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Abstract

Behavioural device models are black-box models which depend only on measured

data and are independent of the underlying physics behind the working of the device.

Behavioural device models are widely used to model non-linear devices due to their

computational convenience. Accurate models are useful for circuit and system de-

signs to help minimise the design time and maximise the utility of simulations.

In most of the behavioural models, the measured data are assumed to be ideal, while

in actuality these measured data are subjected to errors. These errors can influence

the modelling of the device and result in inaccurate predictions. In many cases, the

measurement system can be designed to minimise measurement uncertainty and mea-

surement errors, but measurements will also be subject to random errors due to en-

vironmental conditions. In the existing studies which include measurement errors in

modelling, point estimates are estimated for the output responses of the Device Un-

der Test (DUT). However, these point estimates do not reflect the reality that the input

data are measured in the presence of uncertainties.

In this work, a method to model non-linear devices with random errors is proposed.

This method is based on the Bayesian probabilistic approach which gives probabilistic

distributions for the model parameters and output responses of the DUT. Probabilistic

distributions and credible regions for X-parameters are established by deriving prob-

ability distributions for the output responses of the DUT rather than point responses.

Finally, the potential to use Bayesian Neural Networks (BNN) to achieve increased

accuracy is proposed and examined.
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1 Introduction

The need for connectivity and higher data rates is rising with each generation of the

telecommunications network. This demand devices with higher integration levels and

higher speed. Such advancements require accurate device models which can be de-

veloped in a short time. Device models describe the characteristics of the device by

relating the input stimuli with output response using mathematical relationships or

by analyzing the physics behind the working of the device. The design time can be re-

duced by the small number of design cycles that accurate device models can achieve.

For the cost-effective production of devices, the manufacturers and designers depend

on accurate device models. This challenges the device modelling engineers to develop

precise device models.

1.1 Non-Linear Device Modelling

Device models are two types: Physics-based models and empirical models. In physics-

based device models also known as circuit models, the characteristics of devices are

predicted by analyzing the elemental physics of the device. The circuit model de-

scribes the architecture, structure, and parameters of each component of the device.

The challenge of the physics-based models is that it is difficult to identify and analyze

the physics behind the working of the non-linear devices. The circuit simulators will

require high-level analysis tools to analyze these non-linearities. The computation

will be time-consuming even by utilizing high-level analysis tools [1]. Even though

the building of physics-based device models is a tedious and time-consuming task,
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they can provide accurate predictions if all the physics behind the working of the non-

linear devices is identified and analysed using high-level analysis tools.

Empirical models also known as behavioural models are widely used to model non-

linear devices due to their simplicity & low computation time. In the empirical mod-

els, the model parameters are fitted to the measured data using different optimiza-

tion methods. The basic concept of these models is to obtain the predictability and

the operation of the device by utilizing various mathematical techniques [1]. These

models depend only on experimental or simulated data. These methods do not con-

sider the physics behind the operation of the device. Due to this reason, the engineers

can model the devices without the knowledge regarding the origin or causes of non-

linearities, which makes the modelling uncomplicated and convenient. Although it

has several advantages over physics-based modelling, the accuracy is low compared

to physics-based modeling since it is not analyzing the physics behind the device and

due to approximations used for the convenience. It is a trade-off between accuracy

and computation speed [1].

Hybrid models which is a combination of both physics-based model and empirical

model are also available for the device modelling. These models have the advantages

of both physics-based modelling and empirical modelling. In those models, certain

proprieties will be physically analyzed while other properties will be statistically anal-

ysed.

1.2 Challenges of Behavioural Modelling

Even though behavioural modelling is convenient over circuit modelling, which makes

them the most commonly used modelling approach for RF devices, it has certain limi-

tations. As the behavioural models only depend on the measured data, the accuracy of

the model heavily depends on the accuracy of the measured data. The measurement

error will be reflected in the model’s prediction. As a result, even the most efficient

models may do incorrect predictions. A reliable behavioural model can be achieved
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only if these measurement errors are considered in the modelling. In this work, the

random errors in the non-linear devices are quantified using statistical methods. These

errors are unbiased errors which will be different in each measurement. In most cases

the causes or origin of the random errors are unknown. The errors caused by the

thermal noise of the measuring equipment are an example of random errors.

1.3 Motivation for Research

Manufacturers and designers rely on the behavioural models to design and manufac-

ture their products. Due to the presence of random errors, these products may behave

differently from what they are supposed to be. So the uncertainty in these models

needs to be quantified. If the uncertainty percentage or the credible interval is within

the acceptable limits of the manufacturer’s or designer’s criteria, then the non-linear

system can be used. Otherwise, the system needs to be redesigned or more data needs

to be analysed. Hence an efficient and convenient system for estimating the uncer-

tainty of behavioural models is needed. In the prevailing models [2], [3], [4],[5], point

estimates are predicted for the output response of the devices. No model can predict

the response perfectly due to the presence of random errors. This research focuses to

predict probability distributions that characterize the behaviour of the devices which

can give a range of possible values and their probabilities.

1.4 Probabilistic approaches to quantify random errors

Different statistical methods are used to estimate the uncertainties in non-linear device

modelling. There are two types of statistical methods to create a probabilistic model:

Frequentist or Classical statistics and Bayesian Statistics.

In the frequentist statistics, the probability is observed as the frequency of the random

repeatable events [6]. The main feature of frequentist statistics is the null hypothesis.

In the frequentist methods, the parameters are fixed or non-random values and the er-
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ror bars or probability of outputs are obtained by utilizing the distribution of datasets

by repeated sampling.

In contrast to frequentist statistics, in Bayesian statistics, the parameters are also ran-

dom variables that have a specific distribution. In regression problems, the uncer-

tainties related to the choice of model parameters can be quantified by considering

the parameters as random variables. In this method, there is only one dataset. The

uncertainties in the parameters are quantified through probability distributions over

parameters. The distribution of the parameters is chosen from our prior knowledge

of the parameters. Thus Bayesian statistics include prior information or hypothesis

along with the available data. The Bayes theorem is used to convert the prior distri-

bution to the posterior distribution using the observed data. The other advantage of

the Bayesian method is that the posterior distribution of parameters can be updated

with new data by considering the present posterior distribution as the prior distribu-

tion for estimating the updated posterior distribution. This method is utilized in this

work.

1.5 Probabilistic Bayesian Non-Linear Modelling

The steps for probabilistic Bayesian Non-linear modelling are as follows:

• Relate the input variable and its response using basis functions.

The output responses are related to the linear combinations of the non-linear

functions of the input variables [6]. These non-linear functions of input variables

are basis functions. The usage of the non-linear basis function makes the relation

between output response and input variable a non-linear function with respect

to input vector while linear with respect to weight vector. The linearity with

respect to the weight vector will reduce the complexity of the computational

analysis.

In this method, we are relating the target variable (the variable for which we
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Figure 1.1: Flow chart

need to obtain predictive probability distribution) to the input using polyno-

mial basis functions as non-linear basis functions. The coefficient of each term

(weight) or each basis function is the model parameter. Consider y as the target

variable, x as the input variable and M is the number of model parameters

y(x, w) = wTϕ(x) (1)

where, w is the weight vector and ϕ is the vector of basis functions.
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• Apply Prior distribution to the weight vector w.

In this approach, a prior distribution is applied to these model parameters. The

prior distribution is chosen according to our previous knowledge about the un-

certainties in the extraction of model parameters. Mutually independent Gaus-

sian distributions are assigned as prior distributions in this work.

• Application of Bayes theorem to obtain posterior distribution.

Bayes Theorem is applied to the prior distribution and observed data to estimate

the posterior distribution over model parameters. The likelihood function can be

obtained from the observed data set. The likelihood function gives the probabil-

ity of the observed data set for each set of parameter vector w. The negative of

the log of the likelihood function is the error function in the Bayesian Statistics

[6]. Using the Bayes theorem, the posterior distribution can be related to prior

distribution and likelihood function as below:

P(w|D) =
P(w|D)× P(w)

P(D)
(2)

Posterior Distribution ∝ Likelihood Function × Prior Distribution (3)

P(w|D) ∝ P(w|D)× P(w) (4)

where D is the observed data. The denominator in the (2) is used for the normal-

ization constant which confirms the probability density of the posterior distribu-

tion integrated into one. So that the (2) can be reduced to (4). Using the above

relation, the posterior probability distribution of the model parameters can be

obtained.

• Obtain the predictive probability Distribution

6



The predictive probability distribution of the output variable can be estimated

analytically by integrating the product of likelihood function and posterior dis-

tribution with respect to w.

1.6 Aims

The overall aim of this work is to develop a method to estimate the probabilistic dis-

tribution of behavioural model parameters of non-linear devices. Specifically, two

approaches are considered:

• firstly, using a Bayesian Probalistic approach;

• and secondly, using Bayesian Neural Networks (BNNs) [7].

In this work, the variations in the model parameters of non-linear behavioural models

due to random uncertainties in the input data to the model parameter extraction is first

quantified, followed by output prediction in the presence of random uncertainties.

The proposed method can be adapted by device modelling engineers to build accurate

behavioural models for non-linear devices which can be utilized by the designers for

designing the system.

1.7 Contributions of the research work

Work from this thesis has been presented at two international conferences:

• at the Asia Pacific Microwave Conference (APMC) in Hong Kong in 2020;

• and at the European Microwave Integrated Circuits Conference (EuMIC) in Lon-

don, the UK in 2021.

The specific contributions of this thesis are summarised below:

• A method based on Bayesian Statistics is proposed to quantify the random un-

certainties in the model parameter extraction of non-linear devices. This method

is utilized to estimate the random uncertainties in the well-known X-parameters.
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Probability distributions were obtained for each X-parameter which gives the

possible values for the X-parameters with their probabilities. Credible regions

are also estimated using the proposed method. This work has been presented at

APMC.

• An empirical paradigm is introduced to model the output response of non-linear

devices with random errors. Bayesian Probabilistic approach is utilized in this

method. This contribution has been presented at EuMIC 2021.

• An initial set-up is proposed for using Bayesian Neural Networks to model the

random uncertainties in non-linear devices which overcomes the issue of the

curse of dimensionality.

Together, these contributions help to quantify and account for random errors in the

modelling of non-linear devices.

1.8 Summary

In this Chapter, different modeling approaches used for non-linear devices are dis-

cussed. The advantages as well as the challenges of behavioural modeling, are ex-

plained. The available probabilistic approaches are explained in this chapter. The

aims and contributions of the work are stated in this chapter.
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2 Background and Motivation

2.1 Device Models

As the device models are one of the most useful aids for RF circuit design, device

modelling engineers are challenged to develop highly accurate and computationally

efficient device models. Manufacturers and designers rely on device models to fa-

cilitate the cost-effective system designs that result due to first-pass design success.

The successful realization of high-frequency devices is heavily dependent on efficient

device models. Device models are the mathematical relationships that describe the

characteristics of a device. These models are developed by analyzing the behaviour of

devices under different operating conditions for example, linear, non-linear operating

regions, which can be achieved by changing the parameters of the input signal. Device

models predict the behaviour of devices by analyzing the physics behind the device

or by relating the input stimuli and output responses of the device. Device models

can be classified into circuit models and behavioural models based on the analysis

methodology used.

2.1.1 Circuit Modelling

Circuit models are the physics-based analytical model which is developed by analyz-

ing the behaviours of a device based on the fundamental physics by solving rigorous

mathematical equations governing the underlying device physics[1]. Circuit models

require physical knowledge about the device prior to modelling since the relationship
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between the structure of the device and its underlying physical principles is an impor-

tant factor in the circuit model. The accuracy of the physics-based models lies in the

comprehension of the elemental physics underlying the device. This is challenging for

non-linear devices. To analyze the non-linear behaviour of the device, high-level anal-

ysis tools are required. These models provide accurate results and have better scal-

ability compared to behavioural models once all the physics underlying is identified

and analysed. But the computation complexity and computation time increase with

non-linear behaviour of the device. As new technologies and devices are emerging

constantly circuit modelling will become a continuous task and predict the behaviour

accurately, the detailed knowledge about the structure and technologies is required.

This makes circuit modelling a tedious and time-consuming task for non-linear de-

vices.

2.1.2 Examples of Circuit Modelling

Several circuit device models are available for Bipolar Junction Transistors (BJTs) in-

cluding Ebers and Moll model in which BJT is approximated as p-n junctions. The cir-

cuit models for Feild Effect Transistors (FETs) for example Level 1 and Level 2 models

are also introduced with first order approximation. Industry standard circuit models

are also available for the multi-gate FETs.

Ebers and Moll have introduced a circuit model for bipolar junction transistor in

which transistor was modeled as two p-n junctions placed back-to-back with the base

p-type region being common to both diodes. The Ebers-Moll transistor model at-

tempts to model the transistor as two diodes whose currents are determined by the

normal diode equation with the addition of transfer ratios to include the interdepen-

dence of two diodes [8]. Gummel and poon have introduced a circuit model for bipo-

lar transistors which is suitable for network analysis computer programs. This model

is capable of modelling the high injection effects by utilizing charge control relation.

This model reduces to the Ebers-Moll model for low bias applications with some

idealizations [9]. The vertical Bipolar Intercompany Model (VBIC) which is similar
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to the Gummel-Poon model was introduced to overcome some of the shortcomings

of the Gummel-pool model. This model is more advanced than the Gummel-Poon

model in early effect modelling, quasi-saturation modeling, parasitic substrate tran-

sistor modeling, parasitic fixed (oxide) capacitance modeling, temperature modelling,

and avalanche multiplication modelling. In addition to that, it gives a smooth, contin-

uous model [10]. Most EXquisite TRAnsistor Model (MEXTRAM) is another bipolar

transistor circuit model which can be used for both Si and SiGe processes. It can model

high voltage, high current, and high frequency such as Radio Frequency (RF) devices.

It models high injection effects with a dedicated epi-layer model [11]. HIgh CUrrent

Model (HICUM) is a physics-based geometry-scalable circuit model for homo- and

hetero-junction bipolar transistors. It can be used for designing circuits that use Si,

SiGe, or any III-V processes. This model is based on the generalized and extended

integral charge control relation. It predicts accurately at high frequencies and high

current densities [12].

Level 1 or Schichman-Hodges Model models Metal-Oxide-Semiconductor Field Effect

Transistor (MOSFET) by first order approximation of output of long channel MOS de-

vice. This model is capable of considering channel length modulation and the body

bias effect. This model is not sufficient to model saturation effect, carrier mobility

degradation [13]. The level 2 model or Grove-Frohman Model is the advanced ver-

sion of the Level 1 model. This model can model the mobility degradation by the

vertical field, the depletion region, and the threshold region. This model is built on

an assumption that threshold voltage is constant and it varies only with the substrate

voltage [13].

Berkeley Short-channel IGFET Models (BSIM) are examples of circuit modelling that

models MOSFET transistors for IC design. BSIM-Common Multi Gate (BSIM-CMG) is

an industry standard model which is used for modelling common multi-gate devices,

for example, FinFets, and Gate-All-Around FET (GAAFET). This model can model

various physical phenomena originating from the quantum confinement of electrons

by the small cross section of the GAAFET channel [14]. BSIM-Independent Multi-
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Gate (BSIM-IMG) model has been developed to model the electrical characteristics of

the independent double-gate structures like Ultra-Thin Body and BOX SOI transistors

(UTBB). It allows different front- and back-gate voltages, work functions, dielectric

thicknesses, and dielectric constants [15].

2.1.3 Behavioural Modelling

The alternative approach to circuit modelling is behavioural modelling. The behavioural

models are black box models which predict the behaviour of devices by experimen-

tally determining the response of the device and fitting it into the model. AM/AM

and AM/PM are examples of the measurement techniques used in behavioural mod-

elling. In AM/AM technique, the input and output magnitude is compared at differ-

ent input power, while the AM/PM technique compares the change in the phase of

the output signal with the phase of the input signal at different input power [16]. Since

these models only depend on measured data (input stimuli and the corresponding re-

sponse), they do not require knowledge about the internal setup of the device. The

main benefit of using behavioural models is that it is independent of technology. It is

inconsequential whether the user is using compound semiconductor field-effect tran-

sistors or silicon bipolar technology [17]. The other benefit of behavioural models is

that they can be shared and used by others without revealing the internal setup of the

component [17]. These models predict the characteristics of devices accurately with

high computational speed. This modelling approach is well suited for non-linear de-

vices in which the structure and the underlying physical mechanisms of the device are

complex, but can be measured. Researchers prefer behavioural modelling approach

for non-linear devices due to their convenience and rapid results.

2.1.4 Examples of Behavioural Modelling

Several behavioural models are available for modelling linear and non-linear devices.

S-parameter modelling is one of the frequency domain behavioural models used to

model linear devices. The Poly Harmonic Distortion (PHD) modelling approach along
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with X-parameter formalism was introduced to model non-linear devices. Pade ap-

proximation model and Cardiff model are examples of other non-linear behavioural

models. Other modelling approaches including the neural network-based model and

Bayesian theory-based model are available for modelling non-linear devices.

S-parameter modelling approach of one of the most used frequency domain mod-

elling approach in the RF microwave industry to model linear devices and devices

which behaves linearly at small amplitudes. It was introduced along with similar

models such as Y parameter modelling, Z-parameter modelling, H-parameter mod-

elling, T-parameter modelling, and ABCD modelling approaches. The S-parameters of

one individual component are sufficient to estimate the S-parameters of any combina-

tion of that component and S-parameters are invariant with the phase of the incident

waves.

Most of the systems are non-linear. Power Amplifiers, mixers, and multipliers are

examples of non-linear systems. Poly Harmonic Distortion Modelling approach was

introduced to model the non-linear systems [17]. In PHD approach the incident waves

are related to the scattered wave using multivariate complex describing functions. The

X-parameter Modelling approach is one of the extensions of S-parameter Modelling

to non-linear systems using PHD modelling approach. In X-parameter modelling ap-

proach, the model is linearized around a large signal operating point. X-parameters

give a good prediction on non-linear systems at matched or nearly matched conditions

[2]. The addition of quadratic terms in the describing functions of the PHD models

led to Quadratic Poly Harmonic Distortion (QPHD) Model. The QPHD model has the

ability to give good predictions over non-linear systems even in unmatched conditions

[3].

Pade approximation behavioural model is a non-linear behavioural model which uses

rational function instead of X-parameter’s polynomial function. Due to the diversity

of Pade approximations, this behavioural model increases the modelling space avail-

able beyond the X-parameter method [4]. Cardiff Behavioural Models (Cardiff model
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lite and Cardiff model +) are also capable of modelling the non-linear devices accu-

rately. Cardiff model gives a local model and Cardiff model+ utilizes higher order

mixing terms to model the entire impedance space with a single model. This model

is flexible in the number of mixing terms and coefficient terms. This model can also

include input and output harmonics and obtain good accuracy without utilising the

superposition principle [5].

A non-linear behaviour model based on a neural network was introduced which can

predict the behaviour of transistors over the entire Smith chart at different power lev-

els with one set of model coefficients. It shows good prediction and extrapolation

properties in both linear and strongly non-linear regions [18]. A Bayesian theory-

based non-linear behavioural model was introduced which can determine the opti-

mal impedance required at the device terminals for the maximum output power or

efficiency [19].

2.1.5 Hybrid Models

Several approaches that combine statistical analysis and physics-based analysis were

introduced. In [20], the X-parameter modelling is linked to the physics-based TCAD

simulations. This provides a procedure to integrate the experimentally derived X-

parameters with predictions obtained by physical simulations. In [21], the active de-

vices and passive devices of GaAs MMIC X-band power amplifier were modelled by

physics-based X-parameters and electromagnetic simulations respectively.

2.2 Uncertainties In Behavioural Modelling

Even though behavioural models are more convenient over circuit models in mod-

elling non-linear systems, it has some drawbacks. One of the drawbacks of the be-

havioural models is that it depends only on measured data and the measured data

are subject to two types of errors: systematic and random errors. Since behavioural

models are not considering the physics behind the model, the cause or origin of these
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uncertainties is not taken into account while modelling. The device may behave dif-

ferently from the predicted behaviour due to these uncertainties. So that there may be

a difference between the actual measurement and predicted measurement even for a

very accurate behavioural model.

Systematic errors are deterministic and can be identified as they have the same error

for every measurement, which can be corrected by better calibration methods. On

the other hand, random errors are stochastic in nature, and in most cases, they are

unavoidable and unpredictable. These errors may vary at each measurement, which

makes them difficult to account for. In the non-linear systems the measurements may

have additional systematic and random uncertainties than in linear systems due to

power and phase calibrations [22].

2.2.1 Systematic errors

Systematic errors are biased errors. Uncertainties in calibration standards and uncer-

tainties in measuring device hardware are examples of systematic errors. The calibra-

tion uncertainty is the difference in calibrated value and its reference base. The major

calibration uncertainties are the uncertainties in the calibration curve due to limited

data and the uncertainties that may occur in future measurements. Systematic errors

other than calibration uncertainties are due to the difference in other factors such as

instruments, operators, geometries, configurations, and inhomogeneities. An exam-

ple of these types of systematic error is the error caused by the flange misalignment in

rectangular waveguides used in 500-750 GHz frequency [23].

Three types of systematic errors are widely seen in reflection measurements: Direc-

tivity error, Source match error, and Frequency response reflection tracking error. Re-

sistive bridges and couplers are used to separate two signals (for example incident

and reflected waves). Directivity error is the result of leakage of incident signal to

the receivers which are intended to receive only the reflected signals. The imperfect

isolation of the couplers and resistive bridges of the analyzer equipment causes this
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leakage term during reflective measurements. This error can be mathematically quan-

tified and corrected by taking multiple reflection measurements. A source match error

is caused by the imperfect source match of the test port. If the DUT is not having a

perfectly matched source port, a series of unwanted wavelets may occur between the

port and DUT which results in incorrect reflection measurements [24]. A reflection

tracking error is the difference in the frequency response of the test receiver and the

reference receiver of a stimulus port in reflection measurements. Frequency response

reflection tracking error is caused by test cables,signal-separation devices, adapters,

variations in the reference signal path, and test signal path.

As in reflection measurements, three types of systematic errors are mainly present

in transmission measurements: Isolation error, Load match error, and Frequency re-

sponse transmission tracking error. The isolation error which is also known as crosstalk

error is caused by the imperfect isolation by the isolators used in the analyzer equip-

ment. This results in the leaking of unwanted signals (signals other than transmitted

signals of the DUT) to the test receiver of the transmission measurement port which

causes errors in transmission measurements. As in the source match error, the imper-

fect matching of the load port with DUT may cause a ripple of unwanted transmission

and reflection signals. This results in inaccurate transmission measurements. A trans-

mission tracking error is caused by the difference in frequency response between the

test receiver of a response port and the reference receiver of a stimulus port in trans-

mission measurements [25].

2.2.2 Random Errors

They usually arise from noises in the measured data. These errors are unbiased as they

occur unpredictably and irregularly while taking measurements and during model

parameter extractions. The random errors that may occur while taking measurements

can be categorized into three depending on the cause of the random errors: errors

due to the noise in the instruments, errors from switch repeatability, and errors from

connector repeatability.
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The noise in the instruments is the unwanted electrical fluctuations or disturbances

caused by the analyzer’s components. Examples of those electrical disturbances are

the low-level noise caused by the receiver’s broadband noise floor and high-level

noise due to phase noise of the local oscillator in the test set and noise floor. The

noise errors can be reduced by rising the source power to the DUT. This aids to re-

duce low-level noise. The noise errors can be further reduced by the reduction in the

intermediate frequency bandwidth and by applying several measurement points and

sweep averages.

The switch repeatability errors are caused by the RF mechanical switches which are

used in the analyzer equipment to control the source attenuator settings. The contacts

of the mechanical switches may close in different manners when they are activated.

This may affect the precision of the measurement. This noise can be avoided by not

using mechanical RF switches for the measurements which need high precision.

Connector repeatability errors are the result of connector wear which can cause ad-

verse effects on the electrical performance. This can be rectified to a certain amount

by good connector care practices such as keeping the connectors clean, protecting the

ends of connectors with plastic caps & maintain the temperature of the connectors the

same as that of the analyzers [25].

2.3 Importance of Uncertainty estimation

The behavioural models are solemnly based on measurements and these measure-

ments are assumed to be ideal. But in reality, measurements are subjected to errors.

This reduces the reliability of the model and the devices may behave differently from

the predicted manner. This may affect the overall system. If the uncertainties in the

measurements are estimated and included in the modelling of the devices, the sys-

tem designers can utilize this information. So that they can design more reliable sys-

tems.

Different studies prove that the uncertainties in the measurements can cause uncer-
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tainties in model parameters which cannot be neglected in designing a reliable sys-

tem. D. Schreurs et al. have studied the impact of measurement uncertainties on

large-signal transistor modelling particularly the time-domain current and voltage

waveforms at transistors current generator plane. The measurement was taken using

a Non-linear Vector Network Analyzer (NVNA) and they have included the calibra-

tion uncertainties whose characterization is known. This uncertainty was included

and propagated according to the National Institute of Standards and Technology Mi-

crowave Uncertainty Framework (NIST MUF). They observed that the relative un-

certainty at the current generator plane for the considered device and experimental

conditions are not negligible and the measurements cannot be considered ideal [26].

The uncertainties in the extracted model parameters can cause uncertainties in the

quantities derived from these model parameters. The studies of Valeria et al. indicate

the presence of uncertainties in the derived quantities such as current gain cutoff fre-

quency and the maximum oscillation frequency of a microwave transistor which are

derived from S-parameters. It also stated the importance of accounting for the un-

certainties of extracted model parameters along with the absolute value of the model

parameters [27].

Dylan et al. have studied the role of measurement uncertainty in achieving first-pass

design success. They propagated their small-signal measurement uncertainty esti-

mates through Keysight Integrated Circuit Characterization and Analysis Program

(ICCAP) model extraction procedure. They observed that the uncertainty in simu-

lations due to error in the small-signal measurements used in the model-extraction

process is low where the model was expected to perform accurately, but the uncer-

tainty becomes very large when the transistors are driven into operating states that

cause the model to fail. This indicates a possible role for measurement uncertainty in

predicting first-pass design success [28].
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2.3.1 Estimation of Systematic Errors

As mentioned earlier the estimation of systematic errors in measurement is very im-

portant to accurately characterize a device and ultimately design a reliable electronic

system. Several researchers have estimated the systematic errors using different meth-

ods.

Wojciech Wiatr and David K. Walker have proposed two step analysis for the estima-

tion of systematic errors in the noise parameters which is caused by the imperfections

in source-impedance measurements of a two-port network with the cold source tech-

nique. Uncertainties in the noise power, errors in the Vector Network Analyzer (VNA)

measurements, and errors in the noise temperature calibration are the major causes

of uncertainty in the noise parameters. This method analyzes the error propagation

of the source impedance that arises from residuals of the VNA measurements. This

method is utilizing the relation between effective input noise temperature and source

reflection coefficient. In this method, two linear fractional transformations were done

to decompose the residual errors in the VNA measurements into different relevant fac-

tor sets. They have arrived at analytical formulas which describe errors in the noise

parameters for complex noise characterization techniques and cold source noise mea-

surements. They tested their method in a low-noise PHEMT and in a microwave am-

plifier and estimated systematic errors [29].

Maoliu Lin et al. have introduced a covariance-matrix-based uncertainty analysis

method to estimate the systematic errors in NVNA measurements. These works present

a systematic uncertainty analysis of a vector-correction-based frequency-domain in-

strument. It also shows how the uncertainty of harmonic phase standard which can

be traced by sampling oscilloscope propagates to NVNA measurements. The main ad-

vantage of the covariance-based uncertainty analysis method is that it considers the

correlation between two quantities along with the variance of each quantity and this

knowledge is very crucial in analyzing the uncertainty propagation through transfor-

mations and data processing methods. They have also proposed an eight-term error
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model to relate the raw measurements and effective measurements. The accuracy of

this error-term model can determine the confidence of the effective measurements.

The drawback of this system is that this method can be used only for the models that

relate the input stimuli and output response using linear function [30].

A method for estimating the systematic uncertainty of voltage and current synchro-

nized phasor measurements used for the estimation of transmission line impedance

parameters was introduced by Deborah Ritzmann. This method is utilizing an opti-

mization technique for identifying constants for phasors. In this method, the measure-

ments are corrected before the estimation of parameters. This method assumes that

the parameters are linearly changing or constant over a short period of time and cor-

rection factors are identified using the optimization technique. They also conducted a

case study using simulated transmission line measurements and the effectiveness of

this method was compared with an existing least square method and they observed

promising results. The limitation of this method is that they have assumed that the

systematic errors will be constant or linearly proportional in magnitude and the phase

angle to be addictive. The systematic error may follow a non-linear model which can-

not be estimated by the above-mentioned method [31].

Laurence T. Stant et al. have used two methods to propagate calibration uncertainties

to non-linear behavioural models. In the first method, they utilized Monto Carlo anal-

ysis to perturb each input quantity by a random amount and perform the calibration

for the results. This process is repeated for multiple results and statistical analysis is

done. This method has the ability to preserve the non-linearities in the calibration.

The limitation of this method is that it is highly time-consuming and computation-

ally intensive. In the second method, each error source is perturbed while other error

sources are given their estimated value. The sensitivity analysis of each error source

is done. The deviations from the estimated results are combined to quantify the stan-

dard uncertainty. In this method, the computational intensity is low compared to the

first method but the non-linearity of the calibration is not preserved [32].
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2.3.2 Estimation of Random Errors

The random errors which are non-biased can be estimated using different statistical

methods. Several researchers have studied the estimation of random errors.

Peter Stuart Blockley et al. have analyzed the random error in the NVNA measure-

ments. They have derived an approximate covariance matrix corresponding to the

NVNA measurements which can be used for the model fitting and maximization of

the range of measurement setup. In this method, the covariance matrix was obtained

by a non-linear transformation of variance of complex valued psuedowaves. The co-

variance matrix was estimated with the assumption that the reference measurements

of the amplitude and phase of the signal are corrupted by independent narrow band

additive Gaussian noise with equal variance. This may not be true in real applications.

To compensate for that an additional factor was derived empirically and included in

the covariance matrix using a linear transformation. The approximated covariance

matrix can be used for uncertainty boundary calculation. This method was verified in

different IF bandwidths and phase reference tones [33].

Alexander Arsenovic et al. introduced an experimental technique for uncertainty

analysis in which the calibration uncertainty metrics are estimated at the output of the

calibration processing chain. Even though this method aids to reduce the complexities

of error propagation, the computational effort will be increased by performing a large

number of calibrations. This method can only be utilised to estimate unbiased errors.

In this method, redundant measurements of the calibration standards are taken and

a set of error networks or error correction information is calculated from multiple re-

dundant calibrations. The generated set of error networks is a function of the assumed

response and redundant measurements of calibration standards. The set of corrected

responses is estimated from this calculated error network and a single measurement.

They have calculated the uncertainty in measurement in three different mediums. The

unbiased uncertainties in flange misalignment in the rectangular wave guide, the un-

certainty of the S-parameters of a two-tier Coplanar Waveguide (CPW) Probe, and the
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uncertainty in the reflection coefficient of an optical quasi-optical annular ring-slot

antenna array were estimated using the introduced method [23].

2.4 Bayesian Statistics

Different probabilistic approaches were applied to model the variations of predicted

output response based on frequentist statistics and Bayesian statics available.

In [32], a probabilistic distribution and 95% confidence interval for X-parameters have

been estimated using frequentist statistics which depends only on the frequency of

occurrences. In [23], the deviation of the reflection coefficient of the eighth wave veri-

fication standard due to the random errors in VNAs. Donati Guerrieri et al. have done

a frequentist statistical analysis and estimated the probabilistic distribution of output

power of the power amplifiers due to the doping variations [34].

Some studies utilized Bayesian statistics in microwave device modelling. Jialin Cai

has proposed a Bayesian inference-based small-signal modelling technique for GaN

HEMTs which is combining Bayesian statistics and equivalent circuit modelling. Thus

it has the advantages of both machine learning technique and physical interpretation

of the DUT. The proposed model is compared with Feed Forward Neural Network

(FFNN) and the proposed model has provided more precise results particularly due

to the absence of the over-fitting issue that is dominant in the neural network [7].

In [19] Bayesian statistics are used to develop a non-linear behavioural model. In

this work, different probability distributions are considered for modelling and the op-

timum model is identified using experimental testing. This method was compared

with the Artificial Neural Network (ANN) approach and obtained more accurate re-

sults mainly due to the mitigation of over-fitting issues. This model is also compared

with the circuit model and observed better prediction capabilities.

A method to estimate the measurement analysis using Bayesian inference was pro-

posed in [35] by A. Zanobinil. This method was able to estimate a posterior distribu-
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tion function related to the measurand from which the standard uncertainty, expected

value, and coverage interval can be calculated.

2.5 Summary

In this chapter different device modelling techniques are discussed. This chapter also

mentioned the systematic and random uncertainties that may occur in the measure-

ments. Their effect on behavioural models is examined. The importance of estima-

tion of these uncertainties and some methods for the estimation of the systematic and

random errors in the measurement are discussed in this chapter. The probabilistic

approaches available modelling the variations due to measurement errors are also

discussed.
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3 Methodology

3.1 Introduction

The research project aims to develop a probabilistic behavioural model for non-linear

devices with random errors. The basic methodology is to apply the Bayesian-based

statistical analysis to measured data and to obtain predictive probability distribution

for the output response. The proposed method is applied to simulated data and ex-

perimental data. This method is validated with credible validation methods.

3.1.1 Methodology for modelling the random errors in the model pa-

rameter extractions

There can be multiple random uncertainties in the model parameter extractions. The

methodology to model the model parameters with random uncertainties that occur

in the extraction of model parameters using the Bayesian approach is explained in

this section. The well Known X-parameter modelling is chosen as as example for

this. In this section, the X-parameters with random uncertainties is modelled using

Bayesian approach. X-parameter modelling is one of the popular extensions of S-

parameter modelling to the non-linear regime. The Poly Harmonic Distortion method

is introduced in [17] as a method to extend the scattering formalism i.e., S-parameter

models, to the non-linear regime along with the X-parameter simplification which

linearizes the PHD model around a given large-signal operating point (LSOP).

In figure 3.1, the waves incident on port p of the DUT at frequency q are denoted by
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Figure 3.1: 2-port Device Under Test (DUT)

Apq and the waves scattered from port i of the DUT at frequency k are denoted by

Bik

The pseudowaves A and B are defined as simple linear combinations of the port volt-

age V and current I at respective ports.

Apq =
Vpq + Z0 Ipq

2
√

Z0
(1)

Bik =
Vik − Z0 Iik

2
√

Z0
(2)

where Z0 is the characteristic impedance. In the PHD formalism, the scattered waves

are related to the incident waves via Describing Functions Fik.

Bik = Fik(A11, A12, A13, A14, ......A21, A22.....) (3)

Each scattered wave has a separate describing function. In the X-parameter formalism,
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the wave scattered by the DUT can be described as

Bik = XFB
pk +

N

∑
q=1

k

∑
l=1

(XS
pk,ql AqlPk−1 + XT

pk,ql A
∗
qlP

k−1) (4)

where Bik is the pseudowave scattered from port p at the kth harmonic frequency, and

Aql is the pseudowave incident on port q at the kth harmonic frequency. The quantity

P is the phase of the dominant large signal tone (usually A11). The XFB term represents

the LSOP, while the coefficients XS and XT represent the variation around the LSOP

due to the small signal perturbations Aql and A∗
ql.

An RF power amplifier, which is a non-linear device is taken as a DUT to obtain simu-

lated data. In the RF PA with output matching, the dominant tone is the fundamental

incident wave, (in this case A11). The X-parameters are functions of this independent

variable and are typically extracted across multiple A11 values. Non-linear polynomial

basis functions are used in this work to model the variation of the nominal value of the

X-parameter versus A11. Modelling the variations of the X-parameters versus power

requires two separate models for the real and imaginary parts of complex-valued X-

parameter quantities. A11is been normalized to a real-valued quantity through multi-

plication by P, giving |A11|. An example of this model is shown for the ReXS param-

eter in (5) below.

ReXS
norm(|A11|, w) = w0 + w1|A11|+ w2|A11|2 + ...... + wM|A11|M (5)

The polynomial coefficients w0, w1. . . , wM collectively denoted by the vector w and M

is the order of the polynomial. We now take a probabilistic predictive distribution on

the value of each X-parameter, again proceeding with the ReXS example gives

P(ReXS|wML, βML, |A11|) = N(ReXS|ReXS
norm(|A11|, w), β−1

ML) (6)
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where wML is the maximum likelihood value of the weights vector, β−1
MLis the max-

imum likelihood solution for the variance of the distribution, and where N(y|m, σ2)

represents a Gaussian distribution with mean m and variance σ2.

P(w|ReXS
t , |A11|t, α, β) ∝ P(ReXS

t |w, |A11|t, β) ∗ P(w|α) (7)

The term on the left-hand side is the posterior distribution of the weight vector w,

the first term on the right-hand side is the likelihood function and the second term is

the prior distribution. ReXS
t and |A11|t represent the input training data, and α and

β are the inverse variances of the prior distributions and likelihood, respectively. In

this study, the prior and likelihood distributions are assumed to be Gaussian. Since

the Gaussian distribution is conjugate to itself, the posterior distribution will also be

Gaussian. Using the prior distribution and the data observed, the predictive Bayesian

probability model can be determined as

P(ReXS|ReXS
t , |A11|t) = N(ReXS|m(|A11|)S2(|A11|)), (8)

where

m(|A11|) = βϕ(|A11|)TS
N

∑
n=1

ϕ(|A11|)t,n)ReXS
t,n (9)

S2(|A11|)) = β−1 + ϕ(|A11|)TSϕ(|A11|) (10)

S−1 = αI + β
N

∑
n=1

ϕ(|A11|)t,n)ϕ(|A11|)t,n)
T. (11)

where I is the identity matrix, N and represents the number of training samples.

Both real and imaginary parts of all X-parameters are represented by a normal dis-

tribution with a mean and variance obtained via a Bayesian approach, as above.This
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method gives a probabilistic distribution and estimates a credible region for each X-

parameters. Thus this work models the random errors in the model parameter extrac-

tions. Figure 3.2 is the flow chart of the methodology used to model X-parameters with

random noise. In this section simulated X-parameters were used. A Gaussian random

noise is added to this simulated X-parameters to include the random uncertainties

in the model parameters extraction in the simulation environment. The designing of

non-linear systems will be aided further if this methodology can be extended to model

the output response with random errors of the DUT.

Figure 3.2: Methodology for the Bayesian Probabilistic Modelling of X-parametrs
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3.1.2 Methodology for modelling of the output response with ran-

dom errors

In this part of the work, Bayesian Statistics is used to quantify the random uncertain-

ties in the output response. This part of the work introduces a new probability model

for scattered waves (output response of the DUT). A simplified Quadratic PHD model

is used to relate the scattered wave to the incident waves. In this work, the incident

waves and the corresponding scattered waves are measured, and a Bayesian statistical

analysis of these measurements is carried out. A probability distribution for the scat-

tered waves is inferred from measured data, using Bayesian inference methods.

This work utilised, a polynomial describing function to model the nominal value of

the scattered wave Bik versus the incident waves A21. Two separate models are needed

for the real and imaginary parts of the scattered wave as before. The suffixes R and

I indicate the real and imaginary parts, respectively. For example, the scattered wave

as B21,R, the dominant incident wave at port-1 as A11and perturbations are caused by

A21. For simplicity, we have considered only the fundamental frequency for a two-

port device. The scattered wave B21,R represented as a function of two independent

variables A21,R and A21,I follows

B21,R = w0 + w1R A21,R + w1I A21,I + w2R A2
21,R + w2I A2

21,R (12)

where w0, w1R, w1I ,w2R and w2I are the model parameters, which are real numbers.

A21,R and A21,I are the real and imaginary parts of the incident wave at port 2. Since

quadratic terms are used in (12), this model can be called a simplified Quadratic PHD

(QPHD) model (since cross terms are omitted). The parameter w0 can be calculated

directly from the Large Signal Operating Point where only the dominant incident tone

A11 in this example) is present. The quantity W represents the weight vector excluding

w0 i.e. W = [w1R w1I w2R w2I]

A prior distribution is assumed for the model parameters W [6]. In this work, a dis-
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tribution with zero mean and inverse variance αI (i.e., isotropic) is taken as this prior

distribution.

P(W|α) = N(W|0, α−1 I) (13)

where I is the identity matrix. According to the Bayes theorem, the posterior distribu-

tions of these weight parameters are proportional to the product of the prior distribu-

tion and a likelihood function (which we assume to be Gaussian also),

P(W|B21,Rt, A21,Rt, A21,I t, α, β) ∝ P(B21,Rt|W, A21,Rt, A21,I t, β) ∗ P(W|α), (14)

where the term on the left-hand side is the posterior distribution of the weight vector

and the first and second term on the right-hand side is the likelihood function and

prior distribution respectively. B21,Rt, A21,Rt & A21,I t are the input training data, which

are column vectors. Since the prior and likelihood distributions are Gaussian, the

posterior distribution will also be Gaussian due to the property of conjugate priors.

The quantity β is estimated using the maximum likelihood method and a relatively

small value is given to α, i.e. we are assuming a broad prior distribution, which will

be updated using the training data.

The mean mN and variance SN of the Gaussian posterior distribution of these model

parameters can be computed from training data as follows:

mN = βSNϕ(A21,Rt, , A21,I t), B21,Rt, (15)

S−1
N = αI + βϕ(A21,Rt, , A21,I t)β(A21,Rt, , A21,I t)

T, (16)

where N is the number of training samples and ϕ(x, y) is the vector of basis functions,

in this case given by ϕ(x, y) = [xyx2y2].
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The predictive (posterior) distribution for B21,R will also be a Gaussian distribution.

P(B21,R|B21,Rt, β) = N(B21,R|m, v) (17)

where the mean m and variance v for the scattered waves can be computed from the

training data as follows

m = βϕ(A21,R, A21,I)Sϕ(A21,Rt, A21,I t)
TB21,Rt (18)

v = β−1 + ϕ(A21,R, A21,I)Sϕ(A21,R, A21,I)
T (19)

S−1 = αI + βϕ((A21,Rt, A21,I t)
Tϕ(A21,Rt, A21,I t). (20)

The DUT used to obtain experimental data is a 2-port GaN transistor. The variations

in scattered waves at port 2 in the presence of random errors are modelled using the

proposed method. This demonstrates the ability of the proposed method to model the

variations in the output response of the DUT with random errors. Figure 3.3 is the

flow chart of the methodology used. In this section experimental data with random

errors are included.

3.2 Data Analysis

In this method, two types of data is analysed. Both types of data was verified before

applying the Bayesian approach.

3.2.1 Simulated Data

The X-parameters of an RF PA circuit (DUT) are extracted from a simulated model

using Advanced Design System (ADS) Software. A frequency of 1 GHz is used for
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Figure 3.3: Methodology for the Bayesian Probabilistic Modelling

the fundamental frequency. Only the fundamental frequency is considered in this

study for simplicity which can be extended to harmonic frequencies using the same

method. A power sweep from -20 dBm to +10 dBm is performed. The X-parameters

are extracted for each power level in this range, specifically selected to include both

linear and nonlinear operating regions of the PA. The same set of data was simulated

using both X-parameter simulation palette and a Harmonic Balance (HB) simulation

palette. The X-parameter data obtained using both the X-parameter palette and HB

simulation palette was compared and they were numerically the same. The simulated

data does not contain any random uncertainties. To include the random uncertainties

in the model extraction, a normally distributed noise with zero mean and 0.001 vari-

ances is included within the RF PA model. Figure 3.4 shows the circuit diagram for

the extraction of the X-parameters.
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Figure 3.4: Circuit Diagram for X-parameter Extraction

3.2.2 Experimental Data

To create this dataset a 10 W RF GaN transistor (CGH40010F) is used as the DUT.

It is a two-port device. The voltages at both ports & the currents through the two

ports are measured at various load impedances. The scattered waves B21 at port-2

and incident waves A21 at port-2 are calculated at various load impedances using

the equations (1),(2), at a fundamental frequency of 2 GHz. In this data acquisition,

load-pull measurement system is used other than varying input power. This is to

demonstrate the generalization ability of the proposed method. The load impedance

was calculated using the obtained psuedowaves and compared with the applied load

impedance. They are numerically equal. A total of 649 A21 values and corresponding

B21 values are measured in this experiment. These measured data are divided into

two subsets. The first subset contains 576 data points for training the model and the

second subset contains 73 data points, to be used for model validation.
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3.3 Validation Methods

The credibility of any method lies in its validation process. Several methods are used

for the validation of the above-mentioned method.

3.3.1 Resubstitution Validation Technique

In this method, the whole dataset is used for the training of the model. The error rate

of the model is estimated by comparing the predicted outcome of the model with the

actual measured value. For the validation of the proposed methodology, the error rate

is calculated by comparing the mean of the predicted probability distribution with the

measured output response.

3.3.2 Cross Validation Technique

The available dataset is divided into a training dataset and a testing dataset. The

training dataset is used for the training of the proposed model. The testing dataset can

be used for validation purposes. The output of the testing data is predicted using the

proposed model. The predicted output will be compared with the measured output

to get the error rate. In this work, the dataset was divided into a training dataset and

test dataset (in some cases also divided into validation datasets) in three ways:

• Holdout Validation technique: The sample points of the training dataset and

test dataset are selected on a random basis.

• Equally spaced dataset: The dataset is split into training and testing datasets by

equally spaced sampling. In this sampling method, sample points are equally

spaced. As the training dataset should have a greater number of sample points

than the testing dataset, the blocks of sample points of the training dataset is

equally spaced and the sample points of the testing dataset are equally spaced.

For example, if the dataset has 100 sample points and it is to be split into training

and testing datasets in a 4:1 ratio. The training dataset will contain the first 4
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sample points and the 5th sample point will be in the test dataset.

• Block of sample points: A block of sample points is taken as a test dataset and

the rest of the dataset is used for training the model.

3.3.3 Variance in the model parameters

In this technique, the variance of model parameters is estimated using the proposed

method with a different number of sample points. As the number of the sample points

increases, the variance of the model parameters will decrease. This method is demon-

strated with an example below.

In this demonstration, 500 complex-valued inputs A21 values are considered and the

corresponding output values for B21,R, the real part of the scattered wave phasor are

computed, using known model parameters (w1R, w1I , w2R and w2I). Gaussian noise

with mean 0 and standard deviation 0.01 W1/2 is added to the scattered wave out-

put.

Next, a prior probability distribution is assumed for the model parameters w1R, w1I , w2R

and w2I in this case a four-dimensional Gaussian distribution. The Gaussian distribu-

tion is set to have zero mean and inverse variance of 0.005. For illustration purposes,

the sequential update of the posterior distribution of two of the model parameters (

w2R and w2I) is shown in figures 3.5, 3.6, 3.7 and 3.8.

Validation proceeds by observing the sequential update in the posterior model pa-

rameter distributions, after each ‘prior’ is updated via the likelihood function. After

the first Bayesian iteration, using just five (assumed to be noisy) training data points

(A21,t,n, B21t,n)|n=1...5, the variance of the posterior distribution of model parameters

has reduced considerably. The posterior distribution is estimated from the prior dis-

tribution and likelihood function using the Bayes theorem. In the second iteration, the

posterior distribution of the first stage is now taken as the ‘prior’ distribution, and the

likelihood function is calculated using another 15 data points (A21,t,n, B21t,n)|n=6...20.

As can be seen, the variance of the posterior distribution of the second stage has fur-
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ther reduced compared to that from the first stage. The final plot in Fig. 3.8 shows the

effect of a total of 500 training data points applied to the Bayesian model. It is seen

that the posterior distribution of model parameters has a very small variance.

Table 3.1: Mean of posterior Distributions of model parameters

No.of Data Points w1R w1I w2R w2I

Actual Values -0.4865 0.226 0.0018 -0.0464
5 -0.4938 0.2092 -0.0031 -0.0410

20 -0.4939 0.2286 -0.0005 -0.0447
500 -0.4872 0.2258 0.0018 -0.0465

Figure 3.5: Prior Distribution of w2R and w2I
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Figure 3.6: Posterior Distribution of w2R and w2I estimated using 5 data points

Figure 3.7: Posterior Distribution of w2R and w2I estimated using 20 data points
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Figure 3.8: Posterior Distribution of w2R and w2I estimated using 500 data points

Table 3.1 shows the mean of the posterior model parameters distribution when con-

sidering 5, 20, and 500 data points. This validation technique is applied to the experi-

mental data to validate the obtained results.

3.3.4 Distribution of Noise

In this validation technique, the distribution of the noise is compared to validate

the results. A noise with specific distribution for example Gaussian Distribution is

added to the measured data. Probabilistic distributions are predicted for the output

responses of the DUT using the proposed theory. Retrieve the noise added from the

predicted output. Then compare the distribution of the noise added to the measured

data with the noise retrieved from the predicted output. The distribution of the noise

added to measured data and the distribution of noise retrieved from the predicted

output will be the same.
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3.3.5 Variance of Noise

The variance of the noise is compared in this validation technique. Noise is added to

the measured data set and predicts the variance of the output predictive distribution

using the proposed method. Then repeat the process by adding the noise with differ-

ent variances. The variance of the predicted output distribution will vary according

to the variance of the noise added.

3.4 Summary

In this chapter, the proposed methodology is explained. The data types and their

sources are explained in this chapter. The data analysis methods used for the verifica-

tion of data are mentioned in this chapter. The techniques used for the validation of

this work are discussed in this chapter.
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4 Results

The methodology proposed in chapter 3 is applied to create probabilistic behavioural

models which models the non-linear devices with random errors. Instead of a point

estimate, probability distributions are predicted for the model parameters and output

responses. In this work, we have applied the Bayesian-based probabilistic approach to

the existing well Known X-parameter modelling and simplified Quadratic Poly Har-

monic Distortion modelling. The predicted output response is compared with the

measured true value in the training and validation dataset. The mean and variance of

the predicted probability distribution is compared at different input powers.

4.1 Modelling of Model parameters with random errors

This section represents the results of applying Bayesian approach in modelling the X-

parameters with random errors. As discussed in Chapter 3, simulated data is used in

this section. The DUT is an RF power amplifier and the fundamental frequency used is

1 GHz. The power sweep from -20 dBm to +10 dBm with different step sizes is done to

obtain 10 and 100 data points. A Gaussian random noise of 0 mean and 0.001 standard

deviation is added to the obtained simulated data to include the random uncertainties

in model parameter extractions. The prior distribution variance α−1is taken as 0.005−1.

Figure 4.1 shows the probabilistic model for XS
21,11 (the small signal perturbation due

to the A11 term) with the shaded region corresponding to ± one standard deviation

around the mean (solid blue line). To validate the obtained credible interval the data

points in the test dataset are plotted in the figures as circles. The test data set are
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selected on random basis as in holdout validation technique. In the figure, only one

data point and 3 data points among 10 randomly selected data points is outside the

credible region of the real and imaginary parts of the XS
21,11 respectively. The credible

bands for XFB
21,11 and XT

21,11is shown in figures 4.2 and 4.3 respectively, again taking one

standard deviation either side as the band of interest.

Figure 4.1: Credible band for XS
21,11
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Figure 4.2: Credible band for XFB
21,11
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Figure 4.3: Credible band for XT
21,11
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The variance of the predicted probability distribution is considerably reduced by the

increment in sample data points. Figures 4.1, 4.2 and 4.3 are created using 10 sample

data points and 100 data points. The width of the credible region is reduced with

the number of the sample data points. The variance of the probabilistic model can be

reduced via further measurement data if higher confidence in the predicted output is

required.

This model modelled model parameters with random errors that may occur in model

parameter extraction. The designing of the system will be aided further if the output

responses with random errors are modelled and the proposed model is giving a prob-

abilistic distribution for model parameters not for output responses of the DUT.

4.2 Modelling of scattered waves with random errors

This section discuss the results of probabilistic behavioural model developed by pro-

posed method which gives a probability distribution for scattered waves (output re-

sponses). Experimental data is used in this section. A two-port 10W RF GaN transistor

(CGH40010F) is the DUT used. The voltages and currents at two ports are measured

at different load impedance. The incident and scattered waves are calculated using

equations (1) and (2) in chapter 3 respectively. The data sets are measured at 4 dif-

ferent input powers (-26dBm, -16dBm, -10.6dBm and -5.1dBm). 2 GHz is the funda-

mental frequency used. Gaussian distribution with zero mean and precision param-

eter α = 0.005 is considered for the prior model parameters distribution. Figure 4.4

shows the probabilistic model for the B21 values corresponding to the A21values in

the training data subset. The red-filled circle is the mean of the proposed probabilis-

tic model (which depends on A21), and the filled green circles are the experimentally

measured data. Note that since we are assuming the data contain noise, we do not

expect the model and measured data to be completely coincident in this plot. For

a Gaussian model, the region extending to two standard deviations away from the

predicted mean B21 value corresponds to a 95% credible area.
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Figure 4.4: Probabilistic Model for B21 at different input power
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(a) Input power=-26dBm

(b) Input power=-16dBm

(c) Input power=-10.6dBm

(d) Input power=-5.1dBm

Figure 4.5: Variances at different input powers
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The figures 4.4 a, b, c and d shows the probabilistic model at different input powers. It

is observed that as the input power increases the true measured value is moving away

from the mean value. The figures 4.5 a,b,c and d gives the variance of the predicted

probability distribution for the scattered waves B21 at different input powers. It is

observed that the variance increases with the input power.

Figure 4.6: Probabilistic Model for B21

For the validation purpose, the dataset is divided into training and testing dataset as

in cross validation Technique. A block of sample points is taken as testing dataset

from the overall dataset. Figure 4.6 represents the probabilistic model for the training

dataset. This training dataset is used to predict the output response of the test dataset.

Figure 4.7 shows the probabilistic model obtained for B21values corresponding to the

withheld A21values i.e. these measurements are not part of the training data and

are therefore unknown to the model. It shows good prediction results for new A21
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values.

Figure 4.7: Probabilistic Model for new test points (new A21 values)
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Figure 4.8: Variance of single data point Vs Number of Data Points

The change in variance of probability distribution with amount of training data is

shown in figure 4.8. For that 5 data points of B21,R is randomly selected. The predicted

probability distribution is estimated using proposed method with 20, 40, 60,100,300,

and 600 training data points, respectively. It is observed that the variance of each data

point of B21,R reduces as the amount of training data increases.

Figures 4.9, 4.10, 4.11 and 4.12 shows the sequential updates of the posterior distri-

bution of the model parameters w2R and w2I as discussed in the validation methods

section 3.3.3 in chapter 3. It is observed that the variance of the posterior distribution

of the model parameters is reduced by the sequential update of training data. For the

first time, a PHD model contains information regarding its own certainty.
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Figure 4.9: Prior Distribution

Figure 4.10: Posterior Distribution of w2R and w2R estimated using 20 Data points
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Figure 4.11: Posterior Distribution of w2R and w2R estimated using 40 Data points

Figure 4.12: Posterior Distribution of w2R and w2R estimated using 400 Data points
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Figure 4.13: Distribution of retrieved noise

For the further validation of the proposed method, a Gaussian noise of 0 mean and

0.01 variance was added to the measured B21,R values. The mean of B21,R (B21,R,mean)

calculated using the above mentioned approach. Then the noise (N) was retrieved

by subtracting B21,R from B21,R,mean. Figure 4.13 shows the distribution of retrieved

noise. It is also Gaussian Distribution. Figure 4.14 shows the change in the variance

of retrieved noise with the variance of added noise. It is observed that the variance of

retrieved noise is increasing with the increase in the variance of added noise.
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Figure 4.14: Variance of a single point Vs Standard deviation of noise

As mentioned before the existing models predict only point output responses for the

system. These models neglect the possibility of random errors that may occur while

measuring the system. The proposed model takes the possibility of random errors into

consideration while predicting the behaviour of the system and gives probability dis-

tributions for the output responses. These probability distributions give the possible

output responses and their probability of occurrences which is different from prevail-

ing models which makes them incomparable with prevailing systems. The results in

this chapter are the proof of concept of the proposed methodology.

4.3 Summary

In the first section of this chapter, the proposed model is used to create a probabilistic

model that quantifies the random uncertainties in the model parameters. The Bayesian

probabilistic approach is applied to the well-known X-parameter modelling approach.

In this work, probability distribution and credible region are predicted for each X-

parameter. In the second section, a probabilistic behavioural model is built using the

Bayesian approach. In this model, a probabilistic distribution is obtained for the out-
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put scattered wave and model parameters of the probabilistic behavioural model. The

theory used to develop the probabilistic model is validated.
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5 Extension to Bayesian Probabilistic

Neural Network

In the proposed methodology, non-linear polynomial functions which are fixed basis

functions are used to relate the input stimuli and output responses. The linearity in the

parameters helped in the analysis of the Bayesian approach. One of the limitations of

the usage of fixed basis functions is the curse of dimensionality. The basis functions are

fixed before observing the training data, the number of basis functions will increase

rapidly with the dimensionality of the input data. In most cases the number of basis

functions increases exponentially. The dimensionality of input data increases with

the number of ports in the DUT. Consideration of harmonic frequencies along with

fundamental frequency also enhance the dimensionality of input data.

Bayesian Neural Networks (BNN) use adaptive basis functions instead of fixed basis

functions which have sigmoidal non-linearities. These adaptive basis functions can

adapt the parameters of the network such that the regions of input space over which

the basis functions vary corresponds to the data [6]. The real data sets have the prop-

erty that the target variables have significant dependence only on a limited number

of possible directions within the data space. Neural networks utilize this property of

real datasets by choosing the directions in the input space to which the adaptive ba-

sis functions respond. BNN is utilised for solving non-linear regression problems [6].

This section is an attempt to advance the proposed methodology to build a probabilis-

tic model based on BNN for non-linear devices with random errors to get rid of the
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curse of dimensionality.

5.1 Bayesian Neural Network

The main difference between the traditional neural network and the BNN is in the

weight estimates. The weights of the traditional neural network will be point esti-

mates and the weights of the BNN will be probability distributions. Prior distributions

will be assigned to the weights of BNN using our prior information and the posterior

distributions will be estimated using the Bayes theorem. The predictive distribution

of the output response is computed by integrating the posterior distribution over the

weight space. Figure 5.1 is the schematic diagram of BNN.

Figure 5.1: Bayesian Neural Network

Bayesian statistics cannot be applied exactly to the neural network due to the high
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non-linearity of the network functions on its parameters. The negative log of the pos-

terior distribution will not be convex due to the presence of multiple local minima

in the error function. To overcome this limitation two methods are widely used in

Bayesian neural networks to estimate predictive distribution for the output response:

Variational Inference (VI) and Laplace approximation.

In this work, the scattered wave, for example, B21,R was related to the incident waves

using a neural network. A 2-port device is considered as the DUT. The input vector of

incident waves [A11,R, A11,I , A21,R, A21,I ] is denoted by X and the weights and biases

vector of the neural network is represented by WN.

Presume that the conditional probability distribution P(B21,R|X, WN) is a Gaussian

distribution with mean as the output of the network function y(X, WN) and variance

as β−1.

P(B21,R|X, WN, β) = N(y(X, WN), β−1) (1)

A Gaussian distribution is given as prior distribution over WN with 0 mean and pre-

cision α.

P(WN|α) = N(0, α−1 I) (2)

The likelihood function is assumed to be Gaussian and it is given by

P(B21,R,t|WN, β) =
N

∏
n=1

N(P(B21,R,t,n|y(Xn, WN), β−1) (3)

Using the Bayes theorem the posterior distribution over weights and bias vector WN

can be computed.

P(WN|B21,R,t, α, β) ∝ P(WN|α) ∗ P(B21,R,t|WN, β) (4)
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Due to the non-linearity of the network function over WN, the resulting posterior dis-

tribution will be non-Gaussian. A Gaussian approximation for the posterior distribu-

tion can be computed by Laplace approximation or variational inference.

In the Laplace approximation, two assumptions are made. The first assumption is

that the posterior distribution is approximated to a Gaussian Distribution with a mean

equal to the mode of the true posterior [6]. The other assumption is that the covariance

is very small so that the network function can be approximated to have a linear depen-

dence on the parameters (weights and biases) of the network over the parameter space

where the posterior distribution is not zero. This method also requires the estimation

of the Hessian matrix (second derivatives) which are computationally difficult.

In Variational Inference (VI) factorized Gaussian approximation is given to the poste-

rior distribution. In this method, the approximate posterior distribution is obtained

by minimizing the Kullback-Leibler divergence. This method is more convenient to

compute the posterior distribution compared to the Laplace approximation.

5.2 Bayesian Probabilistic Neural Network Model

To overcome the limitation of curse of dimensionality a Bayesian Probabilistic Neural

Network model is developed for non-linear devices which relates the input stimuli

with output response with an Artificial Neural Network (ANN) and gives probability

distribution for output responses. As before two separate models are needed for the

real and imaginary parts of the complex-valued outputs. Tensorflow 2.3 and Keras

software is used to model Bayesian Probabilistic Neural Network for the output re-

sponse of the DUT.
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5.2.1 Bayesian Probabilistic Neural Network Model for output re-

sponse

In this section, an attempt to model the output response with random errors using the

Bayesian Neural Network is done. The experimental data is used in this method. The

DUT used in this work is a 10W RF GaN transistor (CGH40010F) which is a 2-port

device. 1.5 GHz is used as the fundamental frequency. The incident waves and scat-

tered waves are measured at various load impedances. The incident waves at port 1

and 2 ( A11 and A21) is related to the scattered wave at port 2 B21 using a neural net-

work with 3 layers and 10 hidden units. The sigmoid function is used as an activation

function. The Gaussian prior distribution of 0 mean and 1 variance is applied to the

weights and biases of the neural network. The posterior distributions of the weights

and biases are estimated using the Bayes theorem. The Gaussian approximate of the

posterior distribution is computed using variational inference. As before 2 separate

models are required for the real and imaginary parts of scattered waves.

Mean absolute error, mean square error, and root mean square error are some of the

widely used metrics to determine the accuracy of the proposed model. The mean abso-

lute error computes the mean of absolute errors between the true value and predicted

value while mean square error computes the mean of squared error. Root mean square

error is the square root of mean square error. Due to the squaring function in the mean

square error, large weights are put on the errors. This makes the mean square error

comparatively good in ensuring the accuracy of the predicted model. The other ad-

vantage of mean square error over mean absolute error is the differentiability of mean

square error. In this work, mean square error metrics is used to estimate the accuracy

of the predicted model.

649 observations are symmetrically divided into training (520), testing (65), and vali-

dation (64) datasets as in the equally spaced dataset discussed in chapter 3. The mean

square error is high. The predicted values for the scattered waves and observed val-

ues for scattered waves are not close enough as expected. The same experiment is
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repeated at different input powers (-23.5 dBm, -7.7 dBm, -2.2 dBm). The results are

analysed. Table 5.1 gives the mean square error for the real and imaginary parts of

the output response. The mean square error is increasing with the input power as

expected.

Table 5.1: Mean Square Error

Input Power Output Response (W1/2) Mean Square Error (W)
-23.5 dBm B21,R 0.0921
-23.5 dBm B21,I 0.0541
-7.7 dBm B21,R 0.2233
-7.7 dBm B21,I 0.2260
-2.2 dBm B21,R 0.4980
-2.2 dBm B21,I 0.3962

The difference between the true value and the predicted value is calculated. This error

is very high. The distribution of the error (error distribution) is computed. Gaussian

distribution is obtained as the error distribution. Table 5.2 shows the error distribution

and parameters of the error distribution. It is observed that the error distributions are

Gaussian. The variance of the error distribution is increasing with the input power as

expected.

Table 5.2: Error Distributions

Input Power Output Response Error Distribution Mean Variance
-23.5 dBm B21,R Normal -0.2776 0.1452
-23.5 dBm B21,I Normal -0.1874 0.1528
-7.7 dBm B21,R Normal -0.3945 0.7004
-7.7 dBm B21,I Normal -0.3934 0.6171
-2.2 dBm B21,R Normal -1.0043 1.1359
-2.2 dBm B21,I Normal -0.5809 0.6969

For further investigation of unexpected results, gaussian noise with 0 mean and known

variance is added to the measured data and modelled the output response. The mean

square error is estimated for the predicted model. This is repeated with different noise

variances. Table 5.2 gives the mean square error for the validation dataset at differ-

ent noise variances. The measured dataset at -2.2dBm input power is used for the
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illustration. The mean square error of the model is increasing with noise added as

expected.

Table 5.3: Change in mean Square Error with the variance of noise added

Variance of noise added Output Response (W1/2) Mean Square Error (W)
0.04 B21,R 2.3608
0.04 B21,I 0.7121
0.25 B21,R 2.4694
0.25 B21,I 0.7751
0.49 B21,R 3.1677
0.49 B21,I 1.1210

5.2.2 Possible Reasons for unexpected results

The possible reason for the unexpected results is the limited amount of experimental

data. Neural networks give good results with large amount of observed data. In this

work, only 520 data points are used for training purpose. This may limit the accuracy

of the predicted model. The model may give good results if the experiment set up

is redesigned to sample the data points with reduced step size. In this experiment,

the data points are sampled symmetrically throughout different load impedance. If

the step size ( the difference between the two consecutive load impedance) is reduced,

more data can be obtained. Another suggestion is to include the harmonic frequencies

along with fundamental frequencies which also increase the experimental data.

The other reason for the unexpected results may be the over-fitting of data. In this

model, 10 hidden units are used in the hidden layer of the BNN. This may cause the

over-fitting of the data. The model may be tried to fit all the data points due to the

large number of hidden units. As this data contains noise, the model may not be able

to identify the right trend. Better accuracy may be achieved by the right selection of

the number of hidden layers and hidden units or regularization of the model.

The other possible reason for the unexpected results may be the absence of hyper-

parameter optimization. Hyper-parameters are the parameters that determine the

distribution of the weights and biases of the BNN [6]. In this case, α and β are
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the hyper-parameters. A lack of hyper-parameter optimization may cause the non-

regularization of the BNN model. This can be solved by improved model with hyper-

parameter estimation method.

5.2.3 Summary

The limitations of the fixed basis functions are discussed. The BNN is explained and

our attempt to quantify the random uncertainties in the model parameter extraction

and output responses using BNN is discussed. The possible reasons for the failure of

the BNN model have been explored at the end of this chapter.
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6 Conclusion

Several behavioural models can effectively predict the non-linear characteristics of mi-

crowave devices. But as they are dependent only on measured data, their prediction

will be affected by systematic and random uncertainties so that the DUT may behave

differently from what it is expected to do. This may adversely affect the overall system

and may not meet the requirements of the designers and manufacturers. As the causes

or the origin of systematic errors can be known, they can be identified and rectified

to a certain limit. But to model the devices with random errors, an efficient statisti-

cal procedure must be implemented. This research work has introduced an efficient

and convenient statistical procedure to model the devices with random errors using

Bayesian Statistics which gives probabilistic distributions instead of point estimates

for model parameters and output responses.

The works provide probability distribution for model parameters and output values

from which credible intervals or confidence regions can be calculated. Manufacturers

and designers can use this method to analyse their design and manufacturing meth-

ods. If the credible region or confidence interval is within their acceptable range, they

can move forward with the design or manufacturing method. If not they have to con-

sider redesigning or collecting more data points for further verification.

6.1 Summary of the works

The probabilistic behavioural model based on X-parameters models the random un-

certainties in the model parameter extraction. In that method, each X-parameters is
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related to the incident wave with fixed polynomial basis functions, and a Bayesian

approach is applied to the model parameters of the polynomial basis functions. As a

result, a predictive probabilistic distribution is obtained for each X-parameters. This

method is also capable of predicting the credible region for each X -parameter. This

provides the designers be conscious of the possible variations from the extracted X-

parameters along with the probability of the variations. So that the designers can

pro-act even without the knowledge about the origin or cause of the uncertainties.

The resulting probabilistic X-parameter model can then be used to determine proba-

bilistic estimates for important circuit and system parameters, such as gain. Should

the variation indicated by the model be greater than the desired variation, further

measurements and/or improved circuit design, may be required [36].

The above method is giving a probability distribution for the model parameters, but

it is not giving the variations that may occur in the output response of the DUT. An

improved method is proposed to get a predictive probability distribution for the scat-

tered output wave. In this model, the scattered wave is related to the incident wave

using simplified quadratic polynomial basis functions. The quadratic polynomial ba-

sis functions were chosen as the quadratic terms help to predict the output response

even in unmatched conditions. The application of the Bayesian theorem to the model

parameters of the quadratic polynomial functions resulted in predictive probabilistic

distributions for the scattered waves. This method is capable to model the output

responses of the DUT in the presence of random uncertainties.

The limitation of the above method is that the number of basis functions grows ex-

ponentially with the dimensionality of the input space. This is due to the usage of

fixed basis functions. This can be solved by using adaptive basis functions instead

of fixed basis functions. Bayesian Neural Networks utilize adaptive basis functions.

An attempt to develop a methodology to model the non-linear devices with random

uncertainties using BNN is done. In that method, the output response of the DUT is

related to the input stimuli using neural networks. The weights of the neural network

are probability distributions instead of point estimates, which were estimated using
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the Bayes theorem. But the result was not as expected. The predicted results were not

close to the measured results.

6.2 Limitations of the work

One of the main limitations of this work is that the methodology to create a probabilis-

tic behavioural modeling approach based on BNN is not developed. So that the curse

of dimensionality still exists in the proposed method. The other limitation of this work

is the absence of hyper-parameter estimation which causes non-regularization of the

model. This may also lead to over-fitting of data. The limited amount of experimen-

tal data and low input powers used for modelling the output responses with random

errors are also the shortcomings of this work.

6.3 Future Scope

In this work, a probabilistic modeling approach is introduced using fixed basis func-

tions which are capable of modeling the non-linear devices with random uncertainties.

Due to the use of fixed basis functions, the model is subjected to the curse of dimen-

sionality. To overcome it, adaptive basis functions can be used. One of the options for

that is to use BNN to relate output responses with input stimuli. Even if the attempt

is unsuccessful, it can be reworked and fixed by analyzing the possible reasons for the

failure. The other possibility to get rid of the curse of dimensionality is to use radial

basis functions to connect the output responses with input stimuli of the non-linear

devices. This methodology can also be improved by utilizing a large amount of exper-

imental data. The large amount of data may also aids to model the systems with high

input power.

In this work, the proposed method is applied to model the random uncertainties in

the model parameter extraction in the X-parameters. The same method can be ap-

plied to model the random uncertainties in the model parameters of the other be-
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havioural modeling approaches. This method can provide more reliability to the de-

vice models, which will aid the designing engineers in designing successful system

designs.
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