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ABSTRACT: Modern performance-based earthquake engineering practices typically entail a large 
number of time-consuming nonlinear time history simulations to appropriately incorporate excitation and 
model uncertainties in the decision making process. Surrogate modeling techniques have emerged as 
attractive tool for alleviating this computational burden, while allowing for the use of high-fidelity 
numerical models to describe hysteretic structural response. A key challenge arises in this setting for 
accurately capturing the aleatoric uncertainty associated with the seismic hazard. This uncertainty is 
typically expressed as high-dimensional or non-parametric uncertainty (depending on the approach 
adopted for modeling ground motion time histories), and so cannot be easily incorporated within standard 
surrogate modeling frameworks. Recent work has shown how stochastic emulation techniques can be 
leveraged to address this challenge, utilizing Gaussian Process regression (GP) as foundational surrogate 
model technique. Established formulation requires, for some of the parametric configurations examined, 
the replication of the simulations to capture the aleatoric response variability. The simulations with 
replications are leveraged to inform a secondary GP to describe the heteroscedastic aleatoric variability, 
whereas all simulations and the secondary GP are then used to establish a primary GP for predicting the 
response distribution. This formulation has two challenges: (i) it requires replications for some of the 
configurations; (ii) it only uses the configurations with replications to inform the secondary GP 
development. Here, an enhancement is proposed to address both these challenges: a GP-based 
approximation is first established for the median response, and leveraging this approximation, all 
simulations are utilized for developing the secondary GP. Case study examples demonstrate the benefits 
of the alternative formulation and the fact that it addresses both aforementioned challenges.  

1. INTRODUCTION 
Decision making for earthquake engineering 
applications requires proper consideration of 
various type of uncertainties for the seismic 
hazard and the infrastructure models. Accurate 
assessment of risk in this context entails a large 
number of simulations (nonlinear time-history 
analyses) of complex numerical models 
(representing the infrastructure), creating a large 
computational burden. One attractive approach to 
alleviate such computational burden is to replace 
the expensive numerical model with a surrogate 

model developed using a small number of 
judicially chosen simulations, frequently also 
referenced as computer experiments. This 
surrogate model ultimately establishes an 
approximate mapping between inputs (i.e. the 
parameters of earthquake and structural models) 
and outputs of interest (structural responses), and 
can significantly accelerate risk assessment.  

The aleatoric uncertainty associated with the 
seismic hazard, stemming from the complex 
physical mechanism of earthquake generation and 
propagation, creates significant challenges in such 
surrogate modeling applications. Often only a 
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limited number of parameters are used to describe 
phenomenological causality, and the portion of 
uncaptured uncertainty is described as aleatory 
uncertainty, propagated to the model outputs as 
requirement to estimate the distribution of the 
responses (under this uncertainty). To properly 
describe such stochasticity in responses, specially 
designed surrogate modeling techniques have 
been devised, often referred to as stochastic 
emulators (Ankenman et al. 2010, Binois et al 
2018). A branch of such approach quantifies the 
output uncertainty by deliberately generating so-
called “replications” which refers to multiple 
simulation response realizations for identical 
input parameters. The variance estimate obtained 
by the replications help to directly estimate the 
variance in the response serving as the samples of 
a heteroskedastic variance field. Although, it was 
shown in the literature (Binois et al. 2018; Wang 
and Haaland 2018) that replications are an 
effective way of disaggregating the 
heteroskedastic variance component from the 
simulation results, it naturally demands higher 
computational cost. 

To mitigate some of the computational 
burden of creating replications recent research 
efforts (Kyprioti and Taflanidis, 2021; Kyprioti 
and Taflanidis, 2022) investigated partial 
replication strategies, formulating a framework 
which incorporates both replicated and non-
replicated simulation experiments. In this 
approach, the replicated samples are used to 
obtain variance estimates at the sampled 
locations, and these estimates are used to 
construct a continuous mapping of a variance-
field across the sample space. Then one can 
constrain the relative scales of the variance to train 
the primary emulator, exploiting both replicated 
and non-replicated samples. One drawback of this 
approach is that only a fraction of the samples is 
utilized when constructing the variance-field 
because non-replicated samples solely cannot 
provide any information on the response variance, 
and that it requires a minimal number of 
replications to be considered.  

This work proposes a practical extension of 
the prescribed partial replication strategy that 

addressed both aforementioned challenges. In 
particular, previous works that investigated 
seismic response emulators suggest that even 
when high heteroskedasticity exists for the 
aleatoric uncertainty, mean-field prediction is 
quite robust to the choice of the variance model 
(Kyprioti and Taflanidis, 2021). Motivated by 
this, we establish a preliminary, primitive mean-
field approximation through a homoscedastic 
stochastic emulator. Instead of using replication-
based samples, the variance-field mapping is 
informed by the deviation of the simulations from 
the mean response approximation (Marrel et al. 
2012). This way, the information of unique 
samples can be fully utilized not only in the mean-
field predictions but also in the variance-field 
predictions. The framework can also be 
implemented without considering any 
replications, allowing the available computational 
budget to be used for better exploration of the 
parametric domain. In the presented numerical 
examples, the proposed method shows excellent 
performance in capturing the underlying 
heteroskedastic trend compared to the considered 
alternatives with the same training sample size. 

2. PROBLEM FORMULATION  
Let us consider a joint model for describing 
ground motion excitation and structural response. 
In the presentation, a stochastic ground motion 
model will be used for the excitation, though ideas 
can be extended to any desired approach for 
describing seismic hazard. The ground motion 
model entails two types of uncertainty. The first 
type pertains to key ground motion features, for 
example related to intensity, seismicity properties 
or excitation characteristics (duration, frequency 
content). This uncertainty source can be described 
by a parametric formulation, with corresponding 
variables denoted herein by xg. The second type 
pertains to aleatoric variability of the excitation, 
frequently referenced as ground-motion to 
ground-motion variability. Depending on the 
excitation model, this uncertainty source might 
not have a parametric description (corresponds to 
latent features of the excitation model), or might 
correspond to a high-dimensional stochastic 
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sequence w, when stochastic ground motion 
models are utilized for describing the seismic 
hazard (Kyprioti and Taflanidis, 2022).  
Additionally, the structural model might entail its 
own parameters, described by random variable 
vector xs. We will denote by x=[xs, xg] the vector 
of model parameters for the joint excitation and 
structural models. Objective of the stochastic 
emulation is to approximate the distribution of the 
structural response, denoted z herein, as function 
of x while considering the influence of the 
aleatoric hazard variability.   

Adopting kriging as stochastic emulation 
strategy, this is ultimately accomplished by 
approximating z(x)~N( ( )m x , 2 ( ) x ), where N(.,.) 
stands for Gaussian distribution and ( )m x and 

2 ( ) x  represent, respectively, the predictive 
mean and variance of the surrogate model. In this 
context, kriging emulation approximates the 
response as a realization of a Gaussian process 
(GP), utilizing formulation ,( )) ( ) (z yx x x
where ( )y x  is a GP with some chosen mean trend 
[typically expressed as a linear regression 
combining basis vector f(x) and coefficients β], 
and a stationary correlation kernel (Williams and 
Rasmussen 2006), and ( )x  is the so-called 
nugget parameter, assumed to follow a zero mean  
Gaussian distribution with variance 2 ( ) x . This 
nugget is the component leveraged to address the 
aleatoric uncertainties in the problem formulation 
(Kyprioti and Taflanidis, 2021). When the nugget 
variance is constant, the problem reduces to a 
simpler homoscedastic case, though it has been 
shown (Kyprioti and Taflanidis, 2021) that this is 
a poor approximation for describing nonlinear 
structural response. The emphasis is herein on 
how to address a heteroscedastic nugget.  

3. REVIEW OF STOCHASTIC EMULATION 
WITH PARTIAL REPLICATION 

This section briefly reviews the stochastic 
emulation with partially replicated samples 
(Kyprioti and Taflanidis 2021). This approach 
leverages two GP models: the primary one with 
heteroscedastic nugget approximates the response 
z(x), while its nugget variance τ2(x) is 
approximated by the secondary GP. 

To formalize implementation, consider Np 
training points that are replicated np times, 
referred to as replicated points and additional Ns 
training points which are not replicated, denoted 
as non-replication points. In such setting, a total 
of Nt=Ns+Npnp high-fidelity simulations are 
involved in this surrogate model training. The 
replications pertain to different samples (different 
realizations) for the aleatoric sources of 
uncertainty, for example to different stochastic 
sequences when stochastic ground motion model 
is used for the excitation. Superscript i will be 
used to denote the ith parametric configuration 
and notation zi,j will be used to describe the j-th 
response realization for the training points with 
replications. For the latter points we can obtain the 
unbiased estimates for the mean and the variance, 
respectively, as  
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Using the results from Eq. (2) as observations, a 
secondary GP is first established to predict the 
continuous field of the response variance. 
Assuming homoscedasticity for this GP, any 
traditional calibration and prediction formulations 
can be adopted (Williams and Rasmussen 2006). 
Note that the homoscedastic nugget in this 
auxiliary GP accounts for the variability in the 
obtained sample variances of Eq. (2) [sample-
based estimation error]. 

Once the variance field is estimated, the final 
predictive mean and variance can be estimated 
using information for both the replicated samples, 
xi and iz  (i=1,…,Np), and the non-replicated 
samples, xi and iz  (i=1+Np,…,Ns+Np), as: 

where 1
s s  R R A C , T -1 -1 T( ) -1F F Zβ F R R  , 

T -1 ( ) ( )( ) γ r xx F fR x , sC is a diagonal matrix of 
with elements 2 ( )i x , and A is a diagonal matrix 
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with elements ni which represents the replication 
size at i-th unique training points, i.e. either np or 
1. F  and Z  are the matrices whose i-th row is 
respectively ( )if x (the basis functions for the 
underlying GP regression) and iz  (for points with 
replications) or iz  (for points without 
replications). The scalar quantity 2  is the 
process variance and s  is the nugget scaling 
parameter. The GP calibration can be done by 
maximum likelihood estimation, with details 
included in (Kyprioti and Taflanidis, 2021).  

Drawbacks of this approach is that 
replications are always needed and that the non-
replication points are not fully utilized when 
estimating the variance field. The trade-off 
between the number of point with and without 
replication, and the number of replications 
examined per points has been investigated in 
detail in the numerical experiments performed in 
Kyprioti and Taflanidis (2021), showing that the 
overall accuracy improves as more non-
replication points are utilized, with a considerable  
reduction of performance, though, as the number 
gets close to Nt. This performance reduction is 
largely attributed to the limited information 
available for the development of the variance-
field (secondary GP), since non-replication points 
cannot be used for this development. 

4. ENHANCED PARTIAL REPLICATION 
APPROACH 

An enhanced version of the stochastic emulation 
framework [also shown in Figure 1] is described 
here, with objective to utilize all points (even the 
non-replication points) for the variance-field 
approximation is proposed in this Section. Unlike 

the previous approach which relied on the pure 
sample variance [given by Eq. (2)] to construct 
the secondary GP, the proposed method 
introduces tertiary GP model for a quick 
estimation of the underlying mean function, 
which can be leveraged to obtain samples of the 
variance from single observations. In particular, 
this mean function is first obtained by fitting a 
traditional homoscedastic kriging model, i.e. 
assuming the nugget variance 2 ( ) x  is a constant, 
to the entire training dataset. Similar to the 
secondary GP discussed in the previous section, 
any standard formulation (Williams and 
Rasmussen 2006) can be adopted for the tertiary 
GP. Let us denote the predictive mean acquired by 
this as ˆ ( )zm x . Then for both the non-replicated 
and replicated points, an estimation of the sample 
deviation from the mean can be obtained as: 

 22 , , (ˆ( ) ) , 1,...,i j i j i
z imz j n   x  (5) 

where i=1,…,Np+Ns.. The sample deviation 2 ,( )i j  
by definition can be used as an alternative to Eq. 
(2) for the variance-field estimation. To account 
for the fact that for the points with replications, 
multiple observations are available for the sample 
deviation from the mean, a partial replication-
based formulation [similar to the one given by in 
Eq. (3) but with a homoscedastic nugget variance] 
needs to be adopted to establish the mapping 
between x and 2 ( )x  for the secondary GP using 
dataset 2 ,( )i j . Finally, the process of training the 
primary GP model is the same, simply the updated 
secondary GP predictions are utilized.   

The major difference between the original 
and alternative variance estimators, is that while 

Figure 1: Procedure of the stochastic kriging  
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the original [utilizing Eq. (2) as observations] 
relies on the pure sample variance, the modified 
one [utilizing Eq. (5) as observations] treats the 
mean estimate obtained from the auxiliary GP 
model as the true mean (population mean) and 
variance is estimated as the sample deviation from 
the mean. This difference allows the latter to 
accommodate the non-replicated samples. This is 
especially useful when there are only limited 
replications available, or when the response trend 
shows localized nonlinearities requiring better 
space-filling exploration of the domain.  

Of course, it should be noted that the 
proposed method is heuristic in a way that it 
assumes that the mean estimate obtained from the 
crude homoscedastic nugget assumption, ˆ ( )zm x , 
gives a reasonably reliable estimate. This 
assumption relies on past studies (Kyprioti and 
Taflanidis, 2021; Kyprioti and Taflanidis, 2022), 
that have shown that for seismic applications the 
mean-field prediction is relatively robust to the 
choice of the variance model, especially 
compared to the level of variability observed in 
the sample replications. This was also observed in 
more general, non-seismic, applications 
investigated in Marrel et al. (2012). 

Furthermore, note that if the final estimation 
of mean ( )zm x  (from Step3 of Figure 1) is 
significantly different from the initial estimate 
ˆ ( )zm x  (from Step1), then one may iterate Step 2-

3 by replacing ˆ ( )zm x  with the ( )zm x  until the two 
functions become more similar. Note that, as 
mentioned in Marrel et al. (2012), this iteration is 
rather heuristic and is not guaranteed to converge.  

Finally note that one limitation from the 
previous work still applies to the proposed 
approach: for the secondary and tertiary kriging 
models, point estimates corresponding to the 
mean predictions are only used, omitting the 
uncertainty in these predictions. Incorporating, 
additionally, this epistemic source of uncertainty 
could perhaps be beneficial for improving 
accuracy of estimation.   

5. NUMERICAL EXAMPLES 

5.1. Model descriptions 
The same case-study example as in (Kyprioti and 
Taflanidis, 2021) is used. The structural model 
corresponds to a three-story, four-bay benchmark 
concrete structure modeled in OpenSees 
(McKenna, 2011), using material models of 
Concrete02 and Steel02. The fundamental period 
is 0.57 sec and Rayleigh damping is introduced 
for 1st and 3rd modes. Ten structural parameters 
are considered as random variables: Rayleigh 
damping ratio, six concrete material model 
parameters, and three steel material model 
parameters. These structural parameters that 
constitute xs are shown in Table 1. The excitation 
model corresponds to a point source stochastic 
ground motion models whose parametric 
description (i.e. xg definition) is based on the 
magnitude, M, and rupture distance rrup. The 
ranges considered for them are respectively 
M∊[5,8] and rrup ∊[3,60] (km), respectively. The 
total number of model parameters for x is nx = 12 
and the surrogate model objective is to describe 
the distribution for the peak inter-story drifts and 
peak absolute floor accelerations at each story (nz 

= 6 total number of output variables). The 
proposed stochastic emulation is separately 
established for each of these outputs.    

5.2. Examined cases and validation metrics 
The numerical investigation focuses on the 
comparison of the baseline approach in Section 3 
– referred to as original – and the proposed 
approach that utilizes Eq. (5) to get the estimates 
of the predictive variance. From the fact that the 
two approaches both accommodate partial 
replications, we further investigated the benefit 

 
Table 1 Structural parameters for surrogate training 
Notation Parameter (model) Range 

s   Rayleigh damping ratio (%) 3-8.2 

1 2, ,c c cf f f Compressive strength(c) at 
each floor (MPa) 

17-46.1 

1 2 3, ,c c c   Strain at maximum strength(c) 
at each floor (MPa) 0.0012-0.0033 

sE   Elastic modulus(s) (GPa) 180-230 

vf   Yield stress(s) (MPa) 430-700 

a   Straining hardening ratio(s) 0.006-0.017 
* (c): Concrete02, (s): Steel02
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offered from replications by exploiting different 
mixtures of replicated and non-replicated training 
samples. In particular, two different values of 
replication size (np = 5 and 10) are investigated, as 
well as the varying numbers of the total samples 
size (Nt=1500, 1000, and 500). Similarly, chosen 
cases of Ns are Ns=200, 400, 600, 800, 1000, and 
1500. Among the listed Ns and Nt values, the pairs 
that satisfy Ns<Nt are investigated in the original 
implementation, and Ns=Nt cases (i.e. no 
replications) are additionally included for the 
proposed implementation, as the latter became 
applicable after introducing the variation in Eq. 
(5). Note that, for example, when (Nt=1500, 
Ns=200, np=10) is chosen, the number of 
replicated points was Np=(Nt-Ns)/np=13. 
Similarly, when (Nt=500, Ns=500) is chosen, 
regardless of np, all the samples in the training sets 
are non-replication points and Np is zero.  

The surrogate models are validated using 
total of 200,000 test samples consisting of 1,000 
randomly selected test locations across the 
training domain, each having 200 replications. 
The Monte Carlo estimates of the mean and 
variance estimations at the 1,000 test locations are 
compared with the estimations from the two 
surrogate models. To evaluate the overall 
prediction error in the response distribution, 
Kullback-Leibler (KL) divergence metric which 
measures the distance between the estimated and 

reference probability distributions is calculated 
following the formulation in Kyprioti and 
Taflanidis (2021). Additionally, the individual 
performance metrics for the predictive mean and 
variance are examined by comparing correlations 
between the prediction and exact test sample 
mean and variances, respectively. The correlation 
coefficients would ideally approach to 1, when the 
surrogate predictions are perfect and abundant test 
samples are available. To assess the robustness of 
the surrogate model predictions, the training 
process is repeated independently 15 times with 
different random seed – different training sample 
realizations – and validation statistics are 
averaged across these repetitions. 

5.3. Results and discussions 
The test set validation results are presented in 

Figures 2 and 3. Figure 2 shows the average KL 
divergence metric – averaged over 6 response 
quantities – for various examined cases. Each row 
represents different total training sample sizes and 
each column represents different replication sizes 
examined. The x-axis is the percentage of non-
replication points among total training samples 
(Ns/Nt ×100). The variability of the validation 
statistics across the 15 repetitions is presented 
using box plots. Figure 3 shows the correlation 
coefficient between predicted and the exact 
responses. Both median and logarithmic variance 

 
Figure 2: Average KL divergence values. The ‘original’ refers to Kyprioti and Taflanidis (2021). 
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(in terms of coefficient of variation, CV) are 
examined for different training sample sizes and 
the proportions of non-replication points. In 
particular (a) and (b) are the peak floor 
acceleration prediction results averaged across 
over different floors and (c) and (d) are those of 
peak inter-story drift. Only the case of np=10 is 
presented here, but np=5 case also showed very 
similar observations. In this case the average 
performance across the 15 repetitions is shown. 

It can be observed in Figure 2 that as the 
proportion of non-replication points increases, the 
error from the proposed method monotonically 
decreases, reaching below the minimum error of 
the original approach. This is consistently 
observed across different training sizes (Np) and 
replication sizes (np). In particular, when the 
proportion of the non-replication points is below 
50-60%, the performance of the proposed method 
is similar to the original approach. However, as 
the percentage gets larger, the error kept 
decreasing only in the proposed approach, 
proving that the information from the non-
replicated experiments becomes essential in such 
cases. Furthermore, the proposed approach shows 

that there is no trade-off between replication and 
non-replication samples. Rather, consisting of the 
training set using only the non-replication 
samples provided the most accurate predictions in 
the investigated example cases. 

Figure 3 further differentiates the error into 
those in median and CV by introducing the 
correlation coefficient metric. Furthermore, the 
correlation coefficients are assessed separately for 
acceleration and displacement outputs, which 
demonstrates that the same trend applies to both 
types of outputs. Looking at the performance of 
the original approach, one can notice that the 
prediction accuracy of mean function consistently 
increases as the percentage of non-replication 
points increases (shown in (a) and (c)) while that 
of the variance decays (shown in (b) and (d)). The 
latter can be explained by the reduction of 
information on the variance, that is fed into the 
secondary kriging. However, albeit the decay of 
variance prediction, exploration offered by non-
replication points provides a larger benefit in the 
mean prediction as evidenced by the increasing 
trend of the accuracy. Still, the case of 80% non-
replication shows that a substantial error in the 

 
Figure 3: Correlation coefficient metric for median (left) and logarithmic coefficient of variation (right) of the peak 
floor acceleration ( np =10, averaged across floors). The ‘original’ refers to Kyprioti and Taflanidis (2021). 
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variance estimation can actually lead to the poor 
mean prediction. 

For the proposed approach, mean prediction 
initially follows a similar trend to the original 
approach, but it continues to increase until it 
reaches 100% non-replication case. This is 
explained by non-degraded performance in the 
variance prediction. The variance performance is 
similar when the replication points dominate the 
training samples, suggesting that addition of non-
replication points does not benefit in such cases. 
However, as the proportion of non-replication 
points increases, they clearly dominate the 
variance predictions and restore the level of 
accuracy observed in the heavily replicated cases. 

6. CONCLUSION 
A new practical stochastic emulation formulation 
was proposed for earthquake engineering 
applications. The method advances previous 
research on the use of a stochastic kriging 
framework with partial replication. Original 
framework leverages a secondary Gaussian 
Process (GP) to estimate the heteroscedastic 
variability of the primary GP model, with the 
latter providing the desired approximation for the 
response distribution. In this setting, among the 
partially replicated training data, only the portion 
with replications is utilized for the inference of the 
variance-field. The proposed enhancement 
additionally considers the non-replicated sample 
portion for this objective, by training the 
secondary GP based on observations of the 
deviation of non-replication samples from an 
approximate mean estimate. This mean estimate 
is obtained leveraging a homoscedastic GP.  The 
proposed method can also be applied to fully non-
replicated training sets, utilizing more efficiently 
the available computational budget for 
performing numerical simulations (no 
replications needed). 

The case study demonstrated that 
engagement of non-replication points provides a 
better overall performance. When the training set 
consists of large replication points, the 
performance of the proposed method was similar 
to the original approach. However, noticeable 
performance improvement was observed as the 

proportion of the non-replicated samples 
increases. The observed findings were consistent 
across different training sample sizes and 
replication sizes, while the performance gap was 
more evident when the training sample size was 
small. One interesting future research topic would 
be the adaptive selection of experiments for 
improving prediction accuracy across both the 
mean and variance stochastic fields. 
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