
tion network is fully functional. When the occur-
rence of a disturbance event at time τ results in
damage or failure of infrastructure constituents in
the network, both the benefit generation and the
economic capacity of the transportation system will
be reduced. The economic demand Sr caused by a
disturbance event at time t may be expressed as (Liu
et al. (2022)):

Sr(X,a, t) = ∑
τ∈{tF∩(0,t)}

CT(X,a,τ)
(1+ rγ)τ

(8)

where CT(X,a,τ) represents the total costs accrued
during the recovery phase after the failure event;
tF corresponds to the time domain when distur-
bance events happened within the service life of
the infrastructure system (0,t). If, at some point in
time, the economic capacity is insufficient for re-
establishing the functionality of the transportation
system, i.e., reserves are exhausted, this can be de-
fined as a resilience failure event (dashed line from
Figure 2). Thus, the probability of resilience failure
PRF may be defined and assessed probabilistically
as (Faber et al., 2017):

PRF(a,χ, t) = 1−P[ {Rr(X,a,χ, t)−Sr(X,a, t)}
> 0,∀ τ ∈ [0, t] ]

(9)
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Figure 3: Application example of a roadway network

3. PRINCIPAL EXAMPLE

In the following, an example of a roadway net-
work exposed to flooding events is presented to il-
lustrate the framework outlined in Section 2. The
considered network is shown in Figure 3, which is a
benchmark example adapted from the roadway net-
work in Sioux Falls, South Dakota, that has been
widely used to test traffic assignment models (see
Stabler et al. (2022) for network input data). The
roadway network consists of 24 nodes, 76 links,
and it is assumed that the critical infrastructures
to be considered are twelve reinforced concrete
bridges (NB = 12) located at the river intersections
as depicted in Figure 3. It is further assumed that
the demands in the traffic model correspond to daily
origin-destination (OD) trips.

The probabilistic performance of the roadway
network is assessed for a life cycle equal to 50
years. The realization of flood events over time
is assumed to follow a non-homogeneous Poisson
process with an initial annual occurrence rate λ0 =
0.01. The load intensity of the flood event acting on
each bridge from the roadway network is modeled
by a random vector log-normally distributed with
the expected value E[IH ] = 1 and COV [IH ] = 0.4.
The realizations of IH are assumed independent
from time to time, but the load intensities acting
on each bridge at a given time are assumed corre-
lated with correlation coefficient ρH = 0.8, since all
bridges given their geographical proximity are con-
sidered to be located within the same small catch-
ment. To investigate the impacts of different possi-
ble scenarios of climate change, the annual rate of
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increase rH is varied from 1%-5 %. For the most
extreme case, i.e., annual increase rate of 5%, the
value of λ (t = 50) would correspond to 0.035. To
compute the risks associated with this flood haz-
ard event, only the complete failure of bridges is
considered, i.e., only one damage state. The time-
dependent limit state equation which describes the
failure of bridges with respect to the flood load in-
tensity is given by:

gBi(X, t) = z ·RBi ·d(t)− iHBi (10)

where RBi is the resistance of each bridge i =
1, ..,12 with respect to the flood event intensity,
modeled by a normal random variable with ex-
pected value E[RBi] = 1 and COV [RBi] = 0.2; z is
the safety design parameter which is set to 4 for all
bridges to achieve an annual probability of bridge
failures in the order of 10−4; d(t) is a resistance
degradation function; and iHBi is the flood load in-
tensity at bridge i. The structural capacity of the
portfolio of bridges exhibits some correlation influ-
enced by various factors, including structural typol-
ogy, construction period, design standards (Bayrak-
tarli and Faber, 2011; Yang and Frangopol, 2020).
Thus, it is assumed that the correlation coefficient
between the structural capacities of bridges is ρR
= 0.3. Finally, a simplified resistance degradation
function for reinforced concrete bridges subjected
to corrosion is adopted in the following from (En-
right and Frangopol, 1998):

d(t) = 1− k1 t + k2 t2

Low det : k1 = 0.0005, k2 = 0, Ti = 10yr
High det : k1 = 0.01, k2 = 0.00005, Ti = 2.5yr

(11)

where k1 and k2 are coefficients defining the dete-
rioration rate. The values for these coefficients and
the time of corrosion initiation Ti are given for two
scenarios, namely low and high deterioration con-
ditions.

3.1. Risk-informed decision-making
Monte Carlo (MC) simulations are used for the

probabilistic representation of the different bridge
failure scenarios. Given that only survival or com-
plete failure of bridges is considered, the expected

direct costs for each scenario may be computed as:

CD(k) = ∑Ur ·NBF(k) (12)

where NBF(k) corresponds to the number of bridge
failures in the network system scenario k; and Ur is
the unit cost for reconstruction of a bridge, which
is obtained by assuming that building a new bridge
network corresponds to the benefit generated over
a period of 15 years. In the case of a bridge fail-
ure, it is assumed that traffic flow is not possible
through the link. Thus, a traffic assignment model
is used to simulate the traffic flow conditions under
the failure scenarios by removing the corresponding
link(s). The transportation network model was cre-
ated using AequilibraE (Camargo, 2014), an open-
source Python package for transportation modeling.
The static traffic assignment method is used to esti-
mate the travel time and traffic flow at each link, as
well as the OD-paths where no flow is possible, for
each damage scenario. It should be noted that the
traffic assignment is run only once for the same fail-
ure scenario (same bridge failures) since they are
stored to avoid higher computational costs in the
MC simulation. Based on the results from the traf-
fic assignment, Eq. 4 and Eq. 5 are used to estimate
the indirect losses by assuming the unit costs as Utt
= 10 MU/hour, Uov = 10 MU/km, Ult = 20 MU/trip,
and a month factor of 20 to account for the num-
ber of days per month to compute the total losses
during the recovery period. The benefit realization
path from Figure 2 illustrates the shape of the re-
covery curve adopted. The duration ∆T1 denotes the
time required to evaluate the damages and plan pro-
visional measures, which are executed and become
fully operational after a time ∆T2, resulting in a gain
in functionality. Finally, permanent measures to re-
establish functionality are fully implemented after
a period of ∆T3. These recovery times are assumed
to be proportional to the number of failed bridges
in the scenario and are modeled by log-normal dis-
tributed random variables. In order to investigate
how decisions on the level of preparedness may af-
fect the risk and resilience of the roadway network,
two levels of preparedness are considered, namely
low and high. The expected values E[·] (in months)
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and coefficients of variation COV[·] for the random
variables are given in Table 1.

Table 1: Probabilistic model for functionality recovery

Preparedness
level Variable Distribution E[·] COV[·]

Low
∆T1 Log-normal NBF 0.2
∆T2 Log-normal 5NBF 0.2
∆T3 Log-normal 20NBF 0.2

High
∆T1 Log-normal 0.5NBF 0.1
∆T2 Log-normal NBF 0.1
∆T3 Log-normal 10NBF 0.1

Figure 4 shows a histogram of the total risk,
i.e., the expected value of total consequences, for a
roadway network with high preparedness to recov-
ery, exposed to low deterioration, and for an annual
increase of the occurrence rate of flood events of
1%. In order to identify which failure events are
contributing the most to the losses, a histogram of
the frequency of each bridge failure for all scenarios
and scenarios from the 90thpercentile of expected
total losses is constructed (see Figure 5). It can be
observed that the frequency of bridge failures for
all scenarios is uniform (displayed with blue bars),
which is consistent with the fact that the resistance
of all bridges was assumed equal. However, when
only the scenarios leading to greater total losses are
analyzed, failure of bridges B10 and B12 are the
most frequent (displayed with orange bars). These
results indicate that their corresponding links are
the most critical in the roadway network in terms
of functionality loss and associated indirect conse-
quences. In addition, the co-occurrence of bridge
failures may also lead to critical scenarios with
large total expected losses. Table 2 presents the
most significant ten failure scenarios (in terms of
total losses) from the 90thpercentile of risks. Be-
sides the individual failure of bridges B10 and B12,
it can be seen that their co-occurrence of failure
with bridges B4, B6, B7, B8, and B9, is an event
with a very low probability of occurrence but with
very high consequences, which contributes sub-
stantially to total expected losses.

3.2. Resilience quantification and decision alter-
natives

Conditioning on the flood hazard event previ-
ously described, the resilience failure probability of

Figure 4: Histogram of total risk for low det. and high
prep. for 1% annual increase of flood occurrence rate

Figure 5: Frequency of bridge failures for all scenarios
and scenarios from the 90th percentile of risks

the roadway network can be defined as the event
where the available reserves to recover within a
specified time frame are exceeded, as expressed by
Eq. 9. To estimate the economic capacity (Eq. 7),
the benefit generated from the roadway network is
assumed to be 108 MU/year. In the case where
the roadway network is disrupted by failure events,
the annual loss of benefit ∆b1 is assumed propor-
tional to the number of failed bridges, i.e., ∆b1 =
NBF/NB (Figure 2). After time ∆T2 where pro-
visional measures are operational, there is a gain
in the benefit generation ∆b2, which depends on
the level of preparedness. For low preparedness,
it is assumed that the benefit gain is 50%, while
for high preparedness level is assumed equivalent
to 80%. All benefits and expenditures for recov-
ery occurring in the future are discounted assum-
ing a discount rate of 2% which is assumed inter-
generationally acceptable for sustainable decision-
making (Rackwitz et al., 2005). Five decision alter-
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Table 2: Failure scenarios contributing to larger risks

Failed bridges Expected
losses [MU]

Prob.
Event

B4, B6, B7, B8, B9, B10, B12 211778.13 2.00E-06
B10 106396.25 4.22E-04
B12 87861.57 3.68E-04
B9 85083.95 3.50E-04
B7 84744.40 4.44E-04
B8 81758.93 3.72E-04
B3 73902.48 4.20E-04
B6 64636.99 3.80E-04
B5 64055.98 3.86E-04

B11 62446.48 3.82E-04

natives are considered to investigate how the per-
centage of annual benefit χ , which is saved for fi-
nancing the repair and replacement of bridges, may
affect the resilience of the roadway network (i.e.,
χ = 0.02,0.04,0.06,0.08,0.1). Correspondingly,
the starting capital reserve is computed as the per-
centage χ of the expected value of total benefits
generated during the service life of the roadway
network. Figure 6 presents the probability of re-
silience failure as a function of the annual increase
in the occurrence rate of the flood event, for dif-
ferent decision alternatives and deterioration lev-
els. Unsurprisingly, PRF increases with higher an-
nual occurrence rates, with a more pronounced ef-
fect for the cases of high deterioration. Likewise,
the effect of the level of preparedness is highly rel-
evant for reducing PRF, especially for conditions of
high deterioration. It can also be observed that PRF
significantly decreases when the percentage of an-
nual benefit χ is increased from 2% (continuous
lines) to 10% (dashed lines). Figure 7 examines
more closely the variation of PRF as a function of
the percentage of χ , where it is evidenced how re-
silience significantly depends on the maintenance
of reserves. Yet, it can be seen that the most sub-
stantial reduction in the PRF occurs from 2% to 4%
of χ , and it becomes more stable after 6%. Thus,
identifying this optimal value of χ is extremely im-
portant for resilience management and should ac-
count for all the trade-offs and constraints.

4. CONCLUSIONS
This paper presents a probabilistic framework

for risk and resilience modeling of roadway net-
works subject to flood events, which aims at facili-
tating the ranking of different decision alternatives

Figure 6: Probability of resilience failure under differ-
ent deterioration and climate change scenarios

Figure 7: Probability of resilience failure for different
percentages of benefit savings

with respect to their management. The scenario-
based modeling approach enables a comprehensive
understanding of which infrastructure failures are
contributing the most to the expected total conse-
quences, which is of high relevance in complex
systems such as roadway networks. Moreover,
the modeling of resilience implemented in this pa-
per allows the consideration of all potential hazard
events throughout the infrastructures’ service life
(rather than limiting the analysis to a single event),
as well as explicitly accounting for the generation
of capacity to recover from hazard events. An ap-
plication example of a simple roadway network is
presented, where bridges are considered the criti-
cal infrastructures subject to flooding events. The
example demonstrates how critical bridges may be
identified according to their contribution to the total
risk. Based on the results, bridges may be ranked
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in the network, and decisions on their safety level
can be made. In addition, the example investigates
the impact of different decisions on the probabil-
ity of resilience failure, namely decisions on the
level of preparedness and decisions on the percent-
age of benefit savings χ . Decisions on improving
the safety of infrastructures can also be introduced,
including options for maintenance strategies aiming
at mitigating the effect of deterioration which was
deemed of relevance in the example presented. Fi-
nally, future work should focus on the optimization
problem where costs for improving design reliabil-
ity and preparedness should be in balance with the
expected value of loss reduction and resilience im-
provement.
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