
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 1 

Case Study in the Application of Probabilistic Framework for 

Pipeline Failure Estimation due to Landslides 

 
Smitha D. Koduru 
Strategic Advisor, Enbridge Gas Transmission and Midstream, Calgary, Canada 

Samuel Cheng 
Senior Engineer, Enbridge Gas Transmission and Midstream, Houston, USA 

Keng Yap 
Integrity Reliability Manager, Enbridge Gas Transmission and Midstream, Houston, USA 

Sherif Hassanien 
Integrity Assessments Director, Enbridge Gas Transmission and Midstream, Houston, USA 

 

ABSTRACT: As transmission pipelines are present in diverse terrains, identification of the susceptible 

regions for landslides and slope movement requires significant effort, and the scale of the system often 

poses a challenging engineering task for site investigations. This case study presents the application of 

data-driven approaches for the probability estimation of the landslide susceptibility over a large gas 

transmission pipeline network in North America. 

Landslides pose a significant integrity threat to 

buried oil and gas pipelines, causing failure that 

results in the loss of containment. As transmission 

pipelines span across diverse terrain, 

identification of sites susceptible to slope 

movement and landslides requires significant 

effort, and the scale of the pipeline system often 

poses a challenging engineering task for site 

investigations. The threat posed by the large-scale 

ground movement to pipeline integrity is often 

managed through aerial and satellite-based 

inspection systems as well as the inline inspection 

(ILI) of the pipelines through inertial mapping 

units (IMU) that provide indirect measurements 

of the pipeline curvature. Due to the limited 

spatial and temporal resolution of these inspection 

systems, there are significant uncertainties in the 

inference of slope hazard susceptibility of these 

sites. Furthermore, there are uncertainties in 

estimating the probability of pipeline failure due 

to the slope movement activity, as the pipeline 

response to the ground movement depends not 

only on the pipeline parameters, but also on the 

site-specific soil parameters. 

The probability of failure (Pf) of a pipeline 

due to ground movement on a slope is commonly 

represented as  

Pf = P(Sd > Sc| ds ≥  D) P(ds ≥  D)              (1) 

where Sd is the strain demand on the pipeline due 

to imposed ground movement, Sc is the strain 

capacity of pipe body and the girth weld joints to 

accommodate the displacement caused by the 

ground movement, ds is the magnitude of the 

ground displacement and D is the threshold at 

which a slope is categorized as susceptible for 

landslide and can induce strain demand on the 

buried steel pipeline. P(ds ≥  D) is the probability 

of occurrence of a landslide and is commonly 

termed as ‘landslide susceptibility’. P(Sd > Sc| ds ≥  

D) is the conditional probability that the pipeline 

would have a loss of containment given the 

occurrence of the ground movement.  

Most of the probabilistic landslide 

assessment models in the literature (Baumgard et 
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al. 2016, Guthrie and Reid 2018, Newton et al. 

2022) have focused on the landslide 

susceptibility. The susceptibility factors are 

derived as a combination of the regional 

geological, topographic and soil characteristics 

along with the field investigations and site-

specific observations. The probability of 

occurrence of the landslide is derived based on the 

historical occurrence of landslides as a function of 

the susceptibility factors. This approach is 

amenable to landslide hazard management on a 

large regional scale and to identify the potential 

locations where further investigation and 

inspection is warranted. However, this approach 

is prone to providing probability estimates that 

vary only by an order of magnitude and thus lacks 

the granularity that is actionable at a spatial scale 

in pipeline integrity management.  

In contrast to the landslide susceptibility 

models, the probabilistic models to estimate the 

conditional probability of the pipeline failure use 

structural reliability approaches (Sen and 

Hassanien 2019, Fowler et al. 2022). These 

models consider the site-specific characteristics 

such as soil type, slope angle, movement zone, 

angle of movement between the soil and the 

pipeline longitudinal axis to estimate the strain 

demand imposed by the soil movement, ideally 

through advanced finite-element analysis (FEA). 

This approach is feasible where landslide 

susceptible sites are known and instrumented with 

slope inclinometers to provide the ground 

movement rate. However, in a large scale pipeline 

system, instrumentation and monitoring of all 

landslide susceptible sites become impractical.  

Although there have been previous efforts for 

data fusion between the landslide susceptibility 

factors and pipeline failure probability estimates 

(Koduru 2019), these were not extended to the 

pipeline system-wide application at a regional 

scale. More recently, a GIS-based data driven 

approach was developed to estimate the landslide 

susceptibility (Varela et al., 2022) and used high-

resolution light detection and ranging (LiDAR) 

data along the pipeline corridor.  

In the present case study, the GIS-based data 

driven approach is applied to a gas transmission 

pipeline system of over 18,000 miles spread 

across North America. The primary objectives of 

the study are (a) the verification of the model 

performance against standard statistical attributes 

and, (b) development of a model validation 

approach where the true landslide susceptibility is 

unknown until the occurrence of the event. 

Furthermore, a new probabilistic framework is 

introduced to account for the pipeline failure 

probability as a reformulation of the standard 

approach noted in the Eq. (1).  

A brief description of the GIS-based data 

driven approach is presented first, followed by a 

description of the gas transmission pipeline 

system and the summary of the landslide 

susceptibility predictions. Next, a discussion of 

the model verification approach and summary of 

the model validation results are presented. This is 

followed by the reformulated framework for 

estimating the pipeline probability of failure. 

Finally, this study concludes with a discussion on 

the model validation approaches in the absence of 

the truth data sets. 

1. MODEL AND SYSTEM DESCRIPTION 

1.1. GIS-based data driven model 

The GIS-based data driven model uses the high-

resolution LiDAR data along the pipeline corridor 

as shown in Figure 1.  

 

 
Figure 1: High-resolution LiDAR along the pipeline 

corridor where slope anomalies are marked (adopted 

from Varela et al. 2022) 
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The model consists of five model factors that 

are derived from a GIS-referenced polygon called 

‘slope anomaly’ (SA). The high-resolution 

LiDAR data is used to delineate the polygons for 

slope anomalies, which are identified by the 

geomorphic review of the data by the geotechnical 

experts. The LiDAR data is overlaid with the 

public domain surficial soil characteristics 

available from Soil Survey Geographic Database 

(SSURGO) developed by the United States 

Department of Agriculture (USDA) Natural 

Resources Conservation Service (NRCS). For the 

pipeline system in Canada, the surficial and 

quaternary geology is used to infer the surficial 

soil characteristics. Once the slope anomalies and 

the associated soil characteristics are known, each 

slope anomaly is assigned a landslide 

susceptibility rating based on the existing 

geomorphology or potential for land movement. 

This is the first model factor to be assessed. Table 

1 summarizes the qualitative classification and 

scores assigned to the ‘landslide susceptibility’ 

(LS) factor of the model.  

The remaining four factors are derived based 

on the slope anomaly characteristics and their 

spatial relationship with the pipeline. These 

include the state of activity of the slope anomaly 

(A), distance of the slope anomaly from the pipe 

centerline (D), and spatial relationship of the 

slope anomaly with the pipeline location (PR). 

The final factor is the extent of the interaction, 

which depends on a combination of the length of 

intersection (LI) of the slope anomaly with the 

pipeline centerline, and the incidence angle (IA) 

between the expected direction of movement and 

the pipeline. Table 1 shows the classification and 

category scores for A, D and PR, while Table 2 

shows the classification and scores for the 

combined factor of LI and IA.   

The model factors and their category scores 

are assigned for a short section of pipeline, which 

has a length of a typical pipeline joint. All the 

factors are weighted equally to obtain an average 

score for susceptibility of pipeline to landslide. 

The susceptibility scores are calibrated against an 

annualized occurrence rate using the historical 

data. In this model, the occurrence event is 

defined as the presence of bending strain in the 

pipeline in the proximity of a slope anomaly. 

Therefore, the probability predicted by the model 

is the probability of occurrence of pipeline 

bending strains greater than 0.4%. Eq (2) shows 

the probability estimate as a function of average 

score, S.  

P(Sd ≥  0.4%) = 5.99  10-9  101.22S              (2) 

Table 1: Classification of model factors (Varela et al. 

2022). 

Factor Classification Score 

Landslide 

Susceptibility 

(LS) 

Existent 5.0 

High 4.0 

Moderate 3.0 

Low 1.0 

Activity (A) 

Active 5.0 

Inactive 3.0 

No SA 1.0 

Distance (D) 

D < 20ft 5.0 

20 < D < 50ft 4.0 

D > 50ft 1.0 

Spatial 

relationship 

to the 

pipeline (PR) 

Cross cutting the 

pipe centerline (CC) 
5.0 

Cross cutting only 

pipeline right-of-way 

(RC) 

4.0 

Proximal to pipeline 

centerline, within 

50ft (PC) 

3.0 

Distal to pipeline 

centerline, greater 

than 50ft (DC) 

1.0 

 
Table 2: Combined factor of LI and IA (Varela et al. 

2022). 

Incidence 

Angle 

Length of Intersection (ft) 

0 <40 40-

120 

>120 

0 1.0 1.0 1.0 1.0 

<20o (Axial) 1.0 1.0 3.0 5.0 

20o to 70o 

(Oblique) 

1.0 1.0 3.0 5.0 

>70o 

(Transverse) 

1.0 1.0 4.0 5.0 
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During the calibration of the average score to 

the historical data, the sampling of the data 

subsets at high average score was too sparse, 

which introduced sample size uncertainty. 

Therefore, 90th percentile confidence bounds were 

also estimated corresponding to the average score 

values where historical incident rates were 

estimated. Table 3 shows the confidence bounds 

and the uncertainty associated with the calibration 

of the probability values to the average score.  

The general trend in the calibration shows 

that the probability estimates decrease with 

decreasing average score except for the 

anomalous result at S = 4.0. This is due to the 

sample size being as low as two samples that meet 

the bending strain criterion at this average score.   

 
Table 3: Confidence bounds on the probability 

calibration to the average score. 

Average 

Score (S) 

Lower bound 

P(Sd ≥  0.4%) 

Upper bound 

P(Sd ≥  0.4%) 

5.0 3.37  10-3 1.37  10-2 

4.8 6.30  10-3 1.66  10-2 

4.6 3.26  10-4 3.02  10-3 

4.4 3.34  10-4 3.09  10-3 

4.2 1.01  10-4 1.76  10-3 

4.0 1.46  10-4 2.54  10-3 

3.8 8.32  10-5 1.46  10-3 

 

1.2. System description 

The GIS-based data driven model was applied to 

a North American gas transmission pipeline 

system of approximately 18,000 miles over the 

geographical extent shown in Figure 2.  

The transmission system consists of a wide 

range of pipeline vintage from pre-1950s to the 

2010s, pipeline diameters, design classes, 

construction methods, pipe grades, soil 

characteristics, topography, and the climatic 

conditions. Given the nature and extent of the 

pipeline system, it is considered a satisfactory 

representation of the range of possible 

combinations of the geomorphological conditions 

and the pipeline characteristics of pipeline 

systems within the North America. The pipeline 

system was also extensively monitored through 

surface inspections such as satellite-based 

Interferometric Synthetic Aperture Radar 

(InSAR), and LiDAR, field visits, site-

instrumentation, ILI and IMU. These independent 

inspections and evaluations have provided 

independent data sets to consider for model 

validation.  

 

 
Figure 2: Geographical extent of the gas 

transmission pipeline system (shown in blue) in North 

America 

2. SYSTEM-WIDE RESULTS AND 

VALIDATION 

2.1. System-wide model results 

The system-wide mileage is segmented to short 

length of pipeline termed as a ‘pipeline fragment’. 

Each pipeline fragment is 50ft length except 

where a slope anomaly intersects with the 

pipeline. In such cases, i.e., when model factor PR 

is CC, the pipeline fragment length is equal to the 

intersecting length with the slope anomaly. The 
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model predictions of the average score and 

probability of bending strain presence for each 

pipeline fragment are estimated across the 

system-wide mileage. Figure 3 shows the 

histogram of the average scores for all the pipeline 

fragments across the system.  

There are close to 1.9 million pipeline 

fragments within the system. The distribution of 

frequencies is expected to follow an exponential 

distribution due to the natural phenomena 

occurring more frequently at low severity and less 

frequently at high severity. In Figure 3, the 

distribution shows a gap at average score 2.0, 

which indicates the model may have been 

overestimating average scores due to inherent 

correlation about the model factors such as 

distance to slope anomaly (D) and spatial 

relationship between the pipeline and slope 

anomaly (PR). Where the distance to slope 

anomaly to the pipeline is greater than 50 ft, both 

factors will score low, and when the slope 

anomaly intersects the pipelines, both factors 

would score high.  

 

 
Figure 3: Frequency distribution of susceptibility 

model scores for the system-wide mileage 

 

Figure 4 shows the frequency distribution of 

the system-wide pipeline fragments over the 

calibrated probability. The distribution is akin to 

the distribution of the model scores, which 

indicates a linear correlation between the average 

model scores and the probability estimates in the 

log scale. This is as expected from the relationship 

shown in Eq. (2). 

 
Figure 4: Frequency distribution of susceptibility 

probability for the system-wide mileage 

2.2. Model validation 

2.2.1. Description of validation datasets 

Two validation datasets were available to 

compare the susceptibility model predictions 

against an independent assessment.  

The first data set consisted of a ‘qualitative 

ranking model’ developed by a team of 

independent geotechnical experts. The model 

included the data from IMU inspection to consider 

the bending strain in addition to other factors such 

as activity, movement rate, and proximity of a 

landslide to the pipeline. This model was applied 

to approximately 3000 miles within the system, 

which enabled comparison over 300,000 pipeline 

fragments.  

The second data set consisted of a ‘field-data 

model’ wherein the probability was assigned 

based on the data collected during the field visits 

by the geotechnical experts. This assignment was 

done by a different team independent of the team 

involved in the qualitative ranking model and 

GIS-based data driven model. As field visits are 

limited to areas with high susceptibility to 

landslides, the field-data model was applied to 

only 650 miles within the system. This enabled 

comparison over approximately 60,000 pipeline 

fragments.  

2.2.2. Comparison to qualitative ranking model 

Figure 5 shows the comparison of the average 

score to the qualitative rank for the pipeline 

fragments. The bigger the circle means the greater 
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the number of fragments. A vast majority of the 

fragments have an average score of 1.0 as well as 

a qualitative rank of 1.0, where both models 

indicate a low susceptibility to the ground 

movement.  

 

 
Figure 5: Comparison of average score with 

qualitative rank for the system-wide mileage 

 

Although both models align well for the low 

susceptibility fragments, there are a few cases 

where the qualitative rank is 7.0, indicating a high 

susceptibility, whereas the average score is 1.0, 

indicating a low susceptibility. For a quantitative 

comparison between the two models, qualitative 

rank greater than 5.0 is categorized as ‘high’, and 

average score greater than 4.0 is categorized as 

‘high’. Table 4 shows the number of pipeline 

fragments that align with the same categorization 

between the two models and the cases where they 

deviate. Although, the total number of pipeline 

fragments with high susceptibility category are 

similar in number between both models, the 

models lack congruence in identifying the same 

pipeline fragment to be of high susceptibility. 

Reasons for the discrepancy are: 

• Mitigations conducted based on the 

qualitative rank model would obscure the 

landslide features for the GIS-based data-

driven model, as these models were developed 

over a three-year time period. 

• Qualitative model is a lagging indicator of the 

landslide susceptibility as it is dependent on 

detected bending strain through IMU, while 

GIS-based data-driven model is a leading 

indicator for potential landslides that haven’t 

materialized yet. 

 
Table 4: Comparison of the Qualitative Rank model 

with the GIS-based Data-driven model 

GIS-based Data-

driven model 

 

Qualitative Rank model 

Low  

(Rank ≤5) 

High  

(Rank > 5) 

Low (S≤4.0) 300235 1174 

High (S>4.0) 882 30 

2.2.3. Comparison to field-data model 

Figure 6 shows the comparison of the average 

score with probability estimates from the field-

data model. Most of the pipeline fragments in the 

field-data model are categorized as low 

susceptibility with average score of 1.0 in the 

GIS-based data driven model.  

 

 
Figure 6: Comparison of average score with field 

data model for the system-wide mileage 

 

Table 5 shows the distribution of the pipeline 

fragments for field-data model categories and the 

assigned probability values for each category. It is 

evident from the trend that the field-data model is 

more likely to assign a high probability for 

pipeline fragment. Another underlying reason for 

this trend is the categorization of the probability 

by the ‘geotechnical site’ by the field-data model, 

which may consist of multiple pipeline fragments. 

This results in overestimation of the pipeline 

fragments that are assigned a high probability.  

The comparison of the field-data model with 

the GIS-based data driven model indicates a large 

discrepancy between the assigned categories for 

susceptibility of ground movement. However, the 
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source of discrepancy is difficult to identify due 

to the subjective nature of susceptibility 

assignment in the field-data model. 

 
Table 5: Field-data model categories and frequency 

distribution of pipeline fragments 

Category Probability 

Range 

Number of 

pipeline 

fragments 

1 <2.0  10-7 41 

2 ≥2.0  10-7&  

<2.0  10-6 

314 

3 ≥2.0  10-6&  

<2.0  10-5 

529 

4 ≥2.0  10-5&  

<2.0  10-4 

3163 

5 ≥2.0  10-4&  

<2.0  10-3 

11535 

6 ≥2.0  10-3&  

<2.0  10-2 

31470 

7 ≥2.0  10-2 12927 

3. UPDATED PROBABILITY FRAMEWORK 

3.1. Probability formulation 

In the present study, the probability framework 

presented in Eq. (1) is updated to include the 

definition of the susceptibility based on the 

bending strain threshold. Eq. (3) shows the 

updated formulation to estimate the probability of 

pipeline failure,  

 

Pf = P(Sd > Sc| Sd ≥  0.4%)  P(Sd ≥  0.4%)              (3) 

 

Where P(Sd ≥  0.4%) is estimated using Eq. (2), 

and P(Sd > Sc| Sd ≥  0.4%) is estimated using a 

standard structural reliability approach. 

Generally, a mean-centered Monte-Carlo 

Sampling (MCS) is performed on strain capacity 

Sc modeled as an implicit function of random 

variables of a girth weld strain capacity model. 

The distribution for strain demand is obtained 

from the IMU inspection. 

3.2. System-wide predictions 

Figure 7 shows the distribution of the probability 

of failure over the system-wide mileage. The 

number of pipeline fragments with annualized 

probability greater than 2  10-3 is close to 400, 

which accounts for less than 4 miles in a system-

wide mileage of approximately 18,000 miles. This 

implies that only a small percentage of the system 

has a high likelihood of failure due to landslides. 

It is noted here that the GIS-based data driven 

model did not include factors for mitigation such 

as installation of drainage, retaining walls at the 

toe of the slope, and re-grading of the slope. 

Inclusion of these factors would further reduce the 

estimated probability of failure. 

 

 
Figure 7: Frequency distribution of probability of 

failure estimation for the system-wide mileage 

4. DISCUSSION 

In this study, the application of a data-driven 

model with reproducible factors was presented. 

Model validation was performed by comparing 

the predictions with independent predictions of 

landslide susceptibility on a subset of the system-

wide mileage. The models with similar underlying 

structure and factors, such as qualitative ranking 

model, have shown model congruence in 

identifying the pipe fragments of low 

susceptibility, even though the ranking for high 

susceptibility varied due to the reasons noted in 

Section 2.2.2.  

In contrast, models based on field-data and 

expert opinion have differed largely from the 

data-driven models and do not present the 

opportunity to interrogate the reasons for this 
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variation. As the true landslide susceptibility is 

unknown until the ground movement is observed, 

this creates a challenge to validate models if 

expert opinion is used as the basis of the 

validation. In the present study, the availability of 

multiple independent data sets has overcome this 

issue. Where such collection of large-scale 

independent data sets is not feasible, a Bayesian 

framework for iterative model updates is 

recommended.  

5. CONCLUSIONS 

The case study presented is an application of the 

GIS-based data driven model to the system-wide 

mileage of over 18,000 miles of pipelines in North 

America. The study provides an opportunity to 

demonstrate the challenges in applying and 

validating data-driven approach for landslides due 

to lack of verifiable public data sets for model 

validation. 
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