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ABSTRACT:  

The paper presents how energy harvesting devices can be deployed to assess and estimate damages that 

are hidden to difficult to reach in terms of being able to provide instrumentation. To demonstrate this, 

the paper uses piezoelectric harvesters and analyses its open circuit dynamic response from different 

location of a damaged beam. This provides deflection and mode shape information. These responses are 

subsequently analysed via wavelets to identify damage location and extent. Subsequently, using prior 

modal and dynamic parameter information and knowledge, the paper uses a Bayesian statistical 

Identification Framework to determine the probabilities of crack location and extent within an obscured 

part of the structure or where the spatial modal shape or spatial wavelet is unavailable.  The use of 

Recursive Bayesian Estimation can implement this framework as well. The paper demonstrates how 

novel sensors and materials can, with appropriate probabilistic techniques, provide better inspection and 

damage detection of our built infrastructure.. 

1. INTRODUCTION 

 

Recent developments in energy harvesting 

technologies indicate that they have a potential to 

be a sensor for structural health monitoring 

(Cahill et al. 2016; Cahill et al. 2014). While such 

sensors have the potential to self-power there is 

still inadequate evidence of their potential 

applications and impact. In this regard, damage 

detection  (Lee and Liew 2001; Lardies and 

Gouttebroze 2002) is important.  

Damage detection using energy harvesting is 

dependent on the translation of kinematic 

responses due to damage to harvested energy, 

measured as voltage responses. Here, localization 

of damage is of particular interest. While closely 

spaced harvesters can give rise to damage 

localization, this is often not possible. An 

important challenge lies where damage is hidden 

or inaccessible. Modeshapes, strains or 

displacements may be unavailable, partially 

available or hidden from view. Here, there exists 

possibilities to estimate damage location and 

extent using recursive Bayesian estimates (Lam et 

al. 2005). This paper considers damage as an open 

crack in an Euler Bernoulli beam and 

demonstrates how vibration energy harvesters 

(VEH) can be adapted for such estimates to detect 

damage in hidden and inaccessible regions, where 

a sensor cannot be placed and visual inspection 

may not be possible. 

2. PIEZOELECTRIC VEH 

 

Piezo-VEH at the location of deployment 

coverts dynamic strain to energy via 

electromechanical coupling using (e.g. 

piezoceramics: lead zirconate titanate (PZT), 

polyvinylidene fluoride (PVDF)). For linear 

VEH, the energy conversion, this is (Erturk and 

Inman 2011) expressed as 
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�̇� = 𝑇𝑖𝑗�̇�𝑖𝑗 + 𝐸𝑖�̇�𝑖                                     (1) 

where 𝑈  is the stored energy in piezoelectric 

continuum, 𝑇 is the stress tensor, 𝑆 is the strain 

tensor, 𝐸 is the electric field tensor and 𝐷 is the 

electric displacement tensor and overdot is time 

derivative. Equation 1 can be rearranged to obtain  

strain and electric displacement values as 

𝑆𝑝 = 𝑠𝑝𝑞
𝐸 𝑇𝑞 + 𝑑𝑘𝑝𝐸𝑘                                 (2) 

𝐷𝑖 = 𝑑𝑖𝑞𝑇𝑞 + 휀𝑖𝑘
𝑇 𝐸𝑘                                       (3) 

where 𝑠𝑝𝑞
𝐸  is the elastic compliance matrix 

under a constant electric field 𝐸 , 𝑑𝑘𝑝  is the 

piezoelectric constant matrix, 𝐷𝑖  is the electric 

displacement vector and 휀𝑖𝑘
𝑇  is the permittivity 

under a constant stress 𝑇. The voltage response 

due to strain caused during vibrations can be 

obtained from equation 3 as 𝐷3 = �̅�31𝑆1
�̃� + 휀3̅3

𝑆 𝐸3. 

The voltage response is  
𝑑

𝑑𝑡
(∫ 𝑫. 𝒏 𝑑𝐴
𝐴

) =
𝑣(𝑡)

𝑅𝑙
                                (4) 

resulting in time dependent voltage response as a 

function of mechanical strain as 

𝐶�̃� 
𝑒𝑞 𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝑅𝑙
+ 휃 ∫

𝜕3𝑦𝑟𝑒𝑙(𝑥,𝑡)

𝜕𝑥2𝜕𝑡 
𝑑𝑥

𝐿

0
= 0          (5) 

where 𝐶�̃� 
𝑒𝑞

 is the capacitance, 𝑦𝑟𝑒𝑙(𝑥, 𝑡)  is the 

deflection with respect to the static deflected 

shape, 𝑅𝑙  is the external resistive load of an 

external circuit and 휃  is the electromechanical 

coupling coefficient. Strain is proportional to the 

curvature of Euler-Bernoulli beam, expressed as 

𝑆𝑙(𝑥, 𝑧, 𝑡) = −𝑧 
𝜕3𝑦𝑟𝑒𝑙(𝑥,𝑡)

𝜕𝑥2 
                                (6) 

where 𝑧 is the distance from the neutral axis. 

Simplified this way, the voltage equation becomes 
𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝜏
=

�̅�31𝐴

𝐶
�̃�
𝑒𝑞   

𝑑

𝑑𝑡
[𝑆1 + 𝑆2]                 (7) 

The subscripts (1 and 2) on 𝑆  indicate 𝑥  and 𝑦 

directions respectively and 𝜏 = 𝐶𝑝𝑅𝑙  where 

capacitance 𝐶�̃� =
̅33
𝑆 𝑏𝐿

𝑧
. 

Patch-type piezoceramic VEH can be 

connected to a structure through adhesion and 

flexible PVDF is popular since it can respond 

easier to the dynamic strain of the host structure.  

Cantilever type VEH with host structure 

vibrations as its base excitation and ability to tune 

to the natural frequency of the host to maximise 

output, are a common variant where both PZT and 

PVDF are popular. PZT typically is less flexible 

but comes with a advantage of slightly higher 

electromechanical coupling coefficient. 

Typically, metal cantilevers with outer layers 

covered with thin piezoceramic layer are used. 

The terms ‘unimorph’ and ‘bimorph’ refer to 

when one or both sides are covered with 

piezoceramic layers, respectively. Often, VEH are 

bimorphs. The electromechanical behaviour of 

PZT VEH is (Erturk and Inman 2011)  

𝐸𝐼
𝜕4�̅�(𝑥,𝑡)

𝜕𝑥4
+ 𝑐𝑠𝐼

𝜕5�̅�(𝑥,𝑡)

𝜕𝑥4𝜕𝑡
+  𝑐

𝜕�̅�(𝑥,𝑡)

𝜕𝑡
+

𝑚
𝜕2�̅�(𝑥,𝑡)

𝜕𝑡2
 − 휃𝑣(𝑡) [

𝑑𝛿(𝑥)

𝑑𝑥
−
𝑑𝛿(𝑥−𝐿)

𝑑𝑥
]                (8) 

and 

𝐶�̅�
𝑒𝑞 𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝑅𝑙
+ 휃 ∫

𝜕3�̅�(𝑥,𝑡)

𝜕𝑥2𝜕𝑡
𝑑𝑥 = 0  

𝐿

0
    (9) 

The displacement �̅�(𝑥, 𝑡) is the deflection relative 

to the harvester’s base, damping from air is 

represented by 𝑐 and due to the material elasticity 

is (𝑐𝑠𝐼). 𝑀𝑡 is the tip mass at the free end and 𝛿 is 

the Dirac delta function. Following standard 

modal analysis, 

�̅�(𝑥, 𝑡) =  ∑ 𝜙𝑟(𝑥)휂𝑟(𝑡)
∞
𝑟=1                     (10) 

where 𝜙𝑟(𝑥)  is the mass-normalised 𝑟𝑡ℎ 

modeshape and 휂𝑟(𝑡) are 𝑟𝑡ℎ modal coordinates. 

The electromechanically coupled equations are 
𝑑2𝜂𝑟(𝑡)

𝑑𝑡2
+ 2휁𝑟𝜔𝑟

𝑑𝜂𝑟(𝑡)

𝑑𝑡
+ 𝜔𝑟

2 휂𝑟(𝑡) −

휃̃𝑟𝑣(𝑡) = 𝑓𝑟(𝑡)                                                (11) 

𝐶�̅�
𝑒𝑞 𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝑅𝑙
+ ∑ 휃̃𝑟

𝑑𝜂𝑟(𝑡)

𝑑𝑡
∞
𝑟=1 = 0        (12) 

휃�̃� =
�̅�31𝑤ℎ

2ℎ�̅�
 [(ℎ�̅� +

ℎ�̅�

2
)
2

−
ℎ�̅�
2

4
]                    (13) 

휃̃𝑝 = 2휃̃𝑠                                                  (14)             

where 휃̃  is electromechanical coupling. 

Subscripts s and p denote series and parallel 

connections, respectively.  For linear VEH, 

vibrations from first mode is dominant enough to 

ignore higher mode contributions. Parameters ℎ�̅�, 

ℎ�̅�  and 𝑤ℎ  are the depth of the piezoceramic, 

substrate of the VEH and its width, respectively. 

3. OPEN CRACK MODEL 

A transverse open crack is considered 

causing local stiffness change. This is modelled as 

an equivalent rotational spring with stiffness  
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𝐾𝑇 =
𝑀

𝜃𝑐
  at crack location, where 𝑀  and 휃𝑐  are 

the bending moment and slope, with 휃𝑐 =

∫
2

𝐸
𝐾
𝜕𝐾

𝜕𝑀
𝑑𝐴

𝑎𝑡

0
, respectively. The stress intensity 

factor (K) depends largely on the shape factor 𝐹 

which is a function of the crack-depth ratio 

(CDR), defined as the ratio between the depth of 

the crack (𝑎) to that of the beam (ℎ). Shape factors 

are empirically determined and for this paper 

(𝑎/ℎ) = 1.22 − 1.40 (
𝑎

ℎ
) +

7.33 (
𝑎

ℎ
)
2

13.08 (
𝑎

ℎ
)
3

+ 14.0                        (15) 

휃𝑐 = (72𝜋𝑀/𝐸𝑡ℎ2)𝐹1(𝑎/ℎ)                                  (16) 

𝐹1 (
𝑎

ℎ
) = 19.60 (

𝑎

ℎ
)
10

− 40.69 (
𝑎

ℎ
)
9

+

47.04 (
𝑎

ℎ
)
8

− 32.99 (
𝑎

ℎ
)
7

+ 20.29 (
𝑎

ℎ
)
6

−

9.975 (
𝑎

ℎ
)
5

+ 4.602 (
𝑎

ℎ
)
4

− 1.047 (
𝑎

ℎ
)
3

         (17) 

 

4. EULER BERNOULLI BEAM WITH AN 

OPEN CRACK MONITORED BY VEH 

A simply-supported Euler-Bernoulli beam 

with rectangular cross section under forced 

vibrations is described by 

𝐸𝐼
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
+ 𝑐

𝜕𝑦(𝑥,𝑡)

𝜕𝑡
 +  𝑚

𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2
= 𝑓(𝑡) (18) 

where 𝐸𝐼 is the bending stiffness, m is mass per 

unit length, c is structural damping.   

Figure 1: Euler Bernoulli beam with an open crack.  

Method of separation of variables gives 

𝑦(𝑥, 𝑡) = ∑ 𝜙𝑟(𝑥)휂𝑟(𝑡)
∞
𝑟=1                      (19) 

and substitution in Equation 18 results in 
𝑑4𝜙(𝑥)

𝑑𝑥4
− 𝛽4𝜙(𝑥) = 0                                    (20) 

𝑑2𝜂(𝑡)

𝑑𝑡2
+ 2휁𝜔𝑛

𝑑𝜂(𝑡)

𝑑𝑡
+ 𝜔𝑛

2                             (21) 

where 𝛽4 = 𝜔𝑛
2 𝑚

𝐸𝐼
 and 𝜔𝑛  is the natural 

frequency. Modeshapes (𝜙(𝑥)) are expressed as 

𝜙(𝑥) = 𝐴 sin 𝛽𝑥 + 𝐵 𝑐𝑜𝑠𝛽𝑥 + 𝐶 𝑠𝑖𝑛ℎ𝛽𝑥 +
𝐷 𝑐𝑜𝑠ℎ𝛽𝑥                                                        (22) 

Coefficients 𝐴, 𝐵, 𝐶 and 𝐷  are determined from 

the boundary conditions of the beam supports and 

continuity conditions at crack location. To model 

the crack, two Euler-Bernoulli beams connected 

by a torsional spring is considered (Figure 1), on 

left (L) and right (R) with modeshapes 

𝜙𝐿(𝑥) = 𝐴2 sin 𝛽𝑥 + 𝐵2 𝑐𝑜𝑠𝛽𝑥 + 𝐶2 𝑠𝑖𝑛ℎ𝛽𝑥                                                                           

                                                                        (23) 

𝜙𝑅(𝑥) = 𝐴2 sin 𝛽𝑥 + 𝐵2 𝑐𝑜𝑠𝛽𝑥 + 𝐶2 𝑠𝑖𝑛ℎ𝛽𝑥  

                                                                        (24) 

Boundary conditions at beam ends include 

displacement (𝜙𝐿(0) = 𝜙𝑅(𝐿)=0) and moment 

(
𝑑2𝜙𝐿(𝑥)

𝑑𝑥2
|
𝑥=0

=
𝜕2𝜙𝑅(𝑥)

𝜕𝑥2
|
𝑥=𝐿

= 0 ). Displacement 

continuity 𝜙𝐿(𝑎) = 𝜙𝑅(𝑎), moment continuity  
𝜙𝐿
′′(𝑎) = 𝜙𝑅

′′(𝑎) ,shear continuity   
𝜙𝐿
′′′(𝑎) = 𝜙𝑅

′′′(𝑎)  and slope compatibility 
⊿𝜙𝑅

′′(𝑎) = 𝜙𝑅
′ (𝑎) − 𝜙𝐿

′ (𝑎)  at crack location 
lead to the solution of natural frequencies and 
modeshapes. Here, ⊿  is the non-dimensional 

crack flexibility parameter and a function of CDR. 

The boundary and compatibility conditions yield 

coefficients 𝐴 = {𝐴1𝐵1 𝐶1 𝐷1 𝐴2 𝐵2 𝐶2 𝐷2}
𝑻  and 

matrix𝑀 as 𝑀𝐴 = 0 where 

[
 
 
 
 
 
 
 
 

𝜙𝐿(0)

 𝜙𝐿
′′(0)

 𝜙𝑅(𝐿)

 𝜙𝑅
′′(𝐿)

 𝜙𝐿(𝑎) − 𝜙𝑅(𝑎)

 𝜙𝐿
′′(𝑎) − 𝜙𝑅

′′(𝑎)

 𝜙𝐿
′′′(𝑎) − 𝜙𝑅

′′′(𝑎)

 𝜙𝑅
′ (𝑎) − ⊿𝜙𝑅

′′(𝑎) − 𝜙𝐿
′ (𝑎)]

 
 
 
 
 
 
 
 

  

{
 
 
 

 
 
 
𝐴1
𝐵1
𝐶1
𝐷1
𝐴2
𝐵2
𝐶2
𝐷2}
 
 
 

 
 
 

= 0   

                                                                 (25) 

and 𝑀 is 

[
 
 
 
 
 
 
 

0 1 0 1 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 𝑠𝑖𝑛𝛽𝐿 0 𝑠𝑖𝑛ℎ𝛽𝐿 0
0 0 0 0 −𝑠𝑖𝑛𝛽𝐿 0 𝑠𝑖𝑛ℎ𝛽𝐿 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛ℎ𝛾 𝑐𝑜𝑠ℎ𝛾 −𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛ℎ𝛾 −𝑐𝑜𝑠ℎ𝛾
−𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 𝑠𝑖𝑛ℎ𝛾 𝑐𝑜𝑠ℎ𝛾 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛ℎ𝛾 −𝑐𝑜𝑠ℎ𝛾
−𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠ℎ𝛾 𝑠𝑖𝑛ℎ𝛾 𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠ℎ𝛾 −𝑠𝑖𝑛ℎ𝛾
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠ℎ𝛾 −𝑠𝑖𝑛ℎ𝛾 𝑐𝑜𝑠 + 휃𝛽𝑠𝑖𝑛𝛾 −𝑠𝑖𝑛𝛾 + 휃𝛽𝑐𝑜𝑠𝛾 𝑐𝑜𝑠ℎ𝛾 − 휃𝛽𝑠𝑖𝑛ℎ𝛾 𝑠𝑖𝑛ℎ𝛾 − 휃𝛽𝑐𝑜𝑠ℎ𝛾]

 
 
 
 
 
 
 

    

                                                                        (26) 

Setting the determinant of this matrix to zero 

gives the characteristic equation (Sundermeyer, 

1995) 
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[sin(𝛽𝑋𝑐) + 𝛼 sinh(𝛽𝑋𝑐)] =
2𝐾𝑡

𝐸𝐼
 [

sin(𝛽𝑋𝑐)

tan[𝛽(𝐿−𝑋𝑐)]
+ cos(𝛽𝑋𝑐)]                        (27) 

where the constant 𝛼 is  

𝛼 =
((

sin(𝛽𝑋𝑐)

tan[𝛽(𝐿−𝑋𝑐)]
)+cos(𝛽𝑋𝑐))

((
sinh(𝛽𝑋𝑐)

tanh(𝛽[𝐿−𝑋𝑐])
)+cosh(𝛽𝑋𝑐))

                                 (28) 

and ⊿ =
2𝐾𝑡

𝐸𝐼
. 

 

 

Figure 2: Gaussian white noise excitation on an 

Euler Bernoulli beam with an open crack fitted with 

VEH .  

 

The modal coordinates are given by 
𝑑2𝜂(𝑡)

𝑑𝑡2
+ 2휁𝜔𝑛

𝑑𝜂(𝑡)

𝑑𝑡
+ 𝜔𝑛

2휂(𝑡) = 𝑓(𝑡)     (29) 

and can be readily solved in state space form.  

Beam excitation is considered  by random 

ambient vibrations simulated as Gaussian white 

noise with zero mean (Figure 2). 

To model energy harvesting based detection 

of damage, several VEH are considered to be 

discretely placed along the beam (Figure 3).  

 

Figure 3: Patch VEH along placed the length of an 

Euler Bernoulli beam. 

 

Comparing measured and estimated voltage 

from undamaged beam may provide damage 

information, as is often obtained using 

accelerometers (Ulriksen et al. 2016). 

For a PVDF patch harvester placed 𝑥𝑛 , the 

voltage response is  
𝑑𝑣(𝑡)

𝑑𝑡
+
𝑣(𝑡)

𝜏
=

�̅�31𝐴

𝐶
�̃�
𝑒𝑞   

𝑑𝑆

𝑑𝑡
|
(𝑥𝑛,𝑡0)

                           (30) 

Cantilever type measurements can also be 

carried out this way (Figure 4). 

Figure 4: Cantilever VEH placed along the length of 

an Euler Bernoulli beam. 

For these harvesters, the model can be 

expressed as 
{�̇�} = [𝐴]{𝑥} + {𝐵}                                 (31) 

where {�̇�} and {𝑥} are  

{𝑥} = {

𝑥1
𝑥2
 𝑥3
} = {

휂̅(𝑡)
𝑑�̅�(𝑡)

𝑑𝑡

𝑣(𝑡)

}                                    (32) 

{�̇�} = {
𝑥1̇
�̇�2
�̇�3

} =  

{
 
 

 
 

𝑑�̅�

𝑑𝑡
 

𝑑2𝜂(𝑡)

𝑑𝑡2
 

𝑑𝑣(𝑡)

𝑑𝑡 }
 
 

 
 

                          (33) 

leading to 

{

�̇�1
�̇�2
�̇�3

} = [

𝑥2
�̅� + 휃̃𝑥3 − 𝜔

2𝑥1 − 2휁𝜔𝑥2
−𝑥3

𝐶
�̃�
𝑒𝑞
𝑅𝑙
−
�̃�𝑥2

𝐶
�̃�
𝑒𝑞

]                  (34) 

Following Erturk and Inman (2011) 

�̅�(𝑥, 𝑡)|𝑡=0 = 𝜅(𝑥)                                  (35) 
𝜕�̅�(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

= 𝜇(𝑥)                                   (36) 

Considering orthogonality of modes, 

including tip-mass (𝑀𝑡) attached to the end of the 

harvester, 
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휂(𝑡)|𝑡=0 = ∫ 𝜅(𝑥)𝑚𝜙(𝑥)𝑑𝑥 +
𝐿

0

𝜅(𝐿)𝑀𝑡𝜙(𝐿) + ├ [
𝑑𝜅(𝑥)

𝑑𝑥
𝐼𝑡
𝑑𝜙(𝑥)

𝑑𝑥
 ]
𝑥=𝐿

              (37) 

𝑑𝜂(𝑡)

𝑑𝑡
|
𝑡=0

= ∫ 𝜇(𝑥)𝑚𝜙(𝑥)𝑑𝑥 +
𝐿

0

𝜇(𝐿)𝑀𝑡𝜙(𝐿) + [
𝑑𝜇(𝑥)

𝑑𝑥
𝐼𝑡
𝑑𝜙(𝑥)

𝑑𝑥
 ]
𝑥=𝐿

                 (38) 

𝑣(0) = 𝑣0                                                (39)  

An initial base voltage of zero considered and 

[

휂(0) = 0

휂′(0) = 0
𝑣0 = 0

]                                             (40) 

 

5. A RECURSIVE BAYESIAN ESTIMATION 

APPROACH 

 

The presence of damage is now considered to 

be hidden or inaccessible as indicated in Figure 5.  

Figure 5: Hidden or inaccessible damage on an 

Euler Bernoulli beam. 

 

A Bayesian approach is considered in this 

regard to estimate the presence, location and 

extent of such damage using energy harvesting 

signatures. 

5.1. A Bayesian Approach for Detecting Hidden 

or Inaccessible Damage 

5.1.1. Bayesian Inference and Statistical 

Identification 

Bayes’ theorem states 

𝑝(휃|𝒙) =
𝑝(𝒙|휃)𝑝(𝜃)

𝑝(𝒙)
                                       (41) 

where 휃 is the hypothesis, 𝒙 = 𝑥1, 𝑥2, . . 𝑥𝑛is 

the measured or observed data, 𝑝(휃|𝒙)  is the 

posterior - the probability of the hypothesis given 

the observed data. The likelihood 𝑝(𝒙|휃) is the 

probability of observing data given the hypothesis 

and the prior 𝑝(휃)  is the belief concerning the 

hypothesis. To make the likelihood a probability 

distribution, it is normalised by 𝑝(𝒙) as  

𝑝(𝒙) = ∫ 𝑝(𝒙|휃)𝑝(휃)𝑑휃
𝑆(𝜃)

= 𝑐            (42) 

where 𝑆(휃) refers to the state-space occupied 

by hypothesis and 𝑐 is the normalising constant. 

Since it is almost impossible in practice to 

measure or compute it, this issue is avoided by  

constraining the probability within a state-space 

to a range of possible values that the parameter or 

hypothesis may take. Combined with likelihood 

probability, which can be integrated and dividing 

each point within the state-space by the integral 

the normalizing constant is approximated and a 

normalized distribution curve is obtained. The 

choice of prior and its characteristics thus 

influences results and bias in it can lead to 

inaccuracy and convergence challenges. 

For dynamical systems and parameters, there 

are methods to evaluate uncertainties in structural 

and crack parameters via Bayesian Statistical 

Identification Framework (Katafygiotis and Beck 

1998; Lam et al. 2005). The approach relies on the 

fact that there exists some optimal variance (Lam 

et al. 2005) for all of the parameters in question 

concerning crack/damage parameters as well as 

structural parameters. It is defined as 

𝐽(𝑎) =
1

𝑁𝑁𝑁
 ∑‖ℐ[𝑝(𝑛)] − ℐ[𝑞(𝑛; 𝒂)]‖2 = �̂�2
𝑁

𝑛=1

 

                                                                 (43) 

where ℐ(𝑣)  is the imaginary part of the 

vector 𝑣 . Note, the imaginary part is selected 

harmonic wavelets are used for crack detection 

and they are complex. The vector 𝑝(𝑛)  is the 

spatial wavelet transform of measured deflection 

curve at the 𝑛𝑡ℎ time step and 𝑞(𝑛) is the vector 

containing the spatial wavelet transform of the 

calculated deflections obtained from the known 

fundamental modeshape, based on the model for 

some given parameters 𝒂. The constants 𝑁𝑁 and 

𝑁 are the number of observed measurements and 

time-steps respectively. The parameter �̂�2(𝑎) 
represents the optimal variance in the predictions 

error model for given crack and structural 

parameters 𝒂  and from which a probability 

distribution can be calculated for the likelihood. 
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This is true for large numbers of 𝑁 and increasing 

the number of sampling points will improve the 

accuracy of the analysis. For measurement, this 

would mean that more energy harvesters would 

lead to increase in accuracy due to increase in 

information to carry out relevant statistical 

analyses. 

5.1.2. Recursive Bayesian Estimation and 

Bayesian Filtering 

Presence of noise can mask useful features of 

interest in measurement. An iterative Bayesian 

algorithm can seek the most probable values of 

uncertain parameters, addressing presence of 

noise. Consider a length along the beam to be 

obscured or hidden region containing the open 

crack (Figure 5). Measurements outside this 

length is possible. For the crack location, the 

range of its existence is the hidden length along 

the beam. The crack extent is also limited by its 

CDR range and a maximum of 0.5 is considered. 

The assumption is that there exists a point of 

optimal variance which is true for all uncertain 

parameters within the model. This is determined 

by the difference between the measured spatial 

wavelet of the energy harvesting signal and the 

calculated signal. 

�̂�2 =
1

𝑁
 ∑ (𝒙𝒊 − �̅�)

2 𝑁
𝑖=1                            (44) 

where𝒙𝒊 is the spatial wavelet transform of 

measurements taken from the system, �̅�  is the 

calculated response and 𝑁  is the number of 

measurements taken. For wavelet analysis, this is 

treated as the number of points selected for 

measurement or the length of the measurement 

vector. So, this can be the number of harvesters or 

points along the structure which are monitored. 

A uniform prior 𝑝(휃) =
1

𝑁𝑠
 is chosen here 

due to uncertainty in system. Measurement is a 

linear combination of noise and the true signal as 

𝑥 = 휃 + 휂                                                (45) 

With the assumption that the true signal (휃) 

is Gaussian, the measurement is also distributed 

similarly. The noise is assumed to be Gaussian 

with mean 0 and variance 𝜎2. The measurement 

mean is 

𝐸[𝒙] = 𝐸[휃] + 𝐸[휂]                               (46) 

where 𝐸[𝑥]  is the expectation. Since noise 

has a 0 mean,  

𝐸[𝒙] = 𝐸[휃]                                            (47) 

Consequently, measurements have a 

distribution of 𝒩(휃, 𝜎2) . Since the goal is to 

estimate two values which share the same optimal 

variance (crack location and crack extent) a 

matrix is required as Σ = [�̂�
2 0
0 �̂�2

]  . A 

likelihood of a multivariate normal distribution 

can the be approximated as 

𝑝(𝑥|휃) ≈
1

√2𝜋𝑘Σ
exp [−

1

2
(𝒙𝒊 −

𝜇)𝑇 Σ−1(𝒙𝒊 − 𝜇)]                                            (48) 

The subscripts are the indexing of 

measurement data points. Due to the availability 

of the optimal variance �̂�, the standard deviation 

can be used to generate random points with such 

standard deviation within the state space. These 

points can be treated as noise about the true value 

representing the uncertain parameters. A total of 

𝑘 points are considered for the proposed 

algorithm where    

𝑝(휃|𝑥)𝑘 =
𝑝(𝑥|휃)

𝑘
𝑝(𝜃)𝑘

𝑝(𝑥)𝑘
                           (49) 

𝑝(휃)𝑘+1 = 𝑝(휃|𝑥)𝑘                                        (50) 

Iteration at each stage computes a new 

likelihood for each dataset or noise point. This is 

then combined with the prior and as a product, 

normalised. With this data, the posterior PDF can 

be obtained and the resulting point or state of 

maximum probability. This probability state is 

then brought back into the algorithm as the new 

prior; which then combined with a newly 

calculated likelihood based on next data point 

𝑥𝑘+1. The point at which this new prior is at its 

maximum probability becomes the new mean. 

This process is repeated until there is insignificant 

difference between iterations, and lower than a 

pre-selected threshold or until a desired number of 

iterations are complete. The coordinates of the 

state of maximum probability are the estimated 

parameter values: the crack location within the 

hidden region and the extent of the crack, from 

which the CDR can be found. 
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5.2. Results 

5.2.1. Simulation Parameters 

A 10m long beam, with 30GPa Young’s 

modulus with rectangular cross-section (0.25m 

width x 0.5m depth) is considered with 2nd 

moment of area about the neutral axis as 0.026 m4, 

mass density 2400 kg/m3 and 1% damping ratio. 

The open crack is at a distance  
𝑋𝑐= 4.3m from the left support, with a nominal 
crack-depth ratio of 0.1 and the crack extent  
⊿  being 37.7264. The properties of PZT-5H, 
popular for cantilever bimorphs is considered 
with piezoelectric constant   
e̅31 =16.6 C/m2, density of 7750 kg/m3, 

compliance 𝑐̅ = 60.6 MPa and permittivity  
휀33
𝑆  = 13.3 nF/m. For PVDF, a capacitance (C) 

of 95 nF and a resistive load  
𝑅𝑙  of 100Ω  is considered, with piezoelectric 
constant 𝑒31 = 8.55 C/m2. 

5.2.2. Modal Analysis: Damaged and 

Undamaged 

Natural frequencies and modeshapes of the 

damaged and undamaged beams were computed 

and the small variation between the two is 

presented in terms of curvature in Figure 6. Even 

for a damage sensitive parameter like curvature, 

the changes are small, and prone to noise masking. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Damaged (CDR=0.1) and undamaged 

beam curvature 

 

PVDF harvesting voltage is proportional to 

the strain of the host surface, assuming perfect 

contact and low thickness of these patches. Strain, 

is proportional to curvature, which is 

approximated as the 2nd spatial derivative of the 

first mode. For hidden damages to be detected 

from harvested voltage, the challenge can then 

reduce to the detection of the location of a certain 

magnitude of a function equal to (or of the order 

of) what is detected by wavelet analysis (Figure 

7), in the presence of noise. The accuracy of 

estimating the magnitude will be a function of the 

extent of noise, the size of the magnitude, the 

location and the extent of hidden or inaccessible 

length. 

 
Figure 7: Damaged detection for CDR=0.1 using 

continuous wavelet transform. 

 

5.2.3. Bayesian Estimation of Hidden Damage 

The Bayesian algorithm proposed in this 

paper was implemented to find the location and 

extent of the hidden damage. Here, a location of 

(3,5) is affected by noise, which has a variance of 

4. Initially, there is uncertainty around location of 

the true value. The initial uniform prior is iterated 

until a converged estimate is obtained (Figure 8).  
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Figure 8: Detection of hidden damage location and 

extent using recursive Bayesian estimation  

6. CONCLUSIONS 

Energy harvesting devices can be effective 

measuring instruments, particularly in the 

domains where ambient sources of noise are 

involved. It can be seen that PVDF based devices 

can effectively directly measure the local strains 

of a host structure and consequently, determine if 

any damage is present based on the amount of 

output energy or voltage they produce. A system 

of such measuring devices configured correctly 

could provide information of the host structures 

related to fundamental modal responses. This 

combined with analyses techniques such as 

wavelets can prove effective at detecting damage 

despite the presence of noise. Implementation of  

Bayesian statistical estimation proves effective in 

tackling hidden damage or damages that are 

partially obstructed or are in difficult locations to 

access. This ability to be able to assess hidden or 

partially obstructed damaged increase and 

improve the abilities of such devices to move to a 

self-powered paradigm, while allowing for use of 

less number of sensors. 
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