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ABSTRACT: In 2015, the U.S National Institute of Standards and Technology (NIST) funded the Center 
of Excellence for Risk-Based Community Resilience Planning (CoE), a 14 university-based consortium 
of almost 100 people, including faculty, students, post-doctoral scholars, and NIST researchers. This 
paper highlights the scientific theory behind the state-of-the-art cloud platform being developed by the 
CoE - the Interdisciplinary Networked Community Resilience Modeling Environment (IN-CORE).  IN-
CORE enables researchers to set up complex interdependent models of an entire community consisting 
of buildings, transportation networks, water and electric power networks, and to include social science 
data-driven household and business models and computable general equilibrium (CGE) models that 
predict the level and distributional economic effects of a natural hazard on the community economy.  In 
this paper, an overview of both the IN-CORE technology and the scientific implementation is shown for 
several of the CoE’s testbeds with a focus on four key community stability areas (CSA) that encompass 
an array of community resilience metrics (CRM).  Each testbed within IN-CORE has been developed by 
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a team of engineers, planners, and economists and begins with the initial community description, i.e., 
buildings and other physical and non-physical models as described above, and progresses to the hazard 
strike, i.e., a tornado, tsunami, hurricane, or earthquake.  This process is accomplished through chaining 
of algorithms, making the technology modular in nature, which is also explained.  Following the initial 
hazard-induced damage is determined this sets the initial conditions for the recovery models, which are, 
in a way, the least studied area of community resilience, but arguably one of the most important.  Two 
illustrative examples of community testbeds within the center that look at some combination of 
population, economics, physical services, and social services are presented.    
Keywords: IN-CORE, natural hazards, disasters, risk, uncertainty propagation, decision-support, 
tornado, tsunami, earthquake, hurricane,  
  

 

1. INTRODUCTION 

Community resilience is the ability of a community 
to plan for, withstand, and recover from a natural (or 
other) hazard.  Natural hazards worldwide are 
associated with significant loss of life and direct and 
indirect losses each year as evidenced by the 2017 
U.S. hurricanes Maria and Harvey; past earthquakes, 
such as the 2010 and 2021 Haiti earthquakes; and the 
2010 Japan tsunami. In general, communities 
understand that resilience is a goal that they strive 
for, but the ability to systematically improve 
community resilience has three fundamental 
requirements: (1) defining resilience goals for the 
community; (2) understanding and deciding what is 
being measured within the physical, social, and 
economic structure of a community; and (3) 
modeling a community from hazard event through 
recovery to explore policy options that improve 
resilience.  A comprehensive review of community 
resilience is available in (Koliou et al. 2018) but 
significant progress has been made since the time of 
that review. The science-based multi-disciplinary 
modeling approaches, quantitative metrics, and data 
to support such metrics and models for evaluating 
community resilience are now in a form that can be 
used by communities and public planners.  The 
computational platform, “Interconnected Networked 
Community Resilience Modeling Environment” (IN-
CORE), can estimate a baseline (current) measure of 
resilience from which decision-makers can assess 

how alternative actions will affect community 
resilience in the models for several dimensions.  This 
paper provides an overview of the science and 
computational architecture behind IN-CORE across 
a broad range of natural hazards and scientific 
disciplines. Two examples are presented to highlight 
the capabilities of IN-CORE. 

2. THE SCIENCE BEHIND IN-CORE 

The National Institute of Standards and Technology 
(NIST)-funded Center for Risk-Based Community 
Resilience Planning (Center) is implementing 
measurement science on the IN-CORE platform. It 
enables decision support through quantitative 
comparison of alternative strategies for resilience 
improvement. The IN-CORE output supports 
decision makers by informing community resilience 
planning and post-disaster recovery strategies. The 
modeling environment actively integrates 
community data with physics-based models of 
interdependent physical and socio-economic systems 
to evaluate improvement strategies for resilience.  To 
systematically explain the scientific algorithms 
implemented in IN-CORE, the conceptual flowchart 
in Figure 1 is utilized.  Figure 1 presents the 
conceptual structure of IN-CORE, much of which 
was completed during the first five years of the 
Center. Significant effort remains to enable a full 
computational environment for researchers 
worldwide.   
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Figure 1: The conceptual structure of IN-CORE (I-11 points to metrics and I-14 points to visualization; both not 
shown here for brevity) 

 
 

2.1. INTERDEPENDENT COMMUNITY 
DESCRIPTION 

Moving rightward from the Start, the 
Interdependent Community Description consists 
of three major informational components: (1a) 
Built Environment; (1b) Social Systems; and (1c) 
Economic Systems.  The Built Environment for a 
community consists of spatially descriptive data 
typically using a Geographical Information 
Systems (GIS) format and includes building 
footprints and other information needed to assign 
archetypes for damage and loss modeling; the 
electrical power network made up of transmission 
and distribution lines, poles and towers, 
substations, and power generating plants; the 
water network consisting of pipelines, treatment 
facilities, pumps, and towers; the natural gas 
network including transmission and distribution 
pipelines, gates, and generating stations; the 

transportation network, which consists of 
roadways, bridges, and railways at this stage. 
Communication networks are included as being 
co-located with electrical power network 
transmission towers but have not yet been 
modeled explicitly.  The Social Systems input 
data to IN-CORE describe households divided 
into different income groups so that the 
distributional impacts of a natural disaster can be 
understood.  Social Systems originated from a 
number of public and other databases.  These 
include U.S. Census block and/or block group 
socio-demographics; Public Use Microdata 
Survey (PUMS), which is part of the American 
Community Survey (ACS) of the U.S. Census 
Bureau; and Longitudinal Employer-Household 
Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES) which provides 
detailed spatial distributions of workers' 
employment and residential locations and the 
relation between the two at the Census Block 
level. In addition, LODES includes detail on age, 
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earnings, industry distributions, and local 
workforce indicators, parcel data, and other 
information from the ACS.  These datasets 
provide a comprehensive description of the social 
systems governing any municipality. The 
Economic Systems uses a computable general 
equilibrium (CGE) model which describes the 
interaction of households, firms, and the local 
government in generating economic activity. The 
construction of the CGE model uses data from the 
sources presented above. Figure 1 describes the 
interaction of the built environment, sociological 
factors and economic activity to generate a 
holistic approach to examining the impacts of 
natural hazards.   

2.2.  DAMAGE TO PHYSICAL 
INFRASTRUCTURE 

The Damage to Physical Infrastructure analysis 
requires all the information described above for 
the Built Environment to be combined with the 
(2a) Hazard Model and (2b) Damage Models.  
The Hazard Model consists of GIS files with the 
intensity of the hazard defined spatially over the 
community of interest.  There are two types of 
Hazard Models available for use with IN-CORE.  
A Tier 1 model is available within IN-CORE for 
earthquake, hurricane, flood, and tornado, which 
consists of a researcher-defined set of known 
parameters that include location, 
intensity/magnitude, and other hazard-specific 
parameters. The GIS peak hazard intensity map is 
then generated for use in the Damage to Physical 
infrastructure analysis.  Tier 2 models are also 
available for the Hazard Models within IN-CORE 
and include 3D physics-based earthquake 
rupture/propagation, hydrologic/hydro-dynamic 
flood, hydraulic tsunami, and coastal storm surge 
approaches using newly developed and existing 
software.   

2.4 FUNCTIONALITY OF PHYSICAL 
INFRASTRUCTURE 

The Functionality of Physical Infrastructure 
analysis requires input from (3a) Functionality 
Models, which provides the probability that a 
building or other Built Environment component 
is functional due to the level of the damage or 
state of repair. Functionality indicates whether or 
not the building can perform its intended 
function.  These models, in the form of 
functionality fragility functions, are passed to the 
Functionality of Physical Infrastructure analysis 
through Interface I-6.  The functionality of each 
component within the built environment is then 
passed to the (3c) CGE model and (3d) Social 
Science Modules through Interfaces I-7 and I-8, 
respectively.  Interface I-9 allows 
communication between the CGE and Social 
Science Modules to ensure compatibility of the 
aggregation levels, databases, and information.  
The damage to the physical infrastructure as 
described by the remaining functional 
commercial and residential buildings is used as 
input to the CGE model to estimate the economic 
impact of that natural disaster.  The CGE model 
incorporates information on Built Environment 
functionality as it steps through time, as well as 
social and economic data from PUMS, LODES, 
and the U.S. Census data as described earlier.  
The Social Science models consist of business 
disruption models and population dislocation 
modules.   

2.3.  RECOVERY OF THE COMMUNITY  

The State of Recovery for Community at Time = j 
represents a point in time and, as such, allows the 
entire procedure described above to step through 
time by incrementing index j.  However, four 
areas of Community Stability Metrics can be 
recorded at each time step to document the change 
over time as the modeled community recovers 
from the hazard scenario.   

2.5 SOLUTIONS AND OPTIMIZATION   
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To determine if the condition Sufficient Quality 
Solutions Found? has been met, the (5a) 
Community Goals based on Stability Metrics 
serves as input through Interface I-17.  
Community goals are specific to each community 
and are constrained financially and socially 
during the optimization analysis. Alternatively, a 
comparison of several policies can be conducted 
by re-running IN-CORE with modifications to the 
policies (e.g., a building code revision that would 
change the community building archetypes and 
their fragilities).   

3. TECHNOLOGY OVERVIEW FOR 
ALGORITHM IMPLEMENTATION  

IN-CORE includes a Service Oriented 
Architecture (SOA) with RESTful web service 
technology, lightweight web applications, 
JupyterHub technology, and the Python computer 
programming language. On the server cluster, a 
customized JupyterHub, Python library of 
scientific analyses, web services, and light-weight 
web applications are implemented. There are two 
main parts to the cluster: 1) IN-CORE web 
services and applications, and 2) IN-CORE Lab. 
The first part is implemented using a SOA pattern 
of RESTful microservices, API gateway, and 
lightweight web applications. The second part 
uses a JupyterHub to serve a customized 
JupyterLab with a Python library (called 
pyIncore), and other common Python libraries 
(modules). The IN-CORE system utilizes Secure 
Lightweight Directory Access Protocol (LDAP) 
at the National Center for Supercomputing 
Applications (NCSA) at the University of Illinois 
at Urbana-Champaign for user/group 
management and authentication.  One of the 
benefits of the platform design is that users can 
chain together pyIncore algorithms, modify them, 
and create workflows in a Python script. For 
example, if a user wants to estimate population 
dislocation due to a scenario earthquake, they 
need algorithms for population dislocation and 

building damage that are able to utilize the data 
from this scenario. Each algorithm contains a 
specification with required input (e.g., U.S. 
Census data) and output data to ensure that the 
output satisfies the input of the next chained 
algorithm. For building damage, the user would 
specify the building dataset, hazard exposure, and 
fragility curves to compute structural damage. 
These can be obtained from pyIncore web 
services. The damage output then feeds into the 
population dislocation algorithm to estimate the 
dislocated population. Similarly, users developing 
new workflows can chain new and existing 
algorithms to their own model to derive input and 
output data.   

Each service has an access control mechanism by 
Space (like a workspace), and each user has their 
own private space that is only accessible by the 
owner. There are two public Spaces, “incore”, 
and “ergo”, that anybody who has an account on 
IN-CORE can access. The “ergo” space contains 
data from the Ergo/MAEViz repository which 
was collected by the Mid-American Earthquake 
(MAE) Center and the Ergo consortium. The 
“incore” space contains data developed and 
collected by the CoE and NIST since 2016. The 
public spaces are managed by the IN-CORE 
development team at NCSA.  

4. DATA STRUCTURE FOR ALGORITHM 
IMPLEMENTATION  

Three web services in IN-CORE manage and 
serve the data: 1) Hazard service, 2) DFR3 
(Damage, Functionality, Repair, Recovery, 
Restoration) service, and 3) Data service. The 
hazard service can store and serve datasets with 
intensity measures (e.g., Peak Ground 
Acceleration (earthquake), Maximum Inundation 
Depth (tsunami, flood), EF Rating (tornado)) in 
geospatial raster (e.g., geotiff) or vector 
(e.g., ESRI shapefile) format backed by the Data 
service. The DFR3 service can store and serve 
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various functions related to Damage, 
Functionality, Repair, Recovery and Restoration. 
The Data service can store and serve other types 
of datasets used by IN-CORE. 
 
IN-CORE includes infrastructure inventory data, 
Census data, economic data, etc. in various 
formats (e.g., CSV, geotiff, ESRI shapefile, 
JSON). Note that due to the chaining of analyses, 
datasets may be connecting across analyses. In 
other words, an output dataset of one analysis 
becomes the input dataset of another analysis.   

  
Data in IN-CORE has metadata with specs for 
hazards, Damage, Functionality, Repair, 
Recovery, Restoration (DFR3) functions, and 
datasets. For example, the metadata for fragility 
functions contain information on demand types 
and units, function types, and infrastructure 
types. The metadata for hazards describes the 
hazard type (e.g., earthquake, tsunami, tornado, 
flood, hurricane wave/surge, hurricane wind) 
and supporting demand types (e.g., PGA, 
Maximum Inundation Depth, Maximum 
Moment Flux, Maximum Wind Speed). The 
dataset has general metadata along with dataset 
type and the name of the schema. Currently IN-
CORE has adopted a tabular data 
specification to express the dataset type schema. 
The metadata is in JSON format and the 
semantics service to serve dataset types is in-
progress.  

 

5. TESTBED EXAMPLES 

5.1. SEASIDE, OREGON TESTBED 

IN-CORE was applied to Seaside, Oregon, a small 
coastal city in the US Pacific Northwest facing the 
threat from a megathrust earthquake and tsunami 
on the Cascadia Subduction Zone. Park et al. 
(2019) quantified the earthquake and tsunami 
hazards, focusing on five intensity measures for 

the tsunami: flow depth, speed, momentum flux, 
arrival time, and duration of flooding. 

Subsequently, a multi-hazard damage analysis 
evaluates the combined impacts of earthquake and 
tsunami through a stochastic approach that 
accounts for the accumulated damage due to 
seismic shaking and subsequent tsunami 
inundation. The probabilistic seismic tsunami 
damage analysis (PSTDA) integrates as a step 
within a resilience-focused risk-informed 
decision-support system that includes the 
assessment of direct and indirect socio-economic 
losses due to tsunamigenic earthquake events. 
Sanderson et al. (2021) extends this work, 
considering multiple components of the built 
environment, including transportation, energy, 
and water sectors, as well as population 
characteristics. Damage to all infrastructure 
systems is evaluated, and the networked 
infrastructures are used to inform parcel 
connectivity to critical facilities. The damage, 
economic loss, risk, and connectivity to critical 
facilities are apportioned to show economic loss 
by hazard and infrastructure sector (Figure 2). 
Kameshwar et al. (2019) developed a framework 
for community resilience planning under multiple 
hazards using performance goals established by 
the community. The performance goals were 
robustness (e.g., an acceptable level of damage) 
and rapidity (e.g., an acceptable time to recovery). 
A key aspect of this framework was that the goals 
were set as a function of the hazard mean 
recurrence interval.  Results highlight the impact 
of considering different performance goals, the 
introduction of ex-ante and ex-post measures, and 
interdependencies between various infrastructure 
systems on infrastructure resilience.  Park and 
Cox (2019) present a framework to quantify the 
amount and location of construction debris 
generated from and advected with a multi-hazard 
earthquake and tsunami event, showing how the 
debris volume increases with increasing mean 
recurrence interval (MRI) and how the location of 
the peak cross-shore debris profile is related to the 
maximum limit of tsunami runup. Kameshwar et 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 7 

al. (2021) used this methodology to quantify the 
effects of disaster debris, floodwater pooling 
duration, and bridge damage on immediate post-
tsunami connectivity. The results provide insights 
on immediate post-event connectivity, its 
evolution with time as floodwaters recede and as 
the debris is cleared, and the relative effect of 
debris, floodwater pooling, and infrastructure 
damage on connectivity. 

 

 
Figure 2: Median economic risks for (a) buildings 
and (b) transportation network for tsunami (red), 

seismic (blue), and combined (black) hazards with 
the 5th and 95th percentiles 

5.2. MEMPHIS METROPOLITAN STATISTICAL 
AREA, TENNESSEE TESTBED 
 
The Memphis Metropolitan Statistical Area 
(MMSA) could be subject to earthquakes that 
originate from the New Madrid Seismic Zone and 

is a Center testbed. The MMSA includes nine 
counties across three states. The county in the 
center of the MMSA is Shelby County, which is 
in the southwest corner of Tennessee, with a 
population of about 927,644 people. It is the 
largest and most populated county in Tennessee, 
encompassing the city of Memphis. MMSA was 
considered as a testbed because its substantial 
footprint allows us to 1) demonstrate the 
scalability of the developed models and solution 
algorithms to a larger urban area, 2) understand 
the challenges in performing realistic 
functionality/recovery analyses (e.g., for the 
water, power, and traffic flow analyses) at 
different scales, 3) examine the impact of 
surrounding community support on urban 
resilience, 4) integrate the physical damage to 
buildings with utility disruptions and estimate the 
post-event functionality loss of building portfolios 
at the community scale, and 5) model interfaces 
and information flow between realistic physical, 
social and economic systems with all their 
nuances. The MMSA was selected specifically 
because the MAE Center had completed 
significant work on Shelby County that can be 
leveraged (Bai et al. 2014). 

To model interdependent infrastructure for a large 
region, Sharma and Gardoni (2022) developed a 
mathematical formulation that models 
infrastructure systems as a set of generalized flow 
network objects. The formulation introduces 
dynamic interfaces among the network objects to 
model infrastructure interdependencies and 
enables infrastructure-specific multi-fidelity 
analyses. These interface functions work as 
correction factors that modify one network’s 
attributes given the values of specific other 
attributes of the interacting network. Sharma et al. 
(2020) also developed a mathematical 
formulation to model the post-disaster recovery of 
interdependent infrastructure and quantify and 
optimize their resilience. Specifically, they 
proposed a multi-scale recovery model that 
significantly reduces the computational cost of 
resilience optimization while favoring practical 
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and easily manageable recovery schedules. To 
quantify resilience, they proposed resilience 
metrics that capture the temporal and spatial 
variations of infrastructure recovery. They 
formulated a multi-objective optimization 
problem that integrates generalized flow network 
objects, the multi-scale recovery model, and the 
resilience metrics to enhance regional resilience 
while minimizing the recovery cost. The novel 
optimization algorithm was implemented to 
improve people’s access to water and power in 
Shelby County following a scenario earthquake 
from the New Madrid Seismic Zone. Figure 3 
shows the improvement in the values of the 
resilience metric over Shelby County (left) and 
the distribution of power and water demand 
(right). Here 𝑄!(𝜏) is the aggregated performance 
of power and water infrastructure, defined as the 
product of the power infrastructure performance, 
𝑄!
[#]  and water infrastructure performance, 𝑄!

[%] , 
at any time 𝜏  over an area indexed 𝛼 , i.e., 
𝑄!(𝜏) = 𝑄!

[#](𝜏)𝑄!
[%](𝜏). Also, 𝑤!

[#]  and 𝑤!
[%] are 

the demand-based weights of the area indexed 𝛼, 
such that the weight 𝑤!

[&] is the ratio of demand in 
𝛼  and total demand for infrastructure 𝑘 . The 
resilience measure 𝜌[𝑄!(𝜏)]  is the temporal 
center of resilience, which is the centroid of 
d𝑄!(𝜏),	the rate of the recovery for 𝑄!(𝜏). The 
improvement Δ𝜌[𝑄!(𝜏)]  is the reduction in 
𝜌[𝑄!(𝜏)] over the area indexed 𝛼, which can be 
approximately interpreted as the reduction in time 
to reach 50% power and water availability. We 
can see that the optimization improves the 
resilience metric in the areas with higher demand. 

Using this novel computational model for 
resilience analysis, Tabandeh et al. (2022) 
developed a formulation to quantify uncertainty in 
the resilience metrics and find the dominant 
sources of uncertainty in the resilience analysis. 
This formulation consists of a multi-level 
uncertainty propagation approach to reduce the 
problem dimensionality and a variable-grouping 
approach to reduce the number of model 
evaluations. The fundamental idea of the multi-
level uncertainty propagation is to break down the 

high-dimensional problem into several low-
dimensional ones and combine their results using 
a modified chain rule. The variables-grouping 
approach then provides an adaptive refinement of 
uncertainty propagation in each of those low-
dimensional problems to identify the dominant 
sources of uncertainty. 

 

 
 

Figure 3: The result of resilience optimization for Shelby 
County in terms of the proposed resilience metric (upper) 
considering normalized power and water demand (lower) 

(Sharma et al. 2020) 
 

6. CONCLUSIONS 
 

This paper highlights the capabilities of the open-
source computational platform, IN-CORE, and 
provides several examples of testbeds.  Each 
testbed was selected on the basis of unique 
characteristics to accelerate the development of 
model chaining and interdisciplinary 
collaboration amongst scientists and engineers. 
IN-CORE is a computational environment and, 
therefore, is under continued development and 
improvement as are all open-source platforms.  
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However, it is fully usable in its present form for 
both scientists and communities interested in 
exploring policy options using “what if” 
scenarios.   

In order to solve a community-level problem such 
as selection of competing policies, an analyst sets 
up a model of the community in IN-CORE with 
the corresponding physical, social, and economic 
structures in place for each policy, and can chain 
the analyses to run from hazard event to 
damage/functionality levels, social and economic 
impacts, and then recovery of the physical 
systems as well as social institutions and the 
economy.  Based on a suite of core resilience 
metrics for IN-CORE, a policy option is evaluated 
for comparison purposes by the users; this level of 
system assessment is not available elsewhere.  IN-
CORE has periodic updates; approximately 
monthly for minor updates and full version 
updates every six months.   
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