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ABSTRACT: We assess the Value of Information (VoI) for inspecting components in systems managed
by multiple agents, using game theory and Nash equilibrium analysis. We focus on binary systems made
up by binary components which can be either intact or damaged. Agents taking maintenance actions are
responsible for the repair costs of their own components, and the penalty for system failure is shared
among all agents. The precision of inspection is also considered, and we identify the prior and posterior
Nash equilibrium with perfect or imperfect inspections. The VoI is assessed for the individual agents as
well as for the whole set of agents, and the analysis consider series, parallel and general systems. A
negative VoI can trigger the phenomenon of Information Avoidance (IA), where rational agents prefer
not to collect free information. We discuss whether it is possible that the VoI is negative for one or for
all agents, for the agents with inspected or uninspected components, and for the total sum of VoIs.

1. INTRODUCTION

Many infrastructure systems (e.g. transportation
and gas pipeline networks) consist of multiple bi-
nary components, arranged in a system to ful-
fill various functions [Song and Der Kiureghian
(2003), Song and Ok (2010), Tien and Der Ki-
ureghian (2013), Malings and Pozzi (2016)]. The
system condition is determined by the states of the
components, which can be binary, either intact or
damaged. The maintenance and inspection actions
can be optimized to trade the risk of system mal-
functioning for the cost of maintenance. The belief
of the agents controlling the maintenance process
is described by a probabilistic distribution on the

possible states of the components. Thus, the infor-
mation on components’ states collected via inspec-
tions can improve decision making and reduce the
uncertainty and the maintenance cost. Many fac-
tors can affect the inspection preferences, such as
the probabilities of failure events, the maintenance
costs and the role of each component in the system.
These factors can be integrated in the Value of In-
formation (VoI) analysis to summarize the benefit
of observing the state of a component. VoI assess-
ment is based on Bayesian pre-posterior analysis,
as introduced by [Howard (1966)] and investigated
for binary systems by [Lin et al. (2022)].

The traditional framework for optimizing static
and sequential system maintenance assumes that
there is a central authority with full control of all
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components, and it can gather information and fa-
cilitate maintenance actions. Such assumption may
not hold, especially for large-scale infrastructure
systems which are often managed by multiple hold-
ers. In this paper, we develop a framework inspired
by cooperative game theory, as introduced to de-
scribe how individuals maximize expected utility in
economic settings [Neumann et al. (1947)].

In a context of system management, components
have different functions and need to cooperate with
each other to make the system working and gen-
erate profit. In the system reliability problem, the
network connectivity is studied under the presence
of an intruder (or attack on certain links and com-
ponents) with a game-theoretic formulation [Bhat-
tacharya and Başar (2010)], modeling the network
with a dynamic graph where the existence of an
edge between two components depends on the state
of the components as well as the attack. The net-
work connectivity is also analyzed in degradable
transportation networks [Du and Nicholson (1997),
Iida and Wakabayashi (1989)], by estimating statis-
tical distributions of link performance such as travel
time and capacity of the link and calculating the
impact of link performance variations on network
performance. The game theory model for system
maintenance has also been proposed for sequen-
tial decision making problems, when the interac-
tion among several players spans a certain period
of time [Oviedo (2000)].

When the system is managed by multiple agents,
the VoI may become negative for some players.
This means that some agents may prefer avoid col-
lecting information, even if free of cost. This is
the so called phenomenon of "Information Avoid-
ance" (IA), studied in the field of psychology and
public health. For example, people tend to seek
information that is consistent with their benefits
and decisions and, after the decision is made, to
neglect information about the chosen alternative
[Mills et al. (1959)]. In the medical context, it is
revealed that people delay visiting physicians about
suspicious symptoms of diseases, hoping they can
avoid undergoing serious medical exams and oper-
ations [Ajekigbe (1991)]. It is also shown that with
external constraints, the agents may wish to avoid

collecting information even if it is free, but by en-
forcing epistemic constraints in the regulations, the
policy-maker can induce a range of behaviors in the
agents obeying the regulations, from information
avoidance to over-evaluation of barely relevant in-
formation [Balcan et al. (2015), Pozzi et al. (2020)].

In this paper, we adopt a game-theoretic frame-
work to assess VoI and identify cases of IA in multi-
agents system maintenance.

2. METHODOLOGY

We consider a binary system composed of binary
components: each component can be in one of two
states: either intact or damaged. The system is rep-
resented as a block diagram, as that shown in Figure
1, where the system works properly only if there is
an intact path from origin (o) to destination (d) (non
functioning components cut the path). Each com-
ponent is managed by one agent (say the owner of
that component), who decides whether to repair it
or not. The cost for each agent is the sum of two
terms: the repair cost, if she takes the repair action,
and a penalty if the system is not working. Agents
select actions minimizing the expected cost. In this
context, we assess the impact of inspections, i.e. of
available information on the components’ state.

n components {c1,c2, ...,cn} are arranged in a
system, and the set of n agents {h1,h2, ...,hn} is
such that agent hi manages component ci. Let xi ∈
B = {0,1} define the state of component ci, with
xi = 1 indicating a functioning component, and xi =
0 a failed one. Binary vector x = [x1,x2, ...,xn] ∈
Ω = Bn lists the state of all components. Let ai ∈ B
define the action taken by agent hi on ci, with
ai = 1 meaning repairing (RE), and ai = 0 doing
nothing (DN). Binary vector a = [a1,a2, ...,an] ∈ Ω

lists all actions. The state of ci after action ai is
x′i = max(xi,ai) : B2 → B, so that the state is in-
tact if it was so, or if it is repaired, while it is
failed if it was so and it is not repaired. Updated
states are listed in vector x′ = [x′1,x

′
2, ...,x

′
n] ∈ Ω.

The binary system state is u = φ(x) : Ω → B, be-
fore the maintenance actions, and it is updated to
system state: u′ = φ(x′) after maintenance. φ is
the components-system function. Cost for agent hi
is Li = Ciai + 1− u′ where Ci is the repair cost of
component ci, and the cost for system failure is uni-
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tary. As noted before, u′ is a function of x′, which
depends on x and a. After an inspection is per-
formed, the information collected is shared among
all agents, so they can optimize their maintenance
action with the updated belief. If component ci is
inspected, information yi ∈ B is collected, where
yi = 0 indicates that the component is not working,
and yi = 1 that is working: value yi = z ∈ B is emit-
ted with probability e(i,z, p).

2.1. Inspections
For general systems with imperfect inspections, we
define:

εi = P[yi = 0|si = 1]
δi = P[yi = 1|si = 0]

to identify the inspection error rate for component
i. By Bayes rule, we define the posterior failure
probabilities for component i as:

ki =P[si = 0|yi = 1] =
δi pi

(1− εi)(1− pi)+δi pi

qi =P[si = 0|yi = 0] =
(1−δi)pi

εi(1− pi)+(1−δi)pi

Variable pa1,a2,··· ,an,yi denotes the posterior failure
probability of the system given that the inspec-
tion on component ci yields outcome yi and the re-
pair actions of agent h1,h2, · · · ,hn are a1,a2, · · · ,an
respectively. For example, if there are only two
agents, then p0,0,1 is the system failure probability
when we discover that ci is functioning and no com-
ponent is repaired. Intuitively, it is equal to p1,0,0
(indicating that ci is damaged, c1 is repaired and
c2 is not) when inspections are perfect and to p1,0,1
(indicating that ci is functioning, c1 is repaired and
c2 is not). There are 23 = 8 possible values for
pa1,a2,yi . We use 6 values {α1,α2, ...,α6} to iden-
tify these posterior probabilities, with α3 < α1,α2
and α6 < α4,α5. (When the inspection error rate
is limited to a small value, more inequalities can
be yield.) If the inspection is perfect, i.e. ki = 0
and qi = 1, we have α2 = α3 and α5 = α6, the
number of necessary variables to identify the pos-
terior probabilities will be reduced to 4. We define
pπ,i = P[yi = 0] = εi(1− pi)+(1−δi)pi. The prior
and posterior cost matrices are shown in Table 4,

pω,i pω, j pai,a j,yi α

qi p j p0,0,0 α1
ki p j p0,0,1 α2
0 p j p1,0,0 α3
0 p j p1,0,1 α3
qi 0 p0,1,0 α4
ki 0 p0,1,1 α5
0 0 p1,1,0 α6
0 0 p1,1,1 α6

Table 1: Posterior system failure probability pai,a j,yi

Table 2 and Table 3 respectively. We note here that
some equilibria (formally defined in the next Sec-
tion) are only possible when the inspection is im-
perfect, such as joint action {1,0} (that is RE-DN)
when ci is functioning (since α2 < α3 +C1 when
inspection is perfect).

ai/a j DN RE

DN α2, α2 α5, α5 +C2
RE α3 +C1, α3 α6 +C1, α6 +C2

Table 2: Posterior cost matrix when ci is functioning

ai/a j DN RE

DN α1, α1 α4, α4 +C2
RE α3 +C1, α3 α6 +C1, α6 +C2

Table 3: Posterior cost matrix when ci is damaged

2.2. Posterior costs
The belief about components’ state x is modeled by
distribution p, and we assume that all agents share
the same belief p. The corresponding belief on x′ is
p′(p,a). The system failure probability after action
a is:

Pφ (p,a) = 1−Ex∼p
[
φ
(
x′(x,a)

)]
(1)

The expected loss for agent hi is:

li(a, p) = Ex∼p[Li] =Ciai +Pφ (p,a) (2)
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ai/a j DN

DN pπ,iα1 +(1− pπ,i)α2
RE α3 +C1, α3

ai/a j RE

DN pπ,iα4 +(1− pπ,i)α5 +{0,C2}
RE α6 +C1, α6 +C2

Table 4: Prior cost matrix

o

c1

c2

c3

c4

c5 d

Figure 1: Figure 1. A general system with 5 compo-
nents

To differentiate between the action taken by one
agent and those by all others, we rewrite the loss
function with three arguments where a\i refers
to actions of agents other than hi: li(a, p) =
li(ai,a\i, p).

2.3. Optimal decision making
Among the 2n possible actions in Ω, some of them
are pure Nash Equilibria (NAs). Action a ∈ Ω

is a Nash Equilibrium under belief p if, for each
agent hi, her response is optimal, that is: ∀i : ai ∈
Ri(a\i, p), where the set of optimal response is:

a ∈ Ri(a\i, p)⊆ B
⇔∀b ∈ B : li(a,a\i, p)≤ li(b,a\i, p)

Let E (p)⊆ Ω be the set of all NAs, when the belief
is p. We define the global loss as the sum of losses
for all agents:

g(a, p) = ∑
i

li(a, p) (3)

A NA is "global" if no NA with lower global
loss exists. The set EG(p) ⊆ E (p) of Global NAs

(GNAs) is defined as:

a ∈ EG(p)
⇔{a ∈ E (p),∀b ∈ E (p) : g(a, p)≤ g(b, p)}

On the contrary, a NA is "local" if it is not global.
Sets E (p) and EG(p) can be identified by total enu-
meration, in set Ω.

To predict the agents’ behaviour, we assume they
select an action which is a NA. The behaviour of
agent hi is defined by a policy, πi, function of cur-
rent belief: ai = πi(p). The corresponding policy
for all agents is:

a = π(p) = {π1(p),π2(p), ...,πn(p)}

To define π , we refer to the set of NAs. If there
is a unique NA (which is trivially global), we as-
sume that all agents select the corresponding action.
In case of multiple NAs, we investigate scenarios
where the selected NA is global and where it is not.
We use notation πG to indicate a policy relating to
a GNA.

When policy π is followed, the shortcut notation
for the loss of agent i and for the global loss is:

lπ
i (p) = li

(
π(p), p

)
; gπ(p) = g

(
π(p), p

)
(4)

2.4. Information, inference and posterior actions
We assume that the same policy π is followed in the
prior and in the posterior setting. Following Bayes’
formula, the prior belief p becomes posterior belief
ω(i,z, p) when, after inspecting component ci, the
inspection outcome is yi = z.

The expected posterior loss for agent hi, when
component c j is inspected and prior belief is p, is:

L π
i, j(p) = EZ

[
lπ
i
(
ω( j,z, p)

)]
(5)

=
1

∑
z=0

e( j,z, p) lπ
i
(
ω( j,z, p)

)
(6)

The VoI for agent hi, when component c j is in-
spected, is:

VoIπ
i, j(p) = lπ

i (p)−L π
i, j(p) (7)

The overall VoI is the sum of VoIs for all agents:

VoIπ

j (p) = ∑
i

VoIπ
i, j(p) (8)
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Hence, this overall value can be related to the global
loss:

VoIπ

j (p) = gπ(p)−EZ
[
gπ

(
ω( j,z, p)

)]
(9)

with expected value

EZ
[
gπ

(
ω( j,z, p)

)]
=

1

∑
z=0

e( j,z, p) gπ
(
ω( j,z, p)

)
3. NEGATIVE VOI AND PRISONER’S DILEMMA

IN MULTI-AGENT SYSTEMS

We analyze cases of negative VoI, for various types
of networks and under different settings, such as
whether the inspection is perfect and whether the
agents select the global or local NE. During the
maintenance decision process, the information col-
lected through inspection can change the optimal
repair actions and the expected posterior cost for
the agents, which create a potential incentive for the
agents to avoid the information, even if it is free
to collect. IA in a multi-agent maintenance sys-
tem can happen in various scenarios. For example,
with two agents, it is intuitive that a higher poste-
rior cost may happen when a local equilibrium is
selected, resulting in negative VoI for both agents.
Another scenario is when one agent prefers to avoid
information that may be beneficial to the other, be-
cause the inspection of one component may force
the other agent to skip the repair of her component,
even under the global equilibrium. However, can
the VoI be negative for both agents when the global
equilibrium is selected?

To answer this question, we first look at the fol-
lowing example. Suppose that in a series system
with two agents, p1 = 0.538, p2 = 0.619, c1 =
0.350, c2 = 0.491. Parameters of the inspection of
c1 are δ1 = 0.795 and ε1 = 0.501. The cost ma-
trix for the two agents under the prior and posterior
situations is given in Table 5. The prior global equi-
librium action is repairing both components. When
the inspection of c1 shows that it is functioning, the
global equilibrium remains the same (because of
the error rate). So far, both equilibria are globally
optimal in their respective settings.

But when the inspection shows that c1 is dam-
aged, the global equilibrium becomes doing noth-
ing for both components. If we consider repairing
both components, it is obvious that that action has
the lower cost for each agent. But when a2 is fixed
as repairing, the cost for agent h1 will be reduced
if h1 does nothing instead of repairing. Therefore,
the action pair of repairing both is not a posterior
equilibrium, and the VoI is negative for both agents.
When the inspection shows that c1 is damaged, sup-
pose that agent h2 repairs. Then h1 needs to pay
0.324 for doing nothing, and 0.350 for repairing,
and so is better off doing nothing. Likewise, sup-
pose h2 does nothing. Then h1 needs to pay 0.742
for doing nothing, and 0.969 for repairing, and so
doing nothing is again better. Doing nothing for
h1 now strictly dominates the alternative of repair-
ing: whatever action h2 takes, h1 is always better off
choosing to do nothing. By symmetry, doing noth-
ing also strictly dominates repairing for h2. Thus,
two rational agents will both do nothing and pay
0.742 each, which is also the only strict NE, while
two "irrational" agents can cooperate and achieve
the much lower cost of 0.350 and 0.491, respec-
tively, by repairing both components. This is a case
of "prisoner dilemma", which describes the possi-
ble discrepancy of decisions made under collective
rationality and those made under individual ratio-
nality and was discussed by Nash (1953), Hardin
(1968), Rapoport (1974).

Table 5: Cost matrix when global equilibrium is cho-
sen, c1 inspected, and VoI is negative for both agents

Cond- Cost (agent h1-agent h2)
-itions DN-DN DN-RE
Prior 0.824, 0.824 0.538, 1.029
yi = 1 0.867, 0.867 0.650, 1.141
yi = 0 0.742, 0.742 0.324, 0.814
Cond- Cost (agent h1-agent h2)
-itions RE-DN RE-RE
Prior 0.969, 0.619 0.350, 0.491
yi = 1 0.969, 0.619 0.350, 0.491
yi = 0 0.969, 0.619 0.350, 0.491
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4. EQUILIBRIUM AND VOI ANALYSIS WITH

PERFECT INSPECTION
In this section we discuss the case of n indepen-
dent components (and hence the random variables
in vector x are independent), and the inspections are
perfect. Now belief p = [p1, p2, ..., pn] can be seen
as a n-entry vector, and pi ∈ [0,1] is the probability
that component ci fails, so that the component state
is a Bernoulli random variable: xi ∼ Ber(1− pi).
The corresponding conditions after maintenance, in
vector x′, are still independent Bernoulli random
variables, conditional to actions a, and vector p′

is updated such that p′i = min{pi,1− ai}. Table 6
shows an example of cost matrix for two agents:
h1 and h2. In that table, we use a shortcut nota-
tion for system failure probability Pφ (p,a). pF in-
dicates the system probability of failure when all
components whose indexes are in set F are re-
paired. Hence, if no component is repaired, that
probability is p /0. The column defines the action
of agent h j, and the row that of hi. For perfect in-
spection where xi = yi, posterior vector ω(i,yi, p) is
identical to prior vector p in all entries, except for
entry i, which becomes 1− yi.

Table 6: Prior cost matrix for general two-agent sys-
tems

ai/a j DN RE

DN p /0 , p /0 p{ j} , C j + p{ j}

RE Ci + p{i} , p{i} Ci + p{i, j} , C j + p{i, j}

Based on the assumption that inspection and re-
pair are perfect, the components are independent,
the prior system failure probabilities are shared by
all agents, and the information of inspection out-
comes and repair actions are available to all agents,
we have summarized the possible situations of neg-
ative VoI for series, parallel and general systems
with perfect information under global equilibrium
in Table 7, and under local equilibrium in Table
8. Specifically, the tables are listing answers to the
question whether it is possible to have negative VoI
for any agent, for the agent owning the inspected
components, for the agent owning the uninspected
components, for all agents, and for the total sum

of VoI. In these tables, positive answers are marked
with Ë and negative ones with é. Negative an-
swers marked with  are inferred from numerical
simulations without a strict analytical proof (yet).

As anticipated above, in the case of two agents,
it is possible that a joint action, e.g. repairing
both components, yields less expected cost for both
agents, but it is not an equilibrium. Instead, another
joint action, e.g. doing nothing, may become an
equilibrium with higher cost for both agents. This
"prisoner dilemma" can generate a negative VoI for
each agent.

For global equilibrium, we have proved that it is
impossible to have negative VoI in parallel systems
with any number of agents and in series systems
with two agents. For series systems with any num-
ber of agents, we have not found negative VoI for
any agent through numerical simulations, but the
strict analytical proof has not been discovered yet.
For general systems, we will show examples where
the negative VoI happens for the owners of the in-
spected or uninspected component, and the sum of
VoI for all agents is negative. We have also proved
that it is impossible to have negative VoI for every
agent in a general system with two agents, but this
conclusion still needs analytical proof for multiple
agents.

For local equilibrium, we have shown that it is
possible to have negative VoI for agents manag-
ing either the inspected or uninspected components,
and the sum of VoI of all agents can be negative too.
For parallel systems with any number of agents, it
is impossible to have negative VoI for all.

Table 7: Possible negative VoI for general systems with
perfect information and global equilibrium

configure negative VoI for · · · agent?
system agent ≥ 1 ins. unin. sum all
series two é
parallel two é
series any
parallel any é
general two Ë Ë Ë Ë é
general any Ë Ë Ë Ë
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Table 8: VoI for general systems with perfect informa-
tion and local equilibrium

configure negative VoI for · · · agent?
system agent ≥ 1 ins. unin. sum all
series any Ë
parallel two Ë Ë Ë Ë é
general any Ë

Due to the limitation on the length of this con-
ference paper, the proofs and examples to validate
each conclusion in the table are not included, but
we can share here some brief discoveries regard-
ing the negative VoI. Firstly, if the prior and pos-
terior equilibrium actions are the same, then obvi-
ously the VoI is nil. Secondly, if there is only one
different action, then it is also impossible to have
negative VoI for both agents. For example, suppose
we have a case where prior equilibrium is (a1,a2),
and two posterior cases are (a′1,a

′
2) and (a′′1,a

′′
2)

where a1 = a′1 = a′′1 , and a2 = a′2 ̸= a′′2 . Because
we know that if we take (a1,a2) in the second pos-
terior case, then the VoI must be 0. Since (a′′1,a

′′
2)

is the equilibrium, we have the cost for the sec-
ond agent (it doesn’t matter which agent we choose)
must be lower than that in (a1,a2) (which may not
be an equilibrium in this posterior case). So the
VoI for that agent must be non-negative. Thirdly,
it is impossible to completely flip the actions in
the posterior equilibrium when the inspected com-
ponent is functioning or damaged. For example,
it is impossible to have two posterior cases like
(a′1,a

′
2) and (a′′1,a

′′
2), and a′1 ̸= a′′1,a

′
2 ̸= a′′2 . For

agent h2, we know that c1
(a′1,a

′
2),2

< c1
(a′1,a

′′
2),2

and

c0
(a′′1 ,a

′′
2),2

< c0
(a′′1 ,a

′
2),2

. But when c1 is functioning,
then the optimal action for h1 in the posterior equi-
librium must be doing nothing, so we also have:
c1
(a′1,a

′′
2),2

= c0
(a′′1 ,a

′′
2),2

< c0
(a′′1 ,a

′
2),2

= c1
(a′1,a

′
2),2

, which
causes a contradictory.

5. EQUILIBRIUM AND VOI ANALYSIS WITH IM-
PERFECT INSPECTION

If the inspection is imperfect, i.e. εi,δi > 0, the neg-
ative VoI can happen for the agents managing the
inspected and uninspected components and the sum
of VoI can be negative under global and local equi-

librium in series, parallel and general systems. For
parallel systems under global metric, it is impossi-
ble to have negative VoI for all agents. For the rest
of the system configurations, it is possible that in-
formation hurt all agents. The detailed conclusions
are listed in Table 9 and Table 10.

Table 9: VoI with imperfect information and global
equilibrium

configure negative VoI for · · · agent?
system agent ≥ 1 ins. unin. sum all
series any Ë
parallel any Ë Ë Ë Ë é
general any Ë

Table 10: VoI with imperfect information and local
equilibrium

configure negative VoI for · · · agent?
system agent ≥ 1 ins. unin. sum all
series any Ë
parallel any Ë
general any Ë

6. CONCLUSIONS AND FUTURE WORKS

We have illustrated the assessment of VoI for a net-
work system managed by multiple agents following
a Nash equilibrium analysis. When multiple equi-
libria exist, we define the global Nash equilibrium
as the one with minimum sum of all the agents’
costs.

When the information is perfect, for simple sys-
tems such as series and parallel systems, under
the assumption that the global Nash equilibrium is
selected, we prove that the VoI of revealing one
component’s status always has always non-negative
VoI. When local equilibrium is selected, we illus-
trate that the VoI can be negative. For general sys-
tems, we have shown that the VoI can be negative,
even when global equilibrium is selected. Informa-
tion avoidance can happen to the agent managing
the inspected component, but also to the others.

When the information is imperfect, however, the
VoI can be negative for all agents under global or

7



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

local equilibrium in series and global systems, ex-
cept for parallel systems. The VoI can be negative
(when the information is imperfect) for the agents
managing the inspected or the uninspected compo-
nents, and the sum of VoI can be negative under
global and local equilibrium in all systems.
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