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ABSTRACT: In the last decades, most efforts to catalogue and characterize the built environment for 
multi-hazard risk assessment have focused on the exploration of housing census data, cadastral datasets, 
and local surveys. Some of these datasets are only updated every 10 years, do not provide building 
locations, and might be cost-prohibitive for large-scale risk studies. It is thus clear that methods to 
characterize the built environment for large-scale risk analysis at the asset level are currently missing, 
which hampers the assessment of the impact of natural hazards. Some recent efforts have demonstrated 
how machine learning algorithms can be trained to recognize specific architectural and structural features 
of buildings based on their façades, and probabilistically propose one or multiple building classes. In this 
study, we demonstrate how such algorithms can be combined with street level images to develop 
exposure models for multi-hazard risk analysis. We created a training dataset with 5276 images of 
buildings from the parish of Alvalade (in Lisbon) and used it to calibrate an algorithm to develop 
exposure models. The resulting model was used to estimate the impact of an earthquake scenario, and 
the results were compared with the impact calculated using the ground truth data. We discuss how the 
uncertainty from such models can be propagated into the risk results, and how this approach can be used 
for the assessment losses due to hydrological and meteorological hazards. 

The assessment of the impact caused by natural 
hazards requires detailed exposure models, 
characterizing the location, value, occupants, and 
construction attributes of the elements exposed to 
the hazards. A high resolution in exposure models 
is particularly important when assessing the 
impact of localized hazards such as floods, 
landslides, or lahars. Yet, most studies tend to use 
cadastral datasets (e.g., Tyagunov et al. 2014; 
Acevedo et al. 2017), data from the national 
housing census (e.g., Silva et al. 2014a), or 
approximated exposure datasets often developed 
using proxy data such as population or socio-
economic data. Despite the value of these sources 
of information, they do not contain the exact 

location of each building, and tend to classify the 
building stock according to general indicators. 
Alternative approaches for the characterization of 
the building stock at the urban level have been 
proposed by several studies, spanning from the 
organization of field surveys (e.g., Vicente et al. 
2010), classification of the building stock through 
virtual visits (e.g., Santa-Maria et al. 2017), or the 
use of volunteered geographic information (VGI), 
such as OpenStreetMap (Cerri et al. 2021). These 
approaches have their own strengths and 
limitations, but tend to cover also specific areas of 
a given region or country due to the associated 
high costs. 
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It is thus clear that it is fundamental to 
explore new sources of data and innovative 
mathematical formulations to facilitate the 
development of exposure models with a high 
resolution and detail in the structural attributes. 
The recent availability of building imagery has led 
researchers to explore techniques for the 
development of building datasets at the urban 
level, for the purposes of natural hazards risk 
assessment. These approaches usually involve the 
combination of street-level building imagery  with 
machine learning algorithms to automatically 
identify specific building attributes (e.g., Wang et 
al. 2019; Gonzales et al. 2020; Pelizari et al. 
2021). These features typically include the main 
material of construction, height of the buildings, 
epoch of construction, type of use, irregularities, 
and level of ductility (which is usually a proxy for 
the seismic performance). This information is 
fundamental to assign a vulnerability class to each 
building, which can then be combined to one or 
multiple fragility for vulnerability functions (e.g., 
Martins and Silva 2021). This is an important step 
in the process of assessing the potential impact of 
natural hazards. 
Some examples of the application of this 
technique can be found in the literature (e.g., San 
Francisco, United States - Wang et al. 2019; 
Medellin, Colombia - Gonzales et al. 2020; 
Santiago, Chile - Pelizari et al. 2021; Oslo, 
Norway - Guione et al. 2022). However, with the 
exception of the research carried within the 
SimCenter (https://simcenter.designsafe-ci.org/), 
it does not seem like the data used for the training 
of the algorithms is publicly available. In this 
study, we use an open database of 5276 building 
images for Alvalade, a parish in the district of 
Lisbon, to train a number of machine learning 
algorithm to automatically classify buildings 
according to a number of attributes. Then, to test 
how misclassifications by these algorithms can 
affect risk estimates, we compared the impact 
caused by an earthquake scenario using the real 
exposure data (i.e., ground truth) and an exposure 
model generated by the best-performing machine 
learning algorithm. 

1. THE PARISH OF ALVALADE, LISBON 
We tested various machine learning algorithms 
using the parish of Alvalade as a case study. The 
construction of Alvalade took place between the 
decade of 1940s and 1970s, and aimed at reducing 
the residential needs of Lisbon (Ferreira, 2014). 
Alvalade includes social equipment and 
infrastructures, namely the main Campus of the 
University of Lisbon (“Cidade Universitaria”), 
the largest hospital in Portugal (Santa Maria), the 
National Laboratory for Civil Engineering 
(LNEC), undergraduate schools and sports 
facilities.  

The period of construction of this parish 
marks the transition in Portugal from 
predominantly masonry to concrete building 
construction. Reinforced concrete started being 
used to construct the floors of masonry buildings, 
and later on also to incorporate beams and 
columns in the structures (Bernardo et al, 2021), 
though the structural behavior might still be 
similar to an unreinforced masonry due to the 
small dimension of the concrete elements and 
reduced area of reinforcement bars. According to 
studies carried out by Lamego (2014), Ferrito et 
at (2016) and Milosevic et al., (2020), most 
buildings in this area may not present an adequate 
seismic performance for the hazard level expected 
for Lisbon. Moreover, most of the existing 
building stock was built before the enforcement of 
the first seismic code in 1958, and certainly before 
the first modern seismic code (1983). A satellite 
image of the parish of Alvalade is presented in 
Figure 1. 

 
Figure 1. Satellite image of the parish of Alvalade, 
within the district of Lisbon, Portugal (source: 
Google Satellite). 
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The database of building imagery used in this 
study comprises 5,276 images covering 2,457 
buildings within the parish of Alvalade, all 
classified according to the main structural 
characteristics. The database is publicly available 
through an open Github repository at 
https://github.com/vsilva028/ML, and users can 
download the data, or contribute with additional 
information. 

2. TRAINING OF MACHINE LEARNING 
ALGORITHMS 

We selected the following 6 machine learning 
algorithms from the ImageNet (ILSVRC) 
database (Russakovsky et al., 2015): 
ResNet50V2, InceptionResNetV2, 
NASNetLarge, Xception, InceptionV3 and 
DenseNet201. We ran all the algorithms in a i7 
machine, 64 GB RAM, using a recent graphics 
card (Zotac Gaming GeForce RTX 3090 Trinity 
OC 24GB GDDR6X).  

We cleaned the dataset using the VGG16 
model trained on the Places365 dataset, and using 
a set of 24 classes to detect a façade: 
'apartment_building/outdoor', 'beach_house', 
'building_facade', 'chalet', 'church/outdoor', 
'cottage', 'courthouse', 'embassy', 'fire_station', 
'hangar/outdoor', 'hospital', 'hotel/outdoor', 
'house', 'hunting_lodge/outdoor', 'mansion', 
'manufactured_home', 'motel', 'office_building', 
'palace', 'schoolhouse', 'shed', 'skyscraper', 
'synagogue/outdoor', and 'tower'. The rule to 
detect a façade was taken from Pelizari et al., 
(2021), with Li being the label assigned to an 
image i and the Ci the 4 most likely predicted 
classes: 
 
Li= “façade” if | Ci ∩ S | ≥ 2, “other” otherwise 

 
Images not having a “façade” label were 
discarded. After cleaning, the images were 
assigned one of the following classes, combing 
the two attributes that influence the most the 
vulnerability of the assets to earthquake risk: 
construction material and number of floors. Based 
on these attributes, the following classes were 
defined: 

 
• Masonry 1-3 
• Masonry 4+ 
• Concrete 1-3 
• Concrete 4-6 
• Concrete 7+ 

 
In another ongoing study, additional 

attributes (e.g., age of construction, type of roof) 
more relevant to other natural hazards are also 
being incorporated in the list of vulnerability 
classes. However, the consideration of several 
classes may lead to a low number of images per 
class, which can reduce the accuracy of the 
models. 

We performed data augmentation using 
rotation, vertical and horizontal shifting, random 
zoom, horizontal flipping and brightness change. 
The dataset was divided into train (80%, 2713 
images) and test (20%, 678 images) subsets. From 
the training subset, a validation subset was created 
(20%, resulting in 848 images). We used transfer-
learning, from the Places365 dataset, and fine-
tuning procedures to get the best performing 
machine learning model for the given problem 
context with the aim of predicting the building 
material and the number of floors. The models 
were trained with 50 epochs, and a batch size of 
32. 

Without fine-tuning, the best performing 
models were ResNet50V2 and DenseNet201, 
both with an accuracy of 0.77. Using fine-tuning, 
the best accuracy, 83%, was obtained with 
Xception. The following figures show the loss and 
the accuracy of these models. 
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Figure 2: Results for the DenseNet201 algorithms. 

 

 
Figure 3: Results for the ResNet50V2 algorithm. 
 
With fine-tuning the best model was Xception, 
with an accuracy of 0.83 in the test dataset. 

 

 
Figure 4: Results with the Xception algorithm. 
 

Using the Xception algorithm, we developed an 
exposure model for Alvalade, and employed this 
dataset in the assessment of casualties, as 
described in the following section. 

3. APPLICATION TO AN EARTHQUAKE 
SCENARIO 

Earthquake scenarios are a fundamental tool for 
the development of post-disaster response plans 
or to raise risk awareness amongst the population. 
For example, the results from this type of analysis 
are frequently used to design earthquake drills to 
train the population on how to react to destructive 
events.  
In this study, we considered an onshore event with 
a moment magnitude of 6.0, located northeast of 
Lisbon. The location and magnitude of this event 
is identical to the 1909 M6.0 Benavente 
earthquake, which heavily damaged a few villages 
in the district of Santarém. We defined the 
location of this event slightly closer to Lisbon to 
increase the impact of the scenario, considering 
the location of faults described in Carvalho et al. 
(2008). We used the OpenQuake-engine (Pagani 
et al. 2014) and the ground motion model from 
Atkinson and Boore (2006) for the calculation of 
the ground shaking in the affected region. We 
simulated 1000 ground motion fields considering 
the spatial correlation in the ground motion 
residuals. The spatial distribution of peak ground 
acceleration (PGA) for Portugal is depicted in 
Figure 5. For this event, the PGA in Alvalade is 
approximately 0.15g. 
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Figure 5: Spatial distribution of peak ground 
acceleration for the M6.0 earthquake scenario. 
 

For the calculation of casualties due to this 
seismic event, we used the fragility and 
vulnerability functions proposed by Martins and 
Silva (2020) for reinforced concrete and masonry, 
and used the scenario damage and risk calculator 
of the OpenQuake-engine (Silva et al. 2014b). 
The purpose of these analyses was not only to 
demonstrate the application of the previously 
described machine learning model, but also to 
evaluate the potential error introduced due to 
misclassifications. To this end, we performed two 
earthquake scenarios: in the first assessment we 
directly used an exposure model using the data 
collected in the field (i.e., “true” exposure). In the 
second analysis, we used the exposure model that 
was created automatically by the machine 
learning model. We note that in this process, since 
we are considering the entire building stock of the 
parish of Alvalade, all the images have been used 
by the machine learning algorithm. This means 
that images that were used to train the algorithm, 
were also used to generate the exposure model. 
This led to an accuracy (88%) above the one 
presented previously for the test dataset (in which 

only images unseen by the algorithm had been 
used). To mitigate this bias, a different region 
should be used for this algorithm, but such data 
was not available in this study. 
In both cases, the same ground shaking input and 
set of fragility and vulnerability functions were 
used. Figure 6 presents the casualties (fatalities, 
seriously injured and critically injured) for these 
two analyses, and the difference between the two 
(i.e., error). 
The results from the two analyses indicate 
practically the same impact. Even though 12% of 
the buildings in Alvalade have been misclassified, 
the error in the results is practically insignificant. 
We evaluated further the structures that were 
misclassified to understand the reason behind 
these minor differences. Two situations were 
observed: 1) some buildings were (incorrectly) 
classified into classes with a higher vulnerability 
(i.e., masonry instead of concrete), but for some 
of the simulations the ground shaking was 
relatively low, which would result in minor 
damage regardless of the building class; 2) some 
buildings were misclassified into classes with a 
similar vulnerability (i.e., reinforced concrete 
with 4-6 or 7+ storeys), and thus no significant 
discrepancies would be expected in any case. 
Finally, we also noted that due to the fact that the 
region has more than 2000 buildings, we also have 
the averaging effect, in which some 
overestimations of casualties “compensate” for 
the underestimations. Additional analysis 
considering more refined building classes (for 
example, considering the period of construction) 
and other earthquake scenarios are the topic of 
another ongoing study by the authors. 
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Figure 6: Casualties caused by the M6.0 earthquake 
scenario using the “true” exposure model (top), 
derived exposure model using the machine learning 
model (middle), and difference (i.e., error) between 
the two results (bottom). 
 

4. CONCLUSIONS 
In this study, we presented the calibration and 
testing of 6 machine learning algorithms (i.e., 
convolutional neural networks) for the purposes 
of automatically identifying specific structural 
and architectural features and defining a 
vulnerability class. The results using the Xception 
algorithm indicated an accuracy of 83% using the 
test dataset, in line with similar studies performed 
for Medellin, Chile, and Oslo. The algorithms 
were trained using an open database of building 
imagery, available at 
https://github.com/vsilva028/ML. 

The findings from this study suggest that that 
machine learning algorithms are reliable and 
suitable for the classification of building stocks 

for the purposes of performing natural hazards 
risk analysis. Granted that street level imagery is 
available for a given region, it is possible to 
employ this technique to build a high-resolution 
exposure model, containing not just the exact 
location of each building, but also a set of 
vulnerability features. This level of detail in 
exposure models is not achievable with current 
methodologies that rely on cadastral datasets or 
housing census surveys. As previously 
mentioned, this capacity is particularly important 
for the assessment of risk due to localized hazards, 
such as hydrological and volcanic (i.e., lava flow, 
lahars) hazards. However, we note that services 
such as Google Street View are not available 
globally, and even in the western world rural areas 
are often not well covered. Nonetheless, the 
increase in the coverage offered by such services 
and the ever-improving accuracy of machine 
learning algorithms have the potential to 
drastically change the field of exposure 
modelling. 
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