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ABSTRACT: Knowing the health state of bridges and viaducts in complex infrastructures enables the 

structural risk management and optimization of maintenance actions. Real-time data collection from 

infrastructures subject to traffic loads allows learning about their behavior and detecting anomalies. In 

this study, a probabilistic approach for damage detection of existing bridges is proposed. The 

methodology makes use of stress data sets, which can be provided by innovative sensors, to identify 

anomalies in the static response of bridges and viaducts. More specifically, the local stress data allows 

the definition of a reference stress distribution, which is strongly related to the state of the structure. 

When damage occurs, a redistribution of stresses is identifiable by analyzing the evolution of local stress 

data. The validation process involves performance analysis at the scales of the individual element and 

the whole structure. Traveling loads are simulated using a Monte Carlo method, while stresses are 

estimated using a numerical model. The validation of the proposed methodology analyzes the numerical 

model of an Italian reinforced concrete (RC) arch bridge with stiffening deck,  evidencing  excellent 

damage detection capabilities.

1. INTRODUCTION 

Structural health monitoring is crucial to ensure 

safety and operation of infrastructures. The 

detection of anomalies in the early stage and 

optimization of maintenance schedules can 

prevent costly repairs and improve structural 

reliability. Many papers focused on the 

implementation of a real-time damage detection 

technique, able to identify damages in operative 

conditions. In recent years, there has been a 
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growing interest in using probabilistic methods 

for damage detection in structural systems. These 

methods consider the uncertainty inherent in 

sensor measurements and traffic loads and can 

provide more accurate and reliable estimates of 

structural performance. Traditionally, exists two 

different types of SHM systems: dynamic 

systems, based on vibrational data, and static 

monitoring systems, that analyze rotations, 

displacements, stresses, and strains.    

Studying dynamic measures, Gonen et al. 

(2022) proposed a hybrid structural health 

monitoring method for vibration-based damage 

detection of bridge structures based on the fusion 

of data from conventional accelerometers and 

computer vision-based measurements.  The 

proposed method achieves satisfactory 

performance in detecting decreases in flexural 

stiffness of the bridge.  

Al-Ghalib described a statistical approach for 

damage recognition using field measurements 

from real bridges. The proposed method, which 

combines principal component analysis (PCA) 

and linear discriminant analysis (LDA), 

outperforms PCA alone in classifying damage 

scenarios.  

Nguyen et al. (2022) proposed a method for 

damage detection of bridge cables using the 

vibration signal coming from a sensor installed in 

a climbing robot. The proposed method can detect 

crack and local reduction in diameter in the 

cables. On the other hand, several papers 

proposed methodologies for the damage detection 

of bridges using static data.   

One approach to this problem is the use of 

strain sensing with fiber Bragg grating (FBG) 

sensors. In the paper by Zhang et al. (2020), an 

output-only damage detection method for 

highway bridges under a moving vehicle is 

presented, which is based on the fractal dimension 

of strain responses measured by long-gauge FBG 

strain sensors. The method can detect bridge 

damage effectively and is not affected by vehicle 

parameters.  

Another approach to bridge monitoring is the 

use of statistical analysis of operational strain 

response. In the paper by Azim and Gül (2020), a 

non-parametric damage detection method for 

truss railroad bridges is presented, which utilizes 

statistical analysis of bridge strain responses to 

operational train loading. The method can 

identify, locate, and relatively assess damage even 

under different operational conditions. 

In the paper by Cao et al. (2022), a method 

for damage cross-detection between bridges 

monitored within one cluster is proposed. The 

method uses the difference ratio of projected 

strain monitoring data under time-varying 

environmental temperatures to establish a damage 

feature. The proposed method can detect damage 

in all bridges monitored within one cluster, even 

if the bridges have similar or identical structural 

characteristics. 

Overall, these papers demonstrated the 

effectiveness of using strain sensing and statistical 

analysis for bridge monitoring. The methods 

presented in these papers can detect damage 

effectively, are not affected by vehicle or 

environmental parameters, and can be used for 

long-term monitoring without interrupting traffic.  

On the other hand, FBG sensors require a 

costly measuring chain compared to other sensor 

types, and, in the case of existing structures, 

surface installation can result in limited accuracy.  

To overcome these limitations, recent studies 

developed of pressure sensors to evaluate stress 

distributions in structural elements (Guidetti et al., 

2021). This sensing system was recently patented 

and considered in damage detection framework. 

Indeed, focusing on prestressed concrete (PC), 

Mariniello et al. (2021) proposed a novel 

methodology, named LA-ELM, which uses stress 

data to assess damage to the prestressing system 

of PC bridges. 

In this work, the authors propose an anomaly 

detection approach for the structural health 

monitoring of bridges subjected to stochastic 

traveling loads. The methodology analyzes stress 

data, which can be estimated by low-cost sensors, 

to identify any pathologic behavior in the static 

response of bridges. The approach is validated 

analyzing the numerical model of an open-
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spandrel arch bridge located on the Naples-

Salerno highway (Southern Italy).  

2. METHODOLOGY 

Detecting and localizing bridge damage is a 

primary objective of infrastructural asset 

management. For a decision-maker, a proper 

assessment of the structural condition of a bridge 

portfolio allows the optimal planning of 

maintenance schedules to increase the safety of 

the bridges and their users. To this end, this work 

presents a novel approach to detecting and 

localizing structural damage to existing bridges 

using stress sensor data under stochastic traffic 

flow conditions.  

The primary intuition behind this approach is 

that whenever structural damage affects the 

bridge, a change in the distribution of stresses 

happens. Accordingly, monitoring the evolution 

of the average stress distribution can evidence the 

presence of pathologic structural behavior. 

Therefore, this paper describes an anomaly 

detection approach that produces alerts whenever 

the stress distribution related to an arbitrary set of 

measurements deviates significantly from the 

expected behavior of the bridge. 

2.1. Data Representation 

As detailed above, the core of the proposed 

method is the comparison of different sets of 

stress time histories, related to distinct traffic 

configurations. To formally describe the method, 

the first step consists in the definition of the stress 

time history matrix 𝐒 . Given a generic traffic 

flow, 𝐒 is defined as: 

𝐒 = (𝐒𝑡𝑖)𝑡=1,…,𝑇
𝑖∈𝐼

, 

where 𝑇  is the length of the measured time 

window [𝑡0, 𝑡0 + 𝑇], 𝑡0 is the starting time of the 

measurement, and 𝐼  is the set of sensors. In 

particular, the generic (𝑡, 𝑖) element is the value 

that the 𝑖-th sensor measured at the time stamp 

𝑡0 +  𝑡. Clearly, the actual values of the stress time 

history matrix depend on the specific traffic flow 

passing on the bridge deck in the time interval 

[𝑡0, 𝑡0 + 𝑇].  
An arbitrary traffic flow can be expressed by 

defining the number, position, and types of the 

vehicles passing on the bridge. To specify a given 

traffic flow, the data representation scheme 

adopted in this work defines the matrix 𝐓, 

 

𝐓 =  (𝐓𝑙𝑡)𝑙∈ℒ
𝑡

, 

 

with ℒ being the set of traffic lanes of the bridge. 

Thus, the element 𝐓(𝑙, 𝑡) represents the size 

of the vehicle entering the 𝑙-th lane of the bridge 

at time 𝑡, with 𝐓(𝑙, 𝑡) = 0 if there are not vehicles 

approaching 𝑙  at time 𝑡 . To effectively tie the 

stress time history with the traffic flow matrix, 

these notations make use of the influence surfaces 

of each sensor measurement.  

For each sensor 𝑖 ∈ 𝐼, let 𝐈𝑖  be its influence 

surface, i.e.,  

𝐈𝑖 =  (𝐈𝑙𝑝
𝑖 ) 𝑙∈ℒ

𝑝∈𝒫
 , 

with 𝒫 being the set of possible positions on the 

deck. Specifically, 𝐈𝑖(𝑙, 𝑝)  represents the 

measurement of the 𝑖 -th sensors due to the 

presence of a vehicle of a reference size in the 

traffic lane 𝑙 at position 𝑝. 

It is possible to observe that, ∀ 𝑖 ∈ 𝐼 ,  𝐈𝑖 

reflects the structural properties of the bridge, and 

it is invariant in standard conditions, but it is 

sensitive to structural damages that induces a 

different stress redistribution. 

The combination of stress influence surfaces 

and the traffic flow matrices consents to define a 

stress time history for complex cases with several 

vehicles on the bridge. Indeed, let 𝑣  the velocity 

of the traffic flow. Then, it is possible to define 

𝑝0 =  𝑣 ∙ Δ𝑡 as the position of a vehicle entered at 

𝜏 after a travelling time equal to Δ𝑡.  
Let [𝑡0, 𝑡0 + 𝑇] be the time interval in which 

the stress values are measured. Then, an arbitrary 

traffic flow can be naturally decomposed by 

considering the different set of vehicles entering 

the deck of the bridge at time 𝜏, such that, at least 

a portion of their passage happens in the time 

interval [𝑡0, 𝑡0 + 𝑇].  According to this 
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decomposition, the matrix 𝐒 can be obtained by 

combination of the stresses obtained as 𝜏 varies. 

Let 𝐬𝜏
𝑖  be the vector of stresses measured by 

the sensor 𝑖 due to the passage of all vehicles the 

entering the deck at time. Since the measurement 

time window is [𝑡0, 𝑡0 + 𝑇], then ∀ 𝑖 ∈  𝐼, the first 

component of these vectors, 𝐬𝜏
𝑖 (1), refers to the 

stress measurement recorded at time 𝑡0 , 

differently, the last component of 𝑠𝜏
𝑖 refers to the 

measurement at 𝑡0 + 𝑇. 

In the following we show that 𝑠𝜏
𝑖  can be 

obtained through the combination of 𝐓𝜏  and 𝐼𝑆𝑖, 

where 𝐓𝜏 is the column vector of 𝐓 related to the 

vehicles entering at time 𝜏.  

Within the proposed decomposition, three 

cases are possible (See fig. 1). 

Case a) the vehicle enters at  𝜏 =  𝑡0, then: 

𝑠𝜏
𝑖 =   𝐓𝜏 ×  𝐈𝑖. 

Case b) 𝜏 < 𝑡0: 

for 𝑡 =  1, … , 𝑇,      𝑠𝜏
𝑖(𝑡) = 

{
(𝐓𝜏 ×  𝐈𝑖)(𝑡0 − 𝜏 + 𝑡),   1 ≤ 𝑡 ≤ 𝑇 − (𝑡0 − 𝜏) 

0,                                          𝑡 >    𝑇 − (𝑡0 − 𝜏) 
   

 

Case c) if 𝜏 > 𝑡0: 

 for 𝑡 =  1, … , 𝑇,      𝑠𝜏
𝑖(𝑡) =  

=  {
0,                                     ,             1 ≤ 𝑡 ≤ 𝜏 − 𝑡0

(𝐓𝜏 ×  𝐈𝑖)(𝑡 − 𝜏 + 𝑡0) ,     𝜏 − 𝑡0 <  𝑡 ≤ 𝑇
   

Assembling the column vectors 𝑠𝜏
𝑖  for all the 

sensors 𝑖 ∈  𝐼 , we obtain the matrix 𝑠𝜏 , 

representing stresses measured by all the sensors, 

within the time window [𝑡0, 𝑡0 + 𝑇], for all the 

vehicles entering the bridge at time 𝜏. 

𝑠𝜏  =  [ 𝑠𝜏
1, 𝑠𝜏

2, … , 𝑠𝜏
|𝐼|

] 

Finally, the stress time history matrix 𝐒  can be 

obtained as the sum of the matrices 𝐬𝜏 :  

𝐒 = ∑ 𝐬𝜏
𝑇
𝜏=0 . 

 

 

2.2. Derivation of Reference Stress Data 

As described in the previous Section, the 

reference stress data can be collected either in a 

preliminary phase or numerically enhanced. 

According to the former approach, the structure is 

monitored in its healthy behavior, and the longer 

the time devoted to this phase, the richer and more 

significant the reference set will be.  

Differently, in the latter approach, the 

preliminary phase relies on tests with controlled 

loads and only aims to achieve an empirical 

evaluation of the influence surface of each sensor. 

Then the stress matrices of the reference set are 

obtained by combining influence surfaces and 

traffic flow matrices, as detailed in Section 2.1. 

Figure 1: Relation between passage times and 

measurement window. 
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According to this latter paradigm, a Monte Carlo 

simulation enhancing phase generates traffic flow 

matrices. 

2.3. Monte Carlo Simulation 

A stochastic simulation process can define 

arbitrary traffic flows through the random 

generation of 𝐓  matrices. This simulation 

approach follows a three-steps procedure:  

 

Step 1. Uniform binary selection of the 

incoming vehicles. 

Step 2. Size extraction: for each non-zero 

element, this process randomly selects the 

vehicles' weights.  

Step 3. Adjusting phase: remove vehicles 

that don't guarantee vehicle length 

compatibility.  

 

In Step 1, a random combination of 0 and 1 is 

extracted from a uniform distribution to populate 

the matrix  𝐓. The result of this step is to define 

the position of the vehicles. To differentiate the 

vehicles in size, Step 2 randomly extracts the size 

of each one of the vehicles introduced in Step 1. 

Since each weight is related to a length, the final 

Step 3 ensures that the vehicles do not occupy 

intersecting positions, thus ensuring the 

consistency of the traffic flow. Repeating this 

scheme as a Monte Carlo sampling process yields 

an extensive variety of traffic flow 

configurations.  

2.4. Anomaly Detection Approach  

The proposed framework leverages an anomaly 

detection algorithm to identify the presence of 

unexpected behavior. These anomalies indicate 

stress distributions on the deck that can be 

possibly related to a pathologic state of the 

structure.  

The anomalies are expressed in terms of 

diversity from a set of stress measurements, taken 

as a reference. This reference set represents the 

behavior of the structure in its healthy state, under 

a wide variety of traffic flow combinations.  

As detailed in the previous sections, a stress 

distribution measured for a specific traffic flow is 

represented through a matrix 𝐒 . Accordingly, 

within a time horizon of interest, the average 

behavior of the structure can be defined as the 

matrix 𝑺̅ that averages the matrices 𝑺 for all the 

traffic flows happening within that time horizon.  

Consequently, it is possible to compare the 

behavior in two distinct periods by studying the 

differences in the relative average matrices. 

Notably, while the matrices 𝑺  and 𝑺̅  depend on 

the traffic flows, if the periods are large enough, 

by the law of large numbers it is possible to 

observe that the average behaviors are mainly 

related to the structural properties of the bridge.  

To compare two arbitrary averages matrices, 

𝑺̅ and 𝑺̿, this work considers a matrix 

resemblance function, as discussed by Sesma-

Sara et al. (2018). Specifically, the resemblance 

Ψ of the normalized matrices is computed as: 

 

Ψ(𝑺̅, 𝑺̿) = ∏ (1 − (𝑆𝑖̅𝑗 − 𝑆𝑖̿𝑗)
2

)𝑖,𝑗 . 

 

If the 𝑺̅  and 𝑺̿  are the same, then Ψ = 1 , 

otherwise 0 ≤ Ψ < 1. 
The anomaly detection algorithm divides the 

reference set in groups of measurements, for 

which average matrices are computed. For any 

two matrices of the reference set, the method 

computes the average similarity values, respect to 

all other average matrices of the set, thus yielding 

a distribution. 

In presence of a new group of measurements, 

the average stress distribution is computed, and its 

average similarity value from the reference set is 

analyzed. If this average similarity value is 

significantly different from the values evidenced 

in the benchmark set, the algorithm outputs an 

alert. 

3. CASE STUDY 

The proposed methodology was tested on the 

numerical model of an Italian reinforced concrete 

(RC) arch bridge with stiffening deck, which is 

called Canalone bridge and is located near 

Salerno, Southern Italy. The static scheme of the 

viaduct presents a central arch with two lateral 

frames for a total length of 120 m.  
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The arch of the bridge, shown in Figure 2(a), 

has a total span of 60 m distributed along 6 spans 

of the corresponding deck; each span, consists of 

RC piers with 6 columns of dimensions 50x40cm 

and 44x40cm for external piers and 50x30cm and 

44x30cm for internal piers connected by a thin 

wall. The arch piers are framed into the RC deck 

girders at the top and transfer loads to the  arch 

vault at their base. The arch transverse cross 

section has 6 stiffening arch-beams framing into 

the piers and connected by a thin vault. 

The bridge deck, instead, consists of 6 

longitudinal girders with dimensions 35x152cm 

for edge girders and 20x152cm for internal 

girders. 

The structural model of the bridge was 

implemented in SAP2000 (Figure 2(b)) through 

frame elements only. For the sake of accuracy, the 

stiffness of longitudinal T-girders was updated 

and properly tuned to reduce the difference 

between dynamic properties estimated by field 

measurements through operational modal analysis 

(OMA) and the numerical modal properties. As 

shown in Figure 2 (b) a novel monitoring system 

was recently installed on the viaduct with a 

number of 16 stress sensors located in pillars.  

 

 
(a)       

 
                                 (b) 

Figure 2: (a) Case study structure, (b) structural 

model  

 

For the healthy behavior of the bridge, a basic 

set of 𝐈𝑖 matrices was generated using the moving 

load function to simulate the travelling vehicles 

on each one of the two lanes of the deck. The 

selected moving vehicle weighs 400 kN, and the 

loading patterns considers all the lanes of the 

bridge. 
                        

      
Figure 3: Moving loading patterns 

 

The resulting axial forces and bending 

moments in the monitored elements were then 

processed for each sensor location and combined 

to yield a first set of stress measurements.  As 

detailed in Section 2.2, these matrices were used 

in the generation of the reference dataset through 

a Monte Carlo simulation. 

Given the length of average passing times 

and the sampling frequency of the sensors, the 

resulting stress matrices have dimensions of 

16x116, indicating, respectively, the number of 

sensors and measurement timestamps, for each 

stress-recording session. 

This set of stress matrices was divided into 

two subsets, a reference set (80% of the data) and 

a validation set (20% of the data).  

Damages were introduced in the model 

through a local reduction of the stiffness of a 

single longitudinal girder. The data generation 

process considered local stiffness reductions of 

30% and 60%. In the following, the two damage 

cases are labelled as LD-30 and LD-60. 

The anomaly detection approach studied the 

differences of the damaged dataset when 

compared to the reference undamaged 

benchmark, to evidence the capability of the 

method in detecting pathologic behavior. 

Moreover, to analyze the sensitivity to false 

positives, also the validation set (exhibiting a 

healthy behavior) was compared to the reference 

set. The anomaly detection algorithm produced 

alerts whenever either the testing or validation 

data exceeded the thresholds 𝜇 +  3𝜎 and 𝜇 –  3𝜎 

for any of the sensors, computed according to the 

mean value 𝜇 and the standard deviation 𝜎.  

Each stress distribution matrix is related to a 

measurement time window of approximately 11 
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seconds, while the average matrices, as defined in 

Section 2.4, represent the mean behavior of 

groups of 1000 stress distributions. Therefore, 

each average matrix refers to monitoring periods 

of approximately 3 hours.   

 

The results of the anomaly detection 

approach are represented in Figure 3. The alerts 

were correctly given (i.e. “true positives”) in most 

of the damage cases: 97/100 for LD-30 and 

100/100 LD-60. Instead, all the stress values of 

the validation set were correctly classified as 

“healthy state”, evidencing the absence of false 

positives. While both LD-30 and LD-60 appear to 

be correctly separated from the undamaged 

samples, it is observed that the separation distance 

from the healthy state increases with the severity 

of the damage, as expected. 

 

4. CONCLUSIONS 

This paper presents a methodology for detecting 

local damage on bridges by analyzing stress data 

collected by innovative low-cost sensors. 

The proposed approach uses influence 

surfaces and a three-steps monte Monte Carlo 

simulation process to enhance reference stress 

histories.  

Subsequently, examining new 

measurements, the algorithm leverages an 

anomaly-detection algorithm that computes a 

matrix resemblance function to evidence 

differences that deviate statistically from the 

expected behavior. 

The method was numerically tested on a 

prototype model of a 120m arch bridge of the 

Naples-Salerno highway. The validation process 

analyzed the capabilities of the approach in 

detecting two distinct damage patterns, 

characterized by local stiffness reduction of 30% 

and 60%, respectively. The results highlighted 

that the algorithm correctly outputted alerts for 

both cases in almost the totality of the average 

matrix related to damages (197/200). In the 

validation, each average matrix refers to 

monitoring periods of 3 hours, thus implying that 

the proposed approach achieves reliable alerts 

with limited monitoring times. Notably, other 

advantages of the method are related to the 

possibility of constructing the reference stress 

data following two different approaches. Indeed, 

stress data can be obtained as either the 

combination of controlled testing and a Monte 

Carlo enhancing phase or by directly acquiring 

stress records from the structure subject to traffic. 

Lastly, this method makes it possible to evaluate 

Figure 4: Results of the anomaly detection algorithm. 
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the bridge under conditions of use without the 

need for closures or restrictions. 

Further studies will have to investigate the 

effect of temperature on the performance of the 

method and identify the range of speeds for which 

the dynamic increase in stresses does not impact 

the accuracy of the prediction. Finally, a further 

validation step will analyze the performance to 

detect damages in real-world data. 
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