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ABSTRACT: Surrogate models are often employed in engineering analysis to replace a detailed model
with complicated geometry, loading, material properties and boundary conditions, in order to achieve
computational efficiency in iterative calculations such as model calibration or design optimization. The
accuracy of the surrogate model depends on the quality and quantity of data collected from the
expensive physics-based model. This paper presents a novel approach to efficiently construct and
improve surrogate models for high dimensional problems in both the input and output spaces. In the
proposed method, the principal components and corresponding features in the output field quantity are
first identified. Mapping between inputs and each feature is then considered, and the active subspace
methodology is used to capture the relationship in a low-dimensional subspace in the input domain.
Thus dimension reduction is accomplished in both the input and output spaces, and surrogate models are
built within the reduced spaces. A new low-dimensional adaptive learning strategy is proposed in this
work to improve the surrogate model. With multiple iterations of this adaptive learning procedure, the
optimal surrogate is achieved without intensive model simulations. In contrast to existing adaptive
learning methods which focus on scalar output or a limited number of output quantities, this paper
addresses adaptive learning for both high-dimensional input and output, with a novel learning function
balancing exploration and exploitation. The adaptive learning is based on the active variables in the
low-dimensional space and once the newly-added training sample is selected, it can be easily mapped
back to the original space for running the physics-based model. The proposed method is demonstrated
on an additively manufactured component, with a high-dimensional field output quantity of interest,
namely the residual stress in the component that has spatial variability due to the stochastic nature of
multiple input variables (including process variables and material properties).

1. INTRODUCTION
Engineering analysis such as reliability analysis,

model calibration, and design optimization typically
requires evaluations of the physics-based compu-
tation models at tens of thousands of samples in

the input space. It is expensive to run the detailed
physics-based models for a large number of times.
For complex systems, the quantities of interest can
be a multivariate output, which may be spatially
or temporally correlated, and a function of a large
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set of variables in the input space. In order to ad-
dress the challenges posed by computational costs,
correlations, and high dimensionalities in both in-
put and output spaces, inexpensive surrogate mod-
els are necessary to replace the expensive models
to efficiently map the model input to the output.
The accuracy of the surrogate model depends on
the quality and quantity of data collected from the
expensive physics-based model, it is computation-
ally expensive itself to construct a surrogate model
and iteratively improve it to a reasonably accuracy
level by active learning, especially in the context of
high dimensional multi-physics problems. For high
dimensional problems, a large number of samples
are required for sufficient surrogate modeling. It
is also crucial to conduct efficient design of exper-
iments (Sacks et al. (1989)), or DoE, for accurate
surrogate model construction with minimal compu-
tational cost. Non-adaptive DoE methods may result
in unsatisfactory surrogate models due to the lack
of prior knowledge of the target function and lim-
ited computational resources; adaptive DoE meth-
ods use an active learning-based sampling strategies
that utilize information of existing samples and the
surrogate model in the previous iteration, thus new
samples can be sequentially added in regions where
the target function is nonlinear or exhibits drastic
change.

Most studies focus on efficiency improvement by
lowering the dimensionality in either the input space
or the output space. Recent work has considered
both input and output dimension reduction, such as
the principal component-active subspace (PCAS)
method (Vohra et al. (2020); White et al. (2019)),
but limited to tens of inputs and hundreds of outputs;
in Guo et al. (2022), a systematic way of finding the
most suitable methods for the surrogate modeling
for high-dimensional problems based on the size of
dimensionality is proposed. Recent work also in-
vestigate adaptive learning strategies, however, they
focus on a limit state rather than a function over the
entire input space, and focus on a scalar output with
limited number of input.

In this paper, we aim to address the adaptive sur-
rogate modeling for problems with high dimension-
alities in both the input and output space, with lim-

ited computational resources. We first conduct di-
mension reduction in output space with very high
dimensionality (thousands of outputs) using singu-
lar value decomposition (SVD) and identify key fea-
tures. Mapping between inputs and each feature is
then considered, and the active subspace method-
ology is used to capture the relationship in a low-
dimensional subspace, where surrogate models are
built. A low-dimensional adaptive learning strategy
is proposed to improve the surrogate model. The
proposed method is demonstrated on an additively
manufactured component, with a high-dimensional
field output quantity of interest, the residual stress
in the part that has spatial variability due to the
stochastic nature of multiple input variables, includ-
ing process variables and material properties. The
main contributions of this paper are: (1) Surrogate
models are efficiently built in a lower-dimensional
space to address the challenge posed by high diemn-
sionalities in both the input and output space. (2)
Adaptive surrogate modeling is proposed with an ac-
tive learning function considering both exploration
and exploitation with limited samples.

2. DIMENSION REDUCTION
2.1. Dimension reduction in the input space

An active subspace is a low-dimensional subspace
that consists of important directions in a model’s
input parameter space (Constantine (2015)). The
effective variability in a model output 𝑓 due to un-
certain inputs is predominantly captured along these
directions. The directions constituting the active
subspace are the dominant eigenvectors of the un-
centered covariance matrix:

C =
∫
Ω

(
∇𝝃 𝑓

) (
∇𝝃 𝑓

)⊤
`(𝑑𝝃) (1)

which is a positive semi-definite matrix with
`(𝑑𝝃) = 𝜋(𝝃)𝑑(𝝃), where 𝜋(𝝃) is the joint proba-
bility density function of 𝝃. Herein, the random
vector 𝝃 ∈ Ω ∈ R𝑁𝑝 is the vector of uncertain model
inputs, 𝑁𝑝 is the number of the uncertain inputs; 𝑓
is assumed to be a square integrable function with
continuous partial derivatives with respect to the
input parameters; further, we assume that the par-
tial derivatives are square integrable. Since C is
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symmetric and positive semi-definite, it admits a
spectral decomposition:

C = WΛW⊤ (2)

Here, Λ = 𝑑𝑖𝑎𝑔(_1, . . . ,_𝑁𝑝
) with the eigenvalues

_𝑖’s sorted in descending order _1 ⩾ _2 ⩾ . . . ⩾
_𝑁p ⩾ 0. and W has the (orthonormal) eigenvec-
tors w1, . . . ,w𝑁𝑝

as its columns. The eigenpairs
are partitioned about the 𝑟th eigenvalue such that
_𝑟/_𝑟+1 ≫ 1,

W = [W1 W2] , Λ =
[
Λ1

Λ2

]
(3)

The columns of W1 = [w1 . . .w𝑟] span the dominant
eigenspace of C and define the active subspace, and
Λ1 is a diagonal matrix with the corresponding set
of eigenvalues, _1, . . . ,_𝑟 , on its diagonal. Once the
active subspace is computed, dimension reduction is
accomplished by transforming the parameter vector
𝝃 into 𝜼 = W⊤

1 𝝃 ∈ R𝑟 .

2.2. Output dimension reduction by SVD
SVD reduces the dimension by projecting the

original data along the first few orthogonal prin-
cipal directions that capture most of the variance in
the data. If 𝑿 ∈ R𝑀×𝑁 then there exists 𝑼, 𝑽 and 𝚺
such that

𝑿 =𝑼𝚺𝑽′ =
min(𝑀,𝑁)∑︁

𝑘=1
𝜎𝑘u𝑘v′𝑘 (4)

This factorization is called singular value decom-
position. 𝑿 is a 𝑀 × 𝑁 matrix. 𝑼 is a 𝑀 ×𝑀
unitary matrix (𝑼′𝑼 = 𝑼𝑼′ = 𝑰𝑀) and consists of
left singular vectors (𝑼 = [𝒖1,𝒖2, . . . ,𝒖𝑀]). 𝑽 is a
𝑁×𝑁 unitary matrix (𝑽′𝑽 =𝑽𝑽′ = 𝑰𝑁 ) and consists
of right singular vectors (𝑽 = [𝒗1, 𝒗2, . . . , 𝒗𝑁 ]). 𝚺 is
a 𝑀 × 𝑁 rectangular diagonal matrix that consists
of singular values 𝜎1,𝜎2, . . . ,𝜎𝑝, 𝑝 = 𝑚𝑖𝑛{𝑀, 𝑁}
and 𝜎1 ⩾ 𝜎2 ⩾ . . . ⩾ 𝜎𝑝. Per the unitarity of 𝑼
and 𝑽 and the properties of matrix production,
𝑼′𝑿𝑽 = 𝑑𝑖𝑎𝑔(𝜎1,𝜎2, . . . ,𝜎𝑝).

The amount of variance explained by the 𝑖-th sin-
gular value and corresponding singular vector pairs
is given by:

𝑅2
𝑆𝑉𝐷 = 𝜎2

𝑖 /Σ 𝑗𝜎
2
𝑗 . (5)

To build an approximation of the original matrix by
using lower dimensional components, perform SVD
on the original data, select the top 𝑘 largest singular
values in 𝚺 and the corresponding first 𝑟 columns
selected from 𝑽. An approximation of the original
matrix 𝑿 can be reconstructed by using:

�̂� =𝑼𝑟𝚺𝑟𝑽
′
𝑟 , (6)

where𝑼𝑟 is a matrix containing the first 𝑟 left singu-
lar vector, 𝚺𝑟 is the first 𝑟 singular values organized
in a 𝑟 × 𝑟 diagonal matrix and 𝑽𝑟 is a matrix con-
taining the firs 𝑟 right singular vectors.

The amount of overall variance captured by the
reconstructed matrix can be calculated using Eq.
(5) and the number of singular values that is used to
reconstruct the matrix, 𝑟.

A lower dimensional representation (dimension
𝑟) in place of the original data (dimension 𝑁) can
be taken as

�̂�
𝐿𝐷 =𝑼𝑟𝚺𝑟 , (7)

where �̂�
𝐿𝐷 ∈ R𝑀×𝑟 contains 𝑀 𝑟-dimensional

points. These points can be viewed as the coor-
dinates on the orthornormal basis [𝒗1, 𝒗2, . . . , 𝒗𝑟].
We will refer to these coordinates as ‘features’. We
consider a spatially varying field quantity, 𝑺 = 𝑺(𝜽),
where 𝜽 ∈ 𝛀 is the input on its domain 𝛀. 𝑺(𝜽) ∈
R𝑟×𝑐 is evaluated on a two-dimensional mesh of size
(𝑟×𝑐) for a given set of inputs 𝜽 . 𝑺(𝜽) is available at
𝑁𝑠 samples, drawn from the joint probability den-
sity function of 𝜽 . A data matrix 𝑿 ∈ R𝑁𝑠×(𝑟×𝑐) is
constructed using the field data at 𝑁𝑠 samples, each
row of 𝑿 contains the matrix 𝑺, reshaped as a row
vector of size (𝑟 × 𝑐).

We use a matrix L to denote the features of 𝑺.
L has 𝑁𝑠 rows, each containing feature values cor-
responding to a sample. The number of columns
in L can be determined by using the amount of
explained variance as shown in eq.(5) for the spe-
cific engineering problem, i.e., equal to the number
of singular vector-singular value pairs (𝐾∗) that is
sufficient for reconstructing the field 𝑺 with desired
accuracy. The feature matrix L can be mathemati-
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cally represented as:

L =


L11 L21 · · · L𝐾∗1
L12 L22 · · · L𝐾∗2

...
... . . . ...

L1𝑁𝑠
L2𝑁𝑠

· · · L𝐾∗𝑁𝑠


(8)

Correspondingly, the approximation �̂� of 𝑺 will
be each row of the product of the matrices, L and
𝑽𝐾∗ , reshaped to a matrix of dimension 𝑟-by-𝑠.
Note that each element L 𝑗𝑖 in matrix L represents
a value of a particular feature 𝑗 corresponding to
a sample 𝑖. This is an abstract value in the low-
dimensional latent space; one such value does not
represent any physical value (output in the origi-
nal high-dimensional space). Each element 𝑋𝑖𝑚 in
𝑿 represents a physical QoI in the physical space
at a particular point 𝑚 in the mesh of size 𝑟 × 𝑐,
corresponding to the sample 𝑖 of a total size 𝑁𝑠.

3. ACTIVE LEARNING STRATEGY
There are three key components in the proposed

active learning for adaptive improvement strategy:
the initial training samples, the learning function
and the stopping criteria. Two sets of samples are
first generated: one for building initial surrogate
model, the other is used as a testing set. An active
learning function that combines exploration and ex-
ploitation will be used to choose new training sam-
ples that will be added to the first set for updating
the surrogate model in each iteration; the testing set
will remain unchanged throughout the active learn-
ing process.

The initial set of training samples, D0 =
{(𝜽𝑖,𝑺𝑖)}𝑁0

𝑖=1, is generated using the Latin hyper-
cube sampling (LHS) technique and will be used
to construct the initial surrogate model. The testing
sample set, D𝑡 = {(𝜽𝑖,𝑺𝑖)}𝑁𝑡

𝑖=1, is also generated us-
ing LHS. The active learning function 𝑙(𝜼)) is then
employed to iteratively add new training samples
into D0 in order to adaptively improve the surrogate
model. This learning function has two parts, global
exploration part which is multiplied by 𝛼 and local
exploitation part which is timed by (1−𝛼). The ex-
ploration part is a distance-based metric for explor-
ing unsampled regions in the domain; the exploita-
tion is a nonlinear measure for identifying regions

with large prediction bias. 𝛼 ∈ [0,1] is the weighting
factor balancing exploration and exploitation.

(9)

𝑙(𝜼) = 𝛼 ×
(

𝑤𝐹
∑𝑁
𝑗=1∥𝜼 − 𝜼train,𝐹

𝑗
∥

𝑁 · max𝑝 ̸=𝑞 ∥𝜼train,𝐹
𝑝 − 𝜼train,𝐹

𝑞 ∥

+
∑︁
𝑖

𝑤𝑖
∑𝑁
𝑗=1∥𝜼𝑖 − 𝜼train,𝑖

𝑗
∥

𝑁 · max𝑝 ̸=𝑞 ∥𝜼train,𝑖
𝑝 − 𝜼train,𝑖

𝑞 ∥

)
+ (1 − 𝛼) ×

R
(
𝜼;𝜼𝑛𝑟

)
max{R(𝜼;𝜼𝑛𝑟)}

The exploration part consists of a single ratio
and a sum of ratios. All ratios are multiplied by
a weighting factor 𝑤𝐹 or 𝑤𝑖, which account for
the contributions of different features. For each
of the dominant features indexed by 𝑘 = 1,2, . . . , 𝐾∗,
first calculate the ratio of 𝑤𝑘 = 𝜎2

𝑘
/Σ𝐾

∗

𝑚=1𝜎
2
𝑚 and the

mean absolute error of all training points with cur-
rent surrogate model, 𝑀𝐴𝐸𝑘 ; then calculate the
product 𝑤𝑘 ·𝑀𝐴𝐸𝑘 . The feature with the largest
product is referred to as ‘focus feature’ with cor-
responding weight 𝑤𝐹 ; others are referred to as
‘non-focus feature’. The numerator quantifies the
Euclidean distance between 𝜼, the unknown point
and {𝜼train,𝐹

𝑗
}𝑁
𝑗=1, all active variables corresponding

to all 𝑁 training points (obtained by using W1𝐹 ,
the bases of active subspace associated the focus
feature); the denominator is a normalizing factor,
which is 𝑁 times the maximum largest pairwise Eu-
clidean distance among all 𝑁 training points. The
sum of ratios contains ratio of all non-focus fea-
tures. Because the active subspace associate with
each feature is different, the unknown point 𝜼 in the
active subspace of the focus feature need to be prop-
erly transferred to the active subspace of the corre-
sponding feature 𝑖 using the matrices W1𝐹 and W1𝑖,
𝜼1𝑖 = W⊤

1𝑖W1𝐹 · 𝜼. The exploitation part is defined
based on the residual of the current surrogate model
prediction such thatR

(
𝜼;𝜼𝑛𝑟

)
= L𝐹(𝜼𝑛𝑟)−L̂𝐹(𝜼𝑛𝑟),

where 𝜼𝑛𝑟 ∈ {𝜼train,𝐹
𝑗

}𝑁
𝑗=1 is the training point with

smallest Euclidean distance to the unknown point 𝜼,
i.e., nearest neighbor.

The new training sample 𝜽∗ can be obtained in
two steps: (1) find the maximizer of the learning
function 𝜼∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑙(𝜼)); (2) transfer 𝜼∗ back to
the input variables’ domain Ω, 𝜽∗ = W⊤

1𝐹𝜼
∗. In or-

der to find the maximizer of the learning function
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𝑙(𝜼), sampling-based optimization is adopted here
because the learning function that is constructed
based on distance calculations between samples. A
candidate pool P[ is first generated based on the
information provided by the initial surrogate mod-
els. The learning function 𝑙(·)) is then evaluated at
each sample within P[, 𝜼∗ and 𝜽∗ is selected. The
physics-based model can then be evaluated at 𝜽∗

to obtain 𝑺∗ and the dataset of all training samples
will be updated as D𝑖 = D𝑖−1

⋃{(𝜽∗,𝑺∗)}, where 𝑖
indicates the iteration. 𝜼∗ should be removed from
P[ at iteration 𝑖. Finally, the iterative process ends
until the predefined stopping criteria, i.e, the accu-
racy level is achieved. The proposed active learning
function balances exploration and exploitation, con-
siders contributions of all dominant features, and
provides an easy way to generate high dimensional
input samples.

4. NUMERICAL EXAMPLE
Electron beam melting (EBM) is an additive man-

ufacturing (AM) process of fusing powder parti-
cles, layer-upon-layer, using an electron beam as
the energy source. Multiple passes of a low power
electron beam is used for heating and sintering the
powder bed prior to selective melting. We focus
on the thermo-mechanical behavior of an AM part
produced by the EBM process using Ti6Al4V. A fi-
nite element-based thermal analysis model is used to
simulate the thermal response of the part and a finite
element-based mechanical model that uses the part’s
thermal response to estimate the residual stress in
the part at the end of the cooling phase. A layer

Figure 1: Part geometry and the corresponding mesh
as modeled in Abaqus

thickness, 50 µm and a part of dimensions (in mm),
2 × 1.5 × 0.65 is used as shown in Fig. 1 (left).
A non-uniform mesh is employed wherein a finer
mesh is considered for the powder region where the
heat flux is applied as shown in Fig. 1 (right). The

mesh consists of 13,200 nodes and 10,752 elements
in total.

Surrogate models (one for each dominant feature)
are constructed for the residual stress field, 𝑺 at the
cross-section of the part (𝑥− 𝑧 plane in Fig. 1) pass-
ing through its center (𝑥𝑐− 𝑧𝑐 plane). The surrogate
model maps three sets of parameters, the process pa-
rameters, mechanical properties, and thermal prop-
erties to the feature. Process parameters include
beam power, scan speed, and pre-heat temperature.
Mechanical properties include yield strength, elas-
tic modulus, and bulk density of Ti6Al4V. Thermal
properties include specific heat (𝐶𝑝) and bulk ther-
mal conductivity (^), which are considered to be
functions of the local temperature, 𝑇 , and a polyno-
mial of degree 2 is fit to a set of data pertaining to
the variation of 𝐶𝑝 and ^ with temperature (20K –
1655K), provided in Fu and Guo (2014). Hence, a
total of 12 parameters (𝜽) are mapped to the stress
field. A uniform probability distribution is consid-
ered for each parameter with range [0.9𝜽0,1.1𝜽0],
where 𝜽0 denotes a vector of nominal values, listed
in Table 1. An initial set of training samplesD0 and

Table 1: Nominal values of parameters

Scan speed, 𝑣 500 𝑚𝑚/𝑠
Beam power, 𝑃 160𝑊

Pre-heat temperature, 𝑇0 650 ◦C
Yield strength, 𝑌 825 𝑀𝑃𝑎

Density, 𝜌 4428 kg/m3

Elastic Modulus, 𝐸 110 𝐺𝑃𝑎
𝐶0,𝐶𝑝

, 𝐶1,𝐶𝑝
, 𝐶2,𝐶𝑝

540, 0.43, −3.2×10−5

𝐶0,^, 𝐶1,^, 𝐶1,^ 7.2, 0.011, 1.4×10−6

Figure 2: Residual stress field in the 𝑥𝑐 − 𝑧𝑐 plane

testing samplesD𝑡 are selected using LHS; the num-
ber of samples in these sets are 𝑁0 and 𝑁𝑡 . Residual
stress field is initially computed at the 𝑥𝑐 − 𝑧𝑐 plane
for 𝑁0 samples in the 12-dimensional input domain
using the detailed thermal and mechanical models.
Stress data is simulated on a 2-dimensional non-
uniform grid comprising 32 points along the length
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(𝑥𝑐) and 14 points along the height (𝑧𝑐) as high-
lighted in Fig. 2 (left).

4.1. Dimension reduction
In order to address the challenge of the high di-

mensionalities of both the input and output spaces,
the surrogate models will be constructed for in low-
dimensional space. Dimension reduction will be
performed as stated in Section 2. The number of fea-
tures to build surrogate models, 𝐾∗, is set to three, as
the top three feature will account for over 95% of the
variance in the QOI; for each feature, L1, L2, L3,
a corresponding active subspace is then computed.
The number of active variables is set to one for all
the features because the variance explained by the
first eigenvector, i.e, the first column of W, is over
95%. A linear regression model will be used as the
form of the surrogate model. Comparisons of using
more than three features, as well as using a larger
number of active variables are performed; there is
no significant difference than the strategies men-
tioned in the preceding paragraph. Also note that
in all experiments, it is observed that feature 1 is
always the focus feature.

4.2. Surrogate models and performance metric
The map from 𝜽 to each feature L 𝑗 is approxi-

mated by a surrogate model L 𝑗 (𝜽) = �̂� 𝑗 (𝜼 𝑗 ). The
output QOI, 𝑺, is reconstructed using surrogate pre-
diction for each feature L 𝑗 ; the reconstructed stress
field are denoted using �̂�. The surrogate model
constructed at the 𝑖-th iteration is denoted as �̂�𝑖

𝑗
,

𝑖 = 0 being the initial surrogate model constructed
using D0. At each iteration, the accuracy of surro-
gate model will be evaluated every sample indexed
by 𝑚 = 1,2, . . . , 𝑁𝑡 samples in D𝑡 using the metric
based on the relative 𝑙2-norm of the difference in
the prediction of the stress field:

𝜖 =
1
𝑁𝑡

Σ
𝑁𝑡

𝑚=1
∥𝑺𝑚 − �̂�𝑚 ∥

∥𝑺𝑚 ∥
(10)

4.3. Investigation of options for adaptive improve-
ment of surrogate models with active learning

For problems with high dimensionalities in both
the input and output space, there are many chal-
lenges in efficient adaptive improvement of surro-
gate models with active learning: (1) With limited

computational resources, available training samples
are limited. (2) The properties of candidate pool for
sampling-based optimization of the active learning
function, such as the range, need to be considered.
(3) At each iteration, the number of samples is differ-
ent, therefore, there are different options to map the
output 𝑺 to features L and the associated mapping
of the input 𝜽 to active variables 𝜼. (4) The param-
eter of the active learning function that balances the
exploration and exploitation may affect the adaptive
improvement process. In this section, we perform
multiple trials to address these challenges. In the
following investigations, the size of the testing set
𝑁𝑡 is set to 10.

4.3.1. The number of training points
We first investigate the influences of both the size

of initial training set and the number of newly-added
training points in each iteration. Note that in this
investigation, options for mapping, candidate pool
properties, and parameter in learning function are
kept the same for all trials. The size of the ini-
tial training set are chosen as 𝑁0 = 13, 20, and 40.
The accuracies of initial surrogate models in active
subspace are evaluated using the original space er-
ror metric, 𝜖 , as explained above and shown in the
table below. For the influence of the number of

Table 2: Surrogate model accuracy for different 𝑁0

𝑁0 = {D0} 13 20 40
Error 𝜖 17.38% 9.61% 8.23%

newly-added samples, we experimented with 1 and
3. With the size of the initial training set 𝑁0 = 20,
the results are shown in Fig. 3. The difference be-
tween the accuracies of the surrogate models when
adding one point at each iteration and when adding
three points at each iteration was small. Consid-
ering limited computational resources, adaptively
adding one new point is an optimal choice.

4.3.2. Properties of the candidate pool
A sample-based optimization is used to choose

new training point, therefore, a pool of candidate
points for active variables, P[, need to be con-
structed. The range of the candidate points in P[
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Figure 3: Influence of the number of newly-added sam-
ples

should be informed by the range of active variable
values corresponding to all 𝑁0 samples in the initial
training set D0. We start with 𝑁0 = 13 samples, the
range of the active variable values obtained using di-
mension reduction R𝑁0 is obtained. Two candidate
pools, P(1)

[ (much wider than the R𝑁0 , candidates
randomly distributed) and P(2)

[ (slightly wider than
the R𝑁0 , candidates evenly distributed) are gener-
ated, as shown in Fig. 4. Note that for candidate
pools, only the x-axis values are of interests; they
were plotted on y-axis values for easy observation
and the y-axis values of the candidates do not have
any meanings. The red dots in the figure indicates
the lower-dimensional representations of the initial
training samples, with y-axis being the first fea-
ture L1 values and x-axis being the active variable
values. The red dash is the surrogate of feature 1
trained by 𝑁0 = 13 samples and the vertical red dots
indicate the range of the active variable of the those
samples. Experiments of adaptive improvements of

Figure 4: Two candidate pools in active subspace

the surrogate models by using samples both candi-
date pools are conducted. In each iteration, only
one new sample is added to the training set D. The
results of the experiments are compared in Fig. 5.
The active learning with the wider candidate pool,
P(1)
[ , resulted in lower error at the end.

Figure 5: Comparison of using different candidate pool

4.3.3. Options of mapping
The number of samples in one iteration is differ-

ent from that of the previous iteration. Thus in one
iteration 𝑖 (where there are 𝑁𝑖 samples for surrogate
model construction), the feature can be calculated
using the 𝑽 from the previous iteration (SVD re-
sults of iteration 𝑖 − 1, denoted as 𝑽(𝑖−1)), or 𝑽 in
this iteration (denoted as 𝑽(𝑖)). If 𝑽 is used, the
active variable can be calculated using either W(𝑖−1)

1
(active variable mapping from previous iteration)
or W(𝑖)

1 (active variable mapping calculated in this
iteration). The options can be summarized in the
following flowchart in Fig. 6. We start with 𝑁0 = 13
points and candidate pool P1. The comparison of
these three options at the first iteration where the
number of samples 𝑁 = 14 is shown in Fig. 7. Note
that the newly added point in this iteration is marked
in ‘x’ and the 𝑁0 = 13 initial training samples are
marked with dots. Surrogate model for feature 1
trained with points obtained by different options are
the dashed lines in the corresponding color. We
observe that: (1) the feature does not change much
whether𝑽(𝑖−1) is used. (2) When active variable val-
ues are calculated using W(𝑖)

1 , the values are almost
identical. Although using the 𝑽(𝑖−1) and W(𝑖−1)

1 can
result in a better surrogate, it is still recommended
to use the feature and active variable mapping at the
current iteration.

Figure 6: Different mapping options
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Figure 7: Comparison of different mapping options

4.3.4. Parameter in active learning function
In the active learning function 𝑙(𝜽), the parame-

ter 𝛼 balances the exploration and exploitation and
affect the active learning process in terms of sample
selection and the improvement of the surrogate. In
this experiment, 𝛼 = 0, 0.2, 0.5, and 1 are chosen
to study the influence of it. We start with 𝑁0 = 13
samples and the results are shown in Fig. 8. Pure
exploration (𝛼 = 1) yields the best improvement.

Figure 8: Comparisons of using different 𝛼 values

5. CONCLUSION
This paper presents a novel approach to efficiently

construct and improve surrogate models for high di-
mensional problems in both the input and output
spaces. Principal components and corresponding
features of the output are first identified. The ac-
tive subspace methodology is used to reduce the in-
put dimension. Surrogate models are subsequently
built within the reduced spaces, where an active
learning strategy is proposed to improve the surro-
gate model. The adaptive learning is based on the
active variables in the low-dimensional space and
once the newly-added training sample is selected
and can be easily mapped back to the original space
for running the physics-based model. The proposed
method is demonstrated on an additively manufac-
tured component with a high-dimensional residual
stress field and multiple input variables including

process variables and material properties. Investi-
gations of different options in the proposed method
are conducted.

The adaptive learning strategy proposed in this
work is a ‘zero-th order’ approach in the sense that
biases and distance-based metrics are used. In the
future, this work can be extended to a ‘first-order’
based method, in which information directly ob-
tained from the model can be used to guide the
active learning process; this is a challenging is-
sue when high dimensionalities and complex multi-
physics simulations are involved. In addition, the
errors presented in the surrogate modeling process
can be quantified, alongside with proper discrep-
ancy modeling either in the low dimensional space
or the original high dimensional space, the uncer-
tainty of remaining stress predictions at any location
beyond the considered grid can be quantified.
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