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ABSTRACT: The safety and reliability evaluation of complex engineering structures under dynamic 
loading conditions has long been a challenging problem. The coupling of nonlinearity and randomness 
in high-dimensional or large-degree-of-freedom stochastic systems is the essential difficulty to be 
circumvented. To this end, the refined analysis techniques to capture structural behaviors and uncertainty 
quantification and propagation, seemly irrelevant, are essentially the two sides of a coin. This perspective 
leads to the thought of physically driven full probabilistic uncertainty propagation in complex nonlinear 
systems. In this paper, some advances in this framework, in particular the probability density evolution 
method and its extensions and applications, will be outlined. Problems to be further studied are also 
discussed. 

1. INTRODUCTION 
Ensuring the safety and reliability of complex 
engineering structures under various loading 
conditions, such as seismic events, has long been 
a major challenge (Lutes & Sarkani 2004). 
Actually, the behavior of structures subjected to 
various dynamic actions exhibits strong 
nonlinearity (Belytschko et al. 2014, Li et al. 
2014). Meanwhile, both structural parameters and 
external excitations involve unignorable 
randomness (Housner 1947, Li & Chen 2009). 
Therefore, the refined nonlinear analysis of 
complex structures and uncertainty quantification 
and propagation are essentially the two sides of a 
coin (Li 2021), where tackling the coupling of 
nonlinearity and randomness in complex high-
dimensional nonlinear systems plays a central role 
in circumventing the above challenge. 

Great efforts have been devoted to the two 
aspects over the past 70 years. In structural 
analysis, the past 20 years have witnessed the 
transition of paradigm from the component-
structure two-level framework, including the 

numerical simulation of behaviors of components 
(e.g., beams, columns, and shear walls) (Takeda 
et al. 1970) and assembling of components to a 
structure, to the continuum-mechanics based 
framework, where the constitutive law 
(Belytschko et al. 2014, Li et al. 2014), spatial 
discretization (e.g., element techniques) and time 
marching algorithm are the three pillars. In the 
aspect of uncertainty quantification and 
propagation, both stochastic modeling of 
structural parameters or parameter fields (Ang & 
Tang 2006) and stochastic excitations (Housner 
1947, Shields & Deodatis 2013), and stochastic 
mechanics/dynamics, including, e.g., the 
sampling approaches (Au & Beck 2001), the 
moment-level approaches (Soize & Ghanem 2004, 
Zhao & Lu 2021), and the approaches at the level 
of probability density functions (Zhu 2006, 
Kougioumtzoglou & Spanos 2012), together with 
the surrogate models (Sudret 2008) and the 
emerging machine learning techniques 
(Karniadakis et al. 2021), were extensively 
studied. 
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Unfortunately, the above two aspects were 
developed somewhat independently without 
connections, and the techniques for uncertainty 
propagation considerably lag behind the refined 
structural behavior analysis. Actually, 
Freudenthal (1947) stressed that “the discrepancy 
between the highly refined procedure of modern 
design and the rather arbitrary manner of choosing 
the safety factor is seriously hampering the 
development of more effective design methods 
based upon a perfect balance of safety and 
economy”. Seventy years later, Li (2017) came up 
with the thought of the third-generation structural 
design theory, revealing that the structural 
behavior analysis and the uncertainty 
quantification and propagation are the two 
indispensable wheels driving the updating of 
structural design theory. Along this line, a new 
unified framework of physically driven 
uncertainty propagation in complex nonlinear 
systems was proposed and developed (Li & Chen 
2009, Li 2021). The present paper will review and 
revisit some advances and problems to be studied 
in the future. 

2. PROBLEM FORMULATION 
For a generic solid mechanics problem, including 
an engineering structure under dynamic actions, 
the equation of motion on a body  reads 

 (1) 
where  is the displacement at  and time 
, the over dot denotes the time derivative,  is 

the stress tensor,  denotes the divergence 
operator,  is the body force,  and 

 are the mass density and viscous damping 
coefficient, respectively, and the symbol  
denotes a point in the sample space, 
characterizing the source of randomness involved 
in the system. If there is only one single point in 
the sample space, then it is a deterministic 
problem, and  can be omitted. 

The elastoplastic damage mechanics based 
constitutive law of concrete reads (Li et al. 2014) 

 (2) 
where  is the fourth-order initial elastic 
modulus tensor;  is the fourth-order unit tensor; 

 and  are, respectively, the 
fourth-order damage and the second-order plastic 
strain tensors. 

In addition, the initial and boundary 
conditions should be prescribed. For instance, the 
boundary conditions usually include two parts 

  (3) 

i.e., the force and displacement boundary 
conditions, , 
and  is the boundary of ,  is the traction on 
the boundary and  is the prescribed 
displacement on the boundary.  

Eqs. (1) and (2), together with the geometric 
equations, constitute the governing physical 
equations for generic solid mechanics problems. 
If all the quantities are deterministic, i.e., there is 
only one single point  in the sample space, this 
set of equations under the prescribed initial and 
boundary conditions can be solved by the 
numerical methods, e.g., the finite element 
method (Belytschko et al. 2014) or various mesh 
free methods. This also provides the physical-
mechanical basis for uncertainty propagation and 
reliability evaluation. Actually, if there is 
randomness involved either in the external forces 
and boundary conditions, in the structural 
parameters in the constitutive law, or both, which 
is usually the case in engineering practice, then 
the response quantities are also random in nature. 
In such cases, the following challenging tasks 
have to be tackled: 

(1) Uncertainty quantification of material 
properties and excitations; 

(2) Uncertainty propagation and stochastic 
response analysis of nonlinear structures; 

(3) Reliability evaluation of structures; 
(4) Reliability-based control and 

optimization of complex structures. 
Some advances in these aspects will be 

outlined and reviewed in the following sections. 
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3. UNCERTAINTY QUANTIFICATION AND 
REPRESENTATION 

To characterize the sources of uncertainty in 
complex engineering systems is the probabilistic 
information basis of uncertainty propagation and 
reliability evaluation of structures. This 
encompasses two key aspects: system parameters 
and external excitations. 

3.1. Uncertainties in parameters of concrete 
Concrete behavior is featured by strong 
nonlinearity and unignorable randomness (Li et al. 
2014). The uncertainty in the constitutive law of 
concrete involves the randomness in the behavior 
of concrete at any given position and the spatial 
variability, which usually, in turn, is exhibited as 
the randomness of mechanical parameters and 
their spatial variability. 

The randomness of mechanical parameters 
of concrete, e.g., the strength, elastic modulus, 
and ultimate strain, etc., was recognized long time 
ago (Ang & Tang 2006, Vanmarcke 2010). For 
instance, the coefficient of variation of the 
strength of concrete was provided in most design 
codes. However, to capture the constitutive law of 
concrete, several parameters are needed, e.g., 4 
parameters are needed in the damage model for 
the uniaxial compressive curves (Li et al. 2014). 
The empirical relations between different 
parameters were extensively investigated, say, 
based on data fitting. However, two issues need to 
be addressed: (1) Generally, the data of different 
parameters are not from the same specimen, e.g., 
the elastic modulus data are usually from prism 
specimens, but the strength data are usually from 
cubic or cylindric specimens; and (2) Full 
probabilistic dependence between the parameters 
still lacks. To this end, the mesoscale random 
fracture-based damage mechanics (MRFD) 
constitutive model of concrete provides a physical 
basis for the uncertainty quantification of concrete 
behavior, and the complete stress v.s. strain 
curves provide data basis (Li et al. 2014). Based 
on the MRFD model, the parameters of the 
mesoscale random field can be identified (Li et al. 
2021). In addition, it was found that the 
macroscopic parameters, including the strength, 

the elastic modulus, the strain at peak stress, and 
the descent phase parameter, are nonlinearly 
correlated and could be captured by the vine-
copula functions in the full probabilistic sense 
(Tao et al. 2020).  

The spatial variability of concrete 
constitutive law will greatly affect the response of 
concrete structures and thus shall be quantified. A 
representative method is the hierarchical model 
recommended by the JCSS (Engen et al. 2018), 
which has been recently extended to involve the 
random field of concrete in components, where 
the multi-parameter random field of concrete is 
captured by an approach by synthesizing the 
spatial correlation function and the multi-variate 
copula function (Tao & Chen 2023). A more 
physically based approach is to model the random 
field of concrete constitutive law by the two-scale 
random field of fracture strain of mesoscale spring 
(Li et al. 2021). Remarkably, it was discovered 
that the randomness of the constitutive law of 
concrete would lead to the transition of failure 
modes, and thus ignoring the randomness may 
yield misleading results (He et al. 2021, Tao & 
Chen 2023).  

3.2. External excitations 

3.2.1. Statistical models 
One direct approach to modeling stochastic 
processes is to capture the power spectral density 
(PSD). The widely employed models include, e.g., 
the Kanai-Tajimi model for ground motion 
(Tajimi 1960) and the Kaimal model for 
fluctuating wind (Kaimal et al. 1972), etc. Though 
the PSD models can be extended to non-stationary 
processes and random fields (Vanmarcke 2010), 
it should be stressed that only the second-order 
statistics rather than the full probabilistic 
information was characterized (Li & Chen 2009). 

Generally, to represent the stochastic process 
or fields in the time domain based on the above 
models, which is necessary for the nonlinear 
analysis of structures, the spectral representative 
method, the Karhunen-Loève expansion, and the 
proper orthogonal decomposition are widely 
employed (Li & Chen 2009). To improve the 
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accuracy with a reduced number of basic random 
variables, the stochastic harmonic function 
method, and the orthogonal function model were 
developed (Chen et al. 2013). For the random 
fields, the frequency-wavenumber joint spectral 
representation method was newly proposed, e.g., 
for fluctuating wind speed (Shields & Deodatis 
2013, Song et al. 2018). By doing so, the 
randomness involved in a stochastic process or 
random field can be characterized by a set of basic 
random variables. An alternative approach is to 
construct a linear filter system whose output PSD 
is consistent with or approximate to the target 
PSD (Spanos & Zeldin 1996, Luo et al. 2022). 

3.2.2. Physical models 
The above models could not capture the full 
probabilistic information, and generally, huge 
amounts of data are needed. Physically based 
models can remedy such problems (Li & Chen 
2009). To this end, the physical model of 
stochastic ground motion that reflects the source-
to-site propagation mechanism (Wang & Li 2011), 
the wind field physical model involving the 
turbulent mechanism and the phase evolution time 
of gust wind, and the physically based typhoon 
risk analysis (Hong et al. 2019) were developed. 
Generally, in such models, the randomness is also 
finally characterized by some basic random 
variables. 

4. UNCERTAINTY PROPAGATION 

4.1. Principle of preservation of probability  
For a deterministic continuum system, the laws of 
mass, moment, and energy conservation are of 
fundamental significance. When it comes to 
systems involving uncertainties, besides the 
above conservation laws, an additional law, i.e., 
the principle of preservation of probability, holds 
(Li & Chen 2008). Actually, this principle can be 
stated as follows: In a preserved stochastic system, 
the probability is conservative. It can be 
interpreted in two different ways: the state space 
description and the random event description (Li 
& Chen 2008). By advocating the state space 
description, the classical Liouville equation, 

Fokker-Planck-Kolmogorov (FPK) equation, and 
the Dostupov-Pugachev equation were re-derived 
in a unified manner (Li & Chen 2009), whereas 
when the random event description is adopted, the 
new generalized density evolution equation 
(GDEE) and dimension-reduced probability 
density evolution equation (DR-PDEE) can be 
established. 

4.2. Generalized density evolution equation  
In the stochastic dynamical system governed by 
Eq. (1), if all the randomness characterized by  
can be captured finally by the random vector 

, say by the modeling and representation 
methods in Section 3. If the quantities of interest 
are  (e.g., the displacement 
or stress, strain at any position), then the 
augmented system  is probability-
preserved. Therefore, according to the random 
event description of the principle of preservation 
of the probability, for any random event 

, where  is the subdomain 
corresponding to , an arbitrary subdomain in 
the state space at the initial time, and  is any 
arbitrary subdomain in the sample space, there is  

  (4) 

which leads to the GDEE (Li & Chen 2009): 

 (5) 
The initial condition is 
  (6) 
where  is the initial value of ;  is 
the joint PDF of ;  is Dirac’s delta function. 
After solving Eq. (5) under the condition (6), 
finally, we have 

  (7) 

It should be stressed that the information of 
 that drives the evolution of PDFs as 

revealed in Eq. (5), comes from the solution of 
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physical equations [Eqs. (1) through (3)], while 
the source of the probabilistic information is 
inserted in Eq. (6). Therefore, Eqs. (1) through (7) 
are together the governing equations for the 
physically driven uncertainty propagation. 

The most remarkable property of Eqs. (5) 
through (7) is that the coupling of nonlinearity 
and randomness is, in a way, broken, and thus the 
dimension of the GDEE fully depends on what 
quantities are of interest instead of the dimension 
of the original stochastic system. In particular, in 
most applications,  is adequate. This 
thoroughly circumvents the difficulty due to high 
dimensions of the classical equations, e.g., the 
Liouville and the FPK equation, and provides 
great flexibility for practical applications to large 
complex structures.  

4.3. Dimension-reduced probability density 
evolution equation  

In some cases, it is hard to represent the stochastic 
processes or random fields by random functions 
with finite basic random variables, or the number 
of random variables employed in such an 
approach is very large. An alternative method is 
the DR-PDEE (Lyu & Chen 2022). 

Actually, without loss of generality, Eq. (1) 
can be expressed in the form of the state equation 
  (8) 

where   is the state 

variable vector, and  is the random 
excitation vector. Then for any, say the -th, 
component of interest, , by advocating the 
random event description of the principle of 
preservation of probability, there is 

 (9) 

By the procedure similar to the Kramers-
Moyal expansion, we are led to 

  (10) 

where  are the first, second, third, … 
conditional derivate moments with respect to 

 , respectively. Further, Lyu and Chen 
(2022) rigorously proved that if the process 

 is path-continuous, then the third and 
higher orders of conditional derivate moments 
turn out to be zeros, that is, 

 (11) 

Eq. (11) is the so-called DR-PDEE, and the 
first and the second conditional derivate moments 
are the intrinsic drift and diffusion coefficients, 
respectively,  

 (12) 

and 

 (13) 

Alternative derivation methods of the DR-
PDEE can be found in Chen and Lyu (2022) and 
Lyu and Chen (2022). (It is called GE-GDEE in 
these papers.) The DR-PDEE asserts that 
provided a stochastic process is path-continuous, 
the evolution of its PDF only contains the drift and 
diffusion terms, no matter whether the process 
and the original system represented by state 
variable are Markovian or non-Markovian (Lyu & 
Chen 2022, Luo et al. 2023), the sources of 
randomness are from the system or excitations 
(Chen & Lyu 2022). 

Again, it is worth stressing that the 
dimension of Eq. (11) depends only on what 
quantities are of interest. The crucial crux is that 
the intrinsic drift and diffusion functions in Eqs. 
(12) and (13) are determined in turn by solving Eq. 
(8), which is the physical governing equation. 
Consequently, DR-PDEE is an alternative 
formulation for the physically driven uncertainty 
propagation. 

4.4. Numerical implementation  
For some simple systems, the analytical 

solution of GDEE exists (Li & Wang 2023), 
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which provides important benchmarks verifying 
the GDEE. For generic systems, the GDEE needs 
to be solved numerically. To this end, the partition 
of the probability space and the selection of 
representative point are crucial to the accuracy (Li 
& Chen 2009). The discrepancy is the rational 
indicator to evaluate the efficacy of the point set, 
for the Koksma-Hlawka inequality governs the 
worst error of numerical integrals with the 
discrepancy. Chen and Zhang (2013) proposed the 
extended F- (EF-) discrepancy to take account for 
the non-uniformly distributed cases and the 
assigned probability of each representative point. 
However, calculating the EF-discrepancy is an 
NP-hard problem. To circumvent this problem, 
the generalized F- (GF-) discrepancy that 
considers the marginal distribution of each 
dimension involving the assigned probabilities is 
proposed (Chen & Zhang 2013), and the extended 
Koksma-Hlawka inequality in terms of the GF-
discrepancy was established (Chen & Chan 2019). 
In addition to independent random variables, the 
iterative screening-rearrangement method has 
been developed to select representative points for 
dependent random variables (Yang et al. 2020). 

To numerically solve the GDEE, refined 
numerical procedures based on the finite 
difference method (Li & Chen 2009), the finite 
element method, the mesh-free method, and the 
deep learning have been developed so far 
(Papadopoulos & Kalogeris 2016). Further, to 
improve the accuracy, the ensemble evolution 
numerical method of solving GDEE was 
developed recently (Tao & Li 2017). 

As for the DR-PDEE, for linear systems and 
some nonlinear systems, the closed-form or semi-
analytical expression of the intrinsic drift and 
diffusion functions are available (Sun & Chen 
2022, Luo et al. 2023). In generic cases, numerical 
methods are needed. The intrinsic drift functions 
can be constructed by physically informed data-
driven approaches, i.e., the locally weighted 
smooth scatters and copula algorithm (Chen & 
Lyu 2022). The DR-PDEE, as an FPK-like partial 
differential equation, can be solved via the path 
integral method (Lyu & Chen 2022). 

It is noted that both GDEE and DR-PDEE 
are rooted in the essence that the evolution of 
probability density is physically driven, and thus 
both belong to the physically driven probability 
density evolution method (PDEM). 

5. APPLICATIONS AND EXTENSIONS 

5.1. Probabilistic response 
The physically driven PDEM, including both 
GDEE and DR-PDEE, provides powerful tools 
for uncertainty propagation analysis of complex 
systems. Actually, the GDEE has been applied in 
various types of engineering structures, including 
super high-rise concrete structures, large span 
structures, and even aero plane structures, etc. (Li 
et al. 2018, Saraygord & Pourtakdoust 2018). 

Alternatively, the DR-PDEE was also 
applied in huge nonlinear structures involving 
both randomness in structural parameters and 
stochastic excitations (Chen & Lyu 2022), and 
offshore wind turbine systems (Luo et al. 2022), 
etc. Numerical results show that the DR-PDEE 
could yield results in the order of  
level on the tails of PDF. 

5.2. Dynamic reliability 
Reliability plays a pivotal role in engineering 
design, risk assessment, and decision-making. 
Though the first-passage reliability problem has 
been extensively studied, it remains a great 
challenge for high-dimensional dynamical 
systems. Actually, the theoretically seemly sound 
diffusion process method encounters the so-called 
curse of dimensionality and the limitation due to 
Gaussian white noise excitations (Lutes & 
Sarkani 2004). The alternative widely used 
method based on level-crossing processes might 
be of unguaranteed accuracy due to the Poisson or 
Markov assumption (Vanmarcke 2010).  

By advocating the random event description 
of the principle of preservation of probability, it is 
straightforward to evaluate the first-passage 
reliability of a structure by imposing an absorbing 
boundary condition corresponding to the failure 
criterion on the GDEE (Li & Chen 2009). This 
method has now been widely applied. In 
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particular, the physical synthesis method for 
evaluating the global reliability of structures 
based on GDEE accommodating multi-scale 
failure criteria was developed (Li 2021). 

However, for the DR-PDEE, it was proved 
that directly imposing an absorbing boundary 
condition on the DR-PDEE will not yield the 
correct first-passage reliability. Alternatively, 
introducing an absorbing boundary process (ABP) 
and establishing the DR-PDEE of the ABP will 
yield the first-passage reliability (Lyu & Chen 
2022). In other words, this implies the non-
exchangeability of imposing absorbing 
boundaries and dimension reduction. It was 
remarkable that solving the DR-PDEE of ABPs 
with the computational efforts in the order of 
magnitude of several hundreds of deterministic 
analyses could capture small failure probabilities 
in the order of . By this method, the 
first-passage reliability evaluation of huge 
complex concrete structures with the degrees of 
freedom being 277,404 became reality (Lyu et al. 
2023). In addition, it is worth pointing out that due 
to the above non-exchangeability, it should be 
cautious in adopting the “pure” data-driven 
approaches for the first-passage evaluation 
because these approaches are usually equivalent 
to the DR-PDEE imposed by the absorbing 
boundary condition rather than the DR-PDEE of 
ABPs. 

5.3. Extreme value distribution 
To capture the extreme value distribution (EVD) 
is an alternative approach to evaluate the first-
passage reliability. In particular, it is superior to 
the above absorbing boundary method when the 
boundary is random in nature (Li & Chen 2009). 
Further, when the failure criterion is some kind of 
compound criterion, i.e., the logic combination of 
more than one criterion, the principle of 
equivalent extreme value event can be constructed 
(Li et al. 2007). The EVD, including the EVD of 
the equivalent event, can be captured by the 
GDEE via constructing a virtual stochastic 
process (Li & Chen 2009).  

Time-variant EVDs provides another option 
for the time-variant dynamic reliability evaluation 

 (14) 

where  is a certain boundary; 
 is the extreme value of the 

quantity of interest , and  is its 
cumulative distribution function (CDF). However, 
obtaining its CDF is challenging either 
analytically or numerically. Recently an 
augmented Markov vector approach was 
developed, offering precise numerical solutions 
for time-variant EVDs (Chen & Lyu 2020). 
Numerical examples demonstrate its effectiveness, 
even for systems with special distributions like 
jumps or concentrated probabilities, e.g., Poisson-
excited systems. Furthermore, a class of Volterra 
integral equations has been developed to 
analytically or numerically determine the time-
variant EVDs of path-continuous Markov 
processes (Lyu et al. 2021). However, the 
extension to high-dimensional problems is still 
ongoing. 

5.4. Optimal control 
In order to mitigate the vibration and increase the 
resistance of structures, structural control is an 
effective pathway. Note that dynamic excitations, 
such as earthquakes and winds, are stochastic and 
are of complex properties in terms of amplitude 
and frequency. The deterministic and even the 
classic stochastic optimal control theory may 
underperform in such scenarios. However, the 
generality of the PDEM provides a new 
possibility for optimal control (Peng & Li 2019). 

Unlike classic stochastic control policies that 
aim to improve structural performance in the 
sense of the second-order moment, the PDEM-
based optimal control allows the mitigation of 
vibration in the sense of probability density. 
Furthermore, the generalized optimal control law 
has been devised based on the PDEM and the 
probabilistic controllability indexes, which can 
serve as a unified formula of optimal control law 
in the passive, active, semi-active, and hybrid 
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control (Peng & Li 2019). Determining the 
locations and parameters of control devices is 
another crucial topic in vibration control of 
structural under stochastic actions. In this regard, 
the reliability-based optimization of the 
parameters of control devices has also been 
studied based on the PDEM. For example, Peng et 
al. (2021) conducted reliability-based 
optimization of parameters of sliding implant-
magnetic bearings to reduce the seismic response 
of structures. Numerical examples indicated that 
the reliability-based optimization of control 
device parameters can help to improve the seismic 
reliability of the structure. 

5.5. Reliability-based design optimization 
In the current design methodology, the reliability 
of the structure is implicit, which means that the 
reliability can only be determined by a reliability 
analysis after the design phase. In this context, 
Reliability-based design optimization (RBDO) 
provides feasibility to explicitly consider the 
reliability in structural design (Schuëller & Jensen 
2008, Li 2021). 

The RBDO problem can usually be 
formulated as a nonlinear programming problem, 
where the dynamic reliability is involved in the 
objective or constraint functions. A general 
formulation of the RBDO problem is given by 

  (15) 

where  is the probability of 
failure, i.e., first-passage probability, in which  
is the end point of the time interval of interest;

 is the objective function; 
 denotes the -th constraint 

function;  is the number of constraint functions; 
 is the -dimensional design 

vector. Evidently, the probability of failure is a 
function of the design variables. 

In principle, Eq. (15) can be solved by any 
numerical optimization algorithm. However, the 
first-order algorithms, i.e., the gradient-based 
algorithms, are preferred due to the fact that they 
require fewer function calls. As a result, the 

sensitivity or gradient of the first-passage 
probability is a requisite, and the sensitivity 
analysis is transformed into repeated dynamic 
reliability analyses. For design variables which 
are distribution parameters of the random 
variables, the sensitivity can be evaluated by the 
PDEM with the change of probability measure 
(COM) synthesized method without introducing 
any extra structural analysis (Chen et al. 2020), 
i.e., the sensitivity of the probability of failure is a 
byproduct of the reliability analysis. For design 
variables which are deterministic but controllable 
variables, the COM cannot be used. To this end, 
methods based on surrogate models in augmented 
space and important representative points have 
been developed (Yang et al. 2022). The efficiency 
and efficacy of these methods have been verified 
by the dynamic reliability-based design 
optimization of linear and nonlinear frame 
structures under seismic excitations. 

The above discussions are focused on general 
dynamic-RBDO (DRBDO) problems. Further, 
dynamic-reliability-based topology optimization 
(DRBTO) can also be conducted within the 
framework of the PDEM. In this case, the adjoint 
variable method for transient sensitivity analysis 
can be employed together with the PDEM, which 
can make the computational costs insensitive to 
the number of design variables. 

6. FURTHER RESEARCH EFFORTS 
Currently, the physically driven PDEM, i.e., 
GDEE and DR-PDEE, have shown promising 
applications and advancements in the field of full 
probabilistic uncertainty propagation. However, 
there are still some aspects to be studied. 

6.1. Physics-informed uncertainty quantification 
of processes and fields 

Full probabilistic quantification of uncertainty in 
structural parameters shall be further improved, 
particularly the physically based identification 
together with big data techniques. In addition, 
refined physically based models still need to be 
developed for temporal-spatial random fields for 
earthquakes, fluctuating wind and ocean waves, 
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and concurrent multi-processes. Third, the 
simultaneous quantification and propagation of 
aleatory and epistemic uncertainties from random 
variables (Chen & Wan 2019) to temporal-spatial 
random fields are also of paramount importance. 

6.2. Multiscale stochastic physics and mechanics 
As stressed, the refined structural behavior 
analysis provides the physical basis for the 
uncertainty propagation and reliability evaluation 
of real-world structures. The phase field models 
(Wu 2017), peridynamic models (Silling & 
Lehoucq 2010), and the recently proposed 
nonlocal macro-meso-scale damage model (Lu & 
Chen 2020) threw new light. However, refined 
approaches capturing the embedded stochastic 
scale physics with high accuracy and efficiency 
are still in urgent need.  

6.3. Global-reliability-based design optimization 
As discussed above, RBDO provides a rational 
framework to explicitly involve uncertainty in the 
design phase. However, the research on RBDO 
and especially DRBDO is mainly focused on 
structural components and specific failure modes. 
It is necessary to extend the current RBDO 
incompatible with the physical synthesis method 
for global reliability assessment, in particular 
embracing the topology optimization. 

7. CONCLUDING REMARKS 
This paper elucidates the basic thought of 
physically driven uncertainty propagation in 
complex systems, and reviews and revisits the 
advances. It is stressed that the refined structural 
behavior analysis and the uncertainty 
quantification and propagation are the 
indispensable two sides of a coin, which are the 
two wheels of structural design theory. In this 
framework, the advances in the full probabilistic 
quantification of structural parameters and 
dynamic actions, the governing equations for 
uncertainty propagation, i.e., the generalized 
density evolution equation and the dimension-
reduced probability density evolution equation, 
the reliability evaluation, and the reliability-based 
structural optimization are reviewed. The studies 

laid a solid foundation for the third-generation 
structural design theory, featured by fusing the 
solid-mechanics-based refined structural behavior 
analysis, the full probabilistic uncertainty 
quantification and propagation, and global-
reliability-based optimization design. The 
problems along this line to be further studied are 
also discussed. 
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