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ABSTRACT: Accurate deterioration models are required for data-based bridge management. These 
models allow converting raw data into actionable insights to guide maintenance decisions. Survival 
modeling is a technique of modeling time-to-event that has been found helpful for bridge deterioration 
modeling purposes. Neural network-based survival models have recently shown promise for use in the 
field. In this work, we investigate the effect of bridge population heterogeneity on the predictive 
performance of such models. We study this problem in the context of the National Bridge Inventory 
(NBI), a dataset containing inspection data of US highway bridges. There are many structural systems, 
materials, deck protection systems, and loading conditions in the NBI bridge population. We hypothesize 
that this type of heterogeneity will influence the model performance. To test our hypothesis, we split the 
data into subsets and compare model performance when fitted individually to subsets. In splitting the 
data, we utilize two separate approaches: statistical clustering and a physics-based approach, where we 
split the data based on understanding the underlying deterioration mechanisms. By comparing the models 
fitted to different subsets of data, we can study the effect of data heterogeneity on model performance. 
The results of this work help further understand the potential limitations the data places on the Neural 
Network survival model approach. We expect this understanding to improve further development of the 
modeling approach. 

1. INTRODUCTION 
Accurate prediction of the infrastructure 

condition is an essential task in asset 
management. The predictions are important not 
only for the engineers who deal with asset 
management but also for the general public 
because the models are used in creating 
government budgets. (“Strong Infrastructure and 
a Healthy Economy Require Federal Investment” 
2019) In the United States, the importance of 
deterioration modeling of highway infrastructure 
has been codified in the law: state DOTs are 
required to “identify” deterioration models for 
pavements and bridges in the National Highway 
System.(“23 CFR § 515.7” n.d.)  

 In this work, we study one form of 
deterioration modeling for concrete bridge decks: 
Neural Network-based survival analysis. We 

have, in earlier work, shown the principle of this 
novel modeling method. (Valkonen and Glisic 
2021) In this paper, we study the effect of data 
heterogeneity on the prediction accuracy of the 
NN survival model. This is important to 
understand because multiple types of bridges have 
fundamentally different functional principles. For 
effective utilization of the deterioration models, it 
is essential to understand the effect of this 
fundamental data characteristic. 

2.  THE DATASET USED IN THIS 
STUDY 
In the United States, State Departments of 

Transportation (DOTs) maintain records of the 
physical conditions of highway bridges. (“23 CFR 
§ 650.315” n.d.) The physical condition of bridges 
and their components are measured with 
Condition Ratings (CR), which have numerical 
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values between 0 and 9, corresponding to 
descriptions in Table 1. (Recording and coding 
guide for the structure inventory and appraisal of 
the nation’s bridges 1995) The National Bridge 
Inventory (NBI) is a dataset containing condition 
rating data from all US Highway bridges. The data 
is available online starting from the year 1992. 
(“National Bridge Inventory - Bridge Inspection - 
Safety - Bridges & Structures - Federal Highway 
Administration” n.d.)  
Table 1: NBI Condition Ratings(Recording and 
coding guide for the structure inventory and appraisal 
of the nation’s bridges 1995) 

Rating Condition description 

9 Excellent Condition 

8 Very Good Condition 

7 Good Condition 

6 Satisfactory Condition 

5 Fair Condition 

4 Poor Condition 

3 Serious Condition 

2 Critical Condition 

1 “Imminent” Failure 

Condition  

0 Failed Condition – out of 
service – beyond corrective 
action 

 
Survival analysis requires observations of 

the time a bridge component (in our case deck) 
spends in each condition rating before an 
inspector assigns a lower rating. This value is 
referred to as the Time-In-Condition Rating 
(TICR).(Fleischhacker Adam et al. 2020)  The 
data from the NBI database does not contain TICR 

values, but they must be computed from the 
collection of yearly CR values. In addition, the 
data is missing information about a phenomenon 
known as censoring. Censoring refers to the 
situation where the observation period ends 
before the inspector decreases the condition rating 
for the bridge, leading to an imperfect record of 
the TICR. 

In conclusion, to be useful for survival 
analysis, the NBI data must be processed to 
contain both TICR and flags for censored entries. 
We utilize a dataset generated by Fleischhacker et 
al.(Fleischhacker Adam et al. 2020). This dataset 
is based on the NBI and processed to contain the 
TICR values and censoring flags. The dataset is 
also filtered to contain only the covariates the 
authors have found to be meaningful to 
deterioration analysis. The collection of 
covariates included in this dataset, their 
abbreviations used in this paper, and their range 
of values are given in Table 2. 

All variables presented in Table 2 are 
recorded in the NBI, except SeaDist (distance 
from seawater), which Fleischhacker et al. 
(Fleischhacker Adam et al. 2020) found to be an 
essential parameter and converted into two 
categories: "sea less than 3 km away" and "sea 
more than 3 km away" and the climatic regions, 
which is also their addition. Our work is focused 
on studying the model we have previously 
developed, and because we utilized this dataset in 
developing the model, we will use it as it is.  

2.1. Computational Approach: Survival Analysis 
 

We want to study the effect of data heterogeneity 
on neural network-based survival analysis. The 
goal of bridge survival analysis is to derive 
survival curves that describe an individual 
bridge’s probability of surviving in each condition 
rating over some period. The survival function is 
given by: 

𝑆(𝑡) = 1 − 𝐹(𝑡).		 (1) 
where f(t) is the probability density function 

(PDF) of the survival TICR, and F(t) is the 
corresponding cumulative distribution function 
(CDF), The graph of this function is known as the 
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survival curve.(Aalen et al. 2008) Hazard function 
is another key aspect of survival analysis. The 
hazard function can be given using the survival 
function and the PDF of survival time: 

ℎ(𝑡) =
𝑓(𝑡)
𝑆(𝑡)

	 , (2) 

The interpretation of the hazard function is 
that it gives the instantaneous event rate or the 
probability of having the event within “a short 
period of time.  

We study the effect of data heterogeneity on 
survival modeling using a neural-network model 
designed for this purpose in our earlier work. The 
model is built on top of a Python library, “nnet-
survival”.(Gensheimer 2020) Figure 1 shows the 
architecture of our neural network. To be concise, 
we have given only a brief overview of the 
necessary concepts. Still, we encourage readers to 
see our earlier publication for details about the 
model and survival analysis. (Valkonen and Glisic 
2021) 

 
Table 2: Description of Covariates and their range of 
values (modified from (Fleischhacker Adam et al. 
2020) Reference values bolded). 
Description of 
Covariate 

Range of Values 

Average Daily 
Truck Traffic 

[0,56595] ,ref=100 

Climatic Region "Region2 - very hot", 
"Region3 - hot", 
"Region4 - average", 
"Region5 - cold ", 
"Region6 - very cold", 
"Region7 - extremely 
cold", 
"Region8 - subarctic", 
"Region9 - average 
marine", 
"Region10 - hot marine" 

Condition Rating CR3,CR4,CR5,CR6, 
CR7,CR8,CR9 

Deck Protection 
Type 

"None", 
"Epoxy-coated 
reinforcing", 
"Galvanized 
reinforcing", 
"Other coated     
reinforcing", 
"Cathodic protection", 
"Polymer impregnated",  
"Internally sealed", 
"Unknown", 
"Other" 

Deck Type "Concrete cast-in-
place", 
"Concrete precast 
panels" 

Distance to Sea 
Water 

"Sea Less than 3 km 
Away", 
"Sea More Than 3 km 
Away" 

Functional 
Classification  
(NBI Item 26) 

"Rural", 
"Urban" 

Maintenance 
Responsibility 

"State highway 
agency", 
"County highway 
agency", 
"Town/township 
highway agency", 
"City/municipal 
highway agency", 
"Private (other than 
railroad)", 
"State toll authority" 

Structural Type "Concrete-simple span", 
"Concrete-continuous", 
"Steel-simple span", 
"Steel-continuous", 
"Prestressed concrete-
simple span", 
"Prestressed concrete-
continuous" 
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Figure 1: NN Architecture 

 

3. EFFECT OF DATA HETEROGENEITY 
ON MODEL PERFORMANCE 
We hypothesize that this type of 

heterogeneity will influence the model 
performance. To test our hypothesis, we split the 
data into subsets and compare model performance 
when fitted individually to subsets. In splitting the 
data, we utilize two separate approaches: 
statistical clustering and a physics-based 
approach, where we split the data based on 
understanding the underlying deterioration 
mechanisms. We will measure model predictive 
performance using Concordance Index (CI). CI is 
calculated through a pairwise ranking of 
observations: predicted score vs. which one is 
observed to fail first. The CI is the proportion of 
pairs where the model correctly predicted the 
ordering.(Harrell Jr. et al. 1996) The score can be 
any suitable measure of the risk of failure (or its 
inverse, propensity to survive). In evaluating 
model performance, we use CI calculated using 
the following scores:  

• 1-hazard at TICR=4 
• Survival function at TICR=4 
• 1-hazard at TICR=9 
• Survival function at TICR=9 
• 1-hazard at TICR=14 
• Survival function at TICR=14. 

We compute the average of CIs resulting from 
these scores and assign this average as the 
performance metric for the models evaluated. 

 

3.1. Statistical Clustering 
Statistical clustering refers to a group of 

statistical/machine learning methods with the goal 
of grouping the data into n groups, or clusters as 
more commonly known. We utilize a method 
called k-prototypes.(Huang 1998) This method is 
suitable for our purposes because it allows 
clustering data with numerical and categorical 
variables. Another benefit is that the algorithm is 
relatively easy to understand, which we believe 
helps interpret results since we want to compare 
the results of machine learning clustering to the 
selection of clusters based on engineering 
grounds. Following (Huang 1998), we give a brief 
overview of the method.  

The basic principle is that objects are 
placed into clusters based on their (dis)similarity 
with the cluster or more precisely the other objects 
in the cluster. The solution to the clustering 
problem minimizes aggregate dissimilarity over 
all clusters and objects. For the numeric variables, 
dissimilarity is measured by the Euclidean 
distance between the object and the cluster 
centroid. This method of using Euclidean distance 
is typically known as k-means 
clustering.(Tibshirani et al. 2009) For the 
categorical variables, the dissimilarity is 
measured by the following function: 

𝑑 = (𝑋, 𝑌) =2𝛿4𝑥! , 𝑦!7
"

!#$

	 (3)	

Where X, Y are vectors of m categorical 
variables and: 

𝛿4𝑥! , 𝑦!7 = 9
0	4𝑥! = 𝑦!7
1	4𝑥! ≠ 𝑦!7

(4)	

Similarly, as in the numerical variable case, 
the clustering is decided by minimizing aggregate 
dissimilarity when the objects are placed in the 
clusters. In the case of the numerical variables, the 
dissimilarity is calculated with respect to the 
centroid of the clusters. However, centroid does 
not exist for categorical variables, at least not in a 
conventional sense. Thus, a parallel to the 
centroid needs to be defined. In the context of the 
k-prototypes method, this is called the mode. The 

Categorical inputs
(43 Binary variables)

Numeric input:
ADTT

Hidden 
Layer 1
Number of 
Nodes: # of 
output time 
periods. Fully 
connected to 
previous 
layer
Sigmoid 
Activation

Hidden 
Layer 1
Number of 
Nodes: # of 
output time 
periods. Fully 
connected to 
previous 
layer
Sigmoid 
Activation

Hidden Layer 
1
Number of 
nodes: 1.
Fully
connected to
previous layer
Linear 
Activation

Output 
Layer
Number of 
Nodes: # of 
output time 
periods. Fully 
connected to 
previous 
layer
Sigmoid 
Activation
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mode of a set of categorical objects 
{𝑋$, 	𝑋%, … , 𝑋&}	 is defined as the vector Q (of 
categorical variables) that minimizes: 

2𝑑(𝑋' , 𝑄)
"

'#$

	 , (5)	

where d(X, Q) defined as in (3). The 
clustering algorithm then consists of finding 
clusters that minimize the weighted sum of the 
Euclidean distance between objects in a cluster 
and the cluster centroids for the numerical 
variables, and the aggregate distance between the 
cluster objects and cluster modes for the 
categorical variables. 

The outcome of the clustering analysis is 
the sets of objects for each cluster, and the cluster 
modes and centroids.  Because we are interested 
in utilizing the method to study the model we 
developed earlier, we refrain from a detailed 
explanation of the algorithm. We have presented 
what we deemed necessary to interpret the 
clustering results for the purposes of this work: 
the general idea and the role of centroids and 
modes. The algorithm is implemented in the 
Python library “kmodes” that we utilize in this 
work.(de Vos 2023)  Interested reader is 
encouraged to refer to the documentation of the 
library and the original publication of the 
clustering method. (Huang 1998; de Vos 2023) 

4. PHYSICS-BASED CLUSTERING 
The statistical clustering approach presented 

above is completely ignorant of the potential 
underlying engineering/physical rationale that 
could be used to group the data into clusters. To 
provide a point of comparison and further insight 
into the results of the statistical clustering, we split 
the data into clusters based on engineering 
judgment. As with the statistical clustering, we fit 
the survival model individually for each cluster to 
study the performance of the survival model with 
different clusters. 

 If the data heterogeneity influences the 
performance of the deterioration model, it is safe 
to assume that this is caused by differences in 
underlying deterioration mechanisms. Thus, to 

study the effect of data heterogeneity, we split the 
data into clusters according to factors that, in our 
judgment, affect the most common deterioration 
mechanisms in concrete bridge decks. 
Transportation research board publication 
“Nondestructive Testing to Identify Concrete 
Bridge Deck Deterioration” recognizes the four 
most important deterioration mechanisms of 
concrete bridge decks(Gucunski et al. 2012): 

• Rebar corrosion 
• Deck delamination 
• Vertical cracking 
• Concrete degradation. 
Out of these, we want to study the effect of 

corrosion-related issues because our model uses 
covariates that are directly tied to corrosion: 
distance to seawater and the decks’ corrosion 
protection measures.  

5. RESULTS: STATISTICAL CLUSTERING 
The clustering algorithm we have utilized 

requires selecting the number of clusters. This is 
not a straightforward task since we do not have 
any a priori knowledge about the number of 
clusters that could be expected to be found in the 
data. We utilize a practical approach: we use 
different numbers of clusters, and for each of the 
resulting sets of clusters, we fit the survival 
model. When fitting the model, we only utilize 
80% of the data in the cluster at hand, leaving 20% 
for the computation of the CI. This way we are not 
testing the model's performance against data used 
to train it. We then evaluate the performance of 
each individual model by computing the CI 
metrics. After fitting the models and computing 
the CIs, we choose the number of clusters for 
further evaluation.  

We evaluate options with 2, 3 , 4, 5, and 6 
clusters by comparing the highest CI cluster of 
each set. The CI values are close to each other, but 
the number of clusters equals five yields the 
highest average CI on its best cluster. Hence, we 
choose the clustering with five clusters for further 
investigation. Even if this might not be the 
optimal way to select the number of clusters, it is 
good enough reasoning for us at this stage – in 
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theory we could increase the number of clusters 
arbitrarily. Still, the time expenditure would be 
prohibitive with no guaranteed improvements. 
Table 3 below shows the cluster sizes and CI 
metrics for the selected clustering. 

 
Table 3: Model Performance with Number of 
Clusters=5 

CLUSTER 
NUMBER 

CLUSTER 
SIZE  

AVERAGE 
CI 

0 35774 68.9% 
1 2905 61.6% 
2 81520 67.9% 
3 11990 62.7% 
4 538597 67.5%  

Maximum CI 68.9% 
 

 We study the result of clustering into five 
clusters by studying the compositions of the 
cluster in terms of the values of covariates in each 
cluster. We have omitted commentary on the 
covariates for which no significant differences 
could be easily observed between the clusters. 
Figures 2-5 show how the covariate values are 
distributed among the clusters. Inspecting the 
composition of the clusters, two observations can 
be made: 

 
1) Figure 3: The Average Daily Truck 

traffic levels differentiate the clusters. 
2) Figures 2,4, and 5: Cluster 4 Differs from 

the others more significantly. 
 
The first observation is somewhat expected. 

The level of truck traffic is a numerical variable, 
and it is easy to imagine the bridges would fall in 
clear clusters of different average traffic levels 
based on their importance. The algorithm would 
easily recognize these clusters. However, 
comparing Figure 3 to Table 7 yields an 
interesting observation: the predictive 
performance of the survival model is weakest in 
the two clusters with the highest ADTT levels. 
The reason for this is unclear, considering such a 
correlation does not hold with the other three 
clusters. A more detailed study of this 

phenomenon could yield improvements in the 
accuracy of deterioration models. However, this is 
out of scope of this work. 

 The second observation shows that the 
largest of the clusters is also the most different. It 
has very low traffic levels, a more significant 
proportion of rural bridges than the others, a larger 
proportion of precast panels than the others, more 
observations from bridges maintained by county 
highway agencies, and a smaller proportion of 
roads maintained by toll road authorities. Because 
this cluster contains bridges that are in rural areas, 
have low traffic levels, and are maintained by 
smaller entities, we believe this cluster represents 
“non-critical” bridges. The model did well on this 
cluster, suggesting that this type of deterioration 
model is suitable for optimizing the maintenance 
of the large stock of “non-critical” bridges.  

6. RESULTS: PHYSICS-BASED 
CLUSTERING 
We split the data two ways, with respect to 

the distance to seawater, we have two clusters, sea 
closer than 3km and sea farther than 3km. With 
respect to corrosion protection, we create two 
clusters, one with decks with no protection and the 
other one with decks that have a specified 
protection measure in place. The data contains 
datapoints where the protection is unspecified; we 
leave those out. For these clusters, we fit the 
model using 80% of the data and compute the CI 
indices with the remaining 20%. The results are 
presented below in Table 4. 
 

 
Figure 2: Functional Class composition of clusters. 
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Figure 3: ADTT levels of clusters. 

 

 
Figure 4: Deck Type composition of clusters. 

 
Figure 5: Maintenance responsibility composition of 
clusters 
 
Table 4: Model Performance with different physics-
based clusters. 

Distance to seawater 
Cluster 
Size  

Average 
CI 

Sea within 3km 6185 60.5% 
Sea > 3km away 664601 67.6% 

Deck Protection 
Cluster 
Size 

Average 
CI 

None 461411 66.0% 
Known protection 
method 107514 69.0% 

 
From this, we can make a few interesting 
observations. First, compared to the results from 

the statistical clustering, the overall performance 
and the difference between clusters are similar., 
however. Second, and perhaps more interesting, it 
seems that corrosion plays some role in the 
predictive performance of the model, an effect 
that was not picked up by the statistical clustering 
approach. Regarding the distance to seawater, the 
model performs better with a cluster with a 
distance to seawater larger than 3km, meaning the 
corrosion-accelerating effect of seawater should 
be less. Similarly, for deck protection, the model 
performs better with the cluster of corrosion-
protected decks. We do not have an explanation, 
but it seems that in more corrosion-prone 
situations the predictive power suffers. 
Considering the importance of corrosion for 
concrete structures, this could be an important 
avenue for further research. Investigating this 
further could improve degradation modeling 
significantly.  

7. CONCLUSION 
We studied the effect of bridge deck population 
heterogeneity on the prediction performance of a 
Neural Network based survival model. We used a 
statistical clustering approach and a physics-based 
clustering approach. Although both gave 
numerically similar results, there was some 
performance difference between the model with 
different clusters. However, the results from the 
physics-based approach imply that more 
aggressive corrosion creates difficulty for the 
model. This result has two important implications. 
First, the statistical approach did not pick this up, 
so the result shows the importance of considering 
the physical deterioration characteristics when 
designing statistical models. Second, the result 
suggests further research into why more 
aggressive corrosion interferes with deterioration 
prediction. Solving this could drastically increase 
deterioration modeling performance, considering 
the importance of corrosion in the deterioration of 
concrete structures. 
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