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Abstract. This paper describes work done using formal methods to ver-
ify parts of the RTEMS real-time operating system, as part of an activity
sponsored by the European Space Agency to qualify multi-core proces-
sors for spaceflight. A variety of formalisms were investigated, keeping
in mind the need to be a good fit with the RTEMS community in gen-
eral. The technique that was deployed used Promela to model aspects of
the operating system behavior, and the SPIN model-checker to do test
generation. This involved developing Promela models, which are formal
artifacts, and then developing a simple machine-readable observation
language that made it easy to connect model behavior to the genera-
tion of C test code. The observation language was then refined to code
using a dictionary mapping observable elements to test code snippets. AQ1

Neither the observable language of the dictionary mapping are formal,
so this paper also explores how these might be given UTP semantics,
and linked together, in which the research of He Jifeng plays a key role. AQ2

It finishes defining a future research agenda that uses this work with a
real-world application to drive the research. AQ3

Keywords: Unifying theories of programming · Model checking ·
Promela/SPIN · Test Generation · Real-Time Operating Systems ·
RTEMS

1 Introduction

The first author’s first academic interaction with He Jifeng was his 2002 paper
with Adnan Sherif on Circus Time [42]. This was a key starting point for early
work on Slotted Circus [16]. One earliest memory of meeting He Jifeng in person
was at UTP2008 which was hosted in Trinity College Dublin, at which he gave
the keynote talk [29] (among others!). This paper explores how Unifying Theories
of Programming (UTP [33]) might be used to give an overarching description of
work we did using formal methods to verify parts of RTEMS [11]. In particular,
we look at how the work of He Jifeng provided, and continues to provide, key
material towards fulfilling this aim.
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2 A. Butterfield and F. Tuong

This paper describes work we did to introduce formal methods into an activ-
ity sponsored by the European Space Agency (ESA) to qualify a new version
of the RTEMS1 open-source real-time operating system [5], tailored for multi-
core processors. It also looks at how Unifying Theories of Programming (UTP)
[33] could be used to fill the formal semantic gaps that arose as a result of our
approach.

The ESA activity, Qualification of RTEMS Symmetric Multiprocessing
(SMP), was led by Thales Edisoft, involving also Embedded Brains, the CISTER
Research Centre at U. Porto, Jena Optronik, and ourselves. A single-core ver-
sion of RTEMS had previously been qualified by Edisoft, and this new activity
looked at upgrading that to cover multi-core, and to also provide tooling to ease
the cost of the testing, reporting, and document generation involved. Edisoft,
Embedded Brains and CISTER worked on these aspects, and they had to meet
the standards expected, as defined by the relevant standards for software assur-
ance [24]. All the artifacts that they would produce were to be made available,
open-source, in the RTEMS git repositories [2], in a manner that adhered to
the RTEMS community guidelines [46, §1.3]. Jena Optronik used a proprietary
real-world application of theirs to assess the methodology developed by the other
partners.

Our role was to explore how best to use formal methods to support qualifi-
cation, in a way that would also fit with RTEMS community guidelines. After
an initial survey and review of suitable formalisms, we elected to use the model-
checker Promela/SPIN[35] to do test generation. This focussed on parts of the
RTEMS API that dealt with task synchronization facilities, including signalling
events, synchronization barrier, message-passing, and semaphores. The empha-
sis was on the functional correctness of the relevant API calls, when invoked by
concurrent tasks. Also, the success criteria for the qualification effort as a whole
was not tied to our efforts, in that the other partners had to meet the relevant
standards, including those regarding test coverage, independently of what we
achieved.

In the Background section (Sect. 2) we give an overview of the RTEMS qual-
ification project, and introduce the Promela language and SPIN model-checker.
In the Formal Models section (Sect. 3) we give more details of the formal app-
roach and give an overview of one the models we constructed. In the Refinement
section (Sect. 4) we explain how we map the counter-examples generated from
SPIN into RTEMS C test code. In all of the above we explore how UTP might
be applied to formally connect all the pieces. We then discuss Related Work
(Sect. 5) and finish with Conclusions and future work (Sect. 6).

2 Background

2.1 RTEMS

RTEMS[5,11] is a real-time operating system aimed mainly at embedded sys-
tems. It is open-source and freely available [2], mainly under a BSD-2 license.
1 Real-Time Executive for Multiprocessor Systems.
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Verifying an Open-Source RTOS 3

It is an operating system of choice for ESA, who have funded a number of past
initiatives [3,4] to bring RTEMS up to the quality standards they require These
are European-based standards for critical space software [23,24], involving a lot
of testing, traceability and documentation, but no formal methods. The qualifi-
cation so obtained covered versions of RTEMS aimed at single-core processors.

However, the widespread availability of multi-core processors, including those
that are space-hardened, has led to increased demand for their approval for space
missions. In addition, two recent new multi-core adaptations of existing scheduler
algorithms were implemented for RTEMS. These were the O(m) Independence-
Preserving Protocol (OMIP) [12], and the Multiprocessor Resource Sharing Pro-
tocol (MrsP) [13]. Both were merged and added to RTEMS [18] and have been
updated and enhanced several times since [28]. The move to multi-core sup-
port caused a large increase in the complexity of the code, especially as far
as scheduling was concerned. This ranges from the implementation of synchro-
nisation primitives such as semaphores, barriers, events, messaging, and a key
component underlying these: thread queues.

This led to the establishment in 2018 of an activity called “Qualification of
RTEMS Symmetric Multiprocessing (SMP)” to perform a pre-qualification2 of
two- and four-core processors for spaceflight. This activity had a number of key
goals beyond just producing a pre-qualified version of multi-core RTEMS. These
included:

– Developing tools to automate the generation and reporting of the evidence
needed to demonstrate that the qualification standards had been achieved.

– Providing all the tooling, and code improvements in a form that could be fed
back into the RTEMS open-source repositories.

The second goal is key. The purpose of this work went beyond just the needs
ESA had for qualifying software, but also included the desire by the RTEMS
community to gain expertise themselves in the ability to perform safety critical
certification and qualification. The idea is that the techniques could be reused
by RTEMS users in other safety critical application areas.

This second goal meant that all qualification materials should fit in with
RTEMS community guidelines [46, §1.3],[45, §2]. One key consequence of this is
to consider the needs of all users, from hobbyist to safety-critical system devel-
opers. This means that large complex software entities with many dependencies
should be avoided where possible. Another principle is that licensing must have
a BSD-2 flavour, rather than something like GPL—this is because it is expected
that companies will link RTEMS with proprietary applications.

Formal Methods for ESA for RTEMS. The investigation into the use
of formal methods had three phases: an initial exploration of available and
suitable formal techniques; apply the chosen techniques to selected parts of

2 ESA uses qualification to refer to an entire mission. RTEMS is a sub-component of
a mission, so such partial treatments are called pre-qualifications.
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4 A. Butterfield and F. Tuong

Fig. 1. Simplified syntax for atomic Promela statements.

Fig. 2. Simplified syntax for composite Promela statements. Here stmts denotes one
or more sequenced stmts.

RTEMS; and producing a final report. The initial investigation explored a range
of techniques, including, among others, Isabelle/HOL [39], Frama-C [36], and
Promela/SPIN[35]. The outcome was a decision to focus on using Promela/SPIN
to perform test generation, as this technology is a good fit with the RTEMS
guidelines, and the 2009 survey paper by Hierons et al. [32] makes a very good
case for using model-checkers like SPIN in this way.

2.2 Promela/SPIN

Promela/SPIN is easy to install (spinroot.com), requiring little more than a
C compiler along with the lex and yacc utilities. This made it a good fit for
RTEMS users in terms of its size and installation. Promela is the modelling lan-
guage, while SPIN is the model-checker. The Promela language, based loosely
on C, is imperative in character, with a notion of state defined by variables,
and notation that allows concurrent process behavior to be defined. Behavior is
defined by statements which can be atomic (Fig. 1), such as assignment, or com-
posite (Fig. 2), like conditionals or iteration. Communication between processes
can be via shared global variables, or using CSP-like channel-based message pass-
ing. The semantics is based on arbitrary interleaving of the sequence of atomic
actions performed by each process. Each process has a “program counter” that
identifies the next statement to be executed. The state of a Promela model is
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Verifying an Open-Source RTOS 5

defined by the values of all the variables and the program counters of the live
processes.

The above description could be of a concurrent programming language, but
Promela is for modelling, and so its semantics differs in crucial ways. The first key
difference is the notion of “executability”. Some language constructs are always
ready to run, while others may only run in certain model states. The skip,
assignment and assertions are always executable. While assert(e) is always
executable, if e evaluates to false, then the model run/analysis aborts, reporting
a violation. A “bare” expression can occur where a statement is expected. It is
blocked in any state in which it evaluates to zero. If not blocked, it can proceed,
and behaves like skip. In effect it waits for itself to become true, which means
there is no need in many cases to model waiting with some kind of busy-waiting
loop. The run statement is blocked if the current number of processes equals the
maximum allowed. If this is not the case, then it is an atomic action that starts
an instance of the named process.

For composite statements, executability depends on that of the atomic state-
ments that are first in line to execute. For sequential composition, the whole
is executable if the first statement is. The conditional and iteration notation is
very similar to that in Dijkstra’s Guarded Command Language[22]. The only
difference here is that the first (guard) component can be a general statement,
and need not be an expression. Both the if and do statement are executable
if at least one of their statement sequences is executable. If more than once
choice is executable, then a non-deterministic choice is made between them.
The if-statement terminates when its chosen branch does, while the do will
repeat the whole choice process. There is a special atomic statement break, only
valid in loops, that terminates the loop. The atomic keyword makes its enclosed
statements execute atomically (no other process can run). The exception is if
a sub-statement is not executable, in which case the atomicity breaks to allow
other processes run. When that statement once more becomes executable, then
it resumes running atomically.

Promela has datatypes similar to those found in C, with some variants where
it is possible to specify the number of bits. It also allows one-dimensional arrays,
and a record notation very similar to defining C “structs”.

The scope for procedural abstraction is quite limited. Process types are
defined using the proctype keyword, take named parameters, and can define
local variables. However these define complete processes, and can’t be used to
abstract a part of the process behaviour. The Promela language uses the C
preprocessor, and also the inline construct, which has named parameters, but
performs syntactic substitution.

The SPIN model-checker takes a Promela file and compiles it into a C model-
checking program tailored to the model defined in that file. It then can perform a
wide range of exhaustive analyses of that model, looking for deadlock, livelock,
starvation, unfairness, and failing assert statements. In addition, it can take
temporal properties described using Linear Temporal Logic (LTL) and check
those for possible violations. The models used by SPIN are extended Büchi
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6 A. Butterfield and F. Tuong

automata [35, Chp. 6,7]. These are finite-state machines to which a criterion
for accepting infinite sequences has been added, namely that every cycle in the
model involves visiting a designated accepting state. It is interesting to note that
He Jifeng has been involved in explorations of the relationship between LTL and
Büchi automata [37].

3 Formal Models Of RTEMS

We being with an overview of the formal approach adopted, followed by using
one of our models as an example of what is actually involved. We present a
high level overview, and then use one model/test scenario to discuss some of the
complexity that arises, and finish describing other processes used to model OS
behavior.

3.1 Formal Approach

Our overall approach was to start with the RTEMS documentation, most notably
that contained in the Classic API Guide[44]. This has sections that cover key
concepts, as well as specific sections describing services in terms of Managers.
These sections typically define an Application Interface (API) by specifying the
relevant C prototypes, describing how to call these, what their effects are, and
what kinds of error or success indicators get returned.

The Chains API [44, §34] was used initially to figure out the end-to-end
methodology, from a Promela model to running passing tests on both simulators
and real hardware. The Promela model would describe correct behavior, and
also specify desirable properties using assertions and LTL. We would use SPIN
to check it in the usual way to ensure correctness of our model (deadlock freedom,
assertion checks, etc.) We then used the fairly obvious idea[17] of taking each
property, negating it, and re-running the model-checker. It would then report
a violation and issue a counterexample. However, this counterexample is an
example of a correct run of the system, and hence can be used as a scenario for
test generation.

Normally SPIN stops once any error is found and returns the relevant coun-
terexample, but, it can also be asked to continue checking the entire model to
find all errors. This can be exploited to get a collection of scenarios that give a
range of correct behaviours. If we have models that are guaranteed to terminate,
then they can be used to generate all possible correct behaviours by adding
assert(false) at the end.

All of the models completed to date are ones that terminate. This is
because, in addition to the Chains API, we have focussed on modelling Man-
agers associated with task synchronisation of some form: events, barriers, mes-
sages, semaphores. None of these require models that run forever, because the
requirements focus on the outcomes of making the various API calls, in terms of
side-effects and return codes. What is important is the interaction between such
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Verifying an Open-Source RTOS 7

calls performed by concurrent tasks. The key metric being used to gauge test
quality is code coverage. This does not require models to be non-terminating.

In addition, we need to ensure that the scenarios we produce from our models
do terminate, because a test is not helpful if it fails to terminate (in practice
test frameworks put timeouts in place to abort looping tests).

We now describe how we modelled parts of RTEMS using Promela, in a
manner that would support test generation, using the Events Manager [44, §15]
as a running example. The Chains API got the basics going, but only involved
one RTEMS task, while this Manager involves at least two tasks in general, and
also has requirements regarding priority and preemption for these tasks.

3.2 The RTEMS Event Manager

The Events Manager [44, §15] allows RTEMS tasks to send and receive event-
sets, where an event is a number between 0 and 31 inclusive. The meanings of
these numbers are application-specific, so the Events Manager is only concerned
with their transmission, and does not care what they might mean. There are two
API calls in this Manager (Send,Receive):

– (Send) rc = rtems_event_send(id,events) sends the event-set events to
the task with identifier id.

– (Receive) rc = rtems_event_receive(wanted,options,ticks,rcvptr) is
called by a task looking to receive events in event-set wanted, and if suc-
cessful, will find the obtained events at the location pointed to by rcvptr.
The parameters options and ticks are used to specify waiting criteria and
a timeout interval.

Both calls return an RTEMS status code, shown above as rc.
We modelled all behavior of these API calls, including the situations that

resulted in error status codes. These include invalid values for parameters such
as task identifiers id or the receive pointer rcvptr. The Receive operation has
various waiting options (none,timeout,forever) so can report being unsatisfied
or having timed out. These can all be checked with a test that just calls one or
other API appropriately.

The gist of correct behavior is as follows: every RTEMS task has an associated
pending event-set variable, initially empty. The effect of sending an event-set is
to add those events into the pending set. When, or if, the receiver is satisfied, the
satisfying events only are removed from the pending set and are written to the
location pointed to by rcvptr. The tests need to verify that these pending event-
sets are modified correctly. This can be done using the Receive call, specifying
an empty set for wanted which simply returns the current value of the pending
set without modifying it.

In our Promela model, we only needed at most four events, to get all relevant
test combinations, that exercise all paths through the code. For a given call of
Receive, one model event models all unwanted events, then we have two model
events to capture that it may take more than one send to satisfy the receive.
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8 A. Butterfield and F. Tuong

Any combination of 32-bit wanted and sent event sets can be refined down to
4-bit sets that capture the same pattern of behavior.

3.3 High Level Model Overview

It is clear that our Promela model needs to capture the correct behavior of the
two API calls, based on a careful reading of the documentation. We determined
how these could then be orchestrated to produce useful tests by looking at exist-
ing RTEMS test code for the Events Manager. The basic structure of a test
was that an initial runner task would be started which would initialise the test
state and also start a number of worker tasks, as needed to participate in the
test. The runner task would then call parts of the API, while the worker tasks
would typically do something complementary. For the Events Manager, the run-
ner played the role of a task doing Receive, while one worker did one or two
Sends. When the test was done, the runner task would perform the appropriate
teardown procedure.

We use Promela processes to model RTEMS runner and worker tasks. So we
chose to model a situation that had two RTEMS tasks, one that would perform
between zero and two event sends (Send), while the other performed at most one
receive operation (Receiver). We wanted to support a range of scenarios, from
those that checked error-reporting for individual API calls, to those that mixed
a receive call with up to two send calls. We defined general scenario types using
Promela’s only enumeration type:

mtype = {Send ,Receive ,SndRcv ,SndRcvSnd ,...};
mtype scenario;

The idea is to specify that the scenario choice is nondeterministic. We do this
using a conditional statement where each guard is an always executable assign-
ment:

if
:: scenario = Send;
:: scenario = Receive;
:: scenario = SndRcv;
:: scenario = SndRcvSnd;
:: ....
fi

The value of scenario would then be used by deterministic conditionals to
initialize variables that determined detailed flow of control.

3.4 Modelling Send;Receive;Send

We will now look at a single scenario where the worker performs a Send first,
and then the runner does a Receive, where it opts to wait either for a timeout
or indefinitely, and finally the worker does a second Send. We assume that the
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Verifying an Open-Source RTOS 9

first Send does not satisfy the Receive, but that the second Send adds in what
was missing. The description of Send and Receive given earlier focussed on the
receiver’s wanted and pending event sets, but this is not the full picture. We have
two tasks synchronizing over these event sets, when the receiver, when called, is
not satisfied. So it blocks, either indefinitely or for a specified timeout interval.
These are different blocking circumstances that can lead to different return code
outcomes, so we need to model this distinction in our Receive API model.

While the behavior of the Send seems simple, just being an update of the
pending set, we do in fact also need to model that this may unblock a wait-
ing receiver. In effect, we need to have a variable state associated with each
Promela process that models the corresponding tasks RTEMS scheduler state
(executing, ready, blocked, dormant, and non-existent [44, §5.2.5]). In practice we
need to model Ready, and three variants of being blocked (EventWait,TimeWait,
OtherWait). The first two model Receive waiting indefinitely or for a timeout.
The third models a case where the Send can be forced to wait, due the following
requirement for rtems_event_send:

“The calling task will be preempted if it has preemption enabled and a
higher priority task is unblocked as the result of this directive. ”[44, §15.4.1,
Notes]

Clearly we needed to model priorities as well but we don’t discuss this here.

Fig. 3. Promela specification of rtems_event_send

The resulting behavior for Send is modelled by the Promela inline definition
in Fig. 3. There are three other inlines called by event_send:
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10 A. Butterfield and F. Tuong

– satisfied encodes when a receiver is satisfied.
– preemptIfRequired checks if the sender is required to be preempted, and if

so sets its state to OtherWait.
– waitUntilReady blocks internally on the

expression statement state == Ready, waiting for something else to make
it so.

In the Receiver, we use satisfied, can set state to TimeWait or EventWait,
and call waitUntilReady.

Given that both Send and Receive can block, we need some other mecha-
nism to unblock them. A satisfying Send can unblock a waiting Receiver, but
so can a timeout. We also need to model a preempted Send being eventually
free to run again, once the higher priority Receive is done. This achieved by
adding two Promela processes called Clock and System. The Clock process
emits regular clock ticks and decrements timeout data associated with processes
in state TimeWait, setting their state to Ready when the timeout reaches zero.
The System process models relevant parts of the RTEMS scheduler, mainly the
fact that processes in state OtherWait eventually become Ready. The Send and
Receive processes terminate and set their state to Zombie, and the system pro-
cess watches for this and then ends the model run when all processes are done.
The last line in the model used for test generation is:

assert(false );

3.5 Towards a UTP Semantics for Promela

We can summarise the subset of Promela that we use with the following abstract
syntax. We assume appropriate types t, expression syntax e, and process names
p. We then start with statements:

s ::= II | e | x := e | assert e | s1; s2

| if s1, . . . , sn fi | do s1, . . . , sn od
| atm s | run p(e1, . . . , en)

The language here is very reminiscent of stateful-failure reactive designs in
Foster et al. [25], with some laws like the following:

if i ∈ I • b(i) ! P (i)fi = (
"

i

b(i) ! P (i)) " ((¬
∨

i

b(i)) ! chaos)

However, guards b above can be general statements s here, with the Promela
notion of executability. In particular, an if with all branches blocked is simply
blocked itself, and does not behave like chaos, and their b ! P becomes b;P in
our language.

He Jifeng and his colleagues have been exploring semantics for Verilog for two
decades [31,41,50] A common feature of this work is using UTP to help link the
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Verifying an Open-Source RTOS 11

different semantic forms: algebraic, denotational, and operational. In recent work
on MDESL, a Verilog-like language, they address shared variable concurrency
using pre-emption points [40, Defn. 2.1]. These occur at specific points related
to timing and parallel constructs, and are the only places where the scheduler
can allow the environment to run. A discrete time model is presented as time-
stamped sequences of sequences of snapshots. A chop operator (P ! Q) defines
sequential composition on this model, and then auxiliary design variables (e.g.
ok) are added, and MDESL sequential composition is defined using chop. The
final result is a healthy process

H(¬div(P ) # wait(P ) ! wait′ " ter(P ))

which also has the form of Foster et al.’s reactive contract [26].
In Promela, every basic action is a pre-emption point, with the exception of

inside an atomic, which corresponds closely to the notion of atomic action in
the MDESL semantics. In a sense Promela is very close to maximally interfering
shared-variable concurrency, as modelled in our work on UTCP[15]. However
this is very low-level, and needs to have abstractions built on top in order to be
useable. Perhaps MDESL could be such an abstraction?

Finally, we note that the concept of model-checking and associated temporal
logics has been given a UTP formulation by Anderson et al. [8].

4 Refining Promela to C

4.1 Observing SPIN Counterexamples

Once satisfied that the Promela model is correct by using SPIN to verify prop-
erties, we then negated those properties in order to obtain test scenarios. The
counter-example output produced by SPIN is designed to be read by the model
authors, and reports state values using Promela syntax, as well as line-numbers
in the model text. However, we wanted to automate the process of converting
a counterexample into a test, so we needed to have a more generic way to see
what was happening in the model, using a notation that was easy to parse.

Promela has a printf statement that supports a simple subset of the one
available in C. It has no effect when SPIN performs a verification run, but does
produce output when SPIN is run in simulation mode, or when counterexamples
are being displayed. We defined a simple observation language that we used to
generate an appropriate textual abstraction of Promela state.

As an example, consider invoking event_send in the model. We want to
know that we have called it, what its inputs were, and what its return code was
when it returned. So we bracket its invocation with two printf statements:

printf("@@@ %d CALL event_send %d %d %d sendrc\n",
_pid ,taskid ,sendTarget ,sendEvents );

event_send(taskid ,sendTarget ,sendEvents ,sendrc);
printf("@@@ %d SCALAR sendrc %d\n",_pid ,sendrc);
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12 A. Butterfield and F. Tuong

Note here that the parameter taskid is the index into a task array, and is
not the corresponding Promela process id. We start every such output with a
marker string @@@, which is used to filter these statements out of SPIN’s own
reporting material. We then output the Promela process number, denoted by
special Promela variable _pid. This is very important as we need to know when
the running process changes if we are to generate test code that reproduces this
scenario.

The next component is a keyword indicating what kind of observation is
being presented. We use CALL to denote a function call, and SCALAR to denote
a simple value. The function call then displays the arguments for the inline
call (including the name of the sendrc placeholder). The scalar value will be
the value of the return code. There is a wide range of other keywords that cover
declarations, initialisation, atomic and structured values, task management, and
logging.

An example output might be:

@@@ 3 CALL event_send 1 2 10 sendrc
@@@ 3 SCALAR sendrc 0

Here we see that Promela process 3 performed a call to event_send in which it
identifies itself as being RTEMS task 1, with RTEMS task 2 as target, passing
the event set {3, 1}, and storing its return code in variable sendrc. We then see
that sendrc is a scalar variables whose current value is zero.

4.2 Refining printf Observations

In order to get test code we need to define a refinement relation we use to get
from model output to C test code. We use a Python dictionary that maps names
with arguments to a text item into which those arguments can be substituted.
The keywords like CALL, SCALAR, and others, determine precisely how both the
dictionary lookup and the resulting substitution is done. The dictionary is itself
stored as a YAML file.

The process for refining both these observations is to lookup the name that
immediately follows the keyword, substitute the arguments into the retrieved
text, and add it to the code being generated. The refinement entries for
event_send (simplified) and sendrc are:

event_send: |
{3} = rtems_event_send( {1}, {2} );

sendrc:
T_rsc( sendrc , {0} );

The CALL observation is refined by substituting in 2, 10, and sendrc into the
event_send entry, while the SCALAR observation involves looking up sendrc and
substituting in 0. This results in the following C test code snippet:

sendrc = rtems_event_send( 2, 10 );
T_rsc( sendrc , 0 );
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Verifying an Open-Source RTOS 13

Here, T_rsc is a test function that checks that a return code has the specified
value.

The YAML refinement dictionary is not the whole story. In addition to includ-
ing the test framework, where T_rsc is defined, we also have to define some C
functions that support the refinement. The actual test program will consist of
a preamble in which such functions are defined, followed by the test code gen-
erated by the YAML refinement, and finishing off with a postamble that does
proper test teardown.

4.3 Refining Task Switches

So far we have not discussed the use of the _pid number that follows the @@@
marker. Consider the following (very) simplified extract from one of the Event
scenarios, with added line numbers. This is the SndRcvSnd scenario, where the
sender process sends some events to the receiver, then the receiver asks to receive
some of those events plus others not just sent, and finally the sender sends more
events that satisfy the receiver.

1. @@@ 3 CALL event_send 1 2 2 sendrc
2. @@@ 4 CALL event_receive 10 1 1 0 2 recrc
3. @@@ 4 STATE 2 EventWait
4. @@@ 3 CALL event_send 1 2 8 sendrc
5. @@@ 4 SCALAR recrc 0

Line 1 shows the sender sending event set {1} to the receiver. Lines 2–3 shows
the receiver request to receive all events in {3}, but then blocks because it is not
satisfied and hence enters the state EventWait. Line 4 shows the sender running
again and sending event-set {3}. This satisfies the receiver. Line 5 shows the
receiver with a success return code.

The first use of _pid is to partition the refined C code into distinct segments,
one for each value of _pid that occurs. In the above example, the refinement of
lines 1 and 4 will be added to segment 3 (Worker), while those in lines 2, 3, and
5 will be added to segment 4 (Runner).

The temporal sequencing of the three Event API calls here is important.
These means that the corresponding C test code needs to suspend and waken
the two RTEMS Tasks at appropriate points. In particular, the RTEMS test code
needs to be reproducible in that it always interleaves concurrent code execution
the same way every time. Effectively all the non-determinism has to be refined
away.

The standard way of doing this is to used a so-called simple binary semaphore,
that has two API calls, one to obtain such a semaphore, another to release
it. Only one task can obtain it at a time, but any task can release it. Simple
binary semaphores are suitable for task synchronisation, and the Promela model
includes models of binary semaphores which are used appropriately, reported
using CALL, and refined to calls to the RTEMS equivalent.
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4.4 Towards a UTP Semantics of Promela-to-C Refinement

There are two stages to the refinement from the Promela model to C test code.
The first stage links the semantics of the model that of the observation language
used in the printf statements (e.g. CALL, SCALAR, etc.). The second stage links
the observation semantics to that of the C code itself. In each case we need UTP
semantics for the two parts along with a linking Galois connection [33, Chp. 4].

UTP Semantics of Model Observables. The observation semantics is fairly
straightforward as it is really just a simple way of reporting basic Promela events,
such as calling an inline definition, or reporting the observed value of a model
variable. The definition of the linking predicates will need to make use of the
contents of the refinement YAML file, and this observation semantics.

UTP Semantics of C. The first step in this stage is to have a UTP semantics
for C. We don’t need to work with the whole C language, but can restrict our-
selves to the subset that is actually used in safety critical systems, for example,
the widely used MISRA-C Standard [9]. These forbid the use of C constructions
that are semantically problematic, such as an expression in an assignment that
calls functions that update global variables. ESA mandates the use of coding
standards [24], while RTEMS has its own [45, §6.3], which also result in safe C
code.

This means we can treat the sequential parts of C as being essentially UTP
Designs [33, Chp. 3], with the addition of separation logic, to deal with C point-
ers. We already have UTP material on separation logic in Woodcock et al. [49],
which treated it as a sub-theory in a setting of heterogenous theories.

Concurrency semantics is also needed to cover both concurrent RTEMS
Tasks, and hardware-level concurrency with a software impact, most notably
interrupts. Again, it looks like our work on UTCP [15], and the work by He
Jifeng and colleagues on MDESL [41] may help here also. Another key area
to explore is the linkages between denotational and operational semantics, that
have been explored by extensively by He Jifeng and colleagues down the years
[30,33,40, Chp. 10].

5 Related Work

Promela Semantics. Most of the formal semantics material for Promela/SPIN
is operational in nature. An early example was the notion of a symbolic labeled
transition system [38]. This then inspired work using ACL2 for abstract syntax
which defined the semantics as a functional program [10]. Another approach used
SOS notation to build a three-layered operational semantics [48]. In the SPIN
book [35], there are sections on its semantics, based on extended Büchi automata,
with states defined with representations of variables, messages, processes and
other system attributes. It then defines a semantic engine, which is basically a
program in pseudo-code over this state space.
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Formal Methods and Testing. In 1995 Gaudel wrote a seminal paper relating
formal methods and testing [27]. This established a formal framework for talking
about the relationship between formal specifications and test code. Here we shall
discuss the key concepts in the context of our work with RTEMS. Key points
made in that paper include the fact that a specification generally can not serve
as a test oracle, and some form of refinement needs to be established between
it and test code. For our work we need to construct a refinement from Promela
via observations to C code. This provides what Gaudel terms the conformance
relation. It is possible to formally define an exhaustive test set, which has all valid
behaviours and is usually infinite in nature. but techniques need to be found to
shrink this to a finite test set that is adequate. In our case, model-checking
requires us to produce a finite model, and test generation requires limiting it to
finite behaviours, so we address this during Promela model design. Papers about
formal methods and testing in UTP include works by Cavalcanti and Gaudel
[19,20] and Aichernig et al. [6,47]. These all explore the conformance relation
concept. Also related is work by Aichernig and Jifeng on mutation testing [7].

Formalising Pointers. There have been a number of treatments of pointers
in UTP, most looking at them in an object oriented context. Hoare and He
did [34] early work on a trace model. Cavalcanti et al. [21] looked at pointers
where storage is an equivalence class of variables that share the same memory
location. Smith and Gibbons [43] present a similar notion based on sharable and
containable locations.

6 Conclusions

We have described some of the work we did applying formal methods to an ESA-
sponsored qualification activity for multi-core RTEMS. We focused on our use
of Promela to model synchronisation facilities in RTEMS, and on using SPIN to
generate tests. This involved defining a simple but novel observation language to
output information about key model events that could be interpreted as a test
specification. We then mapped these observations to actual C test code snippets.

During the above, we also explored how we could extend the formality of the
work beyond just that of the operational semantics of Promela. This involved
identifying what pre-existing UTP theories could be used to model both Promela
itself, and the refinement chain that involves the observation language and a
suitable subset of the C programming language.

The current state of play is that models and test generation software for the
Chains API, and the Event, Barrier and Message Managers, are now available
from the RTEMS Central git repository [1], in the formal sub-directory. A new
draft section on Formal Verification for the RTEMS Software Engineering man-
ual [45] is under review by the community. More work has since be done mainly
involving student projects, that has yet to be submitted to RTEMS for review
and inclusion. This ongoing work in this area is hosted on Github [14].
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6.1 Future Work

There is much work still to be done, with RTEMS. We plan to model far more
of RTEMS than done so far, as well as revisiting and re-factoring the existing
models. In particular, there is a need to formalise the new SMP-aware scheduler
thread queue algorithms, that are considerably more complex than the single
core versions, involving, for instance, task migration between cores.

In addition, the work done by Edisoft, Embedded Brains and CISTER has
resulted in a new concept for requirements capture called specification items
[45, §5], that encode enough information about RTEMS code artifacts to allow
tools to build test code, run tests, collect data, and generate reports. None of
this material is formal in any sense, but it does included descriptions that map
abstract pre/post-conditions to test code snippets. This opens the possibility,
given an appropriate UTP semantics, of being able to extract material to con-
tribute to a formal specification in UTP.

The real plan for future work here is to use RTEMS, with the Promela
models, the observation language, and the explicit use of C code, as a case study
for using UTP to develop a unified semantic model of all these components,
and their linkages. As has been pointed out, the work of He Jifeng has a great
amount to contribute to this endeavour.
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