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ABSTRACT: The objective of this research is to showcase the capacity of Artificial Neural Network
(ANN) in modeling intricate non-linear systems. The authors have replaced the BEM theory with ANN
to compute the aerodynamic forces acting on wind turbine blades, resulting in a significant reduction in
computational time required to compute the wind turbine response. A fragility analysis is performed on
the IEA-15MW wind turbine, focusing on the serviceability limit state of foundation tilt. The results
demonstrate the importance of considering Soil-Structure Interaction (SSI) in wind turbine design.

1. INTRODUCTION

In the face of growing global warming and en-
ergy security concerns, nations worldwide are in-
creasingly turning to renewable energy sources to
meet their energy demands. Wind power, in par-
ticular, has experienced substantial growth in scale
and power generation over the past few decades,
with offshore wind turbines playing a pivotal role
in driving this expansion. Offshore turbines offer
several advantages over onshore turbines, includ-
ing the ability to be installed on a large scale with-
out disrupting urban environments, access to higher
wind speeds and lower turbulence, and, as a re-
sult, improved power production. Engineers are de-
signing larger turbines with higher hub heights and
longer blades to generate more power to meet the
growing demand for renewable energy and lower
energy costs. However, as wind turbines increase
in size, they become more flexible and vulnera-
ble to the harsh dynamic load environment they

experience. This, combined with their low stiff-
ness, makes them dynamically sensitive, which can
lead to reduced performance, increased mainte-
nance costs, and even failure. Engineers are explor-
ing new designs and materials to address these chal-
lenges, including advanced carbon fibre compos-
ites and developing sensors and control systems to
monitor and optimize turbine performance in real-
time.

The new generation wind turbines face chal-
lenges such as higher loads, higher vibration levels
and more fatigue damage. In recent years, many
failures in wind turbines have been observed (Lin
et al., 2016; Ribrant and Bertling, 2007). For a
wind turbine transmission system, critical compo-
nents like the generator, gearbox and blades have
the highest failure rates (Tavner et al., 2007). Fail-
ure of these components in a wind turbine can re-
sult in significant downtime, reduce efficiency, and
cause potential safety hazards. Furthermore, differ-
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ent geographical locations and climatic conditions
for the same wind turbine can be subjected to dif-
ferent loading configurations, leading to different
reliability levels (Tavner et al., 2007). Calibrated
partial safety factors can achieve a consistent level
of reliability for the structural components in vari-
ous load conditions. However, not all uncertainties
can be captured by partial safety factors. Presently,
no explicit target reliability levels are given for the
partial safety factors in IEC 61400-3: 2009 (Com-
mission et al., 2009) for Offshore Wind Turbines
(OWTs). Consistent operation reliability should be
promised to ensure that the wind turbines can be re-
garded as a reliable energy generation source. Also,
implementing a partial safety factor approach for
the design of wind turbines may lead to a cost-
ineffective design. The probabilistic design of wind
turbines addressing the uncertainties in system pa-
rameters and reliability evaluation by considering
the site-specific condition can ensure more reliable
performance.

The probabilistic design of wind turbines entails
the evaluation of the structural response at vari-
ous environmental conditions and uncertain param-
eters. However, as the dimensionality of the param-
eter space increases, the amount of data required to
represent the problem grows exponentially, leading
to a substantial increase in computation time. This
challenge, known as the "curse of dimensionality,"
has hindered the probabilistic design of wind tur-
bines. Researchers have turned to surrogate mod-
elling (Slot et al., 2020; Dimitrov et al., 2018; Li
and Caracoglia, 2019) to reduce the computational
time involved in response prediction. Surrogate
models provide an efficient alternative to complex
models, allowing accurate predictions of outputs
over a range of input parameters. Gaussian Process
Regression models (Slot et al., 2020), Polynomial
Chaos Expansion (Dimitrov et al., 2018), and Re-
sponse Surface methods (Seo et al., 2022) are the
most widely used surrogate modelling techniques
in wind turbine design. The authors in this study
aim to use a more robust Artificial Neural Network
(ANN) to reduce the computational time involved
in response prediction. In evaluating the response
of a wind turbine, a significant computational ef-

fort is spent on computing the aerodynamic forces
for turbulent inflow conditions. The aerodynamic
forces are calculated using the Blade Element Mo-
mentum (BEM) theory, which involves an itera-
tive process to predict the angle of attack at each
airfoil section used to compute the aerodynamic
forces. For a wind turbine, assuming the aerody-
namic properties of an airfoil are constant, an ANN
algorithm can be trained to replace the BEM theory
and improve computational efficiency.

This study aims to conduct a fragility analysis
of the IEA-15MW reference wind turbine, which is
currently the largest standalone wind turbine. The
authors developed a numerical model of the wind
turbine using Kane’s Dynamics approach (Kane
and Levinson, 1985) and validated it against Open-
Fast, a widely used wind turbine modelling tool.
The researchers chose foundation tilt as the limit
state for evaluation to underscore the importance of
soil-structure interaction, which is often neglected
in wind turbine design. Additionally, the study will
evaluate the computational advantages gained by
replacing Blade Element Momentum (BEM) with
Artificial Neural Network (ANN). This methodol-
ogy can be applied to conduct a more detailed prob-
abilistic analysis for any selected limit state.

2. IEA-15MW WIND TURBINE

The IEA 15MW wind turbine is a reference
model for the next generation of offshore wind tur-
bines designed to achieve maximum energy cap-
ture. It is a 3-bladed upwind rotor prototype model
developed by the International Energy Agency
(IEA) and is intended to serve as a benchmark for
the design and performance evaluation of future
offshore wind turbines. The IEA 15MW wind tur-
bine has a rotor diameter of 240 meters and a hub
height of 150 meters, making it the largest stand-
alone wind turbine in the world Gaertner et al.
(2020). The key parameters of this wind turbine are
included in the table 1, while a detailed description
of this model can be found in the official document
(Gaertner et al., 2020).

This wind turbine model is designed for both
fixed-base and floating configurations. For the
fixed-base design, the wind turbine is supported
on a monopile with a base diameter of 10m and
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Parameter Value
Power rating 15 MW
Hub height 150 m

Blade length 117 m
Cut-in wind speed 3 m/s
Rated wind speed 10.59 m/s

Cut-out wind speed 25 m/s
Minimum rotor speed 5 rpm
Maximum rotor speed 7.56 rpm

Table 1: Key parameters of the IEA-15MW wind tur-
bine

a thickness of 55mm. The monopile supports the
wind turbine loads by mobilising the lateral pres-
sure of the surrounding soil. Proper modelling of
the interaction between monopile and soil is crucial
for accurate load estimation and life-cycle analy-
sis of a wind turbine. During the design process of
the 15MW wind turbine, the effect of soil structure
interaction on the performance of the wind turbine
is not taken into account. The importance of soil
structure interaction is presented in the next section.

3. SOIL STRUCTURE INTERACTION

Wind turbines are considered to be dynamically
sensitive structures because they are subject to
loads that vary with time and can cause significant
structural response. The complex and variable na-
ture of wind as an environmental factor and the
mechanical properties of the wind turbines them-
selves means that they are subjected to a wide range
of loading conditions that can cause dynamic ef-
fects such as vibrations, fatigue, and damage to the
structure. As a result, the design of wind turbines
requires careful consideration of their dynamic re-
sponse to environmental loads to ensure their safe
and reliable operation. This is particularly concern-
ing for monopile-based wind turbines as they are
subjected to a broad range of excitation frequencies
due to the environmental loads. To avoid resonance,
the wind turbine is to be designed such that its nat-
ural frequency should not fall in the range of ex-
ternal excitation frequencies. However, since the
natural frequency of a wind turbine is a function
of the stiffness offered by the soil strata, change
in soil parameters can significantly affect the nat-

ural frequency and subsequently the load experi-
enced by the structure (Page et al., 2019). Espe-
cially for the variable speed rotor design, there is
a very narrow spectrum of "safe natural frequen-
cies" where the wind turbine has to operate to avoid
resonance. Therefore, accurate foundation mod-
elling is crucial for accurate life cycle analysis of
a wind turbine. Many authors have studied the
effect of considering soil-structure interaction on
various aspects of wind turbine operations, fatigue
life (Damgaard et al., 2015), controller operations
(Fitzgerald and Basu, 2016), and damping charac-
teristics (Shirzadeh et al., 2013) are some of them.
All these studies conclude that considering the soil-
structure interaction effect significantly alters the
wind turbine response. From an economic stand-
point, foundation manufacturing and installation
alone contributes to around 30% of the overall de-
velopment cost of a wind turbine. Proper modelling
and coupled optimisation of the complete structure
can help to reduce this cost and subsequently lower
the cost of energy

In this study, flexibility at the foundation is mod-
elled by a linear 4x4 stiffness matrix. The effect
of axial deformation and twisting of the founda-
tion is not considered. Since the monopile founda-
tion offers a large axial stiffness and the dominant
loads are in the lateral direction, the axial rigidity
assumption is justified. Also, during normal oper-
ation, a wind turbine structure does not induce sig-
nificant twisting moments at the foundation level
so the twisting of the foundation is ignored. The
constant stiffness offered by soil in the lateral and
rotational direction is calculated using the follow-
ing methodology presented in the PLAXIS MoD-
eTo manual. The development of the numerical
model used for analysis in this study is presented
in the next section.

4. NUMERICAL MODEL OF THE IEA-15MW
WIND TURBINE

A multi-body dynamic model of the offshore
WT is developed using Kane’s method (Kane and
Levinson, 1985). Kane’s method reduces the labour
needed to derive the equations of motion, and these
equations are easier to model in a computer pro-
gramme than earlier classical approaches, such as
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the Euler-Lagrange method and D’Alembert’s prin-
ciple. The equilibrium equations for a simple holo-
nomic multi-body system using Kane’s approach
can be stated as :

Fr +F∗
r = 0 (1)

where Fr stands for the Generalized active forces
and F∗

r represent the Inertia force. These forces can
be expressed in terms of the kinematic quantities as

Fr =
n

∑
i=1

EvXi
r ·FXi +E

ω
Ni
r ·MNi (2)

F∗
r =−

n

∑
i=1

EvXi
r (mNi EaXi)− E

ω
Ni
r · EḢNi (3)

where, FXi is a force vector acting on the centre
of mass of point Xi and MNi is the moment vector
acting on the rigid body of Ni. EvXi

r and Eω
Ni
r are

the partial linear and partial angular velocity of the
point Xi and rigid body Ni, respectively. EḢNi is the
time derivative of the angular momentum of rigid
body Ni about its centre of mass Xi in the inertial
frame, given by the following equation

EḢNi = ¯̄INi ·E α
Ni +E

ω
Ni × ¯̄INi ·E ω

Ni (4)

To describe the motion of the offshore wind turbine,
a total of 22 degrees of freedom are considered in
this study. These DOFs represent platform motion
(6DOF), tower deformations (4DOF), and blade de-
formations (9DOF), along with the Nacelle yaw,
Generator azimuth angle and the torsional bending
of the drive train. Kinematics of the system are ex-
pressed through these DOFs and the equations of
motion are derived using Kane’s approach. The de-
tailed derivation of the equations of motion is be-
yond the scope of this work. Interested readers can
refer to (Sarkar and Fitzgerald, 2021) for more in-
formation.

The wind turbine model is benchmarked against
the commonly used modelling platform OpenFAST
Jason Jonkman (2019), so that further studies can
be reliably performed on this model. The model
verification results are presented in Figure 1 and
Figure 2. The response predicted by the Matlab

0 50 100 150 200 250 300

Time (sec)

-0.6

-0.4

-0.2

0

T
o
w

e
r 

F
A

 D
is

p
 (

m
)

Tower FA Disp at 3mps

MATLAB Model

OpenFAST

0 50 100 150 200 250 300

Time (sec)

-0.5

0

0.5

1

T
o
w

e
r 

F
A

 D
is

p
 (

m
)

Tower FA Disp at 7mps

0 50 100 150 200 250 300

Time (sec)

0

0.5

1

1.5

2

T
o
w

e
r 

F
A

 D
is

p
 (

m
)

Tower FA Disp at 9mps

(a) Tower FA deformation response

0 50 100 150 200 250 300

Time (sec)

-0.4

-0.2

0

T
o
w

e
r 

S
S

 D
is

p
 (

m
)

Tower SS Disp at 3mps

MATLAB Model

OpenFAST

0 50 100 150 200 250 300

Time (sec)

-0.4

-0.2

0

T
o
w

e
r 

S
S

 D
is

p
 (

m
)

Tower SS Disp at 7mps

0 50 100 150 200 250 300

Time (sec)

-0.4

-0.3

-0.2

-0.1

0

T
o
w

e
r 

S
S

 D
is

p
 (

m
)

Tower SS Disp at 9mps

(b) Tower SS deformation response

0 0.2 0.4 0.6 0.8 1 1.2

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
o
w

e
r 

s
id

e
-t

o
-s

id
e
 d

is
p
la

c
e
m

e
n
t 
s
p
e
c
tr

u
m

TSS Fourier Spectrum at 9mps

MATLAB Model

OpenFAST

(c) Fourier spectrum of Tower SS response

Figure 1: Model Verification: Comparison of tower
response

model is found to be in agreement with the response
predicted by the OpenFAST, this establishes the ac-
curacy of the derived model. The wind turbine
response at different wind velocities is considered
to ensure that the model agreement is consistent
across different wind velocities.

The current numerical model employs BEM the-
ory to calculate aerodynamic loads. However,
a profiler analysis revealed that a considerable
amount of computational time is spent on solv-
ing the BEM equations. To overcome this limita-
tion, a more efficient machine learning model can
be used to replace BEM theory and accelerate the
prediction of responses. This approach can facili-
tate the execution of more simulations necessary for
probabilistic analysis. The authors provide a short
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(b) Blade out of plane deformations

Figure 2: Model Verification: Comparison of blade
response

overview of BEM theory in the subsequent section,
followed by a description of the methodology used
to train the ANN model.

5. BLADE ELEMENT MOMENTUM THEORY

The aerodynamic forces acting on a wind turbine
blade are a function of the wind speed, density of
air, airfoil dimensions, shape of the blade, angle of
attack, and induction factors. The BEM theory is
used to compute the induction factors and the angle
of attack for the given inflow and the airfoil param-
eters, which are subsequently used for calculating
the aerodynamic forces. The BEM theory com-
bines two different theories: The Blade Element
Theory and The Momentum Theory as these the-
ories on their own cannot estimate the aerodynamic
forces. The aerodynamic forces acting on a blade
are a function of airfoil geometry and the inflow
parameters. The Blade Element Theory expresses
the aerodynamic forces as the function of airfoil ge-
ometry. Using this approach, the equations for the
Torque (dQ) and the Thrust (dT) acting at an airfoil
section are given as,

dT =
1
2

BρU2
rel (Clcosφ +Cdsinφ)cdr (5)

dQ =
1
2

BρU2
rel (Clsinφ −Cdcosφ)crdr (6)

Where B represents the number of wind turbine
blades, ρ is the air density, Urel is the relative wind
velocity, φ is the angle of the relative wind, c is the
chord length of the airfoil, and Cl and Cd are the lift
and the drag coefficient, respectively. The Momen-
tum theory, however, expresses the Torque (dQ) and
the Thrust (dT) as the function of inflow wind pa-
rameters. This theory refers to a control volume
that extends upstream and downstream of the wind
turbine and applies the conservation of angular and
linear momentum principle within the control vol-
ume such that the change in linear momentum gives
rise to the thrust, and the change in angular momen-
tum causes the torque. The equation for the differ-
ential torque (dQ) and the differential thrust (dT)
obtained from the momentum theory are:

dT = ρU24a(1−a)πrdr (7)

dQ = ρU4a′(1−a)Ωπr3dr (8)

Where a and a′ represent the axial and tangen-
tial induction factors which are the measure of in-
duced linear and tangential wind velocity at the ro-
tor plane, and Ω represent the angular velocity of
the wind turbine blades. The remaining symbols
carry the usual meanings. Although these theories
give the equations for the torque (dQ) and the thrust
(dT), none of the theories can compute the forces
individually as these theories do not capture the en-
tire dynamics of wind turbine operation indepen-
dently. The Blade Element Momentum (BEM) the-
ory combines the information from these theories
by equating the torque (dQ) and the thrust (dT) es-
timates of these two theories. The BEM theory ex-
presses the Lift Coefficient (Cl) as the function of
the inflow parameters and the operating condition
as:

Cl = 4sinφ
cosφ −λrsinφ

σ ′(sinφ +λrcosφ)
(9)

This equation is the BEM theory’s prediction of the
feasible Cl vs α curve for a wind turbine operating
at a tip speed ratio (λr). However, the lift and drag
coefficients for an airfoil is a function of the an-
gle of attack α and the Reynold’s numbers. Using
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this function and BEM theories prediction, the an-
gle of attack (α) can be calculated which can then
be used to compute the aerodynamic forces. The
BEM theory equations can be solved graphically or
numerically using an iterative approach. An effi-
cient method presented in (Ning et al., 2015) is used
to solve the BEM equations in this study. The BEM
equation is solved along the wind turbine blade for
each airfoil cross-section to compute the aerody-
namic forces at the particular section; these forces
are summed up to get the total aerodynamic force
on each wind turbine blade.

6. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are a type
of machine learning algorithm that are inspired by
the Nobel prize work of Hubel and Wiesel (Hubel
and Wiesel, 1963, 1962). ANNs are widely used
for data classification and regression. ANNs are
trained to accurately map the input data x j to out-
put data y j, using M-fully connected layers. The
training process involves finding the layer parame-
ters (weights and biases) which minimizes the loss-
function. The mathematical formulation of ANNs
can be described as

argmin
A j

(
fM(AM, ...., f2(A2, f1(A1,x)...)+λg(A j)

)
(10)

where Ak denote the parameters of neural network
connecting kth layer to (k+1)th layer, g(A j) is reg-
ularization function, λ is regularization strength.
This optimization problem is often solved using
stochastic gradient descent and back propagation
algorithms. Many good texts explaining the fun-
damentals of neural networks and their application
are available (Brunton and Kutz, 2022; Kutz et al.,
2016).

In this study, the ANN model is trained to replace
the BEM algorithm. TurbSim (Jonkman, 2006) is
used to generate the turbulent wind speed time his-
tory and the response is evaluated using the numer-
ical model of the 15MW wind turbine. For each
turbulent realisation, the angle of attack at each
blade node is recorded. The input features are se-
lected such that these parameters should be mea-
surable during actual wind turbine operation. The

Figure 3: ANN Model Verification: Comparison of
Angle of attack

four parameters selected to predict the angle of at-
tack at each blade node are the wind velocity at
blade node in x and y direction, the rotor speed,
and the rotor azimuth angle. The objective function
is selected as a linear combination of squared er-
rors and weights. Using weights to objective func-
tion serves as the regularization technique which
results in an efficient network which can general-
ize the data and avoid over-fitting. An optimiza-
tion routine is first executed such that an optimum
balance between accuracy and speed is achieved at
the minimum number of neurons per layer. The de-
tails of Bayesian optimization routine can be found
in (MacKay, 1992; Foresee and Hagan, 1997). The
ANN training process is performed using the Statis-
tics and Machine Learning toolbox in Matlab. A 3-
layer NN is found to predict the angle of attack with
a high accuracy. A R-squared value of more than
0.98 for the test data is achieved at all the blade
nodes. The prediction accuracy of ANN model is
validated in both steady and turbulent cases. The
performance of ANN model at three blade nodes
is presented in figure 3. The comparison time his-
tory response of wind turbine estimated using BEM
and ANN algorithm is presented in figure 4. By
replacing the BEM algorithm by ANN model, the
overall computational time is reduced by 30%. A
far better speed-up can be achieved when using the
ANN-model in standalone mode for computing the
aerodynamic forces alone.
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(a) Blade in-plane deformations

(b) Blade out of plane deformations

Figure 4: ANN Model Verification: Comparison of
blade response

7. FRAGILITY ANALYSIS

This study focuses on investigating the effect of
soil-structure interaction (SSI) on the serviceabil-
ity limit state of the IEA-15MW wind turbine. The
limit state chosen for this study is the rotation at
the tower-base, which must be less than 0.5◦, in-
cluding the construction error which ranges from
0.2◦ to 0.25◦, according to DNV guidelines (DNV,
2014; Zuo et al., 2020). The fragility analysis is
conducted for wind speeds ranging from cut-in to
cut-out wind speeds with a constant turbulence in-
tensity of 10%. The study evaluates wind turbine
response for both fixed base and flexible base con-
ditions, where the soil stiffness is computed for a
Dense sand with a representative shear modulus of
320GPa. The obtained fragility curves for the ser-
viceability limit state of the IEA-15MW wind tur-
bine in case of fixed base and with consideration
of SSI are presented in figure 5. The results show
that SSI has a significant impact on the behavior of
wind turbines. The methodology used in this study
can be further extended to analyze multiple limit
states and random variables

8. CONCLUSION
In this research, the effectiveness of Artificial

Neural Network (ANN) in modeling a complex
non-linear system is demonstrated. The authors
provide a brief introduction to the Blade Element
Momentum (BEM) theory and emphasize the need
for an efficient evaluation of aerodynamic forces in
the context of probabilistic design. The use of ANN
has resulted in a considerable reduction in compu-
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Figure 5: Effect of SSI on serviceability LS of IEA-
15MW wind turbine

tational time. The authors conduct a fragility anal-
ysis of an IEA-15MW wind turbine, focusing on
the serviceability limit state of foundation tilt. The
results of the fragility analysis underscore the im-
portance of considering Soil-Structure Interaction
(SSI) in the design process of wind turbines. The
primary objective of this study is to showcase the
potential of ANN, which could be extended further
to carry out a more comprehensive analysis, includ-
ing multiple limit states and additional random vari-
ables.
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