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Summary 

Pancreatic cancer (PC) has the lowest 5-year survival rate of any cancer, at just 12% in 

2023. The poor survival rates observed in this cancer are the result of an accumulation 

of shortcomings and gaps in many aspects of PC research, with early detection and 

diagnosis being at the forefront of concerns. PC symptoms are notoriously vague and 

everyday in nature. Issues such as appetite loss, abdominal pain or weight loss are early 

warning signs, however, most patients ignore these common aliments, regarding them 

as unimportant. As such, the majority of patients diagnosed with PC are found at a late 

stage of cancer development, further contributing to the poor survival rates of this 

cancer. Moreover, the only FDA-approved biomarker for PC diagnosis, carbohydrate 

antigen 19-9 (CA19-9), is known to perform poorly in patients with co-morbidities such 

as diabetes or pancreatitis, making its utility in this setting extremely limited. 

Pancreatic cystic lesions (PCLs) are fluid-filled protrusions either on, or inside, 

the pancreas, which can be benign or pre-malignant. PCLs in many cases are precursors 

to PC, and as such could be the key to early detection of this cancer. Unfortunately, the 

current guidelines used to stratify patients based on their PC risk are imperfect. At 

present, there are several sets of these guidelines utilised globally, highlighting the lack 

of consensus among clinicians as to the best approach for these patients. PCLs represent 

a unique opportunity to identify and monitor patients with a high-risk of PC 

development, and as such more robust solutions to the stratification of these lesions 

are of urgent need. 

Here, the vast accumulation of research into potential biomarkers for PC is 

explored. A systematic review and meta-analysis of blood-based biomarkers highlights 

over 40 years of PC research, examining 250 manuscripts, and puts a spotlight on several 

promising biomarkers. Multi-biomarker panels are shown to be superior to single 

biomarkers alone, indicating that panels of multiple biomarkers more adequately adapt 

to patient-to-patient variability, allowing other biomarkers to make up the shortfall 

when one is dysregulated; a luxury not shared by single biomarkers. Moreover, it is 

shown that the current standard biomarker for PC diagnosis, CA19-9, has little utility on 

its own, but when added to a panel of multiple biomarkers, it can improve the panel. 

The study cohort utilised for biomarker identification was demonstrated to greatly 
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affect the results obtained. Indeed, cohorts of both healthy individuals and patients with 

a benign condition were found to be more clinically relevant and produce more robust 

results than cohorts of either alone. Importantly, 13 novel biomarkers were identified 

as being repeatedly examined across the literature, with promising qualitative metrics 

for PC diagnosis. This systematic review of the literature also allowed the detailed 

critique of current PC research, with several common issues in study design and data 

reporting being highlighted across the included studies.    

Taking the information and evident flaws in PC research that were revealed via 

the systematic review and meta-analysis, this study then delved into biomarker 

identification and validation. Indeed, the performance of those promising diagnostic 

biomarkers identified in the systematic review was examined in a cohort of patient 

pancreatic cyst fluid (PCF) and blood sera, to determine their utility for risk stratification 

of patients with PCLs. While some were found to be differentially expressed in patients 

at a low- or high-risk of PC, their ability to stratify patients based on expression of these 

markers was poor. As such, exploratory multi-omic profiling of patient PCF and serum 

was conducted, focusing on the proteome and transcriptome of both. Strict differential 

expression analysis identified proteins and miRNA in both biofluids that were 

differentially expressed in low- and high-risk patients. Alone, these panels of proteins 

and miRNA perform poorly-to-moderately in stratifying patients based on their risk. 

However, when coupled to form multi-omic panels, these biomarkers perform risk 

stratification with high accuracy. Finally, integration of both the PCF-based multi-omic 

panel and the serum-based multi-omic panel was conducted using CombiROC software. 

This cross-biofluid multi-omic biomarker panel demonstrated the best stratification 

performance overall, and was uniquely capable of appropriately controlling for outlier 

patients with genetic mutations. While validation of these results in an independent 

patient cohort remains to be conducted, this promising biomarker panel could be the 

key to early detection of PC.   

Lastly, the biological activity of the PCF was interrogated. As PCLs can be 

precursors to PC, the role that the fluid within these cysts plays in the progression of 

PCLs to PC remains to be elucidated. Here, normal and intermediary pancreatic cell lines 

were exposed to patient PCF at low concentrations for 24 h. PCF was demonstrated to 
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be biologically active, having the ability to alter cell line viability, proliferation, 

apoptosis, metabolism, phenotypic and functional marker expression levels, and DNA 

damage levels. Furthermore, PCF was shown to cause functional changes to the cells, 

resulting in increased invasive potential. However, PCF in many cases was also shown 

to be extremely cytotoxic to cells, even at low concentrations for just 24 h. Indeed, two 

distinct effects were seen in the PCF, cytotoxic and stimulatory. These preliminary 

results demonstrate the biological activity of PCF, and raise questions about its potential 

role in the progression of PCLs to PC. Further work is urgently needed to interrogate the 

mechanisms at play during the PCL to PC transformation, and the part that PCF plays in 

this process. If PCF could be demonstrated to contribute to the malignant 

transformation of PCLs, the aspiration of all PCLs as a preventative measure could be 

called for. This would have substantial implications for the management of PCL patients, 

and also for the advent of potential preventative measures for PC development. 

Overall, this body of work highlights the desperate need for better 

understanding of PCLs and PC, and presents promising avenues for future research in 

biomarker identification and early detection of PC.  
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1.1 Pancreatic Cancer 

1.1.1 Overview 

Pancreatic cancer (PC) has the worst 5-year survival rate of any cancer, at just 12% for 

2023[1]. PC is the third leading cause of cancer-related mortality in both men and women 

combined, with incidence rates continuing to rise every year[1, 2]. PC can be divided into 

two main subtypes: pancreatic ductal adenocarcinoma (PDAC), which is responsible for 

85-90% of all pancreatic neoplasms and has a 5-year survival rate of roughly 10%, and 

pancreatic neuroendocrine tumour, which is far less common and represents less than 

5% of PC[3-6]. As PDAC is by far the most prevalent type of PC, it is used synonymously 

with PC throughout the literature. In order to avoid generalisations, where the subtype 

of PC is specified in the literature, it is reported here. 

 

1.1.2 Clinical presentation 

The poor survival rates seen in PC are attributed not only to the highly aggressive nature 

of the cancer, and the lack of immune cell infiltrate making it immunologically ‘cold’, 

but also to the very late stage of clinical detection[7]. Indeed, the symptoms associated 

with PC are notoriously vague, issues such as bloating, unexplained weight loss or back 

pain, with patients experiencing no symptoms at early stage disease[8, 9]. As such, the 

majority of PC patients tend to present clinically at a late stage of cancer development, 

limiting the treatment options available and further compounding the problem of poor 

survival in this cancer. Of critical importance, therefore, is the advent of novel modalities 

of early detection, which could be key to improving survival of PC patients. 

 

1.2 Development of PC and the tumour microenvironment 

PC generally arises from one of several histologically distinct precursor lesions in the 

pancreas[10]. These precursor lesions include certain subtypes of pancreatic cystic 

lesions (PCLs) such as intraductal papillary mucinous neoplasms (IPMNs) or mucinous 

cystic neoplasm (MCN), which are discussed further in section 1.4, as well as pancreatic 

intraepithelial neoplasia (PanIN) lesions[10, 11]. While PanIN are the most frequently 

occurring precursor lesion for PDAC, these microscoping lesions are not detectable via 
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radiological or endoscopic ultrasound examination, and are characteristically 

asymptomatic, thus hampering the early detection of patients with these precursor 

lesions[12, 13]. A simulation model using data from the National Cancer Institute's 

Surveillance, Epidemiology, and End Results (SEER) program, however, estimated PanIN 

to have a relatively indolent course to PDAC development, with the probability of 

progressing from low-grade PanIN 1 lesions to PC over the course of a lifetime being just 

1.3% for females and 1.5% for males[14]. Unfortunately, given our inability to effectively 

screen for PanIN lesions via imaging, the prevalence and subsequent rate of malignant 

transformation of these precursor lesions in the population is unknown. 

Tumorigenesis typically involves the progressive development of driver 

mutations. In the pancreatic setting, this often includes mutations in the KRAS oncogene 

(93% of PDAC tumours) and the TP53 tumour suppressor gene (73% of PDAC 

tumours)[15-17]. These genetic mutations generally occur alongside the development of 

precursor lesions, and are therefore present at their subsequent progression through 

increasing histological grades, culminating in invasive carcinoma (Figure 1.1)[18, 19]. A 

unique feature in the stepwise progression of PC is the desmoplastic reaction to the 

tumour, which is present in both primary and metastatic PC tumours[20]. This 

desmoplasia, often termed fibrosis, is a common reaction in normal tissues during the 

wound healing process, and can aid in the reduction of inflammation and granulation 

tissue[20]. While this desmoplasia, characterised by a dense stromal microenvironment 

which limits cell motility, is present in both chronic pancreatitis and PC tissues, in PC 

desmoplasia has been shown to promote tumour development while inhibiting the 

penetration of anti-tumour therapies into the tumour microenvironment (TME) (Figure 

1.2)[21]. As with any TME, the tissues, cells and factors within this environment are highly 

heterogeneous and allow for a complex and diverse web of interactions. Of particular 

importance in the pancreatic TME, are the stromal cells responsible for this 

desmoplastic reaction, which comprise cancer associated fibroblasts (CAFs), endothelial 

cells and immune cells[22]. The stromal tissue in which PC cells become embedded, 

accounts for as much as 80% of the pancreatic tumour volume and consists of an 

extracellular matrix (ECM) of fibrous proteins such as collagens, fibronectin and 

glycoproteins[23]. The combination of these cellular components, their respective  
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Figure 1.1 Progression of PC. The progression of PC is driven by four key mutations, 

KRAS, CDKN2A, TP53 and SMAD4, from pre-cancer to metastatic cancer. These 

mutations occur in >90%, >40%, >50% and >30% of PC tumours, respectively. Pancreatic 

tissue progresses step-wise from low-grade dysplasia (pre-cancer) to metastatic cancer 

while accumulating these genetic mutations. The level of desmoplasia increases with PC 

progression, with metastatic tumours having the highest level of desmoplasia.   
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secreted factors, and the dense stromal tissue creates a hypoxic and nutrient deprived 

TME, which further contributes to cancer progression[24, 25]. This, combined with the 

immunologically ‘cold’ TME of PC, and our inability to accurately replicate this dense 

stromal TME, has negatively impacted the development of novel therapeutics for PC 

treatment[26, 27]. 

Pancreatic stellate cells (PSCs) are a subset of CAFs that are responsible for producing 

the collagenous stroma in PC, and also in chronic pancreatitis[24, 25]. PSCs are resident 

phagocytic cells of the pancreas that are important players in the normal turnover of 

the ECM, producing proteins such as collagen I-IV, fibronectin and laminin[21, 28]. Given 

the role of PSCs in the desmoplastic reaction in PC, the overlap in gene expression seen 

in PC and chronic pancreatitis tissues, and the increased risk of PC in chronic pancreatitis 

patients, the role of PSCs in PC progression has been under much scrutiny in recent 

years[25, 29]. The detection of activated PSCs expressing α-smooth muscle actin, periostin 

and galectin-1 in PCLs, and chronic pancreatitis tissues has led to the suggestion that 

PSCs are an early event in PC[21, 30, 31]. Furthermore, PSCs have been shown to interact 

with PC cells in a bi-directional manner, where each cell type promotes the survival and 

proliferation of the other[21]. They have also been shown to travel from the primary 

tumour to distant metastatic sites, suggesting a role in the metastatic cascade[32]. Two 

subsets of PSCs have been described in PC tumours due to their distinct secretion 

profiles[33]. Those PSCs that are found in close proximity to cancer cells have been 

termed myofibroblasts, while those residing at some distance from cancer cells have 

been called inflammatory PSCs or iPSCs (Figure 1.2A)[33].   

 In the context of the pancreatic TME, there are a plethora of factors and cell 

types to be found within its confines which play unique roles in PC development and 

progression. Some of those most important factors and interactions are discussed 

below.  

 

1.3 Hallmarks of PC 

In 2000, Douglas Hanahan and Robert Weinberg published a seminal paper 

entitled ‘The Hallmarks of Cancer’, where they elegantly discussed a set of traits unique  
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Figure 1.2 The Pancreatic TME. The unique structure of the pancreatic TME is a result 

of the various cells and factors within it, and their interconnected interactions. (A) 

Aberrant TGF-β signalling by myofibroblastic and inflammatory PSCs promotes PC cell 

growth, motility, invasion and metastasis. PC cells secrete IL-1α to induce production of 

VEGF-A and IL-6 by PSCs and other CAFs. PC cells also release CD147 to stimulate the 

production of MMPs by PSCs. (B) PC cells secrete factors to recruit tumour-associated 

macrophages (TAMs). TAMs produce cytokines and growth factors to stimulate the 

proliferation of PC cells. (C) Mast cells are recruited via VEGF secreted by PCSs. Mast 

cells promote PC cell proliferation via secretion of tryptase and IL-13. Tryptase and IL-

13 activate PSC proliferation via TGF-β signalling. (D) The presence of basal microvilli on 

mature microvasculature within the TME facilities glucose uptake by PC cells. (E) MDSCs 

deplete lymphocyte-required nutrients from the environment and subsequently 

suppress CD8+ T cell cytotoxic functions. MDSCs also express ADAM17 to interfere with 

lymphocyte trafficking. (F) PSCs stimulate recruitment of MDSCs to PC via IL-16. (G) PSCs 

secrete CXCL12 causing migration of T cells and subsequent sequestration in the stromal 

tissue.  
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to cancer cells, which could therefore be designated as hallmarks of the disease[34]. 

These six original traits are (1) sustaining proliferative signalling; (2) evading growth 

suppressors; (3) resisting cell death; (4) enabling replicative immortality; (5) inducing or 

accessing vasculature; and (6) activating invasion and metastasis. In 2011, these 

characteristics were revisited in ‘Hallmarks of Cancer: the next generation’, with two 

new hallmarks and two ‘enabling characteristics’ (EC) being induced into the mix to give 

a total of ten features[35]. The new hallmarks were (7) deregulating cellular metabolism; 

(8) avoiding immune destruction; (9) genome instability and mutation (EC); and (10) 

tumour-promoting inflammation (EC). In 2022, Douglas Hanahan revised these 

guidelines for a third time, publishing ‘Hallmarks of Cancer: new dimensions’[36]. Here, 

the ECs from the 2011 version were given full hallmark status, while two new hallmarks 

and two more ECs were added to give a final total of 14 features. The newest hallmarks 

of cancer are (11) unlocking phenotypic plasticity; (12) senescent cells; (13) non-

mutational epigenetic reprogramming (EC); and (14) polymorphic microbiomes (EC). 

Together these 14 hallmarks of cancer provide insights into the mechanisms involved in 

cancer development and progression, and highlight specific characteristics that are 

unique to the disease. Below, these hallmarks in the context of PC and its unique 

characteristics are discussed (Figure 1.3). 

 

1.3.1 Sustaining proliferative signalling 

All cancer cells have the ability to divide and multiply indefinitely[34]. This acquired 

characteristic of tumour cells is a result of genetic mutations that cause the activation 

of oncogenes, which promote growth and survival, and the deactivation of tumour 

suppressor genes, which enable limitless cell division. As mentioned in section 1.2, 

common mutations in PC occur in the oncogene KRAS and the tumour suppressor gene 

TP53[15-17]. Activation of KRAS is an early event in PC and is known to play a large role in 

the sustained proliferation of PC cells, as well as in the processes of transformation, 

survival and invasion[37]. Indeed, KRAS activation generally results in the subsequent 

activation of downstream pathways such as the NF-κB pathway, the PI3K/AKT/mTOR 

pathway and the MAPK pathway[37]. Increased activation of the AKT pathway is seen in 

50% of PDAC cases and promotes sustained PC cell proliferation[38]. Overexpression of  
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Figure 1.3 The Hallmarks of PC. The specific characteristics of PC in the context of the 

fourteen hallmarks of cancer, sustaining proliferative signalling; evading growth 

suppressors; resisting cell death; enabling replicative immortality; inducing or accessing 

vasculature; activating invasion and metastasis; deregulating cellular metabolism; 

avoiding immune destruction; genome instability and mutation; tumour-promoting 

inflammation; unlocking phenotypic plasticity; senescent cells; non-mutational 

epigenetic reprogramming; and polymorphic microbiomes, are provided. Important 

events related to each hallmark in the pancreatic setting are listed within the relevant 

segments, and discussed in detail in sections 1.3.1 – 1.3.14. Adapted from Hanahan 

2022[36].  



9 

 

TGF-β in PC has also been shown to directly induce PC cell proliferation via the MAPK 

and AKT pathways[8]. Similarly, TP53 mutation can occur in as many as 79% of PDAC 

cases, and this loss-of-function mutation can allow the uncontrolled proliferation of PC 

cells[39, 40]. Indeed, studies have shown that the induction of high wild-type TP53 

expression in PC cells, both in vitro and in vivo, can inhibit tumour cell proliferation and 

apoptosis, thus making TP53 a potential therapeutic target in PC[41, 42]. 

Cells within the TME have also been shown to be important players in the 

uncontrolled proliferation of tumour cells. Indeed, in the early stages of tumour 

development, tumour-associated macrophages (TAMs) within the PC TME produce 

cytokines and growth factors which sustain the proliferation of tumour initiating cells 

(Figure 1.2B)[43]. These cells then secrete factors to recruit more TAMs to the TME, 

causing a vicious cycle of signalling and growth in favour of cancer initiation[43]. Mast 

cells are also recruited to the TME through VEGF, stem cell factor, and FGF-2 secretion 

by PC cells, which in turn promote the proliferation of cancer cells via secretion of 

factors such as tryptase and IL-13 (Figure 1.2C)[44, 45]. Mast cell-produced IL-13 and 

tryptase have also been shown to activate proliferation of PSCs via the TGF-β and STAT6 

pathways[45]. These PSCs are also key contributors towards the proliferative signalling 

of cancer cells, as mentioned in section 1.2, where the bi-directional signalling of PSCs 

with PC cells promotes the proliferation and survival of each cell[46]. 

 

1.3.2 Evading growth suppressors 

The loss of negative growth constraints in PC can be primarily linked to aberrant TGF-β 

signalling (Figure 1.2A)[47]. TGF-β is known to promote the progression of many tumour 

types, such as PC, via paracrine effects within the TME, and is secreted at high levels by 

PSCs in the PC TME[46, 48]. Indeed, PSC-secreted TGF-β has been shown to cause a more 

aggressive phenotype in PDAC cells[48]. In early PC, TGF-β acts as a tumour suppressor 

gene, inhibiting the growth of epithelial cells[49]. However, as the tumour develops, the 

response to TGF-β switches, with tumour cells utilising this aberrant expression as a 

potent promotor of cell growth, motility, invasion and metastasis[50].  
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1.3.3 Resisting cell death 

The tumour suppressor TP53 is a key component in the cellular response to DNA 

damage in PDAC[51]. Mutations in this gene, therefore, result in the disruption of DNA 

repair machinery and apoptotic signals. Indeed, mutations in TP53 have been shown to 

increase PDAC cell resistance to chemotherapy[52]. Oncogenic KRAS mutation in PC has 

also been shown to upregulate autophagy in tumour cells, enabling proliferation and 

inhibiting apoptosis in these cells[53]. The activation of downstream anti-apoptotic and 

pro-survival pathways, such as the STAT3, NF-κB and AKT, pathways, are also important 

processes in the development of PC[54, 55]. 

 

1.3.4 Enabling replicative immortality 

Cancer cells have limitless replicative potential[34]. Unlike normal cells, which see their 

telomeres shortened with each cellular division until a limit is reached and cell death 

occurs, cancer cells acquire the ability to circumvent this process. This is achieved by 

either upregulating the expression of the telomerase enzyme such that telomere length 

is maintained just over a critical threshold, or by extending the length of their telomeres 

via recombination[56]. Telomere shortening is associated with a higher risk of many 

cancers, and has been reported in both PC and PCL tissues[56-58]. However, the 

maintenance of longer telomeres may mean overactive telomerase activity, with longer 

telomeres in peripheral blood leukocytes having been shown to be associated with an 

increased risk of PC development[59]. As such, current research into the utilisation of 

telomere length as a potential biomarker or therapeutic target requires further 

elucidation of the mechanisms involved in PC. 

 

1.3.5 Inducing or accessing vasculature 

Angiogenesis is the process by which new capillaries are formed, as branches from 

existing vasculature, towards the tumour in order to supply nutrients and oxygen to aid 

growth and metastasis[34]. The activation of pro-angiogenic molecules is essential for 

this process, with VEGF-A being a key factor in most cancers, including PC[60]. In PC, 

angiogenesis is induced by both genetic and epigenetic alterations, such as KRAS 
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mutation, as well as by tumour and stromal cells such as PSCs within the TME[37, 61]. PSC 

are known to express several angiogenic-regulating molecules, such as Tie-2, 

angiopoietin-1 and VEGF; and hypoxia has been shown to induce the expression of VEGF 

in PSCs[62]. Importantly, the unique presence of basal microvilli on mature 

microvasculature within pancreatic tumours facilities the excessive glucose uptake 

observed in PC cells (Figure 1.2D)[63]. Despite this, PC tumours are known to be 

hypovascular, as the desmoplastic TME causes vascular collapse and thus inhibits drug 

penetration to the tumour[20]. As such, anti-angiogenic therapy in PC has not proven to 

be successful[61].  

 

1.3.6 Activating invasion and metastasis 

The degradation of the ECM is essential for the invasion and metastasis of tumour 

cells[64]. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are key to this 

degradation process, and their activity is dependent on the levels of activated MMPs 

and tissue inhibitors of matrix metalloproteinases (TIMPs) present[64, 65]. In PC, 

overexpression of MMP2, MMP7, MMP8, MMP9, MMP11, and TIMP-3, alongside 

concurrent decreases in TIMP-2 expression, have been associated with aggressive 

phenotypes and poor survival[64, 66]. Elevated MMP2, MMP9 and TIMP-2 expression in 

PC tumours in particular have been associated with liver metastasis in patients[67]. 

MMP2 has also been implicated in the perineural invasion of PC cells, as exposure to 

nerve growth factor, a neurotrophic factor secreted by intra- and extra-pancreatic 

neural elements, has been demonstrated to stimulate MMP2 expression and increase 

the invasive potential of PC cells[68]. Perineural invasion is an important and often 

overlooked method of local invasion that has been observed to be a critical factor in 

local tumour recurrence[68, 69].  

PSCs have been shown to be an important source of both MMPs and TIMPs in 

the pancreatic TME, with PC cells releasing the glycoprotein CD147 to stimulate the 

production of MMP2 in these PSCs (Figure 1.2A)[21, 70, 71]. However, both stromal and 

tumour cells have been shown to be sources of MMPs and TIMPs in PC[72]. Importantly, 

MMP2 expression has been found to be strongly associated with the extent of the 

desmoplastic reaction seen in PC tissues[73]. Despite the levels of involvement of MMPs 



12 

 

in the PC TME, efforts in clinical trials to target MMPs in PC via MMP inhibitors both 

alone and in combination with chemotherapy have been unsuccessful[74]. While these 

results have been discouraging, issues such as timing of delivery, dosage, and non-

selectivity of the inhibitor are among those aspects that could be improved upon in 

future studies[74].  

 Also key to tumour cell invasion and metastasis is the process of epithelial to 

mesenchymal transition (EMT). The downregulation of epithelial markers, such as E-

cadherin or EpCAM, coupled with the upregulation of mesenchymal markers and 

markers of invasion, such as N-cadherin, Vimentin, Slug or Twist, are typical features 

acquired by cells during EMT[50]. In PC, KRAS mutation and TGF-β signalling have been 

shown to be important in this process[50]. Indeed, the activation of TGF-β signalling in 

PC is a critical early step in enabling EMT initiation, causing the downregulation of 

adhesion molecules while enabling the acquisition of a more mesenchymal phenotype, 

and upregulating the production of MMPs[75]. TGF-β has been shown to stimulate the 

expression of N-cadherin and Vimentin in PC cells in vitro, while simultaneously 

decreasing E-cadherin expression[76]. In vivo, Slug expression was found in 50% of PC 

tumour tissues, with Slug expression being observed predominantly in the invasive front 

of the tumour[77].  

 Lastly, cancer stem cells (CSCs) represent the final phase of invasion and 

metastasis. The acquisition by cancer cells of stem-like traits is key to the successful 

formation of secondary metastatic tumours, as CSCs are widely regarded as the tumour-

initiating cell population[35]. CSC markers, such as CD133, CD44 and CD24, have been 

identified on the surface of CSC populations within many solid tumours, including PC[78-

80]. A 2015 systematic review and meta-analysis highlighted the significant correlation 

between CD133 and prognosis, TNM stage (describing the primary tumour type (T), 

whether the cancer has spread to nearby lymph nodes (N), and whether the cancer has 

metastasised to other parts of the body (M)), tumour differentiation, and lymph node 

status[81]. Indeed, PC tumours with CD133+ CSC populations were also shown to be 

highly resistant to chemotherapy[80]. Using xenograft models of primary human PDAC 

tumours in immunocompromised mice, it was demonstrated that as few as 100 
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pancreatic CSCs were required to form a tumour that was histologically 

indistinguishable from the tumour of origin[79].  

   

1.3.7 Deregulating cellular metabolism 

The dysregulation of cellular metabolism emerged as a hallmark of cancer in the second 

iteration of the seminal paper by Hanahan and Weinberg in 2011[35]. The tendency for 

tumour cells to metabolise glucose anaerobically instead of aerobically, even in the 

presence of oxygen, termed the Warburg effect, is a known characteristic of cancer 

cells[82]. In PDAC, activation of oncogenic KRAS causes an upregulation of glucose 

transporter 1, hexokinase 1/2, phosphofructokinase 1, and lactate dehydrogenase A, 

which promotes glycolysis[83]. However, PC cells can alter their metabolism in order to 

adapt to different environments, utilising alternative metabolic methods such as amino 

acid and lipid metabolism, among others [84]. Indeed, it has long been understood that 

metabolic pathways are not mutually exclusive, and as such individual tumour cells 

within the same tumour can utilise alternative methods of ATP production as needed[85, 

86]. The paradox, however, of why cancer cells would opt to produce ATP in a less 

efficient manner when oxygen is available, remains to be understood[85].  

 In many caners, the cross-talk between tumour cells and CAFs demonstrate a 

new metabolic phenotype known as the ‘reverse Warburg effect’, whereby reactive 

oxygen species are produced by tumour cells and induce oxidative stress in adjacent 

CAFs[86]. This causes the CAFs to shift towards aerobic glycolysis and as such produce 

pyruvate, fatty acids and lactate, fuel which feeds oxidative phosphorylation in tumour 

cells, thus allowing efficient metabolic processes in these cells[85]. 

 

1.3.8 Avoiding immune destruction 

Evading immune recognition is achieved in part through the secretion of factors 

produced by both tumour cells and stromal accessory cells, such as growth factors, 

chemokines and cytokines[87]. The secretion of these inflammatory factors can promote 

the differentiation of myeloid-derived suppressor cells (MDSCs), as well as their 

subsequent trafficking into the TME[88]. In the cancer setting, myeloid cell differentiation 
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can be dysregulated, causing the terminal differentiation of mature macrophages, 

dendritic cells and granulocytes into immunosuppressive populations of MDSCs[89]. 

MDSCs can actively supress the abilities of cytotoxic lymphocytes such as T cells and 

natural killer cells via the depletion of lymphocyte-required nutrients; the generation of 

oxidative stress (which drives molecular blocks in T cells); interference with lymphocyte 

trafficking via expression of ADAM17; and the activation and expansion of T regulatory 

(Treg) cell populations, which can subsequently supress both the innate and adaptive 

immune response (Figure 1.2E)[87, 89]. CD4+ Treg cells in the stroma are of particular 

importance in PC, as they have been shown to play a crucial role in warding off the host 

immune system[8]. Interestingly, the presence of immunosuppressive tumour-

associated macrophages, MDSCs and Treg cells has been observed in the earliest stages 

of PCL development, and has dominated the immune cell infiltrate of the pancreatic 

microenvironment throughout the subsequent development of invasive carcinoma[90].  

PSCs have been shown to stimulate the migration of MDSCs to the tumour via 

secretion of IL-16 in a STAT3-dependent manner, allowing these MDSCs to exert their 

immunosuppressive functions in the TME, further aiding PC cell immune evasion (Figure 

1.1F)[91]. Activated PSCs have also been shown to secrete CXCL12, a chemokine known 

to regulate T cell migration, and subsequently cause the sequestration of CD8+ T cells in 

the surrounding stroma of PC tumours, preventing the invasion of these cells peri-

tumourally and therefore hampering their anti-tumour capabilities (Figure 1.2G)[23, 92]. 

Indeed, in a 2013 study, PDAC patients with higher CD8+ T cell tumour infiltrates had 

longer survival times than those with lower densities.[92] 

 Other major factors in the immunosuppressive TME are the checkpoint molecule 

programmed cell death protein 1 (PD-1) and its ligand, programmed death-ligand 1 (PD-

L1). PD-L1 can be expressed by tumour cells or tumour-associated immune cells, and 

can induce apoptosis or exhaustion of T cells via binding to the PD-1 receptor[93, 94]. High 

expression of PD-L1 has been correlated with poor prognosis in many cancers, including 

PC[95]. PD-L1 expression on tumour cells is a key mechanism of immune evasion in PC, 

as it can enable tumour cells to escape immune surveillance[96]. In PC, PD-L1 expression 

has been shown to be upregulated via NF-κB signalling, specifically tumour-infiltrating 

macrophage-derived TNF-α[97]. 
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1.3.9 Genome instability and mutation 

While in the original emergence of ‘genome instability and mutation’ in the 2011 

iteration of the hallmarks of cancer, this capability of tumour cells was defined as an 

‘enabling characteristic’, the more recent 2022 paper by Hanahan sees this feature given 

full hallmark status[35, 36]. It is largely recognised that the ability of tumour cells to 

increase their mutagenicity by compromising DNA repair pathways and increasing 

sensitivity to mutagenic agents is ubiquitous across all cancer types, and PC is no 

different. While the rate of genomic mutations in PC is much lower than cancers such 

as lung or melanoma, that are driven by strong environmental mutagens, four 

predominant mutational signatures have been identified in PDAC tumours[16, 98]. These 

are associated with (1) ageing; (2) apolipoprotein B mRNA-editing enzyme, catalytic 

polypeptide-like family of cytidine deaminases; (3) BRCA; and (4) mismatch repair 

mutations, the most prevalent of which are the ageing, which includes single-base 

substitution (SBS) signatures 1 and 5, and apolipoprotein B signatures as they are found 

in almost all PDAC cases[16, 99]. A 2023 study highlighted that SBS8 is also a dominant 

mutational signature in PDAC, however, the eitiology of this signature is unknown[100]. 

Aside from mutational signatures, individual gene mutations in PDAC have also been 

shown to be highly prevalent and have potential therapeutic utility. KRAS, TP53, 

CDKN2A, and SMAD4 are among the many frequently mutated genes observed in PC, 

with activating KRAS mutations being the most prevalent and found in 93% of PC 

tumours[17]. The inactivating mutations to TP53, CDKN2A and SMAD4 are present in 50-

80% of PC cases[8]. Crucially, when KRAS mutations are not found, other ras pathway 

mutations can be seen in 60% of cases, highlighting the importance of this pathway in 

particular in PC[15]. Aberrant KRAS activation causes an increase in production of the K-

ras protein, which can in turn activate intracellular signalling pathways and transcription 

factors that induce cell proliferation, transformation, migration and survival[37]. As such, 

many attempts have been made to target KRAS or downstream components of this 

pathway, but to little avail. Indeed, two major obstacles in the targeting or KRAS are its 

renowned reputation as an undruggable molecule, and the persistence of escape 

mechanisms that are independent of KRAS inactivation[37]. 
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1.3.10 Tumour-promoting inflammation 

Similar to the characteristic of ‘genome instability and mutation’ mentioned in section 

1.3.9, tumour-promoting inflammation has also recently been promoted from an 

enabling characteristic of cancer, to a hallmark of cancer[36]. The corruption of anti-

tumour immune cells to a pro-tumour phenotype, which subsequently secrete pro-

migration and pro-survival factors into the TME, is a mechanism by which cancer cells 

hijack the host immune system to promote tumour growth and metastasis. In PC, the 

production of tumour cell-associated IL-1α induces the production of inflammatory 

factors such as VEGF-A and IL-6 by CAFs[101]. Indeed, IL-1α expression was shown to 

correlate with the clinical outcome of PDAC patients, and the inhibition of IL-1 activity 

diminished the production of inflammatory factors in patient-derived PDAC and CAF cell 

line co-cultures, suggesting that cross-talk between PDAC and CAF cells is essential for 

the formation of the inflammatory TME in PDAC[101].  

 

1.3.11 Unlocking phenotypic plasticity 

One of two new emerging hallmarks of cancer from the 2022 paper by Hanahan, is the 

characteristic of unlocking phenotypic plasticity[36]. A well-known acquired capability of 

tumour cells, the ability to disrupt the normal pathway of cellular differentiation in order 

to escape from terminal differentiation, requires a phenotypic plasticity that is critical 

in the process of carcinogenesis[36]. EMT, the process by which cells transition from an 

epithelial phenotype to a more mesenchymal-like phenotype, enabling tumour cell 

movement through tissues and circulatory systems as discussed in section 1.3.6, is a 

process which involves cellular plasticity[102]. CSCs are a subpopulation of tumour cells 

with unique differentiation and dedifferentiation capabilities, exhibiting phenotypic 

plasticity as they undergo processes of EMT, invasion and metastasis (section 1.3.6)[102]. 

Unique to PC, is the plasticity exhibited during the transition of PSCs from their 

quiescent state, where they display abundant cellular vitamin A-containing lipid 

droplets in their cytoplasm, to an activated states where they lose these vitamin A 

reserves and shift to a contractile and secretory phenotype (myofibroblast phenotype), 

and produce large amounts of MMPs and TIMPs[32]. Another form of phenotypic 
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plasticity observed within the TME, is the process of cellular senescence, discussed 

below. 

 

1.3.12 Senescent cells 

The second emerging hallmark of cancer that was recently introduced by Hanahan 

(2022) is senescent cells[36]. In the presence of cellular stress, such as nutrient 

deprivation or DNA damage, cells can enter a senescent state where they enter 

proliferative arrest and activate a senescence-associated secretory phenotype (SASP), 

releasing cell-dependent proteins and proteases into their environment[36]. This process 

is undergone by normal cells in the face of stress instigators, as well as by cancer cells 

as a result of oncogene-induced hyperactive signalling or proliferation, or DNA damage 

resulting from treatment with chemotherapy or radiotherapy. In cancer, senescence 

can limit tumour progression as cells enter this state of dormancy, undergoing 

biochemical, morphological and functional changes, despite remaining metabolically 

active[103, 104]. However, senescent tumour cells have also been shown to contribute to 

malignant progression via the activation of SASP, releasing signalling molecules into the 

TME that promote hallmark capabilities of surrounding tumour cells such as VEGF, 

interleukins, MMPs, cytokines and chemokines[104, 105]. Importantly, different 

mechanisms of cellular senescence have been identified in different cell types within 

the TME, such as fibroblasts, epithelial cells, endothelial cells and tumour cells[106-109]. 

Furthermore, the type of senescence induced is directly related to the stressor that 

induces it[106]. In PC, senescence is known to be an early event, with evidence of 

senescent cells being found in low-grade PCLs in both mice and humans[110]. 

Furthermore, the four main mutations that accumulate in PC (KRAS, TP53, CDNK2A, and 

SMAD4) are known to be important in the process of senescence, highlighting the 

substantial involvement of senescence from early PCL to invasive carcinoma[106]. 

Specifically, KRAS mutation has been shown to trigger oncogene-induced senescence 

(OIS) in PC cells, and this OIS is further enhanced by simultaneous TP53 or CDKN2A 

mutation[111]. As well as PC cells, other cells within the PC TME such as PSCs, CAFs, Treg 

cells, effector T cells and NKs have also been shown to undergo senescence and 

subsequently aid tumour progression via SASP[106]. Critically, while senescence was 
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originally thought to be an irreversible process undergone by cells, it is now known that 

senescence bypass via inactivation of tumour suppressor genes is possible, with such 

processes having been seen in PCLs whereby pancreatitis-induced inflammation inhibits 

OIS[112].  

 

1.3.13 Non-mutational epigenetic reprogramming 

Complimentary to the enabling characteristic-turned-hallmark of cancer known as 

genome instability, mentioned in section 1.3.9, is the widely recognised idea that 

epigenetic changes to gene expression can also reprogramme the genome and thus 

contribute to tumour cell acquisition of hallmark capabilities[36]. This non-mutational 

epigenetic reprogramming of the genome has recently emerged as one of two new 

enabling characteristics of the hallmarks of cancer[36]. Epigenomic changes in the 

tumour have been widely attributed to several common TME properties, such as 

hypoxia, nutrient deprivation and acquisition of an EMT-phenotype, and can take the 

form of DNA methylation, histone modifications or changes in chromatin structures[36, 

113]. In PC, epigenetic modifications as a result of transcriptional regulators such as 

USP22 and FAK are thought to play a major role in the formation of the desmoplastic, 

hypoxia and immunologically cold TME[113]. In the context of invasion and metastasis, 

histone deacetylases, such as HDAC1/2, have been shown to be recruited by the 

transcription factor ZEB1 to the promotor of key EMT genes such as E-cadherin, in order 

to reduce E-cadherin expression and subsequently induce EMT in PC cells[114]. 

Furthermore, the large-scale loss of heterochromatin marks, such as methylation of 

histones H3K9 and H4K20, has been shown to be associated with metastatic 

progression[115, 116]. The epigenetic reprogramming of primary PDAC cells demonstrated 

that epigenetic alterations play important roles in the tumorigenicity and 

aggressiveness of PC[117]. Indeed, epigenetic regulation has been shown to be involved 

in many hallmarks of cancer processes in PC[118].  
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1.3.14 Polymorphic microbiomes 

The second enabling characteristic that has emerged from the 2022 paper by Hanahan, 

is polymorphic microbiomes[36]. More explicitly, this refers to the unique collection of 

microbes and the complex microbial system they form within the body[119]. Increasing 

evidence is emerging that polymorphic variations between the microbiomes of different 

populations can have substantial impacts on cancer phenotype[36]. A 2020 study 

identified distinct microbiomes within the tumour cells and tumour-associated immune 

cells of bone, brain, breast, lung, melanoma, ovarian, and PC patients[120]. These 

microbiomes have been shown to impact host immune responses in a pro-tumorigenic 

manner, as well as conferring direct carcinogenic impacts affecting genome instability, 

tumour inflammation and resistance to anti-cancer therapies[119]. The direct 

mechanisms by which this unique microbiome impacts the development and 

progression of PC remain to be fully understood. 

 

1.4 Pancreatic cystic lesions 

Pancreatic cystic lesions (PCLs) are typically fluid-filled structures that can be found 

within or on the surface of the pancreas, though some may have a solid appearance[121]. 

While many PCLs are benign and show no malignant potential, others, such as 

intraductal papillary mucinous neoplasms (IPMNs) or mucinous cystic neoplasms 

(MCNs), possess the ability to undergo malignant transformation and can be regarded 

as precursor lesions of PC[121-123]. The risk factors known to be associated with PC are 

extensive, however, investigations into these factors are largely case-control studies 

and as such have notable selection and recall biases[124]. Risk factors for PC can be 

classified as modifiable and non-modifiable[3, 124]. Modifiable risk factors include lifestyle 

factors such as smoking and alcohol consumption, as well as conditions such as 

obesity[124]. Non-modifiable risk factors include age, gender, ethnicity, genetic risk 

factors, diabetes and chronic pancreatitis[3]. For patients who have a family history of 

PC or are predisposed to malignancy due to hereditary genetic mutation, PCLs can be 

identified in up to one-third of such high-risk individuals[125, 126]. Germline mutations in 

BRCA1 and BRCA2 have been shown to confer an increased risk in PC as well as breast 

and ovarian cancers[127]. Von Hippel-Lindau (VHL) disease, caused by a germline 
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mutation to the VHL tumour suppressor gene, is associated with an increased risk of 

pancreatic neuroendocrine tumours and non-malignant serous-type PCLs[128].  

One of the most significant risk factors for PCLs is age, with patients typically 

being diagnosed at 50 years or older and the incidence rate rising exponentially with 

age thereafter[3, 124, 125, 129]. PCL size and number have been shown to increase with 

age[130]. Variations in PCL prevalence from country to country can be shown to correlate 

with population demographics. This geographic variance is further widened by 

differences in imaging resolution and the frequency of routine physical check-ups within 

the population[121, 131]. Indeed, a 2017 study showed a positive correlation between 

socioeconomic development (measured through Human Development Index and Gross 

Domestic Product) and PC incidence and mortality[132]. This observed increase in PC 

incidence with rising socioeconomic development is thought to be result of the western 

lifestyle and ageing population, which are known to be large risk factors of PC[132]. A 

general improvement in imaging technologies, and a growth in the ageing population, 

has caused the worldwide prevalence of PCLs to rise drastically over the last two 

decades[125, 129]. The age- and sex-adjusted prevalence of PCLs in the general population 

is approximately 2%, but this figure increases exponentially with age and can range up 

to 45% in older generations[133-135]. With the rising prevalence of PCLs globally, and poor 

survival rates associated with PC, there is a great need for improved characterisation of 

pre-malignant PCLs to allow surgery in those who need it, and avoid unnecessary 

surveillance and intervention in those who do not. 

 

1.5 PCL biology – the little we know 

Despite having a plethora of evidence on the factors that can increase a patients risk of 

developing PCLs, the etiology of these cysts is largely unknown. Indeed, while some PCLs 

have been classified as ‘inflammatory’ cysts, and typically arise in cases of pancreatic 

inflammation, others can develop with no prior evidence of inflammation nor other co-

morbidities (Figure 1.4)[136]. Pancreatic pseudocysts, a completely benign 

‘inflammatory’ PCL subtype, are the only PCLs for which there exists developmental 

knowledge. In these cases, leakage of pancreatic enzymes, often as a result of 
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pancreatitis or pancreatic trauma, causes damage to the pancreas and forms a 

subsequent collection of fluid called a pseudocyst[137, 138]. Pseudocysts are distinct from 

all other ‘true cysts’ primarily via their lack of a lining. PCLs are closed structures with 

an epithelial cell lining which separates the fluid within the cyst from the nearby 

tissues[139]. Pseudocysts do not possess this lining, but rather have a nonepithelial wall 

of granulation tissue that is devoid of solid debris[140]. Thus, pseudocysts can trigger a 

cycle of pancreatic damage and accompanying symptoms, with the potential to cause 

enzymatic autodigestion and subsequently erode through the pancreatic tissue into 

adjacent cavities or tissues[141]. Many pseudocysts resolve spontaneously with little 

complications, however, some patients with persistent symptoms will require some 

form of drainage procedure[140]. The etiology of pseudocysts is well described across 

pancreatic cases reports due to its frequent development of post-pancreatic trauma or 

infection. The origin and developmental biology of non-benign PCLs, however, is less 

optimally documented. The presence of a PCL is a significant risk factor for the 

development of PC, and as such, knowledge of the development of these PCLs is key to 

the early detection and management of pancreatic patients[142].  

 Of critical importance is elucidating the role that the fluid within PCLs, pancreatic 

cyst fluid (PCF), may play in the development of PCLs and their subsequent malignant 

transformation. While many exploratory studies have run high-throughput analyses on 

PCF to identify potential biomarkers among the proteins, cfDNA, miRNA and 

metabolites within the fluid[143-146], no studies to date have examined the potential 

biological activity of PCF. Interestingly, a 2017 study evaluated the microbiome of 69 

PCF samples and found via next generation sequencing (NGS) that there were as many 

as 408 genera of bacteria within the PCF, of which 17 were uniquely abundant to PCF, 

suggesting a distinct bacterial profile within this fluid[147]. Despite this knowledge of 

factors within the PCF, researchers remain woefully ignorant of the origin of these PCLs, 

and how these factors come to be contained within its fluid. Furthermore, the potential 

interactions between these factors and the pancreatic cells and tissue surrounding the 

cyst are unknown, and as such our ability to manage PCLs effectively is limited by our 

lack of knowledge of their biology. If PCF is shown to be biologically active, and therefore  
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Figure 1.4 Molecular subgroups of PCLs. PCLs and their distinct subclassifications are 

highlighted. IPMNs are the most common subgroup and are responsible for 38% of PCLs, 

while mucinous cystic neoplasms, serous cystic neoplasms and cystic neuroendocrine 

neoplasm represent 23%, 16% and 7% of PCLs, respectively[148]. Branch-Duct IPMNs are 

most common (46%), followed by Combined-Type IPMNs (40%) and Main-Duct IPMNs 

(14%)[149]. 
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may potentially play an active role in the malignant transformation of PCLs to PC, the 

aspiration of this fluid in all PCL patients could be called for. As such, determining the 

biological mechanisms by which PCLs form will play a key role in PCL management 

clinically, and will undoubtedly guide future pancreatic research and patient care.    

 

1.6 High or low – determining which PCLs are high-risk 

1.6.1 Subtypes of PCLs 

When a patient with a PCL is identified, the first thing to be ascertained is the malignant 

potential of the PCL. Broadly speaking, PCLs can be divided into either neoplastic or non-

neoplastic cysts as shown in Figure 1.4[129]. Neoplastic cysts can be either mucinous or 

non-mucinous, with non-mucinous PCLs rarely undergoing malignant 

transformation[125, 129]. Solid pseudopapillary neoplasms and cystic neuroendocrine 

neoplasms are notable, rare exceptions, as both are non-mucinous cystic lesions that 

do have some malignant potential and may require surgical resection. However, 

mucinous PCLs such as IPMNs and MCNs are generally regarded as precursor lesions for 

PC[125, 129, 150, 151]. IPMNs are the most common pre-malignant PCL, being much more 

common than MCNs. IPMNs are classified based on the involvement of the pancreatic 

ductal system as either main-duct (MD) IPMN, branch-duct (BD) IPMN or, when both 

main and branch ducts are involved, combined-type IPMN[121, 129]. Approximately 70% 

of MD-IPMNs undergo malignant transformation, whereas the rate is much lower in BD-

IPMNs, ranging from 6-46%[121, 152]. The World Health Organisation describes three 

grades of IPMN: low-intermediate-grade dysplasia; high-grade dysplasia; and IPMNs 

with associated invasive carcinoma[129]. Identification of patients with high-grade 

dysplasia or early invasive cancer and the ability to predict those most likely to undergo 

malignant transformation is a key aspect of PCL patient management[153, 154]. 

 

1.6.2 Current management of PCLs: a lack of consensus 

The most frequently used diagnostic tools for PCLs include computed tomography (CT), 

magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) +/- fine-needle 

aspiration (FNA), all of which have low sensitivity and specificity (SN/SP) for identifying 
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high- and low-risk patients[154]. As the biological behaviour of PCLs are notoriously 

unpredictable, there are currently a number of clinical guidelines that aim to help 

stratify the risk of PCLs undergoing malignant transformation[155]. At present there are 

three sets of guidelines in use to guide EUS and surgical referral of patients presenting 

with PCLs: the 2015 American Gastroenterological Association (AGA) guidelines[154], the 

2017 International Association of Pancreatology Fukuoka (Fukuoka) guidelines[156], and 

the 2018 European evidence-based (European) guidelines[157]. The clinical indications 

for surveillance, EUS or surgical referral differ greatly across the three sets of guidelines. 

Indeed, while EUS is suggested by both the 2015 AGA and 2017 Fukuoka guidelines once 

certain criteria, such as cyst size or pancreatic duct dilation, are met, the 2018 European 

guidelines only recommend EUS when the results of this are expected to alter the 

clinical management of the patient (Table 1.1). In regards to surgery, both the 2015 AGA 

and the 2017 Fukuoka guidelines suggest surgery for any MCN, while the 2018 European 

guidelines require the MCN to be greater than 40mm in diameter or be accompanied 

by either an enhancing mural nodule, tumour-related jaundice, acute pancreatitis or 

new-onset diabetes mellitus (Table 1.1). As surgical resection is associated with 

significant morbidity and mortality, it should be reserved for those at a high risk of 

malignant transformation or established cancer[154]. Moreover, there is a 20% 

recurrence rate following surgical resection for IPMN[158], and recent studies have found 

multiple distinct regions of dysplasia within the pancreas, sometimes with differing 

mutational status of the same gene, supporting the notion of a multi-focal tumorigenic 

process of IPMN within the pancreas[122, 158, 159]. In terms of surveillance, the trend in 

these guidelines has moved towards more frequent evaluations, with the 2015 AGA 

guidelines suggesting surveillance once a year for IPMNs <30mm, while the 2017 

Fukuoka and the 2018 European guidelines see patients with IPMNs <30mm or <40mm 

in diameter, respectively, receiving initial surveillance at 6 months (Table 1.2). 

Interestingly, the goalposts for cyst size have also been widened over the years, with 

IPMNs <30mm under both the 2015 AGA and 2017 Fukuoka guidelines receiving 

surveillance, while this cut-off has been extended to IPMNs and MCNs <40mm in the 

2018 European guidelines (Table 1.2). Overall, the fact there are differing consensus 

guidelines in use is indicative of the imperfect state of knowledge regarding PCLs and 

PC, and the urgent need for improved biological characterisation of these lesions. 
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Table 1.1 Indications for EUS or surgery as per the current global clinical guidelines.  

Guideline Indications for EUS 
Relative indications for 

surgery 
Absolute indications for 

surgery 

2015 
AGA[154] 

At least two of: 

• Cyst diameter >30mm 

• Solid nodule 

• PD dilation 

- • MCN 

• IPMN with PD ≥5mm 
and solid component 
or positive cytology 

2017 
Fukuoka[156] 

• Growth rate ≥5mm 
over 2 years 

• Elevated serum CA19-
9 

• PD dilatation between 
5mm and 9mm 

• Cyst diameter ≥30mm 

• Acute pancreatitis 
caused by IPMN 

• Enhancing mural 
nodule (<5mm) 

• Abrupt change in 
calibre of PD with 
distal pancreatic 
atrophy 

• Lymphadenopathy 

• Thickened/enhancing 
cyst walls 

• IPMN with growth 
rate ≥5mm over 2 
years 

• IPMN with elevated 
serum CA19-9 

• IPMN with PD 
dilatation 5-9mm 

• IPMN with cyst 
diameter ≥30mm 

• IPMN with acute 
pancreatitis 

• IPMN with enhancing 
mural nodule (<5mm) 

• Abrupt change in 
calibre of PD with 
distal pancreatic 
atrophy 

• Lymphadenopathy 

• Thickened/enhancing 
cyst walls 

• MCN 

• IPMN with suspicious 
or positive cytology 

• IPMN with tumour-
related jaundice 

• IPMN with Enhancing 
mural nodule (≥5mm) 

• IPMN with PD dilation 
≥10mm 

2018 
European[157] 

• EUS–(FNA) should 
only be performed 
when the results are 
expected to change 
clinical management 

• EUS–(FNA) is 
recommended if the 
cyst has either clinical 
or radiological 
features of concern 
identified during the 
initial investigation or 
surveillance 

• IPMN with growth 
rate ≥5mm per year 

• IPMN with elevated 
serum CA19-9 
(>37U/mL) 

• IPMN with PD dilation 
5-9.9mm 

• IPMN ≥40mm 

• IPMN with new-onset 
diabetes mellitus 

• IPMN with acute 
pancreatitis 

• IPMN with enhancing 
mural nodule (<5mm) 

• MCN ≥40mm 

• MCN with enhancing 
mural nodule 

• MCN with tumour-
related jaundice or 
acute pancreatitis or 
new-onset diabetes 
mellitus 

• IPMN with positive 
cytology for 
malignancy or high-
grade dysplasia 

• IPMN with solid mass 

• IPMN with tumour-
related jaundice 

• IPMN with enhancing 
mural nodule (<5mm) 

• IPMN with PD dilation 
≥10mm 

AGA=American Gastroenterological Association, European=European evidence-based, EUS=endoscopic 
ultrasound, Fukuoka=International Association of Pancreatology Fukuoka, IPMN=intraductal papillary 
mucinous neoplasm, MCN=mucinous cystic neoplasm, PD=pancreatic duct. Adapted from Van 
Huijgevoort et al. (2019)[160]. 
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Table 1.2 Indications for surveillance as per the current global clinical guidelines.  

Guideline Cyst type Surveillance interval Surveillance modalities 

2015 
AGA[154] 

IPMN <30mm 
Yearly for 1 year, then every 2 years. 
Discontinue after 5 years if no change 
to cyst size or characteristics. 

MRI with MRCP 

2017 
Fukuoka[156] IPMN <10mm Within 6 months, then every 2 years. CT or MRI with MRCP 

IPMN 10-20mm 
Every 6 months for 1 year, then yearly 
for 2 years, then every 2 years. 

CT or MRI with MRCP 

IPMN 20-30mm 3-6 months, then yearly. 
EUS alternating with 
MRI 

2018 
European[157] IPMN <40mm Every 6 months for 1 year, then yearly. CA19-9, EUS and/or MRI 

MCN <40mm Every 6 months for 1 year, then yearly. CA19-9, EUS and/or MRI 

AGA=American Gastroenterological Association, European=European evidence-based, CT=computerized 
tomography, EUS=endoscopic ultrasound, Fukuoka=International Association of Pancreatology Fukuoka, 
IPMN=intraductal papillary mucinous neoplasm, MCN=mucinous cystic neoplasm, MRCP=magnetic 
resonance cholangiopancreatography, MRI=magnetic resonance imaging. Adapted from Van Huijgevoort 
et al. (2019)[160].  
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EUS-guided FNA is a safe and accurate method of extracting PCF or pancreatic 

tissue from a patient for further analysis[152, 161]. PCF cytology has high specificity for 

malignancy or high grade dysplasia, but low sensitivity due to the typically low cellularity 

of PCF samples[152, 161]. A 12-year multi-institutional study conducted by the French 

Surgical Association found that 50% of patient PCF samples collected were non-

diagnostic and acellular[162]. Diagnosis of PCLs by EUS requires attention to cyst 

morphology, including size, number of cysts present, characteristics of the wall and 

internal structures, calcification, positioning in relation to the main pancreatic duct and 

presence of lesions in the background[129]. These descriptors are considerably operator-

dependent and PCL characterisation without PCF analysis is limited[121, 152]. While the 

low cellularity of PCF limits cytological yield, biochemical analysis of PCF has proven an 

important adjunct in characterising PCLs. Carcinoembryonic antigen (CEA) levels are 

frequently measured in EUS-aspirated PCF for the diagnosis of MCNs, with a threshold 

of ≥192 mg/dL[163]. CEA has been shown to have a sensitivity of between 59-67% and 

specificity of 83-91% for detection of MCNs, and is among the best of the biomarkers 

currently available for this purpose[150, 164]. Mutational profiling of patients has shown 

utility in the characterisation of different PCL subtypes, however, genetic evaluation of 

PCF is currently limited to research. KRAS and GNAS mutations in the PCF are particularly 

important early mutations in IPMNs as they are not found in other common types of 

cysts[159]. Indeed, a 2021 systematic review and meta-analysis, including 785 PCLs, 

reported a sensitivity of 94% and a specificity of 91% for KRAS + GNAS in the distinction 

of IPMNs[165]. Carbohydrate antigen 19-9 (CA19-9) is an antigen released by PC cells and 

is the only FDA-approved biomarker for PC diagnosis[166]. Unfortunately, the reported 

SN/SP values for CA19-9 are generally poor, as this marker is known to be elevated in 

benign conditions such as pancreatitis and diabetes, common comorbidities of 

pancreatic patients[167]. Importantly, CA19-9 is not elevated in premalignant PCLs, 

making its utility in this setting extremely limited[168]. Based on all the aforementioned 

limitations of current diagnostics, it is clear that there is urgent need for novel methods 

and markers to accurately classify and risk stratify PCLs, and the ‘omics’ revolution is 

poised to fill this void of information. 
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1.7 Identification of biomarkers in PCLs and PC using omics 

A biological marker or ‘biomarker’, is defined as any characteristic that can be measured 

objectively and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacological responses to some therapeutic intervention[169]. 

Biomarkers have many clinical uses and these can be broadly classified into five distinct 

categories: antecedent, screening, diagnostic, staging and prognostic[170]. 

The term ‘omics’ refers to the compendium of disciplines that comprehensively 

assess a set of molecules[171]. The origin of omics disciplines began with the advent of 

genomics, the study of the entire genome of an organism, the pathways involved, the 

interactions between individual genes and the impact of an organism’s environment 

with their genes[172]. This differed from the field of genetics, which preceded genomics, 

and studies individual variants of single genes and heredity in organisms[172]. Since the 

emergence of genomics, other omics-type fields have emerged, including proteomics, 

transcriptomics and metabolomics[173, 174]. The omics field has made huge strides in the 

past two decades, largely due to technological advancements, enabling the cost-

effective and high-throughput analysis of biological molecules[172]. Some omics 

disciplines are demonstrating great potential in the search for a novel biomarker for PC 

(Table 1.3), but the data for PCLs are much more limited.  

 

1.7.1 Genomics 

Genomics was the first omics discipline to be established, and studies the genome in its 

entirety[172]. More specifically, genomics examines various characteristics of DNA and 

RNA such as DNA copy number, DNA modifications, single nucleotide polymorphisms 

(SNPs), coding RNA expression and non-coding RNA levels among others[172, 173, 175]. This 

discipline focuses on genetic variations or modifications, their interactions with each 

other and follows their impact across biological pathways and phenotypes. 

Technological advances have resulted in the emergence of new, high-throughput 

molecular techniques capable of giving vast amounts of information on the human 

genome such as SNP arrays, gene expression microarrays, and NGS[176]. These 

techniques have been employed extensively in PC research and genomic evaluation of 
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Table 1.3 Overview of biomarkers in PC and PCLs that have been validated in an independent cohort.  
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KRAS &/OR GNAS Genetic 

mutation 

panel 

Multi PCR 

 

 

PCR using NGS 

 

NGS 

 

Sanger sequencing 

Cyst fluid 

 

 

Cyst fluid 

 

Cyst fluid 

 

Cyst fluid 

91 

 

 

197 

 

595 

 

159 

65% (52-76) 

84% (70-92) 

 

68.5% (N/A) 

 

89% (79-95) 

 

65% (N/A) 

100% (83-100) 

98% (86-100) 

 

95.5% (N/A) 

 

100% (88-100) 

 

100% (N/A) 

N/A 

N/A 

 

N/A 

 

N/A 

 

N/A 

MCN vs non-MCN 

IPMN vs non-IPMN 

 

IPMN vs non-IPMN 

 

MCN vs non-MCN 

 

MCN vs non-MCN 

[177] 

 

 
[178] 

 
[179] 

 

 

lncRNA-TFG 
Long non-

coding RNA 
Single 

Affymetrix Human 

Exon 1.0 ST 
Tissue 28 N/A N/A 6.23x10-8 

Positive correlation with 

tumorigenesis in IPMNs 
[180] 

CTD-2033D15.2 
Long non-

coding RNA 
Single 

Affymetrix Human 

Exon 1.0 ST 
Tissue 28 N/A N/A 1.47x10-4 

Negative correlation with 

tumorigenesis in IPMNs 
[180] 

HAND2-AS1 
Long non-

coding RNA 
Single 

Affymetrix Human 

Exon 1.0 ST 
Tissue 28 N/A N/A 2.66x10-3 

Negative correlation with 

tumorigenesis in IPMNs 
[180] 

Glucose Metabolite Multi 

Liquid 

Chromatography 

 

Glucometer 

Cyst fluid 

 

 

Cyst fluid 

19 

 

 

153 

94% (N/A) 

 

 

92% (N/A) 

64% (N/A) 

 

 

87% (N/A) 

0.004 

 

 

N/A 

Glucose ≤ 66 mg/dL in MCNs  

vs non-MCNs 

 

Glucose ≤ 50 mg/dL in MCNs  

vs non-MCNs 

[181] 

 

 
[182] 

Kynurenine Metabolite Single 
Liquid 

Chromatography 
Cyst fluid 19 90% (N/A) 100% (N/A) 0.002 Lower in MCNs vs non-MCNs [181] 

AcSperm & DAS & 

LPC(18:0) & LPC(20:3) 

& Indole-derivative 

Metabolite 

panel 
Single Mass spectrometry Blood Plasma 121 66.7% (N/A) 95% (N/A) N/A PDAC vs N [183] 
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ADAMTS1 
Methylated 

gene 
Single 

Methylation on 

beads 
Blood cfDNA 39 87.2% (N/A) 95.8% (N/A) N/A PDAC vs N [184] 

BNC1 
Methylated 

gene 
Single 

Methylation on 

beads 
Blood cfDNA 39 64.1% (N/A) 93.7% (N/A) N/A PDAC vs N [184] 

SOX17 
Methylated 

gene 
Single 

Methylation-

specific ddPCR 
Cyst fluid 154 

78.4% (64.7–

88.7) 

85.6% (78.4–

91.1) 
N/A High-risk PCL vs low-risk PCLs [185] 

TBX15 & BMP3 

Methylated 

gene marker 

panel 

Single 

Whole-genome 

methylome 

discovery & qPCR 

Cyst fluid 134 90% (70-99) 92% (85-96) N/A HGD/PC vs LGD/N [186] 

ADAMTS1 &/OR 

BNC1 

Methylated 

gene panel 
Single 

Methylation on 

beads 
Blood cfDNA 39 97.4% (N/A) 91.6% (N/A) N/A PDAC vs N [184] 

FOXE1 & SLIT2 & 

EYA4 & SFRP1 

Methylated 

gene panel 
Single 

Methylation-

specific ddPCR 
Cyst fluid 154 84.3% (N/A) 89.4% (N/A) N/A High-risk PCL vs low-risk PCLs [185] 

miR-1290 MicroRNA Multi 

MicroRNA array 

analysis 

 

 

qRT-PCR 

 

qRT-PCR 

Blood serum 

 

 

 

Blood plasma 

 

Blood serum 

60 

76 

95 

 

49 

 

200 

88% (N/A) 

83% (N/A) 

83% (N/A) 

 

N/A 

 

74.2% (N/A) 

84% (N/A) 

69% (N/A) 

78% (N/A) 

 

N/A 

 

91.2% (N/A) 

N/A 

N/A 

N/A 

 

0.027 

 

N/A 

PC vs N 

PC vs CP 

PC vs CP & N 

 

PDAC vs N 

 

PC vs C 

[187] 

 

 

 
[188] 

 
[189] 

9-miRNA modela 
MicroRNA 

panel 
Single 

TaqMan miRNA 

Array 

Tissue & 

Cyst fluid 
33 & 50 89% (N/A) 100% (N/A) N/A 

HG IPMNs, PanNETs & SPNs 

vs LG IPMNs & SCAs 
[145] 

miR-3679-5p & miR-

940 

MicroRNA 

panel 
Single qPCR Saliva 

80 

60 

100 

72.5% (N/A) 

62.5% (N/A) 

70.0% (N/A) 

70.0% (N/A) 

80.0% (N/A) 

70.0% (N/A) 

N/A 

N/A 

N/A 

PC vs N 

PC vs BPT 

PC vs N & BPT 

[190] 
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CA19-9 
Protein- 

associated 
Multi 

Bead-based xMAP 

immunoassay 

 

ELISA 

 

Retrospective 

clinical data 

Blood serum 

 

 

Blood plasma 

 

Blood serum 

 

267 

 

 

176 

 

41 

 

57.2% (N/A) 

 

 

77.5% (N/A) 

 

90% (N/A) 

 

90% (N/A) 

 

 

83.1% (N/A) 

 

83.33% (N/A) 

 

N/A 

 

 

N/A 

 

N/A 

 

PDAC vs N 

 

 

CA19-9 >20.3U/mL, PDAC vs C 

 

2.45 times elevated CA19-9 

indicated recurrence of PC 

[191] 

 

 
[192] 

 
[193] 

CEA Protein Multi 

Clinical data 

 

ELISA 

 

ELSA 

Cyst fluid 

 

Cyst fluid 

 

Cyst fluid 

31 

 

149 

 

153 

73% (N/A) 

 

95.5% (N/A) 

 

58% (N/A) 

89% (N/A) 

 

81.5% (N/A) 

 

96% (N/A) 

N/A 

 

<0.0001 

 

N/A 

CEA >192 ng/mL for MCN 

 

CEA ≤ 10 ng/mL for SCN 

 

CEA >192 ng/mL for MC 

[181] 

 
[194] 

 
[182] 

MUC5AC:WGA & 

MUC5AC:BGH & 

Endorepellin:WGA 

Protein 

panel 
Multi 

Antibody-lectin 

sandwich 

microarray 

 

Antibody-lectin 

sandwich arrays 

Cyst fluid 

 

 

 

Cyst fluid 

 

147 

 

 

 

22 

 

92%b(N/A) 

 

 

 

87% (N/A) 

 

94%b(N/A) 

 

 

 

100% (N/A) 

 

N/A 

 

 

 

N/A 

 

Elevation in any 2 differentiates 

MCNs vs non-MCNs 

 

 

Elevation in any 2 differentiates 

MCNs vs non-MCNs 

[195] 

 

 

 
[196] 

Thymosin- β4 Protein Single 
MALDI Imaging & 

Mass Spectrometry 
Tissue 45 70% (N/A) 71% (N/A) 0.011 

Overexpressed in IPMN with 

HGD 
[197] 

Ubiquitin Protein Single 
MALDI Imaging & 

Mass Spectrometry 
Tissue 45 94% (N/A) 86% (N/A) 0.04 

Overexpressed in IPMN with 

HGD 
[197] 

VEGF-A Protein Single ELISA Cyst fluid 149 100% (N/A) 83.7% (N/A) <0.0001 
VEGF-A >5,000 pg/mL benign 

SCN 
[194] 

VEGF-A & CEA 
Protein 

panel 
Single ELISA Cyst fluid 149 95.5% (N/A) 100% (N/A) N/A 

VEGF-A >5,000 pg/mL & CEA 

≤ 10 ng/mL in benign SCN 
[194] 

BPT=benign pancreatic tumour, C=non-cancer control, CP=chronic pancreatitis, ELISA=enzyme-linked immunosorbent assay, HG=high grade, HGD=high-grade 
dysplasia, IPMN=intraductal papillary mucinous neoplasm, LG= low grade, LGD=low-grade dysplasia, MALDI=matrix-assisted laser desorption ionisation, MC=mucinous 
cyst, MCM=mucinous cystic neoplasm, N=normal healthy, N/A=not available, NGS=next-generation sequencing, PanNET=pancreatic neuroendocrine tumour, 
PC=pancreatic cancer, PCL=pancreatic cystic lesion, PCR=polymerase chain reaction, PDAC=pancreatic ductal adenocarcinoma, SCN=serous cystic neoplasm, and 
SPN=solid-pseudopapillary neoplasm. aModel is intellectual property of the authors. bAverage of three cohorts.
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PCF and patient serum remains a promising field. Cancer genomics has taken great 

strides over recent years, illuminating the complexity of the cancer genome and more 

importantly, the heterogeneity present even between tumours with the same 

histological diagnosis[173, 176]. In the context of medical research, genomics is employed 

to identify genetic variants associated with disease, treatment response or 

prognosis[172]. The European Medicine Agency defines a “genomic biomarker” as a 

characteristic of DNA and/or RNA that can be measured, by its expression, function or 

regulation of a gene, and that is an indicator of normal biological processes, pathogenic 

processes and/or a biological response to therapeutic or other interventions[175, 198].  

Overexpression of epidermal growth factor receptor (EGFR) is known to be 

associated with poor prognosis in several cancers, such as colorectal cancer (CRC), non-

small cell lung cancer (NSCLC) and PC[199]. EGFR gene copy number and the mutational 

status of the KRAS gene, which is located downstream of EGFR, can predict response to 

EGFR-targeted therapy cetuximab in advanced CRC[200, 201]. EGFR is also used as a 

genomic biomarker for NSCLC, where EGFR mutations located in the tyrosine kinase 

domain are associated with a treatment response to EGFR tyrosine kinase inhibitors, 

such as gefitinib[202-204]. This receptor has also been shown to be overexpressed in PC, 

and this overexpression correlates with advanced disease and poor overall survival in 

patients[205]. Indeed, EGFR is known to play a key role in the pathogenesis of PC and 

drives its aggressive nature[206]. EGFR-targeted therapies have proven efficacy in the 

treatment of both CRC and NSCLC[199], however, the FDA has not yet approved the use 

of any of these EGFR-targeted therapies for the treatment of PC, as data regarding 

efficacy are inconclusive[207]. Treatment of patients with EGFR inhibitors in combination 

with standard of care regimens showed little survival benefit and increased risk of 

toxicities[207]. As such, EGFR amplification alone does not provide a sufficient biomarker 

for treatment response and there is an urgent need for predictive-biomarkers that could 

indicate those patients who would benefit most from EGFR-targeted therapies and what 

combination would prove most effective. As there are many genetic mutations known 

to be present in pancreatic tumours, and subsequently a great deal of crosstalk between 

pathways, more extensive research into the relationships between these genes and 

pathways could guide research towards more suitable biomarkers[207].  
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Genetic mutations have been shown to be hugely important in the study of many 

cancers and PC is no different, with GNAS and KRAS mutations representing the 

predominant mutations observed in this cancer[208, 209]. KRAS is an oncogene primarily 

involved in the production of protein for regulating cell division[208]. Mutations in this 

gene are arguably the most important in the context of PC, as they frequently occur in 

non-cancerous precursor lesions and are subsequently present in 90%-95% of all PC 

cases[210-212]. The PANDA study analysed the DNA of 113 patient PCF samples in a 

multicentre, prospective study[213]. Mutations in KRAS were shown to be indicative of a 

mucinous cyst, with a specificity of 96%[213]. However, there is some evidence to suggest 

that KRAS mutation alone may not be sufficient to drive a malignant phenotype, and 

other genetic or epigenetic events may be needed[210]. A 2011 study found that GNAS 

mutations were present in 66% of IPMNs, while mutations of either KRAS or GNAS were 

present in 96%[209]. The same study found GNAS mutations in seven out of eight cases 

of invasive PC that resulted from an IPMN, while it was not present in other types of 

pancreatic cysts or carcinoma that was not associated with an IPMN[209, 214]. Mutations 

in both genes are believed to occur in the early stages of IPMN carcinogenesis[215]. The 

reported incidence of GNAS and KRAS mutations alone in IPMNs has varied greatly 

between studies, but a 2016 meta-analysis revealed the prevalence of GNAS and KRAS 

in these cysts to be 56% and 61%, respectively[216]. Simultaneous mutations in both 

GNAS and KRAS have been demonstrated to occur in up to 33% of IPMNs[177, 217]. Indeed 

a KRAS and/or GNAS biomarker panel has been shown to have a SN/SP of up to 84%/98% 

for the identification of IPMNs (Table 1.3)[177, 178]. Unfortunately, these results for GNAS 

and KRAS mutations are not mimicked in MCNs, where two separate studies revealed a 

SN/SP of 65%/100% for MCNs [177, 179], while others have highlighted a distinct lack of 

GNAS mutations in all subtypes of MCNs [217]. 

Whole-genome sequencing of patients with PC, and subsequent RNAseq 

revealed the KRAS signalling pathway to be the most heavily impacted, however, further 

details elucidating passenger and driver mutations are needed[218]. It also appears that 

KRAS and GNAS mutational status varies with IPMN histological grade, adding further to 

the difficulties observed in these genetic mutations as potential biomarkers[217]. The 

feasibility of KRAS mutational status as a single marker has been evaluated in tissue, PCF, 
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duodenal fluid and plasma and does not appear to diagnose IPMNs or the level of 

cellular dysplasia consistently, being regarded as simply an early indicator of cell stress 

in pancreatic cells[215]. The addition of GNAS to PCF KRAS testing has been shown to 

increase the diagnostic accuracy of IPMN identification from 66-80.7%, though this does 

not achieve a statistically superior result to KRAS testing alone (p > 0.05), which has a 

diagnostic accuracy of 76.6%[178]. While mutational profiling of these genes may show 

some promise for IPMN identification, they provide no risk stratification for these cysts, 

and show little utility for MCNs compounding their lack of use in the clinical setting. 

Importantly, large networks of genetic data have begun to emerge over the last 

two decades that contain genomic sequencing of patients with various cancer types. The 

Cancer Genome Atlas (TCGA) has executed the molecular profiling and subsequent 

analysis of over 11,000 tumours, spanning 32 different cancer types[219, 220]. Tumour 

samples are characterised using technologies that assess the sequence of the exome, 

copy number variation, DNA methylation, mRNA expression and sequence, microRNA 

expression and transcript splice variation[220]. While this network has a substantial and 

diverse amount of genomic data, the matching clinical data for these patients is far more 

limited, and is considered to be one of the major drawbacks of the database[221, 222]. 

Improved models have been developed in order to utilise the TCGA data to their full 

potential. Indeed, a deep-learning-based model on hepatocellular carcinoma has been 

shown to identify multi-omics features that robustly differentiate patients from six 

cohorts into two distinct survival subpopulations[222]. Another such platform is the 

International Cancer Genome Consortium, which provides data at the genomic, 

transcriptomic and epigenomic level, for over 50 cancer types and consolidates the data 

from TCGA[223]. The integration of these datasets enables the execution of genomic 

cancer studies on a large scale. The compilation and analysis of genetic information 

captured by various methods poses some analytic problems, which will be discussed 

later in this review. The genomic data of PC patients are accessible on a number of online 

platforms, and several independent studies have also been launched into the utility of 

these data to distinguish high- and low-risk patients with PCLs, however, these single 

markers and panels have not yet shown sufficient sensitivity or specificity for this 

purpose[152].  
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1.7.2 Transcriptomics 

The transcriptome comprises the entire set of RNA transcripts that are produced by a 

single genome in a target cell or population of cells, consisting of both coding and non-

coding RNAs[174]. While genomic sequencing can provide vast amounts of data and 

identify structural variations, it does not reveal whether these variations are carried 

beyond the genome and affect the transcription of the gene[224]. It follows, therefore, 

that the addition of transcriptomic evaluation of a tumour could help to elucidate those 

genetic driver mutations that have active downstream effects. Full transcriptome 

sequencing or RNA-seq has become a popular and widely used method of assessing 

genome wide expression[225, 226]. Normalisation of RNA-seq data is a key aspect of this 

technique as it is required to eliminate sources of variability in order to allow accurate 

inference of expression levels and comparisons across the dataset[225, 227]. These sources 

of variability, often termed ‘batch effects’, originate from parameters such as the quality 

of RNA, the equipment or techniques used for RNA extraction and the RNA-seq library 

preparation[225]. There are several methods of normalisation that can be used, each 

affecting the power and reproducibility of the results, however, a specially developed 

method, Remove Unwanted Variation, has been shown to overcome such pitfalls of 

normalisation[225, 227]. Similarly, single cell RNA sequencing, which has become popular 

over recent years, requires computational strategies tailored to the different noise and 

artefacts found amongst these data[226].  

MicroRNAs (miRNAs) are small, non-coding RNA molecules that function as RNA 

silencers and regulators of gene expression at the post-transcriptional level[228]. These 

molecules have been extensively studied in the context of cancer, and many miRNAs 

have been identified as having differential expression levels between high- and low-risk 

IPMNs[228]. Indeed, a 9-miRNA model developed by Matthaei et al. has shown SN/SP of 

89%/100% for the distinction of high- and low- risk IPMNs by both tissue and PCF (Table 

1.3)[145]. Similarly, Lee et al. identified a 4-miRNA panel (miR-21-5p, miR-485-3p, miR-

708-5p, and miR-375) that appears to distinguish IPMNs from PC, with a SN/SP of 

95%/85%, though these results have not been independently validated[229]. Three long 

non-coding RNAs (lncRNAs) that have shown promise as risk stratification markers in the 

tissue of IPMN patients are CTD‐2033D15.2, HAND2-AS1 and lncRNA‐TFG (Table 1.3). A 
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recent study conducted by Ding et al. indicated a negative correlation with 

tumorigenesis in IPMNs for CTD‐2033D15.2 and HAND2-AS1, while a positive correlation 

was observed for lncRNA‐TFG[180]. These results suggest a protective role of HAND2-AS1 

and CTD-2033D15.2 expression in IPMNs, while lncRNA-TFG appears as a risk factor for 

tumorigenesis in IPMNs[180]. MiRNAs have also been identified in the blood serum and 

plasma of PC which have exhibited potential for the diagnosis of PC. Multiple studies 

have shown elevated levels of miR-1290 in patient blood has the ability to distinguish 

between PC, healthy patients, and patients with chronic pancreatitis (Table 1.3)[187-189]. 

Wei et al. found that miR-1290 expression was upregulated in PC patients compared to 

all controls, and was decreased dramatically post tumour resection (p<0.001) indicating 

a potential role in tumorigenesis[189]. Vila-Navarro et al. used NGS to conduct genome-

wide miRNA profiling and identified 30 independent miRNAs whose expression is 

significantly increased in PC and IPMN lesions compared to healthy individuals, and 

these results were validated in 2 independent sample sets[230]. Among these 30 miRNAs, 

24 represent novel biomarkers that have not been reported previously in IPMNs[230]. 

While such results indicate great promise for the identification of a panel of miRNAs that 

could be used in pancreatic lesion characterisation, as this panel cannot distinguish 

IPMN from PC its clinical utility is greatly limited and larger, multicentre studies will be 

needed to further interrogate and validate these results. 

One limitation of current patient sampling is that EUS-FNA is an invasive 

procedure for patients, with sample yields often being of low volume. Research 

surrounding less invasive protocols has investigated the utility of salivary properties for 

use as non-invasive biomarkers. Salivary miRNA has been explored as a candidate for 

diagnostics in PC. Xie et al. validated the salivary biomarkers miR-3679-5p and miR-940 

for the distinction of PC from healthy individuals, and found that combining both 

miRNAs produced the best discriminatory power (Table 1.3)[190]. Another study 

identified four miRNAs (miR-21, miR-23a, miR-23b and miR-29c) in patient saliva and 

showed them to be significantly upregulated in the saliva of PC patients when compared 

to healthy controls, with a sensitivity of 71.4%, 85.7%, 85,7% and 57%, respectively, and 

specificity at a fixed 100%[231]. However, these same miRNAs were shown to be detected 

in patients with pancreatitis, while miR-23a and miR-23b were detected in patients 
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diagnosed with IPMNs[231]. While these miRNAs show promise in distinguishing PC from 

healthy controls, as patients with pancreatitis and precursor lesions have also been 

shown to express these markers further validation is required on a larger, external 

cohort to fully demonstrate the utility of these miRNAs at distinguishing various 

pancreatic pathologies. A 2020 systematic review and meta-analysis interrogated the 

potential of various salivary biomarkers in several cancer types, including 

transcriptomic, epigenomic (v. inf.) and microbiomic markers in PC, and found “good” 

diagnostic accuracy for such markers in PC with an area under the curve (AUC) of 

0.87[232]. However, the review also highlighted the high degree of variation in the 

sensitivity (31-100%) and specificity (34-100%) observed in different studies of salivary 

biomarkers in non-oral cancers, and further interrogation of the data revealed that the 

probability of a patient having some malignancy is 31% if the salivary test result is 

negative[232]. While investigations into the use of salivary properties for diagnostic and 

prognostic purposes appears promising, further work is required to identify more robust 

biomarkers.  

Transcriptomic data, as highlighted above, has profound potential for the 

identification of a novel biomarkers. Compilations of transcriptomic data can be found 

readily available in online repositories such as the Gene Expression Omnibus and EBI 

ArrayExpress[233, 234]. Access to vast amounts of patient-derived data has enabled huge 

amounts of research to be conducted that would otherwise have not been possible. 

Genome-wide association studies (GWAS) have become very popular, and results 

suggest that common variations in the human genome, such as those exhibited by SNPs 

with frequencies of more than 1%, are responsible for the risk observed in many 

genetically complex disorders[235]. Following on from such studies, a similar undertaking 

was carried out at the transcriptome level - the transcriptome-wide association study, 

where gene expression measurements were combined with summary association 

statistics from GWAS to identify 69 new genes associated with obesity-related traits 

such as BMI, lipids and height[236]. Such endeavours highlight the power of layering 

different biological techniques to interrogate these data and identify the most relevant 

points. It is evident from expansive transcriptomic data available for PC that much 

research has been conducted, however, to date no transcriptomic biomarker among the 
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many identified has been approved for use in this cancer. While vast quantities of data 

are often favourable, it appears that more information and progress may be gained from 

the integration of different data types. 

 

1.7.3 Epigenomics 

Epigenetic modifications in the context of cancer have been shown to play an important 

role in the initiation, progression and metastasis of malignant tumours[237]. While such 

alterations do not affect the sequence of the genome, and are therefore regarded as 

heritable changes in gene expression, they are maintained filially by cellular division[237, 

238]. The epigenetic landscape of a target cell is comprised of 4 distinct mechanisms of 

non-genetic modification: DNA methylation and/or de-methylation; histone 

modification; non-coding RNA molecules; and nucleosome remodelling[239]. DNA 

methylation is the best studied form of epigenetic modification, and has the potential 

to affect the expression of genes[239]. DNA hypermethylation concerns the gain of 

methylation at specific DNA sites that under normal circumstances would be 

unmethylated[238]. Hypermethylation of gene promoter CpG islands is found in virtually 

every type of tumour and can cause transcriptional silencing of genes, such as tumour 

suppressor genes, which subsequently drives cancer formation[224, 240]. A key example of 

this is observed in tumours with reduced or absent BRCA1 expression, where 

hypermethylation of this gene occurs in 9-37% of sporadic breast cancers[240, 241]. 

Conversely, hypomethylation refers to the loss of a methyl group, resulting in the 

overexpression of genes, which in the context of malignancy are often found to be 

oncogenes[224]. The modification of histone tails post-transcriptionally enables structural 

changes to occur to the chromatin which can either facilitate or hinder protein complex 

interactions with specific DNA regions[239]. Such histone modifications, therefore, have 

the ability to influence gene transcription in a manner which can contribute to the 

development and progression of cancer.  

A histone methyltransferase known as enhancer of zeste homologue 2 (EZH2) is 

known to be overexpressed in many cancers, including PC, and has also been detected 

in IPMNs with moderate to severe dysplasia[242]. A 2010 study showed that high 

expression levels of EZH2 in PC was associated with increased node positivity and a 
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larger tumour size; EZH2 expression levels were also shown to relate to the degree of 

dysplasia in IPMNs[242]. RNA interference silencing of EZH2 sensitized PC patients to 

treatment with gemcitabine, resulting in significantly longer overall survival [242]. Such 

RNA interference silencing of EZH2 has been utilised in a PC model and caused a 

decrease in tumour growth and the incidence of liver metastasis[243]. More recent 

investigation into EZH2 has highlighted its role in the epigenetic repression of tumour 

suppressor gene expression. Trimethylation of H3K27 by EZH2 allows the mediation of 

cell proliferation, invasion and migration[244]. Exposure of F-box and WD repeat domain-

containing 7 to EZH2 causes the degradation of EXH2 in PC cells and inhibits tumour 

migration and invasion, indicating its role as a ligase of EZH2 that regulates EZH2 protein 

levels in PC and furthermore, its potential as a treatment strategy[244]. Indeed as 

epigenetic alterations are reversible and plastic, they can be regarded as more amenable 

to therapeutic intervention than non-reversible genetic mutations[245]. Hata et al. 

identified 6 methylated DNA markers in patient PCF that could distinguish high- and low-

rick PCLs with accuracies from 79.8-83.6%[185]. Methylated SOX17 was shown to be the 

most sensitive single marker, while a four-gene combination (FOXE1, SLIT2, EYA4, SFRP1) 

showed the highest accuracy at 88% (Table 1.3)[185]. Furthermore, PCF obtained from 

IPMNs with high-grade dysplasia had significantly higher levels of methylated DNA than 

other mucinous cysts[185]. A more recent study by Eissa et al. examined the cell-free DNA 

in patient blood, and found the methylated gene of ADAMTS1 to have a SN/SP of 

87.22%/95.8% for the differentiation of PC and normal samples[184]. Moreover, the same 

study showed that the addition of a second methylated gene, BNC1, such that either or 

both were detected in the samples, showed even better SN/SP for the same purpose 

(Table 1.3)[184].  

For IPMNs, the epigenetic data currently available is limited. One gene whose 

promoter is known to be hypermethylated in almost all cancer types is the cysteine 

dioxygenase 1 (CDO1) gene. A recent study examined this gene in pancreatic IPMN 

tumour tissue and found the CDO1 promoter hypermethylation is extremely specific to 

IPMNs and appears to accumulate with tumour progression[246]. Among other pancreatic 

disease, low levels of CDO1 promoter hypermethylation were seen in MCNs, with no 

other pancreatic cystic disease showing DNA hypermethylation of its promoter. A pilot 
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study in pancreatic juice confirmed methylation in all IPMN samples (n=6) with none 

detected in benign pancreatic diseases (n=6, chronic pancreatitis and autoimmune 

pancreatitis)[246]. Furthermore, CDO1 hypermethylation showed utility in the 

differentiation of low-intermediate-grade dysplasia and high-grade dysplasia/PC[246]. 

While these results show promise in the search for a biomarker to stratify IPMN patients, 

extremely robust thresholds for CDO1 methylation are needed to distinguish high- and 

low-risk patients, with little utility being seen for other PCLs. Further analyses on a large 

patient cohort, examining the methylation status of CDO1 in patients with pancreatitis, 

pseudocysts and a variety of PCLs would be required to further validate this marker.  

The establishment of epigenomic databases such as ENCODE and The 

International Human Epigenome Consortium and Roadmap Epigenomic Project has 

enabled the popularisation of epigenomics and allowed for the establishment of 

standardised sequencing methods[247]. Furthermore, epigenome-wide association 

studies in combination with GWAS and the transcriptome-wide association study data 

have proved to be powerful tools in pinpointing disease-relevant regulatory 

elements[247, 248]. 

 

1.7.4 Proteomics 

The proteome consists of all proteins within a target cell, tissue or biological sample at 

the time of sampling[174]. The proteome can be examined at different developmental or 

cellular phases, and changes in the proteome can be evaluated at different time points. 

When moving from genomic or transcriptomic studies to those of the proteome, it is 

important to consider the increasing complexity of the longer nucleotide codes which 

can be arranged in a number of conformations and have varying chemical modification, 

with alternative splicing of the same protein resulting in different isoforms[174]. As cancer 

cells have distinct processes of replication and metabolism, the quantities and types of 

proteins produced can be profoundly affected[249]. Proteomics can be a qualitative 

and/or quantitative evaluation of the proteome and is generally conducted using mass 

spectroscopy (MS)[174, 249, 250].  
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As mentioned previously, two protein markers currently utilised in PC are CA19-

9 and CEA, and these markers have been shown in many instances to be insufficient in 

the discernment of IPMNs and MCNs, as well as their malignant potential (Table 1.3)[251-

253]. CEA levels in patient PCF can be used to distinguish between mucinous and non-

mucinous cysts, but have limited sensitivity (58-73%) and specificity (89-96%)[181]. 

Kadayifci et al. evaluated the diagnostic accuracy of adding CEA to the KRAS and/or 

GNAS panel but found it did not provide better SN/SP (p>0.05) than the KRAS and/or 

GNAS panel alone[178, 182]. Indeed, a recent study showed that artificial intelligence by 

deep learning has better SN/SP (95.7/91.9%) for diagnosis of malignant cystic lesions 

than CEA levels and cytologic analyses[253]. Serum CA19-9 is the only FDA-approved 

marker for the identification of PC, however, it has been demonstrated that CA19-9 

alone failed to detect 44.1% of cancer cases in a cohort of 34 patient samples, and added 

no improvement to the sensitivity of the two-gene methylation panel ADAMTS1 and/or 

BNC1[184]. CA19-9 is widely regarded as not sufficiently sensitive to distinguish PC from 

healthy samples as it is frequently elevated in non-malignant conditions such as 

pancreatitis, and has been shown to have a SN/SP of 52.7%/90%[191]. However, the 

addition of CA19-9 to a marker panel (CA19-9, ICAM-1, OPG) was shown to produce 

better sensitivity and specificity for PC (78% and 94.1%, respectively)[191]. Indeed, Brand 

et al. identified several 3-marker panels that offered an improved ability over CA19-9 

alone to distinguish PC from healthy controls[191]. Another study identified how the 

change in cut-off value for CA19-9 can improve the robustness of this marker, but also 

showed that the addition of CA19-9 to a marker panel gave the best SN/SP when 

compared to CA19-9 alone (p<0.05)[192]. While CA19-9 appears to have limited use 

clinically for diagnostic screening of patients for PC, it does have utility in predicting 

disease recurrence post-treatment[254]. 

The identification of novel protein markers in PC has been of great interest over 

the last two decades, as those markers in current clinical use are imperfect. The protein 

component of PCF has not yet been well characterised, as interrogation of the proteome 

is relatively new and technological advances are frequently being made[121]. Individual 

proteins such as thymosin-β4 and ubiquitin have been found to be significantly 

overexpressed in the tissue of IPMNs with high-grade dysplasia (p=0.011 and 0.0004, 
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respectively)[197]. Panels of proteins have also shown promise for the differentiation of 

mucinous and non-mucinous cysts. Elevations in any two of the 3-protein panel 

MUC5AC:WGA, MUC5AC:BGH and Endorepellin:WGA has shown good SN/SP for the 

identification of MCNs (Table 1.3)[195, 196]. Porterfield et al. utilised proteomic analysis by 

liquid chromatography-MS (LC-MS) to identify seven proteins shown to be consistently 

increased in the ductal fluid of PC patients compared to normal (AMYP, PRSS1, GP2-1, 

CCDC132, REG1A, REG1B, and REG3A), as well as one that was decreased (LIPR2), and 

validated these results by western blot[255]. A recent meta-analysis combined publicly 

available proteome and secretome data with the aim of identifying biomarkers of PC. 

While this analysis did not identify any protein that was shared by all of the 55 included 

secretome and proteome studies, by selecting proteins found in 2 or more studies an 

intersection between the two exposed 43 proteins common between proteome and 

secretome analyses[256]. Notably, 31 genes related to these secretome-proteins were 

shown to be upregulated in PC samples obtained from TCGA compared to control 

samples, while 39 such genes were revealed to be predictors of worse overall survival in 

PC[256]. 

As IPMNs are classified as mucinous cysts, it follows that their composition is 

partially composed of mucin proteins. Mucins, which are densely O-linked glycoproteins 

with a high molecular weight, play many roles in the maintenance of pancreatic health 

and subsequently, when altered as a result of malignancy can be important facilitators 

of tumorigenicity[215]. IPMNs are known to have a unique pattern of mucin expression, 

and this trait has been utilised in the subclassification of IPMNs[257]. Indeed, mucin 

proteins have been extensively investigated in the context of mucinous PCLs and 

evaluated as potential biomarkers but to largely no avail[215, 250, 257]. Moreover, while 

many studies have examined the mucin proteins of the cyst type, surprisingly, research 

has shown no significant pattern of RNA expression of mucin proteins identified in 

IPMNs[258]. The combination of mucin proteins into panels, as mentioned previously, has 

shown promise in the distinction of mucinous and non-mucinous cysts with good 

SN/SP[195, 196]. Though not a mucin, VEGF-A is also a glycoprotein and is known to be a 

key mediator of vascular growth[259]. Elevated levels of VEGF-A have been observed to 

indicate the presence of a benign serous cystic neoplasms with high SN/SP (Table 1.3)[194, 
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259]. Furthermore, the addition of CEA levels to VEGF-A exhibited better still SN/SP for 

the identification of these cysts[194].  

An important aspect of proteomic work in mucinous PCLs is the depletion of 

larger proteins, which in this case is not just IgG and albumin, but also the mucin 

proteins. The exclusion of larger, more abundant proteins by such immunodepletion 

steps increases assay sensitivity for smaller proteins that may not otherwise be 

detected. Depletion based on molecular weight is frequently employed, however the 

purity of the protein samples obtained by this method is generally poor. Indeed, the 

discovery of mucin-specific proteases that could aid depletion of these proteins appears 

to be making strides. A recent study by Malaker et al. identified a mucin-selective 

protease, StcE, which shows great promise in the selective digestion of human mucins 

from biological samples[260]. Interestingly, a recent study examined the protein 

component of IPMN cyst fluid supernatant and cell pellet, reporting that the cell pellet 

contains twice as many proteins as the supernatant and even contained over two 

thousand that were not identified in the supernatant[121]. This study opted to omit the 

immunodepletion step that is routinely used in proteomic analyses, and in doing so 

identified almost 4,000 proteins previously unknown in PCF[121]. This large, proteomic 

dataset has been deposited into the ProteomeXchange database, with the hope that it 

may prove a rich source of information for further IPMN studies[121]. Other online 

platforms of proteomic data, such as the Clinical Proteomic Tumour Analysis Consortium 

and PRoteomics IDEntification database allow users to upload their own data or examine 

those datasets submitted by others to supplement new research[261, 262].  

Often overlooked in proteomic studies is the part that genomic changes play in 

the alteration of the proteome. While many somatic mutations have been recorded in 

breast cancer for instance, the role these mutations play in the alteration of the 

proteomic landscape remains to be elucidated [263]. A 2014 study analysed the 

proteomes of colon and rectal tumours, and integrated these data with that of the TCGA 

to perform proteogenomic analyses[264]. This investigation found that messenger RNA 

transcript abundance did not correspond with the difference in protein abundance 

observed between tumours, and that somatic variants exhibited lower protein 

abundance than germline variants[264]. Similar research conducted in 2016 showed how 
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the integration of proteomic and phosphoproteomic analyses with TCGA data for 77 

genomically annotated breast cancers enabled the discovery of novel functional 

consequences of somatic mutations in this cancer type, and subsequently narrowed the 

scope of potential candidates for driver genes[263]. Such findings highlight important 

caveats of single-omics studies, in that the consolidation of multiple types of data allows 

for a better understanding of mechanisms involved and for the exclusion of those 

components that are deemed to play no active role and are merely resultant of the 

disease and not causative. In the context of IPMN stratification, these studies solidify 

the need for multi-omic data integration, as current individualised efforts have yet to 

prove fruitful. 

 

1.7.5 Metabolomics 

Metabolomics is the study of the set of metabolites present in a cell or tissue at a given 

timepoint and relates directly to the cellular processes taking place[265]. Metabolomic 

alteration of cancer cells has been regarded for nearly a century as one of the hallmarks 

of cancer[266]. Indeed, the switch of metabolic pathways observed in cancer cells is 

regarded as key for tumour growth, and is suspected to be selected for during 

transformation[266]. As such, it is important to consider that metabolomic studies could 

give novel insight into the mechanisms of cancer growth and that the detection of 

altered metabolite levels in PC could be used as a metabolic biomarker. 

Recent studies conducted by Mayerle et al. identified a biomarker signature of 9 

metabolites alongside CA19-9 in the blood using MS for the distinction of PC and chronic 

pancreatitis[267]. While not validated, this study showed the potential of this panel in 

both a training and test cohort, with SN/SP of 89.9%/91.3%[267]. Fahrmann et al. also 

utilised MS for the identification of a metabolite panel in the blood[183]. This panel was 

observed to distinguish PC from normal samples with moderate SN/SP (Table 1.3)[183]. 

Metabolic profiling combining MS and liquid chromatography techniques enabled the 

discovery of 55 metabolites that were differentially expressed in pancreatic tumours as 

compared to non-tumours (p<0.01)[268]. Further examination of these metabolites using 

weighted co-expression network analysis highlighted 8 fatty acid hubs that are highly 

connected and in a conserved lipid module that are decreased in PC tumours compared 
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to the surrounding non-tumour tissue[268]. Integration of transcriptomic data revealed 

157 gene surrogates for this fatty acid set and showed that the expected lipid 

metabolism, particularly in the lipolytic pathway involving these gene surrogates, is 

significantly altered in PC[268]. These data suggest a dysregulation of the lipolytic network 

in PC which may play some role in tumorigenesis. Kynurenine, a metabolite known to be 

synthesized in response to immune activation, has shown promising ability to discern 

mucinous from non-mucinous PCLs with high SN/SP 90%/100%[181]. This metabolite, is 

surprisingly detected in lower levels in the PCF of MCNs compared to non-MCNs, 

suggesting some dampening of immune activation in MCNs. In that same study, Park et 

al. identified 10 metabolites that were differentially abundant in their validation cohort, 

8 of which could not be matched to any known metabolite and mass spectrometry 

analysis was unsuccessful due to the low abundance[181]. Importantly, glucose levels in 

the PCF have also been observed to discriminate MCNs from non-MCNs, and a standard 

patient glucometer has been successful in this manner[181, 182]. If cystic glucose levels 

could be correlated to same in patient blood samples, this methodology could prove a 

less invasive manner of determining cyst type. However, such correlations would be 

highly unlikely given the plethora of factors which can influence blood glucose levels, 

such as presence of diabetes and patient fasting status. 

Unfortunately, as metabolomics is a relatively new field of study, there is little 

research done in the context of PC that can be robust enough to evaluate its ability in a 

clinical setting. It is therefore of the utmost importance that the establishment of large 

metabolic databases, such as the Metabolomics Workbench, take place in order to 

enable large metabolic studies and subsequent integration of this information with 

other omics data to produce a robust biomarker panel[269]. 

 

1.8 Multi-omics as the key to biomarker identification 

The complexity of cancer biology has been revealed through decades of research aimed 

at understanding this disease and attempting to treat it. Technological advances have 

enabled researchers to delve deeper into the pathways involved in cancer development 

and progression and has given new insights and inspired novel approaches for 
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treatment. In the case of PCL and PC characterisation, though these new techniques 

have been utilised to analyse the PCF, blood serum and even saliva of patients, no single 

methodology has proven sufficiently sensitive method for delineating these patients 

into defined categories. Multi-omics involves the integration of multiple layers of omics-

type data to augment our understanding of disease and helps researchers to elucidate 

the flow of information, from the origin of the disease to the biological and functional 

consequences[172]. More modern hypotheses interrogate the complex and 

interconnected networks of disease by examining the different biological layers and 

their interactions with each other. This multi-layered approach has been demonstrated 

in the clinical setting with the rapid emergence of personalised medicine. By 

investigating multiple aspects of the PCF or blood serum, and treating these data as an 

interconnected system, rather than distinct and independent pieces, multi-omics could 

allow researchers to identify key pathways and players in disease stratification. 

CompCyst is a comprehensive test developed using machine learning techniques to 

guide the management of patients with PCLs[270].This test utilises selected clinical 

features such as symptoms, cyst size and location, as well as PCF genetic and 

biochemical markers, including cyst CEA levels and KRAS and GNAS mutation status[270]. 

Interrogation of multiple levels of patient data enabled cut offs for each marker to be 

determined based on the needs of the test, and the level of importance given to the 

sensitivity or specificity of each individual marker. The results of this study suggest that 

if CompCyst were applied to general PCL management, 60% of unnecessary surgeries 

could be avoided[270]. While these results seem promising, it is important to note that 

patients evaluated in this study were those most concerning for cancer and do not 

represent patients seen in routine clinical practice[270]. While more research is needed 

to examine the utility of this test in a normal clinical setting, this study shows that 

layering multiple levels of patient data can potentially improve management strategies 

for PCLs. 

In terms of PCLs and PC, multi-omics opens the door to the possibility of a 

biomarker panel for characterisation, such that combined thresholds of several markers 

could prove more sensitive than a single marker alone. Indeed, there have been a vast 

number of studies executed with the aim of identifying biomarkers in PC, with many 
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genes, miRNAs and proteins having been identified by various groups and declared a 

potential biomarker[271]. While compilations of these data have been made, with some 

genes or proteins having been singled out by several papers, there remains no 

biomarker robust enough to distinguish different PCL subtypes and PC. It follows, 

therefore, that examination of these data where appropriate, and integration of these 

results, could provide a sufficient starting point for the identification of a biomarker 

panel. As mentioned previously, the addition of GNAS to KRAS testing for the diagnosis 

of IPMNs does not significantly increase diagnostic accuracy, however, the same study 

found that the combination of GNAS and KRAS mutational status with CEA testing does 

produce a significantly better accuracy of 86.2% (p<0.05)[178]. A 2015 multi-centre study 

retrospectively examined the PCF of 130 patients and identified molecular markers and 

clinical features that classified PCLs with a sensitivity of 90-100% and a specificity of 92-

98%[272]. Using the Multivariate Organization of Combinatorial Alterations algorithm to 

identify composite clinical and molecular markers (subtle mutations, loss-of-

heterozygosity, aneuploidy) of PCL type and grade, this study identified a panel of both 

clinical and molecular markers for the distinction of serous cystadenomas (SCA), solid-

pseudopapillary neoplasm (SPN), MCNs and IPMNs. Furthermore, it was shown that 

these features could identify 67 of the 74 patients who did not require surgery, resulting 

in a reduction of unnecessary procedures by 91%. While the majority of the patients 

examined were IPMN, with 12 or less patients in each of the MCN, SCA and SPN cohorts, 

these results are promising indicators of what can be achieved through the integration 

of data. These results show great promise for the characterisation of PCLs and the 

stratification of patients for subsequent referral to surgery, and further studies in more 

robust, experimental validation cohorts will help to further elucidate the potential of 

this panel in the context of PC. Such research highlights the potential of biomarker 

panels and the combination of multiple types of markers to achieve PCL 

characterisation. The implication of heightened biomarker sensitivity resulting from a 

panel of markers compared to a single solitary biomarker remains intriguing and 

presents new avenues for research in this context. 

A key example of the multi-omic nature of driver mutations in the context of PC 

is KRAS, which is mutated in ~90% of PC (Figure 1.5)[273]. Environmental factors, such as 
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smoking or alcohol consumption, can promote biochemical alterations to DNA at the 

epigenomic level, for example hypermethylation[274]. The addition of a methyl group to 

the CpG island of a DNA repair gene can cause silencing and subsequently result in 

reduced DNA repair proficiency, allowing a mutated KRAS codon to proceed from the 

genomic level to the transcriptomic level. The transcription of this KRAS mutation results 

in altered miRNA expression levels, and the mutated mRNA cannot be bound by the 

regulatory miRNA let-7, thus causing the aberrant translation of K-Ras protein[275-277]. 

The marked increase in K-Ras production promotes various signalling pathways, 

including PI3K, MAPK and the RAL-GEFs pathway[273]. GTP-bound K-Ras proteins can 

interact with, and influence the activity of, effector proteins causing downstream effects 

in many cellular pathways[273]. Moreover, KRAS mutant PCLs have been shown to have 

increased expression of the glucose transporter GLUT1 and subsequently elevated rates 

of glycolysis, indicating that KRAS mutations play a role in the metabolic switch observed 

in PC[278]. Indeed, the presence of KRAS mutations in PC have been shown to correlate 

with poor patient prognosis, and this can be attributed to the downstream effects seen 

in multiple omics layers as a result of this point mutation (Figure 1.5)[37]. This example 

illustrates the multi-omic nature of mutational drivers in cancer and the importance of 

disentangling each aspect in order to clearly observe the pathways affected and the 

impacts at each omics level. 

 As discussed above, each omics discipline has its own advantages and 

disadvantages, and can give information about many aspects of disease from metabolic 

signatures to proteomic profiles. It is only logical therefore to examine this extensive 

information in parallel, with the aim of revealing those attributes that can be considered 

robust and sensitive enough to work as a biomarker of patient risk. While this can seem 

a simple task, there are many statistical and analytical variables that need to be 

considered if such an endeavour is to be successful. The data produced by each omics 

discipline alone is generally vast and contains many confounding variables. When 

compiled, these data must be carefully handled to ensure the quality and accuracy of 

any results obtained. Typical analysis of a single omics data type is largely limited to 

correlations and tends to reflect the reactive processes of disease, rather than the 

causative[172]. This is primarily due to type of data collected, and an inability to infer  
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Figure 1.5 The multi-omic nature of KRAS mutations in PC. (A) Environmental factors 

cause biochemical alterations to the DNA such as hypermethylation. This can result in 

the silencing of repair genes and subsequently failure in DNA repair pathways; (B) Point 

mutations in a KRAS codon go unchecked as a result of DNA repair failure causing 

permanent activation of KRAS gene; (C) Mutant KRAS gene is transcribed into mRNA and 

subsequently results in an upregulation of miR-34a and miR-31 and a downregulation in 

miR-143 and miR-145; (D) mutant KRAS mRNA cannot be bound by regulatory miR let-7 

and leaves the cell nucleus to be translated; (E) Mutant KRAS causes an increase in K-

Ras protein expression, which causes activation of PI3K, MAPK and RAL-GEF pathways; 

(F) GTP bound KRAS interacts with various effector proteins and influences the 

localisation and activities of these effectors; (G) K-Ras proteins convert GTP to GDP 

which causes gene deactivations and metabolic alterations such as an increase in GLUT1 

expression and subsequently an increase in glucose uptake via glycolysis; (H) Changes to 

cellular protein expression, gene activation and metabolic processes results in increased 

cell growth and proliferation, driving transformation. 
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whether any mutation or change in expression is a by-product of disease or the causative 

agent. Compilation of many data types can enable statisticians to tease out the causative 

and resultant factors observed in these data by enhancing the statistical depth and 

power of the dataset. In this way, sufficient statistical power obtained by having a large 

cohort is required for any successful omics study, in order to produce the most robust 

results[172]. 

There is no current gold standard for statistical modelling in multi-omics studies, 

and as such researchers should take great care when designing studies to ensure data 

analysis requirements are met[172, 221]. As large-scale studies are often confounded by 

technical artefacts, such as batch effects, which in most cases cannot be eliminated due 

to the nature of data collection, it is therefore paramount that the impact of these 

artefacts be taken into account before conclusions can be drawn from results[172, 227]. 

Exploratory data analysis is often used in the first instance to identify any potential 

artefacts by means of cluster analyses or dimensional reduction[279]. Dimensional 

reduction deconstructs the data, identifying new variables that explain the differences 

in observations and highlights results that are associated with technical artefacts[279]. 

Methods to deal with heterogeneous multi-omics datasets, such as Multi-Omics Factor 

Analysis (MOFA), can be employed to discover the principle source of heterogeneity in 

such datasets, allowing for more accurate statistical analyses to take place[280]. While 

the MOFA model is linear, and therefore lacks the ability to identify non-linear 

relationships between features, non-linear extensions of the MOFA model can be used 

to address this limitation[280]. An advantage of large omics databases is that such data 

can be reanalysed with multiple statistical approaches allowing researchers to fully 

interrogate their data. In order for common usage of datasets to take place, it is 

important that standardisation take place across all omics disciplines such that the same 

techniques and tools can be directly compared. 

Multi-omics data can consist not just of multiple datasets examining multiple 

omics disciplines, but also numerous datasets where each examines the same discipline 

in independent cohorts[281]. Regardless, the data in each case will require an 

understanding of all variables involved and suitable statistical models in order to 

integrate these data. Appropriate statistical models will enable researchers to discern 
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whether certain features contribute independently to the inception of disease or are a 

function of one another. While graphic depiction of omic results is common among 

studies, as it allows interpretation of global variance structure and identification of the 

key features across a dataset, this type of modelling does not allow for the comparison 

of many datasets simultaneously[281]. Methods such as multiple co-inertia analysis 

(MCIA) allow for the analysis of multiple omics datasets; MCIA is an exploratory method 

used to investigate relationships between multiple high dimensional omics datasets by 

transforming various sources of data onto the same scale[281]. It enables the visualisation 

of several datasets containing multi-omics features on the same plane in order to 

identify relationships, however, MCIA is limited by its inability to reveal functional 

insights[281]. A reduction technique specifically designed with biomarker identification in 

mind, Data Integration Analysis for Biomarker discovery using Latent Components 

incorporates this high-dimensional multi-omics data while discriminating between 

phenotypic groups in order to identify those molecular factors which distinguish the 

groups[282]. However, with a lack of standardisation for the collection and interpretation 

of omics-type data, the multi-omics field faces huge barriers to data integration and 

analyses. 

The LinkedOmics database contains multi-omics data within and across 32 

cancer types for over 11,000 patients from TCGA[219]. This platform is the first of its kind, 

and integrates data generated by the CPTAC for select TCGA tumour samples and has 

therefore, over a billion data points [219]. The database allows users to apply 

comprehensive analyses on these data by use of three distinct modules: LinkFinder, 

which identifies associations between clinical and molecular attributes of interest; 

LinkCompare, which enables comparisons of those associations obtained via LinkFinder; 

and LinkInterpreter, where identified associations are further explored through pathway 

and network analysis. Through the use of several case studies, examining properties of 

individual cancers to reveal functional impacts of somatic mutations or copy number 

alteration on the expression of mRNA and protein, or performing pan-cancer analysis to 

investigate survival-associated gene expression signatures, the power of such multi-

omics platforms can be seen[219, 283]. While this database only includes data from TCGA 

and CPTAC, the extension of its data collection for more cancer types and omics 
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platforms could enable the execution of robust and highly powered multi-omics studies 

for many cancer types. The TCGA data were utilised in a recent multi-omics study of PC, 

where the integration of DNA copy number variation, methylation, mRNA, and simple 

nucleotide variation data enabled the identification of four distinct molecular subgroups 

of PC (iC1, iC2, iC3, iC4)[284]. The iC1 subgroup was shown to have a better prognosis, 

higher immune cell infiltration and better genomic stability compared to the other 

groups. Furthermore, this multi-omics study identified three new genes (GRAP2, ICAM3 

and A2ML1) that were shown to correlate with prognosis in PC.  

A 2019 study utilised a multi-omics approach comprising exome sequencing, 

transcriptomics, quantitative proteomics, karyotyping and metabolic status to evaluate 

the epithelial-mesenchymal plasticity of two sister breast cancer cell lines, identifying 

novel driver mutations, chromosomal changes, gene deletions/ amplifications, 

alterations in gene expression and metabolic reprogramming[285]. Indeed, this 

integrative multi-omics approach provided mechanistic insights into how driver 

mutations have potentially influenced phenotypic differences observed between the 

two cell lines, and subsequently identify potential targets to reverse mesenchymal-

epithelial transition in these cell models[285].  

With the exception of somatic mutations, the original human DNA sequence is 

unaltered throughout life, being unaffected by environmental or developmental 

factors[172]. As such, it is generally assumed that any disease-related genetic mutation 

observed is causal and not a result of disease. This assumption is often the reason for 

the level of difficulty attributed to distinguishing the causative agent of disease from 

those effects that are created as a result of disease[172]. Critical to the identification of 

genetic mutations that have the potential for use as a biomarker, is the understanding 

of whether that mutation is a driver mutation[286]. It is known that malignant tumours 

can carry multiple genetic mutations, and that a substantial proportion of these do not 

drive a malignant phenotype. It follows therefore, that not all mutations observed in the 

tumour are causative, and perhaps subsequently not found in all tumours of that cancer 

type owing to individual heterogeneity. The tumour profiles of clinically identical 

patients have been observed to share as few as one single genetic mutation[224]. In such 

situations, the integration of data from multiple types of omics can help to reveal the 
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biochemical pathways involved and ultimately those genes that are playing an active 

role in tumour growth. This layering of data in a multi-omic approach can help to tease 

out such details and begin to show the picture in its entirety, not only indicating the 

causative agent, but also the downstream pathways and interactions involved.  
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1.9 Rationale 

PC is an aggressive disease with extremely poor survival rates. The discovery of 

precursor lesions often occurs too late, and patients are left with few treatment options. 

PCLs are a highly diverse group of lesions containing both non-malignant and pre-

malignant subtypes, and there exists no robust method for distinguishing PCLs. 

Importantly, the fluid within these lesions is, as of yet, unexplored. As such, the factors 

within this fluid and the potential role it may play in the transformation of PCLs to PC is 

unknown. Multi-omics provides a more comprehensive insight into the mechanisms and 

pathways involved in cancer and has great potential for use in PCL risk stratification, and 

elucidating the role of PCF in PC progression. 

 

1.10 Hypothesis 

Low- and high-risk PCLs are biologically different, and this difference may enable the risk 

stratification of these patients through the use of multi-omic profiling and functional 

characterisation of the PCF within these PCLs. 

 

1.11 Specific aims 

1. Perform a systematic review and meta-analysis to identify potential biomarkers 

from the literature which have shown promise in PC diagnosis. 

2. Profile the proteome and transcriptome of PCF to generate a promising novel 

multi-omic biomarker panel for PCL risk stratification. 

3. Profile the proteome and transcriptome of the serum to generate a promising 

novel multi-omic biomarker panel for PCL risk stratification. 

4. Integrate the PCF-based and serum-based multi-omic panels to create a cross-

biofluid multi-omic panel for PCL risk stratification 

5. Investigate the biological activity of PCF and the potential influence it may have 

on normal pancreatic cells and their acquisition of the hallmarks of cancer. 
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2.1 Desk-based materials and methods 

2.1.1 PRISMA guidelines 

A systematic review of blood-based biomarkers for the diagnosis of PDAC was 

conducted in accordance with PRISMA standards (Appendix 1)[287]. The review was 

registered with PROSPERO prior to data extraction (CRD42020207241). 

 

2.1.2 Search strategy and inclusion criteria 

Academic databases MEDLINE, Web of Science, and EMBASE were searched using 

individualized search strategies, containing both medical subject headings and text 

words, created by TCD Medical Librarian Mr. D. Mockler (Table 2.1). Publications were 

limited to those written in English, conducted in human participants and published on 

or before July 20th, 2020. No limit was placed on the date of publication prior to the 

date of the literature search. Studies that were identified were exported to Endnote X9 

and subsequently imported to www.covidence.org for review, where covidence 

analytics removed any duplicates.  

Human studies reporting on blood-based single biomarkers or multi-biomarker 

panels for the diagnosis of PDAC were included. As PDAC is considered to be 

synonymous with PC, where a study did not specify the subtype of PC, it was assumed 

that this study was referring to PDAC and it was therefore included in the review. Only 

studies examining primary PDAC in patients of any stage, with or without metastasis, 

were included. Both PDAC and control cohorts must have had a minimum of 15 patients 

to be included in the study. This was to ensure sufficient statistical power in each study 

according to power calculations[288]. Studies reporting on image-based diagnostic 

methods, such as EUS or CT scans, or pancreatic cyst fluid and/or pancreatic tissue-

based biomarkers, were excluded as they were not deemed directly comparable with 

blood-based biomarkers. Studies reporting on biomarkers of any omic compartment, 

such as proteomics or transcriptomics, were included. Multi-biomarker panels 

consisting of biomarkers from different omic compartments were also included. Studies 

where the patient data were obtained from an online database were excluded to avoid 

examining biomarkers that were assessed in the same patient cohorts. Where all 

patients in a study, PDAC and controls, had pre-existing conditions, this study was  
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Table 2.1 Individualised search strategies for academic databases. 

Database Search Strategy 

EMBASE 'pancreas adenocarcinoma'/exp 
(pancrea* NEAR/3 adenocarcinoma*):ti,ab 
PDAC:ti,ab 
#1 OR #2 OR #3 
'biological marker'/exp OR 'tumor marker'/exp 
(Biomarker* OR ‘biological indicator*’):ti,ab 
((biological OR serum OR Immunologic OR diagnostic OR tumo?r 
OR cancer) NEAR/2 (marker* OR biomarker* OR bio-
marker*)):ti,ab 
#5 OR #6 OR #7 
'diagnosis'/exp 
Diagnos*:ti,ab 
#9 OR #10 
#4 AND #8 AND #11 
'editorial'/exp OR 'erratum'/de OR 'letter'/exp OR 'conference 
abstract':it OR 'conference review':it 
#12 NOT #13 

Medline Carcinoma, Pancreatic Ductal/ OR (exp Pancreatic Neoplasms/ 
AND exp *Adenocarcinoma/) 
(pancrea* adj3 adenocarcinoma*).ti,ab. 
PDAC.ti,ab. 
or/1-3 
exp Biomarkers/ 
(Biomarker* OR biological indicator*).ti,ab. 
((biological OR serum OR Immunologic OR diagnostic OR tumo?r 
OR cancer) adj2 (marker* OR biomarker* OR bio-marker*)).ti,ab. 
or/5-7 
exp Diagnosis/ 
diagnos*.ti,ab. 
or/9-10 
4 AND 8 AND 11 

Web of 

Science 

TS =(((pancrea* NEAR/2 adenocarcinoma*) OR PDAC) AND 
((Biomarker* OR “biological indicator*”) OR ((biological OR 
serum OR Immunologic OR diagnostic OR tumo?r OR cancer) 
NEAR/2 (marker* OR biomarker* OR bio-marker*))) AND 
Diagnos*) 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/pancreas-tumor


58 

 

excluded. Only studies which reported a significant result were included to ensure the 

results did not skew the downstream analyses. A full list of inclusion/exclusion criteria 

is given in Table 2.2. Title and abstract screening was conducted independently by two 

randomly assigned reviewers, and included studies were then subject to full-text 

screening in the same manner. Any disagreements were discussed and settled by two 

senior reviewers (L.E. Kane and G.S. Mellotte). Where the full-text of an article could not 

be located, corresponding authors were contacted to request access to the article.  

 

2.1.3 Data extraction and risk of bias assessment 

An extraction template in Excel was piloted by two reviewers for a small subset of papers 

before being finalised. Reviewers extracted data into their own preoptimized template 

in Excel, with data compilation being carried out once all studies had been extracted. 

Data extracted included information such as study details (title, corresponding author 

name and email address, country of study, dates conducted); biomarker details 

(biomarker name(s), biological properties, detection platform); patient cohort details 

(number patients per cohort, sex and age breakdown, condition); and reported statistics 

(analysis performed, p-value, sensitivity, specificity, AUC). A complete list of extracted 

data fields is included in Table 2.3. Data were extracted such that each row represented 

an individual biomarker or multi-biomarker panel having been assessed in one set of 

patient cohorts. Where a biomarker or multi-biomarker panel was assessed in multiple 

cohorts, for example, training and validation cohorts, these data were extracted into 

separate rows. As a result, larger studies which examined multiple biomarkers in 

multiple patient cohorts, represent more rows of data than smaller studies. 

All included studies were assessed for quality and risk of bias (RoB) using the 

QUADAS-2 tool[289]. The QUADAS-2 tool provides an assessment for the level of bias an 

individual study will introduce into the systematic review based on the nature of its 

design. The selected questions from the four main domains of the tool were amended 

to align with the review, as per the QUADAS-2 guidelines. This assessment was carried 

out by reviewers in tandem with the data extraction. Responses were given as either 

“yes,” “no”, or “unclear” and domains were subsequently scored as “high,” “low”, or 

“unclear” RoB. Selected questions for the RoB assessment are included in Table 2.4. 
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Table 2.2 Inclusion and exclusion criteria. 

Inclusion Criteria Exclusion Criteria 

• Human, primary case-control study. 

• Diagnostic cohort studies. 

• Primary pancreatic ductal 
adenocarcinoma (PDAC) of any stage. 

• Diagnostic biomarker for PDAC. 

• Must have a control cohort of healthy 
and/or benign patients. 

• Minimum 15 patients per cohort. 

• Must report some summary statistic 
for the performance of the 
biomarker. 

• Must be a whole 
blood/serum/plasma biomarker. 

• Must report a significant result. 
 

• Narrative or systematic review. 

• Patient data is obtained from online 
database such as The Cancer 
Genome Atlas (TCGA). 

• All participants, PDAC and controls, 
have pre-existing conditions that 
may confound the index test, e.g., 
diabetes or pancreatitis. 

• Studies with a retrospective design, 
where investigators chose 
participants based on a review of 
case notes/ archival information. 

• Case reports or series. 

• Conference proceedings, where a full 
text is not available. 
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Table 2.3 Complete list of extracted data fields. 

Category Field to be completed 

Paper Information o Covidence study ID number 
o Paper title 
o Corresponding author name 
o Corresponding author email address 
o Country in which study was conducted 
o Study funding source 
o Conflicts of interest 
o Ethical approval 

Study Design o Study design (prospective/retrospective) 
o Fluid type (serum/plasma/whole blood) 
o Time of blood draw relative to treatment/FNA /surgery 
o Start date 
o End date 
o PDAC specified 
o Paper examined more than one biomarker 
o Test platform 
o Testing/training /validation cohort 
o Blinded 

Biomarker details o Biomarker(s) name 
o Number of biomarkers 
o Biological Properties 
o Single marker or multi-marker panel 
o Number of omics compartments for each marker/panel 
o Whether CA19-9 or novel 

Patient Cohorts o PDAC / Healthy / Benign 
o Details of how control cohort was chosen 
o Details of benign conditions and breakdown of numbers 
o Number of patients 
o Male/female breakdown 
o Age range/mean/median 
o Method of PDAC confirmation 
o Stage details for PDAC 
o Whether patients received treatment prior to blood draw 
o Treatment details 

Statistical details o Confounding factors of note 
o Statistical analyses used 
o Sensitivity/Specificity 
o AUC/ROC 
o P-value 
o Negative predictive value/positive predictive value 

Extra Notes o Name of reviewer who extracted data 
o Additional notes 
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Table 2.4 QUADAS-2 quality and risk of bias assessment questions. 

Domain 1 – Patient Selection 
Risk of Bias 
 
Q1. Was a consecutive or random sample of patients enrolled? 
Q2. Did the study avoid inappropriate exclusions? 
Q3. Was a 'two-gate' design avoided? 
 
Could the selection of patients have introduced bias? 

 
 
 
Yes/No/Unclear 
Yes/No/Unclear 
Yes/No/Unclear 
 
High/Low/Unclear 

Domain 1 – Patient Selection 
Concerns about applicability 
 
Are there concerns that the included patients do not match the review 
question? 

 
 
 
High/Low/Unclear 

Domain 2 – Index Test 
Risk of Bias 
 
Q1. Were the index test results interpreted without knowledge of the results 
of the reference standard? 
Q2. If a threshold was used, was it pre-specified? 
 
Could the conduct or interpretation of the index test have introduced bias? 

 
 
 
Yes/No/Unclear 
 
Yes/No/Unclear 
 
High/Low/Unclear 

Domain 2 – Index Test 
Concerns about applicability 
 
Are there concerns that the index test, its conduct, or interpretation differ 
from the review question? 

 
 
 
High/Low/Unclear 

Domain 3 – Reference Standard 
Risk of Bias 
 
Q1. Is the reference standard likely to correctly classify the target condition? 
Q2. Were the reference standard results interpreted without knowledge of 
the results of the index tests? 
 
Could the reference standard, its conduct, or its interpretation have 
introduced bias? 

 
 
 
Yes/No/Unclear 
Yes/No/Unclear 
 
 
High/Low/Unclear 

Domain 3 – Reference Standard 
Concerns about applicability 
 
Are there concerns that the target condition as defined by the reference 
standard does not match the question? 

 
 
 
High/Low/Unclear 

Domain 4 – Flow and Timing 
Risk of Bias 
 
Q1. Was there an appropriate interval between index test (sample collection) 
and reference standard? 
Q2. Did all patients receive the same reference standard? 
Q3. Were all patients included in the analysis? 
 
Could the patient flow have introduced bias? 

 
 
 
Yes/No/Unclear 
 
Yes/No/Unclear 
Yes/No/Unclear 
 
High/Low/Unclear 
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Given the high volume of included papers, studies were only extracted and RoB 

assessed by a single reviewer. To assess the accuracy of this process a random selection 

of 25 papers, to represent 10% of the total number of studies included, was generated 

using R. These papers were extracted and RoB assessed by a second reviewer, with both 

data extractions and RoB assessments subsequently checked for mistakes and/or 

missing information by a senior reviewer (L.E. Kane or G.S. Mellotte). Extraction accuracy 

was then calculated for each paper using the total number of correct datapoints as a 

percentage of the total number of datapoints. If there were disagreements between 

both senior reviewers with regards to the eligibility of a study, or a discrepancy of 

greater than 10% for the accuracy of the RoB or data extraction, a third reviewer was 

consulted (S.G. Maher) to settle disputes. 

 

2.1.4 Data clean-up and meta-analysis 

Data filtering and clean-up was conducted in Microsoft Excel. To calculate uniform 95% 

confidence intervals (CI) for reported sensitivity and specificity values, 2 × 2 contingency 

tables were constructed using the extracted values for sensitivity, specificity, number of 

patients with PDAC, and number of control patients. Both two-level and three-level 

meta-analyses were run on the data to identify the model of best fit. The three-level 

model had significantly lower Akaike Information Criterion or AIC, and Bayesian 

Information Criterion or BIC values, and was therefore deemed to be the most 

appropriate model (p<0.0001). A multivariate three-level meta-analysis with subgroup 

moderators was run in R (v 1.3.959) with the ‘metaphor’ package (v. 3.0-2) using 

reported AUC values as effect size [290, 291]. AUC values <0.5 were removed from the 

analysis as they are regarded as diagnostically useless. Studies where PDAC was not 

specified (n=25) were excluded from the primary meta-analysis. A secondary meta-

analysis, including all 250 studies, was also conducted. Figures were created in GraphPad 

Prism (v9.2.0) and Microsoft PowerPoint (v2108). 
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2.2 Lab-based materials and methods 

2.2.1 Reagents and materials 

All chemicals and reagents used were purchased from Sigma-Aldrich (Wicklow, Ireland), 

unless otherwise stated, and stored as per the manufacturer’s instructions. All plastic 

consumable materials were purchased from Sarstedt (Numbrecht, Germany) unless 

otherwise stated. All Eppendorf tubes were centrifuged using the Eppendorf 5417R 

Refrigerated Centrifuge (Eppendorf, Hamburg, Germany). Larger volume tubes (15 mL 

and 50 mL) and microplates were centrifuged using the Thermo Scientific™ Megafuge™ 

40 Centrifuge (Fisher Scientific, Dublin, Ireland). 

 

2.2.2 Ethical approval 

Prior to commencement of this study, ethical approval was obtained from the HSE 

Research Ethics Committee for the collection of patient samples in three designated 

sites: St. James’s Hospital, St. Vincent’s University Hospital and Tallaght University 

Hospital. This study was carried out in accordance with the Declaration of Helsinki 

ethical guidelines for medical research involving human subjects. 

 

2.2.3 Patient recruitment 

All patients over 18 years of age who had been diagnosed with a PCL in any of the three 

designated sites for this study, and who had been referred for EUS-guided FNA as part 

of their standard medical care, as per current best practice, were approached to 

participate in the study. Written informed consent was obtained for each patient prior 

to sample collection.  

 

2.2.4 Patient serum collection and storage 

Peripheral venous blood samples were collected in Vacuette 6 mL CAT Serum Sep Clot 

Activator tubes (Greiner Bio-One, Stonehouse, UK) from patients prior to endoscopy. 

Blood samples were allowed to clot at room temperature (RT) for 30 min before being 

centrifuged at 2,500 × g for 15 min at 4°C. The upper serum layer was then removed and 
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aliquoted into 1 mL volumes. These aliquots were labelled with an anonymous patient 

identifier before being snap frozen in liquid nitrogen and stored at -80°C. Locations of 

each sample were recorded in a dedicated biobank log book. 

 

2.2.5 Patient PCF collection and storage 

Collection of PCF was carried out by EUS-guided FNA of the PCL. PCF samples were 

transported on wet ice before being centrifuged at 2,500 × g for 15 min at 4°C. The cell 

pellet was discarded to waste and the supernatant was transferred into a fresh 15 mL 

tube before being drawn 20 times through a 20-gauge needle (Becton Dickinson, NJ, 

USA), and subsequently a 25-gauge needle (Becton Dickinson, USA), in order to reduce 

sample viscosity and allow for a homogenous sample. The PCF was then aliquoted into 

250 µL volumes and labelled with an anonymous patient identifier before being snap 

frozen in liquid nitrogen and stored at -80°C. Locations of each sample were recorded in 

a dedicated biobank log book. 

 

2.2.6 Sonication of patient PCF 

Sonication of PCF samples was required prior to some assays to break down large mucin 

proteins and reduce sample viscosity. Sonication was carried out using the Fisherbrand™ 

Model 120 Sonic Dismembrator (Fisher Scientific, Ireland) along with the 1.5 inch 

Fisherbrand™ Cup Horn (Fisher Scientific, Ireland) for this model. Cryovials containing 

PCF samples were placed in a holder above the cup horn. The cup horn was filled with 

cold (4°C) deionised H2O (dH2O) until the meniscus was in line with that of the sample 

inside the cryovial. Samples were sonicated for two × 3 sec bursts at 25% amplification, 

with a 5 sec pause in between bursts. The dH2O inside the cup horn was changed 

between samples to ensure samples were kept cold and there was no heat build-up. 
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2.2.7 Proteomic profiling of PCF 

2.2.7.1 Protein quantification 

The protein concentration of PCF samples was assessed by PierceTM BCA Protein Assay 

(Fisher Scientific, Ireland) as per the manufacturer’s instructions. Briefly, a bovine serum 

albumin standard was serially diluted from the provided stock solution (2000 µg/mL) at 

the recommended concentrations to create a standard curve, with the final standard 

containing no bovine serum albumin (blank). A volume of 25 µL of each standard and 

sample dilution was plated in a clear, flat-bottomed 96-well microplate in triplicate. 

Working reagent was prepared by mixing 50 parts of BCA Reagent A with 1 part BCA 

Reagent B. A volume of 200 µL of working reagent was added to each well and the plate 

was mixed on a plate shaker for 30 sec. The plate was then covered and incubated at 

37°C for 30 min. Once cooled to RT, the absorbance at 562 nm was measured using the 

GloMax Explorer microplate reader (Promega, Madison, WI, USA).  

 

2.2.7.2 Preparation of SP3 magnetic beads 

In a 1.5 mL Eppendorf tube, 15 µL each of hydrophobic and hydrophilic Speedbead 

Magnetic Carboxylate Modified Particles (SP3 magnetic beads) (Cytiva, Marlborough, 

MA, USA) per sample were combined, vortexing briefly to mix. The tube was then placed 

on the DynaMagTM stand (ThermoFisher, London, UK) for 2 min. Once the beads had 

been successfully magnetised to the side of the tube, the waste supernatant in the 

bottom of the tube was discarded by carefully pipetting. The tube was then removed 

from the stand and the beads were resuspended in 1 mL of molecular grade H2O, 

vortexing briefly to wash the beads. The tube was placed in the DynaMagTM stand for a 

further 2 min, before discarding the supernatant and washing with 1 mL of molecular 

grade H2O for a second time. The tube was placed on the DynaMagTM stand a final time 

for 2 min, the supernatant was discarded and the beads were resuspended in the 

starting volume of molecular grade H2O. The prepared beads were stored at 4°C until 

required.  
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2.2.7.3 Sample lysis, reduction, alkylation 

A uniform quantity of protein was added to a 1.5 mL Eppendorf tube for each sample. 

An equal volume of 2X sample buffer [300 mM NaCl, 100 mM tris (pH 8.0), 3 mM MgCl2, 

2% Triton-X100 (Fisher Scientific, Ireland) and 1 tablet of Complete Mini Protease 

Inhibitor in molecular grade H2O] was added to each sample. Tubes were incubated on 

wet ice for 20 min, vortexing every 5 min. Samples were then centrifuged at 13000 RPM 

for 7 min at 4°C. The supernatants were transferred to a new 2 mL Eppendorf tube and 

topped up to 500 µL with lysis buffer [6 M urea, 2 M thiourea, and 50 mM MOPS in 

molecular grade H2O]. A volume of 25 µL of 0.2 M dithiothreitol was added to each 

sample and allowed to incubate on a thermoshaker at 700 RPM for 15 min at 30°C. 

Samples were allowed to cool to RT before 25 µL of 0.4 M iodoacetamide was added to 

each tube. Samples were then incubated on a thermoshaker at 700 RPM for 15 min at 

RT in the dark. Finally, 1.2 mL of 100% acetonitrile was added to each sample and they 

were immediately processed via tryptic digestion. 

 

2.2.7.4 Tryptic digestion 

A volume of 20 µL of the magnetic bead emulsion prepared in section 2.2.7.2 was added 

to each sample prepared in section 2.2.7.3, and tubes were placed on a rotation mixer 

at RT for 1 h. After this time, the samples were moved to the DynaMagTM stand for 2 min 

before discarding the supernatant. Tubes were then removed from the stand and 200 

µL of 70% (v/v) ethanol was added to each sample, vortexing briefly to mix. Tubes were 

placed back on the DynaMagTM stand for a further 2 min, and supernatant discarded 

again. Once removed from the stand, 200 µL of 100% acetonitrile was added to each 

sample and mixed by vortexing. Samples were placed on the DynaMagTM stand a final 

time, before discarding the supernatant. When the samples had been removed from the 

stand, 50 µL of 50 mM ammonium bicarbonate was added to each tube. A volume of 4 

µL of Sequencing Grade Modified Trypsin (MyBio Ltd, Kilkenny, Ireland) was added to 

each tube. Samples were then incubated overnight on a thermoshaker at 500 RPM and 

37°C. 
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2.2.7.5 SP3 peptide clean-up and elution 

Following the tryptic digestion described in section 2.2.7.4, tubes were quick spun to 

collect the liquid in the bottom of the tube. Samples were then pipetted up and down 

gently to resuspend the beads and avoid creating bubbles. A further 10 µL of fresh 

magnetic bead emulsion created in section 2.2.7.2 was added to each sample, along 

with 1 mL of 100% acetonitrile. Tubes were then incubated on the rotation mixer for 18 

min at RT, before being placed on the DynaMagTM stand for 2 min and the supernatant 

discarded. Samples were then removed from the stand and resuspended in 200 µL of 

100% acetonitrile, gently pipetting up and down to mix. Tubes were placed back on the 

DynaMagTM stand for 2 min before removing the supernatant to waste. Samples were 

removed from the stand and 20 µL of molecular grade H2O was added to elute the 

peptides from the beads. The magnetic beads were vortexed intermittently for 5 min at 

RT before being placed on the DynaMagTM stand a final time for 5 min. The eluted 

peptide supernatant was then carefully transferred to a fresh 1 mL Eppendorf tube to 

avoid the collection of any magnetic beads. 

 

2.2.7.6 Pierce quantitative colorimetric peptide assay 

Peptide concentrations of the peptide elutants were assessed by PierceTM Quantitative 

Colorimetric Peptide Assay (Fisher Scientific, Ireland) as per the manufacturer’s 

instructions. Briefly, a Peptide Digest Assay Standard was serially diluted from the 

provided stock solution (1000 µg/mL) at the recommended concentrations to create a 

standard curve, with the final standard containing no Peptide Digest Assay Standard 

(blank). A volume of 20 µL of each standard and sample dilution were plated in a clear, 

flat-bottomed 96-well microplate in triplicate. Working reagent was prepared by mixing 

50 parts of Colorimetric Peptide Assay Reagent A with 48 parts of Colorimetric Peptide 

Assay Reagent B and 2 parts of Colorimetric Peptide Assay Reagent C. A volume of 180 

µL of working reagent was added to each well and the plate was mixed on a plate shaker 

for 30 sec. The plate was then covered and incubated at 37°C for 15 min. Once cooled 

to RT, the absorbance at 480 nm was measured using the GloMax Explorer microplate 

reader (Promega, WI, USA).  
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2.2.7.7 Peptide preparation for LC-MS 

A volume of 2 µL of 1% (v/v) formic acid was added to each peptide sample eluted in 

section 2.2.7.5. Peptide sample dilutions of 100 ng/mL in 20 µL were prepared in 0.1% 

(v/v) formic acid in mass-spec vials. Samples were stored at -20°C before being 

transported to the Conway Institute in University College Dublin on dry ice, where they 

were stored at -20°C before being run by one of their technicians on the ThermoFisher 

Q-Exactive MS (ThermoFisher, UK) coupled to a Bionex Ultimate 3000 (RSLCnano) 

chromatography system. The tryptic peptides were separated on a reversed-phase C18 

column packed in-house (8 cm x 75 μm ID; C 18 , 3.0 μm) (ReproSil-Pur 120 Dr Maitsch 

GmbH.) and separated at a constant flow rate of 250 nL/min by an increasing acetonitrile 

gradient. Mobile phases were 0.5% (v/v) acetic acid, 2% (v/v) acetonitrile, 97.5% (v/v) 

water (phase A) and 0.5% (v/v) acetic acid, 2% (v/v) water, 97.5% (v/v) acetonitrile 

(phase B). The peptides were separated by a gradient starting from 1% of mobile phase 

B and increased linearly to 30% for 58 min at a flow rate of 250 nL/min. The mass 

spectrometer was operated in data dependent TopN 12 mode, with the following 

settings: mass range 320-1600 Th; resolution for MS1 scan 70,000; AGC target 3e6; 

resolution for MS2 scan 17,500; AGC target 5e4. 

 

2.2.8 Proteomic profiling of patient serum 

2.2.8.1 Immunodepletion of patient serum 

Immunodepletion of serum samples was carried out using the Proteome Purify 12 

Human Serum Protein Immunodepletion Resin kit (R&D Systems, Minneapolis, MN, 

USA) as per the manufacturer’s instructions. Briefly, samples were allowed to thaw on 

wet ice before transferring 10 µL of each sample to individual 1.5 mL Eppendorf tubes. 

The Immunodepletion Resin was thoroughly vortexed to homogenise the reagent 

before use. A volume of 1 mL of the resin was then added to each tube before being 

placed on the rotation mixer for 1 hr at RT. After this time, 500 µL of this suspension was 

placed into the upper chamber of a Spin-X Filter Unit (Fisher Scientific, Ireland) and 

centrifuged for 2 min at 2,000 × g. The immunodepleted elutants were moved to a fresh 

2 mL Eppendorf, and the final 500 µL of suspension was added into the upper chamber 

of the same Spin-X Filter Unit and centrifuged under the same conditions. The 
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immunodepleted elutants were combined for a final volume of 400-500 µL per patient, 

and the used Immunodepletion Resin and Spin-X Filter Units were discarded. Samples 

were processed immediately for acetone precipitation, and remaining volumes were 

stored at -80°C. 

 

2.2.8.2 Acetone precipitation 

In 2.5 mL Eppendorfs, 400 µL of immunodepleted samples generated in section 2.2.8.1 

were combined with 2 mL of cold (-20°C) 100% acetone and stored at -20°C overnight. 

After this time, samples were centrifuged at 15,000 × g for 30 min at 4°C and the 

supernatant discarded to waste. A further 2 mL of cold 50% (v/v) acetone was added to 

each sample and thoroughly vortexed to resuspend the pellet, before being centrifuged 

at 15,000 × g for 30 min at 4°C. The supernatant was discarded to waste and a final 2 mL 

of cold 50% (v/v) acetone was added to each tube and centrifuged at 15,000 × g for 30 

min at 4°C. The tubes were then left open and the pellet was allowed to air dry for 24 h 

at RT. Once dry, the protein pellet was immediately processed for LC-MS. 

 

2.2.8.3 Processing and preparation of precipitated proteins for LC-MS 

Protein pellets generated in section 2.2.8.2 were immediately processed using the 

PreOmics iST 96x kit (PreOmics GmbH, Munich, Germany) as per the manufacturer’s 

instructions. Briefly, 50 µL of Lyse Buffer was added to each pellet and incubated at 95°C 

on a thermoshaker at 1,000 RPM for 10 min. The adapter plate was used to place the 

cartridge on top of the waste plate, and all wells were labelled. Samples were then 

transferred to the cartridge and cooled to RT. The Digest Enzyme was reconstituted in 

the Resuspend Buffer and placed on a thermoshaker at RT and 500 RPM for 10 min. 

Once homogenised, 50 µL of Digest Enzyme was added to each well of the cartridge and 

placed on a thermoshaker at 37°C and 500 RPM for 3 h. After this time, 100 µL of Stop 

Buffer was added to each well of the cartridge and placed on a thermoshaker at RT and 

500 RPM for 1 min. The cartridge was then centrifuged at 2,250 × g for 3 min to allow 

the solution to flow through into the lower waste plate. A volume of 200 µL of Wash 

Buffer 1 was added to the cartridge and this was centrifuged again under the same 
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conditions. This was repeated once more with Wash Buffer 2, and the cartridge was then 

removed from the waste place and placed on top of the collection plate. A volume of 

100 µL of Elute Buffer was added to each well of the cartridge, and the cartridge was 

centrifuged again at 2,250 × g for 3 min. A further 100 µL of Elute Buffer was added to 

the cartridge and the centrifugation step repeated. The cartridge was then discarded 

and the collection plate containing the elutants was sealed with a 96-well plate seal and 

stored at -80°C. The plate was then transferred on dry ice to the National Institute for 

Cellular Biotechnology in Dublin City University. Here, samples were vacuum evaporated 

at 45°C until completely dry. Once dry, LC-Load Buffer was added to each well to give a 

final peptide concentration of 1 g/L. The collection plate was then placed on a 

thermoshaker at RT and 500 RPM for 5 min. Peptides were then frozen at -80°C until 

they could be run on the MS. An UltiMate 3000 nano RSLC (ThermoFisher, UK) system 

interfaced with an Orbitrap Fusion Tribrid Mass Spectrometer (ThermoFisher, UK) was 

used for LC-MS/MS analysis. A volume of 2 μL from each sample was loaded onto a 

PepMap100, C18, 300 μm × 5 mm trapping column using a flow rate of 25 μL/min with 

2% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid for 3 min. Each sample was then 

resolved onto an Acclaim PepMap 100, 75 μm × 50 cm, 3 μm analytical column. A binary 

gradient of: solvent A (0.1% (v/v) formic acid in LC-MS grade water) and solvent B (80% 

(v/v) acetonitrile, 0.08% (v/v) formic acid in LC-MS grade water) using 2–32% B for 

50 min, 32–90% B in 5 min and holding at 90% for 5 min at a flow rate of 300 nL/min was 

used to elute peptides. A column temperature of 47°C and a voltage of 2.0 kV was used 

for peptide ionization.  

 

2.2.9 Quantification of soluble protein levels by sandwich ELISA 

Soluble protein concentrations were measured by sandwich ELISA (Assay Genie, Ireland) 

as per the manufacturer’s instructions. Briefly, the standard was serially diluted from 

the provided stock solution at the recommended concentrations to create a standard 

curve, with the final standard containing no protein (blank). Samples were diluted with 

sample diluent based on the expected concentrations observed in the literature. A 

volume of 100 µL of each standard and sample dilution was plated in the provided, pre-

coated 96-well microplate in duplicate and incubated at 37°C for 2 h. The samples and 
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standards were then carefully removed from the plate before adding 100 µL of 

Detection Reagent A to each well and incubating at 37°C for 1 h. The reagent was then 

discarded to waste and the plate was washed by adding 350 µL of Wash Buffer to each 

well, swirling and discarding to waste. This wash step was repeated twice before adding 

100 µL of Detection Reagent B to each well and incubating at 37°C for 1 h. The plate was 

washed five times and 90 µL of Substrate Solution was added to each well. The plate 

was Incubated for 15-25 min in the dark at 37°C. The reaction was stopped when the 

colour development was sufficient by adding 50 µL of Stop Solution to each well. The 

absorbance at 450 nm was measured using the GloMax Explorer microplate reader 

(Promega, WI, USA).  

 

2.2.10 HTG Whole Transcriptome Sequencing of PCF and serum 

HTG Whole Transcriptome Sequencing of samples was conducted by HTG Molecular 

Diagnostics, Inc. following their established procedures in their Tucson, Arizona facility. 

Samples and multi-tissue control technical controls were randomised prior to placement 

on the HTG EdgeSeq 96-well mico-titer plate (sample plate) in order to reduce intra-

plate biases. HTG EdgeSeq Lysis Buffer was added to lyse the sample making the RNA 

available to subsequently bind to corresponding target specific nuclease protection 

probes (NPPs). The lysed samples were then transferred to the sample plate. Target 

capture was done via HTG EdgeSeq chemistry. Briefly, an excess amount of NPPs were 

added to the lysed samples in the sample plate and hybridized to the target miRNA. S1 

nuclease was then added in order to digest any non-hybridized RNA and excess NPPs. 

This produced a stoichiometric amount of target miRNA NPP duplexes. After the S1 

digestion was completed, the processed samples were transferred to a new 96-well 

sample plate with a v-bottom, referred to as the stop plate. S1 digestion was terminated 

by the addition of termination solution, followed by heat denaturation of the S1 enzyme. 

This NGS-based tumour profiling assay examined the expression levels of 2,083 human 

miRNA transcripts. The assay contained 2,102 probes, including 13 housekeeper genes, 

five negative process controls, and one positive process controls. The full plate of 

samples were analysed simultaneously on an Illumina sequencing platform (Illumina, 

USA). The library was prepared in accordance with OP-00035, HTG EdgeSeq polymerase 
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chain reaction (PCR) processing. Clean-up procedures were performed according to OP-

00037, HTG EdgeSeq AMPure cleanup of Illumina Sequencing Libraries. The library was 

quantified in accordance with OP-00079, HTG EdgeSeq KAPA Library Quantification for 

Illumina Sequencing. All samples and controls were quantified in triplicate. The 

sequencing was performed on the Illumina NextSeq sequencer in accordance with OP-

00093, HTG EdgeSeq Illumina NextSeq Sequencing. Post-sequencing quality control (QC) 

metrics (QC0, QC1, and QC2) detect three different sample failure modes. QC0 detects 

degraded RNA or poor quality / quantity samples, by assessing the percentage of overall 

reads being allocated to the positive process control probe for each sample. QC1 detects 

samples with insufficient read depth; this is evaluated by setting the cut-off at the 

minimum number of reads that can be allocated to each sample for the data set to be 

repeatable. QC2 detects samples with minimal expression variability, of which is 

determined by the relative standard deviation of reads allocated to each probe within a 

sample. Data were returned from the sequencer in the form of demultiplexed FASTQ 

files, with four files per original well of the assay. The HTG EdgeSeq Parser was used to 

align the FASTQ files to the probe list to collate the data. Data were provided as data 

tables of raw, QC raw, log2, CPM (counts per million), and median normalized data. 

 

2.2.11 QIAGEN qPCR Microarray 

2.2.11.1 RNA isolation and quantification 

RNA isolation of samples was performed using the QIAGEN miRNeasy Serum/Plasma 

Advanced kit (QIAGEN, Manchester, UK) as per the manufacturer’s protocol. Briefly, 100 

µL of sample was diluted 1:1 with 100 µL of Phosphate Buffer Saline (PBS) 

(ThermoFisher, London) in 2 mL tubes. The QIAGEN miRCURY LNA RNA Spike-in kit 

(QIAGEN, UK) was prepared as per the manufacturer’s instructions prior to sample lysis. 

A volume of 1 µL of RNA spike-in working solution (UniSp2, UniSp4 and UniSp5) per 

sample prep was added to the Buffer RPL. A volume of 61 µL of RNA-spiked Buffer RPL 

was added to each tube and vortexed for 5 sec. Tubes were then incubated at RT for 3 

min. A volume of 20 µL of Buffer RPP was added to each tube and vortexed vigorously 

for 20 sec. Tubes were incubated again at RT for 3 min before being centrifuged at 

12,000 × g for 3 min at RT to pellet the precipitate. The supernatants were transferred 
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to new 2 mL tubes and 230 µL of isopropanol was added to each. Samples were mixed 

by vortexing before being moved to RNeasy UCP MinElute Columns and placed on the 

QIAGEN QIAvac vacuum system 24-manifold (QIAGEN, UK). The vacuum was turned on 

and samples were pulled through the column, with waste supernatants collecting in the 

waste bottle. The vacuum pressure was released by opening the release valve, and 700 

µL of Buffer RWT was added to each tube. Samples were pulled through the column and 

the pressure released before adding 500 µL of Buffer RPE to each tube. The release valve 

was opened again before adding 500 µL of 80% (v/v) ethanol to each tube, and samples 

were pulled through the column again. RNeasy UCP MinElute tubes were then removed 

from the vacuum manifold and placed inside 2 mL collection tubes. The lids of the spin 

columns were opened and the tubes were centrifuged at 15,000 × g for 5 min to dry out 

the membrane. RNeasy UCP MinElute tubes were then placed inside fresh 1.5 mL tubes. 

A volume of 20 µL of RNase-free water was added directly to each membrane and 

allowed to incubate at RT for 1 min. The lids of the spin columns were closed and the 

tubes were centrifuged at 15,000 × g for 1 min to elute the RNA. Isolated RNA was then 

quantified using the DENovix DS-11 Spectrophotometer (DeNovix, Wilmington, DE, USA) 

as per the manufacturer’s instructions.  

 

2.2.11.2  cDNA synthesis 

cDNA synthesis of isolated RNA was performed using the QIAGEN miRCURY LNA RT Kit 

(QIAGEN, UK) as per the manufacturer’s instructions. Starting volumes were made up to 

6 µL with RNase-free water. All reactions were set up on ice in 200 µL PCR tubes. The 

reverse transcription master mix was prepared as per Table 2.5. A volume of 24 µL of 

the reverse transcription master mix was added to each tube containing 6 µL of RNA 

dilution. Tubes were then placed on a Perkin Elmer PE 9700 Thermal Cycler 

(ThermoFisher, UK) and kept at 42°C for 60 min, 95°C for 5 min and then allowed to cool 

to 4°C. cDNA samples were then stored at 4°C until use. 
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Table 2.5 Reverse transcription reaction components. 

Component Volume per sample 

5X miRCURY RT Reaction Buffer 6 µL 

RNase-free water 13.5 µL 

10X miRCURY RT Enzyme Mix 3 µL 

Synthetic RNA spike-ins 1.5 µL 

Total volume 24 µL 

 

2.2.11.3  Custom quantitative RT-PCR microarray setup and analysis 

A QIAGEN miRCURY LNA miRNA Custom 96-well PCR Panel (QIAGEN, USA) was created 

with the help of QIAGEN technicians. The miRCURY LNA SYBR GREEN PCR Kit (QIAGEN, 

USA) was used alongside the custom 96-well PCR panel as per the manufacturer’s 

instructions. Low concentration ROX dye (10 µL ROX dye per 1 mL of SYBR Green) was 

used to comply with the needs of the instrument to be used for the RT-PCR reaction. A 

3 µL volume of each template cDNA sample was diluted with 117 µL RNase-free water 

(1:40 dilution). The reaction master mix was prepared as per Table 2.6.  

 

Table 2.6 Reaction master mix setup for LNA miRNA Custom PCR panel. 

Component Volume per reaction 

2X miRCURY SYBR Green Master Mix 5 µL 

RNase-free water 1 µL 

cDNA template (1:40 dilution) 4 µL 

Total volume 10 µL 

 

The prepared reaction mixes were vortexed thoroughly before dispensing 10 µL per 

sample into the 24 designated wells. The plate was sealed and vortexed briefly to mix 

before being centrifuged at 3,000 × g at RT to bring all the liquid to the bottom of the 

wells. The plate was incubated for 5 min at RT to allow the primers to dissolve in the 

master mix. Plates were run on the Applied Biosystems 7500 Real-Time PCR System 

(ThermoFisher, UK) as per the cycling conditions in Table 2.7. Initial processing of the 

data was conducted using the ThermoFisher ConnectTM Cloud PCR Analysis software 

using the Relative Quantification app (v 2021.1.1-Q1-21-build11). 



75 

 

Table 2.7 PCR cycling conditions for miRCURY LNA miRNA custom PCR panel.  

Step Time Temperature Ramp Rate 

Initial heat activation 2 min 95°C Maximal/fast 
mode 

2-step cycling 
 Denaturation 
 Combined 
annealing/extension 

 
10 sec 
60 sec 

 
95°C 
56°C 

 
Maximal/fast 
mode 
Maximal/fast 
mode 

Number of cycles 40 
cycles 

  

Melting curve analysis  60-95°C  

 

2.2.12 Culture of cell lines 

2.2.12.1  H6c7-normal cell line maintenance 

A normal human pancreatic duct epithelial cell line, H6c7 cells (H6c7-normal), was 

obtained from Kerafast Inc. (Boston, MA, USA). These cells were maintained in 

Keratinocyte Serum Free Medium with L-glutamine, 5 ng/mL human recombinant EGF 

and 50 mg/mL bovine pituitary extract (kit) (Biosciences, Dublin, Ireland), supplemented 

with 50 U/mL penicillin and 50 μg/mL streptomycin (Lonza Group, Basel, Switzerland) 

(hereafter known as complete medium). H6c7 cells were maintained as monolayers in 

either 25 cm2 or 75 cm2 sterile vented culture flasks, in an incubator at 37°C in 95% 

humidified air containing 5% CO2. 

 

2.2.12.2  HPNE-intermediary cell line maintenance 

An intermediary human pancreatic cell line formed during acinar-to-ductal metaplasia, 

hTERT-HPNE cells (HPNE-intermediary), were obtained from the American Type Culture 

Collection (ATCC) (Manassas, VA, USA). The base medium for these cells as per the ATCC 

website contains 75% Dulbecco’s Modified Eagle’s Medium (DMEM) without glucose 

with additional 2 mM L-glutamine (ThermoFisher, UK), 1.5 g/L sodium bicarbonate, and 

25% Medium M3 Base (Incell Corp., San Antonio, TX, USA). The growth medium is 

created by adding Foetal Bovine Serum (FBS) (final concentration 5% (v/v)) (Lonza 

Group, Switzerland), 10 ng/mL human recombinant EGF (Biosciences, Ireland) and 5.5 
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mM D-glucose (Biosciences, Ireland) to the base medium. The complete growth medium 

was supplemented with 50 U/mL penicillin and 50 μg/mL streptomycin (Lonza Group, 

Switzerland). Once sufficient stocks of these cells were frozen and stored at -80°C, the 

growth of this cell line was optimised in an alternative growth medium: DMEM - high 

glucose supplemented with 10% (v/v) FBS, 10 ng/mL human recombinant EGF 

(Biosciences, Ireland) and 50 U/mL penicillin and 50 μg/mL streptomycin (Lonza Group, 

Switzerland) (hereafter known as complete medium). All experiments were carried out 

using this alternative growth medium. HPNE-intermediary cells were maintained as 

monolayers in either 25 cm2 or 75 cm2 sterile vented culture flasks, in an incubator at 

37°C in 95% humidified air containing 5% CO2. 

 

2.2.12.3  Sub-culture  

H6c7-normal cells were passaged every 3-4 days and HPNE-intermediary cells were 

passaged twice weekly upon reaching 70-80% confluency as determined by light 

microscopy. Complete growth medium, PBS and Trypsin protease Ethylene Diamine 

Tetra Acetic Acid (Trypsin-EDTA) (Lonza Group, Switzerland) were warmed to 37°C in a 

water bath prior to subculture. In the case of HPNE cells, Ca++/Mg++ free Dulbecco's 

PBS (ThermoFisher, London) was used in place of PBS to aid in the process of dissociation 

by Trypsin-EDTA. A sterile grade II laminar flow hood was thoroughly cleaned using 70% 

(v/v) ethanol, as well as all reagents and equipment before being placed into the hood. 

Spent medium was discarded from the flask to waste and the cells were rinsed in 5 mL 

of PBS (H6c7-normal) or Ca++/Mg++ free Dulbecco's PBS (HPNE-intermediary). Trypsin-

EDTA was added to the flask to detach adherent cells (1 mL in 25 cm2 flasks and 3 mL in 

75 cm2 flasks) and allowed to incubate for 5 min at 37°C and 5% CO2. Light microscopy 

was used to ensure all cells had successfully detached from the bottom of the flask 

before an equal volume of complete growth medium was added to neutralise the 

Trypsin-EDTA. Cells were then transferred to a sterile 15 mL tube and centrifuged at 

1200 RPM for 5 min at RT. The supernatant was discarded to waste and the cell pellet 

resuspended in complete growth medium. H6c7-normal cells were passaged at a 1:4 

ratio. HPNE-intermediary cells were passaged between a 1:8 and 1:12 ratio. Cell waste 

was decontaminated by treating for 24 h with Haz-Tab chlorine tablets (Guest Medical, 
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Aylesford, UK). Passaged cells were then stored in an incubator at 37°C in 95% 

humidified air containing 5% CO2. 

 

2.2.12.4  Cell counting 

Cell counting was conducted during the sub-culture process described in section 

2.2.12.3, after the centrifugation step using a Bright Line Haemocytometer (Hausser 

Scientific, Horsham, PA, USA). The cell pellet was resuspended in 2 mL (H6c7-normal 

cells) or 5 mL (HPNE-intermediary cells) of complete growth medium and 20 µL of cell 

suspension was added to a 0.5 mL Eppendorf tube along with 180 µL of trypan blue 

(Biosciences, Ireland) and mixed by pipetting. A 20 µL volume of this solution was then 

added to the haemocytometer and covered with a glass coverslip. Live cells are 

impermeable and do not take up the trypan blue dye, while dead cells are stained blue. 

Live cells were counted in each of the four corners (Q1 + Q2 + Q3 + Q4) of the 

haemocytometer and the number of cells per mL of media was calculated as follows: 

 

 
Q1+Q2+Q3+Q4

4
 × 104(ℎ𝑎𝑒𝑚𝑜𝑐𝑦𝑡𝑜𝑚𝑒𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒) × 10 (𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) = 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿 

 

2.2.12.5  Cryopreservation and reconstitution of cell line stocks 

Frozen stocks of each cell line were generated before experimental use. During the sub-

culture process described in section 2.2.12.3, and after the centrifugation step, the cell 

pellet obtained from one 75 cm2 culture flask was resuspended in 1 mL of 

cryopreservation medium consisting of FBS with 10% (v/v) Dimethylsulfoxide. This 

volume was transferred to a sterile, labelled cryovial and placed in a Mr. FrostyTM 

Freezing Container (ThermoFisher, UK) containing isopropyl alcohol before being 

transferred to a -80°C freezer overnight. Cells were then removed from the Mr. FrostyTM 

Freezing Container the following day and kept at -80°C for short-term storage, or 

transferred to a liquid nitrogen container for long-term storage. 

 To reconstitute frozen cell stocks, cryovials were removed from storage and 

thawed rapidly at 37°C in a water bath. Once only a fragment of ice remained, the cells 



78 

 

were brought into a sterile fume hood where they were transferred to a 15 mL tube and 

10 mL of pre-warmed complete growth medium was added dropwise to avoid osmotic 

shock. Cells were then centrifuged at 1200 RPM for 5 min and the supernatant discarded 

to waste. The cell pellet was resuspended in 7 mL of complete growth and transferred 

to a 25 cm2 culture flask before being stored in an incubator at 37°C in 95% humidified 

air containing 5% CO2. 

 

2.2.12.6  Mycoplasma testing 

2.2.12.6.1 PCR of mycoplasma unknown samples 

Mycoplasma testing of cell lines was carried out every six weeks. A volume of 1 mL of 

supernatant was collected from a confluent 75 cm2 culture flask and stored in the fridge 

at 4°C until use. Supernatants were centrifuged at 2000 RPM for 2 min to pellet any cell 

debris. A 25 µL PCR reaction for each sample to be tested was setup in a PCR tube 

containing 12.5 µL of Green GoTaq (Promega, USA), 0.5 µL of forward primer (10 uM) 

(ThermoFisher, UK), 0.5 µL of reverse primer (10 uM) (ThermoFisher, UK), 10.5 µL of 

molecular biology grade sterile water (ThermoFisher, UK), and 1 µL of cell culture 

supernatant. Positive and negative controls were created using a mycoplasma positive 

supernatant and water, respectively. PCR tubes were then placed on a thermal cycler 

and heated at 95°C for 5 min, before being subjected to 40 cycles of 94°C for 30 sec, 

55°C for 30 sec, and 72°C for 1 min. After the 40 cycles, PCR tubes were kept at 72°C for 

10 min and finally allowed to cool to 4°C.  

 

2.2.12.6.2 Agarose gel electrophoresis 

While the PCR tubes were on the thermal cycler, the 2% agarose gel was prepared and 

allowed to set. Briefly, 10X Tris-Borate-EDTA (TBE) Buffer was made by dissolving 165 g 

tris, 27.5 g boric acid, and 9.3 g EDTA in 800 mL of dH2O. The pH was adjusted to 8.3 

using acetic acid and the final volume was made up to 1 L with dH2O. 1X TBE was then 

prepared by diluting the 10X TBE stock 1 in 10 with dH2O. For the gel, 4 g of agarose was 

added to a glass bottle containing 200 mL of 1X TBE. The agarose was heated gently in a 

microwave, stirring frequently, until the agarose was melted and the solution was a clear 
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liquid. The solution was allowed to cool for 5 min before being transferred to 4 × 50 mL 

tubes. A volume of 3 µL of SybrSafe (ThermoFisher, UK) was added to each 50 mL tube 

and inverted to mix. The gel solution was then poured into the gel electrophoresis gel 

rig and a 10-well comb inserted. Any bubbles present were removed with a pipette tip 

before allowing the gel to set for 1 h. Once set, the comb was removed and the gel was 

submerged in 1X TBE buffer, with the wells being positioned at the anode.  

After being cooled to 4°C on the thermal cycler, samples were transferred on ice 

to the gel rig. A 100 bp ladder was loaded into each side of the gel at a volume of 3 µL 

per well. Samples and controls were then loaded into the get at a volume of 10 µL per 

well. Electrophoresis was then carried out using at a voltage of 80 V for 1 h.  

 

2.2.12.6.3 ChemiDoc visualisation 

After electrophoresis, the PCR products were then visualised using a BioRad ChemiDoc 

System (Bio-Rad Laboratories, Hercules, CA, USA) under the SYBR GREEN setting, with a 

band for positive mycoplasma infection being expected at 270 bp. 

 

2.2.13 Serum starvation of cell lines 

All experiments where pancreatic cell lines H6c7-normal and HPNE-intermediary were 

treated with PCF were run in serum-protein-free (serum-starved) conditions. To do this, 

cells were seeded at the required densities in serum-free medium. For H6c7-normal 

cells, this refers to their complete growth medium, as outlined in section 2.2.12.1, in the 

absence of the bovine pituitary extract. For HPNE-intermediary cells, the refers to their 

complete growth medium, as outlined in section 2.2.12.2, in the absence of FBS. An 

untreated complete medium control, as well as an untreated serum-starved control 

were also run as part of these experiments. Cells were seeded the night before 

treatment in their respective serum-free or complete medium and allowed to adhere 

overnight. 
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2.2.14 Treatment of normal pancreatic cell lines with PCF 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were serum-starved as 

described in section 2.2.13, seeded at the required density for the plate size of use in 

their respective serum-free medium, and left in an incubator at 37°C overnight to 

adhere. The next morning, treatments of 10% (v/v) PCF were prepared in half of the well 

volume. Triplicates were prepared together and pipetted across the 3 replicates to 

reduce pipetting error. PCF samples were sonicated prior to use, as described in section 

2.2.6. Half of the well volume was carefully removed from each well and discarded to 

waste before being replaced by the same volume of either fresh medium or fresh 

medium containing 10% (v/v) PCF treatment to give a final concentration of 5% (v/v) PCF 

in culture medium. Once treated, cells were left for the required treatment time in an 

incubator at 37°C and 5% CO2. 

 

2.2.15 Proliferation assay 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were seeded in triplicate at 3 

x 103 cells per well in a flat-bottomed 96-well plate in 100 µL of their respective serum-

free medium, as described in section 2.2.13, and left in an incubator at 37°C overnight 

to adhere. The next morning, cells were treated with PCF as described in section 2.2.14. 

Blank wells were created by adding medium only to 3 wells for each of the four media. 

The plate was then left for 22 h in an incubator at 37°C. The following day, CCK-8 reagent 

(Sigma Aldrich, Ireland) was thawed at RT for 30 min in the dark. At 22 h post treatment, 

5 µL of CCK-8 reagent was added to each well, including blanks. The plate was then 

incubated in the dark for 2 h in an incubator at 37°C. After 2 h (24 h post treatment), the 

plate was read on the GloMax Explorer microplate reader (Promega, USA) at 450 nm. 

 

2.2.16 ApoTox Glo assay 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were seeded and treated PCF 

as outlined in section 2.2.15. Once treated, cells were left for 24 h in an incubator at 

37°C. After 24 h, cells were processed using the ApoTox-GloTM Triplex Assay (Promega, 

USA), as per the manufacturer’s instructions, to assess viability, cytotoxicity and 
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apoptosis. Briefly, a volume of 20 µL of Viability/Cytotoxicity Reagent was added to all 

wells and mixed by orbital shaking at 500 RPM for 30 sec. The plate was then incubated 

in the dark for 30 min at 37°C. After 30 min, fluorescence was measured on the GloMax 

Explorer microplate reader (Promega, USA) at both 400EX/505EM (viability) and 

485EX/520EM (cytotoxicity). A volume of 100 µL of Caspase-Glo 3/7 Reagent was added 

to all wells and mixed by orbital shaking at 500 RPM for 30 sec. The plate was incubated 

in the dark for 30 min at RT. Luminescence was then measured on the GloMax Explorer 

microplate reader (Promega, USA) (apoptosis / caspase activation). 

 

2.2.17 Flow cytometry 

2.2.17.1 Antibody titrations 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were sub-cultured as outlined 

in section 2.2.12.3. The cell pellet obtained from each cell line was divided across 5 × 

FACS tubes, resuspended in 2 mL of PBS each and centrifuged at 1300 RPM for 3 min 

(washed). The supernatant was discarded to waste and the cells were washed again. 

One tube per cell line was set aside (unstained), and a second tube per cell line was left 

on a heating block at 95°C for 15 min to create a dead cell control. The dead cell control 

and remaining 3 tubes per cell line were resuspended in 100 µL of working Zombie NIR 

Viability dye (BioLegend, USA) and incubated for 15 min at RT in the dark. Cells were 

washed in FACS buffer (2% (v/v) FBS and 0.01% (w/v) sodium azide in PBS) before 

resuspending all 5 tubes per cell line in 1 mL of blocking buffer (50% (v/v) FACS buffer in 

FBS) for 5 min at RT in the dark. Cells were then washed in FACS buffer before being 

resuspended in 100 µL of FACS buffer. The unstained control and dead cell control for 

each cell line were set aside. The remaining three tubes were stained with 1 µL, 3 µL or 

5 µL extracellular antibodies for 20 min at RT in the dark. Cells were then washed with 

FACS buffer before being resuspended in 100 µL of FACS buffer. Fixation and 

permeabilization steps were carried out using the eBioscenceTM Foxp3 / Transcription 

Factor Staining Buffer Set (ThermoFisher Scientific, USA) as per the manufacturer’s 

instructions. Briefly, 1 mL of Fixation/Permeabilisation working solution was added to 

each tube and vortexed to mix. Tubes were incubated for 60 min at RT in the dark. After 

60 min, 2 mL of 1X Permeabilisation buffer was added to each tube. Tubes were then 



82 

 

centrifuged at 600 × g for 5 min at RT. The supernatant was discarded and samples were 

resuspended in the residual volume of 1X Permeabilisation buffer. Again, the unstained 

and dead cell controls for each cell line were set aside. The remaining tubes were stained 

with 1 µL, 3 µL or 5 µL, as before, with intracellular antibodies for 30 min at RT in the 

dark. After this time, 2 mL of 1X Permeabilisation buffer was added to all tubes and they 

were centrifuged at 500 × g for 5 min at RT. Cells were washed twice with FACS buffer 

before being resuspended in 200 µL of FACS buffer. Cells were acquired using the BD 

FACs CANTO II Flow Cytometer and BD FACs Diva Software.  

 

2.2.17.2  Flow cytometric staining 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were seeded in serum-starved 

conditions as described in section 2.2.13. Cells were seeding in 24-well plates at 5 x 104 

cells per well and left overnight to adhere. Cells were treated with 5% PCF as outlined in 

section 2.2.14. Once treated, cells were left for either 6 h or 24 h in an incubator at 37°C. 

After either 6 or 24 h, cells were washed and stained as per the protocol described in 

section 2.2.17.1. Cells were stained with 1 µL of each intracellular and extracellular 

antibody as determined by the antibody titration. Cells were acquired using the BD FACs 

CANTO II Flow Cytometer and BD FACs Diva Software.  

 

2.2.17.3 Processing and analysis of flow cytometric data 

Data were analysed using FloJo software v10 (Becton Dickinson, USA). Gating strategies 

utilised for both HPNE-intermediary and H6c7-normal cell lines are outlined in Figure 

2.1. The cell populations were first gated on using the side scatter area (SSC-A) and 

forward scatter area (FSC-A), before gating on single cells only, again using the SSC-A 

and FSC-A. Lastly, the live and dead cell populations were determined used the forward 

scatter height (FSC-H) and Zombie NIR viability dye, with the dead cell control being 

utilised to determine the positive and negative Zombie NIR populations. Compensation 

beads (Becton Dickinson, USA) were stained with antibodies of interest and used as per 

the manufacturer’s instruction to compensate for spectral overlap of these antibody 

channels. 
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Figure 2.1 Representative dot plots showing gating strategies for cell lines. 

Representative dot plots from FlowJo software showing gating strategies employed for 

(A) HPNE-intermediary cells and (B) H6c7-normal cells. Both whole cell (left) and single 

cell (centre) populations were gated on using the SSC-A and FSC-A. Live and dead cell 

populations (right) were gated on used the FSC-H, and Zombie NIR thresholds 

determined via dead cell controls. 
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2.2.18 Seahorse XF ATP rate test 

To prepare the 24-well Seahorse cell culture plate (Agilent Technologies, USA), 50 µL of 

50% (v/v) Poly-D-Lysine (Sigma Aldrich, UK) in PBS was added to each well of the plate 

and incubated at RT for 5 min. After 5 min, the solution was discarded to waste and the 

wells were washed twice with 100 µL of PBS. The plate was then left to dry at RT inside 

a fume hood for 1 h. Once dry, cells were seeded at a density of 2 × 104 in either 100 µL 

of complete culture medium, or serum-protein free medium as described in section 

2.2.12. The four required blank wells [A1, B4, C3 and D6] were given media only. The 

plate was centrifuged at 1200 RPM for 3 min to stick down the cells, and was then left 

overnight in an incubator at 37°C. The following morning, 50 µL of culture medium was 

discarded to waste from each well and replaced with 50 µL of either 5% PCF or media 

only, as described in section 2.2.13. PCF samples were sonicated prior to use, as 

described in section 2.2.5. The plate was then left for 24 h in an incubator at 37°C. At 

this point, 1 mL of Seahorse XF Calibrant (Agilent Technologies, USA) was added to each 

well of the Seahorse XF Calibration Plate beneath the Seahorse XF Sensor Cartridge 

(Agilent Technologies, USA). The sensor cartridge was placed back on top of the 

calibration plate and the completed unit was stored in a non-CO2 incubator overnight. 

The following day, the assay medium (complete Seahorse medium) was prepared by 

supplementing 100 mL of Seahorse XF DMEM Medium, pH 7.4, with 10 mM of XF 

Glucose, 1 mM of XF pyruvate, and 2 mM of XF glutamine (Agilent Technologies, USA). 

Assay compounds were diluted in complete Seahorse medium from stock solutions to 

give 1.8 µM Oligomycin and 2 µM Antimycin A (Agilent Technologies, USA). Once all 

materials were prepared, the cell plate was removed from the incubator and the entire 

volume of medium from each well was transferred to a 96-well plate and stored at -20°C 

for later use. A volume of 500 µL of complete Seahorse medium was added to each well, 

before removing 400 µL of this and discarding to waste. Finally, 450 µL of complete 

Seahorse medium was added to each well and the cell plate was placed in the non-CO2 

incubator for at least 1 h before use. At the same time, the senor cartridge was removed 

from the non-CO2 and 50 µL each of the Oligomycin and Antimycin A compounds were 

loaded into all ports A and B, respectively. The sensor cartridge was then placed back 

into the non-CO2 incubator for 10 min. The ATP Rate Test template on the Seahorse 

Analyser Wave software (v2.6.3.5) was setup to include all details of the experimental 
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design. The sensor cartridge was placed inside the Seahorse XF instrument, without the 

lid, and allowed to calibrate for 15 min. The sensor cartridge was then removed from 

the machine, and the calibrant plate below was replaced with the cell plate, before being 

reinserted into the machine and the assay run for 90 min.  

Once completed, the sensor cartridge was removed from the machine and the 

data exported. The upper, senor cartridge was discarded to waste and the cell plate was 

stained by crystal violet in order to normalise the data obtained to cell number. Briefly, 

the supernatant was discarded to waste and 50 µL of 1% (v/v) glutaraldehyde was added 

to each well and allowed to incubate at RT for 15 min inside a fume hood. Wells were 

then washed twice with 200 µL of PBS before adding 50 µL of 0.05% crystal violet (w/v) 

and incubating for 30 min at RT. Waste crystal violet was carefully removed, and the 

wells were gently washed with 200 µL of dH2O before being left overnight to dry. Once 

dry, 60 µL of Triton-X was added to each well and the plate was placed on a plate shaker 

at 400 RPM for 1 h. The plate was then removed from the orbital shaker and 50 µL from 

each well was transferred by reverse-pipetting to a 96-well plate. Absorbance was then 

measured on the GloMax Explorer microplate reader (Promega, USA) at 595 nm.  

 

2.2.19 Invasion assay 

The invasive capacity of H6c7 and HPNE pancreatic cell lines after treatment with 5% 

PCF was assessed using the 96-well Collagen I Cell Invasion Assay (8 µm) (Abcam, UK) as 

per the manufacturer’s instructions. Cell lines were serum-starved for 24 h prior to the 

start of the assay, using protein-serum free culture mediums described in section 2.2.12. 

In the top chamber of the provided assay plate, 40 µL of Collagen I was added to each 

well and allowed to set overnight at 4°C to create a thin film of Collagen I. Once set, the 

wells were washed three times with 100 µL of 1M Tris. A volume of 200 µL of FBS was 

added to the bottom chamber of the assay plate, with the negative control receiving PBS 

only, and the positive control receiving a 1:10 dilution of the provided Control Invasion 

Inducer in culture medium. Cells were seeded in 50 µL of serum-free medium at a 

density of 5 × 104 cells per well in the top chamber of the assay plate. Cells were then 

treated with 50 µL of either 5% PCF of media only, as described in section 2.2.14. PCF 
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samples were sonicated prior to use, as described in section 2.2.6. The assay plate was 

then placed in an incubator at 37°C for 24 h.  

 A standard curve was created for each cell line by serially diluting the cells in 

wash buffer. Standard curves were plated in 100 µL of wash buffer in triplicate on a 96-

well plate (50,000; 25,000; 12,500; 6,250; 3,125; 1,562; 781; 390 cells per 100 µL). As a 

blank, wash buffer only was used. The cell dye was diluted 1:250 in PBS, and 50 µL of 

diluted cell dye was added to each well. The plate was incubated at 37°C for 1 h before 

reading the fluorescence on the GloMax Explorer microplate reader at 485Ex/530Em. The 

standard curve for each cell line was created using the RFUs obtained and the data were 

fit with a linear trendline with zero intercept. 

 After 24 h, the assay plate was removed from the incubator and any remaining 

medium in the top chamber was carefully aspirated to waste. The top chamber was then 

removed, and the bottom chamber was centrifuged at 1,000 × g for 5 min at RT. The 

supernatant was carefully discarded to waste before washing the wells of the bottom 

chamber with 200 µL of wash buffer. The plate was centrifuged again at 1,000 × g for 5 

min at RT and the supernatant discarded to waste. The cell dye was diluted 1:500 in cell 

dissociation solution and mixed well before adding 100 µL of this solution to each well. 

The assay plate was reassembled, with the top chamber placed on top of the bottom 

chamber, and incubated at 37°C for 30 min. After 30 min, the plate was gently tapped 

on the side to ensure dissociation of any invasive cells that were stuck to the outer side 

of the top chamber. The top chamber was then removed and the fluorescence was read 

on the GloMax Explorer microplate reader at 485Ex/530Em. The number of invaded cells 

was calculated using the standard curves created for each cell line. Percentage invasion 

was calculated as follows: 

% 𝐼𝑛𝑣𝑎𝑠𝑖𝑜𝑛 =
Number of cells in the lower chamber

Number of cells added to the top chamber
 × 100 

 

2.2.20 DNA damage competitive ELISA 

The 8-Hydroxydeoxyguanosine (8-OHdG) levels in PCF, and in the supernatants from 

H6c7-normal and HPNE-intermediary cell lines that had been treated with PCF, were 
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assessed to quantify levels of DNA damage. The 8-OHdG Competitive ELISA kit (Assay 

Genie, Ireland) was used as per the manufacturer’s instructions. Neat supernatants 

obtained from co-culturing H6c7-normal and HPNE-intermediary cells with 5% PCF, as 

described in section 2.2.13, were run alongside the matching PCF samples, diluted to 5% 

with relevant serum-free culture medium. PCF samples were sonicated prior to use, as 

described in section 2.2.6. Briefly, the standard was serially diluted from the provided 

stock solution (100 ng/mL) at the recommended concentrations to create a standard 

curve, with the final standard containing no protein (blank). A volume of 50 µL of each 

standard and sample was plated in the provided, pre-coated 96-well microplate in 

duplicate and incubated at 37°C for 45 min. The samples and standards were then 

carefully removed from the plate and 350 µL of Wash Buffer was added to each well 

(wash). This was repeated three times before adding 100 µL of SABC working solution 

to each well and incubating at 37°C for 30 min. The plate was then washed five times 

and 90 µL of TMB substrate was added to each well. The plate was Incubated for 10-20 

min in the dark at 37°C. The reaction was stopped when the colour development was 

sufficient by adding 50 µL of Stop Solution to each well. The absorbance at 450 nm was 

measured using the GloMax Explorer microplate reader. 

 

2.2.21 Data handling and statistical analysis 

2.2.21.1  Processing and analysis of omics data 

Both PCF and serum proteomic data obtained from LC-MS were cleaned and normalised 

using Perseus (v1.6.15.0)[292]. Briefly, label-free quantification (LFQ) intensity data and 

Fasta headers were brought into the software. The data were filtered to remove reverse 

sequences, potential contaminants and proteins that are only identified by peptides 

carrying one or more modified amino acids (“only identified by site”). The data were 

then annotated with the appropriate risk category (high-risk or low-risk) and filtered 

based on valid values. In this case, remaining proteins needed to be present in at least 

70% of the total data; proteins only present in less than 30% of the data were filtered 

out. The data were then log2 transformed and normalised using a linear transformation. 

Finally, imputation was used to replace missing values from the normal distribution. 
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differential expression analysis with Benjamin-Hochberg corrections was conducted in 

Perseus using the built-in ‘edgeR’ package from R studio.  

 PCF and serum transcriptomic data were obtained from HTG Molecular in CPM 

normalised form. Normalised transcriptomic data were loaded into R studio (v21.09.0) 

and differential expression analysis was conducted using packages ‘readxl’ (v1.4.1), 

‘edgeR’ (v3.32.1) and ‘DESeq’ (v1.30.1). Multiple comparisons for differential expression 

analysis was corrected using Benjamin-Hochberg corrections.  

Box plots and volcano plots of significantly differentially expressed factors were 

created in GraphPad Prism (v9.5.0). Normalised proteomic and transcriptomic data for 

both PCF and serum were scaled individually before being integrated to create a single 

data matrix. Unsupervised hierarchical clustering with supporting heatmap and 

dendrograms were generated in R Studio using packages ‘edgeR’ (v3.32.1), ‘cluster’ 

(v2.1.4), ‘purrr’ (v0.3.4), ‘dendextend’ (v1.15.2), ‘dplyr’ (v1.0.9), ‘ggplot2’ (v3.3.5), 

’ComplexHeatmap’ (v2.6.2), ‘RColorBrewer’ (v1.1-3), ‘gplots’ (v3.1.1), ‘pheatmap’ 

(v1.0.12) and ‘factoextra’ (v1.0.7). Corrplots illustrating the correlations between 

patient clinical data and omics factors were created in R Studio using packages ‘Hmisc’ 

(v4.7-2), ‘heatmap3’ (v1.1.9), ‘pheatmap’ (v1.0.12), ‘plot.matrix’ (v1.6.2), 

‘RColorBrewer’ (v1.1-3), ‘gplots’ (v3.1.1), ‘corrplot’ (v0.90) and ‘ggcorrplot’ (v0.1.3). 

Clinical data were converted to binary code where appropriate using the key in Appendix 

2. Spearman correlations were run and p-values were corrected using Holm-Bonferroni 

corrections. 2-D Principle Component Analysis (PCA) was conducted in R studio using 

packages ‘tidyverse’ (v1.3.1), ‘ggplot2’ (v3.3.5), and ‘factoextra’ (v1.0.7). 3-D PCA 

analysis was conducted in R Studio using the same packages as the 2-D PCA analysis, but 

with the addition of ‘rgl’ (v0.108.3). Leave-one-out cross validation (LOOCV) and 

corresponding ROC plots were created in R Studio using packages ‘tidyverse’ (v1.3.1), 

‘dplyr’ (v1.0.9), ‘plyr’ (v1.8.7), ‘klaR’ (v1.7-1) and ‘caret’ (v6.0-93). Assessment of optimal 

biomarker combinations was conducted using CombiROC software (v1.2)[293]. Data were 

scaled in R studio and processed using a linear transformation to ensure no negative 

values were present before being brought into the CombiROC software. Using the 

graphics function, the minimum number of biomarker features was set to 1 in order to 

evaluate the number of biomarkers that produced the best results. The test signal cut-
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off was calculated as the mean of the control group plus the standard deviation, 

rounded to the nearest whole number for to be compatible with the software. For PCF 

the cut-off was set to 3, for serum this was set to 4. PCF sensitivity and specificity 

limitations were set at 83% and 25%, respectively. Serum sensitivity and specificity 

limitations were set at 93% and 47%, respectively. 

 

2.2.21.2  Processing and analysis of cell line experimental data 

All experimental data were processed using Microsoft Excel (v2202) and GraphPad Prism 

(v9.5.0). Data shown are expressed as the mean ± the standard error of the mean (SEM). 

Experimental data evaluating the effects of patient PCF on cell lines were assessed using 

non-parametric tests, such as a Mann-Whitney test or Kruskal-Wallis test, as appropriate 

based on the number of groups to be assessed. In cases where the data were paired 

across treatments, a Wilcoxon test or Friedmans test were employed. Where the 

analysis involved 3 or more groups, Dunn’s multiple comparisons were used to 

determine the statistical significance between the groups. Spearman correlations and 

simple linear regressions were used to assess the relationships between non-parametric 

variables. A probability of less than 0.05 (p<0.05) was considered statistically significant.  
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3.1 Introduction 

The search for robust biological markers for disease diagnosis and treatment has been 

a consistent objective within modern health care over the last few decades[294, 295]. In 

many instances, the use of multiple biological markers is almost intuitive when 

proceeding with a patient diagnosis. Symptoms, for example, are biological markers of 

illness used to identify the ailment at hand. As with symptoms, patients will rarely 

experience just one, and health care professionals will generally use the presence or 

absence of several symptoms to make a diagnosis[296]. In this way, clinicians have used 

multiple biomarkers (multi-biomarker panels) for the diagnosis of disease intuitively for 

thousands of years. Modern medicine often overlooks the utility to be gained from the 

use of multi-biomarker panels, searching for single proteins or miRNAs that are 

dysregulated in disease and can be used for a more streamlined diagnosis. However, 

recent trends in the literature favour multi-biomarker panels over single biomarkers, as 

single biomarkers alone fail to encompass the biological complexity of disease and 

therefore lack the comprehensive robustness required for a confident diagnosis[166, 295, 

297]. This can be seen clearly in the variable diagnostic performance of certain single 

markers in patients with underlying conditions, and as such has caused a trend toward 

the use of “mixed” control cohorts, where both healthy volunteers and patients with 

benign conditions comprise the control cohort. In this way, the control cohort is arguably 

more clinically relevant, as it better represents the patient population in question. 

PC has one of poorest prognoses of any cancer, with a 5-year survival rate of 

below 5%[298]. Late-stage diagnoses contribute hugely to the poor survival rates of this 

cancer, as the symptoms associated with PC can be vague in nature[299]. As such, earlier 

diagnosis is the key to improving patient prognosis in this cancer. PDAC is the most 

common subtype of PC and represents approximately 85% of all patients with PC[300]. 

Currently, the only FDA-approved biomarker for PDAC diagnosis is the blood-based 

biomarker CA19-9[166]. CA19-9 is a type of antigen released by PC cells, and is therefore 

detected at higher levels in the blood of patients with PDAC[301]. However, reported 

sensitivity and specificity values for CA19-9 vary greatly from study to study. While 

sensitivity values are generally high, being reported at roughly 80%, the specificity of 

this biomarker has been shown to be variable, resulting in many false positives[167]. 
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Serum CA19-9 has been shown to be elevated in some benign conditions, such as 

pancreatitis, and also in other gastrointestinal malignancies contributing to the 

limitations of the biomarker[302]. Furthermore, the ability to express CA19-9 at all is 

dependent on a patient's Lewis blood group (Le), with 5%–7% of the population 

belonging to the Le(a−b−) group and consequently unable to express CA19-9 at any 

level[303]. Therefore, even though CA19-9 is widely used in current clinical practice, the 

results alone cannot be used to diagnose PDAC, and must always be interpreted within 

the clinical context of imaging and/or histopathology[304]. As such, current methods of 

diagnosing patients with PC at an early stage rely heavily on the presentation of 

symptoms, as there is no effective method for screening patients for the presence or 

absence of PC. A recent review from our group has highlighted the importance of novel 

biomarker research in pancreatic patients, and argues that the integration of multiple 

biomarkers to form a multi-biomarker panel could be the vital next step for the 

identification of more robust biomarkers[166]. Following on from this, a systematic review 

and meta-analysis of biomarker efficacy was conducted to truly evaluate whether more 

really is better in the context of biomarkers. 

In this systematic review, blood-based biomarkers for the diagnosis of PDAC are 

evaluated. The primary aim of this review is to compare the efficacy of single biomarkers 

and multi-biomarker panels in the context of PDAC diagnosis to determine which 

biomarker type performs better. The secondary objective is to examine the current 

clinical standard, CA19-9, and its performance comparatively to novel biomarkers for 

PDAC diagnosis. The final objective of this review is to highlight promising novel 

biomarkers that have been examined repeatedly in the literature and may provide 

direction for future biomarker studies. 
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3.2 Hypothesis 

Combining and comparing the results of previously conducted research on the 

identification of novel diagnostic biomarkers for PC can elucidate the most promising 

biomarkers that should be evaluated further in future research. 

 

3.3 Specific aims 

1. Identify promising biomarkers that have been evaluated multiple times across 

the literature and show potential diagnostic biomarkers either alone or as part 

of a multi-biomarker panel. 

2. Perform a meta-analysis to determine whether single biomarkers or panels of 

multiple biomarkers produce the best diagnostic efficacy. 

3. Evaluate the role of CA19-9 both alone and as part of a multi-biomarker panel to 

ascertain in what setting is has the most utility. 

4. Report on the standard of experimental design seen across PC biomarker studies 

and highlight where these designs can be improved to guide future research.  
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3.4 Results 

3.4.1 Identification of relevant studies 

After removing duplicates, 5,885 studies were identified by our literature search as 

potential candidates for inclusion in this review. After two stages of screening by 

reviewers, 250 papers were included in this review (Figure 3.1). Most records excluded 

at the full-text stage were omitted due to having cohorts of less than 15 patients, no 

accessible full-text, or being a conference proceeding and therefore not a peer-reviewed 

full-text paper. 

 

3.4.2 Accuracy and RoB assessment 

Summarized results for RoB and quality assessment as conducted through the use of the 

QUADAS-2 tool are shown in Figure 3.2. Concerns regarding index test applicability were 

generally low once a blood-based biomarker was being assessed for PDAC diagnosis as 

per the inclusion criteria of the review. Patient selection was frequently high risk (68%) 

as control cohorts were often not clinically relevant, that is, contained healthy or benign 

patients only. RoB was low for reference standards (38.8%) and index tests (23.2%) 

when studies were blinded to the results, and unclear (31.6% and 20%, respectively) 

when no details were given. Concerns about the applicability of the index test were low 

in most cases (98.8%) as most biomarkers were for the diagnosis of PDAC. The accuracy 

of data extraction and RoB assessments were independently assessed by senior 

reviewers before proceeding to the data analysis stage. Data extraction was shown to 

have a mean accuracy of 91.47% (95% CI: 91.42–91.52), and QUADAS-2 RoB assessment 

was shown to have a mean accuracy of 92.63% (95% CI: 92.59–92.67). 

 

3.4.3 Summary of extracted studies 

The data extracted from the 250 papers included in the study are broadly summarized 

in Table 3.1. As stated previously, CA19-9 is the current FDA-approved biomarker for 

PDAC diagnosis. However, only 51.6% of papers included this biomarker in their study, 

while 96% of papers evaluated novel biomarkers. A total of 2,077 rows of data were 

extracted, each representing an individual biomarker entry, with 982 distinct biomarkers   
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Figure 3.1. PRISMA flow diagram of record selection process. The number of studies at 

each point of the systematic review process are provided. Reasons for exclusions at the 

full-text stage are also outlined. 
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Figure 3.2. Summary of results for the QUADAS-2 RoB and study quality assessment. 

The percentage of included studies that were recorded as having a low (green), high 

(red) or unclear (yellow) RoB within each assessment category are shown.  
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Table 3.1 Summary of extracted data fields from included papers. 

Percentages for the “Summary of papers” use denominator a. Percentages for the “Summary of unique 
biomarker entries" use denominator b, except where patient control cohorts are broken down and 
percentages use denominators c-e. 
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included in the analysis. All studies examined blood-based biomarkers in either plasma, 

serum, or whole blood, with the majority of entries (67.9%) being investigated in serum. 

While 79.9% of studies recruited patients prospectively, 12.5% retrospectively examined 

clinical data of patients with PDAC from a hospital database within a certain time period 

(mean = 3.7 years, range = 14–0.6 years), and the remaining 7.6% were unclear about 

the recruitment process of patients. Study size varied greatly between papers, with 

PDAC cohorts ranging from 15 to 809 patients, and control cohorts ranging from 15 to 

898 patients. Blinding across studies was shown to be poor, with only 35.6% of entries 

examined under blinded conditions, and 15.6% unclear on whether the study was 

blinded or not. As PDAC is synonymous with PC, studies that did not include a subtype 

of PC were assumed to be PDAC. Importantly, for 183 biomarker entries (8.8%) there 

was no specific subtype of PC given. PDAC diagnosis by use of a given reference standard 

(e.g., histology, cytology) was reported in most cases (55.8%). However, 44.2% of 

biomarker entries reported no reference standard for PDAC diagnosis. Furthermore, 

29.4% provided no sex breakdown, 37.2% gave no indication of the age demographics, 

and 31.3% of entries had no information regarding the stage of patients with PDAC. 

Similarly, a substantial number of entries had no information on patient sex (32.2%) or 

age (42.5%) for their control cohorts. Qualitative assessments of biomarker efficacy 

were provided for most entries (71.2%); however, 598 entries (28.9%) contained only a 

p-value and did not provide any sensitivity, specificity or AUC values. More than 40% of 

biomarkers had no AUC value and were therefore not included in the meta-analysis. 

 

3.4.4 Meta-analysis: full dataset 

On the basis of the multivariate three-level meta-analysis with subgroup moderators, 

the pooled AUC value for all multi-biomarker panels (AUC = 0.898; 95% CI: 0.88–0.91) 

was significantly higher compared with single biomarkers (AUC = 0.803; 95% CI:0.78–

0.83; p<0.0001)(Figure 3.3A). Overall, multi-biomarker panels show improved sensitivity 

and specificity compared with single biomarkers (Figure 3.4A). To further interrogate 

these data, biomarkers were subdivided into two groups: those including the current 

standard biomarker for pancreatic patients, CA19-9, and those without (herein known 

as novel biomarkers). The pooled AUC value for CA19-9–containing biomarkers (AUC =  
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Figure 3.3 Multivariate three-level meta-analysis. Summary of multivariate three-level 

meta-analysis with subgroup moderators from (A) PDAC-specified papers only and (B) 

all extracted papers. Number of biomarker entries for each subgroup are given. The 

forest plot shows the pooled AUC value and 95% CIs for each biomarker subgroup from 

the multivariate three-level meta-analysis. Subgroups directly compared are separated 

by a dotted line. Symbols represent the whole dataset (), CA19-9 subgroup (◼) and 

novel subgroup (●). Colours represent biomarker type: all types (black), multi-biomarker 

panels (red), and single biomarkers (blue). Significantly higher AUC values are denoted 

using asterisks. ***p<0.0001.  
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Figure 3.4 Comparison of single biomarkers and multi-biomarker panels overall and 

subdivided by biomarker group. Representative ROC plot showing the extracted 

sensitivity and 1-specificity for all biomarkers. Symbol colours represent biomarker type 

(A) and biomarker group (B), while symbol size represents the number of patients in the 

PDAC cohort for the given statistics. 
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0.881; 95% CI: 0.87–0.89) was significantly higher compared with novel biomarkers (AUC 

= 0.797; 95% CI: 78–81; p<0.0001). The sensitivity and specificity values for CA19-9 

biomarkers appear improved compared with novel biomarkers (Figure 3.4B). A second 

meta-analysis was also conducted, including all studies, even those for which PDAC is 

not specified. There was no notable difference between the results of these two meta-

analyses (Figure 3.3B). 

 

3.4.5 Meta-analysis: CA19-9 and novel biomarker subgroups 

Examining the CA19-9 and novel subgroups independently, the pooled AUC value for 

CA19-9 alone (AUC = 0.85; 95% CI: 0.83–0.87) was significantly lower compared with the 

multi-biomarker panels containing CA19-9 (AUC = 0.914; 95% CI: 0.90–0.93; 

p<0.0001)(Figure 3.3A). Multi-biomarker panels containing CA19-9 have improved 

sensitivity and specificity when compared with CA19-9 alone (Figure 3.5A). There is a 

large amount of variation in the reported sensitivity and specificity values between 

studies for the current standard biomarker, CA19-9, with some papers reporting values 

that fall below the random classifier line on the ROC plot. The estimated between-study 

variance in the model was I2
Level 3 = 64.49%, and the within-study variance was I2

Level 2 = 

35.51%. This variation in CA19-9 was not a result of platform-to-platform discrepancies 

in CA19-9 detection throughout the studies examined in this review, as both 

immunoassays and mass-spectrometry-based detection of CA19-9 showed high 

variation within their respective platforms (Figure 3.6). As such, the differences 

observed are more likely to be a result of the patient populations examined rather than 

the platforms used. For the novel biomarkers, the pooled AUC for single biomarkers 

(AUC = 0.783; 95% CI: 0.74–0.83) was also significantly lower compared to novel multi-

biomarker panels (AUC = 0.865; 95% CI: 0.84–0.89; p<0.0001). Novel multi-biomarker 

panels show improved sensitivity and specificity values over single biomarkers alone 

(Figure 3.5B and Figure 3.5D). Furthermore, there is less variation in the sensitivity and 

specificity values for multi-biomarker panels containing CA19-9 than CA19-9 alone, with 

a smaller interquartile range and higher mean and median values being shown for both 

test statistics (Figure 3.5C). 
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Figure 3.5 Comparison of single biomarkers with multi-biomarker panels for both 

CA19-9 and novel cohorts. Representative ROC plot showing the extracted sensitivity 

and 1-specificity for all biomarkers containing (A) CA19-9 and (B) all novel biomarkers. 

Symbol colours represent biomarker type while symbol size represents the number of 

patients in the PDAC cohort for the given statistics. Box and whisker plot showing the 

extracted sensitivity and specificity of all biomarkers containing (C) CA19-9 and (D) all 

novel biomarkers. Individual datapoints are represented by the coloured dots over the 

plot. Whiskers show the maximum and minimum value, boxes show the 25th and 75th 

percentiles, and the line within the box indicates the median. 
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Figure 3.6 Evaluation of platform-to-platform variation in CA19-9 detection. AUC 

values are given for CA19-9 when evaluated using immunoassays (blue) or mass-spec 

(red). Kruskal-Wallis test with multiple comparisons. *p<0.05. 
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3.4.6 Meta-analysis: CA19-9 and novel biomarkers in different patient cohort 

subgroups 

To further evaluate the efficacy of each biomarker and/or panel, results were subdivided 

on the basis of the patient cohorts involved as follows: PDAC versus healthy, PDAC 

versus benign, and PDAC versus mixed (healthy and benign) (Figure 3.7). Multi-

biomarker panels demonstrate improved sensitivity and specificity when compared with 

single biomarkers across all patient cohorts. On the basis of the meta-analysis, 

biomarker robustness was also influenced by the patient cohort examined, with CA19-

9–containing biomarkers performing best in all cohorts compared with novel 

biomarkers: PDAC versus healthy (AUC = 0.909; 95% CI: 0.88–0.94), PDAC versus benign 

(AUC = 0.853; 95% CI: 0.84–0.87), and PDAC versus mixed (AUC = 0.863; 95% CI: 0.82–

0.91; p<0.0001) (Figure 3.3A). Furthermore, CA19-9 biomarkers examined in PDAC 

versus healthy cohorts have improved AUC values compared with those examined in 

PDAC versus mixed cohorts (p<0.0001). 

 

3.4.7 Biomarker efficacy of different omic compartments 

Proteomic biomarkers are the most frequently evaluated blood-based biomarkers for 

PC diagnosis (Figure 3.8). Proteomic biomarkers represent 77.9% of novel single 

biomarkers and are present in 50.3% of novel multi-biomarker panels examined. Of the 

panels where some other biomarker(s) was combined with the current standard, CA19-

9, 76.4% opted to add another protein biomarker. Given the lack of diversity in omic 

compartments between studies, no distinct difference can be observed between the 

sensitivity and specificity values for biomarkers of different omic compartments (Figure 

3.8). 

 Given the high prevalence of proteomic-orientated studies, biomarkers were 

pooled into categories that represent generalized cell compartments as follows: 

Genomics & Transcriptomics & Epigenomics; Metabolomics & Proteomics; and Single-

cell omics & Immunomics. After pooling biomarkers into these groups, there was still no 

visible difference in sensitivity or specificity values between the different omic 

compartments (Figure 3.9). 
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Figure 3.7 Comparison of CA19-9 and novel biomarkers subdivided by patient cohorts. 

Comparison of CA19-9 alone (blue) and multi-biomarker panels (red) for (A) PDAC versus 

healthy, (B) PDAC versus benign and, (C) PDAC versus mixed patient cohorts. 

Comparison of novel single biomarkers (blue) and novel multi-biomarker panels (red) 

for (D) PDAC versus healthy, (E) PDAC versus benign and, (F) PDAC versus mixed patient 

cohorts. Symbol size represents the number of patients in the PDAC cohort for the given 

statistics.  
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Figure 3.8 Comparison of CA19-9 and novel markers showing omic compartment 

breakdown. Representative ROC plot showing the extracted sensitivity and 1-specificity 

for (A) CA19-9 multi-marker panels, (B) novel single markers and (C) novel multi-marker 

panels. Symbol colours represent different omic compartments. Symbol size represents 

the number of patients in the PDAC cohort for the given statistics. Figures inside the 

brackets give exact numbers of markers from each omic compartment(s). 
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Figure 3.9 Comparison of novel markers showing pooled omic breakdown. 

Representative ROC plot showing the extracted sensitivity and 1-specificity for (A) novel 

single markers, and (B) novel multi-marker panels. Symbol colours represent different 

omic compartments, with generalized cell compartments pooled. Symbol size 

represents the number of patients in the PDAC cohort for the given statistics.  
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3.4.8 Biomarkers in the 90th percentile for sensitivity and specificity 

Biomarkers in the 90th percentile of all entries for which there are sensitivity and 

specificity values, represented by a sensitivity value equal to or above 0.95 and a 

specificity value equal to or above 0.979, are summarized in Figure 3.10[305-315]. A total 

of 15 biomarkers comprise the 90th percentile, with seven of those being multi-

biomarker panels. Most of these biomarkers were proteomic (n=6) or transcriptomic 

(n=5), with just one representing more than one omic compartment (proteomics and 

metabolomics). These biomarkers were identified from just 11 studies spanning 27 years 

(1993–2020), with four studies reporting on two biomarkers each. Nine of the top 15 

biomarkers reported perfect sensitivity (1.00) and specificity (1.00), with a 95% CI of ± 

0. Nine biomarkers are reported from studies that were not blinded, while just four 

biomarkers out of the 15 biomarkers were examined in a blinded study design. The most 

common patient cohorts for biomarker assessment were PDAC versus healthy (n = 11), 

with none of the top 15 biomarkers having been examined in the more clinically relevant 

PDAC versus mixed cohort. This is reflected in the RoB assessments for these studies, 

where several have high levels of bias for patient selection and index test (Figure 3.11). 

Only two biomarkers contained the current clinical standard biomarker, CA19-9, with 13 

of 15 biomarkers being novel biomarkers. Furthermore, both biomarkers in the CA19-9 

subgroup were multi-biomarker panels, with no reported sensitivity or specificity values 

for CA19-9 alone across all 250 included papers being within the 90th percentile of 

examined biomarkers. 

 

3.4.9 Most frequently examined novel biomarkers across included studies 

Novel biomarkers that have been examined most frequently across the studies included 

in this review are shown in Table 3.2. A total of 13 novel biomarkers were examined in 

more than one study and had a minimum of 21 unique entries. Tissue inhibitor matrix 

metalloproteinase 1 (TIMP-1) is the most examined biomarker, appearing 79 times in 10 

studies, with CEA being a close second with 73 unique appearances in 34 studies. MiR-

21 had the lowest number of unique appearances at 21, though these spanned across 

10 studies. Of these 13 novel biomarkers, 10 were proteomic and three were 

transcriptomic in nature, with all 13 having been examined both alone and as part of a  
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Figure 3.10 Details of the biomarkers in the 90th percentile for sensitivity and 

specificity. Details of the 15 biomarkers that are in the 90th percentile of all biomarkers 

for both sensitivity (≥0.95) and specificity (≥0.979). Forest plots of sensitivity and 

specificity values with 95% CIs for each biomarker are shown. 1CA19-9, DUPAN-2, TPA, 

elastase-1, lipase, amylase, gamma-glutamyl transpeptidase, alkaline phosphatase, and lactate 

dehydrogenase. 2CA19-9, docosahexanoic acid, lysoPC(14:0), and histidinyl-lysine. 38562.3m/z, 

8684.4m/z, 8765.1m/z, 9423.5m/z, 13761.5m/z, 14145.2m/z, and 17250.8m/z. 47,775 Da, 8,567 Da, 5,362 

Da, and 5,344 Da. 5FGA, KRT19, HIST1H2BK, ITIH2, MARCH2, CLDN1, MAL2, and TIMP1. 6cfDNA KRAS 

mutations at PDAC hotspot codons (12, 13, 61). 7cfDNA KRAS mutations at any screened codons reported 

in any cancer sites. 
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Figure 3.11 Details of the risk of bias assessment for biomarkers in the 90th percentile 

for sensitivity and specificity. Details of the 15 biomarkers that are in the 90th percentile 

of all biomarkers for both sensitivity (≥0.95) and specificity (≥0.979). Risk of bias 

assessment results are given for each biomarker as high ( ), low ( ) and unclear ( ). 

1CA19-9, DUPAN-2, TPA, elastase-1, lipase, amylase, gamma-glutamyl transpeptidase, alkaline 

phosphatase, and lactate dehydrogenase. 2CA19-9, docosahexanoic acid, lysoPC(14:0), and histidinyl-

lysine. 38562.3m/z, 8684.4m/z, 8765.1m/z, 9423.5m/z, 13761.5m/z, 14145.2m/z, and 17250.8m/z. 47,775 

Da, 8,567 Da, 5,362 Da, and 5,344 Da. 5FGA, KRT19, HIST1H2BK, ITIH2, MARCH2, CLDN1, MAL2, and TIMP1. 

6cfDNA KRAS mutations at PDAC hotspot codons (12, 13, 61). 7cfDNA KRAS mutations at any screened 

codons reported in any cancer sites. 
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Table 3.2 Performance of the most frequently examined novel biomarkers.  

 

Sensitivity, specificity, and AUC value breakdowns are given for novel biomarkers that were examined in 
more than one study and had a minimum of 21 unique entries. N/A indicates that there are no extracted 
data for this field for a minimum of two biomarker entries. 
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panel. The mean sensitivity of all novel biomarkers is higher when examined as part of 

a multi-biomarker panel. This holds true for mean specificity in most biomarkers also, 

with just CA125 and thrombospondin-2 (THBS2) showing improved mean specificity 

alone compared with when part of a panel. Mean AUC values are higher when examined 

as part of a panel for all biomarkers except Mucin 5AC (MUC5AC), with superior mean 

AUC values for this biomarker being found when examined alone. Albumin (ALB) had 

the highest mean sensitivity values both alone and as part of a panel, with LRG1 having 

the lowest in both cases. THBS1 had the highest mean specificity both alone and as part 

of a panel, with LRG1 again performing the worst in both categories. MUC5AC had the 

highest mean AUC value alone; however, it had the lowest mean AUC value as part of a 

panel. Conversely, ALB has the highest mean AUC value as part of a panel, and the lowest 

mean AUC value when examined alone. TIMP-1 is the only of these biomarkers that also 

appears among the biomarkers in the 90th percentile in Figure 3.10, where it appears 

as part of an 8-biomarker panel.  
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3.5 Discussion 

Currently, there is no biomarker that can effectively and consistently discriminate 

patients with PDAC from those without. The aim of this systematic review and meta-

analysis was to examine the performance of all published blood-based biomarkers used 

for the diagnosis of PDAC. Specifically, papers that evaluated some blood-based 

biomarker(s) for the diagnosis of PDAC were examined, with no limit placed on the 

publication date of the paper or the “omic” compartment of the biomarker(s) assessed. 

The performance of all biomarkers was examined in order to evaluate whether single 

biomarkers or multi-biomarker panels generally have the best efficacy for PDAC 

diagnosis. This evaluation was carried out through the use of a multivariate three-level 

meta-analysis, with AUC values as effect sizes, and by comparing sensitivity and 

specificity values. 

 

3.5.1 Multi-biomarker panels - the better choice 

Overall, multi-biomarker panels are significantly more robust than single biomarkers 

alone, and in the context of PDAC, this holds true for both CA19-9 and novel biomarker 

subgroups, as well as across different patient control cohorts. This review shows 

extensive evidence, both graphically and statistically, that panels of more than one 

biomarker tend to perform better than single biomarkers alone for the diagnosis of 

PDAC. Furthermore, it was evident when eliminating confounding variables by 

subdividing the data into different groups, using variables such as biomarker type (CA19-

9 or novel) or patient control cohort examined (healthy, benign, or mixed), that this 

result is robust and prevails throughout multiple subgroup analyses. Importantly, the 

inclusion of studies that do not specify PDAC did not greatly alter the results of the meta-

analysis, suggesting that the cohorts within these studies are similar to those included 

in the original analysis. While there were many single biomarkers reported in the 

included studies with impressive efficacy, the results of the meta-analysis indicate that 

on the whole, multi-biomarker panels produce the most robust diagnostic performance. 

This information is crucial for future studies, as it suggests that researchers should focus 

their efforts on the identification of multiple biomarkers, rather than attempting to 

isolate one single biomarker. It is important to note also, that the creation of a multi-
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biomarker panel is not as straightforward as it may seem, and when dealing with 

multiple levels of patient data and consequently different cut-offs for individual 

biomarkers, care must be taken to ensure the desired sensitivity and specificity of the 

panel as a whole. Integration of these data will allow researchers the flexibility to tailor 

their panel to certain conditions, and determine individual cut-offs based on the needs 

of the test[166]. Computational approaches, such as machine learning, have shown utility 

in this context and could provide future research with a more streamlined approach to 

multi-biomarker panel generation[316]. One caveat to this, however, is the integration of 

multi-omic data, which would require cautious consideration of the various unit 

measurements involved and, in each case, careful control of confounding variables and 

potential artefacts of experimental design[172]. In any case, whether multi-omic or single-

omic, the thoughtful generation of highly sensitive and specific multi-biomarker panels 

should arguably be the primary aim of future studies hoping to identify novel diagnostic 

biomarkers for PDAC. 

 

3.5.2 CA19-9 and its role as the current clinical standard biomarker 

As CA19-9 is regarded as the current standard biomarker for PC diagnosis, the data were 

separated into two groups, those including CA19-9 and those without (novel 

biomarkers), to evaluate the performance of CA19-9 across all studies. For both 

subgroups of data, multi-biomarkers were shown to perform significantly better than 

single biomarkers alone. Indeed, it was found that while CA19-9 is the “gold standard” 

for pancreatic diagnosis, the addition of some other biomarker to create a multi-

biomarker panel with CA19-9 resulted in improved biomarker efficacy compared with 

CA19-9 alone. Furthermore, there was a substantial amount of variation between 

studies in the reported sensitivity and specificity values of CA19-9, and this is in keeping 

with current literature[191, 192, 317, 318]. 

The results of the meta-analysis showed that the addition of CA19-9 to a multi-

biomarker panel provided a clear improvement over novel biomarker panels that did 

not contain CA19-9. In addition, CA19-9 alone appears to have consistently 

outperformed novel single biomarkers. While CA19-9 may be the most commonly used 

biomarker for diagnosis of PDAC in patients with PC, elevated expression has been 
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shown in various benign conditions such as pancreatitis, which contributes to its non-

specificity for PDAC[318]. Given the similarities that are often observed between benign 

pancreatic patient blood and PC patient blood, it follows therefore that a biomarker may 

have a diminished ability to distinguish benign cohorts from those with cancer when 

compared with healthy cohorts. To ensure the differences being observed were not a 

result of the patient cohorts being evaluated by different studies, the data were further 

separated based on the patient cohorts distinguished from PDAC: PDAC versus healthy, 

PDAC versus benign, and PDAC versus mixed. When separated based on patient control 

cohorts, the improved ability of CA19-9 biomarkers over novel biomarkers to diagnose 

PDAC is clear. 

It is also demonstrated here that the efficacy of a biomarker or biomarker panel 

to diagnose PDAC, whether including CA19-9 or a novel biomarker, is dependent on the 

reference cohort in question. Both CA19-9 and novel biomarkers exhibit improved 

ability to distinguish patients with PDAC from healthy controls when compared with 

both benign and mixed cohorts, with CA19-9 multi-biomarker panels producing the best 

diagnostic performance across all cohorts. There is considerable variation across pooled 

AUC values for CA19-9 biomarkers and novel biomarkers in the mixed patient cohort 

setting, demonstrating the increased difficulty faced in this control cohort. As a result of 

the recognized poor specificity of CA19-9, the lack of a standardized detection 

method[167], and the variation in cut-off levels being used for PDAC diagnosis across the 

studies[319-321], in clinical practice CA19-9 is rarely relied upon for diagnostic purposes, 

despite being FDA approved for this indication. More often it is used to support a 

diagnosis, based on appropriate imaging and/ or biopsy, or in staging with Immuno-PET 

imaging[322], as a biomarker of recurrence[301, 303], or as a biomarker of tumour 

resectability[323, 324]. In fact, the results of this meta-analysis provide a strong argument 

in favour of the inclusion of CA19-9 when evaluating a new biomarker panel, while 

exercising caution given the variation in results obtained across different studies, and 

the reduced potential of CA19-9 in certain benign conditions. The role of CA19-9 in PC 

diagnosis, therefore, seems reliant on the identification of a robust multi-biomarker 

panel that can adequately control for the inherent defects of the biomarker. 
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3.5.3 Multi-omics in biomarker identification 

While it is evident from the results of this review that multi-biomarker panels are the 

most robust biomarker type, it remains to be seen which biological factors produce the 

most robust biomarkers. A major limitation of this review results from the lack of 

diversity seen in the “omic” compartments (genomics, proteomics, etc.) of biomarkers. 

Indeed, proteomic biomarkers make up the vast majority of biomarkers evaluated 

across all studies in this review, making comparisons between proteomic biomarkers 

and other omic compartments difficult. It is evident, however, that the combination of 

different omic compartments with CA19-9 (proteomics) did result in high sensitivity and 

specificity values, though the number of studies examining multi-omic biomarker panels 

is too low to see any distinct difference. By examining the biomarkers that fall into the 

90th percentile for both sensitivity and specificity, it is evident that while proteomic 

biomarkers may represent the majority, they do not solely comprise the top biomarkers. 

Indeed, nearly as many of these “top” biomarkers were transcriptomic in nature, 

highlighting the importance of examining different biological compartments for the 

discovery of robust biomarkers. Furthermore, while instances where multiple omic 

compartments were integrated to form a panel were uncommon among the papers 

included in this review, one multi-omic biomarker panel was among the 90th percentile 

biomarkers. A 4-biomarker panel containing CA19-9 and three metabolites was among 

those with the highest sensitivity and specificity, demonstrating the potential for such 

multi-omic biomarker panels in this context. While it is not within the scope of this 

review to evaluate whether multi-omic panels produce better results than single-omic 

panels, current trends in biomarker discovery are leaning toward multi-omic data 

integration[166, 325, 326]. The evaluation of multiple biological compartments to give a 

comprehensive overview of disease, and subsequently the generation of a robust panel 

that encompasses the complexity of that disease is an appealing concept that has much 

potential in this context and requires further elucidation. 

 

3.5.4 Promising novel biomarkers for PC diagnosis 

Systematic reviews are uniquely poised to identify trends in the literature that may 

otherwise go unnoticed. Importantly, this systematic review allowed for the 
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identification of 13 novel biomarkers that have been repeatedly examined as blood-

based biomarkers for PDAC diagnosis across multiple studies, and show promise both 

alone and as part of a multi-biomarker panel. While again, the majority of these 

biomarkers are proteins, the transcriptomic biomarker TIMP-1 emerged as the most 

frequently assessed novel biomarker. Though it showed poor mean sensitivity and 

specificity alone, TIMP-1 performed well as part of a panel with improved mean 

sensitivity, specificity, and AUC values. This is further evident from its appearance 

among the 90th percentile biomarkers, where it achieved high sensitivity and specificity 

as part of an 8-biomarker panel of extracellular vesicle long RNAs. Because of its 

association with cell survival, cell growth, and tumorigenesis, the TIMP-1 protein has 

been investigated as a potential biomarker, both alone and as part of a panel, in several 

other cancer types such as gastric[327, 328], colorectal[329-331], and breast[332, 333]. This 

association, however, could be the reason for TIMP-1s poor utility alone in PDAC 

diagnosis. Indeed, TIMP-1 protein performance as a blood-based biomarker in PDAC has 

been shown to be impaired in patients with jaundice[334], though not in patients with 

chronic pancreatitis[335, 336]. Furthermore, TIMP-1 expression is known to be increased in 

patients with, and at an increased risk of developing, type 2 diabetes[337, 338], as well as 

in obese patients[339]. This evidence suggests that the utility of TIMP-1 in PDAC diagnosis 

is promising, and may lie in its addition to a biomarker panel rather than its use alone 

due to its impairment in patients with several benign conditions. Interestingly, TIMP-1 

has been examined alongside another promising novel biomarker, inflammatory protein 

leucine-rich-alpha-2-glycoprotein 1 (LRG1). LRG1 has been shown to promote 

angiogenesis and regulate tumorigenesis, and is a promising biomarker candidate for 

several other cancer types[340]. Indeed, a plasma-based panel of TIMP-1, LRG1, and 

CA19-9 discriminated PDAC from healthy controls with improved accuracy compared 

with CA19-9 alone[341]. LRG1 has also been evaluated in plasma alongside TTR and CA19-

9, where this panel exceeded the accuracy of CA19-9 alone by over 10% in its ability to 

discriminate PDAC from benign controls and other cancers[342]. While LRG1 shows 

promise as part of a panel for PDAC diagnosis, it has poor mean sensitivity and specificity 

alone, and there is a lack of research into its performance in control cohorts with various 

benign conditions. 
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Conversely, cancer antigen 125 (CA125), CEA, and carbohydrate antigen 242 

(CA242) have been evaluated extensively in PC and as such there is a plethora of 

research on these biomarkers. CEA is an established and widely used tumour biomarker 

that is known to be increased in several cancers such as colorectal[343], breast[344], and 

lung[345]. While CEA levels are currently measured for PDAC diagnosis in some clinical 

settings, it is not FDA approved for PDAC diagnosis and its utility and accuracy remains 

limited, with a 2018 systematic review and meta-analysis reporting CEA to be inferior to 

CA19-9[346]. CEA levels are also known to be elevated in patients with chronic 

pancreatitis, with serum CEA being unable to distinguish patients with PDAC from those 

with chronic pancreatitis[347]. Indeed, in this review, it was shown that CEA alone exhibits 

poor diagnostic performance across included studies, with improved results being 

obtained when CEA is examined as part of a panel. CA125 is a known biomarker for 

ovarian cancer, which has been shown to have superior performance to CEA for PDAC 

diagnosis[348, 349]. It has also produced higher mean sensitivity, specificity, and AUC 

values than CEA across the studies included here. Furthermore, a 2017 systematic 

review and meta-analysis showed that a CA125-based diagnostic panel for PDAC was 

superior to CA125 or CA19-9 alone[350]. Similar to CEA, CA242 has also been extensively 

evaluated for PDAC diagnosis, with serum CA242 levels having been shown to positively 

correlate with CA19-9 levels[351]. CA242 has also been demonstrated to have better 

diagnostic performance than CEA, with mean sensitivity, specificity and AUC values in 

this study being higher for CA242 than CEA[352]. Unfortunately, CA242 is known to be 

elevated in the blood of patients with type 2 diabetes, and as such, has limited utility 

alone for PDAC diagnosis, despite exhibiting higher specificity than CA19-9, CEA, and 

CA125[348, 353]. While none of these biomarkers have stood out on their own as having 

utility across all patient cohorts, they are frequently examined as part of biomarker 

panels with other novel biomarkers. Laminin subunit gamma-2 (LAMC2), for example, is 

a promising new biomarker which was examined in a large-scale study of over 400 

patients across three continents, where it was elevated in PC serum compared with 

controls and demonstrated a sensitivity that was comparable with CA19-9[354, 355]. 

Furthermore, a serum-based panel of LAMC2 with both CA19-9 and CA125 has been 

shown to produce accurate discrimination of PDAC from benign controls[192]. These 

studies provide promising results for LAMC2 as a potential diagnostic biomarker both 
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alone and as part of a panel, though the breadth of research is limited at this time, with 

no results for mean sensitivity or specificity being obtained in this review. Another 

promising biomarker that has produced results similar to CA19-9 is MUC5AC. Serum 

MUC5AC levels have been shown to be increased in patients with PDAC compared with 

both benign and chronic pancreatitis cohorts, with MUC5AC performing on par with 

CA19-9, though again, the combination of the two produced the best results[356, 357]. 

Interestingly, the measurement of the CA19-9 antigen on circulating MUC5AC proteins 

showed promise in a study comprising over 500 patients from three different 

institutions, where both the sensitivity and specificity of the biomarker were improved 

by this method compared with measuring just CA19-9 alone[358]. While the initial 

research on MUC5AC shows favourable results, there are few papers examining the 

capability of MUC5AC as part a multi-biomarker panel. 

The addition of CA19-9 to some novel biomarker is a trend across most studies 

aimed at identifying diagnostic biomarkers for PDAC, with results generally reporting an 

improved result from the panel compared to individual biomarkers alone. Studies 

examining the potential of ALB in this setting are no different, with the vast majority of 

entries for ALB in this review originating from multi-biomarker panels. Indeed, a 5-

biomarker panel containing ALB and CA19-9 produced improved diagnostic capabilities 

compared with CA19-9 alone[359]. Similarly, the combination of ALB with CA19-9 and IGF-

1 also performed better than CA19-9 at distinguishing PDAC from chronic 

pancreatitis[347]. Interleukin-8 (IL-8), a proinflammatory cytokine, has also shown limited 

utility alone but appears to achieve reasonable results when included in a panel. Serum 

IL-8 has been shown to be higher in patients with PC than controls; however, the mean 

AUC value for IL-8 alone is poor and improved when included in a panel with other 

biomarkers[360-362]. This is also the case for THBS2, which produces modest 

discrimination alone, and is significantly improved when examined alongside CA19-9[363, 

364]. Conversely, c-reactive protein (CRP), a biomarker of inflammation, has shown 

limited utility as part of a panel, where the panel showed no improvement with the 

addition of CRP[347]. A 2020 study also showed a significant difference in CRP levels 

between PDAC and normal controls; however, after running extensive statistical tests 

on all candidate biomarkers it was not included in the final panel of six biomarkers[365]. 
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While CRP is increased in patients with PDAC compared with controls, it is also elevated 

in patients with moderate and severe pancreatitis[366]. Moreover, as CRP is derived from 

the liver, it is substantially influenced by the presence of jaundice making it unreliable 

in patients with this comorbidity[347]. Interestingly, several studied have examined these 

more “unreliable” candidates together, and obtained promising results. A 4-biomarker 

panel with CA19-9, CRP, and IL-8 demonstrated good discrimination of PDAC from 

controls[367]. While a 2014 study showed that a panel consisting of ALB, CA19-9, CRP, 

and IL-8 had the highest diagnostic value for distinguishing PDAC from controls, with this 

panel proving to be effective in identifying other cancers, such as breast, cervical, 

colorectal, prostate, and lung[367]. These studies highlight the utility of all of these 

biomarkers together, rather than independently. 

Finally, two miRNA emerged as the most frequently examined across the studies 

included in this review, miR-21 and miR-483. MiR-21 levels in the circulation have been 

shown to be higher in PDAC compared with healthy controls, and are also associated 

with advanced stage, metastasis, and shorter survival[368, 369]. However, miR-21 shows 

poor discriminatory ability between IPMN and PDAC, suggesting the involvement of 

miR-21 in an early step of pancreatic tumorigenesis[368]. Indeed, the ability of miR-21 to 

distinguish PDAC from controls was overshadowed by several other miRNA in a 2019 

study, such as miR-33a and miR-320a, which outperformed miR-21 in combination, thus 

excluding miR-21 from the final panel[370]. Overexpression of miR-483 is also thought to 

be an early event in PDAC progression, having been shown to be present in premalignant 

PCL and early-stage disease[371]. A 2016 large-scale miRNA study with over 400 patients 

with PDAC showed that serum miR-483 expression was significantly increased in 

patients with PDAC compared with both benign and healthy controls together[372]. 

Unfortunately, there is a lack a research into the diagnostic potential of these individual 

miRNAs, as most studies focus on the large-scale screening of miRNAs and utilize 

complex modelling to narrow down their validation cohort to the most statistically 

relevant biomarkers. 

On closer examination of the literature around these frequently examined 

biomarkers, it is clear that no one biomarker produces highly accurate diagnostic results 

alone. Indeed, the evidence would suggest that the primary utility of all of these 
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biomarkers can be found in their use within multi-biomarker panels. While individually 

each of these biomarkers has their limitations, it is evident that when put together they 

can account for the weaknesses of the others to improve the end results. Furthermore, 

the addition of CA19-9 stands out as a clear prerequisite for the design of future multi-

biomarker panels. These novel candidates provide a glimpse into the promising future 

of PDAC diagnostic biomarker discovery, though they remain to be examined within 

cohorts of patients with various underlying conditions and comorbidities that may 

influence their performance. Importantly, while blood-based biomarkers in the PDAC 

setting are likely to be used primarily as companion diagnostics, several of these 

biomarkers may also prove useful in the risk stratification of pancreatic patients with 

underlying conditions, given their dysregulation across certain control cohorts as 

outlined in this study. 

 

3.5.5 The state of current PC research 

This review highlights the variability in data quality and study design across PC research. 

Here, studies which employ biomarkers for the diagnosis of PDAC have been 

interrogated, identifying many studies that fail to provide sufficient information 

regarding their patient cohorts, their experimental design or their index test of interest. 

A substantial number of papers fail to report on the subtype of PC examined, simply 

conflating all subtypes as PC. For the purposes of the meta-analysis, papers that do not 

specify PDAC as the subtype of interest were excluded so as to reduce confounding 

variables. However, this lack of detail is a major flaw within many PC studies, where the 

specific subtype examined should always be clearly indicated. 

Furthermore, almost half of the included biomarker entries did not have 

information regarding the reference standard used to diagnose patients with PDAC. In 

these cases, it was unclear whether all patients in this cohort had been diagnosed using 

the same reference standard or not, resulting in high levels of bias amongst these 

papers. A third of the biomarkers examined had no details attributed to them regarding 

the stage details of the PDAC cohort, with reporting of sex and age breakdowns in this 

cohort also poor. Control cohorts had similar issues, with high numbers of biomarkers 

also lacking sex and age information. 
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Unfortunately, the number of studies examining arguably the most clinically 

relevant control cohort (mixed) is extremely low compared with healthy alone and 

benign alone. While this review has identified many studies evaluating various types of 

biomarkers for PDAC diagnosis, the lack of studies conducted in clinically relevant 

cohorts may be the reason for the unfortunate lack of biomarkers currently in clinical 

use. Blinding of studies was also extremely poor, with very few opting to adopt this 

strategy for biomarker identification. This has further contributed to the high levels of 

bias observed across the studies included in this review. 

Finally, evaluation of biomarker efficacy was extremely flawed in some cases, 

with a substantial number of biomarkers being attributed only with a p-value and no 

qualitative assessment (e.g., AUC or sensitivity) of the biomarker. Overall, huge flaws 

exist in current PC research in the context of identification of biomarkers for PDAC 

diagnosis. High levels of bias can be seen in many studies, with missing or unclear 

information regarding key study design points further compounding these issues. These 

are major flaws which recur again and again in the literature and could be contributing 

to the lack of repeated examination of high performing biomarkers in follow-up studies 

and could subsequently be responsible for the poor progress seen in this field in recent 

years. 

 

3.5.6 Limitations of this systematic review and meta-analysis 

As modern vernaculars regard PC and its PDAC subtype to be synonymous, any paper 

that did not specify an alternative subtype of PC was included in the extraction stage of 

this study and assumed to be PDAC. While a small minority of the total included studies 

make up this population, it is important to note that the inclusion of these data may not 

be appropriate in some cases as PDAC may not have been the subtype of PC examined. 

Furthermore, it is important to note that recent studies have highlighted the issue of 

potential sample contamination by endocrine, exocrine, acinar or even normal cells, 

which have been shown to affect the subtype classification[373]. This is an issue across all 

pancreatic literature and as such would persist throughout this review. 
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CA19-9 is highlighted in this review as the current FDA-approved biomarker for PDAC 

diagnosis; however, CA19-9 cut-off values were not standardized across all studies 

included in the review. As such, all CA19-9 entries may not have resulted from the same 

cut-off value and it may not be appropriate to compare them directly, as changes in 

CA19-9 cut-off values have been demonstrated to improve biomarker robustness[192]. A 

major caveat of this review, which results from the nature of the data extraction, is that 

certain biomarkers or biomarker panels may arise several times from a single study, 

having been examined in multiple patient cohorts within that study, for example, in the 

context of model training and validation. Unfortunately, as in many studies, there can 

be overlap between the patients recruited for the training and validation cohorts, 

resulting in repeated sampling from the same patients. The within-study variance has 

been controlled for in the multivariate meta-analysis; however, repeated sampling from 

the same patients was not accounted for and may introduce a level of bias toward some 

biomarkers. Furthermore, in many instances, studies have opted to evaluate several 

single biomarkers and subsequently combine these biomarkers to form a multi-

biomarker panel. Some multi-biomarker panels have also been examined in some 

studies both alone and with the addition of CA19-9 to the panel. Possible bias due to 

repeated entries is an important limitation of this study, which could not be avoided due 

to the nature of current research papers and study designs. Importantly, while the 

QUADAS-2 tool that was used to assess study quality and RoB has been used previously 

for similar systematic reviews of diagnostic biomarkers[374], there may be other forms of 

bias introduced by these studies that were not accounted for in this assessment. 

In summary, blood-based multi-biomarker panels for the diagnosis of PDAC exhibit 

superior performance in comparison with single biomarkers, in both CA19-9–containing 

biomarkers and novel biomarkers, and across all patient control cohorts. CA19-9 shows 

little utility alone, as it is less effective in mixed control cohorts, though when used in 

combination with a panel of multiple biomarkers these CA19-9–containing panels 

produce a better diagnostic performance than novel multi-biomarker panels. These 

results suggest that future biomarker studies for PDAC diagnosis should focus on the 

identification of a multi-biomarker panel which includes CA19-9, while drawing from the 
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pool of promising novel biomarkers that have been identified and examined across 

several different studies.
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Multi-omic profiling of pancreatic cyst fluid for 

the identification of novel biomarkers of patient 
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4.1 Introduction 

According to the American Cancer Society, PC will have the worst 5-year survival rate of 

any cancer in 2023, at just 12%[1]. Indeed, in 2023, the estimated number of new cases 

of PC in the United States is 64,050, with 50,550 expected deaths. While the 5-year 

survival rate has increased since the 11% announced in 2022, this minor improvement 

shows the lack of progress in PC research, and the urgent need for drastic changes in PC 

detection and management[375]. The poor rates of survival seen in PC are attributed 

mainly to the late detection of the disease, with vague symptoms such as weight loss or 

abdominal pain, causing patients to present to their GP only when their symptoms 

become severe, and therefore when the disease is at a late stage of development[299]. 

The late-stage diagnosis of these patients limits their treatment options, further 

compounding the problem. Early detection of PC, therefore, is the primary concern of 

most PC research, as it has the potential to make a substantial difference to the 

treatment and survival of these patients. 

 PCLs are fluid-filled sacs, on or inside the pancreas, that have the potential to 

become premalignant[121]. While some PCLs are completely benign, others have been 

shown to have malignant potential and could therefore play a role in the progression to 

PC[121]. While this is known, the issue arises in distinguishing which PCLs are benign and 

which are premalignant and should, as such, be monitored and/or treated accordingly. 

At present, there are several sets of clinical guidelines worldwide for the stratification 

of PCLs into risk groups based on their clinical presentation[376, 377]. Factors such as size 

of the PCL, presence or absence of a solid nodule, and location in/on the pancreas are 

assessed in order to classify PCLs as low- or high-risk for PC development. Unfortunately, 

the presence of several sets of guidelines worldwide indicates the lack of consensus 

among clinicians as to the cutoffs or defined parameters for these factors. PCLs can 

generally be grouped into two categories, mucinous cystic neoplasms, which have 

malignant potential, or non-mucinous cystic neoplasms, which are most often 

benign[378]. As such, detection of mucinous cysts is often among the first steps in the 

diagnostic cascade. Presently, the measurement of CEA as part of the aspiration of PCLs 

via endoscopic ultrasound is routine, with levels above the threshold of ≥192 mg/dL 

indicating mucinous cysts[163]. Unfortunately, a 2015 multicenter study evaluating CEA 
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demonstrated a sensitivity of 61% and a specificity of 77% for mucinous cyst 

identification, indicating that 39% of mucinous cysts would be misdiagnosed at this CEA 

threshold[378]. More recently, a 2021 systematic review including data from 609 PCLs 

reported a sensitivity of 56% and a specificity of 96% for CEA, with a substantial 44% of 

mucinous cysts being misdiagnosed[163]. CA19-9 is the only FDA-approved biomarker for 

the diagnosis of PC, however, its utility in this setting is extremely poor, particularly in 

patients with underlying conditions such as diabetes or pancreatitis[167]. As such, the risk 

stratification of these patients is inaccurate, and could therefore be contributing to the 

overall problem of early detection. Furthermore, the rate of PCL incidence is increasing 

each year as the advent of higher resolution imaging allows the incidental capture of 

more PCLs[163]. The identification of novel, robust biomarkers for the early detection of 

PC risk is urgently needed for these patients, and could provide a much needed change 

to the way in which PCLs are managed, enabling the discovery of high-risk patients at 

earlier stages of PC development.  

 In this study, biomarkers that were identified in Chapter 3 through a review of 

over 40 years of PC literature as being promising potential diagnostic biomarkers for PC, 

were examined in an independent patient cohort. These blood-based biomarkers were 

assessed for their utility in PCF as potential biomarkers of PC risk stratification. Building 

on the results of the previous chapter, where multi-biomarker panels were shown to 

produce the best results, and proteomic- and transcriptomic-based biomarkers made up 

the majority of ‘promising biomarkers’ highlighted across the literature, the proteome 

and transcriptome of patient PCF were profiled to identify differentially expressed 

proteins and miRNA. These factors were then examined alone, and as a multi-omic 

panel, to assess whether panels that encompassed multiple cellular levels of complexity 

could better control for the dysregulation of one factor, facilitating improved 

performance of a biomarker panel.  
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4.2 Hypothesis 

There are factors within PCF which are differentially expressed between low- and high-

risk patients, and these factors can be used to stratify patients based on their risk of PC. 

 

4.3 Specific Aims 

1. Examine the performance of biomarkers that were previously identified in the 

literature in a novel patient cohort. 

2. Profile the proteome of PCF and identify proteins that are differentially 

expressed between low- and high-risk patients. 

3. Profile the transcriptome of PCF and identify miRNA that are differentially 

expressed between low- and high-risk patients. 

4. Examine the utility of differentially expressed proteins and miRNA as biomarkers 

of PC risk, both alone and integrated into a multi-omic panel. 

5. Validate these results using different techniques in the same patient cohort. 
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4.4 Experimental design 

4.4.1 Patient demographic information for PCF cohort 

Three different patient cohorts were examined as part of this study. Demographic and 

clinical information for patients in the proteomic cohort, the transcriptomic cohort and 

the multi-omic cohort are given in Table 4.1. Risk classifications for these patients were 

assigned as per the 2018 European evidence-based guidelines for pancreatic cystic 

neoplasms [157]. Details on specific clinical criteria used to determine these classifications 

for each patient are unavailable, and as such, this lack of information should be noted 

as a limitation to the risk classifications of these patients.  

 

4.4.2 Proteomic profiling of PCF 

PCF samples were sonicated prior to use, as described in section 2.2.6. Proteomic 

examination of patient PCF was carried out as per section 2.2.7. The volume of sample 

required to obtain 50 µg of protein for each individual PCF sample was determined using 

the BCA assay results from section 2.2.7.1, and this volume was the starting point for 

each sample in the workflow. 

 

4.4.3 Transcriptomic profiling of PCF 

Transcriptomic evaluation of patient PCF was carried out as per section 2.2.10. HTG 

EdgeSeq Biofluid Lysis Buffer was used to lyse PCF samples prior to sequencing. 

 

4.4.4 Analysis of proteomic and transcriptomic PCF data 

Proteomic and transcriptomic data obtained for PCF were processed, analysed and 

subsequently scaled and integrated using the methodologies outlined in section 

2.2.21.1.  
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Table 4.1 Patient demographic information for PCF cohorts. 

 Proteomics Transcriptomics Multi-omic 

 Low Risk High Risk Low Risk High Risk Low Risk High Risk 

No of patients (M/F) 17 (7/10) 15 (6/9) 15 (5/10) 15 (8/8) 12 (5/7) 12 (5/7) 

Mean age (range) 56 (22-82) 71 (39-85) 56 (22-80) 71 (39-85) 53 (22-80) 71 (39-85) 

Smoking habits       

 None 11 7 10 8 8 6 

 Active 3 1 2 1 2 1 

 Ex-smoker 2 5 3 5 2 4 

 Not known 1 2 0 1 0 1 

Alcohol consumption       

 None 8 9 8 9 6 8 

 Active 6 3 6 3 5 3 

 Heavy 0 0 0 1 0 0 

 Abstinent (ex-heavy) 2 0 1 0 1 0 

 Not known 1 2 0 2 0 1 

Diabetic 1 1 1 1 1 1 

Pancreatitis 1 0 1 0 1 0 

Von Hippel-Lindau 0 1 0 1 0 1 

Cohorts are divided into low- and high-risk groups. Mean age is rounded to the nearest whole number. 
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4.4.5 Quantification of CA19-9 in patient serum by sandwich ELISA 

Concentrations of soluble CA19-9 in patient serum samples were measured via sandwich 

ELISA as per section 2.2.9. Samples were diluted both 1:2 with sample diluent to ensure 

capture within the standard curve. 

 

4.4.6 Quantification of CEA in patient PCF 

Concentrations of soluble CEA in patient PCF samples were measured clinically by the 

cytology team on the day of sample collection.   

 

4.4.7 Quantification of soluble LCN2, REG1A, PIGR and PRSS8 by sandwich ELISA 

Concentrations of soluble LCN2, REG1A, PIGR and PRSS8 in patient PCF and matched 

serum samples were measured via sandwich ELISA as per section 2.2.9. PCF was 

sonicated prior to use as per section 2.2.6. Samples were diluted both 1:20 and 1:40 

with sample diluent to ensure capture within the standard curve. 

 

4.4.8 QIAGEN qPCR custom microarray for PCF 

The validation of transcriptomic results was carried out using QIAGEN RT-qPCR custom 

microarrays. Assay setup was carried out as per section 2.2.11. PCF was sonicated prior 

to RNA isolation as per section 2.2.6. Custom QIAGEN pre-coated microarray plates were 

used, evaluating 18 targets and 6 quality controls as listed in Table 4.2. Targets of 

interest within the PCF were SNORA66, miR-216a-5p and miR-216b-5p. Plates were 

prepared fresh and run on the same day. A sample layout and plating map for this 

workflow can be seen in (Appendix 3). 
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Table 4.2 QIAGEN 24-array custom plate targets and quality controls. 

miRNA targets miRNA Quality controls 

SNORA66* 

miR-216a-5p* 

miR-216b-5p* 

miR-3197 

miR-1237-5p 

miR-197-5p 

miR-6741-5p 

miR-3180-3p 

miR-3180 

miR-6782-5p 

miR-1207-5p 

miR-1908-5p 

miR-6727-5p 

miR-2861 

miR-375-3p 

miR-500b-3p 

miR-532-5p 

miR-130a-5p 

UniSp2 

UniSp3 

UniSp4 

UniSp6 

miR-451a 

miR-23a-3p 

Targets of interest for this chapter are denoted with *. 
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4.5 Results 

4.5.1 Four promising biomarkers are significantly increased in high-risk PCF 

Promising biomarkers that were identified in Chapter 3 as being repeatedly examined in 

the literature, and that demonstrated good sensitivity and specificity for PC diagnosis, 

were interrogated in this cohort within the PCF. From this list, five proteins were 

identified via label-free proteomics (Figure 4.1A-E), and one miRNA was identified via 

whole transcriptome sequencing of patient PCF (Figure 4.1F). TIMP-1, MUC5AC, CRP and 

LAMC2 were found to be present at significantly higher levels in high-risk PCF compared 

to low-risk PCF (p<0.05)(Figure 4.1A-D). The levels of LRG1 and miR-21-3p were not 

significantly different between the low- and high-risk groups (p>0.05)(Figure 4.1E-F). 

 The four proteins that were significantly different between the low- and high-

risk groups (TIMP-1, MUC5AC, CRP and LAMC2) were then used to stratify patients 

based on their expression of these proteins. Unsupervised hierarchical clustering of 

patients into risk groups using these proteins was performed with an accuracy of 58.3% 

(Figure 4.2). TIMP-1 and LAMC2 expression levels were most related, with MUC5AC 

showing little relatedness to the levels of the other three proteins. This is not 

unexpected, given the large amount of spread within the MUC5AC data in both the low- 

and high-risk patients (Figure 4.1B). Overall, these four blood-based biomarkers for the 

diagnosis of PC performed poorly in the risk stratification of patients based on their 

expression levels within the PCF. 

 

4.5.2 Eight novel proteins were identified as being significantly increased in high-risk 

PCF 

Label-free proteomics identified 465 proteins present in the PCF samples after data 

clean-up. Differential expression analysis revealed eight proteins [PIGR, S100A8, REG1A, 

LGALS3, TCN1, LCN2, PRSS8 and MUC6] to be significantly upregulated in high-risk PCF 

compared to low-risk PCF (p<0.002, FDR=0.05, s0=0.1)(Figure 4.3A). Despite being 

differentially expressed, the distribution of the expression levels from patient-to-patient 

within both the low- and high-risk groups was quite large (Figure 4.3B).  
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Figure 4.1 Four promising biomarkers are significantly increased in high-risk PCF 

compared to low-risk. (A-E) Boxplots showing the expression level of promising protein 

biomarkers, in Log2(LFQ intensity). Data are presented as mean ± SEM for n=15 high-risk 

patients and n=17 low-risk patients. (F) Boxplot showing the expression level of a 

promising miRNA biomarker, in Log2(counts per million). Data are presented as mean ± 

SEM for n=12 low-risk and n=12 high-risk patients. Mann-Whitney test. *p<0.05, 

**p<0.01. 
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Figure 4.2 Expression of the four top occurring biomarkers in PCF clusters patients into 

risk groups with 58.3% accuracy. Unsupervised hierarchical clustering of patients into 

high-risk (red) and low-risk (blue) groups based on their expression of the four significant 

promising biomarkers. Dendrograms show (top) the relatedness of the patients, and 

(left) the relatedness of the proteins (purple). Data are presented for n=12 low-risk and 

n=12 high-risk patients. 
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Figure 4.3 Eight proteins were identified as being significantly upregulated in high-risk 

patient PCF compared to low-risk. (A) Differential expression analysis identified eight 

proteins that were differentially expressed between low- and high-risk PCF samples 

(p<0.002, FDR=0.05, s0=0.1). Proteins identified in green were considered significantly 

upregulated in high-risk PCF compared to low-risk PCF. Dotted lines indicate the fold 

change and significance cut-offs. (B) Box plots showing the distribution of patient 

expression levels, in Log2(LFQ intensity), for each of the eight significant proteins. High-

risk patients (n=15) are shown in red; low-risk patients (n=17) are shown in blue. 
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As expected, spearman correlations showed that expression levels of each of the 

eight proteins correlated with patient risk (p<0.01)(Figure 4.4). While none of these 

proteins correlated with the presence of diabetes or pancreatitis, nor with smoking 

habits or sex, five proteins had significant positive correlations with age (p<0.05). 

Indeed, PIGR, REG1a, TCN1, LCN2 and MUC6 expression levels were shown to increase 

with increasing age. Furthermore, TCN1 levels had the strongest positive correlation out 

of the five (p<0.001). PIGR was the only protein to correlate with alcohol consumption, 

with PIGR levels significantly decreasing with increased alcohol consumption in this 

cohort (p<0.01). While LCN2, PRSS8 and MUC6 also had negative correlations with 

alcohol consumption, these were not significant (p>0.05).  

Several clinical factors were also shown to correlate with each other in this 

patient cohort. Increased risk significantly correlated with increased age (p<0.01); 

increased smoking significantly correlated with increased risk of pancreatitis (p<0.01); 

increased smoking significantly correlated with increased alcohol consumption (p<0.05); 

and increased smoking significantly correlated with sex, or given the binary coding for 

this, increased smoking significantly correlated with being male (p<0.01).  

 

4.5.3 8-protein panel in PCF stratifies patients with modest accuracy 

These eight proteins were then scaled and integrated to create an 8-protein biomarker 

panel. This 8-protein panel was then used to stratify patients into distinct groups based 

on their expression of these proteins. Unsupervised hierarchical clustering of patients 

into risk groups using this 8-protein panel was performed with an accuracy of 81.25%, 

with just n=3 low-risk and n=3 high-risk patients being grouped incorrectly (Figure 4.5). 

Expression levels of most proteins are highly related, with S100A8 being the most 

unrelated.  

 PCA was conducted using two components as this was found to account for 

72.6% of the variance (61.8% in component 1 and 10.8% in component 2) (Appendix 4) 

(Figure 4.6). LCN2, MUC6 and TCN1 were the most important contributors to the first 

component, with S100A8 being the most important contributor to the second 

component. REG1A and PRSS8, and well as TCN1 and MUC6 were highly positively  
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Figure 4.4 Expression of significant proteins in PCF significantly correlates with several 

clinical factors. Spearman correlations between patient clinical data and the eight 

differentially expressed proteins are given as a corrplot. Colour intensity relates to R2 

value; circle size relates to the p-value. Data are presented for n=17 low-risk and n=15 

high-risk patients. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 4.5 8-protein panel in PCF clusters patients into risk groups with 81.25% 

accuracy. Unsupervised hierarchical clustering of patients into high-risk (red) and low-

risk (blue) groups based on their expression of the eight significant proteins. 

Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of 

the proteins (purple). Data are presented for n=17 low-risk and n=15 high-risk patients.
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Figure 4.6 PCA analysis of 8-protein panel in PCF shows moderate distinction of the 

risk groups. 2-D PCA using the eight differentially expressed proteins, with biplot 

overlayed. Biplot scale is set to zero to ensure vectors (arrows) are scaled to represent 

their respective loadings. The length of each vector is proportional to the variance of the 

corresponding protein. The smaller the angle between a vector and a principal 

component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Ellipses represent 80% of the data captured within the risk classifications. Data are 

presented for n=17 low-risk (blue) and n=15 high-risk (red) patients. 
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correlated. S100A8 was the most uncorrelated with the other proteins, as was shown to 

be the case in the unsupervised hierarchical clustering (Figure 4.5), and it also had the 

largest amount of variance corresponding to it. REG1A, however, had the smallest 

amount of variance associated with it. The ellipse encapsulating 80% of the low-risk 

classification was much smaller than that of the high-risk classification, indicating larger 

variance in the high-risk population.  

 LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, the 8-protein panel produced an AUC value of 0.608, 

with a sensitivity of 70.6% and a specificity of 60%, indicating that this panel performs 

well in its ability to assign a high-risk classification to those who are high-risk (Figure 4.7).  

 

4.5.4 Three miRNA were identified as being significantly increased in high-risk PCF 

Whole transcriptome sequencing identified 2,096 miRNA present in the PCF samples 

after data clean-up. Differential expression analysis revealed three miRNA [SNORA66, 

miR-216a-5p and miR-216b-5p] to be significantly upregulated in high-risk PCF 

compared to low-risk PCF (adj-p<0.05, FDR=0.05, s0=0.1)(Figure 4.8A). The distribution 

of the expression levels from patient-to-patient within both the low- and high-risk 

groups is modest, with higher variability being seen in the high-risk group compared to 

the low-risk (Figure 4.8B).  

 Importantly, spearman correlations showed that only expression levels of miR-

216a-5p significantly correlated with patient risk (p<0.05), with both SNORA66 and miR-

216b-5p having positive correlation also, though not significant (p>0.05)(Figure 4.9). 

None of these miRNA significantly correlated with any clinical parameters (p>0.05). 

Indeed, while all three miRNA had negative correlation with diabetes status, and positive 

correlations with pancreatitis status, these were not significant (p>0.05). 

Several clinical factors were shown to correlate with each other in this patient 

cohort also. Increased risk significantly correlated with increased age (p<0.01), and 

increased smoking significantly correlated with increased alcohol consumption 

(p<0.001). 
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Figure 4.7 8-protein panel in PCF classifies patients based on risk with AUC of 0.608. 

LOOCV of patients using the eight differentially expressed proteins. Data are presented 

for n=17 low-risk patients and n=15 high-risk patients.   
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Figure 4.8 Three miRNA were identified as being significantly upregulated in high-risk 

patient PCF compared to low-risk. (A) Differential expression analysis identified three 

miRNA that were differentially expressed between low- and high-risk PCF samples 

(p<0.05, FDR=0.05, s0=0.1). MiRNA identified in green were considered significantly 

upregulated in high-risk PCF compared to low-risk PCF. Dotted lines indicate the fold 

change and significance cut-offs. (B) Box plots showing the distribution of patient 

expression levels, in Log2(CPM), for each of the three significant miRNA. High-risk 

patients (n=15) are shown in red; low-risk patients (n=15) are shown in blue. 
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Figure 4.9 Expression of significant miRNA in PCF does not significantly correlate with 

clinical factors. Spearman correlations between patient clinical data and the three 

differentially expressed miRNA are given as a corrplot. Colour intensity relates to R2 

value; circle size relates to the p-value. Data are presented for n=15 low-risk and n=15 

high-risk patients.*p<0.05, **p<0.01, ***p<0.001. 
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4.5.5 3-miRNA panel in PCF stratifies patients with poor accuracy 

These three miRNA were then scaled and integrated to create a 3-miRNA biomarker 

panel. This 3-miRNA panel was then used to stratify patients into distinct groups based 

on their expression of these miRNA. Unsupervised hierarchical clustering of patients into 

risk groups using this 3-miRNA panel was performed with an accuracy of 60%, with n=6 

low-risk and n=6 high-risk patients being grouped incorrectly (Figure 4.10). Expression 

levels of miR-216a-5p and miR-216b-5p were most related to each other, with SNORA66 

being the most unrelated.  

 PCA was conducted using two components as this was found to account for 

98.9% of the variance (93.2% in component 1 and 5.7% in component 2) (Appendix 

5)(Figure 4.11). MiR-216a-5p and miR-216b-5p were the most important contributors to 

the first component, with SNORA66 being the most important contributor to the second 

component. MiR-216a-5p and miR-216b-5p were shown to be highly positively 

correlated, with SNORA66 having no correlation with either miR-216a-5p or miR-216b-

5p, as was shown to be the case in the unsupervised hierarchical clustering (Figure 4.10). 

All three miRNA had a large amount of variance associated with them. The ellipse 

encapsulating 80% of the low-risk classification is much smaller than that of the high-

risk classification, indicating larger variance in the high-risk population. Importantly, the 

entire low-risk ellipse sits inside that of the high-risk ellipse, showing the poor separation 

of the two groups. Furthermore, as miR-216a-5p and miR-216b-5p represent the first 

component which accounts for 93.2% of the variance of the dataset, in this analysis 

SNORA66 appears to be a source of variance in this panel. 

 LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, despite showing poor separation of the groups in both 

hierarchical clustering and PCA analysis, the 3-miRNA panel produced an AUC value of 

0.658, with a sensitivity of 60% and a specificity of 53.3% (Figure 4.12). 

 

4.5.6 11-feature multi-omic panel in PCF stratifies patients with high accuracy 

The eight proteins and three miRNA that were identified as significantly differentially 

expressed were then scaled and integrated to create an 11-feature multi-omic  
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Figure 4.10 3-miRNA panel in PCF clusters patients into risk groups with 60% accuracy. 

Unsupervised hierarchical clustering of patients into high-risk (red) and low-risk (blue) 

groups based on their expression of the three significant miRNA. Dendrograms show 

(top) the relatedness of the patients, and (left) the relatedness of the miRNA (orange). 

Data are presented for n=15 low-risk and n=15 high-risk patients. 
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Figure 4.11 PCA analysis of 3-miRNA panel in PCF shows poor distinction of the risk 

groups. 2-D PCA using the three differentially expressed miRNA, with biplot overlayed. 

Biplot scale is set to zero to ensure vectors (arrows) are scaled to represent their 

respective loadings. The length of each vector is proportional to the variance of the 

corresponding miRNA. The smaller the angle between a vector and a principal 

component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Ellipses represent 80% of the data captured within the risk classifications. Data are 

presented for n=15 low-risk (blue) and n=15 high-risk (red) patients. 
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Figure 4.12 3-miRNA panel in PCF classifies patients based on risk with AUC of 0.658.  

LOOCV of patients using the three differentially expressed miRNA. Data are presented 

for n=15 low-risk patients and n=15 high-risk patients.   
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biomarker panel. This 11-feature panel was then used to stratify patients into distinct 

groups based on their expression of these eleven biomarkers. Unsupervised hierarchical 

clustering of patients into risk groups using this 11-feature panel was performed with an 

accuracy of 95.8%, with just n=1 high-risk patient being grouped incorrectly (Figure 

4.13). Importantly, this outlier patient has a diagnosis of VHL disease, which genetically 

pre-disposes one to the development of PC. As such, this patient is classified as high-risk 

based on the presence of this geneticcondition. In fact, when this factor was removed 

from the classification process, and the patient was reclassified based on the rest of their 

clinical factors, this patient was reclassified as low-risk. In this case, the 11-feature panel 

produced 100% clustering accuracy (Figure 4.14). As expected, the clustering of the 

proteins and miRNA in this panel were separate, and formed the relationships that were 

observed in each panel individually. Examining the correlations between the eleven 

biomarkers within the panel further demonstrated the low correlations between the 

proteins and miRNA (Figure 4.15). Indeed, there were no significant correlations 

between any of the three miRNA and eight proteins (p>0.05). All three miRNA correlated 

significantly and strongly with each other (p<0.05). The correlations between S100A8 

expression and the other biomarkers were shown to be poor, with S100A8 representing 

a smaller segment than the other biomarkers and only correlating significantly with 

REG1A, LGALS3 and TCN1 (p<0.05). REG1A, LGALS3 and TCN1 therefore, were the only 

proteins that correlated with all seven other proteins.  

  PCA was conducted using two components as this was found to account for 

71.1% of the variance (47.8% in component 1 and 23.3% in component 2) (Appendix 

6)(Figure 4.16). The eight proteins were the most important contributors to the first 

component, with the three miRNA being the most important contributors to the second 

component. TCN1 and LCN2 contributed the most to the first component, with miR-

216b-5p contributing most to the second component. In this cohort, miR-216a-5p and 

SNORA66 were shown to be highly positively correlated, which is contrary to what was 

seen in the PCA analysis of the miRNA alone, highlighting the differences a minor change 

in patient cohort can have (Figure 4.16). All three miRNA had large amounts of variance 

associated with them, with SNORA66 having the least variance of the three miRNA 

(Figure 4.16). The proteins had less variance compared to the miRNA, with S100A8   
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Figure 4.13 11-feature multi-omic panel in PCF clusters patients into risk groups with 

95.8% accuracy. Unsupervised hierarchical clustering of patients into high-risk (red) and 

low-risk (blue) groups based on their expression of the 11-feature multi-omic panel. 

Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of 

the proteins and miRNA. Data are presented for n=12 low-risk and n=12 high-risk 

patients. 
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Figure 4.14 11-feature multi-omic panel in PCF clusters patients into risk groups with 

100% accuracy when VHL patient is reclassified. Unsupervised hierarchical clustering of 

patients into high-risk (red) and low-risk (blue) groups based on their expression of the 

11-feature multi-omic panel. Dendrograms show (top) the relatedness of the patients, 

and (left) the relatedness of the proteins and miRNA. VHL outlier patient has been 

reclassified from high-risk to low-risk. Data are presented for n=13 low-risk and n=11 

high-risk patients.   
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Figure 4.15 Biomarkers within the 11-feature multi-omic panel in PCF significantly 

positively correlate with the expression of each other. Chord diagram showing 

significant spearman correlations (p<0.05) of between eight proteins (purple sector) and 

three miRNA (orange sector) that make up the 11-feature panel. Inner chords reflect 

correlations between the biomarkers. Chord thickness is directly related to the strength 

of the correlation, with thicker chords indicating stronger correlations. 
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Figure 4.16 PCA analysis of 11-feature multi-omic panel in PCF shows adequate 

distinction of the risk groups. 2-D PCA using the 11-feature multi-omic panel, with biplot 

overlayed. Biplot scale is set to zero to ensure vectors (arrows) are scaled to represent 

their respective loadings. The length of each vector is proportional to the variance of the 

corresponding biomarker. The smaller the angle between a vector and a principal 

component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Ellipses represent 80% of the data captured within the risk classifications. Data are 

presented for n=12 low-risk (blue) and n=12 high-risk (red) patients. 
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having the least variance of all in the 11-feature panel. The ellipse encapsulating 80% of 

the low-risk classification was much smaller than that of the high-risk classification, 

indicating larger variance in the high-risk population again. Importantly, the single high-

risk datapoint that caused the high-risk ellipse to overlap substantially with the low-risk 

ellipse was the VHL patient mentioned previously. When this patient was reclassified as 

low-risk, the separation of the low- and high-risk ellipses was greatly improved (Figure 

4.17). 

LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, the 11-feature multi-omic panel produced an AUC value 

of 0.806, with a sensitivity of 66.7% and a specificity of 75% (Figure 4.18). Despite the 

modest performances of the 3-miRNA panel and 8-protein panel alone, the integration 

of these two panels together improved the overall performance. However, while both 

the 8-protein and 3-miRNA panels had improved sensitivity compared to specificity, the 

11-feature multi-omic panel had the reverse, with higher specificity compared to 

sensitivity. Importantly, when the VHL outlier patient was reclassified to low-risk as 

before, the performance of all panels improved (Figure 4.19). Indeed, the 8-protein 

panel improved its AUC value from 0.608 to 0.679, the 3-miRNA panel improved its AUC 

value from 0.658 to 0.728, and the 11-feature multi-omic panel improved its AUC value 

from 0.806 to 0.867. Furthermore, in the reclassified cohort, the 11-feature multi-omic 

panel had improved sensitivity (92.3%) compared to specificity (63.6%), further 

emphasising how the classification of this patient affects the performance of the panel. 

 

4.5.7 CA19-9 does not improve the accuracy of the 11-feature multi-omic panel 

The utility of CA19-9 in a multi-biomarker panel was demonstrated in Chapter 3, where 

it was shown to have poor diagnostic performance on its own, but when added to a 

multi-biomarker panel it improved the performance of the panel. As such, the CA19-9 

levels of these patients were measured in the matched serum by sandwich ELISA. CA19-

9 levels were not significantly different in low- or high-risk patient serum (p>0.05)(Figure 

4.20A). Indeed, the concentrations of CA19-9 in all patient serum samples clustered 

very closely, suggesting CA19-9 has no utility in the risk stratification setting. 

Importantly, two high-risk patient CA19-9 levels could not be included in these data as 
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Figure 4.17 PCA analysis of 11-feature multi-omic panel in PCF shows improved 

distinction of the risk groups when VHL patient is reclassified. 2-D PCA using the 11-

feature multi-omic panel, with biplot overlayed. Biplot scale is set to zero to ensure 

vectors (arrows) are scaled to represent their respective loadings. The length of each 

vector is proportional to the variance of the corresponding biomarker. The smaller the 

angle between a vector and a principal component axis, i.e. the more parallel they are, 

the more it contributes to that component. Small angles between vectors indicate high 

positive correlations; right angles represent no correlation; opposite angles indicate high 

negative correlations. Ellipses represent 80% of the data captured within the risk 

classifications. VHL outlier patient has been reclassified from high-risk to low-risk. Data 

are presented for n=13 low-risk (blue) and n=11 high-risk (red) patients. 
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Figure 4.18 11-feature multi-omic panel in PCF classifies patients based on risk with 

AUC of 0.806. LOOCV of patients using the (dashed grey line) 11-feature multi-omic 

panel, (orange line) 3-miRNA panel, and (purple line) 8-protein panel. 11-feature panel 

data are presented for n=12 low-risk patients and n=12 high-risk patients; 3-miRNA 

panel data are presented for n=15 low-risk patients and n=15 high-risk patients; 8-

protein panel data are presented for n=17 low-risk patients and n=15 high-risk patients. 
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Figure 4.19 11-feature multi-omic panel in PCF classifies patients based on risk with 

AUC of 0.867 when VHL patient is reclassified. LOOCV of patients with VHL patient 

reclassified to low-risk, using the (dashed grey line) 11-feature multi-omic panel, (orange 

line) 3-miRNA panel, and (purple line) 8-protein panel. 11-feature panel data are 

presented for n=13 low-risk patients and n=11 high-risk patients; 3-miRNA panel data 

are presented for n=16 low-risk patients and n=14 high-risk patients; 8-protein panel 

data are presented for n=18 low-risk patients and n=14 high-risk patients. 
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Figure 4.20 CA19-9 levels are not significantly different in patients with low- or high-

risk PCLs. (A) Serum concentration of CA19-9 (U/mL) in high-risk (red) and low-risk (blue) 

patients. Mann-Whitney test. Data are presented as mean ± SEM. (B) Spearman 

correlations between patient clinical data and the serum CA19-9 levels are given as a 

corrplot. Colour intensity relates to R2 value; circle size relates to the p-value. Data are 

presented for n=20 low-risk and n=18 high-risk patients. *p<0.05, **p<0.01, 

***p<0.001. 

  

A B 
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they were above the detection range of the ELISA. These concentrations were 

determined to be 262.48 U/mL and 727.66 U/mL by using the equation of the curve. 

When included in the analysis, however, there remains no significant difference 

between low- and high-risk CA19-9 serum levels (p=0.6156)(data not shown).  

 CA19-9 levels were also shown to have no significant correlation with any clinical 

parameters (p>0.05)(Figure 4.20B). In this cohort, age is significantly increased with risk 

(p<0.01); increased alcohol consumption is also shown to increased alongside increased 

smoking (p<0.001); and smoking is shown to be increased in patients with pancreatitis 

(p<0.05). 

 The CA19-9 expression levels obtained were then integrated into the 11-feature 

multi-omic panel to investigate whether its addition would improve the performance of 

the panel. Given that CA19-9 levels are not altered between low- and high-risk patients, 

it is unsurprising that the 12-feature panel with CA19-9 has diminished ability to cluster 

the patients into distinct groups, demonstrating an accuracy of 58.3% (Figure 4.21). 

 

4.5.8 CEA does not improve the accuracy of the 11-feature multi-omic panel 

The potential utility of CEA in pancreatic disease was demonstrated in Chapter 3, where 

it was identified as a promising blood-based biomarker for PC diagnosis. As such, the 

CEA levels measured clinically for these patients were obtained. CEA levels were 

significantly increased in the PCF of high-risk patients compared to low-risk 

(p<0.001)(Figure 4.22A). Indeed, while the levels of CEA in high-risk PCF were generally 

tightly clustered, two high-risk patients had substantially higher levels of CEA than the 

rest of the group. CEA levels were also shown to have significant positive correlations 

with risk and age (p<0.001)(Figure 4.22B). In this cohort, age is significantly increased 

with risk (p<0.05); increased alcohol consumption is also shown to increased alongside 

increased smoking (p<0.05); and age is shown to be increased in male patients 

compared to female patients (p<0.05).  

 The CEA expression levels obtained were then integrated into the 11-feature 

multi-omic panel to investigate whether its addition would improve the performance of 

the panel. The addition of CEA to the 11-feature multi-omic panel resulted in no change  
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Figure 4.21 11-feature multi-omic panel in PCF plus serum CA19-9 clusters patients 

into risk groups with 58.3% accuracy. Unsupervised hierarchical clustering of patients 

into high-risk (red) and low-risk (blue) groups based on their expression of the 11-

feature multi-omic panel in PCF plus serum CA19-9. Dendrograms show (top) the 

relatedness of the patients, and (left) the relatedness of the biomarkers. Data are 

presented for n=12 low-risk and n=12 high-risk patients.  
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Figure 4.22 PCF CEA levels are significantly increased in high-risk patients compared to 

low-risk. (A) PCF concentration of CEA (ng/mL) in high-risk (red) and low-risk (blue) 

patients. Mann-Whitney test. Data are presented as mean ± SEM. (B) Spearman 

correlations between patient clinical data and the PCF CEA levels are given as a corrplot. 

Colour intensity relates to R2 value; circle size relates to the p-value. Data are presented 

for n=14 low-risk and n=14 high-risk patients. *p<0.05, ***p<0.001. 

  

B A 
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in the ability of the panel to cluster patients into distinct groups, demonstrating an 

accuracy of 95% (Figure 4.23). However, LOOCV of this 11-feature multi-omic panel in 

PCF with the addition of PCF CEA generated an AUC value of just 0.690 (Figure 4.24). 

Reclassification of the VHL patient in this case caused the performance of the panel to 

worsen, producing an AUC value of 0.636 (Figure 4.25). 

 

4.5.9 Proteomic and transcriptomic results could not be validated using other 

techniques 

Sandwich ELISA was used in an attempt to validate the results seen in the proteomics, 

in the same patient cohort. The concentrations of four of the eight significant proteins 

that were identified in the PCF were examined via sandwich ELISA (LCN2, REG1A, PIGR, 

PRSS8). These data were normalised using two approaches, protein normalisation and 

dilution factor or volume normalisation. Given the variation in cyst size and protein 

content between patients, it was necessary to evaluate both normalisation methods to 

ensure no potential effects were missed. When normalised to the amount of protein, as 

determined by BCA assay, none of the four proteins were significantly differentially 

expressed between low- or high-risk patients (p>0.05)(Figure 4.26A-D). While an 

increase in concentration can be seen in the high-risk group compared to the low-risk 

for LCN2, REG1A and PRSS8, these increases were not significant (p>0.05). These data 

were then normalised to the dilution factor, and again, none of the four proteins were 

significantly differentially expressed between low- or high-risk patients (p>0.05)(Figure 

4.26E-H). When correlating the LFQ intensities obtained from the proteomics with the 

protein concentrations obtained via sandwich ELISA, PRSS8, LCN2 and REG1A had 

significant correlations, but the R2 values indicate that these relationships are not strong 

(p<0.05)(Figure 4.27).  

 qPCR microarrays were used in an attempt to validate the results obtained in the 

transcriptomics, in the same patient cohort. No significant difference was found in the 

expression levels of miR-216a-50, miR-216b-5p or SNORA66 between the low- and high-

risk patient PCF (p>0.05)(Figure 4.28). MiR-216a-5p levels were close to statistical 

significant (p=0.0571), and as such may reach significance with more power (Figure 

4.28A). The number of patients for which data was obtained was extremely poor across  
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Figure 4.23 11-feature multi-omic panel in PCF plus PCF CEA clusters patients into risk 

groups with 95% accuracy. Unsupervised hierarchical clustering of patients into high-

risk (red) and low-risk (blue) groups based on their expression of the 11-feature multi-

omic panel in PCF plus PCF CEA. Dendrograms show (top) the relatedness of the patients, 

and (left) the relatedness of the biomarkers. Data are presented for n=10 low-risk and 

n=10 high-risk patients. 
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Figure 4.24 11-feature multi-omic panel in PCF plus PCF CEA classifies patients based 

on risk with AUC of 0.690. LOOCV of patients using the 11-feature multi-omic panel in 

PCF plus PCF CEA. Data are presented for n=10 low-risk patients and n=10 high-risk 

patients. 
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Figure 4.25 11-feature multi-omic panel in PCF plus PCF CEA classifies patients based 

on risk with AUC of 0.636 when VHL patient is reclassified. LOOCV of patients using the 

11-feature multi-omic panel in PCF plus PCF CEA. VHL patient has been reclassified from 

high-risk to low-risk. Data are presented for n=10 low-risk patients and n=10 high-risk 

patients. 
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Figure 4.26 Sandwich ELISA does not validate proteomic results regardless of the 

normalisation method. Protein concentrations of four proteins identified as significant 

via proteomics (A-D) normalised to protein quantity (ng/µg) and (E-H) normalised to 

volume (ng/mL). LCN2 data are presented as mean ± SEM for n=10 low-risk and n=10 

high-risk patients. REG1A data are presented as mean ± SEM for n=6 low-risk and n=6 

high-risk patients. PIGR data are presented as mean ± SEM for n=10 low-risk and n=9 

high-risk patients. PRSS8 data are presented as mean ± SEM for n=14 low-risk and n=14 

high-risk patients. Mann-Whitney test. 
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Figure 4.27 There is no correlation between LFQ Intensity values obtained via 

proteomics and sandwich ELISA protein concentration. Simple linear regression of LFQ 

intensity and sandwich ELISA protein concentrations of four proteins identified as 

significant via proteomics. (A) PRSS8 data are presented for n=14 low-risk and n=14 high-

risk patients. (B) LCN-2 data are presented for n=10 low-risk and n=10 high-risk patients. 

(C) REG1A data are presented for n=6 low-risk and n=6 high-risk patients. (D) PIGR data 

are presented for n=10 low-risk and n=9 high-risk patients. Low-risk patients are shown 

in blue; high-risk patients are shown in red. 
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Figure 4.28 qPCR microarray does not validate transcriptomic results. Relative 

quantification (Rq) of 3-miRNA panel identified via transcriptomics. (A) MiR-216a-5p 

data are presented as mean ± SEM for n=3 low-risk and n=4 high-risk patients. (B) MiR-

216b-5p data are presented as mean ± SEM for n=1 low-risk and n=4 high-risk patients. 

(C) SNORA66 data are presented as mean ± SEM for n=4 low-risk and n=4 high-risk 

patients. Mann-Whitney test. 
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all three miRNA, with miR-216b-5p in particular having usable results for just one low-

risk patient, as the other six patients tested did not amplify (Figure 4.28B). 
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4.6 Discussion 

The integration of multiple omic levels to create an 11-feature multi-omic panel 

produced the most robust results for patient PC risk classification. Indeed, while the 8-

protein and 3-miRNA panels alone demonstrated a modest ability to classify PCL 

patients based on risk, the performance of these two sets of biomarkers combined into 

one panel delivered the best results overall, providing promising preliminary data as a 

novel biomarker panel in this setting. 

 Interestingly, it was shown that the 3-miRNA panel performed better than the 8-

protein panel for risk classification by LOOCV, despite only one of the three miRNA 

significantly correlating with risk status, and demonstrating poor stratification in both 

the unsupervised hierarchical clustering and the PCA. Indeed, given the results of the 

systematic review and meta-analysis performed in Chapter 3, it would be expected that 

the 8-protein panel would be superior, as panels of more biomarkers were shown to 

perform better[379]. These contrasting results for the 3-miRNA highlight the importance 

of the method of evaluation used for biomarker efficacy. Unsupervised hierarchical 

clustering, for example, allows the datapoints to cluster based on patient expression of 

certain variables, and in this way it groups like-with-like to enable the visualisation of 

patterns[380]. Here, this analysis was used to investigate whether the patient cohorts 

would separate into groups based on their expression of these factors. While separation 

of patient risk groups was poor using the 3-miRNA panel, it is important to note that 

such methods can be greatly influenced by poor performing variables, especially when 

there are so few to begin with. Indeed, it was shown that when using this 3-miRNA panel 

to train and test a LOOCV model, this model performs modestly. Similarly, PCA analysis 

allows the visualisation of large datasets in smaller components or dimensions via 

dimensionality reduction, clustering similar samples together and aligning highly 

correlated variables[381]. In this way, PCA finds the majority of its utility in ‘long’ datasets 

with dimensionality issues, where there are more variables than the number of samples 

and as such, it can be difficult to discern the individual effects of a single variable[382]. In 

this study, three miRNA are dimensionally reduced to two components using PCA, which 

is not a common practice for such small datasets. However, this approach highlighted 

the outlier among the three biomarkers, SNORA66, and illustrated that the majority of 
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variance could be accounted for by miR-216a-5p and miR-216b-5p, suggesting that 

SNORA66 is perhaps the least important component of this 3-miRNA panel.  

Interestingly, miR-216a-5p and miR-216b-5p are pancreas specific miRNAs, and 

as such, they have been studied extensively in the context of PC[383]. MiR-216b-5p has 

been demonstrated to function as a tumour suppressive RNA in pancreatic tissues by 

repressing PC cell proliferation, inducing apoptosis and cell cycle arrest, and supressing 

invasive and migratory capabilities[384, 385]. As such, its expression is generally reduced in 

PC tissues, and this is associated with poor prognosis[384, 386]. While circulating miR-216a-

5p levels have been shown to be elevated in PC patients compared to controls[387], tissue 

expression levels are also known to be downregulated in PC compared to healthy 

controls[386].MiR-216a-5p is also believed to function in a tumour suppressive capacity 

in PC by inhibiting tumour growth via the JAK/STAT pathway[388]. Interestingly, despite 

the downregulation of these miRNA in PC, both miR-216a-5p and miR-216b-5p have 

been shown to be increased in high-risk IPMNs compared to low-risk previously[389]. 

While no research appears to have been conducted to date examining the mechanisms 

involved in this shift in expression from PCL to PC, and none of the three miRNA 

significantly correlated with any clinical factors, in this setting these miRNA remain 

promising potential biomarkers of PC risk. SNORA66, on the other hand, remains largely 

unstudied in PC or PCLs. Indeed, SNORA66 is one of many small nucleolar noncoding 

RNAs that has cellular housekeeping functions and is therefore commonly utilised as a 

housekeeping RNA[390]. Despite this, several snoRNAs have been reported to be 

dysregulated in some cancer types, with SNORA23, for example, being overexpressed in 

PDAC[391]. As such, while there is no previous evidence of SNORA66 dysregulation in PCLs 

or PC, it is not unusual for housekeeping genes to become dysregulated in disease, and 

this may be the first instance of such a report for SNORA66 in pancreatic disease. Overall, 

the various approaches used to analyse these data highlight the strengths and 

weaknesses of the panel, and demonstrate that while hierarchical clustering and PCA 

are useful for interrogating datasets, training and testing models which are developed 

for the examination of biomarkers, such as LOOCV, gives the best sense of biomarker 

performance. Metrics such as AUC value, sensitivity and specificity are the most 

important in this context, and should therefore be given the most weight. 
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 Conversely, the 8-protein panel performed well in all analyses, likely due to the 

fact that there are more variables to help distinguish and restructure the data according 

to their expression. In this way, larger panels allow for better handling of outlier 

patients, as when one variable becomes dysregulated, the others within the panel can 

compensate for this. Despite the large patient-to-patient variation in the expression of 

these proteins, all eight significantly correlated with risk. Interestingly, six of these 

proteins [LCN2, REG1A, PIGR, S100A8, LGALS3 and MUC6] have been highlighted 

previously in PC literature. LCN2 is a small glycoprotein that is secreted by various cell 

types such as macrophages, neutrophils and epithelial cells[392]. LCN2 has been 

demonstrated to be highly expressed in PDAC tissues compared to normal tissues[393], 

and has shown utility as a circulating biomarker of familial PC risk[336, 394]. Importantly, 

LCN2 was previously found to be highly expressed in early dysplastic PCLs, indicating its 

potential role as a biomarker of PC risk and early PC detection[395]. Similar levels of LCN2 

expression have been observed in normal and chronic pancreatitis tissue, but these 

levels are elevated 4.3-fold in PC [396]. Conversely, the levels of LCN2 detected in the 

serum were significantly reduced in PC patients compared to controls, demonstrating 

the variability of this marker between detection modalities[396]. Importantly, LCN2 

expression is also associated with good prognosis in PC, having been shown to inhibit PC 

stemness, reverse EMT, and supress invasion and angiogenesis[393, 397, 398]. Indeed, poorly 

differentiated PC tumours have exhibited little to no expression of LCN2[395, 398]. 

Similarly, increased REG1A levels in PC patient serum has been shown to correlate with 

improved survival compared to those with low REG1A levels[399]. REG1A has been shown 

to be significantly increased in the urine, serum and tissue of PC patients compared to 

healthy controls[399-402]. An upregulation of REG1A in PC cells has also been 

demonstrated to accelerate cell proliferation and tumour growth both in vivo and in 

vitro[403]. Indeed, REG1A expression in tissue was shown to increase from benign ductal 

epithelium to PCL to PC[399]. These results suggest the upregulation of REG1A during 

PDAC development, and that this upregulation may have protective properties.  

Increased LGALS3 expression has also been observed as an early PC event. 

LGALS3 expression has been shown to be 1.5-fold higher in chronic pancreatitis tissues 

compared to healthy controls, but up to 6.5-fold higher in PC tissue, increasing 
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incrementally as the disease progresses[396, 404]. Indeed, both LGALS3 mRNA and protein 

levels have been shown to be significantly increased in PC tissue compared to healthy 

controls[405]. Interestingly, LCN2, REG1A, LGALS3 and S100A8 have all been previously 

detected in patient PCF, with S100A8 and LCN2 also being detected in PCF cell pellets, 

though no indication as to the level of expression or differential expression between 

controls were reported[121]. Importantly, many S100 proteins have been identified as 

overexpressed in numerous cancer types, highlighting a potential role for these proteins 

in cancer development[406, 407]. High S100A8 expression in pancreatic ductal fluid 

predicted worse disease-free and overall survival in late stage PC patients[408]. 

Furthermore, S100A8 was shown to be overexpressed in PC tumours compared to 

normal and pancreatitis tissues[402]. Stimulation of pancreatic cell lines with S100A8 has 

been shown to increase cell motility, proliferation and pro-inflammatory cytokine 

secretion in vitro, further highlighting the potential role of S100A8 in PC progression[409, 

410]. High PIGR expression in PC patient tissue was also shown to be an indicator of poor 

prognosis, with PIGR levels being significantly higher in PDAC patients preoperatively 

compared to postoperatively[411, 412]. PIGR serum levels have also been observed at 

significantly higher levels in PC patients compared to healthy controls[413]. Lastly, MUC6 

or mucin 6 is a secreted protein whose levels have been shown to be downregulated in 

PC tissues compared to normal tissues, and is therefore a negative prognostic 

indicator[414, 415]. MUC6 expression has also been shown to be higher in well-

differentiated tumours compared to moderately or poorly differentiated tumours[416, 

417]. Furthermore, MUC6 expression has been found to be increased in ‘uninvolved’ 

pancreatic ducts of PC patients compared to normal ducts[416]. Greater expression of 

MUC6 proteins was observed in PCLs compared to normal pancreatic tissue, with MUC6 

levels shown to decrease with tumour progression suggesting MUC6 loss is an early 

event in PC[257, 417, 418]. These data overall suggest the dysregulation of these six proteins 

in pancreatic disease, and therefore strengthens the potential for their use as 

biomarkers in this context.  

Unfortunately, there is no evidence in the literature to-date to suggest the 

dysregulation of PRSS8 or TCN1 in PC. While PRSS8 has been shown to be expressed at 

levels more than 100-fold higher in ovarian cancer patient tissue compared to normal 
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healthy donors, with evidence suggesting that PRSS8 is upregulated in the early stages 

of this disease, no data could be found on PRSS8 expression in PC[419]. TCN1 or 

transcobalamin is a vitamin B12-binding protein which has been shown to be a predictor 

of poor prognosis in colon cancer patients, but again, there is no indication in literature 

as to the expression of TCN1 in pancreatic disease[420]. While no confirmation of the 

dysregulation of PRSS8 or TCN1 could be identified in the literature, here it is reported 

for the first time for all eight of these proteins, that the expression levels of these 

proteins are higher in high-risk PCF compared to low-risk PCF, and as such all eight have 

good potential in this context to be biomarkers of patient PC risk. Importantly, when 

examined together as an 8-protein panel, these proteins stratify patients with modest 

accuracy. 

 The utility of both the 3-miRNA and 8-proteins panels alone is limited, with 

extremely similar AUC values being obtained for both via LOOCV. However, the 

integration of these two panels to form a single multi-omic biomarker panel is where 

the true potential of these biomarkers can be seen. Indeed, current trends in biomarker 

identification lean towards the creation of multi-omic panels that can better control for 

the complexity of the disease[166]. By encompassing factors from multiple biological 

levels, multi-omic biomarker panels can better compensate for the dysregulation of 

individual biological levels. In fact, substantial improvements in results from all analyses 

can be seen through the use of the 11-feature multi-omic panel. Importantly, the 

identification of one outlier patient further compounds the strength of this panel. VHL 

syndrome is a familial neoplastic condition, caused by a germline mutation to the VHL 

tumour suppressor gene, which can increase a patients risk of PCLs and PC[128, 421]. In this 

case, the patient with VHL syndrome presented with a PCL but was classified as high-risk 

based on their genetic predisposition to PC. When re-examined with the presence of a 

VHL mutation excluded, this PCL was reclassified as low-risk. As such, these data were 

examined with this patient classified as both low- and high-risk, and notable changes in 

panel performance can be observed. Indeed, in the initial model with this patient 

classified as high-risk, this datapoint can be frequently seen as an outlier. In the 

unsupervised hierarchical clustering specifically, it is the only datapoint that is 

incorrectly clustered. When reclassified, the model performance improves for all 
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analyses, with perfect hierarchical clustering, improved separation of the two groups in 

the PCA, and increased AUC for the LOOCV. While it is impressive that the model could 

identify this outlier, it is important to highlight the substantial alteration to model 

performance that just one patient could make. Furthermore, while in this case the 

presence of a VHL mutation stood out clinically as a potential confounding factor, it may 

not be appropriate to reclassify or remove this patient from this analysis as their original 

classification as high-risk was based on the same guidelines as all other patients. These 

data emphasise the need for validation of these results in a larger, independent patient 

cohorts where longitudinal progression data can confirm whether high-risk patients 

progressed to PC. 

 An attempt was made to validate the differential expression of these proteins 

and miRNA in alterative platforms within the same patient cohort. Unfortunately, 

neither of these attempts managed to do so. For the proteins, while ELISA has been used 

to validate proteomic results previously[422-425], other studies have had similar issues 

using ELISA as a validation platform[426]. Here, no correlation between LFQ Intensity 

values and protein concentrations for four of the eight proteins could be demonstrated. 

As sandwich ELISAs are highly sensitive assays where diluted sample is placed on a pre-

coated plate, it is possible that the viscous and mucinous nature of the PCF could have 

affected the efficacy of the assay. Indeed, the workflow for the proteomic profiling 

involved extensive pre-processing of the PCF, while preparation for the ELISA only 

included diluting PCF in sample diluent. Further validation efforts should consider 

alternative platforms, such as western blot, or pre-processing of the PCF samples prior 

to incubation on the ELISA plate, as well as increased power of the sample numbers. 

Indeed, a lack of power also appeared to be an issue in the validation of the miRNA, as 

many samples did not amplify and this left few datapoints to power any statistical 

analyses. While miR-216a-5p trended towards significance, these validations should be 

re-examined in a larger cohort of patient PCF to ensure sufficient power is acquired. 

 The addition of CA19-9 to the 11-feature multi-omic panel was expected to 

improve the performance of the panel, as was the result seen across a the literature in 

Chapter 3. Unfortunately, as no variation was seen in CA19-9 serum levels between low- 

or high-risk patients, the addition of CA19-9 to the panel, in this case, worsened its 
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performance. These data highlight two important points: firstly, that CA19-9 appears to 

have limited utility in a risk stratification setting; and secondly, that the addition of a 

poor performing biomarker to a strong panel can have substantial consequences to 

panel performance. A similar result was seen with the addition of CEA to the panel, 

where although the unsupervised hierarchical clustering was unaffected, the LOOCV 

performance of the panel was substantially reduced following the addition of CEA to the 

11-feature multi-omic panel. As such, it is of the utmost importance, when examining 

biomarker panels, to ensure that all features within the panel are robust and contribute 

positively to its performance. While promising potential blood-based biomarkers where 

identified in Chapter 3 and re-examined here in an independent cohort, their 

performance as a panel was demonstrated to be poor. Indeed, while four of these 

proteins were significantly increased in high-risk PCF compared to low-risk via Mann 

Whitney test, it is important to remember that when stringent differential expression 

analysis with FDR was conducted, these proteins were not significant. As such, while 

many factors may be increased or decreased from one group to the next, only those 

with the most robust performance should be brought forward. 

 The results of this study provide a novel multi-omic biomarker panel which 

shows potential for the risk stratification of PCL patients. Importantly, these data also 

highlight potential caveats to biomarker panel design and analysis, and as such 

demonstrate the importance of careful and extensive validation of results in novel 

patient cohorts. However, it is important to note that a PCF-based panel, while 

potentially robust, would also be quite invasive to utilise in a clinical setting. As such, 

current research trends more towards liquid biopsies in the context of the peripheral 

blood, and the utility of blood-based biomarkers as a less invasive alternative. 
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Chapter 5. 

 

Multi-omic profiling of serum for the 

identification of novel biomarkers of patient 

pancreatic cancer risk 
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5.1 Introduction 

PC has the worst survival rate of any cancer, being reported at just 12% in 2023 by the 

American Cancer Society[1]. This low survival rate is primarily attributed to the late stage 

of presentation of most patients. Indeed, the symptoms associated with PC are 

extremely vague, such as abdominal pain or weight loss, causing patients to ignore these 

issues until they are more severe, and the disease is therefore at an advanced stage of 

development[299]. The treatment options for patients at late stage disease are limited, 

contributing further to the poor survival of PC patients. As such, early identification of 

PC or those who are at an increased risk of developing PC is required to expand 

treatment options for these patients and subsequently improve survival rates.  

 PCLs are fluid-filled sacs found on or inside the pancreas which can either be 

benign or pre-malignant[121]. Unfortunately, current methods of distinguishing between 

the two are imperfect. At present, clinical guidelines evaluating factors such as cyst size 

or location on the pancreas are used to stratify patients with PCLs into risk categories. 

However, there are numerous different iterations of these guidelines worldwide, with 

conflicting cut-offs and metrics, highlighting the lack of consensus among clinical staff 

as to the most appropriate or best performing guidelines[376, 377]. This means that 

patients with high-risk PCLs are being missed at this important junction due to the lack 

of standardized risk stratification.  

 In Chapter 4, two commonly used biomarkers for PCL and PC diagnosis and 

management, CEA and CA19-9, were evaluated in a novel patient cohort and shown to 

have poor PCL risk stratification capabilities. CEA is measured in the PCF aspirate post-

endoscopic ultrasound and used to identify mucinous cysts, the subtype of PCLs with 

the most malignant potential[163]. CA19-9 is an FDA-approved blood-based biomarker 

for PC diagnosis, however, it has been shown to be dysregulated in patients with 

underlying conditions such as diabetes or pancreatitis, making its performance in this 

cohort highly inaccurate[167]. As these two commonly utilised biomarkers were 

demonstrated to add no diagnostic accuracy to a panel of novel PCF biomarkers, but 

rather worsen the performance of the panel, the need for robust biomarkers that can 

accurately distinguish high- and low-risk PCLs is evident.  
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In this study, promising biomarkers that had been previously examined across 

PC literature, as identified in Chapter 3, were evaluated in the serum of a novel patient 

cohort. These blood-based diagnostic biomarkers for PC were interrogated to assess 

their potential as biomarkers of PCL cancer risk. Furthermore, multi-omic profiling of the 

serum of PCL patients was conducted with the aim of identifying novel biomarkers of 

patient risk. Proteomic and transcriptomic analysis of PCL patient serum was carried out 

to identify differentially expressed proteins and miRNA. These features were assessed 

both alone, and as part of a multi-omic panel, to determine whether the examination of 

biomarkers across multiple omic levels could better account for the complexity of 

pancreatic disease, and therefore compensate appropriately for those within the panel 

that might become dysregulated. Lastly, to build on the work that was carried out in 

Chapter 4, where a promising multi-omic PCF biomarker panel was identified, the top 

performing markers in both the PCF and serum were combined to generate a cross-

biofluid multi-omic. This panel was then assessed in a matched patient cohort, to 

evaluate whether, in the same manner as multi-omics, cross-biofluid panels may 

encapsulate both pancreas-specific and circulating biological processes, allowing for 

improved robustness in patient risk stratification. 
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5.2 Hypotheses 

1. There are factors within the serum which are differentially expressed between 

low- and high-risk patients, and these factors can be used to stratify patients 

based on their risk of PC. 

2. The dimensional reduction and combination of a PCF-based biomarker panel and 

a serum-based biomarker panel, to create a cross-biofluid biomarker panel, will 

produce the most robust risk stratification accuracy. 

 

5.3 Specific Aims (Part One) 

1. Examine the performance of biomarkers that were previously identified in the 

literature in a novel patient cohort. 

2. Profile the proteome of the serum and identify proteins that are differentially 

expressed between low- and high-risk patients. 

3. Profile the transcriptome of the serum and identify miRNA that are differentially 

expressed between low- and high-risk patients. 

4. Examine the utility of differentially expressed proteins and miRNA in the serum 

as biomarkers of PC risk, both alone and integrated into a multi-omic panel. 

 

5.4 Specific Aims (Part Two) 

1. Integrate the top performing biomarkers from the PCF and serum to generate a 

cross-biofluid multi-omic panel of patient PC risk. 
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5.5 Experimental design 

5.5.1 Patient demographic information for serum cohort 

Three different patient cohorts were examined as part of this study. Demographic and 

clinical information for patients in the proteomic cohort, the transcriptomic cohort and 

the multi-omic cohort are given in Table 5.1. Risk classifications for these patients were 

assigned as per the 2018 European evidence-based guidelines for pancreatic cystic 

neoplasms [157]. Details on specific clinical criteria used to determine these classifications 

for each patient are unavailable, and as such, this lack of information should be noted 

as a limitation to the risk classifications of these patients. 

 

5.5.2 Proteomic profiling of patient serum 

Proteomic examination of patient serum was carried out as per section 2.2.8. The 

estimated starting material for sample processing and LC-MS preparation as per section 

2.2.8.3 is 40 µg per sample. Peptide elutants were therefore resuspended in 40 µL of LC-

Load Buffer to give a final peptide concentration of 1 g/L prior to MS analysis. 

 

5.5.3 Transcriptomic profiling of patient serum 

Transcriptomic evaluation of patient serum was carried out as per section 2.2.10. HTG 

EdgeSeq Plasma Lysis Buffer was used to lyse serum samples, and the subsequent lysate 

was diluted 1:2 with sample diluent prior to sequencing.  

 

5.5.4 Analysis of proteomic and transcriptomic serum data 

Proteomic and transcriptomic data obtained from the serum were processed, analysed 

and subsequently scaled and integrated using the methodologies outlined in section 

2.2.21.1.  

 

5.5.5 QIAGEN qPCR custom microarray for serum 

The validation of transcriptomic results was carried out using QIAGEN RT-qPCR custom 

microarrays. Assay setup was carried out as per section 2.2.11. Custom QIAGEN pre- 
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Table 5.1 Patient demographic information for serum cohorts. 

 Proteomics Transcriptomics Multi-omic 

 Low Risk High Risk Low Risk High Risk Low Risk High Risk 

No of patients (M/F) 45 (21/24) 23 (10/13) 15 (5/10) 15 (8/8) 14 (5/9) 15 (8/8) 

Mean age (range) 60 (22-84) 69 (39-85) 56 (22-80) 71 (39-85) 56 (22-80) 71 (39-85) 

Smoking habits       

 None 24 14 10 8 9 8 

 Active 7 1 2 1 2 1 

 Ex-smoker 10 5 3 5 3 5 

 Not known 4 3 0 1 0 1 

Alcohol consumption       

 None 23 12 8 9 8 9 

 Active 12 6 6 3 5 3 

 Heavy 2 1 0 1 0 1 

 Abstinent (ex-heavy) 4 0 1 0 1 0 

 Not known 4 4 0 2 0 2 

Diabetic 5 3 1 1 1 1 

Pancreatitis 2 0 1 0 1 0 

Von Hippel-Lindau 0 1 0 1 0 1 

Cohorts are divided into low- and high-risk groups. Mean age is rounded to the nearest whole number. 
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coated microarray plates were used, evaluating 18 targets and 6 quality controls as listed 

in Table 5.2. Targets of interest within the serum were miR-197-5p, miR-6741-5p, miR-

3180-3p, miR-3180 and miR-6782-5p. Plates were prepared fresh and run on the same 

day. A sample layout and plating map for this workflow can be seen in (Appendix 3). 

 

Table 5.2 QIAGEN 24-array custom plate targets and quality controls.  

miRNA targets miRNA Quality controls 

SNORA66 

miR-216a-5p 

miR-216b-5p 

miR-3197 

miR-1237-5p 

miR-197-5p* 

miR-6741-5p* 

miR-3180-3p* 

miR-3180* 

miR-6782-5p* 

miR-1207-5p 

miR-1908-5p 

miR-6727-5p 

miR-2861 

miR-375-3p 

miR-500b-3p 

miR-532-5p 

miR-130a-5p 

UniSp2 

UniSp3 

UniSp4 

UniSp6 

miR-451a 

miR-23a-3p 

Targets of interest for this chapter are denoted with *. 

 

5.5.6 Panel reduction and integration using CombiROC software 

The PCF-based panel generated in Chapter 4 and the serum-based panel generated in 

this chapter were dimensionally reduced and integrated as per the methods outlined in 

section 2.2.21.1.  
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5.6 Results: Part One 

5.6.1 Three promising biomarkers are not differentially expressed in serum 

Promising biomarkers that were identified in Chapter 3 as being repeatedly examined in 

the literature, and that demonstrated good sensitivity and specificity for PC diagnosis, 

were interrogated in this cohort within the serum. From this list, two proteins were 

identified via label-free proteomics (Figure 5.1A-B), and one miRNA was identified via 

whole transcriptome sequencing of patient serum (Figure 5.1C). CRP, LRG1 and miR-21-

3p levels were not significantly different in high-risk serum compared to low-risk serum 

(p>0.05)(Figure 5.1).  

 The expression levels of these three biomarkers within the serum were then 

used to stratify patients based on their expression of these proteins and miRNA. 

Unsupervised hierarchical clustering of patients into risk groups using these biomarkers 

was performed with an accuracy of 65.5% (Figure 5.2). CRP and LRG1 expression levels 

were most related, with miR-21-3p being the least related. Overall, these three blood-

based biomarkers for the diagnosis of PC performed poorly in the risk stratification of 

PCL patients based on their expression levels within the serum. 

 

5.6.2 Eight proteins were identified as being decreased in high-risk serum 

Label-free proteomics identified 145 proteins present in the serum samples after data 

clean-up. Two proteins [SHROOM3 and IGHV3-72] were found to be significantly 

downregulated in high-risk serum compared to low-risk serum (p<0.05)(Figure 5.3A). 

Despite not being significantly differentially expressed, a further six proteins with the 

lowest p-values were taken forward for biomarker analysis [IGJ, IGHA1, PPBP, APOD, 

SFN, IGHG1], as panels of more biomarkers were shown to produce better results in 

Chapter 3. A total of eight proteins were examined, as the 8-protein panel in PCF 

examined in Chapter 4 was shown to have good accuracy. The distribution of the 

expression levels from patient-to-patient within both the low- and high-risk groups was 

quite large (Figure 5.3B).  

 SHROOM3 was the only one of the eight proteins to significantly correlate with 

patient risk, having a negative correlation (p<0.01)(Figure 5.4). While none of these 
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Figure 5.1 Three promising biomarkers are not significantly differentially expressed 

high-risk serum compared to low-risk. (A-B) Boxplots showing the expression level of 

promising protein biomarkers, in Log2(LFQ intensity). Data are presented as mean ± SEM 

for n=23 high-risk patients and n=45 low-risk patients. (C) Boxplot showing the 

expression level of a promising miRNA biomarker, in Log2(CPM). Data are presented as 

mean ± SEM for n=15 low-risk and n=15 high-risk patients. Mann-Whitney test. 
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Figure 5.2 Expression of the three top occurring biomarkers in serum clusters patients 

into risk groups with 65.5% accuracy. Unsupervised hierarchical clustering of patients 

into high-risk (red) and low-risk (blue) groups based on their expression of the three 

promising biomarkers in the serum. Dendrograms show (top) the relatedness of the 

patients, and (left) the relatedness of the proteins (purple) and miRNA (orange). Data 

are presented for n=14 low-risk and n=15 high-risk patients. 
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Figure 5.3 Eight proteins were identified as being downregulated in high-risk patient 

serum compared to low-risk. (A) Volcano plot showing expression patterns of proteins 

between low- and high-risk serum. Proteins identified in red were considered to be 

downregulated in high-risk serum compared to low-risk serum. Dotted lines indicate the 

fold change and significance cut-offs. (B) Box plots showing the distribution of patient 

expression levels, in Log2(LFQ intensity), for each of the eight proteins. High-risk patients 

(n=23) are shown in red; low-risk patients (n=45) are shown in blue. 
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Figure 5.4 Expression of SHROOM3 in the serum significantly correlates with patient 

cancer risk. Spearman correlations between patient clinical data and the eight 

differentially expressed proteins are given as a corrplot. Colour intensity relates to R2 

value; circle size relates to the p-value. Data are presented for n=45 low-risk and n=23 

high-risk patients. *p<0.05, **p<0.01, ***p<0.001. 
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proteins correlated with the presence of diabetes or pancreatitis, nor with alcohol 

consumption, age or sex, both SHROOM3 and SFN positively correlated with smoking 

habits (p<0.05). 

Several clinical factors were also shown to correlate with each other in this 

patient cohort. Increased risk significantly correlated with increased age (p<0.01); 

increased smoking significantly correlated with increased alcohol consumption 

(p<0.001); and increased smoking significantly correlated with sex, or given the binary 

coding for this, increased smoking significantly correlated with being male (p<0.01).  

 

5.6.3 8-protein panel in serum classifies patients with modest accuracy 

These eight proteins were then scaled and integrated to create an 8-protein biomarker 

panel. This 8-protein panel was then used to stratify patients into distinct groups based 

on their expression of these proteins. Unsupervised hierarchical clustering of patients 

into risk groups using this 8-protein panel was performed with an accuracy of 76.5%, 

with n=8 low-risk and n=8 high-risk patients being grouped incorrectly out of the 78 

patients (Figure 5.5). The relationships between these eight proteins show a split into 2 

groups, with IGHG1, IGHA1, IGHV3-72 and IGJ forming one group and PPBP, APOD, 

SHROOM3 and SFN forming the second. The expression levels of the only two 

significantly differentially expressed proteins, SHROOM3 and IGHV3-72, were not 

closely related. 

 PCA was conducted using two components, however, these two components 

only accounted for 56.7% of the variance (36.2% in component 1 and 20.5% in 

component 2) (Appendix 7) (Figure 5.6). Here, the separation of these eight proteins was 

seen again, as IGHG1, IGHA1, IGHV3-72 and IGJ were the most important contributors 

to the first component, with PPBP, APOD, SHROOM3 and SFN being the most important 

contributors to the second component. The proteins in these two groups were highly 

positively correlated with each other. APOD had the least amount of variance attributed 

to it out of all eight proteins. The ellipse encapsulating 80% of each classification is quite 

large, with substantial overlap between the two, indicating poor separation of the two 

groups based on these two components. The third component in the PCA accounted for  
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Figure 5.5 8-protein panel in serum clusters patients into risk groups with 76.5% 

accuracy. Unsupervised hierarchical clustering of patients into high-risk (red) and low-

risk (blue) groups based on their expression of the eight proteins. Dendrograms show 

(top) the relatedness of the patients, and (left) the relatedness of the proteins (purple). 

Data are presented for n=45 low-risk and n=23 high-risk patients. 
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Figure 5.6 PCA analysis of 8-protein panel in serum shows poor distinction of the risk 

groups. 2-D PCA using the eight proteins, with biplot overlayed. Biplot scale is set to zero 

to ensure vectors (arrows) are scaled to represent their respective loadings. The length 

of each vector is proportional to the variance of the corresponding protein. The smaller 

the angle between a vector and a principal component axis, i.e. the more parallel they 

are, the more it contributes to that component. Small angles between vectors indicate 

high positive correlations; right angles represent no correlation; opposite angles indicate 

high negative correlations. Ellipses represent 80% of the data captured within the risk 

classifications. Data are presented for n=23 low-risk (blue) and n=45 high-risk (red) 

patients. 

 

  



192 

 

12.7% of the variance. As such, when examined with a third component in 3-dimensions, 

the total variance accounted for is 69.4% (Figure 5.7). With three components, 

separation of groups is still poor, with any patterns being difficult to discern (Figure 

5.7A). When examining only the first two components, again the separation of the eight 

proteins into two distinct groups is evident (Figure 5.7B). However, when looking at just 

component 1 and component 3 the proteins that were shown to account for the 

variance in component 2 are shown to also align greatly with component 3 (Figure 5.7C). 

Finally, examining components 2 and 3 together shows that SHROOM3, SFN and PPBP 

account for the variance in component 2, while APOD accounts for component 3 (Figure 

5.7D). 

 LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, the 8-protein panel produced an AUC value of 0.608, 

with a sensitivity of 82.2% and a specificity of 34.8%, indicating that this panel performs 

well in its ability to assign a high-risk classification to those who are high-risk (Figure 5.8). 

 

5.6.4 Five miRNA were identified as significantly increased in high-risk serum 

Whole transcriptome sequencing identified 2,096 miRNA present in the serum samples 

after data clean-up. Differential expression analysis revealed five miRNA [miR-197-5p, 

miR-6741-5p, miR-3180, miR-3180-3p and miR-6782-5p] to be significantly upregulated 

in high-risk serum compared to low-risk serum (adj-p<0.05, FDR=0.05, s0=0.1)(Figure 

5.9A). The distribution of the expression levels from patient-to-patient within both the 

low- and high-risk groups was modest, with higher variability being seen in the high-risk 

group compared to the low-risk (Figure 5.9B).  

 Spearman correlations showed that expression levels of the five miRNA did not 

significantly correlate with patient risk (p>0.05)(Figure 5.10). Only one of these miRNA 

significantly correlated with a clinical parameter, with miR-6741-5p expression 

positively correlating with increased smoking (p<0.05). While miR-6782-5p had a 

negative correlation with age, and miR-3180 and miR-3180-3p negatively correlated 

with alcohol consumption, these were not significant (p>0.05). 
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Figure 5.7 PCA analysis in 3-dimensions of 8-protein panel in serum shows poor 

distinction of risk groups. 3-D PCA using the 18-protein panel in serum, with biplot 

overlayed showing (A) principal components 1, 2 and 3, (B) principal components 1 and 

2, (C) principal components 1 and 3, and (D) principal components 2 and 3. Biplot scale 

is set to zero to ensure vectors (arrows) are scaled to represent their respective loadings. 

The length of each vector is proportional to the variance of the corresponding 

biomarker. The smaller the angle between a vector and a principal component axis, i.e. 

the more parallel they are, the more it contributes to that component. Small angles 

between vectors indicate high positive correlations; right angles represent no 

correlation; opposite angles indicate high negative correlations. Data are presented for 

n=45 low-risk (blue) and n=23 high-risk (red) patients. 
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Figure 5.8 8-protein panel in serum classifies patients based on risk with AUC of 0.608. 

LOOCV of patients using the eight differentially expressed proteins. Data are presented 

for n=45 low-risk patients and n=23 high-risk patients.   
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Figure 5.9 Five miRNA were identified as being significantly upregulated in high-risk 

patient serum compared to low-risk. (A) Differential expression analysis identified five 

miRNA that were differentially expressed between low- and high-risk serum samples 

(p<0.05, FDR=0.05, s0=0.1). MiRNA identified in green were considered significantly 

upregulated in high-risk serum compared to low-risk serum. Dotted lines indicate the 

fold change and significance cut-offs. (B) Box plots showing the distribution of patient 

expression levels, in Log2(counts per million), for each of the five significant miRNA. 

High-risk patients (n=15) are shown in red; low-risk patients (n=15) are shown in blue. 
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Figure 5.10 Expression of significant miRNA in the serum does not significantly 

correlate with clinical factors. Spearman correlations between patient clinical data and 

the five differentially expressed miRNA are given as a corrplot. Colour intensity relates 

to R2 value; circle size relates to the p-value. Data are presented for n=15 low-risk and 

n=15 high-risk patients.*p<0.05, **p<0.01, ***p<0.001. 
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Several clinical factors were shown to correlate with each other in this patient 

cohort also. Increased risk significantly correlated with increased age (p<0.01), and 

increased smoking significantly correlated with increased alcohol consumption 

(p<0.001). 

 

5.6.5 5-miRNA panel in serum stratifies patients with poor accuracy 

These five miRNA were then integrated to create a 5-miRNA biomarker panel. This 5-

miRNA panel was then used to stratify patients into distinct groups based on their 

expression of these miRNA. Unsupervised hierarchical clustering of patients into risk 

groups using this 5-miRNA panel was performed with an accuracy of 60%, with n=6 low-

risk and n=6 high-risk patients being grouped incorrectly (Figure 5.11). Expression levels 

of miR-3180-3p and miR-3180 were highly related, as were the levels of miR-6741-5p 

and miR-6782-5p.  

 PCA was conducted using two components as this was found to account for 

85.2% of the variance (45.2% in component 1 and 40% in component 2) (Appendix 

8)(Figure 5.12). MiR-6741-5p, miR-3180-3p and miR-3180 were the most important 

contributors to the first component, with miR-6782-5p and miR197-5p being the most 

important contributors to the second component. MiR-3180-3p and miR-3180 were 

shown to be the most highly positively correlated among the five miRNA. MiR-197-5p 

was shown to have the least amount of variance associated with it, with the remaining 

four miRNA having similar variance. The ellipse encapsulating 80% of the low-risk 

classification sits almost entirely inside that of the high-risk classification, indicating poor 

separation of the two groups.  

 LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, the 5-miRNA panel produced an AUC value of 0.427, with 

a sensitivity of 46.7% and a specificity of 40.0%, demonstrating extremely poor risk 

classification in this cohort (Figure 5.13). 
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Figure 5.11 5-miRNA panel in serum clusters patients into risk groups with 60% 

accuracy. Unsupervised hierarchical clustering of patients into high-risk (red) and low-

risk (blue) groups based on their expression of the five significant miRNA. Dendrograms 

show (top) the relatedness of the patients, and (left) the relatedness of the miRNA 

(orange). Data are presented for n=15 low-risk and n=15 high-risk patients. 
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Figure 5.12 PCA analysis of 5-miRNA panel in serum shows poor distinction of the risk 

groups. 2-D PCA using the five differentially expressed miRNA, with biplot overlayed. 

Biplot scale is set to zero to ensure vectors (arrows) are scaled to represent their 

respective loadings. The length of each vector is proportional to the variance of the 

corresponding miRNA. The smaller the angle between a vector and a principal 

component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Ellipses represent 80% of the data captured within the risk classifications. Data are 

presented for n=15 low-risk (blue) and n=15 high-risk (red) patients. 
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Figure 5.13 5-miRNA panel in serum classifies patients based on risk with AUC of 0.427. 

LOOCV of patients using the five differentially expressed miRNA. Data are presented for 

n=15 low-risk patients and n=15 high-risk patients.  
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5.6.6 13-feature multi-omic panel in serum stratifies patients with high accuracy 

The eight proteins and five miRNA that were identified as differentially expressed were 

then scaled and integrated to create a 13-feature multi-omic biomarker panel. This 13-

feature panel was then used to stratify patients into distinct groups based on their 

expression of these thirteen biomarkers. Unsupervised hierarchical clustering of 

patients into risk groups using this 13-feature panel was performed with an accuracy of 

79.3% (Figure 5.14). The biomarker relatedness in this panel shows separation of the 

proteins and miRNA, however, the dendrogram indicates that the expression levels of 

SFN are more closely related to that of the miRNA than the other seven proteins, despite 

the proteins being decreased in high-risk serum and the miRNA being increased. 

Importantly, one patient in this cohort can be considered an outlier patient, as they have 

a diagnosis of VHL disease, which genetically pre-disposes one to the development of 

PC. Re-examining this panel with this patient reclassified as low-risk, as carried out 

previously in Chapter 4, the 13-feature panel produced a worse clustering accuracy of 

75.9% (Figure 5.15).  

Examining the correlations between the thirteen biomarkers within the panel 

further demonstrated the lack of correlations between these biomarkers (Figure 5.16). 

Indeed, there were no significant correlations between SFN, PPBP and SHROOM3 and 

any of the other ten biomarkers (p>0.05). As such, no individual biomarker significantly 

correlated with all others in the 13-feature panel, or with the others in their miRNA or 

protein sector. IGHV3-72 had the most correlations within the panel, significantly 

correlating with IGJ, IGHA1 and IGHG1 expression (p<0.05). IGHA1, IGHG1, miR-197-5p, 

miR-6741-5p and miR-6782-5p all significantly correlated with two other biomarkers 

within the panel, with IGJ, APOD, miR-3180 and miR3180-3p all significantly correlating 

with only one other biomarker (p<0.05). Two negative correlations between proteins 

and miRNA were observed, with IGHV3-72 significantly correlating with miR-6741-5p 

and APOD significantly correlating with miR-6782-5p (p<0.05). The strongest 

correlations were found between miR-197-5p and both miR-3180 and miR-3180-3p, as 

indicated by the thicker chords. 

 PCA was first conducted using two components, however, this was found to 

account for only 46.6% of the variance (25.1% in component 1 and 21.5% in component  
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Figure 5.14 13-feature multi-omic panel in serum clusters patients into risk groups 

with 79.3% accuracy. Unsupervised hierarchical clustering of patients into high-risk 

(red) and low-risk (blue) groups based on their expression of the 13-feature multi-omic 

panel. Dendrograms show (top) the relatedness of the patients, and (left) the 

relatedness of the proteins (purple) and miRNA (orange). Data are presented for n=14 

low-risk and n=15 high-risk patients. 
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Figure 5.15 13-feature multi-omic panel in serum clusters patients into risk groups 

with 75.9% accuracy when VHL patient is reclassified. Unsupervised hierarchical 

clustering of patients into high-risk (red) and low-risk (blue) groups based on their 

expression of the 13-feature multi-omic panel. Dendrograms show (top) the relatedness 

of the patients, and (left) the relatedness of the proteins (purple) and miRNA (orange). 

VHL outlier patient has been reclassified from high-risk to low-risk. Data are presented 

for n=15 low-risk and n=14 high-risk patients.   
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Figure 5.16 Ten biomarkers within the 13-feature biomarker panel in serum 

significantly correlate with expression of each other. Chord diagram showing 

significant spearman correlations (p<0.05) between five proteins (purple sector) and five 

miRNA (orange sector) within the 13-feature panel. Inner chords reflect correlations 

between the biomarkers. Chord thickness is directly related to the strength of the 

correlation, with thicker chords indicating stronger correlations. Chords within the 

proteins or miRNA segments indicate positive correlations. Chords between the proteins 

and miRNA segments indicate negative correlations. 
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2) (Appendix 9)(Figure 5.17). MiR-3180-3p, miR-3180, miR-197-5p, APOD, SFN, 

SHROOM3 and IGJ were the most important contributors to the first component, with 

miR-6741-5p, miR6782-5p, PPBP, IGHG1, IGHV3-72 and IGHA1 being the most important 

contributors to the second component. MiR-3180-3p, miR-3180 and miR-197-5p were 

shown to be highly positively correlated, as were miR-6741-5p and miR-6782-5p, SFN 

and APOD, and IGHG1 and IGHV3-72. MiR-3180-3p, miR-3180 and miR-197-5p had the 

largest amount of variance associated with them, with SFN, APOD and PPBP having the 

least. The ellipse encapsulating 80% of the low-risk classification was much smaller than 

that of the high-risk classification, indicating larger variance in the high-risk population. 

Importantly, when the VHL patient mentioned previously was reclassified, the 

separation and distribution of the datapoints does not change (Figure 5.18). 

The third component in the PCA accounted for 14.8% of the variance. As such, 

when examined with a third component in 3-dimensions, the total variance accounted 

for is just 61.4% (Figure 5.19). With three components, the separation of the two groups 

is modest, though not distinct (Figure 5.19A). The view of components 1 and 2 provides 

a mirror image of the 2-D PCA plot, showing the same trends in the proteins and miRNA 

(Figure 5.19B). Examining components 1 and 3 shows that APOD, SHROOM3, PPBP, miR-

6782-5p and miR-6741-5p account for the majority of variance in the third component 

(Figure 5.19C). This can be seen again when comparing components 2 and 3 (Figure 

5.19D).  

 LOOCV was then carried out, where the model was trained and then tested using 

the same patient cohort. Here, the 13-feature multi-omic panel produced an AUC value 

of 0.824, with a sensitivity of 71.4% and a specificity of 80.0% (Figure 5.20). Despite the 

poor performance of the 5-miRNA panel, and modest performance of the 8-protein 

panel, the integration of these two panels together improved the overall performance. 

However, while both the 8-protein and 5-miRNA panels had improved sensitivity 

compared to specificity, the 13-feature multi-omic panel had the reverse, with higher 

specificity compared to sensitivity. Importantly, when the VHL outlier patient was 

reclassified to low-risk as before, the performance of the 5-miRNA panel and the 13-

feature multi-omic panel improved, though the 8-protein panel performance was worse 

(Figure 5.21). Indeed, the 8-protein panels AUC value decreased from 0.608 to 0.561,  
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Figure 5.17 PCA analysis of 13-feature multi-omic panel in serum shows modest 

distinction of the risk groups. 2-D PCA using the 13-feature multi-omic panel in serum, 

with biplot overlayed. Biplot scale is set to zero to ensure vectors (arrows) are scaled to 

represent their respective loadings. The length of each vector is proportional to the 

variance of the corresponding biomarker. The smaller the angle between a vector and a 

principal component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Ellipses represent 80% of the data captured within the risk classifications. Data are 

presented for n=14 low-risk (blue) and n=15 high-risk (red) patients. 
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Figure 5.18 PCA analysis of 13-feature multi-omic panel in serum shows no change in 

the distinction of the risk groups when VHL patient is reclassified. 2-D PCA using the 

13-feature multi-omic panel in serum, with biplot overlayed. Biplot scale is set to zero 

to ensure vectors (arrows) are scaled to represent their respective loadings. The length 

of each vector is proportional to the variance of the corresponding biomarker. The 

smaller the angle between a vector and a principal component axis, i.e. the more parallel 

they are, the more it contributes to that component. Small angles between vectors 

indicate high positive correlations; right angles represent no correlation; opposite angles 

indicate high negative correlations. Ellipses represent 80% of the data captured within 

the risk classifications. VHL outlier patient has been reclassified from high-risk to low-

risk. Data are presented for n=15 low-risk (blue) and n=14 high-risk (red) patients. 
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Figure 5.19 PCA analysis in 3-dimensions of 13-feature multi-omic panel in serum 

shows modest distinction of risk groups. 3-D PCA using the 13-feature multi-omic panel 

in serum, with biplot overlayed showing (A) principal components 1, 2 and 3, (B) 

principal components 1 and 2, (C) principal components 1 and 3, and (D) principal 

components 2 and 3. Biplot scale is set to zero to ensure vectors (arrows) are scaled to 

represent their respective loadings. The length of each vector is proportional to the 

variance of the corresponding biomarker. The smaller the angle between a vector and a 

principal component axis, i.e. the more parallel they are, the more it contributes to that 

component. Small angles between vectors indicate high positive correlations; right 

angles represent no correlation; opposite angles indicate high negative correlations. 

Data are presented for n=15 low-risk (blue) and n=14 high-risk (red) patients.  
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Figure 5.20 13-feature multi-omic panel in serum classifies patients based on risk with 

AUC of 0.824. LOOCV of patients using the (dashed grey line) 13-feature multi-omic 

panel, (orange line) 5-miRNA panel, and (purple line) 8-protein panel. 13-feature panel 

data are presented for n=14 low-risk patients and n=15 high-risk patients; 5-miRNA 

panel data are presented for n=15 low-risk patients and n=15 high-risk patients; 8-

protein panel data are presented for n=45 low-risk patients and n=23 high-risk patients. 
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Figure 5.21 13-feature multi-omic panel in serum classifies patients based on risk with 

AUC of 0.948 when VHL patient is reclassified. LOOCV of patients with VHL patient 

reclassified to low-risk, using the (dashed grey line) 13-feature multi-omic panel, (orange 

line) 5-miRNA panel, and (purple line) 8-protein panel. 13-feature panel data are 

presented for n=15 low-risk patients and n=14 high-risk patients; 5-miRNA panel data 

are presented for n=16 low-risk patients and n=14 high-risk patients; 8-protein panel 

data are presented for n=46 low-risk patients and n=22 high-risk patients. 
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while the 3-miRNA panel improved its AUC value from 0.427 to 0.504, and the 13-feature 

multi-omic panel improved its AUC value from 0.824 to 0.948. Furthermore, in the 

reclassified cohort, the 13-feature multi-omic panel had improved sensitivity (86.7%) 

compared to specificity (85.7%), further emphasising how the classification of this 

patient affects the performance of the panel. 

 qPCR microarrays were used in an attempt to validate the results obtained from 

the transcriptomic analysis in the serum, however, while 10 samples (n=5 high-risk and 

n=5 low-risk) were run on this array most did not amplify and as such no statistical 

analysis was possible (Appendix 10). 

 

5.7 Results: Part Two 

5.7.1 10-feature multi-omic cross-biofluid panel stratifies patients with high accuracy 

In order to utilise all potential biomarkers, the 11-feature multi-omic panel in PCF that 

was identified in Chapter 4 was revisited. Here, the performance of every possible 

combination of these 11 features was examined using CombiROC software with 

sensitivity and specificity cut-offs of 83% and 25%, respectively (Table 5.3). Twenty 

combinations of these features were observed to meet these cut-offs, with four being 

the minimum number of features required to do so. The same analysis was run on the 

13-feature multi-omic serum panel, with sensitivity and specificity cut-offs of 93% and 

47%, respectively. Thirty-six combinations were identified that met these criteria, with 

six being the minimum number of features required to do so. The top performing 

combination with the minimum number of features was determined using CombiROC 

software for both the PCF and the serum. A 4-feature PCF panel consisting of S100A8, 

LGALS3, SNORA66 and miR-216b-5p, and a 6-feature serum panel consisting of IGHV3-

72, IGJ, IGHA1, PPBP, miR-3180 and miR-3180-3p were identified. These two panels 

were then scaled and integrated to create a 10-feature multi-omic cross-biofluid panel, 

and examined in a matched patient cohort. LOOCV was then carried out, where the 

model was trained and then tested using the same patient cohort. Here, the 10-feature 

multi-omic cross-biofluid panel produced an AUC value of 0.927, with a sensitivity of 

83.3% and a specificity of 91.2% (Figure 5.22). The 4-feature multi-omic PCF panel   
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Table 5.3 CombiROC reduction creates a 10-feature multi-omic cross-biofluid panel. 

 PCF panel Serum panel 

Software cut-offs   

  Test signal 3 4 

  Sensitivity 83% 93% 

  Specificity 25% 47% 

No. of combinations at cut-
offs 

20 combinations 36 combinations 

No. of combinations with:   

  4 features 4 0 

  5 features 9 0 

  6 features 6 4 

  7 features 1 12 

  8 features 0 13 

  9 features 0 6 

 10 features 0 1 

 10+ features 0 0 

Top performing combination 
with minimum number of 
features 

S100A8, LGALS3, SNORA66, 
miR-216b-5p 

IGHV3-72, IGJ, IGHA1, PPBP, 
miR-3180, miR-3180-3p 
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Figure 5.22 10-feature multi-omic cross-biofluid panel classifies patients based on risk 

with AUC of 0.927. LOOCV of patients using the (green line) 10-feature multi-omic cross-

biofluid panel, (dashed grey line) 4-feature multi-omic PCF panel, and (dashed pink line) 

6-feature multi-omic serum panel. 10-feature multi-omic cross-biofluid panel data are 

presented for n=11 low-risk patients and n=12 high-risk patients; 4-feature multi-omic 

PCF panel data are presented for n=12 low-risk patients and n=12 high-risk patients; 6-

feature multi-omic serum panel data are presented for n=14 low-risk patients and n=15 

high-risk patients. 
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performed better than the 6-feature multi-omic serum panel, with an AUC of 0.780, a 

sensitivity of 75% and a specificity of 72.7%. The 6-feature multi-omic serum panel had 

the worst performance, with an AUC value of 0.686, a sensitivity of 78.6% and a 

specificity of 66.7%. Again, while both the 4-feature multi-omic PCF panel and the 6-

feature multi-omic serum panels had improved sensitivity compared to specificity, the 

10-feature multi-omic cross-biofluid panel had the reverse, with higher specificity 

compared to sensitivity. Importantly, when the VHL outlier patient was reclassified to 

low-risk as before, the performances of both the 4-feature multi-omic PCF panel and the 

6-feature multi-omic serum panel improved, while the 10-feature multi-omic cross-

biofluid panel performed worse (Figure 5.23). Indeed, the 4-feature multi-omic PCF 

panels AUC value increased from 0.780 to 0.846, and the 6-feature multi-omic serum 

panels AUC value increased from 0.686 to 0.695, while the 10-feature multi-omic cross-

biofluid panels AUC value dropped from 0.927 to 0.909. Furthermore, in the reclassified 

cohort, the 10-feature multi-omic cross-biofluid panel had improved sensitivity (83.3%) 

compared to specificity (63.6%).  
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Figure 5.23 10-feature multi-omic cross-biofluid panel classifies patients based on risk 

with AUC of 0.909 when VHL patient is reclassified. LOOCV of patients with VHL patient 

reclassified to low-risk, using the (green line) 10-feature multi-omic cross-biofluid panel, 

(dashed grey line) 4-feature multi-omic PCF panel, and (dashed pink line) 6-feature 

multi-omic serum panel. 10-feature multi-omic cross-biofluid panel data are presented 

for n=11 low-risk patients and n=12 high-risk patients; 4-feature multi-omic PCF panel 

data are presented for n=12 low-risk patients and n=12 high-risk patients; 6-feature 

multi-omic serum panel data are presented for n=14 low-risk patients and n=15 high-

risk patients. 
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5.8 Discussion 

The cross-biofluid integration of both multi-omic panels from PCF and serum produced 

the highest classification accuracy of any panel examined in Chapters 4 and 5, without 

reclassifying the outlier VHL patient. Indeed, while the integration of proteomic and 

transcriptomic biomarkers to create a multi-omic panel in the serum produced 

substantially better risk stratification than either omic level alone, it is clear from these 

results that the layering of data from multiple biological levels could be the key to the 

generation of more robust biomarkers. 

 While from a numeric perspective, it may be unsurprising that the 8-protein 

panel performed better than the 5-miRNA panel in the unsupervised hierarchical 

clustering and LOOCV of these patient cohorts, it is important to remember that not all 

of the eight proteins brought forward were in fact significantly differentially expressed. 

Indeed, only two of the eight proteins were significant, which is in contrast to the miRNA, 

all five of which were found to be significantly differentially expressed. Also important 

to note, is the starting amount of proteins and miRNA. Differential expression analysis 

was run on over two thousand miRNA, but only 145 proteins. It may be reasonable, 

therefore, to assume that the significant proteins could be more strongly differentially 

expressed than the miRNA. Indeed, when looking at the correlations of these biomarkers 

with clinical factors, one protein (SHROOM3) significantly correlated with risk, while no 

miRNA correlated with this factor. Looking into the literature, it is interesting to see that 

there is no evidence of the dysregulation or functionality of any of the five significant 

miRNA in pancreatic disease. MiR-197-5p, for example, is known to be significantly 

dysregulated in a number of diseases and many cancer types, such as ovarian cancer, 

lung cancer, colorectal cancer, prostate cancer and thyroid cancer, and it has been 

shown to play a role in cell proliferation, differentiation, apoptosis, metastasis and drug 

resistance[427]. Similarly, miR-6741-5p has been shown to be increased in the serum of 

prostate cancer patients compared to patients with negative prostate biopsies, and as 

part of an 18-miRNA panel could distinguish prostate cancer with a sensitivity and 

specificity of 90%[428]. MiR-6741-5p expression levels in plasma have also been indicated 

as a promising prognostic biomarker in COVID-19 patients[429]. MiR-3180 has been 

suggested as a potential biomarker of hepatitis B virus infection persistence[430], while 
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miR-3180-3p was shown to be significantly upregulated in the serum of chemotherapy 

(cisplatin) resistant gastric cancer patients compared to chemotherapy sensitive 

patients, and significantly correlated with high TNM stage[431]. MiR-3180-3p has also 

been suggested as a potential plasma-based biomarker for the distinction of primary 

versus recurrent glioblastoma, demonstrating an AUC value of 98.5%[432]. Lastly, miR-

6782-5p has been shown to be present at levels 2.3-fold higher in the seminal plasma of 

men with testicular germ cell tumours compared to healthy controls[433], and has also 

been found to be downregulated in the serum exosomes of gastric cancer patients 

compared to healthy controls[434]. Interestingly, miR-6782-5p levels were also detected 

at significantly lower levels in the serum of women with a high-risk of developing ovarian 

cancer, compared to those at a lower risk[435]. While all five of these miRNA have shown 

utility as biomarkers in other cancer types or diseases, none have been previously 

reported as being differentially expressed in pancreatic patients, further adding to the 

idea that their utility in this setting may be limited.  

 The differentially expressed proteins, on the other hand, appear more frequently 

in pancreatic literature. Unfortunately, however, a review of this literature highlights 

potential conflicting results with this study. While here, all eight proteins were found to 

be downregulated in high-risk serum compared to low-risk, just one of the eight proteins 

has been previously demonstrated to be decreased in PC compared to controls. IGHA1 

plays a key role in immunoglobulin receptor binding activity, and has been measured 

previously in the PCF of both chronic pancreatitis and non-pancreatitis patients[436]. 

Importantly, IGHA1 has also been measured in normal pancreatic FFPE tissue samples, 

but was not detected in chronic pancreatitis or PC FFPE tissue specimens[437]. Of the 

remaining seven proteins, only one other was also found to be decreased in PC, 

however, the literature surrounding this protein is inconsistent. PPBP, also known as 

CXCL7, is a neutrophil chemoattractant that has been demonstrated by Matsubara et al. 

(2011) to be significantly decreased in the plasma of PC patients compared to healthy 

controls[438]. However, Pan et al. (2011) found PPBP levels to be elevated in chronic 

pancreatitis and PDAC plasma compared to healthy controls[439]. In a 2021 study, Kim et 

al. generated a plasma-based multi-biomarker panel consisting of 14 proteins, including 

PPBP, that could distinguish PDAC from controls with AUC values of up to 0.977[440]. 
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Here, Kim et al. found PPBP levels to be increased in PDAC patients compared to 

controls[440]. Overall these three studies highlight the importance of validation of 

biomarkers across independent patient cohorts, and the vast differences that can be 

seen in biomarker expression profiles across different patient cohorts. IGJ, for example, 

was identified previously via proteomic evaluation of pancreatic patient plasma as being 

upregulated in PDAC plasma compared to healthy controls[439]. However, in this chapter 

IGJ was shown to be downregulated in high-risk serum compared to low-risk. Three 

more of the eight proteins were also found to be elevated in PC compared to controls. 

APOD, for one, is a glycoprotein that was found to be upregulated in PC tissue compared 

to normal controls[441]. It has also been demonstrated to be present at higher levels in 

the serum of PDAC patients with shorter survival[442]. IGHG1 is an important functional 

isoform of immunoglobulins that plays a role in immune effector cell cytolytic activities, 

which has also been shown to be increased in PC tissue compared to adjacent non-

cancerous tissue[443], as well as in the tissue of chronic pancreatitis patients compared 

to normal controls[444]. Li et al. (2021) demonstrated that IGHG1 expression is increased 

in gastric cancer tissues compared to normal controls, and that IGHG1 expression 

promoted proliferation, migration and invasion in gastric cancer cell lines[445]. Lastly, SFN 

is a cell cycle checkpoint protein whose expression levels in tissue have been shown to 

correlate positively with poor prognosis in ovarian cancer[446]. Robin et al. (2020) 

demonstrated that SFN was significantly increased in the stroma of PDAC tissue 

compared to the healthy adjacent fibrous tissue[447]. A computational study, combining 

information from multiple online platforms, found SFN expression to be higher in PC 

tissues compared to normal tissues, with this study also revealing a negative correlation 

between SFN expression and survival probability in PC patients[448]. While evidence in 

the literature suggests the dysregulation of these six proteins in pancreatic disease, 

whether in line with the results of this chapter or not, it is interesting to note that the 

two proteins that were significantly differentially expressed, are the only two among the 

eight that do not appear in this literature. SHROOM3 is an actin-associated protein that 

is known to regulate epithelial cell shape and tissue morphogenesis[449]. While the 

SHROOM3 gene has been shown to be strongly associated with renal disease, no 

evidence could be found in the literature for the dysregulation of this protein in 

pancreatic disease[450]. Similarly, while there have been no studies to-date reporting on 



219 

 

IGHV3-72 in pancreatic disease, the levels of this protein in plasma exosomes have been 

shown to have utility in distinguishing lung adenocarcinoma from lung squamous cell 

carcinoma[451]. As such, data are presented here for the first time indicating the 

dysregulation of SHROOM3, IGHV3-72, miR-197-5p, miR-6741-5p, miR-3180, miR-3180-

3p and miR-6782-5p in pancreatic disease. Although all biomarkers need to emerge into 

the literature at some point, it is surprising to have so many identified in one patient 

cohort, with seven out of thirteen biomarkers brought forward in this chapter having 

not been studied in this context previously. However, given the thousands of ‘unique’ 

novel biomarkers seen in Chapter 3 that had been identified as blood-based biomarkers 

for PC diagnosis, it is not unusual for many of these features to be forgotten and/or not 

rediscovered as research progresses. Indeed, three of those ‘promising’ biomarkers 

from Chapter 3 that were detected in the serum of this patient cohort were not 

significantly different between low- and high-risk patients and showed limited utility in 

this setting. It should be, therefore, the primary concern of biomarker discovery 

literature, to narrow the field of view to just those biomarkers that add robustness to a 

panel, while simultaneously excluding those that worsen its performance.  

Here, CombiROC software was used to interrogate both the 11-feature multi-omic 

panel in PCF identified in Chapter 4, and the 13-feature multi-omic panel in the serum 

discussed in this chapter. Using appropriate cut-offs, these panels were reduced down 

to the least number of biomarkers that would still produce highly sensitive results in 

order to allow the integration of these biomarkers to create a cross-biofluid panel. In 

the same way that multi-omic panels have the potential to encapsulate the complexity 

of disease, and have the unique ability to control for the dysregulation of one omic level 

or factor via compensation of other biomarkers within the panel[166], cross-biofluid 

panels present a new and exciting progression from this. By selectively reducing the PCF 

and serum panels, and generating a new panel that consists of two omic levels, as well 

as two distinct biofluids from the same patient, high sensitivity, specificity and AUC 

metrics were achieved. Furthermore, the performance of this panel is not improved by 

the reclassification of the VHL patient, further emphasising its utility in this setting. 

Interestingly, while the sensitivity cut-off was higher in the serum panel (93%) compared 

to the PCF panel (83%), more features were required to achieve this high performance 
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in the serum than in the PCF, perhaps indicating that PCF-based biomarkers perform 

better than serum-based biomarkers in this cohort, which would not be unexpected 

given the direct proximity of PCF to the PCL in question. Also of note, is the ratio of 

proteins to miRNA in these two reduced panels, with two proteins (S100A8 and LGALS3) 

and two miRNA (SNORA66 and miR-216b-5p) making up the PCF panel, while four 

proteins (IGHV3-72, IGJ, IGHA1 and PPBP) and two miRNA (miR-3180 and miR-3180-3p) 

making up the serum panel. Again, it is evident that the proteins in the serum have 

outperformed the miRNA, despite three of the four included proteins being non-

significantly differentially expressed. Indeed, just one of the two significant proteins 

were included in the final panel of biomarkers, with SHROOM3, the only significant 

protein in the serum that also significantly correlated with patient risk, not being 

included in the reduced panel. Importantly, when examining the results from the PCA 

and correlations, both in the proteins and miRNA alone, and as a multi-omic panel, no 

trends emerge that align with those biomarkers that were brought forward in the cross-

biofluid panel. Within the proteins, two distinct groups could be seen both in the 

unsupervised hierarchical clustering and within the PCA, however, of the four proteins 

brought forward into the cross-biofluid panel, three are from one group (IGHV3-72, IGJ 

and IGHA1) and one is from the other (PPBP). Furthermore, while IGHV3-72 expression 

was shown to correlate with IGJ and IGHA1 expression levels, PPBP expression levels did 

not correlate with any other biomarker. Indeed, in the 3-D PCA of the 13-feature serum 

panel, PPBP was shown to be among those biomarkers most associated with the third 

component. Finally, while IGHV3-72 expression significantly correlated with one miRNA 

(miR-6741-5p), this miRNA was not among those brought forward. MiR-3180 and miR-

3180-3p were shown to be closed related, however, they both had stronger correlations 

with miR-197-5p than with each other. Again, these results highlight the importance of 

evaluating candidate biomarkers in the most appropriate ways. While unsupervised 

hierarchical clustering and PCA can illustrate patterns and relationships within the data, 

biomarker performance is better judged by training and testing models, as in the LOOCV. 

While the generation of a cross-biofluid panel using CombiROC as a reduction tool 

produced high sensitivity, specificity and AUC values after LOOCV, one major caveat to 

this that must be addressed is the number of reduced panels in the PCF and the serum 
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that would have also met these sensitivity and specificity cut-offs. There were four PCF 

panels and four serum panels that met these cut-offs, each of which had a different 

combination of biomarkers. As such, it is possible that any and/or all of these cross-

biofluid combinations could achieve these results, or even better. While these 

combinations were chosen as they were ranked first in the CombiROC software, 

demonstrating the best sensitivity when generating a ROC curve within the software 

itself, other combinations cannot be discounted on this basis and should therefore be 

explored. Unfortunately, as CombiROC does not have the capacity to evaluate more 

than 14 features at any one time due to the large number of permutations required, an 

alternative software with stronger processing power would be necessary to do this. 

Nevertheless, the results obtained here demonstrate the power that can be achieved 

through this process, and highlight a new promising avenue for biomarker panel 

generation. 

The results reported in this chapter, not only describe the dysregulation of proteins 

and miRNA in pancreatic disease that have not previously been seen, but also 

demonstrate their potential utility as biomarkers of patients PC risk in this PCL cohort. 

An 8-protein panel and a 5-miRNA panel were integrated to create a 13-feature multi-

omic panel in patient serum that could classify patients based on their risk of PC with 

high accuracy. The results reported in Chapter 4 were built on, when the 11-feature 

multi-omic panel in PCF was revaluated. Using novel CombiROC software, these two 

multi-omic panels were reduced and integrated, to create a cross-biofluid multi-omic 

panel that could stratify patients with improved accuracy compared to either multi-omic 

panel alone. This research not only highlights promising novel biomarkers of patient PC 

risk stratification, but provides a unique methodology for the generation of biomarker 

panels across biological samples. While these data remain to be further validated in an 

independent patient cohort, the outputs reported here give hope not just for the 

establishment of robust biomarkers in pancreatic disease, but for biomarker research as 

a whole.   

 Lastly, this work showcases the vast diversity of dysregulated components to be 

found within the PCF and serum of PCL patients. Given the expansive research 

conducted to date demonstrating the various factors within the PCF, and the results of 
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this thesis so far, it is important to understand how these factors become dysregulated 

and what role they may have in the progression of PCL patients to PC. 
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Chapter 6. 

 

Functional characterisation of the role of 

pancreatic cyst fluid in the development of 

pancreatic cancer



224 

 

6.1 Introduction 

The hallmarks of cancer and enabling characteristics are widely regarded as the key 

features which best define malignant disease. In a procedure as intricate as the 

development of cancer, a simple definition or stepwise process does little to 

encapsulate the insurmountable complexity that is this disease. Indeed, over the course 

of the last 23 years alone, there have been three iterations of the “Hallmarks of Cancer”, 

each attempting to encapsulate the mechanisms involved in the development of cancer 

by providing a list of strict criteria that must be met in order to define the disease[34-36]. 

With each of these three sets of principles, modern research has caused the ensuing 

recapitulation to be revised, and without exception, to expand. In fact, what originally 

began as six hallmarks of cancer, has become a list of parameters that is fourteen-

strong, and which aim to summarize the functional capabilities that, when acquired by 

human cells, provides them with the ability to form a malignant tumour[36]. While at 

present, it seems impractical to assume that all such existing properties are recorded 

amongst this list of fourteen, it is widely accepted that, for now, these such 

characteristics are among the many attributed to cancer cells and should therefore be 

regarded as the building blocks that are required for the development of cancer. In this 

sense, it is of the upmost importance to characterise the roles that potential carcinogens 

may play in the acquisition of these traits by normal human cells in order to prevent the 

development of cancer, where possible. One such potential carcinogen that may 

contribute to the development of PC, PCF, remains to be fully understood. 

PC is one of the world’s worst prognosis cancers, with the 5-year survival rate 

for all stages combined in 2023 being just 12%[1]. This dismal outlook of PC patients is 

mostly due to the vague nature of the early symptoms, which go unnoticed and results 

in a late stage of disease at initial diagnosis[166]. PCLs are universally regarded as 

potential precursor lesions to PC, many subtypes of which are known to be pre-

malignant[166]. Patients with PCLs are at a significantly higher risk of developing PC than 

those without PCLs, making these lesions an important stage in the early diagnosis of 

PC[452]. However, in a disease such as PC, where survival is notoriously poor, it is 

surprising that there is one major aspect of these lesions that has largely gone 

unchecked. To date, no studies have reported on the biological activity of the fluid 
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within these PCLs, or its potential role in PCL progression to PC. Indeed, the impact of 

cystic fluid on cell biology and activity has been largely limited to a handful of studies 

examining the effect of ovarian ascites fluid on ovarian cancer (OC) cell lines. A 2007 

study conducted by Puiffe et al. explored the effect of patient-derived OC ascites on the 

OV-90 OC cell line. Interestingly, they found that the effects of ascites fluid on these 

cells could be categorized as either stimulatory or inhibitory[453]. Stimulatory ascites 

were shown to effect the expression of several genes (ISGF3G, TRIB1, MKP1, RGS4, 

PLEC1, and MOSPD1) and cause an increase in invasive potential, while inhibitory ascites 

caused a reduction in invasive potential. Interestingly, they found that when exposing 

cells to both inhibitory and stimulatory ascites, the inhibitory effect was dominant. A 

2014 study cultured three OC cell lines in either culture medium or OC patient ascites, 

and found that exposure to ascites fluid differentially triggered a dissemination 

phenotype that was dependent on whether the cells were initially more epithelial- or 

mesenchymal-like[454]. Indeed, those with a more epithelial phenotype were driven 

towards colony and spheroid formation, while predominantly mesenchymal-like cells 

became more migratory, indicating that the initial features of the cells exposed to this 

fluid will dictate the effects that exposure confers. Given the impact that OC ascites fluid 

can have on OC cell line biology, this research endeavoured to uncover the effect that 

PCF could be having on the biology of those cells that make-up and surround the cyst, 

and the potential role that PCF could have in the progression of PCLs to PC.  

In order to interrogate this, both normal and intermediary pancreatic cell lines 

were treated with PCF from patients that were classified as having either a low- or high-

risk of PC development, as defined by the 2018 European evidence-based guidelines on 

pancreatic cystic neoplasms, and examined the effects of this fluid on normal cell 

biology and any potential changes that would align with the hallmarks of cancer[157]. 

Experiments were run in serum-protein free or “serum-starved” conditions. Serum-

starvation of cells is often carried out in order to synchronize cells to the same cell cycle 

phase prior to exposing them to a treatment[455]. This removes the variable of cell cycle 

phase from the response of the cells to the treatment . Here, serum-starvation of 

normal cells was carried out to sensitize the cells prior to PCF exposure, such that effects 

could still be seen at low-volume treatments. In vivo, normal pancreatic cells can be 
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exposed to neat PCF for long periods of time. This type of experimental design is not 

possible in vitro as the volumes of PCF obtained from patients is generally extremely 

low. As such, serum-starvation was used in order to better prime the cells for exposure 

to PCF, and provide less subtle changes in the biological processes assessed.  

As this work is largely preliminary, and mostly aims to interrogate whether PCF 

exposure can cause biological or functional changes to the cells, here, the baseline 

effects of PCF on the ability of normal pancreatic cells to resist cell death, invade tissue 

and metastasize, reprogram their cellular metabolism, and avoid immune destruction 

were examined. The cytotoxic potential of PCF was also profiled, and whether it is 

harmful to normal pancreatic cells or causes DNA damage. The answers to these 

important questions may shed new light on the development of PC, and provide new 

clinical avenues for the prevention of PC development in PCL patients. 

 

6.2 Hypothesis 

PCF is biologically active and has functional effects on the normal cells surrounding the 

cyst, potentially contributing to the eventual development of PC in some patients. 

 

6.3 Specific aims 

1. Elucidate whether exposure to PCF is cytotoxic to normal pancreatic cells, 

causing some measurable changes to cell death, viability, proliferation or DNA 

damage. 

2. Examine whether exposure to PCF triggers a change in the metabolic profile of 

normal pancreatic cells. 

3. Investigate whether exposure to PCF affects the expression of phenotypic or 

functional markers in normal pancreatic cells. 

4. Determine whether exposure to PCF causes functional changes to normal 

pancreatic cells.  
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6.4 Experimental design 

6.4.1 Dose-response curve for normal pancreatic cell line treatment with PCF 

Pancreatic cell lines H6c7-normal and HPNE-intermediary were serum-starved as 

described in section 2.2.12, and seeded in triplicate at 3 x 103 cells per well in a flat-

bottomed 96-well plate in 100 µL of their respective serum-free medium, and left in an 

incubator at 37°C overnight to adhere. The next morning, treatments were prepared in 

50 µL volumes as in Table 6.1. Triplicates were prepared together and pipetted across 

the 3 replicates to reduce pipetting error. PCF samples were sonicated prior to use, as 

described in section 2.2.5, and a sample from one patient was used for all treatments 

to produce one replicate for the dose-response curve. A volume of 50 µL was carefully 

removed from each well of the 96-well plate and discarded to waste before being 

replaced by 50 µL of either fresh medium or fresh medium containing PCF as in Table 

6.1. Final treatment concentrations of PCF in 100 µL were 0% (Untreated), 5%, 10%, 15% 

and 20% (v/v). Blank wells were created by adding medium only to 3 wells for each of 

the four media. Once treated, cells were left for 22 h in an incubator at 37°C and 5% 

CO2. After 22 h, a proliferation assay was performed as described in section 2.2.15. 

 

Table 6.1 PCF treatments for dose response curve. 

Conditions Volume of media per well Volume of cyst fluid per well 

cM blank 50 µL cM - 

SFM blank 50 µL SFM - 

Untreated cM control 50 µL cM - 

Untreated SFM control (0% 
PCF) 

50 µL SFM - 

5% PCF treatment 45 µL SFM 5 µL PCF 

10% PCF treatment 40 µL SFM 10 µL PCF 

15% PCF treatment 35 µL SFM 15 µL PCF 

20% PCF treatment 30 µL SFM 20 µL PCF 

SFM = serum-free medium; cM = complete medium; PCF = pancreatic cyst fluid. 
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6.4.2 Flow cytometric staining of PCF treated cells 

Flow cytometric staining was carried out as per section 2.2.17.2. Analysis of flow 

cytometric data was carried out as per section 2.2.17.3. The panel of extracellular and 

intracellular antibodies used can be found in Table 6.2. All antibodies were used at a 

volume of 1uL per sample tube. Zombie NIR Viability dye was used at a dilution of 1:1000 

in PBS to assess live vs dead cells. Zombie NIR dye working solution was also used at a 

volume of 1µL per sample. 

 

6.4.3 Analysis of experimental data  

Experimental data were handled and analysed as outlined in section 2.2.21.2. Given the 

high level of patient-to-patient variability among samples, outliers were excluded where 

appropriate using outlier analysis in GraphPad Prism (v9.5.0). The ROUT method of 

outlier analysis was used to identify outliers, with Q (the chance of falsely identifying 

one or more outliers) set to 1. Outliers identified using this method where excluded 

from the dataset they were identified in.  

 

Table 6.2 Flow cytometry panel of fluorochrome-conjugated anti-human antibodies.  

Antibody Channel Location Company Clone Product code 

Vimentin FITC Intracellular BioLegend, USA O91D3 677809 

Slug PE Intracellular Miltenyi Biotec, 
UK 

REA404 130-131-007 

N-cadherin PE-Cy5.5 Extracellular BioLegend, USA 8C11 350813 

E-cadherin PE-Cy7 Extracellular BioLegend, USA 67A4 324115 

EGFR APC Extracellular BioLegend, USA AY13 352905 

CD133 BV421 Extracellular BioLegend, USA S16015F 393907 

PD-L1 BV510 Extracellular BioLegend, USA 29E.2A3 329733 
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6.5 Results 

6.5.1 PCF can be cytotoxic and significantly affects apoptosis, proliferation and viability 

in normal pancreatic cell lines 

In order to determine if PCF could influence the biology of normal pancreatic cell lines, 

serum-starved H6c7-normal and HPNE-intermediary cell lines were treated with low 

concentrations of PCF and their proliferation post 24 h was examined. PCF treatment 

resulted in a reduction in proliferation for both H6c7-normal and HPNE-intermediary 

cell lines compared to the untreated control (UTC)(Figure 6.1). Both cell lines had 

reduced proliferation when treated with 5%, 10%, 15% and 20% (v/v) PCF, though this 

effect is more pronounced in the H6c7-normal cells. As the biological effect of PCF on 

normal pancreatic cell biology can be seen at treatment with just 5% PCF, and there is 

little variability observed in this effect across higher treatment concentrations, all 

subsequent experiments are carried out with the 5% PCF concentration to best utilise 

these limited-volume patient samples. 

 Further interrogation into the influence of PCF on normal cell biology was 

conducted by examining cell viability, cell death, and cytotoxicity of PCF. Treatment of 

H6c7-normal cells with PCF resulted in a significant increase in the number of viable 

cells (p<0.001), along with a significant decrease in apoptosis (p<0.05)(Figure 6.2). While 

no change was seen in the proliferation of these cells, the PCF was also shown to 

demonstrate no significant cytotoxic effect on H6c7-normal cells (Figure 6.2). A large 

amount of variability can be observed in the effects of different patient PCF on the level 

of apoptosis seen in H6c7-normal cells (Figure 6.2C). Indeed, while the overall trend 

shows a decrease in apoptosis when the cells are treated with PCF, the substantial 

spread of these data indicates a considerable amount of patient-to-patient variability 

which causes the general result to be difficult to determine. Conversely, treatment with 

PCF significantly increased the level of apoptosis seen in HPNE-intermediary cells 

(p<0.05), though again patient-to-patient variability is quite large (Figure 6.3C). PCF 

treatment did not significantly alter HPNE-intermediary cell viability, despite being 

significantly cytotoxic towards these cells (p<0.01)(Figure 6.3A-B). It is important to 

note that these results are further compounded by the exclusion of results from three 

patients (one low-risk and two high-risk) from this analysis as outliers, having fold  
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Figure 6.1 Treatment with PCF affects the proliferation of normal pancreatic cell lines. 

Dose Response curve showing the effect of varying concentrations [0%, 5%, 10%, 15%, 

20% (v/v)] of PCF on serum-starved H6c7-normal (purple) and HPNE-intermediary 

(green) cell line proliferation after 24 h. Data are presented as mean ± SEM for 2 

patients. 
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Figure 6.2 Treatment with PCF for 24 h significantly increases the viability and 

decreases the apoptosis of H6c7-normal cells. Fold change relative to the UTC of H6c7-

normal cells treated for 24 h with 5% (v/v) PCF on (A) viability, (B) cytotoxicity, (C) 

apoptosis, and (D) proliferation. Data are presented as mean ± SEM for 20 patients. PCF 

from low-risk patients is shown in blue; PCF from high-risk patients is shown in red. One-

sample Wilcoxon-signed rank test. *p<0.05, ***p<0.001. 

 

 



232 

 

U
ntr

ea
te

d

C
ys

t F
lu

id

0

1

2

3

4

5

Viability

F
o

ld
 C

h
a

n
g

e
 R

e
la

ti
v
e
 t

o
 U

T
C

U
ntr

ea
te

d

C
ys

t F
lu

id

0

50

100

150

Cytotoxicity

F
o

ld
 C

h
a

n
g

e
 R

e
la

ti
v
e
 t

o
 U

T
C ✱✱

U
ntr

ea
te

d

C
ys

t F
lu

id

0

1

2

3

4

5

Apoptosis

F
o

ld
 C

h
a

n
g

e
 R

e
la

ti
v
e
 t

o
 U

T
C

✱

U
ntr

ea
te

d

C
ys

t F
lu

id

0.0

0.5

1.0

1.5

2.0

2.5

Proliferation

F
o

ld
 C

h
a

n
g

e
 R

e
la

ti
v
e
 t

o
 U

T
C

✱✱

A B

C D

 

Figure 6.3 Treatment with PCF for 24 h is cytotoxic to HPNE-intermediary cells, 

significantly increasing apoptosis and decreasing proliferation. Fold change relative to 

the UTC of HPNE-intermediary cells treated for 24 h with 5% (v/v) PCF on (A) viability, 

(B) cytotoxicity, (C) apoptosis, and (D) proliferation. Data are presented as mean ± SEM 

for 20 patients. PCF from low-risk patients is shown in blue; PCF from high-risk patients 

is shown in red. One-sample Wilcoxon-signed rank test. *p<0.05, **p<0.01. 
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change values of more than 190-fold greater than the UTC. PCF also caused a significant 

decrease in HPNE-intermediary cell proliferation, though again, the spread of these data 

is sizeable indicating a degree of patient-to-patient variability in this effect 

(p<0.01)(Figure 6.3D). Overall, treatment with PCF proved to be significantly cytotoxic 

to HPNE-intermediary cells, and has demonstrated the potential to alter the viability, 

apoptosis and proliferation of both normal cell lines. These effects, however, appear to 

vary greatly from patient-to-patient, and between the two cell lines, making an overall 

pattern difficult to discern. 

When broken down into low- and high-risk patient PCF treatments, both low- 

(p<0.05) and high-risk (p<0.01) PCF are shown to be responsible for the significant 

increase in H6c7-normal cell viability (Figure 6.4A). However, while there is a general 

trend towards a decrease in apoptosis, neither low- nor high-risk PCF alone causes a 

significant change to H6c7-normal cell apoptosis, with the large patient-to-patient 

variability being evident in both groups (Figure 6.4C). Both low- and high-risk PCF remain 

non-cytotoxic to H6c7-normal cells, and have no significant effect on cell proliferation 

(Figure 6.4B and 6.4D). In the HPNE-intermediary cells, again while there is a trend 

towards an increase in apoptosis, this is non-significant in both low- and high-risk PCF 

treatments, with the spread of the data being substantial here again (Figure 6.5C). 

Although neither low- nor high-risk PCF had a significant cytotoxic effect on HPNE-

intermediary cells individually, these results also exclude data from three outlier 

patients as above (Figure 6.5B). When included in the analysis, both low- and high-risk 

PCF have significant cytotoxic effects on HPNE-intermediary cells (p<0.05)(data not 

shown). In terms of proliferation, while there is a decrease in this when treated with 

low- or high-risk PCF, the high-risk PCF caused a significant decrease (p<0.05)(Figure 

6.5D). When divided into risk categories, it remains evident that the effects seen on 

normal pancreatic cell biology are patient dependent and risk does not appear to be the 

defining factor. 
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Figure 6.4 Treatment with high-risk PCF for 24 h significantly increases the viability of 

H6c7-normal cells. Fold change relative to the UTC of H6c7-normal cells treated for 24 

h with 5% (v/v) low-risk or high-risk PCF on (A) viability, (B) cytotoxicity, (C) apoptosis, 

and (D) proliferation. Data are presented as mean ± SEM for n=10 low-risk and n=10 

high-risk patients. One-sample Wilcoxon-signed rank test coupled with a Kruskal-Wallis 

test with Dunn’s multiple comparisons. *p<0.05, **p<0.01. 
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Figure 6.5 Treatment with high-risk PCF for 24 h significantly decreases the 

proliferation of HPNE-intermediary cells. Fold change relative to the UTC of HPNE-

intermediary cells treated for 24 h with 5% (v/v) low-risk or high-risk PCF on (A) viability, 

(B) cytotoxicity, (C) apoptosis, and (D) proliferation. Data are presented as mean ± SEM 

for n=10 low-risk and n=10 high-risk patients. One-sample Wilcoxon-signed rank test 

coupled with a Kruskal-Wallis test with Dunn’s multiple comparisons. *p<0.05. 
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6.5.2 Serum starvation significantly alters the basal respiration of normal pancreatic 

cell lines 

Before examining the effect of PCF on cell line metabolism, the influence of serum 

starvation on the basal metabolic profile of normal pancreatic cell lines was examined. 

To assess the basal respiration of H6c7-normal and HPNE-intermediary cells, and 

whether this could be challenged within a 24 h time period, Seahorse XF ATP rate tests 

were run on both cell lines after culturing in normal and serum-starved conditions for 

24 h. Serum-starvation did not significantly alter the total amount of ATP produced by 

H6c7 cells, or the amount of ATP produced by glycolysis [glycoATP] or oxidative 

phosphorylation [mitoATP] (Figure 6.6A-C). Despite this, serum-starvation caused a 

significant shift in the primary metabolic pathway used by the cells, with oxidative 

phosphorylation being responsible for significantly more ATP production than glycolysis 

(p<0.01)(Figure 6.6D). H6c7-normal cells grown in normal culture medium demonstrate 

a minor dependency on oxidative phosphorylation, though this is not significant (Figure 

6.6D). 

For HPNE-intermediary cells, there is a significant increase in the amount of 

glycoATP produced in serum-starved cells compared to those cultured under normal 

conditions (p<0.05)(Figure 6.7A). Though not significant, this trend continues in both 

mitoATP and total ATP production, with increases in both seen in serum-starved HPNE-

intermediary cells (Figure 6.7B-C). HPNE-intermediary cells rely significantly more on 

oxidative phosphorylation than glycolysis as their primary metabolic pathway 

(p<0.01)(Figure 6.7D). Serum-starved HPNE-intermediary cells also rely significantly 

more on oxidative phosphorylation than glycolysis, despite the increases in both forms 

of ATP (p<0.05)(Figure 6.7D). This reliance is slightly reduced in the serum-starved 

HPNE-intermediary cells, though not significantly. 

 

6.5.3 PCF does not significantly alter the metabolic profile of normal pancreatic cell 

lines 

Having shown that the metabolic profiles of these cells could be altered within a 24 h 

time period, the effect of PCF on the metabolic profile of normal pancreatic cell lines, 

H6c7-normal and HPNE-intermediary, was assessed via Seahorse XF ATP rate test.   
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Figure 6.6 Serum starvation for 24 h significantly increases the reliance of H6c7-normal 

cells on oxidative phosphorylation compared to glycolysis. Metabolic profile of H6c7-

normal cells grown in either complete media (cMedia) or serum-free media (sfMedia) 

for 24 h. Unpaired t-test comparing (A) ATP produced from glycolysis (glycoATP), (B) ATP 

produced from mitochondrial oxidative phosphorylation (mitoATP), and (C) Total ATP 

(glycoATP + mitoATP). (D) 2-way ANOVA with Tukey’s multiple comparisons test 

comparing the percentage ATP produced by glycolysis versus oxidative phosphorylation. 

Data are presented as mean ± SEM for n=4 experimental replicates. **p<0.01.  
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Figure 6.7 Serum starvation for 24 h significantly increases the production of glycoATP 

in HPNE-intermediary cells. Metabolic profile of HPNE-intermediary cells grown in 

either complete media (cMedia) or serum-free media (sfMedia) for 24 h. Unpaired t-

test comparing (A) ATP produced from glycolysis (glycoATP), (B) ATP produced from 

mitochondrial oxidative phosphorylation (mitoATP), and (C) Total ATP (glycoATP + 

mitoATP). (D) 2-way ANOVA with Tukey’s multiple comparisons test comparing the 

percentage ATP produced by glycolysis versus oxidative phosphorylation. Data are 

presented as mean ± SEM for n=6 experimental replicates. *p<0.05, **p<0.01. 

 

  



239 

 

Treatment with PCF significantly increased the production of glycoATP in H6c7-normal 

cells (p<0.05), but did not alter the production of mitoATP or the total amount of ATP 

produced (Figure 6.8A-C). While not significant, a slight shift towards the reliance of 

H6c7-normal cells on glycolysis after treatment with PCF can be observed (Figure 6.8D). 

However, there is a substantial amount of patient-to-patient variability in both the 

%glycolysis and %oxidative phosphorylation, resulting in an overall even distribution of 

ATP production by glycolysis and oxidative phosphorylation for H6c7-normal cells when 

treated with PCF. 

 PCF treatment did not significantly alter the production of glycoATP, mitoATP, 

or the total amount of ATP produced by HPNE-intermediary cells (Figure 6.9A-C). HPNE-

intermediary cells rely significantly on oxidative phosphorylation as their primary 

metabolic pathway, and treatment with PCF does not alter this (p<0.0001)(Figure 6.9D). 

Importantly, the patient-to-patient variability seen in the H6c7-normal cells in this 

context is not reflected in the HPNE-intermediary cells, with the distribution of data 

points being more homogenous, despite the patient samples being utilised across both 

cell lines being matched. 

 When broken down into low- and high-risk patient PCF treatments, high-risk PCF 

is shown to be responsible for the significant increase in glycoATP production in H6c7-

normal cells (p<0.05), with low-risk PCF demonstrating no significant effect (Figure 

6.10A). Both low- and high-risk PCF had no significant effect on the amount of mitoATP 

or the total ATP produced by H6c7-normal cells (Figure 6.10B-C). Importantly, while 

low-risk PCF demonstrates a similar breakdown of ATP production by glycolysis versus 

oxidative phosphorylation, high-risk PCF appears to cause a shift towards glycolysis in 

H6c7-normal cells, though not significant (Figure 6.10D). The glycoATP, mitoATP and 

amount of total ATP produced by HPNE-intermediary cells were not significantly altered 

by low- or high-risk PCF (Figure 6.11A-C). The significant reliance of these cells on 

oxidative phosphorylation over glycolysis (p<0.01) was also not affected by low- or high-

risk PCF treatment, though it was slightly more pronounced in cells treated with low-

risk PCF (p<0.0001)(Figure 6.11D). Overall, it is evident that PCF has the potential to 

alter normal pancreatic cell line metabolism but the sizeable amount of patient-to-

patient variability observed causes there to be no overarching trend in these effects. It 
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Figure 6.8 Treatment with PCF for 24 h significantly increases the production of 

glycoATP in H6c7-normal cells. Metabolic profile of H6c7-normal cells treated with 5% 

(v/v) PCF for 24 h. Mann-Whitney test comparing (A) ATP produced from glycolysis 

(glycoATP), (B) ATP produced from mitochondrial oxidative phosphorylation (mitoATP), 

and (C) Total ATP (glycoATP + mitoATP). (D) 2-way ANOVA with Tukey’s multiple 

comparisons test comparing the percentage ATP produced by glycolysis versus oxidative 

phosphorylation. PCF from low-risk patients is shown in blue; PCF from high-risk 

patients is shown in red. Data are presented as mean ± SEM for n=11 patients. *p<0.05. 
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Figure 6.9 Treatment with PCF for 24 h does not significantly alter the metabolic 

profile of HPNE-intermediary cells. Metabolic profile of HPNE-intermediary cells 

treated with 5% (v/v) PCF for 24 h. Mann-Whitney test comparing (A) ATP produced 

from glycolysis (glycoATP), (B) ATP produced from mitochondrial oxidative 

phosphorylation (mitoATP), and (C) Total ATP (glycoATP + mitoATP). (D) 2-way ANOVA 

with Tukey’s multiple comparisons test comparing the percentage ATP produced by 

glycolysis versus oxidative phosphorylation. PCF from low-risk patients is shown in blue; 

PCF from high-risk patients is shown in red. Data are presented as mean ± SEM for n=11 

patients. ****p<0.0001. 
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Figure 6.10 Treatment high-risk PCF for 24 h significantly increases the production of 

glycoATP in H6c7-normal cells. Metabolic profile of H6c7-normal cells treated with 5% 

(v/v) low-risk or high-risk PCF for 24 h. Kruskal-Wallis test with Dunn’s multiple 

comparisons comparing (A) ATP produced from glycolysis (glycoATP), (B) ATP produced 

from mitochondrial oxidative phosphorylation (mitoATP), and (C) Total ATP (glycoATP + 

mitoATP). (D) 2-way ANOVA with Tukey’s multiple comparisons test comparing the 

percentage ATP produced by glycolysis versus oxidative phosphorylation. Data are 

presented as mean ± SEM for n=6 low-risk patients and n=5 high-risk patients. *p<0.05. 
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Figure 6.11 Treatment with low- or high-risk PCF for 24 h does not significantly alter 

the metabolic profile of HPNE-intermediary cells. Metabolic profile of HPNE-

intermediary cells treated with 5% (v/v) low-risk or high-risk PCF for 24 h. Kruskal-Wallis 

test with Dunn’s multiple comparisons comparing (A) ATP produced from glycolysis 

(glycoATP), (B) ATP produced from mitochondrial oxidative phosphorylation (mitoATP), 

and (C) Total ATP (glycoATP + mitoATP). (D) 2-way ANOVA with Tukey’s multiple 

comparisons test comparing the percentage ATP produced by glycolysis versus oxidative 

phosphorylation. Data are presented as mean ± SEM for n=6 low-risk patients and n=5 

high-risk patients. **p<0.01, ****p<0.0001. 
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is also important to note that these experiments were run using a total of 20 patient 

PCFs, but nine (n=4 low-risk and n=5 high-risk) of these killed the both the H6c7-normal 

and HPNE-intermediary cells, so metabolic read outs could not be obtained. Again, risk 

does not appear to be the defining characteristic. 

 

6.5.4 PCF does not alter the expression of phenotypic and functional markers on 

normal pancreatic cell lines after 6 h 

Given the subtle changes to metabolic profiles observed after 24 h, the expression of 

key phenotypic and functional markers were assessed flow cytometrically following 

normal pancreatic cell line, H6c7-normal and HPNE-intermediary, treatment with 5% 

(v/v) PCF for just 6 h. Treatment with PCF for 6 h did not significantly alter the 

percentage of Vimentin+, N-cadherin+, E-cadherin, EGFR+, Slug+, CD133+ or PD-L1+ H6c7-

normal cells (Figure 6.12). Serum-starvation caused a noticeable increase in the 

percentage of N-cadherin+, CD133+ and PD-L1+ H6c7-normal cells compared to the basal 

levels, and this was not affected by PCF treatment. Treatment with PCF for 6 h also did 

not significantly alter the percentage of Vimentin+, N-cadherin+, E-cadherin+, EGFR+, 

Slug+, CD133+ or PD-L1+ HPNE-intermediary cells (Figure 6.13). In this case, serum-

starvation caused a visible increase in the percentage of E-cadherin+ cells, and a 

decrease in the percentage of EGFR+ cells, which again was not affected by PCF 

treatment. 

Separating the PCF treatments into those from low- or high-risk patients shows 

no significant differences in the percentage of Vimentin+, N-cadherin+, E-cadherin, 

EGFR+, Slug+, CD133+ or PD-L1+ H6c7-normal cells after low- or high-risk PCF treatment 

for 6 h (Figure 6.14). Similarly, there is no significant different in the percentage of 

HPNE-intermediary cells after treatment with low- or high-risk PCF for 6 h (Figure 6.15). 

Importantly, these data do not have the large spread that were observed in previous 

experiments, perhaps indicating that a 6 h treatment is too short a timeframe to 

evaluate these effects. 
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Figure 6.12 Treatment with PCF for 6 h does not significantly alter the expression of 

phenotypic and functional markers on H6c7-normal cells. Percentage of H6c7-normal 

cells expressing phenotypic and functional markers of interest (A-G) post-treatment 

with 5% (v/v) PCF for 6 h. Dotted lines indicate the basal expression level of H6c7-normal 

cells for each marker. Data are presented as mean ± SEM for 10 patients. PCF from low-

risk patients is shown in blue; PCF from high-risk patients is shown in red. Mann-

Whitney test.  
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Figure 6.13 Treatment with PCF for 6 h does not significantly alter the expression of 

phenotypic and functional markers on HPNE-intermediary cells. Percentage of HPNE-

intermediary cells expressing phenotypic and functional markers of interest (A-G) post-

treatment with 5% (v/v) PCF for 6 h. Dotted lines indicate the basal expression level of 

HPNE-intermediary cells for each marker. Data are presented as mean ± SEM for 10 

patients. PCF from low-risk patients is shown in blue; PCF from high-risk patients is 

shown in red. Mann-Whitney test.  
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Figure 6.14 Treatment with low- or high-risk PCF for 6 h does not significantly alter the 

expression of phenotypic and functional markers on H6c7-normal cells. Percentage of 

H6c7-normal cells expressing phenotypic and functional markers of interest (A-G) post-

treatment with 5% (v/v) low- or high-risk PCF for 6 h. Dotted lines indicate the basal 

expression level of H6c7-normal cells for each marker. Data are presented as mean ± 

SEM for n=5 low-risk patients and n=5 high-risk patients. Kruskal-Wallis test with Dunn’s 

multiple comparisons. 
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Figure 6.15 Treatment with low- or high risk PCF for 6 h does not significantly alter the 

expression of phenotypic and functional markers on HPNE-intermediary cells. 

Percentage of HPNE-intermediary cells expressing phenotypic and functional markers 

of interest (A-G) post-treatment with 5% (v/v) low- or high-risk PCF for 6 h. Dotted lines 

indicate the basal expression level of HPNE-intermediary cells for each marker. Data are 

presented as mean ± SEM for n=5 low-risk patients and n=5 high-risk patients. Kruskal-

Wallis test with Dunn’s multiple comparisons. 
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6.5.5 PCF significantly decreases the percentage of Vimentin+ and PD-L1+ H6c7-normal 

cells after 24 h 

As 6 h was shown to be too short a time frame to observe changes in marker expression, 

this timeframe was extended to 24 h of treatment. Seven phenotypic and functional 

markers of interest were assessed flow cytometrically following H6c7-cell line treatment 

with 5% (v/v) PCF for 24 h. While serum-starvation for 24 h did not cause a noticeable 

change to the percentage of Vimentin+ H6c7-normal cells compared to the basal levels, 

PCF treatment significantly decreased the percentage of Vimentin+ H6c7-normal cells 

(p<0.05)(Figure 6.16A). Conversely, serum-starvation for 24 h caused a visible increase 

in the percentage of PD-L1+ H6c7-normal cells compared to the basal levels, however, 

PCF treatment significantly decreased the percentage of PD-L1+ H6c7-normal cells 

towards these basal levels (p<0.01)(Figure 6.16G). Treatment with PCF for 24 h did not 

significantly alter the percentage of N-cadherin+, E-cadherin+, EGFR+, Slug+ or CD133+ 

H6c7-normal cells (Figure 6.16).  

 When separated based on risk, the decrease in the percentage of Vimentin+ 

H6c7-normal cells can be seen in both low- and high-risk PCF treatments, though neither 

on their own is significantly different compared to the untreated control (Figure 6.17A). 

For the PD-L1+ H6c7-normal cells, again both low- and high-risk PCF decrease the 

percentage pf PD-L1+ cells, with high-risk PCF causing a significant decrease 

(p<0.05)(Figure 6.17G). The percentage of Vimentin+, N-cadherin+, E-cadherin+, EGFR+, 

Slug+ and CD133+ H6c7-normal cells was not significantly altered following treatment 

with low- or high-risk PCF for 24 h (Figure 6.17). Importantly, after 24 h PCF treatment 

the spread of data is again quite large, showing the variability of the effects seen 

between patient-to-patient PCF with risk separation having little improvement on this.  

When comparing the effects of PCF after 6 h or 24 h, the percentage of Vimentin+ 

H6c7-normal cells was significantly decreased at 24 h compared to 6 h, indicating that 

these changes become more pronounced over time (p<0.001)(Figure 6.18A). 

Interestingly, the percentage of PD-L1+ H6c7-normal cells increased over time following 

serum starvation, but decreased over time in the presence of PCF, though not 

significantly (p>0.05)(Figure 6.18B). While not significantly altered compared to serum 

starved controls, the percentage of EGFR+ H6c7-normal cells was significantly reduced   
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Figure 6.16 Treatment with PCF for 24 h significantly decreases the expression of 

vimentin and PD-L1 on H6c7-normal cells. Percentage of H6c7-normal cells expressing 

phenotypic and functional markers of interest (A-G) post-treatment with 5% (v/v) PCF 

for 24 h. Dotted lines indicate the basal expression level of H6c7-normal cells for each 

marker. Data are presented as mean ± SEM for 10 patients. PCF from low-risk patients 

is shown in blue; PCF from high-risk patients is shown in red. Mann-Whitney test. 

*p<0.05, **p<0.01. 
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Figure 6.17 Treatment with high-risk PCF for 24 h significantly decreases the 

expression of PD-L1 on H6c7-normal cells. Percentage of H6c7-normal cells expressing 

phenotypic and functional markers of interest (A-G) post-treatment with 5% (v/v) low- 

or high-risk PCF for 24 h. Dotted lines indicate the basal expression level of H6c7-normal 

cells for each marker. Data are presented as mean ± SEM for n=5 low-risk patients and 

n=5 high-risk patients. Kruskal-Wallis test with Dunn’s multiple comparisons. *p<0.05. 

  



252 

 

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

Vimentin
%

 P
o

s
it

iv
e
 C

e
ll
s

Cyst FluidUntreated

✱✱✱

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

PD-L1

%
 P

o
s
it

iv
e
 C

e
ll
s

Cyst FluidUntreated

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

EGFR

%
 P

o
s
it

iv
e
 C

e
ll
s

✱

Cyst FluidUntreated

6 
hours

24
 h

ours

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

Vimentin

%
 P

o
s
it

iv
e
 C

e
ll
s

High RiskLow RiskUntreated

✱ ✱

6 
hours

24
 h

ours

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

PD-L1

%
 P

o
s
it

iv
e
 C

e
ll
s

High RiskLow RiskUntreated

6 
hours

24
 h

ours

6 
hours

24
 h

ours

6 
hours

24
 h

ours

0

20

40

60

80

100

EGFR

%
 P

o
s
it

iv
e
 C

e
ll
s

High RiskLow RiskUntreated

A B C

D E F

 

Figure 6.18 PCF significantly decreases the percentage of Vimentin+ and EGFR+ H6c7-

normal cells at 24 h compared to 6 h. Percentage of H6c7-normal cells expressing 

phenotypic and functional markers of interest at 6 h and 24 h (A-C) post-treatment with 

5% (v/v) PCF and (D-F) post-treatment with 5% (v/v) low- or high-risk PCF. Dotted lines 

indicate the basal expression level of HPNE-intermediary cells for each co-expression. 

Data are presented as mean ± SEM for n=5 low-risk and n=5 high-risk patients. PCF from 

low-risk patients is shown in blue; PCF from high-risk patients is shown in red. Kruskal-

Wallis test with Dunn’s multiple comparisons. *p<0.05, ***p<0.001. 
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after 24 h compared to 6 h (p<0.05)(Figure 6.18C). When examined based on risk, both 

low- and high-risk PCF significantly decreased the percentage of Vimentin+ H6c7-normal 

cells at 24 h compared to 6 h (p<0.05)(Figure 6.18D). Neither low- nor high-risk PCF 

caused significant changes to the percentage of PD-L1+ or EGFR+ H6c7-normal cells 

between the 6 h and 24 h treatments (p>0.05)(Figure 6.18E-F). 

 

6.5.6 Low-risk PCF significantly increases the percentage of EGFR+ HPNE-intermediary 

cells after 24 h 

As changes in marker expression could be seen after 24 h in the H6c7-normal cells, these 

seven phenotypic and functional markers of interest were assessed flow cytometrically 

following HPNE-intermediary cell line treatment with 5% (v/v) PCF for 24 h. Serum-

starvation for 24 h did not cause a noticeable change in the percentage of Vimentin+, N-

cadherin+, Slug+, CD133+ or PD-L1+ HPNE-intermediary cells compared to basal levels, 

and treatment with PCF also did not cause a significant difference (Figure 6.19). Serum-

starvation for 24 h caused a noticeable increase in the percentage of E-cadherin+ cells 

compared to basal levels, with PCF treatment having no effect on this (Figure 6.19C). 

Conversely, serum-starvation for 24 h caused a visible decrease in the percentage of 

EGFR+ HPNE-intermediary cells compared to the basal levels, however, PCF treatment 

significantly increased the percentage of EGFR+ cells towards these basal levels 

(p<0.01)(Figure 6.19D). When separated based on risk, the increase in the percentage 

of EGFR+ HPNE-intermediary cells can be seen in both low- and high-risk PCF treatments, 

though only low-risk PCF caused a statistically significant increase (p<0.05)(Figure 

6.20D). The percentage of Vimentin+, N-cadherin+, E-cadherin+, Slug+, CD133+ and PD-

L1+ HPNE-intermediary cells was not significantly altered following treatment with low- 

or high-risk PCF for 24 h (Figure 6.20). Similarly to the H6c7-normal cells, at 24 h PCF 

treatment the data can be seen to spread out again, showing the patient-to-patient 

variability. In the HPNE-intermediary cells also, the separation of risk groups does not 

correct this. 

Examining the change in these markers between the 6 h and 24 h treatments 

demonstrates that, while there was no change in the percentage of Vimentin+ HPNE-

intermediary cells between the untreated control and PCF treatment at 24 h, these cells 
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Figure 6.19 Treatment with PCF for 24 h significantly increases the expression of EGFR 

on HPNE-intermediary cells. Percentage of HPNE-intermediary cells expressing 

phenotypic and functional markers of interest (A-G) post-treatment with 5% (v/v) PCF 

for 24 h. Dotted lines indicate the basal expression level of HPNE-intermediary cells for 

each marker. Data are presented as mean ± SEM for 10 patients. PCF from low-risk 

patients is shown in blue; PCF from high-risk patients is shown in red. Mann-Whitney 

test. *p<0.05. 
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Figure 6.20 Treatment with low-risk PCF for 24 h significantly increases the expression 

of EGFR on HPNE-intermediary cells. Percentage of HPNE-intermediary cells expressing 

phenotypic and functional markers of interest (A-G) post-treatment with 5% (v/v) low- 

or high-risk PCF for 24 h. Dotted lines indicate the basal expression level of HPNE-

intermediary cells for each marker. Data are presented as mean ± SEM for n=5 low-risk 

patients and n=5 high-risk patients. Kruskal-Wallis test with Dunn’s multiple 

comparisons. *p<0.05. 
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were significantly decreased at 24 h in both untreated and PCF treated conditions 

compared to 6 h, indicating that this change is a result of the serum-starvation rather 

than the PCF treatment (p<0.01)(Figure 6.21A). This trend continues when the 

treatments are split into low- and high-risk PCF, however, only the shift in the untreated 

controls remains significant (p<0.05)(Figure 6.21D). There was no significant change in 

the percentage of PD-L1+ HPNE-intermediary cells treated with PCF (p>0.05)(Figure 

6.21B), or low- or high-risk PCF (p>0.05)(Figure 6.21E). There was a significant increase 

in the percentage of EGFR+ HPNE-intermediary cells after 24 h treatments with PCF 

compared to 6 h (p<0.001)(Figure 6.21C), with low-risk PCF causing a significant increase 

on its own also (p<0.05)(Figure 6.21F). 

 

6.5.7 PCF does not significantly alter the co-expression of phenotypic and functional 

markers on normal cells after 6 h 

Following on from the alterations seen in the percentage of Vimentin+, PD-L1+ and EGFR+ 

cells following treatment with PCF, co-expression of these three phenotypic and 

functional markers was assessed flow cytometrically following cell line treatment with 

5% (v/v) PCF for 6 h. No significant difference in the percentage of any co-expressing 

cell population was observed in H6c7-normal cells following treatment with PCF for 6 h 

(Figure 6.22A-O). Of note, the percentage of Vimentin+/CD133+, Vimentin+/N-cadherin+, 

Vimentin+/PD-L1+, PD-L1+/CD133+, PD-L1+/Slug+, PD-L1+/N-cadherin+, EGFR+/CD133+ 

and EGFR+/N-cadherin+ H6c7-normal cells were visibly increased following 6 h of serum-

starvation compared to basal levels, and PCF treatment did not significantly alter this 

(Figure 6.22). The percentage of HPNE-intermediary cells co-expressing these markers 

was not significantly affected by PCF treatment for 6 h (Figure 6.23A-O). The percentage 

of Vimentin+/CD133+, Vimentin+/N-cadherin+, Vimentin+/EGFR+, Vimentin+/PD-L1+, PD-

L1+/Slug+, PD-L1+/EGFR+, EGFR+/Slug+, EGFR+/N-cadherin+, and EGFR+/E-cadherin+ 

HPNE-intermediary cells is noticeable decreased following serum-starvation for 6 h 

compared to basal levels. Conversely, Vimentin+/E-cadherin+ and PD-L1+/CD133+ HPNE-

intermediary cells were noticeably increased following 6 h of serum-starvation 

compared to basal levels (Figure 6.23).  
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Figure 6.21 PCF significantly increases the percentage of EGFR+ HPNE-intermediary 

cells at 24 h compared to 6 h. Percentage of HPNE-intermediary cells expressing 

phenotypic and functional markers of interest at 6 h and 24 h (A-C) post-treatment with 

5% (v/v) PCF and (D-F) post-treatment with 5% (v/v) low- or high-risk PCF. Dotted lines 

indicate the basal expression level of HPNE-intermediary cells for each co-expression. 

Data are presented as mean ± SEM for n=5 low-risk and n=5 high-risk patients. PCF from 

low-risk patients is shown in blue; PCF from high-risk patients is shown in red. Kruskal-

Wallis test with Dunn’s multiple comparisons. *p<0.05, **p<0.01, ***p<0.001.  
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Figure 6.22 Treatment with PCF for 6 h does not significantly alter the co-expression 

of phenotypic and functional markers on H6c7-normal cells. Percentage of H6c7-

normal cells expressing co-expressing phenotypic and functional markers of interest (A-

O) post-treatment with 5% (v/v) PCF for 6 h. Dotted lines indicate the basal expression 

level of H6c7-normal cells for each co-expression. Data are presented as mean ± SEM 

for 10 patients. PCF from low-risk patients is shown in blue; PCF from high-risk patients 

is shown in red. Mann-Whitney test. [E-cad = E-cadherin, N-cad = N-cadherin, Vim = 

Vimentin] 
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Figure 6.23 Treatment with PCF for 6 h does not significantly alter the co-expression 

of phenotypic and functional markers on HPNE-intermediary cells. Percentage of 

HPNE-intermediary cells expressing co-expressing phenotypic and functional markers of 

interest (A-O) post-treatment with 5% (v/v) PCF for 6 h. Dotted lines indicate the basal 

expression level of HPNE-intermediary cells for each co-expression. Data are presented 

as mean ± SEM for 10 patients. PCF from low-risk patients is shown in blue; PCF from 

high-risk patients is shown in red. Mann-Whitney test. [E-cad = E-cadherin, N-cad = N-

cadherin, Vim = Vimentin] 
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Separation of these data into low- and high-risk treatment groups does not 

produce any significant alterations in the percentage of H6c7-normal cells or HPNE-

intermediary co-expressing these markers of interest (Figure 6.24, Figure 6.25). Again, 

at the 6 h PCF treatment these data can be seen to clump together, and the patient-to-

patient variability is not visible at this time point. 

 

6.5.8 PCF significantly alters the percentage of Vimentin+/Slug+, Vimentin+/E-cadherin+, 

Vimentin+/EGFR+, Vimentin+/PD-L1+, PD-L1+/Slug+, PD-L1+/E-cadherin+, and PD-

L1+/EGFR+ H6c7-normal cells after 24 h 

Given the significant changes seen in the percentage of Vimentin+, PD-L1+ and EGFR+ 

cells following treatment with PCF, co-expression of these three phenotypic and 

functional markers was assessed flow cytometrically following cell line treatment with 

5% (v/v) PCF for 24 h. Treatment with PCF for 24 h significantly decreased the 

percentage Vimentin+/Slug+, Vimentin+/E-cadherin+, Vimentin+/EGFR+, Vimentin+/PD-

L1+, PD-L1+/Slug+, PD-L1+/E-cadherin+, and PD-L1+/EGFR+ H6c7-normal cells 

(p<0.05)(Figure 6.26). Serum-starvation did not change the percentage of Vimentin+/E-

cadherin+ or PD-L1+/EGFR+ H6c7-normal cells compared to basal levels, however, 

treatment with PCF significantly decreased the percentage of these cells (p<0.05). 

Conversely, serum-starvation noticeably increased the percentage of Vimentin+/PD-L1+, 

PD-L1+/Slug+ and PD-L1+/E-cadherin+ H6c7-normal cells, with PCF treatment significantly 

decreasing the percentage of these cells back towards basal levels (p<0.05). The 

percentage of PD-L1+/N-cadherin+ and EGFR+/CD133+ H6c7-normal cells was also greatly 

reduced following treatment with PCF, though not significantly (p=0.0509 and p=0.0699, 

respectively). No significant difference was observed in the percentage of 

Vimentin+/CD133+, Vimentin+/N-cadherin+, PD-L1+/CD133+, PD-L1+/N-cadherin+, 

EGFR+/CD133+, EGFR+/Slug+, EGFR+/N-cadherin+ or EGFR+/E-cadherin+ H6c7-normal cells 

following treatment with PCF for 24 h (Figure 6.26). The percentage of 

Vimentin+/CD133+, Vimentin+/N-cadherin+, PD-L1+/N-cadherin+, EGFR+/CD133+ and 

EGFR+/N-cadherin+ H6c7-normal cells were also visibly increased following 24 h of 

serum-starvation compared to basal levels, and PCF treatment did not significantly alter 

this. When separated into low- and high-risk PCF treatments, high-risk PCF significantly  
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Figure 6.24 Treatment with low- of high-risk PCF for 6 h does not significantly alter the 

co-expression of phenotypic and functional markers on H6c7-normal cells. Percentage 

of H6c7-normal cells co-expressing phenotypic and functional markers of interest (A-O) 

post-treatment with 5% (v/v) low- or high-risk PCF for 6 h. Dotted lines indicate the basal 

expression level of H6c7-normal cells for each co-expression. Data are presented as 

mean ± SEM for n=5 low-risk and n=5 high-risk patients. Kruskal-Wallis test with Dunn’s 

multiple comparisons. [E-cad = E-cadherin, N-cad = N-cadherin, Vim = Vimentin] 
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Figure 6.25 Treatment with low- or high-risk PCF for 6 h does not significantly alter the 

co-expression of phenotypic and functional markers on HPNE-intermediary cells. 

Percentage of HPNE-intermediary cells co-expressing phenotypic and functional 

markers of interest (A-G) post-treatment with 5% (v/v) low- or high-risk PCF for 6 h. 

Dotted lines indicate the basal expression level of HPNE-intermediary cells for each co-

expression. Data are presented as mean ± SEM for n=5 low-risk and n=5 high-risk 

patients. Kruskal-Wallis test with Dunn’s multiple comparisons. [E-cad = E-cadherin, N-

cad = N-cadherin, Vim = Vimentin] 
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Figure 6.26 Treatment with PCF for 24 h significantly decreases the percentage of 

Vim+/Slug+, Vim+/E-cad+, Vim+/EGFR+, Vim+/PD-L1+, PD-L1+/Slug+, PD-L1+/E-cad+ and 

PD-L1+/EGFR+ H6c7-normal cells. Percentage of H6c7-normal cells expressing co-

expressing phenotypic and functional markers of interest (A-O) post-treatment with 5% 

(v/v) PCF for 24 h. Dotted lines indicate the basal expression level of H6c7-normals cells 

for each co-expression. Data are presented as mean ± SEM for 10 patients. PCF from 

low-risk patients is shown in blue; PCF from high-risk patients is shown in red. Mann-

Whitney test. *p<0.05, **p<0.01. [E-cad = E-cadherin, N-cad = N-cadherin, Vim = 

Vimentin] 
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decreases the percentage of Vimentin+/PD-L1+, PD-L1+/Slug+, PD-L1+/E-cadherin+ and 

PD-L1+/EGFR+ H6c7-normal cells after 24 h of treatment (p<0.05)(Figure 6.27). 

Importantly, when the PCF treatments are separated out, neither low- nor high-risk PCF 

on their own retains the significant decrease in the percentage of Vimentin+/Slug+, 

Vimentin+/E-cadherin+ or Vimentin+/EGFR+ H6c7-normal cells following 24 h PCF 

treatment (Figure 6.27). Again, at the 24 h timepoint the spread amongst the data is 

quite large, possibly contributing to the loss of statistical power between low- and high-

risk treatments when separated out. Indeed, there is a decrease in the percentage of 

Vimentin+/Slug+, Vimentin+/E-cadherin+, Vimentin+/EGFR+ and PD-L1+/N-cadherin+ 

H6c7-normal cells when treated with high-risk PCF, though not significant.  

Interestingly, when comparing the percentage of those significant cell subsets 

after 6 h and 24 h of PCF treatment, only the percentages of Vimentin +/Slug+, 

Vimentin+/E-cadherin+ and Vimentin+/EGFR+ H6c7-normal cells are decreased at 24 h 

compared to 6 h post-treatment with PCF (p<0.01, p<0.0001 and p<0.01, 

respectively)(Figure 6.28A-C). When divided into low- and high-risk treatments, neither 

alone significantly altered the percentage of Vimentin+/Slug+ H6c7-normal cells 

(p=0.0814)(Figure 6.28E). Both low- and high-risk PCF significantly decreased the 

percentage of Vimentin+/E-cadherin+ H6c7-normal cells (p<0.05)(Figure 6.28F), 

however, only high-risk PCF caused a significant decreased in the percentage of 

Vimentin+/EGFR+ cells (p<0.05)(Figure 6.28F). Serum-starvation significantly increased 

the percentage of Vimentin+/PD-L1+ H6c7-normal cells (p<0.05)(Figure 6.28D), but PCF 

alone or separated into low- and high-risk treatments did not significantly alter these 

cells (p>0.05)(Figure 6.28D and 6.28H).There was no significant difference in the 

percentage of PD-L1+/Slug+, PD-L1+/E-cadherin+ or PD-L1+/EGFR+ H6c7-normal cells at 6 

hr compared to 24 h post-treatment with PCF (p>0.05)(Figure 6.28I-K), and separating 

into low- or high-risk treatment did not change this (Figure 6.28L-N).Interestingly, while 

both serum-starvation and PCF treatment appear to cause a decrease in the percentage 

of Vimentin+/Slug+, Vimentin+/E-cadherin+ and Vimentin+/EGFR+ H6c7-normal cells, an 

opposing effect can be seen in the percentage of Vimentin+/PD-L1+, PD-L1+/E-cadherin+ 

and PD-L1+/EGFR+ H6c7-normal cells, where serum-starvation appears to increase the  
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Figure 6.27 Treatment with high-risk PCF for 24 h significantly decreases the 

percentage of Vim+/PD-L1+, PD-L1+/Slug+, PD-L1+/E-cad+ and PD-L1+/EGFR+ H6c7-

normal cells. Percentage of H6c7-normal cells co-expressing phenotypic and functional 

markers of interest (A-O) post-treatment with 5% (v/v) low- or high-risk PCF for 24 h. 

Dotted lines indicate the basal expression level of H6c7-normal cells for each co-

expression. Data are presented as mean ± SEM for n=5 low-risk and n=5 high-risk 

patients. Kruskal-Wallis test with Dunn’s multiple comparisons. *p<0.05, **p<0.01. [E-

cad = E-cadherin, N-cad = N-cadherin, Vim = Vimentin] 
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Figure 6.28 Low- and/or high-risk PCF significantly decreases the percentage of 

Vim+/Slug+, Vim+/E-cad+ and Vim+/EGFR+ H6c7-normal cells at 24 h compared to 6 h. 

Percentage of H6c7-normal cells co-expressing phenotypic and functional markers of 

interest at 6 h and 24 h (A-D and I-K) post-treatment with 5% (v/v) PCF and (E-H and L-

N) post-treatment with 5% (v/v) low- or high-risk PCF. Dotted lines indicate the basal 

expression level of H6c7-normal cells for each co-expression. Data are presented as 

mean ± SEM for n=5 low-risk and n=5 high-risk patients. PCF from low-risk patients is 

shown in blue; PCF from high-risk patients is shown in red. Kruskal-Wallis test with 

Dunn’s multiple comparisons. *p<0.05, **p<0.01, ****p<0.0001. [E-cad = E-cadherin, 

Vim = Vimentin] 
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percentage of cells co-expressing these markers, while PCF treatment decreases them 

(Figure 6.28). Serum-starvation caused no notable change in the percentage of PD-

L1+/Slug+ H6c7-normal cells, with PCF treatment causing a visible decrease (Figure 

6.28I). The effects of PCF on the percentage of H6c7-cells co-expressing phenotypic and 

functional markers of interest is more pronounced at 24 h than 6 h, overall. 

 

6.5.9 PCF significantly increases the percentage of Vimentin+/EGFR+, PD-L1+/EGFR+, 

EGFR+/Slug+ and EGFR+/E-cadherin+ HPNE-intermediary cells after 24 h 

Co-expression of these phenotypic and functional markers was also assessed for HPNE-

intermediary cells following treatment with 5% (v/v) PCF for 24 h. Treatment with PCF 

for 24 h significantly increased the percentage of Vimentin+/EGFR+, PD-L1+/EGFR+, 

EGFR+/Slug+ and EGFR+/E-cadherin+ HPNE-intermediary cells (p<0.05)(Figure 6.29). 

Serum-starvation noticeably decreased the percentage of these cells compared to basal 

levels, with PCF treatment causing them to significantly increase back towards basal 

levels (p<0.05). No change was observed following serum-starvation or PCF treatment 

in the percentage of Vimentin+/Slug+, Vimentin+/N-cadherin+, Vimentin+/E-cadherin+, 

PD-L1+/E-cadherin+ or EGFR+/N-cadherin+ HPNE-intermediary cells. Serum-starvation 

for 24 h resulted in a visible decrease in the percentage of Vimentin+/CD133+, 

Vimentin+/PD-L1+ and PD-L1+/Slug+ HPNE-intermediary cells compared to basal levels, 

and PCF treatment did not significantly alter this. Conversely, serum-starvation 

noticeably increased the percentage of PD-L1+/CD133+, PD-L1+/N-cadherin+ and 

EGFR+/CD133+ HPNE-intermediary cells, with PCF treatment causing no significant 

change to these levels (Figure 6.29).  

 When separated into low- and high-risk PCF treatments, low-risk PCF 

significantly increases the percentage of Vimentin+/EGFR+, EGFR+/Slug+ and EGFR+/E-

cadherin+ HPNE-intermediary cells following 24 h treatment (p<0.05)(Figure 6.30). 

Importantly, when the PCF treatments are separated out, neither low nor high-risk PCF 

on their own retains the significant increase in the percentage of PD-L1+/EGFR+ HPNE-

intermediary cells. Again, at the 24 h timepoint the spread amongst the data is quite 

large, with many datapoints being quite far from the mean. This issue is still apparent  
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Figure 6.29 Treatment with PCF for 24 h significantly increases the percentage of 

Vim+/EGFR+, PD-L1+/EGFR+, EGFR+/Slug+ and EGFR+/E-cad+ HPNE-intermediary cells. 

Percentage of HPNE-intermediary cells expressing co-expressing phenotypic and 

functional markers of interest (A-O) post-treatment with 5% (v/v) PCF for 24 h. Dotted 

lines indicate the basal expression level of HPNE-intermediary cells for each co-

expression. Data are presented as mean ± SEM for 10 patients. PCF from low-risk 

patients is shown in blue; PCF from high-risk patients is shown in red. Mann-Whitney 

test. *p<0.05. [E-cad = E-cadherin, N-cad = N-cadherin, Vim = Vimentin] 
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Figure 6.30 Treatment with low-risk PCF for 24 h significantly increases the percentage 

of Vim+/EGFR+, EGFR+/Slug+ and EGFR+/E-cad+ HPNE-intermediary cells. Percentage of 

HPNE-intermediary cells co-expressing phenotypic and functional markers of interest 

(A-O) post-treatment with 5% (v/v) low- or high-risk PCF for 24 h. Dotted lines indicate 

the basal expression level of HPNE-intermediary cells for each co-expression. Data are 

presented as mean ± SEM for n=5 low-risk and n=5 high-risk patients. Kruskal-Wallis test 

with Dunn’s multiple comparisons. *p<0.05. [E-cad = E-cadherin, N-cad = N-cadherin, 

Vim = Vimentin] 
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when the data are separated into low- and high-risk, indicating again that the patient-

to-patient variation on PCF effect is quite high, and that risk is not the dependent factor. 

Examining those subsets of cells that were significantly altered by PCF at 24 h 

post-treatment and comparing this to the effects seen at 6 h, these changes are 

significantly more pronounced after 24 h (Figure 6.31). PCF treatment significantly 

increased the percentage of Vimentin+/EGFR+, PD-L1+/EGFR+, EGFR+/Slug+ and EGFR+/E-

cadherin+ HPNE-intermediary cells after 24 h compared to 6 h (p<0.01)(Figure 6.31A-D). 

For each of these subsets, low-risk PCF significantly increased the percentage of these 

cells (p<0.05), with high-risk PCF causing no significant change (p>0.05)(Figure 6.31A, C 

and D). Serum-starvation also caused a visible increase in the percentage of 

Vimentin+/EGFR+, PD-L1+/EGFR+, EGFR+/Slug+ and EGFR+/E-cadherin+ HPNE-

intermediary cells, though not significant (p>0.05)(Figure 6.31E-H).  

 

6.5.10 PCF significantly increases the invasive capacity of normal pancreatic cell lines 

Given the changes in the expression of several markers seen in both normal pancreatic 

cell lines, the functional consequences of these changes were subsequently assessed. 

To examine whether treatment with PCF effects the functionality of normal pancreatic 

cell lines, H6c7-normal and HPNE-intermediary, the invasive potential of these cells was 

examined after 24 h of treatment with 5% (v/v) PCF. The percentage of H6c7-normal 

cells that invaded through a Collagen I coated membrane after treatment with PCF was 

significantly increased compared to serum-starved, untreated controls (p<0.001)(Figure 

6.32A). When separated into low- and high-risk PCF treatments, while both caused a 

slight increase in the percentage of invasion, high-risk PCF had a significant increase 

compared to the untreated control (p<0.001)(Figure 6.32B). Importantly, though this is 

a 24 h timepoint and the total patient number here is quite large, with eight low-risk 

and nine high-risk patients, the spread of these data is very small. All datapoints cluster 

together nicely, with no defined outliers. 

 For HPNE-intermediary cells, PCF treatment did not significantly alter the 

percentage of cells that invaded through the Collagen I coated membrane after 24 h 

(Figure 6.33A). However, when divided into low- and high-risk PCF treatment, there was  
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Figure 6.31 PCF significantly increases the percentage of Vim+/EGFR+, PD-L1+/EGFR+, 

EGFR+/Slug+ and EGFR+/E-cad+ HPNE-intermediary cells at 24 h compared to 6 h. 

Percentage of HPNE-intermediary cells co-expressing phenotypic and functional 

markers of interest at 6 h and 24 h (A-D) post-treatment with 5% (v/v) PCF and (E-H) 

post-treatment with 5% (v/v) low- or high-risk PCF. Dotted lines indicate the basal 

expression level of HPNE-intermediary cells for each co-expression. Data are presented 

as mean ± SEM for n=5 low-risk and n=5 high-risk patients. PCF from low-risk patients is 

shown in blue; PCF from high-risk patients is shown in red. Kruskal-Wallis test with 

Dunn’s multiple comparisons. *p<0.05, **p<0.01. [E-cad = E-cadherin, Vim = Vimentin] 
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Figure 6.32 Treatment with high-risk PCF for 24 h significantly increases the invasive 

capacity of H6c7-normal cells. (A) Percentage invasion through a Collagen I coated 

matrix of H6c7-normal cells treated with 5% (v/v) PCF for 24 h. Data are presented as 

mean ± SEM for 17 patients. Mann Whitney test. (B) Percentage invasion through a 

Collagen I coated matrix of H6c7-normal cells treated with 5% (v/v) low-risk or high-risk 

PCF for 24 h. Data are presented as mean ± SEM for n=8 low-risk patients and n=9 high-

risk patients. Kruskal-Wallis test with Dunn’s multiple comparisons. ***p<0.001. 
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Figure 6.33 Treatment with high-risk PCF for 24 h significantly increases the invasive 

capacity of HPNE-intermediary cells. (A) Percentage invasion through a Collagen I 

coated matrix of HPNE-intermediary cells treated with 5% (v/v) PCF for 24 h. Data are 

presented as mean ± SEM for 17 patients. Mann Whitney test. (B) Percentage invasion 

through a Collagen I coated matrix of HPNE-intermediary cells treated with 5% (v/v) low-

risk or high-risk PCF for 24 h. Data are presented as mean ± SEM for n=8 low-risk patients 

and n=9 high-risk patients. Kruskal-Wallis test with Dunn’s multiple comparisons. 

**p<0.01. 
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a significant increase in the percentage of HPNE-intermediary cells that invaded through 

the membrane when treated with high-risk PCF compared to those treated with low-

risk PCF (p<0.01)(Figure 6.33B). Furthermore, there is a visible increase in the 

percentage of cells that invaded after treatment with high-risk PCF compared to the 

untreated control, though not significant (p=0.0814). Similarly to the H6c7-normal cells, 

the variation between datapoints here is very small, with low- and high-risk PCF 

clustering well into distinct groups, possibly indicating that the functional effects of PCF 

are more homogenous across patient samples. 

 

6.5.11 PCF does not significantly alter the production of 8-OHdG by normal pancreatic 

cell lines 

Finally, to assess whether treatment with PCF was harmful and induced DNA damage in 

normal pancreatic cell lines, H6c7-normal and HPNE-intermediary, the supernatants 

from these treatments were examined for 8-OHdG levels (DNA damage marker) via 

competitive ELISA. The supernatants from H6c7-normal cells treated with PCF had 

significantly higher levels of 8-OHdG than their matched PCF samples, when diluted to 

the same concentration of 5% (v/v) PCF (p<0.001)(Figure 6.34A). When separated out 

into low- and high-risk, the levels of 8-OHdG in the supernatants are still significantly 

higher than their respective matched PCF samples (p<0.05)(Figure 6.34B-C). For HPNE-

intermediary cells, overall the concentrations of 8-OHdG is also higher in the 

supernatants of cells treated with PCF than in the matched PCF samples (p<0.01)(Figure 

6.35A). While this remains significantly increased in low-risk supernatants compared to 

matched PCF samples (p<0.05), there is no significant difference in the levels of 8-OHdG 

in high-risk supernatants compared to the matched PCF samples (Figure 6.35B-C). 

 In order to examine whether the levels of 8-OHdG were increased in the 

supernatants of cells treated with PCF for 24 h compared to untreated control cell 

supernatants, the concentrations of 8-OHdG found in the cyst samples were subtracted 

from their respective supernatants. One caveat to this, is that the concentration of 8-

OHdG found in PCF samples differed greatly depending on whether the sample was 

diluted in the serum-free medium of H6c7-normal cells or HPNE-intermediary cells. 

Unfortunately, there was also no correlation between the values obtained when diluting  
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Figure 6.34 8-OHdG levels are significantly increased in the supernatants of H6c7-

normal cells treated with PCF for 24 h compared to the matched cyst samples. Line 

graphs showing 8-OHdG concentrations in the supernatant of H6c7-normal cells treated 

with 5% (v/v) PCF for 24 h, and the corresponding levels in the matched cyst fluid 

samples diluted to 5% (v/v) in culture medium. (A) 8-OHdG concentrations in all PCF cyst 

samples and matched supernatants. (B) 8-OHdG concentrations in low-risk PCF cyst 

samples and matched supernatants. (C) 8-OHdG concentrations in high-risk PCF cyst 

samples and matched supernatants. Matched data are joined by a line. Data are 

presented for n=6 low-risk patients and n=6 high-risk patients. Wilcoxon matched-pairs 

signed rank test. *p<0.05, ***p<0.001. 
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Figure 6.35 8-OHdG levels are significantly increased in the supernatants of HPNE-

intermediary cells treated with PCF for 24 h compared to the matched cyst samples. 

Line graphs showing 8-OHdG concentrations in the supernatant of HPNE-intermediary 

cells treated with 5% (v/v) PCF for 24 h, and the corresponding levels in the matched 

cyst fluid samples diluted to 5% (v/v) in culture medium. (A) 8-OHdG concentrations in 

all PCF cyst samples and matched supernatants. (B) 8-OHdG concentrations in low-risk 

PCF cyst samples and matched supernatants. (C) 8-OHdG concentrations in high-risk PCF 

cyst samples and matched supernatants. Matched data are joined by a line. Data are 

presented for n=6 low-risk patients and n=6 high-risk patients. Wilcoxon matched-pairs 

signed rank test. *p<0.05, **p<0.01. 
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PCF in these two mediums, indicating some interference of the cell line mediums with 

the assay.  

There was no significant difference in the concentrations of 8-OHdG in the 

supernatants of H6c7-normal cells treated with PCF for 24 h (Figure 6.36A), or when 

separated into low- and high-risk treatments (Figure 6.36B). Similarly, there was no 

significant change in the concentrations of 8-OHdG in the supernatants of HPNE-

intermediary cells treated with PCF for 24 h (Figure 6.37A), nor when treated with low- 

or high-risk PCF (Figure 6.37B). There is a noticeably large spread of 8-OHdG 

concentrations in both H6c7-normal and HPNE-intermediary untreated controls, as well 

as across the PCF treatments, possibly as a result of the interference of the cell culture 

medium with the performance of the assay. 
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Figure 6.36 8-OHdG levels in H6c7-normal cell supernatants are not significantly 

altered following 24 h treatment with PCF. 8-OHdG concentrations in the supernatant 

of H6c7-normal cells untreated or treated with 5% (v/v) PCF for 24 h (where the 

concentration of 8-OHdG in the PCF has been subtracted from the treatment values). 

(A) Mann-Whitney test comparing 8-OHdG concentrations post-treatment with PCF. (B) 

Kruskal-Wallis test with Dunn’s multiple comparisons comparing 8-OHdG 

concentrations post-treatment with low- or high-risk PCF. Data are presented as mean 

± SEM for n=6 low-risk patients and n=6 high-risk patients. 
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Figure 6.37 8-OHdG levels in HPNE-intermediary cell supernatants are not significantly 

altered following 24 h treatment with PCF. 8-OHdG concentrations in the supernatant 

of HPNE-intermediary cells untreated or treated with 5% (v/v) PCF for 24 h (where the 

concentration of 8-OHdG in the PCF has been subtracted from the treatment values). 

(A) Mann-Whitney test comparing 8-OHdG concentrations post-treatment with PCF. (B) 

Kruskal-Wallis test with Dunn’s multiple comparisons comparing 8-OHdG 

concentrations post-treatment with low- or high-risk PCF. Data are presented as mean 

± SEM for n=6 low-risk patients and n=6 high-risk patients. 
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6.6 Discussion 

PCF can cause changes to normal pancreatic cell biology, affecting viability, apoptosis, 

proliferation, cell phenotypic and functional markers, metabolism and invasive 

potential. Importantly, the data presented here are for those PCF samples that did not 

kill the majority of cells that were exposed to the fluid for just 24 h. In some instances, 

treatment with PCF killed almost all exposed cells, and as such readings for these 

samples could not be recorded or included in the data shown. As such, the data shown 

should be regarded as the results of the less cytotoxic PCF samples, and not as a 

representation of the effects of all PCF samples on normal cell biology. Overall, the 

effects elicited by PCF were largely distinct between the H6c7-normal and HPNE-

intermediary cells, illustrating what are, potentially, two different stages in the process 

of malignant transformation. 

 H6c7-normal cells, are immortalized epithelial cells derived from the duct of a 

normal pancreas. IPMNS are PCLs that occur in the main or branch ducts of the pancreas 

and represent approximately half of all PCLs, making H6c7-normal cells a good model of 

the normal cells that would precede IPMN development[456]. Exposure to just 5% (v/v) 

PCF significantly altered H6c7-normal cell biology, resulting in increased viability, 

decreased apoptosis, an increase in glycolytic metabolism, increased invasive potential 

and decreases in a range of phenotypic and functional markers. Indeed, H6c7-normal 

cells appeared to thrive in the presence of this low concentration of PCF. Vimentin is 

often referred to as a key regulator of EMT, being increased in cells that lose adhesion 

molecules and become more invasive[457]. In PC, vimentin expression has been shown 

to be three-fold higher than in other tumours, and to increase the invasive potential of 

tumour cells[458, 459]. Indeed, the presence of Vimentin+ circulating tumour cells in PC 

patients has been shown to correlate with tumour burden and prognosis[460], with high 

vimentin expression in PC tumours predicting poor prognosis[461, 462]. Serum-starvation 

and environmental stress were also demonstrated to increase vimentin expression on 

PC cells[463]. Here, it was shown that exposure to PCF causes a significant reduction in 

the percentage of Vimentin+ H6c7-normal cells, with several subsets of Vimentin+ cells 

also being significantly reduced. Exposure to PCF, and more specifically high-risk PCF, 

also caused a decrease in PD-L1 expression on H6c7-normal cells. The binding of PD-L1 
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to its PD-1 receptor on T cells can lead to cell exhaustion or apoptosis[96]. Given that 

pancreatic tumours are notoriously immunologically cold, with limited T cell infiltration, 

the role of T cells and PD-L1 in the pancreas and PC is not very well understood[464]. 

However, a meta-analysis compiling data from nine studies found that increased PD-L1 

expression in PC tumours positively correlated with poor prognosis[95]. This is in line with 

many other cancers, such as lung[465], ovarian[466], breast[467] and renal cancer[468]. 

Interestingly, while serum-starvation appeared to cause an increase in the percentage 

of PD-L1+ H6c7-normal cells, PCF exposure appears to dampen this, keeping PD-L1 

expression closer to the lower levels that were recorded basally. Interestingly, the same 

subsets of vimentin and PD-L1 expressing cells were significantly reduced following PCF 

treatment, those expressing vimentin or PD-L1 and either slug, EGFR or e-cadherin. 

These decreases in PD-L1+/EGFR+ and Vimentin+/EGFR+, PD-L1+/Slug+ and 

Vimentin+/Slug+, and PD-L1+/E-cadherin+ and Vimentin+/E-cadherin+ Hc67-normal cells 

following PCF treatment indicates a decrease in a subset of EGFR+, Slug+ and E-cadherin+ 

cells. Similarly to vimentin and PD-L1, high EGFR expression is found in up to 90% of PC 

tumours and is associated with a poor prognosis[469, 470]. Slug is an EMT-inducing 

transcription factor that is generally upregulated during EMT and whose high expression 

is also an indicator of poor prognosis in PC[471, 472]. Reductions in these subsets of cells 

expressing indicators of poor prognosis, therefore, would be favourable and indicate a 

potential anti-cancer environment. Distinctly, low e-cadherin expression is linked to 

poor prognosis in breast cancer[473]. However, an overall decrease in e-cadherin is not 

evident, despite these decreases in small subsets of E-cadherin+ cells. Serum-starvation, 

a notoriously stressful environment for cell lines, and particularly normal cell lines, 

caused an increase in PD-L1+/Vimentin+, PD-L1+/EGFR+ and PD-L1+/E-cadherin+ cell 

subsets, while PCF had the opposite effect and significantly decreased the percentage 

of these cells.  

 As well as effecting the expression of phenotypic and functional markers on 

these normal cells, PCF also conferred a functional change onto the H6c7-normal cells. 

Indeed, PCF exposure caused a significant increase in the invasive potential of H6c7-

normal cells through a type I collagen membrane. Conversely, while these cells have 

been shown to have increased invasive potential following treatment with both low- 
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and high-risk PCF, a significant reduction in vimentin was seen in these cells, as 

mentioned above. Crucially, a 2011 study showed that premalignant pancreatic HPDE 

cells that were plated in culture dishes coated with type I collagen had a 3-fold increase 

in snail expression, another well-known regulator of EMT, compared to cells plated in 

uncoated dishes[474]. Indeed, Shields et al. revealed that PC cells upregulate snail 

expression in order to promote membrane type 1-matrix metalloproteinase-dependent 

collagen I invasion[474]. Similarly, a 2014 study showed an increase of vimentin and n-

cadherin on PC cells exposed to type I collagen, which was linked to a subsequent 

increase in cell migration and invasion[475]. In this way, the observed decrease in 

vimentin expression of H6c7-normal cells following PCF treatment via flow cytometry is 

independent of the increase in invasion caused by exposure to PCF in the presence of 

type I collagen. This decrease in vimentin expression, coupled with no change in e-

cadherin or n-cadherin, of H6c7-normals cells treated with PCF is a unique 

phenomenon. While there was a significant decrease in the percentage of cells that 

were Vimentin+/E-cadherin+, there was no change in Vimentin+/N-cadherin+ cells, 

suggesting that vimentin expressing cells may have downregulated e-cadherin 

expression, but there was no change in their expression of n-cadherin. As no change 

was observed in any of these markers at 6 h, perhaps 24 h is also too short of a time 

point to see the full effect of PCF on EMT markers. Indeed, the percentage of Vimentin+ 

H6c7-normal cells was shown to be significantly decreased at 24 h post-PCF treatment 

compared to 6 h, indicating that further powering of these data, both in the presence 

and absence of type I collagen, and at longer incubation times, is required to fully 

elucidate the effects of PCF on EMT.  

  PCF treatment also produced a slight metabolic shift from oxidative 

phosphorylation to glycolysis in H6c7-normal cells, though not a significant change. 

Indeed, serum-starvation was shown to have more of an impact on H6c7-normal cell 

metabolism than PCF, causing a shift towards a more glycolytic phenotype. A shift 

towards an upregulation of glycolysis is observed in many cancer types, and can be the 

result of various factors such as environment, mutations, activation of oncogenes or loss 

of tumour suppressors[476]. Serum-starvation results in the inadequate uptake of 

nutrients by cells which leads to oxidative stress[477]. Importantly, nutrient deprivation 
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can drive cancer cells to utilize glycolysis to produce ATP, as is seen here in the H6c7-

normal cells[478]. The extensive effects of environmental stress and nutrient deprivation 

on cellular metabolism are still being understood, and as such the condition of serum-

starvation in this setting may be overshadowing those of PCF exposure, making them 

difficult to discern. Future experiments aiming to fully elucidate alterations to cellular 

metabolism caused by PCF should consider doing so in normal growth conditions also. 

Overall, it appears that H6c7-normal cells thrive under PCF exposure. The 

downregulation of apoptosis and increased viability of the cells, coupled with the 

decreased in vimentin and PD-L1 expression, suggests that serum-starvation is more 

stressful then exposure to PCF. However, it is important to note that despite the trends 

seen in these data, the overall distribution of datapoints was extremely large in most 

instances. The effects of PCF on H6c7-normal cell biology varied greatly from patient to 

patient, with risk stratification doing little to solve this. While the overall theme from 

the data shown suggests that H6c7-normal cells respond well to PCF, in fact this is the 

response of the cells to PCF that did not kill the majority of the population after just 24 

h of exposure. Indeed, while the data shown indicate no significant increase in DNA 

damage following treatment with PCF, there is a visible increase that may become more 

pronounced when issues with culture medium interference are eliminated. Moreover, 

a starkly different, and less favourable, reaction to PCF exposure can be seen in the 

HPNE-intermediary cells. 

 HPNE-intermediary pancreatic cells represent an intermediary stage during 

acinar-to-ductal metaplasia of the pancreas[479]. While defined as ‘normal’, given that 

this is a non-malignant cell line, it is clear that these cells are an intermediate phase 

between normal and malignant pancreatic cells. As such, they represent a step forwards 

on the ladder from H6c7-normal cells towards PC. Interestingly, the effects of PCF 

exposure on HPNE-intermediary cells are much more cytotoxic in nature. Exposure to 

5% (v/v) PCF significantly increased apoptosis and decreased proliferation, as well as 

altering the expression of certain phenotypic and functional markers in HPNE-

intermediary cells. PCF, overall, had significant cytotoxic effects on these cells when all 

PCF samples were included, which is distinctly different from the outcomes shown in 

H6c7-normal cells. The percentage of EGFR+ HPNE-intermediary cells was significantly 
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increased following PCF treatment. Several subsets of EGFR+ HPNE-intermediary cells, 

namely EGFR+/Vimentin+, EGFR+/PD-L1+, EGFR+/Slug+ and EGFR+/E-cadherin+, were also 

significantly increased following treatment with PCF for 24 h. These effects were 

significantly more pronounced at 24 h post-treatment compared to 6 h, suggesting again 

that 6 h is not a sufficient timeframe to evaluate these effects. Importantly, unregulated 

EGFR activity can promote an oncogenic phenotype by facilitating increased 

proliferation, migration and invasion, and a resistance to apoptotic signals[470]. Here, the 

opposite effect is observed, where increased EGFR expression is coupled with increased 

apoptosis and decreased proliferation. While this would appear to be counterintuitive, 

it is important to note that negative regulators of the EGFR pathway have been 

documented in PC. Indeed, carboxyl terminus of heat shock protein 70-interacting 

protein (CHIP) is a ubiquitin ligase that has been shown to ubiquitinate EGFR in PC, 

subsequently suppressing cancer cell growth, invasion and migration, as well as 

increasing apoptosis in cells exposed to erlotinib[480]. CHIP has been shown to be present 

in the cytoplasm of cells, and is found at significantly lower levels in PC tissues compared 

to adjacent normal tissues[481]. Indeed, Wang et al. demonstrated that high CHIP 

expression is associated with better overall survival in PC patients, and that serum levels 

of CHIP are significantly higher in normal controls and patients with chronic pancreatitis 

compared to PC patients[481]. As such, while the percentage of EGFR+ HPNE-intermediary 

cells are shown to be significantly increased following exposure to PCF, the potential 

role of CHIP in suppressing the effects often seen following increased EGFR expression 

in this setting remains to be fully understood. Serum-starvation, in the case of the HPNE-

intermediary cells, also had profound influences on the expression of multiple 

phenotypic and function markers, especially the subsets of cells co-expressing certain 

markers. Interestingly, serum-starvation caused a decrease in EGFR expression on 

HPNE-intermediary cells, which is contrary to the alterations triggered by PCF exposure. 

It has been shown that serum-starvation of multicellular aggregates of cancer cells can 

alter the activation pathway of EGFR in these cells as they overcome nutrient 

deprivation[482]. Factors such as Rab7 have been shown to be crucial in maintaining EGFR 

levels, especially in serum-starved conditions, as it is believed to play a protective role 

against proteosome-mediated degradation[483]. As such, serum-starvation has a unique 
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impact on EGFR levels that, while cancer cells can evolve to overcome, normal cells may 

find to be detrimental to their survival.  

 PCF exposure for 24 h did not significantly alter the metabolic profile of HPNE-

intermediary cells, likely due to the reasons outlined above in relation to serum-

starvation. It did, however, cause an increase in the percentage of cells that invaded 

through a type I collagen matrix. Here, while no significant change was seen in the 

expression of EMT markers by flow cytometry, this increase is possibly due to the 

combined presence of the collagen I and PCF, as seen in the H6c7-normal cells. Lastly, 

there was no significant increase in the production of the DNA damage marker 8-OHdG 

by HPNE-intermediary cells exposed to PCF, but again, these data are known to be 

flawed and should therefore be taken with uncertainty. 

Overall, these results indicate that PCF is biologically active, and has differential 

effects on H6c7-normal and HPNE-intermediary cells. These findings are in-line with 

some of the research conducted in OC ascites, where different effects are seen 

depending on the patient sample used, and also on the phenotypic profile of the cell 

line exposed. These results, however, represent a small snapshot into the effects of PCF 

on the cells surrounding PCLs in vivo. Prolonged exposure to PCF, given the impacts 

shown here on cell death, proliferation, viability, EMT, invasion, metabolism and DNA 

damage, could be extremely harmful to normal pancreatic cells. Indeed, the significant 

alterations shown here on several of the hallmarks of cancer, were obtained after 

exposure to just 5% (v/v) PCF for 24 h. The longitudinal effects of PCF on normal cell 

biology, as well as the potential impacts of increased concentrations or neat PCF on 

normal cells remain to be understood. More importantly, the effects of those PCF 

samples that could not be included in the data shown, as exposure to these PCFs killed 

the majority of cells, resulting in a lack of usable data, remain to be elucidated. 

Incubation of these normal cells with neat PCF would be a 20-fold increase in treatment 

concentration. Given the cytotoxic effects of the PCF on HPNE-intermediary cells at just 

5%, examining the effects of such increases in concentration, and whether these 

cytotoxic effects are exacerbated, are of the utmost importance. Indeed, Mo et al. 

demonstrated that a murine OC cell model that was exposed to 50% (v/v) ascites from 

OC-bearing mice for 7 days became less sensitive to paclitaxel, a first-line chemotherapy 
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for OC [484]. In this way, PCF may not only play a role in the progression of PCLs to PC, 

but could also be contributing to the development of treatment resistance in PC 

tumours. PCF could play a key role in the development and progression of PC, and as 

such, understanding the mechanisms involved are vital for the successful advancement 

of PC research, and also the clinical handling of PC patients. If PCF is shown to play a role 

in PCL transformation, this could have a profound impact on the current treatment 

guidelines for PCL patients. Indeed, this could warrant the establishment of regular 

screening procedures for patients with a family history of PCLs or PC, and a push for PCL 

aspiration, even in those of a small size or low-risk. Furthermore, if PCF is shown to 

encourage treatment resistance in PC tumours, aspiration of PCLs in patients with PC 

may become a necessary procedure in order to counteract this, despite the potential 

for seeding. While the results shown here are not definitive, the biological activity of 

PCF has been demonstrated, and its impact on several hallmarks of cancer have been 

revealed. Further research is now needed to fully understand the pathways and 

processes involved, and this research is urgently required. 
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Chapter 7. 

 

General Discussion 
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7.1 PC – the fight to improve survival 

PC has the worst survival rate of any cancer, with a 5-year survival rate in 2023 of just 

12%[1]. The abysmal rates of survival seen in PC are largely attributed to the notoriously 

vague symptoms associated with early stage disease[7]. Common symptoms, such as 

weight loss or lower back pain, go unnoticed by patients until they have severely 

worsened, causing patients to therefore present to their GP at a late-stage of 

development[8, 9]. Patients with neoplastic PCLs are generally at an increased risk of PC 

development, however, our ability to distinguish PCLs at a low- or high-risk of malignant 

transformation are limited[121-123]. As such, there is urgent need for novel biomarkers to 

detect these high-risk patients at an early stage in order to improve the survival rates of 

this cancer. Furthermore, the mechanisms involved in the malignant transformation of 

PCLs to PC are not well understood. The role of PCF in this process, if any, remains to be 

elucidated in the literature. This thesis has provided important advancements on both 

fronts. Firstly, by identifying promising PCF-based and serum-based multi-omic 

biomarker panels, as well as a unique and high performing cross-biofluid multi-omic 

panel, for the distinction of low- and high-risk PCLs. Secondly, by demonstrating the 

biological activity of PCF, and highlighting the influence that treatment with just a small 

volume of the patient-derived PCF can have on normal cell biology in the context of 

facilitating the hallmarks of cancer. This multi-faceted research has not only provided 

insights into past literature and highlighted the strengths and weaknesses of previous 

PC studies (Chapter 3), but has also curated novel multi-omic biomarker panels that 

show promise in the early detection of high-risk patients (Chapters 4 and 5), as well as 

examining, for the first time, the potential role that PCF may play in the development of 

PC in PCL patients (Chapter 6). Finally, the overlaps between these facets, and how they 

can come together to guide future pancreatic research and clinical management 

strategies, are discussed. 

 

7.2 Using the past to guide the future 

This thesis has shown the advantages to be gained by examining past literature before 

developing new studies. Here, it was demonstrated through a thorough examination of 

over 40 years of PC literature, that important lessons can be learned from past studies, 
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and that promising aspects, such as high performing biomarkers, can be discovered. 

Indeed, the many weaknesses in study design and data handling of previous PC studies 

have been highlighted in Chapter 3. Reporting of key information with regards to patient 

demographic data, cancer subtype of interest, patient cancer stage, treatments received 

by patients, reference standards used for PC diagnosis, and the recruitment process 

used for the study, is severely lacking across the literature. This absence of information 

can not only allow for the reporting of results that may be skewed due to some patient 

demographic-based bias that is unknown to the reader, thus inflating the potential 

clinical utility of the biomarker, but also hampers the dissemination and integration of 

PC research, as it becomes unclear if studies are comparable[485]. In a field where every 

small advancement has the capacity to make a huge difference, such as PC, these errors 

and omissions in data reporting can be costly, and as such, future studies should aim to 

be more transparent and forthcoming with such important information. 

The systematic review and subsequent meta-analysis performed in Chapter 3 has 

also highlighted the path that future diagnostic biomarker studies in PC should take, 

while also providing vital information with regards to biomarker performance for all 

biomarker studies, not just PC. Indeed, here it was shown for the first time that panels 

of multiple biomarkers are superior to single biomarkers alone. As such, future work in 

biomarker discovery and selection are advised to curate a biomarker panel, rather than 

focus on identifying a single ‘one-size-fits-all’ biomarker. Furthermore, the data shown 

here have emphasized the importance of appropriate control cohorts that provide a 

more clinically relevant representation of those that could be tested in a clinical setting. 

As a result, it is important to recognise that while some studies may report excellent 

biomarker performances where the control cohort consists of just healthy or benign 

individuals, these biomarkers may not perform well in a clinical setting. As such, 

examining biomarkers in the first instance within control cohorts of clinical relevance is 

key to robust biomarker identification, and should be the aim of all biomarker studies, 

not just those in PC. 

 As a guiding hand to future work, Chapter 3 highlighted biomarkers and 

biomarker panels across the literature that were either repeatedly examined, or that 

performed within the 90th percentile of biomarkers that were assessed as part of this 
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work. These biomarkers were largely proteomic and transcriptomic in nature, and 

demonstrated great potential for PC diagnosis. Building on this, Chapters 4 and 5 delved 

into the proteome and transcriptome of PCL patient PCF and serum, interrogating the 

performance of those ‘promising’ biomarkers found within these biofluids. Here, their 

ability to distinguish low- and high-risk PCLs was assessed. Given the step-wise 

development of PC from pancreatitis to PCL to invasive carcinoma discussed in Chapter 

1, and the many factors which are likewise either upregulated or downregulated step-

wise in this process, such as KRAS and TP53 mutations, it is reasonable, therefore, to 

assume that diagnostic biomarkers may be up or downregulated in high-risk PCL patients 

compared to low-risk[15-17]. Unfortunately, only a small fraction of these promising 

biomarkers could be found in the PCF and serum of the patients examined in this study, 

and despite some significant differences on an individual level in the PCF, their utility as 

a biomarker panel appear limited. As such, this thesis delved further into the proteome 

and transcriptome of these biofluids, examining independent of past research, as is 

usually the case in biomarker research, the factors that were differentially expressed 

between low- and high-risk patients. Given the results of Chapter 3, instead of examining 

these factors individually, they were integrated to form multi-biomarker panels. Alone, 

the performance of the proteomic and transcriptomic panels were limited, however, 

when scaled and integrated, the multi-biomarker panels, both within the PCF and serum, 

had improved performances over either omic panel alone. As such, it was demonstrated 

that multi-omic panels may perform superiorly to single-omic panels, a theory which 

could not be successfully examined in the systematic review given the lack of previous 

research into such panels. Branching out further, into what could be considered an 

intuitive avenue, these PCF-based and serum-based multi-omic panels were 

interrogated further to create a novel cross-biofluid multi-omic panel. While in the 

clinical setting, various biological factors can be utilised to form a diagnosis, including 

simultaneous measurement of both blood-based and PCF-based biomarkers 

individually, the use of cross-biofluid panels in mainstream medicine is unconventional. 

However, the novel cross-biofluid panel introduced here has demonstrated high 

performance in the risk stratification of PCLs, and managed the inclusion of a VHL outlier 

better than any other panel shown here, further compounding its utility in this setting. 
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However, it is important to note that the quality of the results obtained depend on the 

methods of data handling that are employed. 

 

7.3 Data handling - a double-edged sword 

The processes of data clean-up, handling, analysis, and interpretation, are integral to 

any study, but in the context of large omics datasets, the methodologies involved are 

critical. While transcriptomic data, in terms of counts per million or otherwise, are 

straightforward in terms of their identification and handling, proteomic data leave much 

room for error. Indeed, from the initial identification of proteins from MS/Ms data, to 

the removal of various contaminants, to filtering and imputation steps, and finally to 

analysis and visual representation, there are many points at which individual 

researchers may differ in their approach, and as such, there is large scope for differences 

and error. Even excluding the initial variables, which are known sources of error in MS 

protocols (such as sample handling prior to MS, the choice of MS instrument, the length 

of separation time and the choice of templates subsequently used to identify proteins), 

the clean-up of LFQ Intensity data is a lengthy process, with many decision points. It is 

important to highlight this, as even just small changes here with regards to data filtering 

can change not only the number of proteins one ends up with at the end of the process, 

but also the individual proteins that are highlighted as significant after the differential 

expression analysis[486]. Importantly, studies have shown that there is a lack of 

reproducibility across MS outputs, even when utilising the same sample set across 

independent laboratories, and that feature selection is a major part of this[486-488].  

 Feature selection, in the context of biomarker discovery, is a critical step and as 

such there have been many methods developed for this purpose[486]. The inclusion of 

only the strongest biomarkers, while excluding those that worsen the panel, has been 

shown to have a huge impact on the performance of the panel (Chapter 5). Indeed, when 

creating the cross-biofluid panel, feature reduction was carried out using the CombiROC 

software. Ideally, the full PCF and serum panels would be examined together (a total of 

24 features) in order to choose the best combination across both biofluids. However, 

the CombiROC software does not allow for the examination of panels greater than 14 
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biomarkers as the number of permutations becomes too much for the software to 

analyse, making this type of approach impossible with this software[293]. Indeed, the 

integration of layers of data is generally better conducted gradually, where the most 

important biomarkers within each layer are identified first (i.e. feature selection). This is 

due to the orientation of the data matrix. When there are more biomarkers than there 

are samples, and the data frame is therefore wider than it is long, also known as high-

dimensional low sample size (HDLSS), issues with statistical power and false discovery 

applications become more prominent, and the accuracy of these variables can become 

positively biased[489]. This is when overfitting of the data becomes an issue, where the 

accuracy of the test in a training cohort is high, but this accuracy is substantially lower 

in a separate test cohort. As such, the approach taken in this study was to first reduce 

the dimensionality of the individual data layers by selecting the top candidate 

biomarkers, and then integrate these layers of data. It is important to note, however, 

that feature selection in this context could be improved by the inclusion of longitudinal 

patient data. Indeed, knowledge of whether the patients included in this study have 

progressed to cancer, would give much needed definition to the dataset, providing 

confidence in the stratification of these patients and therefore, in the performance of 

this panel.  

 Another important step was the use of LOOCV, which is better suited to smaller 

sample sizes than similar approaches, such as k-fold cross validation, and is known to 

give more reliable accuracy estimates for such datasets[490]. In fact, the choice of 

biomarker assessment was shown to be vital in this study (Chapter 5), as analyses such 

as PCA and unsupervised hierarchical clustering, while useful when interrogating the 

data, have limited utility in providing biomarker efficacy metrics. Chapter 3 highlighted 

the vast number of PC studies failing to report qualitative metrics of biomarker 

performance such as AUC value, sensitivity or specificity, but instead reported just a p-

value. In Chapters 4 and 5, it was demonstrated that while significantly differentially 

expressed factors, as indicated by a p<0.05, may be found to be increased or decreased 

in one cohort compared to another, their utility as a biomarker cannot be determined 

by this metric alone. While p-values provide information on whether the expression of 

a factor is statistically significantly associated with an outcome, it is greatly affected by 
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the strength of the association and the sample size, and as such, while it is a good 

starting point in this setting, its utility in biomarker performance assessment is 

limited[491]. As such, in the context of assessing biomarker performance, ROC curves 

producing AUC values as well as sensitivity and specificity values are the recommended 

method of evaluation, and have been demonstrated to be superior metrics in this thesis 

(Chapters 3, 4 and 5)[492].  

 When handling patient data, which is naturally extremely heterogeneous, 

outliers are a normal yet important aspect of data interpretation. In this study, a clinical 

outlier was encountered that was classified as high-risk based on the presence of a VHL 

genetic mutation, despite their PCL receiving a low-risk classification when this feature 

was excluded. In Chapters 4 and 5, the performance of both multi-omic biomarker 

panels could be improved by the reclassification of the patient from high- to low-risk. 

However, this may not be an appropriate course of action in this context. Indeed, 

mutations in oncogenes and tumour suppressor genes such as KRAS and TP53 are known 

to occur at extremely high rates in the early stages of PC development[15-17]. 

Furthermore, early mutations in these genes have been shown to be associated with PC 

development. As such, patients in this setting with genetic mutations are not 

uncommon, and given the known association of these mutations with PC development, 

as with the VHL mutation, it is more clinically appropriate to classify this patient, as per 

current guidelines, as high-risk. Importantly, the cross-biofluid multi-omic panel curated 

in Chapter 5, is the only panel shown here whose performance was not improved by the 

reclassification of this VHL patient. In fact, the performance of the panel worsened with 

the reclassification of the VHL outlier from high-risk to low-risk. For this reason, the 

cross-biofluid panel produced in Chapter 5 shows a huge amount of promise for the 

effective risk stratification of PCLs, and should be further interrogated in an independent 

cohort of clinically relevant patients in order to assess its full potential. 

 

7.4 Omics and Hallmarks of Cancer – the bigger picture 

The mechanisms involved in the malignant transformation of PCLs to PC are not well 

understood. While many studies have shown a step-wise increase or decrease in certain 
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factors, such as REG1A or LGALS3, throughout the transformation process, this vague 

and disconnected information does little to elucidate the pathways and key mechanisms 

involved[396, 399, 404]. In this thesis, it was demonstrated for the first time, that the fluid 

within PCLs is biologically active and may have a role to play in this process (Chapter 6). 

By providing a preliminary overview of how exposure to low concentrations of PCF can 

influence the development of several hallmarks of cancer processes in normal cells, this 

thesis put forward the theory that the presence of this fluid may be detrimental to 

patients with PCLs, and should therefore be aspirated at the earliest opportunity. 

Indeed, substantial alterations in normal cell biology and function could be seen at low 

PCF concentrations, and even low experimental replicates, highlighting the potent 

activity of this biofluid. Furthermore, this research has shown that both low- and high-

risk PCF have the ability to alter normal cell biology, with both fluids in some cases, 

causing mass cell death. In this way, it was demonstrated that while certain clinical 

factors may be helpful in determining low- and high-risk patients, the effects of the PCF 

within these cysts is not well discriminated using this risk classification. Similarly, studies 

examining the effects of ovarian ascites on ovarian cancer cell biology also found that 

no clinical factors could be correlated to the distinct profiles of differential influences 

demonstrated[453]. In this way, the discriminating factor in the differential effects of PCF 

on normal cell biology remains to be determined. Importantly, a 2022 study by 

Fraunhoffer et al. utilised multi-omic data integration and modelling to interrogate the 

mechanisms involved in PDAC[493]. Using a Master Regulator-Gradient model developed 

in-house, transcriptional networks were integrated with epigenomic states and 

metabolic pathways to reveal that tumour epithelial cell phenotype and the 

corresponding immunological component strongly correlated with PDAC prognosis[493]. 

Furthermore, oxidative phosphorylation independent metabolism, centred on the 

Warburg effect and glutaminolysis, was shown to be associated with an unfavourable 

phenotype, while the presence of enzymes implicated in complex lipid biosynthesis 

indicated a favourable phenotype[493]. In such multi-omic modelling, mechanisms and 

processes can be teased out and associated with clinical outcomes such as prognosis. 

Here, the generation of multi-omic data from PCF samples (Chapters 4 and 5), coupled 

with matched data from PCF treated cell lines (Chapter 6) could be the key to elucidating 

the mechanisms involved in PCL progression. Furthermore, the acquisition of 
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longitudinal patient data with regards to progression/outcomes would add further, 

invaluable dimension to this dataset. Importantly, several of the differentially expressed 

factors within the PCF, such as miR-216b[384, 385], miR-216a[388], LCN2[393, 397, 398], 

REG1A[403] and S100A8[409, 410], have been previously linked to certain hallmarks of 

cancer, as discussed in Chapter 6. S100A8, in particular, was previously shown to 

stimulate motility, proliferation and pro-inflammatory cytokine secretion in pancreatic 

cell lines, demonstrating a potential role in PC progression[409, 410]. However, at this 

point, while it can be said that individual proteins and miRNA identified via multi-omic 

profiling of PCF may contribute to the process of PCL to PC transformation, there 

remains a plethora of factors within the PCF from other omic levels that are yet to be 

profiled. Furthermore, the intricacies of the interconnected interactions of these 

factors, and the pathways involved, makes elucidating the responsible factor or pathway 

difficult. While the modelling of this work would be complex and likely require a 

personalised approach to its development, it provides a novel avenue by which many of 

these mechanisms could be teased out simultaneously. Furthermore, it could provide a 

wealth of knowledge for biomarker studies. Indeed, Chapters 4 and 5 have shown that 

integrating levels of omic data can result in more robust biomarkers than a single level 

alone. By expanding this dataset to comprise the metabolome and the genome at a 

minimum, the options for biomarker discovery become expansive. Importantly, these 

opportunities would extend not just to risk stratification, but when coupled with 

longitudinal patient clinical data, also to diagnostic and even prognostic biomarkers. 

Furthermore, in depth knowledge of the factors contained within the PCF would provide 

a better understanding of the mechanisms involved when normal cells are exposed to 

PCF, and enable the thorough and informed interrogation of these pathways when these 

datasets are combined.  

 

7.5 Limitations 

This thesis has provided an expanse of results from both high- and low-throughput 

methodologies, each with their own strengths and weaknesses. The primary caveat to 

the majority of this work is a lack of validation studies. In terms of the omics work 

performed in Chapters 4 and 5, while robust analyses demonstrated promising results, 
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attempts to validate these using other laboratory techniques were unsuccessful. 

Furthermore, in most instances the total number of patients in both the low- and high-

risk cohorts was less than 30 individuals. As power calculations have demonstrated that 

a minimum of 15 patients per category would be required for sufficient power (Chapter 

3), this is arguably too small a cohort for such studies. More importantly, however, is 

the lack of an independent validation cohort to reassess the performance of the panels 

in a blinded and unbiased setting. As such, while these data can be classified as 

promising, they remain to be thoroughly examined and should therefore be interpreted 

with caution. Furthermore, as discussed at length in Chapter 1, the clinical guidelines 

used to stratify patients with PCLs based on PC risk differ globally[154-157]. In this thesis, 

the patient cohorts examined were stratified using the 2018 European evidence-based 

guidelines. However, as there is a lack of consensus among clinicians as to the most 

appropriate stratification cut-offs and parameters, these classifications may not be 

accurate[157]. As such, longitudinal patient data with information regarding malignant 

transformation is needed. Moreover, in respect to the low-risk patients, no clear cut-off 

exists for the interpretation of whether this was the correct classification. Indeed, 

regardless of whether five or ten years have passed without this patient progressing to 

PC, there is no definitive time-specific cut-off to determine whether this was the correct 

classification. Indeed, the 2015 American Gastroenterological Association guidelines 

ceases surveillance on PCLs after 5 years without a change in cyst size or characteristics, 

while both the 2017 International Association of Pancreatology Fukuoka guidelines, and 

the 2018 European evidence-based guidelines suggest continued surveillance every 1 or 

2 years, depending on cyst size (Table 1.2)[154, 156, 157]. As a result, a definitive 

classification of low-risk appears difficult to ascertain, and will be a major limitation of 

any risk stratification studies in PCLs.  

 The various points at which the handling of omics data can introduce bias are 

discussed above in section 7.3, however, the methodologies related to the acquisition 

of one omics dataset in particular has defined limitations. Indeed, the serum proteomic 

data discussed in Chapter 5 consisted of just 145 proteins after data clean-up, compared 

to the 465 identified in the PCF in Chapter 4. Despite immunodepletion steps which 

removed the 12 most abundant proteins from the serum samples, it appears the depth 
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of proteome coverage within the serum may have been poor. As such, these data may 

not represent the full proteome of these serum samples, and should be re-examined 

with more stringent depletion steps, possibly including fractionation in order to capture 

lower molecular weight proteins and less abundant proteins more efficiently[494]. This 

re-evaluation will be essential for the modelling work suggested above (section 7.4). 

 Further to the limitations of the CombiROC software used in Chapter 5 as 

mentioned above in section 7.3, a major final step in this process provides vast avenues 

for different outcomes. Indeed, through the panel reduction process for both the serum 

and PCF panels, several reduced panels met the cut-offs for sensitivity and specificity 

within the software. As such, those brought forward in this work may not have been the 

best, or only, set of biomarkers that could be chosen for the creation of the cross-

biofluid panel. It is important, therefore, to identify a software or model with sufficient 

processing power to handle the inclusions of the entire 24-biomarker set across both 

panels, in order to perform the necessary permutations for feature selection. In this way, 

a more robust selection can be carried out with less room for variation and bias. 

 Lastly, the treatment of normal cell lines with PCF in order to assess its impact 

on normal cell biology was conducted under serum starved conditions. Discussed at 

length in Chapter 6, is the possible impact this starvation may have had on the results 

obtained in this study. It is unclear whether the serum starvation of the cells has 

interfered with, clouded, or exacerbated, the results demonstrated here. While serum 

deprivation is used in many studies for cell synchronisation, adverse effects of this 

culture technique can be numerous, such as enriching the cancer stem cell population, 

altering protein expression, increasing sensitivity to radiotherapy, increasing apoptosis 

and decreasing proliferation[495-498]. Indeed, a 2019 study demonstrated that serum-

reduced media had negative impacts on lung epithelial cell viability, morphology and 

protein expression[499]. As such, while it is clear that PCF has altered the biology of 

normal cells in many aspects, the exact influences, and directions of these influences, 

cannot yet be known due to the unknown interference of serum-starvation, and as such 

interpretation of these data is limited[500]. Further research is therefore required, under 

different culture conditions, to fully elucidate the effects of PCF on normal cell biology. 
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7.6 Future directions 

The results reported in this thesis present promising avenues for future research to 

build, and expand on. Firstly, the re-evaluation of patient serum via fractionation and 

subsequent proteomics is key to acquire a more in depth read of the serum 

proteome[494]. Furthermore, expansion of the omics dataset curated in this thesis, to 

include at least genomic and metabolic data for both the serum and PCF, will add further 

dimension and enable the generation of an even more robust multi-omic biomarker 

panel. These omics data will then need to be evaluated in a sufficiently powered, 

blinded, independent validation cohort in order to appropriately assess biomarker 

efficacy. Longitudinal data is needed to examine the progression of these patients, and 

give more certainty to the risk classifications used in this study, while novel and study-

specific modelling should be considered in order to utilise this dataset to its full 

potential. Furthermore, the expansion of the control cohort to include benign PCF, and 

therefore represent a more clinically relevant control cohort, should be considered. 

 Secondly, further examination of the effects of PCF on normal cell biology is 

needed, specifically targeting the hallmarks of cancer and the role PCF plays in the 

acquisition of these traits. Furthermore, the effects of PCF on other key cell types within 

the pancreatic microenvironment, such as stromal and immune cells, as well as PC cells, 

will be important to understand the bigger picture of this progression. Indeed, 

examining the upregulation of MMPs and TIMPs in the presence of PCF may elucidate 

whether PCF is involved in the desmoplastic reaction seen in PC[64, 66, 72]. Moreover, the 

differential responses of normal cells to PCF exposure, specifically with reference to the 

mass cell death observed in some cases, will need to be explored further. A more 

expansive clinical dataset combined with the additional omics suggested could provide 

further insight into these differential influences. In fact, the presence of a gradient 

should be considered, if a distinct categorical factor cannot be found to correlate with 

these effects. 

 Lastly, the interrogation of the role of PCF on cell biology will need to be carried 

out under a number of different conditions. It has been discussed that serum starvation 

may have interfered with the results demonstrated in this thesis (section 7.5). As such, 

future work should aim to repeat and expand on those experiments conducted, in both 
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normal growth conditions, and under a range of other stress conditions observed in the 

pancreatic microenvironment, such as hypoxia and desmoplasia[20, 501]. The use of 3D 

pancreatic organoid models should also be considered in order to capture the unique 

and multi-faceted pancreatic microenvironment[502]. Furthermore, the use of higher 

concentrations of PCF should be a key aspect of future work. In this thesis, PCF 

treatment experiments were conducted at a low concentration of PCF. However, 

clinically, this may not be relevant. Future work should explore the potentially drastic 

changes to be seen in the cellular responses to higher concentrations of PCF, given that 

in vivo the epithelial cells that make up the cyst lining, and the cellular component within 

the PCF, would be in contact with neat PCF[139]. 

 

7.7 Conclusion 

This thesis has not only highlighted important flaws and knowledge gaps in pancreatic 

literature, but has also highlighted ways in which future research can, and should, be 

designed in order to improve reporting and dissemination of results. This research has 

shown extensive evidence of potential biomarkers and biomarker panels with great 

promise for the risk stratification of patients with PCLs, a facet of pancreatic research 

which requires urgent attention in order to improve PC patient survival. This thesis 

reports on a novel, cross-biofluid multi-omic biomarker panel, with great promise for 

the accurate risk stratification of these patients. However, most importantly, this 

research has shown, for the first time, that PCF is biologically active, and can influence 

the proliferation, cell death, viability, metabolic profile, invasive capacity and 

phenotypic and functional marker expression of normal and intermediary pancreatic cell 

lines. These results will have a meaningful impact on the surveillance and management 

strategies of pancreatic patients, and while further research is required to fully elucidate 

these impacts, the results reported here cannot be taken lightly. PCF contains many 

factors that have the potential to influence those cells which come into contact with it, 

and as such, may play a role in the progression of patients with PCLs to PC. Taken 

together, these findings provide not only a novel and promising biomarker panel for the 

early detection of patients at a high-risk of PC, but also suggests a new course of action 

in the management of PCLs in favour of cyst aspiration. While this action could be 



300 

 

considered unnecessarily invasive for patients classified as low-risk, this thesis has 

provided evidence that all PCF can alter cell biology, and should therefore be considered 

potentially carcinogenic. Although much research is still required to expand on the 

knowledge generated in this thesis, this work provides important contributions to the 

positive progression of pancreatic research, and patient management. 
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Appendices 

Appendix 1. PRISMA 2020 Checklist.   

Section and 

Topic  

Item 

# 
Checklist item  

Location 

where item 

is reported  

TITLE  

Title  1 Identify the report as a systematic review. Title 

ABSTRACT  

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Abstract 

INTRODUCTION  

Rationale  3 Describe the rationale for the review in the context of existing 

knowledge. 

Introduction 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the 

review addresses. 

Introduction 

METHODS  

Eligibility 

criteria  

5 Specify the inclusion and exclusion criteria for the review and how 

studies were grouped for the syntheses. 

Methods 

Information 

sources  

6 Specify all databases, registers, websites, organisations, 

reference lists and other sources searched or consulted to identify 

studies. Specify the date when each source was last searched or 

consulted. 

Methods 

Search 

strategy 

7 Present the full search strategies for all databases, registers and 

websites, including any filters and limits used. 

Methods 

Selection 

process 

8 Specify the methods used to decide whether a study met the 

inclusion criteria of the review, including how many reviewers 

screened each record and each report retrieved, whether they 

worked independently, and if applicable, details of automation 

tools used in the process. 

Methods 

Data 

collection 

process  

9 Specify the methods used to collect data from reports, including 

how many reviewers collected data from each report, whether 

they worked independently, any processes for obtaining or 

confirming data from study investigators, and if applicable, details 

of automation tools used in the process. 

Methods 

Data items  10a List and define all outcomes for which data were sought. Specify 

whether all results that were compatible with each outcome 

domain in each study were sought (e.g. for all measures, time 

points, analyses), and if not, the methods used to decide which 

results to collect. 

Methods 
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Section and 

Topic  

Item 

# 
Checklist item  

Location 

where item 

is reported  

10b List and define all other variables for which data were sought (e.g. 

participant and intervention characteristics, funding sources). 

Describe any assumptions made about any missing or unclear 

information. 

Methods 

Study risk of 

bias 

assessment 

11 Specify the methods used to assess risk of bias in the included 

studies, including details of the tool(s) used, how many reviewers 

assessed each study and whether they worked independently, 

and if applicable, details of automation tools used in the process. 

Methods 

Effect 

measures  

12 Specify for each outcome the effect measure(s) (e.g. risk ratio, 

mean difference) used in the synthesis or presentation of results. 

Methods 

Synthesis 

methods 

13a Describe the processes used to decide which studies were 

eligible for each synthesis (e.g. tabulating the study intervention 

characteristics and comparing against the planned groups for 

each synthesis (item #5)). 

Methods 

13b Describe any methods required to prepare the data for 

presentation or synthesis, such as handling of missing summary 

statistics, or data conversions. 

Methods 

13c Describe any methods used to tabulate or visually display results 

of individual studies and syntheses. 

Methods 

13d Describe any methods used to synthesize results and provide a 

rationale for the choice(s). If meta-analysis was performed, 

describe the model(s), method(s) to identify the presence and 

extent of statistical heterogeneity, and software package(s) used. 

Methods 

13e Describe any methods used to explore possible causes of 

heterogeneity among study results (e.g. subgroup analysis, meta-

regression). 

Methods 

13f Describe any sensitivity analyses conducted to assess 

robustness of the synthesized results. 

Methods 

Reporting bias 

assessment 

14 Describe any methods used to assess risk of bias due to missing 

results in a synthesis (arising from reporting biases). 

Methods 

Certainty 

assessment 

15 Describe any methods used to assess certainty (or confidence) in 

the body of evidence for an outcome. 

Methods 

RESULTS  

Study 

selection  

16a Describe the results of the search and selection process, from the 

number of records identified in the search to the number of studies 

included in the review, ideally using a flow diagram. 

Methods 

16b Cite studies that might appear to meet the inclusion criteria, but Methods 
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Section and 

Topic  

Item 

# 
Checklist item  

Location 

where item 

is reported  

which were excluded, and explain why they were excluded. 

Study 

characteristics  

17 Cite each included study and present its characteristics. * 

Risk of bias in 

studies  

18 Present assessments of risk of bias for each included study. ** 

Results of 

individual 

studies  

19 For all outcomes, present, for each study: (a) summary statistics 

for each group (where appropriate) and (b) an effect estimate and 

its precision (e.g. confidence/credible interval), ideally using 

structured tables or plots. 

Results 

Results of 

syntheses 

20a For each synthesis, briefly summarise the characteristics and risk 

of bias among contributing studies. 

Results 

20b Present results of all statistical syntheses conducted. If meta-

analysis was done, present for each the summary estimate and 

its precision (e.g. confidence/credible interval) and measures of 

statistical heterogeneity. If comparing groups, describe the 

direction of the effect. 

Results 

20c Present results of all investigations of possible causes of 

heterogeneity among study results. 

Results 

20d Present results of all sensitivity analyses conducted to assess the 

robustness of the synthesized results. 

Results 

Reporting 

biases 

21 Present assessments of risk of bias due to missing results (arising 

from reporting biases) for each synthesis assessed. 

Results 

Certainty of 

evidence  

22 Present assessments of certainty (or confidence) in the body of 

evidence for each outcome assessed. 

Results 

DISCUSSION  

Discussion  23a Provide a general interpretation of the results in the context of 

other evidence. 

Discussion 

23b Discuss any limitations of the evidence included in the review. Discussion 

23c Discuss any limitations of the review processes used. Discussion 

23d Discuss implications of the results for practice, policy, and future 

research. 

Discussion 

OTHER INFORMATION 

Registration 

and protocol 

24a Provide registration information for the review, including register 

name and registration number, or state that the review was not 

registered. 

Methods 

24b Indicate where the review protocol can be accessed, or state that Methods 
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Section and 

Topic  

Item 

# 
Checklist item  

Location 

where item 

is reported  

a protocol was not prepared. 

24c Describe and explain any amendments to information provided at 

registration or in the protocol. 

Methods 

Support 25 Describe sources of financial or non-financial support for the 

review, and the role of the funders or sponsors in the review. 

Funding 

Competing 

interests 

26 Declare any competing interests of review authors. Competing 

Interests 

Availability of 

data, code 

and other 

materials 

27 Report which of the following are publicly available and where 

they can be found: template data collection forms; data extracted 

from included studies; data used for all analyses; analytic code; 

any other materials used in the review. 

*** 

Items reported using *, ** and *** are publicly available online in the supplementary materials of the 
published manuscript. 
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Appendix 2. Clinical data binary code key for correlations.  

Clinical factors 0 1 2 3 

Risk Low Risk High Risk   

Sex Female Male   

Smoking habits Non-smoker Ex-smoker Active  

Alcohol 

consumption 

None Previous heavy, now 

abstinent 

Active Heavy 

Diabetes status No Yes   

Pancreatitis status No Yes   

Categorical clinical data are coded in a logical order such that increasing numbers correspond to increasing 
risk, where appropriate. 
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Appendix 3. QIAGEN custom 24-array plate layouts. 
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Appendix 4. Scree plot showing the variance explained by each principal component 

for the 8-protein panel in PCF. 
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Appendix 5. Scree plot showing the variance explained by each principal component 

for the 3-miRNA panel in PCF. 
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Appendix 6. Scree plot showing the variance explained by each principal component 

for the 11-feature multi-omic panel in PCF. 
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Appendix 7. Scree plot showing the variance explained by each principal component 

for the 8-protein panel in the serum. 
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Appendix 8. Scree plot showing the variance explained by each principal component 

for the 5-miRNA panel in the serum. 
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Appendix 9. Scree plot showing the variance explained by each principal component 

for the 13-feature multi-omic panel in the serum. 
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Appendix 10. qPCR microarray does not validate transcriptomic results in the serum. 

Relative quantification (Rq) of four miRNAs identified in the serum via transcriptomics. 

(A) MiR-6741-5p data are presented as mean ± SEM for n=2 low-risk patients. (B) MiR-

3180 data are presented as mean ± SEM for n=3 low-risk and n=1 high-risk patients. (C) 

MiR-3180-3p data are presented as mean ± SEM for n=3 low-risk and n=1 high-risk 

patients. (D) MiR-6782-5p data are presented as mean ± SEM for n=3 low-risk and n=1 

high-risk patients.  

 

 


