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ABSTRACT:  

This study presents an approach for optimizing policies on crack repair, which may take place after 

pipeline inspection, depending on the possible failure risk (i.e., the severity of crack) and the repair cost. 

The approach is built on the basis of Value of Information (VoI) analysis, and it seeks the optimal repair 

criterion by minimizing pre-posterior cost for re-inspection. For this purpose, a tool is developed for VoI 

analysis on a high-performance computing platform, which allows parallel computing to improve 

computational efficiency. The tool is specifically designed for inspection of a single critical crack in this 

study. The effectiveness of the presented approach in increasing VoI, i.e., taking better advantage of 

inspection, is demonstrated through its application to a hypothetical pipeline example. Different failure-

to-repair cost ratios and prior uncertainties are also considered to reveal their effect on the optimal repair 

policies.

1. INTRODUCTION  

Pipelines, as essential components of energy 

infrastructure, are prone to crack damage that can 

lead to costly leaks or ruptures (Belvederesi and 

Dann 2017). To prevent catastrophic loss due to 

crack damage, operators need to inspect pipelines 

to detect cracks and plan for appropriate repairs. 

However, determining the best inspection and 

repair methods/policies is not always 

straightforward, as it requires taking into account 

uncertainties from various sources, such as 

randomness in pipeline properties, inspection 

error in crack detection and size measurements. 

Value of information analysis (VoI) (Howard 

1966), based on Bayesian statistical decision 

theory, provides the mathematical framework to 

calculate the benefits from inspection 

tools/strategies and repair methods/policies 

considering such uncertainties.  

Specifically, VoI has been introduced to 

prioritize inspection tools and aid in the integrity 

management of pipelines in the literature. For 

instance, di Francisco et al. (2021) evaluated the 

impact of inspection features on VoI for offshore 

pipelines subjected to growing cracks, while Melo 

et al. (2020) used VoI analysis to identify the 

optimal locations for inspecting pipelines prone to 

internal corrosion. However, these studies mainly 

focused on inspection tools/strategies, without 

paying attention to different possible repair 

strategies/policies.   

Current industrial repair policies for pipe 

cracks in North America are generally based on 

either empirical deterministic criterion such as 

design safety factors or risk-based repair policies. 

For instance, according to the pipeline design and 

evaluation (American Petroleum Institute (API) 

2021; CSA 2019), operators repair cracks based 

on the crack depth and failure pressure ratio 
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(FPR), which is the ratio of pressure capacity to 

the operating pressure. Several studies (Blade 

2020; Yan et al. 2020) have proposed reliability-

based repair strategies where cracks with 

probability of failure larger than a certain 

threshold should be repaired. These thresholds are 

often derived based on tolerable safety risk 

criteria and environmental risk criteria (Nessim et 

al. 2004, 2014). In previous studies (e.g., Stephens 

and Nessim 1996), life-cycle cost, including 

failure cost and maintenance cost over the design 

life of pipeline, was minimized to find an overall 

optimal maintenance strategy/policy constrained 

with safety criteria. This approach may not 

necessarily lead to optimal usage of information 

obtained from pipeline inspection for a specific 

crack repair.  

In industrial applications, re-inspection is 

often conducted to identify generation of 

environmentally induced cracking or growth of 

the previously detected cracks, and they can also 

be used to verify the results from previous 

inspections (Koduru et al. 2020; Melo et al. 2020).  

After re-inspection, the probability distribution 

function (PDF) of crack size, and the probability 

of failure can be updated. After this, an allowable 

probability of failure, referred to as repair 

threshold, is needed, based on which to determine 

whether a crack should be repaired or not. 

Typically the repair threshold is selected based on 

fixed safety criteria as recommended by industry 

codes, which may not necessarily lead to an 

optimal balance between failure risk and 

maintenance cost after re-inspection. This may 

lead to unnecessary repairs and resource 

misallocation between repair and inspection 

strategies.  

In literature, VoI analysis was used to 

achieve optimal repair policies or heuristics (e.g., 

repair threshold for inspection planning) for other 

structures subjected to degradation (Kamariotis et 

al. 2020, 2022). When it comes to pipelines with 

cracks, no relevant work is found in literature. 

This study aims to propose optimal thresholds for 

repairing pipe cracks by minimizing the pre-

posterior cost for re-inspection in the context of 

VoI. VoI is the difference between the prior 

expected loss for a system without information 

and the expected loss for the system considering 

all possible outputs of the inspection tool. The 

latter loss is known as the pre-posterior cost, 

which is the average of all posterior costs given 

different inspection outcomes. Optimal threshold 

is obtained by minimizing pre-posterior cost, 

while considering the constraint imposed by the 

tolerable threshold for public safety or 

environmental impact, to achieve a balance 

between repair cost and failure risk after re-

inspection. Note that failure consequences 

including human fatalities, environmental effects 

and economic impacts can be converted to 

monetary values in VoI context (Haladuick and 

Dann 2018).  

To accomplish the abovementioned task, a 

tool is developed based on VoI analysis in this 

study. Considering the high computational burden 

in pre-posterior analysis, in which Monte Carlo 

(MC) sampling is used, this tool is enhanced with 

parallel calculations in Python by taking 

advantage of cloud computing.  

This paper is organized as follows. Section 2 

presents the methodology, including the 

theoretical formulation of VoI analysis, the tool 

development, and the process of optimizing repair 

policies. Section 3 presents a numerical example, 

to demonstrate the methodology based on a 

hypothetical pipeline. Section 4 concludes this 

study with discussions about possible extensions 

of this study. 

2. METHODOLOGY 

The general decision-making framework using 

VoI analysis, including prior and pre-posterior 

analyses, are shown in Figure 1. Generally, 

operators have two primary choices in terms of 

inspection, i.e., “not inspect” or “inspect”. 

Correspondingly, prior analysis and pre-posterior 

analysis can be conducted, respectively, to 

calculate the prior cost and pre-posterior cost as 

defined later.  

If operators choose not to inspect, they can 

either “do nothing” or “repair” a possible defect, 

denoted by actions A = a0 and a1, respectively. In 
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this study, it is assumed the pipeline operator will 

not repair a possible crack detected during earlier 

inspections until re-inspection. Hence, the only 

action considered here is A = a0, namely “do 

nothing”, which will not change the system state. 

The pipeline system state, represented by a 

random vector (X) containing variables such as 

crack dimensions and other possible pipe 

parameters, can be described by the prior 

probability model elicited from earlier inspection 

data and/or engineering experience. Depending 

on the system state, the pipeline can possibly fail, 

causing fatalities, injuries, loss of product, 

reputation cost, service loss, and environmental 

cost. All these can be converted to monetary 

values. Thus, the associated failure cost Cf can be 

estimated. Considering the probability of failure, 

which can be estimated by performing reliability 

analysis, the failure risk, measured by prior cost 

Cprior, can then be estimated as explained in 

Section 2.1.  

On the other hand, if operators choose to 

inspect, they can take an informed action, either 

“do nothing” or “repair” a possible crack for the 

pipeline, depending on repair policy and the 

inspection results. If the repair policy is based on 

the reliability of the system, reliability analysis 

needs to be done based on the updated information 

of the system state, e.g., crack size. This is 

referred to as updated reliability analysis. The 

reason behind this is because the re-inspection 

will provide further information about the system, 

via the crack size measurement y. Note that y 

contains measurement error inherited from 

inspection tools or devices. When the informed 

action is “repair”, the additional cost involved 

would be repair cost Cr. With that, the pre-

posterior cost Cpp can be calculated as detailed in 

Section 2.2, and the value of information (VoI) 

can be determined by Eq. (1). 

 
prior ppVoI C C   (1) 

2.1. Prior Analysis 

As mentioned earlier, if operators choose not to 

inspect, they will have to choose to “do nothing” 

for a single crack, i.e., accepting the risk of failure 

because they have not verified the size of the 

crack due to likely crack growth following a 

previous inspection. In this case, the prior cost can 

be calculated as shown in Eq. (2) (Straub 2014):  

 
0 0 1( ) [ ( ), ] [ ]prior fC a c f a C Pr E  X x  (2) 

in which Pr[E1] is the probability of E1 which 

denotes the failure event, in contrast to E2 which 

denotes the safe event. Pr[E1] is simply the 

probability of failure Pf, as given by Eq. (3). 

 
1 1( ) ( ) ( )f gP Pr E E f d    X

X
x x x  (3) 

in which Ig is the indicator function (=1 when 

1Ex  with limit state function g <0); fX is the 

prior PDF of random vector X. For example, X = 

[D, L] when only the predominate uncertain 

variables in a cracked pipeline, such as crack 

depth (D) and length (L), are considered as in the 

application example in this study. Here, it is 

assumed that fX can model the crack size 

uncertainty, including those associated with crack 

growth after previous inspection. 

 

 
Figure 1: General decision-making framework   

For the cracked pipeline problem, the failure 

mode of most concern is burst failure, which 

occurs when the burst pressure capacity is lower 

than the maximum operating pressure (MOP).  To 

describe this failure mode mathematically, the 

limit state function g(X) = CorLas(X) – MOP can 

be used such that g < 0 indicates failure. Here, 

CorLas(X) is the resistance burst pressure of a 

pipe, which is calculated by semi-empirical model 

CorLas (Jaske and Beavers 2001). Note that in 

previous studies (di Francesco et al. 2021; 

Haladuick and Dann 2018), only failure modes 

such as leaking were considered where simple 

limit state functions were used. However, burst 

failure is more important than leaking due to its 
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higher economic loss. Thus, the burst failure limit 

state is considered in this study. 

2.2. Pre-posterior Analysis and Repair Policies  

In this section, a summary of the process for 

calculating Cpp is introduced. Cpp is the average 

value of Cp(X=x, Y=y) over all possible 

realizations of random vectors X and Y, as shown 

in Eq. (4). 

 ( , )pp pC E C   XY
X Y  (4) 

in which Cp(X=x, Y=y) is the cost associated with 

a cracked pipe conditioned on a given true state x 

after inspection with a possible measurement 

outcome y. Note that Cp also depends on the 

possible repair actions, since they depend on the 

measurement. Different repair policies exist as 

discussed earlier, and two commonly used repair 

policies are introduced as follows. The first repair 

policy, π1, is based on the relative ratio of repair 

cost (Cr) and failure cost (Cf), while the second 

repair policy, π2, is based on the allowable 

probability of failure Pf
c, also known as the repair 

threshold. Specifically, repair actions will be 

taken when Pr[E1|y]> Cr/Cf in the first repair 

policy, i.e., Cf×Pr[E1|y]> Cr. In contrast, repair 

actions will be taken when Pr[E1|y]> Pf
c in the 

second repair policy. Corresponding to each 

repair policy, Cp(X=x, Y=y) can be calculated as 

shown in Eq. (5) and (6), respectively. 
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In this study, the optimal repair threshold Pf
c* 

would be the one that minimizes the pre-posterior 

cost, as calculated by Eq. (4), while considering 

the constraint imposed by Pf, safety for safety and 

environmental impact (Kamariotis et al. 2020; 

Straub 2004), see Eq. (7). 

 
,

*

c
f f Safety

c

f pp
P P

P argmin C


  (7) 

Here, Pf, safety is taken as 10-3 per feature per year, 

based on maximum tolerable safety criterion 

suggested in literature (Nessim et al. 2004, 2014).  

As observed in Eq. (5) and (6), the updated 

probability of failure Pr[E1|y] given a 

measurement outcome y = [yD, yL], needs to be 

calculated. Pr[E1|y] will be obtained from Eq. (3) 

just by substituting updated PDF of system state, 

denoted by fX|Y. fX|Y can be obtained through 

Bayesian updating (Straub 2014), as shown in Eq. 

(8). 

 
|

( ) ( ; , )
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f

f
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X Y

Y
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x | y
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 (8) 

In. Eq. (8), the likelihood function, denoted by ϕ, 

is equal to N(yD−D; 0, σeD)∙N(yL−L; 0, σeL) when 

the measurement yD = D + eD, and yL = L + eL, in 

which eD and eL is the zero mean Gaussian 

measurement error, with standard deviation of σeD 

and σeL for crack depth and length, respectively. 

Σee is the diagonal covariance matrix of sizing 

error. fY is a normalization constant, which is 

equal to the integration of nominator in Eq. (8) 

over X. With that, sampling methods can be 

implemented to calculate Pr[E1|y] and thus 

Cpp=EXY[Cp(x, y)], as shown in the developed tool 

where MC sampling is used.  

2.3. Tool Development 

Figure 2 presents the flowchart of the tool, in 

which crude MC sampling is implemented based 

on available solutions in literature (Konakli et al. 

2016; Straub 2014). First, prior samples xk (k = 1, 

2, …, nx) are generated according to the prior PDF 

of X from the reliability module to calculate prior 

Pf and Cprior for prior analysis. Second, in pre-

posterior analysis, each prior sample xk is 

combined with measurement error ej (j = 1, 2, …, 

ny), which is jth measurement outcome simulated 

according to the corresponding probability model, 

to obtain yk
j = xk + ej. This leads to a total of nx∙ny 

possible measurement outcomes. For a given yk
j 

reliability updating can be conducted to calculate  

Pr[E1|y = yk
j] using the samples xk (k = 1, 2, …, 
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nx), according to Eq. (8). In addition, Cp(x
k, yk

j) is 

calculated in cost module according to (5) or (6). 

In the end, Cpp is calculated in the cost module 

using Eq. (4).   

The computation required for pre-posterior 

analysis can be quite demanding, particularly for 

the repetitive calculation of likelihood, as shown 

in Eq. (8). This study develops Python modules 

that allow for parallel processing, using cloud 

computing service provided by Compute Canada. 

This study has utilized the powerful HPC 

capabilities to perform the computations shown in 

Figure 2. By dividing a large number of 

observations into smaller groups, reliability 

updating for each group can be processed in 

parallel as a separate job on Compute Canada. 

This enables effectively lowering computational 

barriers. The results from all groups can then be 

merged together, allowing for the efficient 

calculation of rare events with low probability that 

require a large number of samples. In the 

following section, a numerical example will be 

presented to illustrate the practical application of 

the developed tool. 

3. APPLICATION 

In this section, the proposed framework is applied 

on a hypothetical pipeline segment with grade 

X52, and properties summarized in Table 1. The 

size of a single crack has been estimated using a 

prior probability density function (PDF) derived 

from crack population statistics (Yan et al. 2020), 

and its distribution is presented in Table 2. The 

crack is susceptible to burst failure, which can 

result in a failure cost (Cf) ranging from $20 

million to $100 billion based on previous statistics 

from pipeline failures. Note that extremely high 

failure cost (e.g., $100 billion) can be induced 

when considering indirect cost arising from 

socioeconomic consequences of pipeline failure 

in environmentally or culturally sensitive regions 

and potential secondary consequences near 

critical infrastructure facilities. To avoid failure, 

operators can repair the crack at a cost of $0.2 

million, following re-inspection. 
Table 1: Properties of pipeline  

Parameter Value Units 

Outside diameter 508 mm 

Wall thickness 6.35 mm 

Tensile strength 455.05 MPa 

Toughness CVN 85 J 

Operating pressure 6.45 MPa 

The inspection tool used to measure the crack 

size has a sizing error, and the statistics for its 

measurement error are provided in Table 2. Note 

that the measurement error of the inspection tool 

is lower than the prior uncertainty in crack depth 

and length. Thus, measurement can help reduce 

uncertainty of crack size. Before implementing 

the inspection tool, the operator needs to conduct 

1) Probabilistic Models
1.1) RVs for prior state

1.2) RVs for sizing error 

2) Reliability Module
2.1) MC sampling

2.2) Limit state function

3) Mechanical Model

6) Cost Module
6.1) Repair policy

6.2) cost functions

4) Monitoring Module

yj
k

5) Updating Module
5.1) reliability updating

VoI

Using HPC for 

parallel processing

Pf

Cprior

Prior samples xk

Cpp

Updated Pf

Ig(x
k)

Prior Analysis
Pre-posterior Analysis

j = j +1

j > ny x nx

Yes

No

k > nx

k = k +1

No

Yes

Figure 2: Architecture of developed tool for VoI calculation 
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a Value of Information (VoI) analysis to calculate 

the cost of re-inspection. This analysis will be 

carried out in section 3.2 and 3.3, for repair 

policies π1 and π2, respectively. 
Table 2: Prior PDF of crack size and statistics for 

measurement error of inspection tool  

Parameter PDF Type PDF Parameters 

D (mm) Gamma (μ = 1.725, σ = 0.89) 

L (mm) Gamma (μ = 97.041, σ = 51.395) 

eD (mm) Normal (μeD = 0, σeD = 0.37) 

eL (mm) Normal (μeL = 0, σeL = 15.6) 

3.1. VoI Analysis for repair policy π1 

VoI analysis comprises two main steps: prior and 

pre-posterior analysis. To conduct the prior 

analysis, Monte Carlo simulation (MCS) is 

employed with a total of nx=106 sampled crack 

sizes generated from the prior PDF. The 

calculated prior probability of failure (Pf) using 

MCS is 1.865×10-3, and the convergence of Pf is 

verified with this number of samples. For 

different failure costs (Cf) ranging from $20 

million to $100 billion, the corresponding prior 

cost (Cprior) is between $3.73×104 to $1.865×108. 

Cprior is the same for both repair policies but Cpp is 

dependent on repair policy.  

The pre-posterior cost (Cpp) for repair policy 

π1 is calculated using the proposed framework in 

section 2.3, with ny = 5. The results for Cpp are 

verified to converge, but are not presented here for 

brevity. For the repair policy π1, considering the 

same range of Cf, the calculated Cpp is between 

$6.812×103 to $1.326×105 which leads to VoI 

between $3.0488×104 to $1.8637×108. Hence, the 

VoI varies depending on the failure cost Cf. 

Apart from the failure cost, the sizing error of 

the inspection tool is also a crucial factor in 

determining the VoI. To compare the impact of 

failure cost and sizing error on the VoI for repair 

policy π1, Figure 3 illustrates the sensitivity of VoI 

with respect to sizing error of crack depth while 

keeping the length sizing error close to zero for 

three different cost ratios. As the ratio of failure 

cost to repair cost (Cf/Cr) increases, VoI also 

increases, which is reasonable. Additionally, VoI 

is dependent on the prior failure risk, and an 

increase in failure cost leads to an increase in VoI. 

On the other hand, an increase in sizing error 

results in a decrease in VoI, indicating that the 

operator is willing to pay less for inspection tools 

that are less precise. Conversely, when the depth 

sizing error is close to zero, VoI approaches the 

value of complete perfect information. 

Assuming that clairvoyance, or complete 

perfect inspection, is available, the decision-

making process becomes simplified. This is 

because complete perfect inspection removes any 

uncertainty regarding the burst pressure capacity, 

and the decision reduces to two options: repair the 

crack and pay the repair cost (Cr) if the crack fails, 

or do nothing if the crack is deemed safe and pay 

zero cost. The use of an indicator function (Ig) 

allows us to calculate the posterior cost (Cp) as the 

product of the indicator and the repair cost. The 

average of the posterior cost over all possible 

values of y=x is equal to the product of the repair 

cost and the probability of failure (Pf), or 

Cpp=Cr×Pf. the cost of repair is small in 

comparison to failure cost, resulting in Cpp being 

equal to Cr×Pf=$373, almost no pre-posterior cost 

when complete perfect inspection is available. 

 
Figure 3: Sensitivity of VoI to depth sizing error 

and relative cost ratio Cf/Cr for repair policy π1 

3.2. VoI Analysis for repair policy π2 

This section explains the approach for calculating 

VoI and obtaining the optimal threshold for repair 

policy π2. Cprior is the same as what is obtained for 

repair policy π1. To calculate Cpp, the same 

approach used for repair policy π1 with ny=5 and 
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nx=106 is implemented. An optimal threshold Pf
c 

can be selected for repair policy π2 to maximize 

VoI for imperfect inspection. Figure 4 presents 

the variation of Cpp with respect to threshold Pf
c 

for repair policies π1 and π2, for two different 

orders of failure costs. To calculate Cpp, different 

values of Pf
c between 10-8 to 10-2 with logarithmic 

order were tested. Note that conventional repair 

policy π1 is constant over all ranges of Pf
c because 

it is not dependent on Pf
c. To accelerate this 

analysis, the framework in Figure 2 was 

implemented with parallelized calculations and 

Compute-Canada was used, which significantly 

reduced computation times. 

For Cf = $100 billion, Cpp for repair policy π2 

would be between $0.104 million to $0.155 

million which leads to VoI between $186.34 

million to $186.4 million. As seen in Figure 4, 

optimal Pf
c equal to 6×10-8 leads to minimum Cpp 

equal to $1.04×105.  For Cf = $100 billion, the 

trend of Cpp is increasing with respect to Pf
c. It 

means that for higher failure cost, Cpp increases by 

choosing higher threshold Pf
c due to increase 

possibility of failure in measurement scenarios. 

Hence, operator should choose a smaller threshold 

for higher failure cost and be more conservative. 

 
Figure 4: Variation of Cpp with respect to Pf

c for 

two different failure costs  

For Cf = $2 billion, considering the range of Pf
c 

between 10-3 to 10-8, Cpp for π2 would be between 

$0.017 million to $0.1 million which leads to VoI 

between $3.71 million to $3.63 million, as shown 

in Figure 4. For Cf=$2 billion, Pf
c equal to 0.01 

minimizes Cpp for repair policy π2. However, 

safety constraint equals to 10-3 acts as an active 

constraint and optimal Pf
c is 10-3. In order to meet 

safety constraint, an additional cost of $7×103 

compared to the minimum possible costs should 

be tolerated. For Cf = $2 billion, the range of Pf
c 

between 10-3 to 10-4 maximizes VoI for repair 

policy π2 leading to VoI equal or higher than VoI 

of repair policy π1.  In this case, higher Pf
c leads 

to optimal usage of maintenance resources and 

lower Cpp, as depicted in Figure 4. On the other 

hand, choosing smaller repair threshold leads to 

increasing Cpp due to increase in the portion of 

repairs in measurement scenarios of pre-posterior 

analysis. 
Table 3: Cpp and VoI for each repair policy with 

Cf=$2 billion, Cr=$0.2 million  

 

Reliability-based, π2 

with optimal Pf
c = 10-3 

Conventional, π1 

Perfect Imperfect Perfect Imperfect 

Cprior ($106) 3.73 3.73 3.73 3.73 

Cpp ($106) 3.73×10-4 0.017047 3.73×10-4 0.0276184 

VoI ($106) 3.73 3.71 3.73 3.70 

The summary of results for a failure cost of 

$2 billion are presented in Table 3. The chosen 

failure cost leads to a Cprior of approximately $3 

million and a VoI around the typical value of an 

ILI tool. Table 3 shows that the optimal repair 

threshold (Pf
c) for repair policy π2 leads to a 40% 

lower Cpp compared to repair policy π1, for 

imperfect inspection. However, the optimal VoI 

for repair policy π2 is close to that of repair policy 

π1 because the prior cost is the dominant factor in 

determining VoI. It should be noted that this is a 

special case, and when Cpp and Cprior are in same 

order, optimizing repair policies can lead to a 

higher difference in VoI. Additionally, the VoI in 

Table 3 is related to a single crack, but considering 

the population of cracks similar to the one 

analyzed here, the difference in VoI of inspection 

tool for different policies can be even larger. 

Note that in this example, for simplicity, just 

uncertainties in crack size were considered. In a 

realistic case by considering uncertainties in 

material strength or geometry of pipeline, a more 
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precise value for optimal Pf
c can be obtained 

depending on problem assumptions.  Optimizing 

repair threshold for each problem with different 

prior information and inspection features can be 

computationally expensive. Nevertheless, this 

research proposes a systematic method using an 

HPC for parallel processing to accelerate VoI 

calculation process for operators. Note that the 

optimal repair policy in this study is proposed for 

a single critical crack based on prior information. 

In industry, this prior information is available 

from previous inspections or crack-growing 

models for all cracks in a pipeline. Hence, the 

proposed tool can be implemented to all other 

critical cracks in a system to find the optimal 

threshold for each crack.  

4. CONCLUSIONS 

In conclusion, this research has successfully 

demonstrated the effectiveness of using a Value 

of Information (VoI) analysis for optimizing 

repair policies for pipelines with surface cracks. 

By utilizing parallelized calculations and 

integrating a tool based on Python modules with 

Compute Canada, the time consumed for VoI 

analysis was significantly reduced. The research 

also highlighted the importance of considering 

cost variation and imperfect inspection of tools in 

the optimization process. The results confirm that 

the optimal repair policies are dependent on costs, 

prior information, and inspection imperfections. 

However, the proposed methodology and 

developed tool can help overcome the challenges 

of computational expense and prior information 

uncertainty, making it a valuable tool for pipeline 

operators. As a future direction, the research aims 

to extend the tool's capabilities to include the 

population of cracks in larger systems and the 

consideration of growth uncertainty in life-cycle 

analysis. 
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