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ABSTRACT: Performance assessment of critical infrastructure systems is an integral part of disaster risk 
reduction of communities under natural hazards, such as earthquakes. Particularly, the enduring 
functionality of school infrastructure is a decisive factor in the overall resilience of an urban community. 
Depending on the extent of structural damage or functionality losses to compounds or the accessibility 
to those compounds through the adjacent road network, the school system could be fully functional, 
partially functional or totally unfunctional over given period of times, while the post-hazard repairs or 
reconstruction take place. Besides, some individual schools might also be used as shelters or evacuation 
centres, inevitably causing further disruption to the educational activities. In order to assess the 
educational disruption to the urban community under natural hazards, a system-level modelling 
framework is proposed in this paper, based on a combination of Agent-based (AB) and Bayesian network 
(BN) approaches. The BN component estimates the disruption to the education through modelling the 
causal effect and correlation between different interacting factors including physical, functionality and 
social vulnerability of the infrastructure. The AB component tracks the recovery paths of the hazard-
impacted school system, as well as the road network connecting the schools. Such a framework is applied 
to a virtual school-road network, as presented and discussed in this paper. 

1. INTRODUCTION 
The reliance on the functionality of school 
systems is not only underpinning the education of 
modern urban communities throughout peaceful 
times, but is also strategically critical to their 

resilience and sustainability when natural 
destructive events strike (Oktari et al. 2015, 
D'Ayala et al. 2020). School infrastructure has 
shown to be susceptible to functionality losses 
under real-world hazard events, e.g., damaging 
earthquakes (Kabeyasawa 2017, Alcocer et al. 
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2021). Moreover, due to the interdependence 
between the schools and other critical 
infrastructure systems, both the short-term 
recovery and long-term reconstruction of the 
hazard-impacted school systems also tend to be 
hampered (Zhao et al. 2011). Particularly, the 
reallocation of students from earthquake-
damaged school buildings to safer ones to ensure 
educational continuity, is reliant upon the 
functionality of the road network (e.g., bridges 
and roads) embedded in the same community, as 
illustrated in Figure 1 . Some of the schools might 
also be used as shelters or evacuation centres, 
which limits their use as learning facilities. The 
students attending schools which are non-
functional will see their education disrupted. 
Thus, the probability of any given school being 
able to deliver the education service required is 
affected by numerous uncertainties.  
 

 

This paper presents a probabilistic resilience 
framework, combining Bayesian network (BN) 
and Agent-based (AB) approaches for system 
performance analysis and decision-making. The 
framework estimates first, the disruption to 

education due to an hazard event to quantify the 
resilience of the school network by modelling 
causal effects between different interacting 
factors, including the physical, functional and 
social vulnerability aspects of the infrastructure. 
Secondly it explores strategies for recovery plans 
by updating the system disruption according to 
decisions taken by two agents, namely the road 
and school operators. To minimize such 
disruption the platform tracks the recovery 
decisions of the two agents.  

2. METHODOLOGY 
BN and AB approaches enable modelling of 
complex systems with uncertainties. The directed 
acyclic graph structure of BNs represents the 
random variables of the system and their causal 
relationships or interdependencies; while a set of 
conditional probability tables (CPTs) defined for 
every node in the network encodes the 
interdependencies of variables in a 
probabilistically consistent manner (Murphy, 
1998). While BNs are useful for capturing the 
system performance states and updating the 
probabilities with new information (Gehl and 
D’Ayala, 2016), the agent-based approach is 
suitable for modelling the trajectory of recovery 
process, considering the interplay among various 
decision-makers Sun et al. (2021). A combination 
of these approaches as presented here, could bring 
these attributes together for development of a 
decision-making framework for systems 
(Kocabas and Dragicevic, 2013; Pope and 
Gimblett, 2015). 

2.1. Bayesian network module   
The BN framework proposed here estimates the 
states of operational capacity of schools due to 
structural and non-structural damage inflicted by 
the hazards or due to change of function as 
shelters in the aftermath of an event. Figure 2 
shows a sample network considering the effects of 
the hazard on a school system. The physical 
fragility of the school buildings is assessed using 
numerical simulation techniques as elaborated in 
Parammal Vatteri and D’Ayala (2021). The BN 
first connects the physical fragility to the 

Figure 1: Recovery responses for the integrated 
Community-School-Road Network system under 
natural hazard event. 
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estimated hazard intensity states, and then 
converts the damage levels to equivalent 
functional states. It further integrates the social 
vulnerability with the functional states, to 
estimate the likelihood of the use of schools as 
shelters. The social vulnerability is defined as a 
measure dependent on the income, education and 
housing type of the community served by the 
schools. The operational capacity of the schools 
and associated duration of disruption is a child 
node of the functional state and the shelter use of 
each school compound, as these two variables 
affect the capacity of the school to perform its 
intended purpose. Further details on this approach 
and an example of its application can be found in 
Parammal Vatteri et al. (2022). Every school in 
the network is represented in the analysis by 
repeating the BN in Figure 2, to capture the 
individual building typologies in a school and 
their physical and functional vulnerabilities.  

 

Interdependencies between the variables in 
the system to define the CPTs are determined by 
analysis of historic data (wherever available) and 
expert judgement. The CPT size of a node is the 
product of the number of states of its parents and 
the number of its own states, and hence increases 
exponentially with the number of nodes involved. 
The modular approach is helpful in reducing the 
computational effort.  

2.2. Agent based module   
In this framework, an agent-based model (ABM) 
is employed to track the functionality recovery of 
the integrated school-road networks, under 
seismic hazard. It models the interactive decision-
makings between stakeholders of the various 
system, such as the ‘Road Operator’ and ‘School 
Operator’, who are modelled as the ‘Agents’ 
(named as the Agents A and B, respectively). Their 
behavioral patterns are shaped by an array of pre-
defined, adjustable behavioral attributes. For 
further details on this approach see Sun et al. 
(2021).  

In this ABM shown in Figure 3, the primary 
objective of the School Operator agent is set to be 
the minimization of the educational disruption, 
while its counterpart is focusing on the 
expeditious restoration of the functionality of the 
road network, especially, through rapid responses. 
Four damage states (DSs) are considered for the 
schools, ranging from no damage to extensive 
damage, as discussed in the next section. It is 
further assumed that the students in those schools 
with severe damage need to be transferred to 
schools with no damage, to avoid any loss of 
education delivery. However, such transfer plans 
need to adapt to the availability of those targeted 
schools, as well as the real-time connectivity of 
the corresponding road network. Meanwhile, the 
educational activity at moderately damaged can 
be resumed, only if their functionality has been 
restored by the repair endeavours, which might be 
impeded due to the functionality losses of the road 
network, as well.  

When it comes to the Operator of the Road 
network (RN), its decision-making will guide the 
rapid response to those damaged components (can 
be bridges, as well as road segments) based upon 
their criticality, so as to minimize the system-level 
losses.  

Figure 2:  Simplified Bayesian network for a school 
exposed to natural hazard 
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Figure 3: The agent-based model (ABM) 

In particular, to account for and model the impact 
of the incomplete information throughout public 
emergencies, the decision-making of the Agent A, 
the Road Operator, will be driven by the Bayesian 
network (BN) corresponding to the school 
network. At each decision-moment (e.g., when 
the Agent needs to determine which road tract 
shall be repaired next), the BN is used to infer the 
status of the school network, as well as the 
decision-makings of its Operator (i.e. Agent B) 
will be used to update their operational capacity. 
Road agent will then make the decision 
accordingly, to fulfil the optimization objective.  

The combination of these two models 
delivers an adaptive modelling on the post-shock 
recovery, which can help to lay the foundation for 
the resilience improvement of the school system, 
as well as the road network.  

3. IMPLEMENTATION: SEISMIC 
RESILIENCE OF A SAMPLE SCHOOL-
ROAD SYSTEM 

A sample network of five schools (𝑆 ) connected 
by seven road sections (𝑅 ) as shown in Figure 
4, is considered for illustration of the 
methodology proposed in this study. Each of the 
road segment contains a bridge ( 𝐵 ). The 
school-road system is situated in a high seismic 
region. Data for the sample network are 
realistically assumed for this illustration, which is 

intended to be updated with real data from specific 
case studies. A uniform seismic hazard intensity 
of 0.4g is assumed anywhere in the study area. 

In this network, each school compound is 
formed of three buildings of similar or varying 
typologies, represented by index buildings IB1, 
IB2 and IB3, where the seismic performance 
increases from IB1 to IB3. The structural 
performance of these buildings under seismic 
action are quantified through fragility functions 
corresponding to four damage states, namely, no 
damage, slight damage, moderate damage and 
extensive damage. For this illustration, the  
fragility parameters for these building typologies 
are adapted from Parammal Vatteri and D’Ayala, 
(2021). 

 
Figure 4: Sample network of schools and roads 

 
It is assumed that there is only one bridge 

associated with each road segment in the road 
network. Meanwhile, only the damage of bridge 
structures is considered, while all the road 
segments are assumed to stay intact under the 
hazard event (Kilanitis and Sextos 2019). Besides, 
the fragility model related to the extensive 
damage under seismic hazards, developed by 
Zampieri (2014), is employed to determine the 
functionality state of all the bridges included in 
this case-study.   

3.1. Formulation of the BN module 
The BN model shown in Figure 2 is implemented 
for all the schools in the network. Each node in 
this BN is assigned multiple states, as detailed in 
Table 1. The probabilities of the parameter states 
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governing the social vulnerability are assumed as 
given in brackets in this table, and applied to all 
schools in the case study. Typology of buildings 
and their corresponding fragility parameters are 

given in Table 2. Student population in each 
school are also shown in this table. Table 3 to 
Table 6 present the CPTs for the remaining 
variables. 

 
Table 1: Description of nodes and their states in the BN 

Node Variable States States 
1 2 3 4 

FR1 to 
FR3 

Fragility functions of 
building types 1 to3 

4 No damage Slight damage Moderate 
damage 

Extensive 
damage 

FS Functional state of school 3 Intact Partial Shutdown 
 

I Income of community 3 Low (0.3) Medium (0.5) High (0.2) 
 

E Education of community 3 Low (0.1) Medium (0.7) High (0.2) 
 

H Housing type of 
community 

2 Vulnerable 
(0.3) 

Resilient (0.7) 
  

SV Social vulnerability of 
community 

3 Low Medium High 
 

SH Sheltering at school 3 Not used Short-term use Long-term use 
 

OC Operational capacity of 
school 

3 Full 
operation 

Partial 
operation 

Shutdown for 
education 

 

Table 2: School building typologies and population 
School Building typologies Student 

population 
S1 2 IB3+1 IB1 180 
S2 3 IB3 250 
S3 1 IB1, 1 IB2, 1 IB3 200 
S4 3 IB1 150 
S5 3 IB2 200 

 
Table 3: CPT of Functional State (FS) 

FR FS 

All buildings beyond slight damage Shutdown 

All buildings within slight damage Intact 

All other combinations Partial 

 
Table 4: CPT of Social Vulnerability (SV) 

I, E and H SV 

Income and Education are medium or high, 
and housing is good 

Low 

Income or Education are medium/high, or 
housing is good 

Medium 

All other combinations High 

 
 
 
 

Table 5: CPT of Shelter function (SH) 
FS, SV SH 

School is intact and community has high 
social vulnerability 

Long-term 

School is intact and community has 
medium social vulnerability 

Short-term 

All other combinations Not used 

 
Table 6: CPT of Operational capacity (OC) 

FS,SH OC 

School is shutdown or long-
term shelter use 

Shutdown of 
educational activity 

School is intact and no shelter 
use 

Full 

All other combinations Partial operation 

3.2. Formulation of the AB Module  
Two agents, the operator of the road network and 
the operator of the school system, denoted as the 
Agent A and Agent B, are considered in this study. 
For Agent A, the repair sequence is obtained based 
on the criticality of the hazard-damaged bridges. 
The criticality of each individual bridge is 
measured by the number of students affiliated to 
the schools connected by it. Meanwhile, the 
behaviour of Agent A throughout the whole post-
hazard recovery phase is shaped by a pair of 
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behavioural attributes, namely, the Vb and Eb, 
respectively (Sun et al. 2019), where Vb refers to 
the speed with which the team in charge of the 
repair of the damaged bridges moves from one 
bridge to the next, while Eb stands for its repair 
efficiency. Accordingly, for each damaged bridge 
i (out of a total of Nb ones, where Nb denotes the 

total number of bridges damaged under one 
particular hazard scenario), the start and 
completion time of its repair, denoted as STi and 
CTi, respectively, can be therefore determined by 
Eqs. (1-2):  

CTi = 𝑆𝑇  +    (1) 

STi = 𝐶𝑇  + 𝑆𝐷 𝑉⁄     (2) 

where, SDi refers to the shortest distance between 
the ith and the (i-1)th bridge on the repair sequence, 
given the topology of the whole road network 
embedded in the urban community.    

Regarding Agent B, similar to Agent A, its 
repair sequence is generated according to the 
criticality of the hazard-damaged schools, which 
is measured by the total number of students. 
Meanwhile, the behaviour of such an agent will 
also be is also shaped by two behavioural 
attributes, which stand for the speed with which 
the next damaged school and the repair efficiency 
(denoted as the Vs and Es, respectively), with 
regard to the school restoration campaign. 
Mathematically, the trajectory of that restoration 
will be shaped through the iteration similar to that 
following Eqs. (1-2). However, it is noteworthy 
that Agent B would likely encounter inaccessible 
paths, due to the presence of damaged bridges. As 
such, Agent B is assumed to be waiting until the 
restoration of the accessibility (delivered by 
Agent A), which enables the start of the 
restoration of the next targeted school.  

In this paper, the time-varying percentage of 
students without education, denoted as PSwoE(t) 
is tracked following Eq. (3), throughout the 
recovery, and employed as the measure of the 
education resilience of the community impacted. 

𝑃𝑆𝑤𝑜𝐸(𝑡) =
∑ ( , )∗

,  (3) 

with f(i,t)=1, if functional; otherwise, 0 

where, Stot refers to the total number of schools 
across the whole community, while Si denotes the 
students affiliated to each of those individual 
schools.  In parallel, to examine the impact of the 
interdependence between the two infrastructure 
systems on their resilience behaviour, the time-
dependent percentage of damaged bridges of the 
road network, denoted as PDB (t), is also tracked, 
pursuant to Eq. (4): 

𝑃𝐷𝐵(𝑡) =
∑ ( , )

,  (4) 

with g(j,t)=1, if functional; Otherwise, 0   

where, Btot stands for the total number of bridges 
associated with the whole road network.  

4. RESULTS AND DISCUSSION 
The Bayesian network shown in Figure 2 is 
modelled in Bayes Net Tool box in Matlab using 
the CPT definitions presented in section 3. An 
exact inference using junction-tree algorithm is 
performed to obtain the system performance 
states of all the schools in the network for a 
scenario earthquake generating a uniform peak 
ground acceleration of 0.40 g in the region. The 
operational capacity of each school is obtained as 
shown in Table 7. 

 
Table 7: Disruption state probabilities of schools in 
the case study 

School Probability 
of short 

disruption 

Probability 
of moderate 
disruption 

Probability 
of long 

disruption 
S1 0.0949 0.8849 0.0202 
S2 0.2594 0.7311 0.0096 
S3 0.0777 0.8854 0.0369 
S4 0.0127 0.6537 0.3336 
S5 0.1424 0.8237 0.0338 

 
As previously mentioned, the operational 

capacity of each school for the given set of social 
circumstances is dependent on the physical 
damage and associated loss of functionality, as 
well as the use of schools as shelters. In order to 
see the influence of typologies, the social 
vulnerability indicators are assumed to be uniform 
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in the region (as given in Table 1). These 
probability values indicate that all schools in the 
case study are more likely to be in moderate 
disruption state, compared to short and high 
disruption states, due to combined result of loss of 
physical functionality and shelter use. However, 
the schools with better buildings (IB3) have higher 
chance of low disruption, and vice versa. The 
variation in social vulnerability parameters among 

the schools could be assessed in a similar fashion, 
although not presented in this paper. 

The most likely disruption state of the 
schools as obtained from the BN analysis is 
utilized in the AB module as a starting state of the 
school system. For the Monte-Carlo simulation, 
four attributes of the agents are randomly sampled 
following uniform distribution with the respective 
upper and lower limits, as shown in Table 8.  

  
Table 8: Behavioural attributes of the agents 

Agent Attribute Lower Upper Distribution Average recovery 
time 

A Vb (km/h) 5 10 Uniform  
Eb (%) 5 10 Uniform 15 days 

B Vs (km/h) 5 10 Uniform  
Es (%) 2.5 5 Uniform 30 days 

The probabilistic resilience behaviour of the 
two integrated infrastructure systems is tracked 
and presented in Figure 5, following the 
simulation outcome obtained through 2,000 
Monte Carlo runs. From Figure 5(a), it can be 
found that, from the median perspective, it takes a 
total of 95.5 days to fully restore the functionality 
of all the 7 damaged bridges, which is consistent 
with the distribution of Eb (Table 8). In parallel, 
from the corresponding outcome shown in Figure 
5(b), the restoration of the first school is 
significantly slower (70 days), than the following 
four (on average, 27.5 days), despite the same 
behavioural attributes (Table 8). Such an 
observation demonstrates the bottleneck effect of 
the damaged bridges, with regard to the 
restoration of the school system. Figure 5(b) 
shows that the trajectory associated with the 
median, the quantile of 5% and 95% of the 
PSwoE(t) start to deviate from each other 
significantly over time, highlighting the collective 
and significant impact of the uncertainty 
regarding the recovery behaviour of the two 
agents, and the dynamic interaction between 
them. In the case of the 95% quantile, it will take 
up to 234.5 days to fully restore the functionality 
of all the schools, which signals a significant lack 
of educational resilience (despite a low 
exceedance likelihood).   
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Figure 5: Seismic resilience of the integrated school-
road network: a) Road network, b) School system 
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5. CONCLUSIONS 

This paper presented a resilience assessment 
framework of the intergrated school-road network 
under seismic hazards, which incoporates a 
Bayesian network and an agent-based model. 
Such a framework is applied to a virtual network 
under damaging earthquake scenario, whose 
resilience is measured by the time-varying 
percentage of students without education. The 
simulation outcome has demonstated the 
applicatlity of the framework, which is capable of 
tracking the real-time functionality recovery of 
the two infrastructure systems, shaped by the 
interdependence between them.  

The BN module in this framework is used to 
inform the AB module of the existing state of 
operational capacity of the school system. 
Updating of system state probabilities through the 
BN module, at each decision moment of the 
agents in the AB module is identified as the next 
step in further improving this framework.  
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