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Abstract

An important challenge in AR/VR is to enable virtual interactions that look and feel
natural. Our goal in this work was to identify certain failures of AR/VR interactions,
understand them, and propose solutions for them so that these platforms can accom-
modate better and more diverse experiences. To this end, we conducted two case
studies on dumbbell Lifting and ball Throwing interactions in VR, with a focus on
Human Perception.

We first developed a pilot system for Throwing in VR, and conducted a perceptual
study to determine the importance of visual trajectory cues on throwing performance.
We found that limiting visual feedback detracts from virtual throwing performance.
We also ran a study to develop a better understanding of how the Point of Release
(PoR) of a ball affects the perception of animated throwing motions. In this study, the
participants viewed animations of a virtual human throwing a ball, in which the point of
release was modified to be early or late. We found that errors in overarm throws with
a late PoR are detected more easily than an early PoR, while the opposite is true for
underarm throws. The viewpoint and the distance the ball travels also have an effect
on perceived realism. Finally, we hypothesized that the typical experience of throwing
in VR, i.e., holding a controller and using a button to release the projectile, may feel
unnatural. We therefore developed a novel real-time physical interaction system, called
ReTro, that allows users to throw a virtual ball without using an intermediary device
such as a controller. For the implementation of the ReTro system, we developed a
detection algorithm to predict the PoR of a throwing motion in real-time. This was
achieved by training a PoR prediction model using motion features extracted from
arm joints. The evaluation of ReTro using pre-recorded throwing motion data resulted
in detection errors of less than 50 milliseconds. Another output of this analysis is a
presentation of the relative importance of different joints and motion features for the
PoR prediction task. Finally, qualitative results from users of ReTro in VR indicate
that, although it performed better for Underarm than Overarm throws, the task of
throwing without a controller felt very natural.
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In our second case study of Lifting, we investigated people’s sensitivity to physicality
errors in order to understand when they are likely to be noticeable and need to be mit-
igated. As a user lifts virtual objects in AR/VR, there may be dynamic inconsistencies
in the motion of the virtual avatar due to a mismatch between the shapes of the user’s
body and their virtual avatar. There could also be a mismatch between the real and
virtual objects being interacted with, such as a real controller vs. a virtual boulder.
We use the term “physicality errors” to distinguish them from simple physical errors,
such as footskate. Physicality errors involve plausible motions, but with dynamic in-
consistencies. We used the exercise of a dumbbell lift to explore the impact of motion
kinematics and varied sources of visual information, which included changing the sizes
of the body and manipulated objects, and displaying muscular strain. Our results sug-
gest that kinematic (motion) information has a dominant impact on the perception of
effort, but that visual information, particularly the visual size of the lifted object, has
a strong impact on perceived weight. This can lead to perceptual mismatches which
reduce perceived naturalness. Small errors may not be noticeable, but large errors
reduce naturalness. These results can be used to inform the development of animation
algorithms.
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1 Introduction

Starting in the last decade, a new wave of multimedia technologies has started reach-
ing consumers with the potential of changing the way we interact with computers and
with each other digitally as a society. Augmented and Virtual Reality (AR/VR), or
Mixed Reality (MR) as an umbrella term, offer more immersive experiences than non-
immersive technologies, such as PCs and smartphones, by seamlessly blending real and
digital worlds to varying degrees. Modern non-immersive technologies can target our
visual and auditory senses with high-fidelity graphics and audio. However, as content is
presented within a visually constrained space they cannot offer fully immersive experi-
ences. On the other hand, a seamless augmentation (AR) or replacement (VR) of reality
through a head-mounted display can better create the illusion of an alternate reality.

AR and VR are far from reaching their full potential, yet they are already transform-
ing fields such as entertainment, health, and education, and changing how designing,
prototyping, training, and collaborations are done. Market forecasts on both AR and
VR technologies show that both will have a substantial impact on the future of soci-
ety. Almost all Big Tech companies entered the market by either developing their own
headsets or acquiring companies that work on these technologies. In 2022, Facebook
rebranded itself as Meta to announce a strategic plan of building the “metaverse”, i.e.,
a computer-generated and globally connected 3D world that people enter wearing their
AR/VR headsets to carry out daily activities such as meetings, sports, shopping and
concerts. Commenting on how 5G and VR will combine to shape the future, Intel has
proclaimed that:

“A new dawn of VR-driven experiences will emerge as early as 2025 [6].”
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Many large organizations are already utilizing AR/VR as an integral part of their work,
e.g., NASA for space-walking simulations; Boeing and Airbus for prototyping and de-
sign; Audi and IKEA for virtual/augmented showrooms; and law enforcement agencies
for training. In research, new directions of research are being pursued to explore the
effects of virtual environments (VE) and their content, such as virtual avatars, crowds
and interactions. VR is especially useful for enabling fully controllable experimental
environments, which can be difficult or impossible to create and maintain in the physi-
cal world.

Along with the investments in AR/VR coming to fruition, advancements in computa-
tional technologies are enabling the generation and display of sophisticated audiovisual
content that is indistinguishable from what we perceive in physical reality. In the field of
Computer Graphics, there are very high-definition renderings of content such as real and
synthetic humans, objects, and highly realistic scenes. Notably, MetaHuman by Unreal
Engine in 2021 was a big leap forward in terms of access to, and usability of, photo-
realistic humanoid avatars. Through the provision of such affordable high-end content
creation capabilities, now both practitioners and researchers can utilize and investigate
this next iteration of humanoid avatars in their work. In audio, there are advancements in
speech and sound synthesizers, voice assistants like Siri and Alexa, and binaural sound.
For simulating the sense of touch, there is a range of devices from gloves to full-body
suits that are equipped with exoskeletons, sensors, and electrodes that generate tactile
stimulation. For the senses of taste and smell, there are specialized displays that can
be programmed to release stimulants through tubes or capsules, although the advance-
ments have mainly been experimental for now.

It may seem that a congruently combined stimulation of the senses using different
modalities in an AR/VR experience can offer full immersion that completely and satis-
factorily swaps our experience of reality. However, not only does AR/VR currently lack
the technical sophistication to fully replicate real-life multi-sensory experiences, but
these different modalities also sum up to a much larger whole that forms our subjective,
perceived reality. In a human’s experience of reality, perception organizes sensory input
and forms a coherent understanding and an identification of the environment. Beyond
our sensory modalities, many other subtle concepts are vital components of our percep-
tion, such as the senses of agency [7], ownership [8], and embodiment [9]. These subtle
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senses are generally unchallenged in our daily lives thanks to the consistent nature of
our physical reality. Yet, these components are critical for sustaining a user’s sense of
presence in a VE, which is defined as "the perceptual illusion of non-mediation" by
Lombard and Ditton [10].

More formally, Slater and Wilbur [11] define immersion as “a description of a technol-
ogy, and describes the extent to which the computer displays are capable of delivering
an inclusive, extensive, surrounding and vivid illusion of reality to the senses of a human
participant”, and the sense of presence as “a state of consciousness, the (psychological)
sense of being in the virtual environment”. In other words, immersion is an objective
quality of the displayed multi-modal content, and presence is a subjective measure of
how present a user feels in the content (See Chapter 2.1 for a discussion). Ultimately,
AR/VR experiences aim to provide and maintain a high sense of presence that is not de-
teriorated by elements of that experience, such that the experience can fulfill its purpose,
be it enjoyment, involvement, learning, and more. However, it has been demonstrated
in real-life examples that immersion does not directly lead to a sense of presence [12].
Rather than on better hardware, as noted by Oculus former CTO, J. Carmack:

“...the focus needs to be on improving the user experience [13].”

In the physical world, interactions with objects around us happen naturally, as various
forces are exerted between objects and limbs without much conscious mental effort.
The details of this force exchange are calculated and flawlessly actuated according to the
various properties of interacting surfaces such as friction coefficient, mass, and velocity.
However, the problem of simulating natural physical interactions with virtual entities
within a dynamically changing environment (real or virtual) remains an open challenge
[14]. However, in AR/VR, such physical laws need to be programmed into simulated
environments so that the users are presented with an alternate reality that is in some way
consistent with their expectations. Due to limitations in hardware and computational
power, implementing the laws of physics usually requires approximations to be made,
thus risking unwanted perceptual consequences that may diminish the sense of presence.
As a result, physics-based animation is often not effective when complex geometries are
involved, due to concerns over performance or implausible outcomes.

This becomes an even more challenging problem when one of the involved geometries
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is of a user’s hand. In this case, as a user moves their hand, the complex virtual ge-
ometry following the user’s physical hand comes in contact with another virtual object.
Assuming that the virtual object is a non-deformable and unmovable rigid body, this
object applies a limitation on the motion of the virtual hand, but there is nothing that
limits the motion of the physical hand in physical reality. Therefore, the physical hand
can just move through that space, leading to complexities for both tracking and force
calculations. Typically, such implementations include two pairs of virtual hands, with
one pair following the physical hands all the time without having any colliders, and the
second pair being subject to the physics and having active colliders.

It is therefore clear that many problems need to be addressed to achieve natural and
plausible physical interactions in AR/VR. The goal of our research is to identify and
evaluate factors that affect the perception of anomalous interactions for two examples
(throwing and lifting), and to use this information to inform the development of methods
to enhance the user experience. In the next section, we outline the specific problems that
we address in AR/VR and share the motivation for studying them.

1.1 Motivation

Research Questions: In this thesis, we address the challenge of simulating natural
physical interactions for two interaction types: ball throwing and dumbbell lifting. We
explore the following research questions:

• How sensitive are people to anomalies in the simulation of throwing and lifting in
Virtual Reality (for both first-person and third-person views)?

• Can we use knowledge of human perception, together with modern Computer
Science techniques, to help increase the plausibility of these interactions?

Early-stage exploration of computers and phones has produced an abundance of knowl-
edge, which is unfortunately only partially transferable to AR/VR. User interaction is
one of the most important aspects that has the power to “make or break” a technology.
Interactions in computers and phones are limited to two dimensions, mainly using a key-
board/mouse or touch as input, with a display screen as the interface. In AR/VR, user
interactions can cover a three-dimensional space, typically carried out with a hand-held
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controller or one’s own hand as tracked by cameras on the device. Several platforms
have provided such 3D interfaces in the past, e.g., Nintendo Wii and Sony Move, but
their development has been discontinued.

Whereas traditional user interfaces focused on efficiency and convenience by devising
easy-to-use interactions, AR/VR interfaces can accommodate natural actions such as
pushing, pulling, grasping, lifting, and throwing. An important challenge for AR/VR is
to ensure that virtual actions/interactions feel natural to the user in a way that is similar
to experiencing the sensations and the outcome of doing them in physical reality. This
is particularly important if AR/VR is to become a platform for acquiring and practicing
real-life skills. We, therefore, investigate this challenge in our work by exploring the

interaction of throwing a ball in VR.

AR/VR technologies are considered to have the potential to break the barriers of phys-
ical reality by facilitating immersive social interactions and activities, including games,
gatherings, events, and more. In such immersive social experiences, a user’s experience
is shaped not only by their own capabilities and interactions as a user, but also by how
plausible other users’ representations, i.e., avatars, and interactions are. Therefore, we
consider a second important challenge for AR/VR to be that virtual interactions per-
formed by others in the same VE should look plausible to the observer to maintain a
sense of presence. To tackle this challenge, we investigate the interaction of dumbbell

lifting.

1.1.1 Throwing Interactions

To simulate the throwing of a virtual projectile, a physics-based implementation needs
to: continuously calculate the exchange of forces between the virtual hand and the vir-
tual projectile; precisely release the projectile when the user opens their hand; and ac-
curately simulate the trajectory as it is released. There are two major issues with this:
i) the real hand will not have a sense of the virtual projectile unless an advanced haptic
device is employed, and the user will likely hold a hand pose that is too tight or too
loose, leading to inaccurate force calculations; ii) the hand has a complex geometry, and
precise frame-by-frame calculation of the force exchange will use too much or all of the
computational capacity. Therefore, most AR/VR throwing games employ a controller,
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using it as an attachment point for the object to be thrown and its buttons to indicate the
release of the ball. In this case, there is no longer any force calculation, and the problem
is simplified to releasing the projectile upon a button press. However, although it works
well functionally, throwing with a controller can feel unnatural.

Studies in HCI and games have shown that, when a computer assists a user in completing
a task, the feeling of control is often lost [15, 16]. Throwing interactions in VR to date
have mostly been implemented using either a controller with a virtual ball [17, 18],
or a constrained real ball [19]. A user throwing a virtual ball needs to keep holding
a controller during and after the throw, contrary to what the action naturally requires,
i.e., releasing the projectile from the hand. Furthermore, the user has to precisely time
the release of the projectile by using the buttons on the controller, which also differs
from how a throw is performed in physical reality. The effects of such issues would
amplify in the context of sports training, where motions are faster and high precision is
crucial. Therefore, it makes sense to offer unconstrained interactivity to the user for a
more natural throwing experience. We explore the challenge of throwing a virtual ball
in VR without the use of a controller.

1.1.2 Lifting Interactions

As humans interact with objects in the physical world, they orchestrate their limbs to
carry out that interaction in a specific way, e.g., to minimize the effort of lifting a heavy
object, to maximize precision in throwing. When this interaction is observed, observers
can typically infer many details about the interaction by perceiving attributes such as
posture, facial expressions, interacted objects, and sound. More specifically, when a
person is observed lifting an object, the observer can estimate the weight of the inter-
acted object and the amount of effort displayed by the person [20, 21] (See Chapter 2
for a thorough literature review). This is a problematic situation for AR/VR since vir-
tual objects fundamentally do not possess any mass, virtual interactions thus contain the
risk of looking unrealistic and deteriorating the presence, e.g., observing the lifting of
a virtual boulder with no effort. We use the term "physicality errors" to refer to errors
that arise due to a mismatch in the dynamics of a person’s motion and the visualized
movements of their avatar in VR. Physicality errors involve plausible motions, but with
dynamic inconsistencies. Even with perfect tracking and ideal virtual worlds, such er-
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rors are inevitable in virtual reality whenever a person adopts an avatar that does not
match their own proportions or lifts a virtual object that appears heavier than the move-
ment of their hand.

Overall, such errors require a series of investigations. The ultimate research question for
AR/VR is "How much is the influence of dynamical inconsistencies on the sense of pres-
ence for users?". To answer this, it is first necessary to investigate people’s sensitivity to
these inconsistencies. If they are easily detectable, what could be some artificial mod-
ifications, e.g., modifying animation speed, or adding sound effects, that would reduce
people’s ability to detect them? In this work, we perform a thorough investigation to
understand people’s sensitivity to dynamical inconsistencies under various conditions.

1.2 List of Contributions

1. A preliminary VR throwing implementation and perception study (Exp. T1) that
explores the effect of visual trajectory cues on throwing performance in VR; we
found that limited visual feedback detracts from virtual throwing performance and
that throwing performance decreased with throw distance (see Chapter 3);

2. A second perception study (Exp. T2) to explore how timing errors in the Point of
Release (PoR) of a ball can affect the perceived realism of throwing motions; we
found that people are asymmetrically sensitive to early and late delays in overarm
and underarm throws, with early release not as noticeable for underarm throws
as it was for overarm throws, and late releases were less frequently noticed for
overarm throws (see Sec. 4.1);

3. a regression model that predicts the remaining time until the PoR of a throwing
motion in real-time (see Sec. 4.2);

4. a real-time VR system, called ReTro, that uses this model for throwing interactions
using only the user’s arm motion (see Sec. 4.3);

5. a ranking of 15 joint and motion feature combinations based on their effectiveness
for the PoR prediction task, which can help to guide the selection and placement
of sensors (see Sec. 4.3);
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6. a corpus of 1679 full-body throwing motions from six actors including PoR ground
truth approximations that will be made publicly available (see Sec. 4.2.1).

7. a series of experiments in which we investigated the perceptual impact of both
the kinematic signal (i.e. the motion) and varied visual signals (the size of the
avatar, the size of the lifted object, and the presence of muscle deformations that
convey strain), where participants watched animated models perform dumbbell
lifting and estimated the effort of avatars and the weight of the lifted dumbbells
(see Chapter 5). We found that:

• effort judgement is influenced by all channels (motion kinematics, the avatar’s
body, the size of manipulated objects, and muscle strain);

• while effort judgement is mainly influenced by motion kinematics, weight
judgement is more influenced by a lifted object;

• muscle strain can be used as a tool to make incorrect motion kinematics less
noticeable;

• large inconsistencies between motion kinematics and lifted dumbbell appear
unnatural.

1.3 Scope

In throwing, we investigate the importance of throwing trajectory feedback and PoR
timing errors in two separate perceptual studies. The study on projectile trajectory feed-
back was conducted in VR with participants performing throws. The second study on
PoR timing errors was conducted on a computer display in which participants watched
an animated virtual character performing throws with different release timing errors.
Because of the restriction period during COVID, we were unable to conduct the second
experiment in VR. However, for the final evaluation, we built a real-time virtual throw-
ing system that uses a machine learning-based model to detect PoR and ran a short,
in-person, user study.

In the examination of lifting motion, we focus on understanding people’s ability to es-
timate effort and weight when presented with visual stimuli of animated models lifting
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Figure 1.1: L: Body marker placements. R: Hand marker placements [1].

dumbbells under various conditions. We also explore whether people’s estimations can
be tweaked by adding skin deformations. Our scope does not include the experience of
a person performing a dumbbell lift in VR. We also do not assess concepts such as the
sense of presence or the sense of co-presence, which are left for future work.

1.4 Methodology

1.4.1 Optical Motion Capture

Research on human motion relies heavily on high-end capture systems as a tool for cap-
turing high-quality motion data. We utilize an optical motion capture system by Vicon
with 21 cameras, capturing at 120 Hz. Except for the data capture in Chapter 5, this
is the setup used in the rest of the work. The actors wear a lycra suit and 53 reflective
body markers and 20 reflective hand markers (2 per finger) (see Figure 1.1). Through
these reflective markers, the infrared signals transmitted by the optical cameras are re-
flected back and tracked, and the position and orientation of the markers are calculated.
In real-time, the cluster of body markers is solved to form the actor’s skeleton, and the
actor’s motion is tracked.

1.4.2 Psychophysical Methods

In designing our user studies, we utilized multiple psychophysical methods. For dis-
crimination tasks, we used Yes/No (sometimes also identified as two-alternative forced
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choice (2AFC), [22]) and two-interval forced-choice (2IFC) designs to learn the psy-
chometric function between stimuli and response and to discover the threshold at which
an effect tested by the stimuli is detected. In a Yes/No task, a stimulus and a question are
presented to a participant with two possible choices to choose from, typically mutually
exclusive answers such as a "yes" and a "no". In a forced-choice design, the participant
is provided with a set of stimuli (simultaneously unless otherwise stated) and a question
and asked to choose one stimulus from the set. 2AFC is considered the most basic form
of a forced-choice design, in which the participant is asked to choose an answer from
two stimuli. In other versions such as 2IFC, two stimuli are presented sequentially, and
the participant makes a selection between the stimulus based on the question.

We also implemented several rating-scale tasks, asking participants to choose a numer-
ical value, continuous or discrete, for the stimuli according to the underlying research
question being investigated. The Likert scale, being the most widely used rating-scale
measure, provides a symmetric agree-disagree scale, which we employed to measure the
naturalness of stimulus, and to self-report on the sense of agency, and the sense of pres-
ence. Furthermore, we implemented effort and weight rating tasks to explore people’s
ability to estimate the weight of a lifted dumbbell and the percentage effort displayed
by the lifter.

In the analysis of the data collected from these tasks, we use two different statistical
models, ANOVA and Linear Mixed-Effect models.

1.4.3 Machine Learning

This work utilizes machine learning to model the release of a ball during a throwing
motion. We focus on feedforward neural networks and long short-term memory (LSTM)
networks.

Feedforward Neural Networks

Artificial neural networks are known for modeling complex functions by learning a large
set of parameters that are optimized with respect to a loss function on large datasets.
Operating on the principles of forward pass and backpropagation, a very large number
of parameters can be learned iteratively and efficiently to achieve successful detection
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Figure 1.2: Visualization of an LSTM layer (Image taken from Christopher Olah’s blog
[2])

performance on unseen data. Also, the selection of a suitable loss function plays a
crucial role in the outcome of the training. We use supervised learning by providing the
network with both the output and the input to the modeled function during training.

Feedforward neural networks only flow information forward except for backpropaga-
tion during training. Therefore, these networks include multilayer perceptron (MLP)
architectures, convolutional neural networks (CNN), and radial basis function neural
networks. In this work, we only use MLP architecture in the feedforward neural net-
work category. MLP architectures consist of stacked layers of fully connected artificial
neurons. These neurons linearly combine the incoming signals and add a learnable bias
term, which is then passed through a differentiable nonlinear activation function to be-
come input to the next layer.

Long Short-Term Memory Networks

Long short-term memory networks are a type of recurrent neural network (RNN) that
is used for modeling temporal data such as speech, text, and motion. Different from
feedforward neural networks, these architectures maintain memory units that control
the impact of past information (or even future information in the case of bidirectional
architectures) on inferences about the current state. These networks operate on the
same principles as feedforward neural networks, with the only difference being that
backpropagation also has to be performed over time, hence it is named backpropagation
through time (BPTT).

While a traditional RNN only combines the hidden state which carries information about
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the previous time step with the current input, LSTM networks include several subcom-
ponents that facilitate the processing and passing of information from previous inputs.
These subcomponents apply nonlinear operations on cell state, as visualized in Figure
1.2. The subcomponents are called forget gate, input gate, and output gate. The forget
gate combines the hidden state of the previous time step with the input of the current
time step, which is then passed through a fully connected layer with sigmoid activation
to be scaled between 0-1, deciding which information of the cell state should be kept or
discarded. Secondly, the input gate is responsible for calculating new cell state values
that will be added to the previous cell state value. Lastly, the output gate sets the hidden
state for the cell by applying tanh function to the cell state to map it between [−1, 1]

and filtering that through multiplication with a sigmoid, similar to the forget gate.

1.5 Overview

The structure of the thesis is as follows:

• Chapter 2 covers the relevant literature and discusses how our study fits in the
available literature.

• Chapter 3 discusses a perceptual study on the importance of ball trajectory in VR
throwing and a preliminary model for PoR detection.

• In Chapter 4, we share a perceptual study on release timing. We revise our Point
of Release detection models and present a fully implemented system that detects
virtual throws in real-time. A case study of the system with six participants is
included.

• Chapter 5 delivers the set of perceptual studies conducted on dumbbell lifting
motion and contains a discussion of the results.

• Chapter 6 summarizes the work and delivers a general conclusion. Limitations
and possible future work are discussed.
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2 Background

2.1 AR/VR

2.1.1 Taxonomy

In the past, there have been many attempts to introduce a taxonomy for all types of
Human-Computer Interaction (HCI) devices. A very famous one is the ‘Virtuality-
Reality continuum’ by Milgram et al. [23], which represents the real environment on
one end and the virtual environment on the other end. In between, there are two seg-
ments, Augmented Reality (AR) and Augmented Virtuality (AV). All HCI technologies
with a display are classified as one of those four options based on how many actual or
virtual elements they use. AV represents the technologies that augment virtual environ-
ments with information from the actual environment, but there is not a clearly defined
boundary between AR and AV. To go beyond the oversimplification of one dimension,
Mann [24] proposed a two-dimensional representation with the emphasis that VR is not
only about mediating a Virtual Environment to the user’s eyes, but at the same time is
about blocking the Real Environment from being perceived by the user. In this frame-
work, he places the ‘Mediality Continuum’ on one axis and the ‘Virtuality Continuum’
on the other.

Speicher et al. [25] address the shortcoming of ‘Virtuality-Reality continuum’ in that it
is only based on visual content, covering a limited portion of our reality. Furthermore,
they interviewed AR/VR experts and reviewed studies to survey how MR is defined,
finding that there is no universally agreed definition despite the popularity of the term.
Skarbez et al. [26] argue that ‘Virtuality-Reality continuum’ is in fact discontinuous
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when only exteroceptive senses (sight, hearing, smell, taste, touch) are addressed by
AR/VR devices. This is because even when using an ultimate display with all convinc-
ing exteroceptive signals, interoceptive senses such as the vestibular and proprioceptive
senses will be controlled by the physical reality. Therefore, a fully virtual experience
would require the immersion of the entire consciousness like in the movie Matrix.

Although having many conceptual similarities, AR and VR have been positioned uniquely
in different fields. The emergence of both technologies has resulted in many new fora
for scientists to explore them. Mel Slater, in his seminal survey on VR applications,
thoroughly discusses the ways in which VR enhances a wide variety of application do-
mains [27]. In a related survey paper on mobile AR, Chatzopoulos et al. [28] lay out the
relevant applications and core technical components. While VR and mobile AR have
reached a mature stage, AR headsets still need a lot of improvement before they become
a common tool for everyday use. This longer lead-in time is mainly due to the techno-
logical challenges in stand-alone see-through optical devices and is the main reason we
are focusing on VR for now. In Chapter 6, we discuss on a fundamental level how the
knowledge gathered in this work transfers to AR.

VR offers a convenient platform for cognition experiments through its fully controllable
immersive environments. This enables, for example, a fruitful ground for psychology
experiments where people are exposed to various stimuli to better understand human na-
ture and behavior in a reproducible and controlled manner [29]. In the field of medicine,
VR interventions have been shown to be an effective tool in acute pain reduction [30]
and surgical training [31]. Many other perceptual studies can be carried out thanks to
the low development cost, maximum experimental control, high reproducibility, and ef-
fortless manipulation of stimuli.

2.1.2 Key Concepts

Immersion and presence are the two main concepts to describe the quality of a VR ex-
perience. Multiple definitions for immersion and presence have been formed over the
early years of immersive technologies. Mel Slater defines immersion as an objective
quality of a system’s ability to immerse a user in an experience, and presence as the
subjective feeling being present in the mediated reality [11]. In contrast, Witmer and
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Singer define immersion as "a psychological state characterized by perceiving oneself to
be enveloped by, included in, and interacting with an environment that provides a con-
tinuous stream of stimuli and experiences" [32]. VR research community is currently
using Mel Slater’s terminology. AR/VR has raised attention to further concepts such as
presence, ownership, embodiment, agency, and co-presence that have been studied in
philosophy, psychology, sociology, and cognitive science, which have always been part
of the human experience but became a point of interest for computer scientists as MR
advanced as a technology.

Sense of Presence

The sense of presence has been defined and operationalized in various ways over the past
few decades [33]. Mel Slater defines it as "the sense of being there", and breaks it into
subcomponents, place illusion and plausibility illusion [34], with the former referring
to the illusion of being in a place, while the latter describes the illusion of events taking
place in a VE. In [10], Lombard and Ditton use the words "perceptual illusion of non-
mediation" to define presence. Witmer and Singer [35] describe it as "the subjective
experience of being in one place or environment, even when one is physically situated in
another". Following these definitions, many measurement methods have been developed
[33, 36].

Presence is considered a defining characteristic of a VE, and it was assumed early on that
presence could be the vital sense in unfolding the full potential of VR [37]. Therefore,
the exploration of the factors that affect presence has been an important research topic.
Usoh and Slater [38] have investigated these factors in two categories, internal and ex-
ternal, by separating the subjective elements that are about to a user and the objective
features of a VR setup, respectively. Accordingly, the listed external factors are display
resolution and overall immersion of the VR setup, interactivity, interaction devices and
techniques, motion mapping, and responsiveness—most of which are the fundamental
properties of our reality. Others have looked at how presence relates to various types
of VR experiences including teaching and learning [39, 40, 41, 42], exposure therapy
[43, 44], marketing [45, 46], and gaming [47]. Overall, these studies have reported a
positive correlation between the sense of presence and positive outcomes.

Despite the empirical evidence showing a relationship between the sense of presence

15



and user experience, there is skepticism towards presence measurement tools and a
search for better tools [33, 36, 48]. Souza et al. [36] analyzed 239 user studies that
measure the presence, finding 85.8% used subjective measures (self-report surveys),
only 2.5% used objective measures (physiological signals), and 11.7% used a combina-
tion of them. The main skepticism toward self-report questionnaires is that they fail to
capture the phenomenon as it happens since the users have to report it after, and it is
ambiguous whether people have a shared understanding of the sense of presence. Re-
garding objective measures such as heart rate and arousal, it is considered problematic
to attribute presence as the causal factor or the main contributor where the content itself
can induce these states as well.

The sense of presence does not inhabit any social components. Social presence and
co-presence are the two concepts that are brought in from fields of sociology and social
psychology to describe the sense of being present with other people in a VE [49]. For a
taxonomy, readers are referred to [50]. Although social presence and co-presence have
been defined differently, they are being used interchangeably in VR research [39, 51].
Bailenson et al. [51] argue that the increase in collaborative virtual experiences requires
a detailed understanding of virtual interactions, with the sense of co-presence as one of
the constituents. The impact of avatar and behavior realism on co-presence has been
studied multiple times in the past with contradictory findings, with some studies re-
porting a positive correlation [52], and others reporting no relationship [53, 54, 55]. In
similarity with presence, co-presence is measured through subjective (self-report sur-
vey) and objective (behavioral, cognitive) measures.

Sense of Agency

A sense of agency has been defined in the fields of philosophy and cognitive science as
the “experience of oneself as the agent of one’s own actions—and not of others’ actions”
[56]. It is the sense that a person has of changing something in the external world: e.g.,
causing an object to move by picking it up or throwing it; or internally: e.g., thinking
about a particular topic, or making a decision. There have been many psychological
and neurophysiological studies that explore the sense of agency [57]. For example, the
sense of agency for participants in one experiment was reduced when an unexpected
sound was played when pressing a button, and when that sound was delayed [58]. In
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another study, both angular and temporal errors caused a lower sense of agency when
using a joystick [59]. It has also been shown that priming, i.e., giving a participant a
direct or subliminal hint about what the outcome should be before actually performing
the action, increased the sense of agency when deciding whether their actions or a com-
puter’s caused a moving square to stop at a particular position [60].

In VR, the sense of agency has been considered to be closely linked with the senses of
presence [61] and embodiment [9]. Recently, however, the sense of agency has been
conceptually recast as being a distinct percept, based on the three key principles of pri-
ority (intention-action-result), consistency (outcome matches expectation), and exclu-
sivity (no other cause except one’s own actions) [62]. This allows the sense of agency
to be explored as a percept in its own right in VR, distinct from others, and allows for
manipulations based on these principles to study their effects in VR.

Studies exploring the sense of agency in Human-Computer Interaction (HCI) and games
have found that when a computer assists a user in completing a task, e.g., controlling
an on-screen object using a mouse [15], or controlling a character in a game [16], at
some point the sense of agency is lost, even when the computer completes the task
correctly. These provide the motivation to deliver a strong sense of agency in AR/VR
by allowing a real person to throw a virtual projectile using their full body motion and
to perceive that the physical simulation of the ball’s motion meets their expectations,
given the forces that they have applied.

Computer animation has also been used to explore the perception of a virtual human
throwing a ball, where observers’ sensitivity to manipulations of overarm and under-
arm biological throwing animations were explored [63]. Participants perceived short-
ened underarm throws to be particularly unnatural, and simultaneously modifying the
thrower’s motion and the release velocity of the ball does not significantly improve the
perceptual plausibility of edited throwing animations. However, editing the angle of
release of the ball while leaving the magnitude of release velocity and the motion of the
thrower unchanged was found to improve the perceptual plausibility of shortened un-
derarm throws. Clearly, the relationship between the thrower’s motion and the resulting
trajectory of the ball has a strong impact on the perceived plausibility of the interaction,
but what will be the effect of the visibility of the projectile’s trajectory when the person
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themselves is throwing the ball?

2.1.3 Interaction Systems

Interaction system plays an important role in shaping the performance and the expe-
rience of a user in any type of HCI. With AR/VR, HCI has taken a more natural and
immersive form, amplifying the importance of the interaction system. Different from
computers and mobile devices, user interaction in AR/VR stimulate a wider range of
senses including immersion, agency, ownership, realism, and presence. Among the
many components of an interaction system, we will address the ones that are specifi-
cally relevant to our study, which are input devices/modalities, interaction techniques
and mapping, interaction visualization—or user representation. Readers are referred to
[64] for thorough coverage of 3D user interfaces.

Input Modalities

Input modality, or input device, specifies how a user sends information to the system
with the aim of interacting with it. Currently, the established modality of interaction in
AR/VR is handheld controllers or physical hands. Although both modalities provide a
degree of robustness, naturalness, and control, each has limitations. Researchers have
been studying these two input modalities together and separately in various settings to
understand how they shape user experience [65, 66, 67]. All of these studies commonly
report that users achieve better performance in tasks using handheld controllers, but
hand interactions induce more realism, presence, ownership, and enjoyment.

Moehring and Froehlich [67] investigated these two input modalities in more detail for
interactions within the reach of the user’s arms in a CAVE system and a head-mounted
display, finding that even though controllers are faster and more robust, finger-based
interactions are generally preferred. Seinfeld et al. [65] also included a custom key-
board in their comparison of interaction devices next to handheld controllers and hands,
finding that controllers and hands outperform keyboards in both performance and em-
bodiment. However, the performance aspect is highly related to the task performed,
and keyboards typically outperform other input devices in text entry tasks [68]. Lin
et al. [66] explored the same comparison in VR while also studying the effect of vir-
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tual hand sizes. They reported that despite worse performance in comparison with using
handheld controllers, subjects preferred using real hands for increased realism and own-
ership. No main effect of hand size on user experience was reported. Lin and Jörg [69]
further looked into the effect of visual hand appearance on the VHI using six different
appearances of hand, including highly realistic, cartoony, and zombie hands, as well as
a non-anthropomorphic hand: a wooden block. Leap Motion was used for hand tracking
and interactions. They reported that the created illusion of ownership is the strongest
with the highly realistic hand, and weakest with the non-anthropomorphic hand. More-
over, the appearance of the hand did not have an effect on the agency.

Argelaguet et al. [70] investigated the same problem as Lin and Jörg [69], again with
Leap Motion, using a different set of virtual hand representations, i.e., a sphere, a sim-
plified robotic hand, and a high-realism virtual hand. Contrary to their initial hypothesis
and Lin and Jörg [69], they found that the abstract representation provided a higher
sense of agency despite that the sphere only allows translational tracking. Furthermore,
the sense of ownership depended on the virtual representation, and the virtual repre-
sentations that are more morphologically similar induced a higher sense of ownership.
Lougiakis et al. [71] compared a different set of virtual representations, i.e., a sphere, a
handheld controller, and a hand, and using handheld controllers for tracking. The virtual
representation had no effect on agency, and the virtual hand provided the highest sense
of ownership. This suggests that the previous finding of Argelaguet et al. [70] about the
better agency of abstract representations may be related to poor tracking performance
by Leap Motion in tracking the detailed motion of fingers, leading to a more accurate
tracking in the representation with less DoF.

More recently, Adkins et al. [72] conducted a between-subjects study on interaction
devices (controller-based or hand-based interactions) and grasping visualizations (show
or hide virtual hand while grasping) together in a more involving VR game rather than
a short task, aiming to divert the focus of subjects from interaction to gameplay. Their
findings are in support of what was found by other studies: ownership, realism, enjoy-
ment, and presence are higher when hand-based interactions are used.
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Interaction Techniques

In interaction design, interaction metaphors are commonly used to explain one con-
cept in terms of another. An interaction metaphor controls the complexity of a system
by providing the users with a framework that aids in transferring prior knowledge in
an unfamiliar situation [73]. According to Erickson [74], "the purpose of an interface
metaphor is to provide users with a useful model of the system". The two common inter-
action metaphors in VR are virtual pointer [75, 76, 77, 78] and virtual hand [79, 80, 81]
metaphors, which are also categorized as egocentric metaphors [82]. Other less common
interaction metaphors include Worlds in Miniature (WIM) [83] and automatic scaling
[84].

In the ray-cast based interaction technique or the virtual pointer metaphor, a user uses a
ray that is typically cast from their virtual hand or controller to the virtual space to select
and manipulate objects in the environment. This interaction technique does not inherit
the fundamental challenges of virtual hand interaction techniques. However, there are
distinct challenges relating to both hardware and software, such as target occlusion,
ambiguity, density, input device accuracy, and latency. Currently, most of the hardware-
related challenges have been overcome, but there is no widely adopted interaction tech-
nique that solves all the software-related challenges. Numerous notable solutions have
been proposed for target assistance [75, 79, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93], which
is the grand challenge in ray-casting based interaction.

With the advancements in tracking technologies, gaze tracking is on the way to becom-
ing a common feature in head-mounted displays. In the first iteration of consumer VR
devices, i.e., mobile VR, the head direction was used as an approximation of gaze, and
it was used as the ray-casting tool since handheld controllers were not yet introduced.
More recently, eye tracking has become a built-in feature in the new MR headset by
Meta, i.e., Meta Quest Pro. Eye movement is a heavily researched topic that is infor-
mative about a person’s attention [94], decision-making [95], cognitive state [96], and
memory [94, 97]. To make use of gaze information to assist with the object selection
process, Sidenmark et al. [98] proposed Outline Pursuits, a two-step selection process
that involves the selection of a region and a gaze confirmation of the target object. In
the initially selected region, a moving stimulus starts outlining each object, and the user
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confirms the object by gaze-tracking the stimulus that outlines the target object.

As AR/VR platforms became able to accommodate a more advanced and wider variety
of applications that demand increased productivity, efficiency, and speed, task-specific
interaction techniques are being introduced, e.g., 3D-tracked multi-touch tablets for de-
sign [99], pen-based interactions for spreadsheet manipulation [100], a combination of
hand and pointer metaphors for immersive analytics [101]. Notably, Pham and Stuer-
zlinger [102] reported that their custom interaction pen outperformed typical handheld
controllers in pointing tasks both quantitatively and qualitatively. These results are
backed by the study conducted by Li et al. [103], in which tripod grip pen interac-
tions outperformed controller interactions in two separate experiments of long-range
and short-range interactions, suggesting that precision and dexterity of fingers should
be utilized further in AR/VR interactions.

Interaction techniques that adopt the virtual hand metaphor use a one-to-one mapping of
real-world actions, implementing fundamental interactions such as touching, grasping,
pushing, and pulling, that operate within the reach of a user’s arms. In virtual interac-
tions, perceptual plausibility is cumbersome to achieve, requiring convincing physics-
based simulations. As discussed before, real-time physics-based VR interactions are
difficult: first, haptic feedback is what regulates the amount of force a user applies in
real-life interactions, and the lack of it makes it difficult to estimate the amount of force
to apply in virtual interactions; secondly, a detailed calculation of the exchange of forces
is computationally heavy.

Holl et al. [104] have suggested using the Coulomb friction model as an approximation
of the friction force created between surfaces to implement plausible physics-based in-
teractions, including pushing, pulling, grasping, and dexterous manipulations. Kim and
Park [105] focused on modeling the deformation of skin globally, by a weighted sum of
the transforms, and locally, through sparse physics particles on the hand mesh. With this
contact heuristic, they can reduce the computational load to a reasonable level and itera-
tively calculate the deformations. Liu [106] formulated this problem as an optimization
task and synthesized hand motion using pose and desired trajectory priors.

More recently, Yang et al. [107] introduced Contact Potential Field, a learnable frame-
work that models hand-object interactions using springs that attracts and repulses ver-
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tices on hand and object based on affinity. Hand-object interaction modeling is not only
of interest to the AR/VR community, and it is also fundamental for HAR, robotic, and
teleoperation, in which a detailed understanding of the physical scene is vital [108]. We
will cover this subject in more detail in Section 2.2.2.

As the physics-based simulations of hand-object interactions are both costly and chal-
lenging, simple kinematic gestures are utilized heavily to support certain interactions.
For example, in high-end AR/VR devices such as Microsoft Hololens or Meta Quest
2 (using the hand tracking features), users perform specific hand gestures, including
tapping and pinching, to guide the manipulation of objects within their reach. In such
interactions, typically, the user still makes virtual contact with the object, but the object
is kinematic and the manipulation is triggered through the user’s gestures. Despite be-
ing a natural and intuitive form of interaction, these interaction techniques can trigger
fatigue and hinder accessibility and utilization of the virtual space [109]. Certain mod-
ifications that tackle these problems have been suggested, e.g., Go-go technique [79].
Accurate hand-tracking with off-the-shelf cameras has not been possible until recently,
which is a factor that highly impacts the quality of experience in what is supposed to
be a natural form of interaction. In the next section, we delve more deeply into gesture-
based interactions.

Gesture-based Interactions

A gesture is an intentional or unintentional pose or motion of a person’s upper limbs
for non-verbal communication. In daily communication with one another, gestures are
used habitually to express intention and add expressiveness. Because of this, gesture-
based interactions appear as the most natural form HCI can take. In terms of knowledge
transfer, the absence of gestures does not necessarily decrease the quality of the com-
munication under normal conditions, e.g., phone conversations [110], but gestures are
relied on when speech is not enough to follow the conveyed meaning, i.e., high noise
[111]. A gestural-based interaction is therefore quite different since gestures play a pri-
mary rather than a secondary role, requiring users to be very conscious of what and how
they perform. This highlights the difficulty of coming up with a natural and intuitive set
of gestures that are easily memorable and performable by everyone [112, 113, 114].

Nielsen et al. [114] drew attention to this problem by designing the gestures with con-
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sideration to the system rather than to the user by coming up with a set of gestures
that a system can easily decode, but this led to a bad interface, creating a set of ges-
tures that are difficult to memorize, rationalize, and use effectively. This highlights
the importance of user-centered interface design. Further studies have explored using
psycho-physiological measures such as intuitiveness and comfort in the design of ges-
ture vocabularies [115].

Despite great advances, gesture-based interactions are not yet able to match mouse and
touch-based interactions on 2D displays according to the two-dimensional Fitts’ law
[116], as shown by Sambrooks and Wilkinson [117]. The well-known Fitts’ law [118]
postulates that the time to move to a target depends on the size of the target and the
distance to the target. Initially developed for one-dimensional movements, many modi-
fications have adapted it to two-dimensional and three-dimensional interfaces since then
[119]. In another study, Jones et al. conducted a comparison of Leap Motion and mouse
interactions on user experience and performance, finding that Leap Motion leads to
worse productivity and user experience overall. It is important to note that none of these
studies have performed the comparison in a three-dimensional environment, which is
a difficult domain for the adaptation of Fitts’ law, according to Triantafyllidis and Li
[119]. As accurate real-time tracking of human motion and gesture recognition is a
prerequisite for gesture-based interactions, we discuss these aspects in Section 2.2.2, in
particular for the hands.

Interaction mapping

Interaction mapping specifies how a user’s physical motion is translated into a digital
environment and utilized as an input signal in a digital system. Steuer [120] defines it
as, "the manner in which actions performed by users of interactive media are connected
to corresponding changes in the mediated environment". The impact of interaction map-
ping is two-fold; first, it restricts the user to performing interactions in a certain way,
causing certain physical involvement; second, as a consequence of the employed map-
ping, the user’s altered input affects performance, in return affects the user experience,
e.g., enjoyment, presence. The effect of interaction devices on user experience and per-
formance has been conveyed in Section 2.1.3, which showed that controller-based inter-
actions, albeit less natural, achieve better performance compared to the use of physical
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hands. Similarly, it is important to assess how and whether more natural interaction
mappings can enable better AR/VR experiences.

Video games have been significant in the study of interaction mappings, as they can
simulate complex alternative realities with varying degrees of abstraction, e.g., a vir-
tual car controlled with a keyboard/mouse or a steering wheel simulator in a car-racing
simulation game. Furthermore, video games are known to induce spatial presence by of-
fering a partially immersive medium in which users can interactively influence the flow
of events [120, 121]. Skalski et al. [122] proposed a typology of natural mapping con-
sisting of four types: directional (e.g., keyboard arrows to provide directional control),
kinesic (i.e., involvement of body without a realistic controller), incomplete tangible
(e.g., Nintendo Wii controller), and realistic tangible (e.g., arcade games with gun con-
trollers). They conducted two studies evaluating users’ gaming experience in two types
of games (driving and golf simulation) with different sets of controllers belonging to
different categories and found that the controllers with higher perceived naturalness en-
hanced the spatial presence of users.

McGloin et al. [123] conducted a similar comparison between a handheld controller and
a natural Wii controller in a tennis simulation video game, finding that natural mapping
was a predictor for game enjoyment. Notably, they also reported that natural mapping
was a predictor for the realism of graphics and sound, pointing to an underlying rela-
tionship between interaction naturalness and perception of realism. Shafer et al. [124]
also investigated motion-based controllers (Wii, Kinect, and Sony Move), and looked
at their impact on spatial presence, perceived reality, and enjoyment. The researchers
found that the players’ perceived reality influenced their spatial presence, and their spa-
tial presence impacted their enjoyment. Differently, Shafer and Popova [125] studied
three levels of naturally mapped interfaces, each from a category of Sklaski’s typology.
They found that in control mappings without an object in hand, i.e., the body as the con-
troller, perceived interactivity had a significant impact on perceived realism and spatial
presence, while in mappings including an object or a controller in hand, the perceived
reality was the major predictor of spatial presence. Successively, spatial presence af-
fected enjoyment.

As AR/VR came to fruition, researchers have started examining natural mappings in
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these platforms. Seibert and Shafer [126] compared the experience of gaming in VR
versus on a computer. In the VR case, they utilized Razer Hydra, a dual-wielded
motion-sensing game controller, which is an incomplete tangible mapping with respect
to Steuer’s typology [120]. The computer condition utilized a keyboard and a mouse,
representing directional mapping. Simultaneous to the assessment of interaction meth-
ods, they compared the significance of display types for spatial presence and perceived
controller naturalness. Researchers reported that the spatial presence was affected more
by the controller type, i.e., Razer Hydra or mouse and keyboard, than the display type,
i.e., HMD or computer display. Interestingly, users perceived the mouse and keyboard
as more natural compared to Razer Hydra, emphasizing that a natural interface needs to
be intuitive. Recently, Reer et al. [127] investigated natural mapping (VR versus com-
puter) in the context of Self-determination theory (SDT), a theory for human motivation
and psychological functioning, to understand game enjoyment. They hypothesized and
affirmed that a more natural mapping like VR is positively related to two postulates of
SDT, autonomy and competence needs, which in turn positively affects game enjoy-
ment. Similar results were reported in other studies [128, 129].

The literature shows that more natural mappings lead to greater enjoyment and user sat-
isfaction. However, as shown in the case of Razer Hydra, certain devices can reduce the
naturalness of a mapping if users are unfamiliar with them. Most research on natural
mappings has been conducted in games for user enjoyment, but there are many other
aspects that are interesting and essential for VR. For example, the effect of natural map-
pings in the context of sports has not been studied in detail. Furthermore, most studies
so far compare VR and computer gaming, but it would be more useful in the future to
focus on comparing AR/VR specific mappings, such that human perception of three-
dimensional virtual interactions can be explored more deeply.

Interaction Fidelity

There is no established objective measure to compare different interaction methods. De-
veloped by McMahan [130], the "Framework for Interaction Fidelity Analysis" (FIFA)
is a notable framework for evaluating different interaction techniques. In the most re-
cent version of this framework [3], provided in Figure 2.1, an interaction is evaluated
on three categories—biomechanical symmetry, input veracity, and control symmetry.
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Figure 2.1: The User-System Loop and the three categories of revised FIFA, from [3].

Biomechanical symmetry is a measure of how much the virtual implementation of an
interaction resembles the real interaction, e.g., throwing a ball using a 2-DoF mouse
(Low biomechanical symmetry) versus throwing a ball using your body (High biome-
chanical symmetry). The input veracity component looks at how precisely an input
device can capture a user’s motion. For example, a wearable IMU sensor has lower
tracking accuracy and higher latency compared to a motion capture system, and hence
lower input veracity. Lastly, control symmetry refers to how much control an interaction
provides to the user in a real-world task. As an example, they compare the selection and
manipulation of a virtual object using two different techniques—a handheld controller
that directly parents the virtual object with no positional offset and a ray-casting tech-
nique that does the same with an offset. While the former has high control symmetry,
the offset of the latter is a limitation on the control, providing low control symmetry.

Following FIFA, McMahan et al. [3] pursued a case study of past research and catego-
rized the adopted interaction techniques. They found that high and low-fidelity interac-
tions lead to comparable performances, but medium-fidelity interactions result in poor
performances. They argue that a low interaction fidelity (IF) resembles mainstream in-
terfaces, and it is therefore easier to adapt to. High IF, on the other hand, is closer to
how we interact with the physical world, making it natural and intuitive. This relation-
ship between interaction fidelity and performance creates a U-shaped curve, which they
interpret as the "uncanny valley of interaction fidelity".
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Specifically for VR, Rogers et al. [131] investigated the effect of IF on player experi-
ence for object manipulation and whole-body movements. They found that, while high
IF offers better object manipulation, whole-body movement interactions are not pre-
ferred at high IF, where people are more in favor of abstractions. These results seem to
contradict the hypothesis of an uncanny valley for interaction fidelity.

Haptics Rendering

Haptics rendering refers to the simulation of the sense of touch over kinesthetic and
tactile modalities. Kinesthetic feedback involves the sensation of force and torque by
muscles, tendons, and joints. Tactile sensations by mechanoreceptors embedded in the
skin include pressure, vibration, and shear [132]. These modalities have different utili-
ties: kinesthetic feedback supports the estimation of force-related measurements such as
weight, whereas tactile feedback aids in the identification of interaction material type.
As haptic feedback is a factor in throwing, we include a brief review here, and refer the
reader to a survey by Basdogan et al. [133] for more detailed coverage.

Haptic displays can be classified as active [134, 135, 136], passive [137, 138], or hybrid

[139, 140]. In active displays, simulation is carried out by the actuators on the device.
In stationary active displays (ie., the device is grounded), generated forces can easily
be counterbalanced, allowing a wide range of forces to be simulated. PHANToM [134]
is an early example that tracks and exerts forces on the fingertips, as is HapticMaster
[135], which provides a high-performance interface using a grounded robotic arm. More
recently, Siu et al. [141] used pin arrays to develop a tabletop haptic display. The pin
of arrays can be programmed to take different shapes and act as both active and passive
feedback. Furthermore, the display can be mounted on a robot that navigates next to the
user. While stationary displays can accommodate more DoF and feedback sensitivity,
they heavily restrict the motion of the user and are expensive and complex to develop.
Handheld haptic displays are a low-cost, high-mobility alternative, albeit with limited
capability, and include exoskeleton [139, 142, 143, 144], shape-changing [136, 145] and
torque-generating [146, 147] displays.

Passive haptics is the technique of including physical objects or devices in virtual inter-
actions to represent the haptic feedback of virtual objects. Passive haptic feedback can
be implemented in the form of passive proxy objects around the user [137, 138], or in the
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form of wearable equipment [148]. It is shown in multiple studies that the inclusion of
passive haptics in VE can improve user presence and performance [137, 149, 150]. Pas-
sive haptics is particularly powerful in the simulation of tactile feedback where actuator-
based generation is too complex, e.g., hair. Carlin et al. [149] have simulated the haptics
of a virtual spider using a toy spider during arachnophobia. In another study, the railing
on a raised platform was utilized as passive haptics for exposure therapy on the fear of
heights [151].

In the third category of hybrid displays, the device again contains actuators, but the ac-
tuators do not exert a force directly on the user. Zenner and Kruger [140] introduced
the concept of Dynamic Passive Haptic Feedback (DPHF), where the actuators on their
novel handheld display, Shifty, operate to manipulate the weight distribution of the de-
vice. In their evaluation of Shifty, they compared it against passive proxy objects and
found that their device increases perceived realism and fun. In a different work, Zenner
and Kruger [152] introduced Drag:on, another handheld DPHF device with haptic feed-
back based on drag and weight shift. Each of the five states refers to a specific shape,
creating different weight distributions and different drag forces applied during motion.
An exoskeleton hybrid haptic display is Dexmo [139]. As a user moves their hand in a
VE wearing Dexmo, the exoskeleton activates force feedback when it detects a fingertip
collides with a virtual object. The force feedback is limited to the locking of the finger
cap, which simulates the feeling of touch at the fingertip.

Both active and passive haptics have their shortcomings: active haptic approaches gen-
erally involve complex hardware and software and are expensive; passive haptic ap-
proaches are typically application specific, so lack generalization and reusability. Hy-
brid solutions, e.g., DPHF, try to bridge the gap between active and passive haptics,
but still cannot be generalized for a variety of actions. Despite many research efforts
[132, 153, 154], the incorporation of haptic displays into mainstream AR/VR has been
slower than for visual and auditory technologies. Common input devices, e.g., handheld
controllers, cannot render kinesthetic effects such as virtual weight or inertia, and can
only deliver limited vibrotactile stimuli. Consumer AR/VR requires cost- and energy-
efficient, portable, non-invasive, and socially acceptable haptic displays, such as the
bracelet- and sleeve-type wearables, such as those proposed by Pezent et al. [155] and
Zhu et al. [156].
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Figure 2.2: PIVOT, an actuated wrist-worn haptic device (from Kovacs et al. [4]).
.

Redirected walking is a well-known topic of research in VR locomotion where a user’s
perception is hacked in a way that their physical locomotion is not the same as their
virtually displayed locomotion such that limited physical spaces can be used more ef-
fectively for moving around [157]. Several adaptations of this technique to haptics
research have been made to improve the use of passive haptics [158, 159, 160]. These
techniques are based on the evidence that vision dominates proprioception [161]. The
potential improvements for passive haptics are two-fold: first, redirected walking can
manipulate a user to think that a passive proxy object represents multiple virtual objects
in the VE [160]; second, these exploits can loosen the spatial constraints on the design
and the implementation of passive haptics. Zenner et al. [162] proposed a combination
of DPHF with haptic retargeting to show how the use of haptic retargeting can be ex-
tended beyond passive haptics. The utilization of haptic retargeting has enhanced the
capabilities of their DPHF device. Lastly, encountered-type haptics is a novel category
that explores using drones [163, 164, 165], robots [166, 167, 168], and custom setups
[169], utilizing the high mobility of these devices to simulate dynamic feedback to a
user in VR.

Most relevant to throwing, Kovacs et al. [4] developed PIVOT, a wrist-worn haptic de-
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vice that has an actuated pivoting elliptic handle for haptic feedback, shown in Figure
2.2. Allowing grasping, catching, and throwing, the device is also capable of rendering
dynamic forces acting on virtual objects to the user, such as gravity and inertia. For
example, when a user grabs an apple hanging from a tree in a VE, the device is able to
apply a counter-directional force to render the resistance of the branch. When reaching
for a virtual object in a VE, the pivot handle automatically approaches the user’s palm
for synchronized contact. When throwing, an object typically requires the person to
open their hand to let go of the object, so the device uses touch sensors to release the
virtual object from the hand. A user study on throwing shows that their device performs
quite well, although participants who wore PIVOT for extended periods of time reported
feeling numbness in their hands. However, the advantages of providing haptic feedback
may outweigh these drawbacks. By providing a realistic sense of touch, users can gain
the ability to exert realistic forces on virtual objects, which can enable fully physics-
based interactions. Such a system would require a precise, real-time way of estimating
or measuring the force exerted by the user, which is an ongoing research problem in-
volving AR/VR, computer vision, and robotics [170, 171, 172, 173].

In a perceptual study, Villegas et al. [14] developed a training scenario to investigate the
user experience of using real haptics vs. controller-based interactions. The users trained
using their real hands and interacting with real objects. For the hand-held controller,
an alternative training was provided, with no augmented real objects but only virtual
elements. Their results showed that the feeling of presence and embodiment, as well as
the performance, has improved with real haptics. With respect to lifting in VR, Gomez
et al. [174] demonstrated that manipulating the animation of a self-avatar can generate
different haptic perceptions.

Biophysiological Signals

The interest in improving the life quality of people with physical impairments has
drawn research efforts into exploring the use of neural activities to simulate motions
through actuating robotic extensions [175, 176, 177]. The goal of this type of research
is to develop a mapping between neural activity and performed motion and to simu-
late this motion through actuated robotic extensions such that an impaired person can
carry out an action cognitively without having to physically perform it. The studies
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mainly employ the tracking of brain signals through Electroencephalography (EEG)
[175, 176, 177, 178], but they also explore tracking the activity of skeletal muscles
through Electromyography (EMG) [179, 180], and hybrid solutions that include both
[181, 182].

With the emergence of AR/VR, these methods are being investigated as alternative inter-
faces for more natural, non-obtrusive interactions [183, 184, 185]. In particular, EMG
readings from forearm muscles are studied for hand pose and orientation estimation
[186], gesture recognition [187], and force estimation [173]. Notably, Zhang et al.
[173] introduced an interface that estimates the applied force per finger using forearm
EMG. They simultaneously capture fingertip forces and skeletal muscle activity in the
forearm and then train a supervised model to detect the fingertip forces from decoded
EMG readings. They demonstrate their results on different actions such as pinching and
pushing.

There are major challenges to these technologies that prevent them from becoming the
mainstream input signals for AR/VR. First, the readings of electrical signals are highly
susceptible to noise and interference, and therefore not easily decodable. Secondly,
there is a large variation between humans, which makes generalization difficult. In
EEG, the activity in the brain can change during the day for the same action, which
makes data collection a challenging process [178].

2.1.4 Sports Training and Assessment

Professional sports is a highly competitive industry with high utilization of technology
in every aspect, including performance assessment, coaching, simulation, injury reha-
bilitation, and many more. Computer vision has been one of the critical research do-
mains, used for automated tracking of movement and action detection for performance
assessment and broadcasting enhancements [188]. While earlier works relied on human
supervision [189], recent methods can automatically extract player trajectories using a
single camera [190]. Huge progress has also been made in action detection [191], which
we cover in detail in Section 2.2.2. However, affordable vision-based solutions fail to
provide detailed tracking of all players and may suffer from issues such as player occlu-
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Figure 2.3: A conceptual model that shows the components of a VR sports task (from
[5]).

sion, and field of view.

On the other hand, sensor-based tracking offers accessible, lightweight, affordable solu-
tions for kinematics analysis in sports [192]. In these approaches, raw sensor readings
from sports equipment [193] or players [194] are wirelessly communicated to a com-
puter for offline or real-time processing using various methods such as CNNs [195],
SVMs [196], HMMs [197], and DTW [198]. Please see [188, 192, 199] for a thorough
review.

Sports training is another domain where technology plays an indispensable role through
affordable and fully controllable digital training methods that facilitate skill acquisi-
tion. These methods range from video playbacks for decision-making training [200] to
immersive VEs for motor skills training [201]. Regarding motor skills training, a sys-
tematic review conducted by Michalski et al. [201] showed the scarcity in the number
of studies published that suitably evaluate the type of motor skills training performed.
They excluded 34 out of 38 articles for not assessing the transfer of virtually acquired
skills to the real world, which is reasonable given the fact that any virtual training is
meaningless unless the skills can be transferred to the real world. This requires longitu-
dinal, carefully planned studies such as [202], in which intermediate baseball players are
adaptively trained for batting in a projection-based display, and then their statistics were
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analyzed in the following season, as well as the highest level of competition they reach
in the following five years. The reviewed studies targeted beginner- and intermediate-
level players, which raises the question of whether VR in the current fidelity that it can
provide is good enough for expert sportspeople to benefit from. The scarcity of studies
reported in the review by Michalski et al. [201] also highlights the complexity of setting
up motor skills training studies, in terms of technology, design, and recruitment. Wood
et al. [203] tackles one of the technological challenges by evaluating the construct va-
lidity of their training VE, which is "the degree to which the simulation provides an
accurate representation of core features of the task".

In the category of perceptual and cognitive training, video-based methods have been
repeatedly reported to be successful in skills development, and a detailed review can be
found in the survey paper of Larkin et al. [204]. More immersive display technologies
such as CAVE and VR offer more variety in the types of training facilitated. For exam-
ple, Argelaguet et al. [205] explored sports psychology by developing a VE that seeks
to induce competitive anxiety and pressure on trainees in a pistol shooting simulation,
which may be impossible to achieve in a non-immersive technology. Lynch et al. [206]
investigated the ability of rugby players to detect deceptive motions such as a side-step
by displaying stimuli in a CAVE system. Other perceptual training formats for athletes
include sports vision training for visual skills such as depth perception, and perceptual-
cognitive training for perceptual-cognitive skills such as decision-making, and anticipa-
tion. Many survey papers successfully convey the current state of the field: Fadde and
Zaichkowsky [207] draw attention to the importance of deliberate practice— a term in-
troduced by Ericsson et al. [208] to formulate the type of specialized practice needed to
achieve "expert" skills— and reviewed different video-based and VR-based approaches
for perceptual-cognitive skills; Hadlow et al. [209] introduced a framework to col-
lectively described different training methods (vision training and cognitive-perceptual
training) and reviewed the emerging technologies with regards to this collective frame-
work; Neumann et al. [5] reviewed interactive display technologies for sports using a
broad conceptual model (see Figure 2.3); Appelbaum and Erickson [210] focused on
sports vision training and surveyed the emerging technologies; Faure et al. [211] re-
viewed how VR has been used for sports training with a focus on team ball sports.

In relevance to our work on virtual throwing, Covaci et al. [19] developed a VR free-
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throw training system with feedback guidance. The proposed system utilizes a large
immersive display showing a basketball court, in front of which a user stands and per-
forms a virtual free throw using a physical basketball that has a restricted motion range.
The motion of the basketball is tracked by a motion capture system and its trajectory
is simulated in real-time and projected onto the screen. In this system, three different
visual conditions are compared: first-person perspective, third-person perspective, and
third-person perspective with trajectory guidance feedback modes, providing insights
on the potential use of guidance feedback for training.

Regarding event detection in sports, Schuldhaus et al. [212] performed an offline anal-
ysis of shot/pass classification in soccer using inertial sensors attached to the legs of
players. Their classification pipeline involved the extraction of peak detection from ac-
celerometer data to locate events, segmentation, and feature extraction (mean, variance,
skewness, and kurtosis) as data preprocessing, and model training (SVM, Classifica-
tion and Regression Tree (CART), and Naive Bayes (NB)). A similar setup was used
in tennis by Connaghan et al. [213], consisting of an inertial measuring unit (IMU) on
a player’s forearm for offline stroke detection. Different from these studies, our virtual
throwing system performs real-time point-of-release detection.

2.2 Human Motion

The interest in a better understanding of human motion relates to most fields including
but not limited to sports, entertainment, medicine, and business. Our work focuses on
two specific case studies: ball throwing and dumbbell lifting.

2.2.1 Throwing

In this section, we cover the literature on throwing with a focus on overarm/underarm
throwing in VR and PoR. The biomechanics of throwing is the assessment of the mo-
tion as throwing is performed [214] through various tracking equipment such as motion
capture, video cameras, and wearable sensors. Research in this field mainly interests
professionals that seek to improve and assess sports performance [215], avoid injuries
[216, 217], understand phenomenons [218, 219, 220], and design equipment [221].
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Proximal-to-distal sequencing (P-D sequence) is a widely known phenomenon in activ-
ities involving overarm throwing, which characterizes the generation of muscle activa-
tion and motion gradually from the more central to distal joints, e.g., starting with the
shoulder, then the elbow, and finally the hand. Initially discovered by Herring and Chap-
man [222] in an investigation of simulating overarm throws, P-D sequencing is regarded
to be developed as the most efficient way of throwing [223]. It is extensively studied
in sports, including in baseball [224], javelin [225], American football [226], handball
[227, 228]. There are several studies not conforming to this phenomenon [227, 228].

Critical to our work is the works of Hore et al. [218, 219, 220, 229] on the timing of
finger opening in overarm throws. Following the work of Calvin [230] and Becker et
al. [231] that suggest different timing windows for precise throwing, Hore et al. [219]
investigated the capability of the central nervous system (CNS) in the control of release
timing, and found that accurate and fast long throws require a release window precision
of less than one millisecond. In their next study, Hore et al. [229] tested the hypothesis
that proprioceptive feedback from wrist and elbow motion helps with the timing of the
release, which they found was not the case. Hore et al. [218] followed this up with
the proposal of an internal model for back forces applied by the ball to the fingers and
gathered evidence that is consistent with the proposed model. Lastly, Hore et al. [220]
investigated the precision of finger opening without the existence of a ball, finding that
throwers were less rapid in performing it. This is a critical finding for our work on virtual
throwing which is performed without the involvement of a physical object. However,
all of the discussed studies on release timing have looked at fast, long-ranged throws,
which falls outside of our scope for now. This is discussed further in future work (see
Chapter 6).

Maselli et al. [232] investigated the predictability of target hit region in non-expert
real throwing using kinematic cues. Using Principal Component Analysis (PCA) for
dimensionality reduction and Linear Discriminant Analysis (LDA) for classification,
they analyzed motion kinematics over various sizes of time intervals. They reported
that while between-thrower style variations were present and heavily influenced the
results, the outgoing direction prediction can be accurately performed as early as 400-
500ms before the point of release. Interestingly, they found that the contralateral arm
and lower limbs contained the most important cues for such early predictions. In another
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study, Maselli et al. [233] used the data from their former work [232] to examine the
ability of non-experts to predict the future trajectory of a ball throw by intercepting it
with a racket in VR, with one hypothesis being that the motion of throwing informs
the observer and improves their interception score. Assessing three different conditions
displaying ball only, thrower only, and both thrower and ball, they provided evidence of
intrinsic knowledge of extracting action outcomes even in non-experts.

Zindulka et al. [17] conducted an experiment to evaluate how real throwing performance
compares to throwing in VR. For virtual throwing, they employed the HTC Vive Con-
trollers, through which the users have pressed a button to release the virtual ball. In the
experiment, they evaluated the subjects in three conditions: overarm throw (vertical tar-
get), underarm throw (horizontal target), and overarm throw (far horizontal target). For
each condition, a virtual replica of the real set-up was created. They reported that throw-
ing in VR is half as accurate and one-third as precise as real throwing. They argued that
the inability of the users to precisely time the release due to the VR controllers could
be the reason for this. This is one of our contributions to the virtual throwing system
that we suggest, which does not require any intermediary device such as a controller.
In a similar work, Butkus and Čeponis [18] investigated virtual throwing with a focus
on distance perception. Different from Zindulka et al. [17], a VR controller was not
employed for virtual throwing, instead, a throw was initiated once the velocity of the
hand, estimated through a Vive tracker, started decreasing during a swing motion. They
concluded that people apply 3-5% more force when throwing in VR, but also commu-
nicated significant limitations such as a limited pool of participants.

2.2.2 Gesture and Action Detection

The advent of ubiquitous computing has amplified the importance of gesture, action, and
activity recognition. A gesture is a specific type of physical movement (e.g., pinching
motion), an action is a specific type of behavior (e.g., grasping), and an activity is a
broader term that can encompass both gestures and actions (e.g., playing throw and
catch). Our focus in this discussion will be on gesture and action, and readers are
referred to [234, 235] for surveys on activity recognition. While gesture recognition is
studied more in the context of HCI [236], action recognition scopes numerous fields,
such as healthcare monitoring [237, 238, 239], sports performance assessment [212,
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213, 240], smart environments [241, 242] and security surveillance [243].

Vision-based and wearable-based devices are the two main types of devices used for
gesture and action recognition. Vision-based solutions are more accessible and already
implemented in consumer VR, such as real hand tracking in Meta’s Quest 2 headset
[244], but they suffer from occlusion, poor lighting conditions, and privacy concerns.
Wearable-based solutions, e.g., smart wristbands, do not have these restrictions since the
tracking sensors are located directly on the body, however, they risk being invasive and
motion-restricting. With wristbands and gloves being the more common wearable-based
devices, other alternatives include surface electromyography (sEMG), motion capture
systems, and various sensors [245]. sEMG is a promising technology that is being heav-
ily researched, involving a set of sensors to be placed on the body to measure muscular
activity. Some of the main challenges of sEMG devices, such as high noise-to-signal
ratio and sensor crosstalk, selection of a suitable sensor setup, and user comfort, pre-
vent the technology from fully taking off, currently limiting the use to prosthesis and
rehabilitation [246]. Yet, Meta has publicly shared their interest and investment in this
technology, and it is likely that wristband sEMG devices will complement, or replace,
handheld controllers in the near future [247]. Last but not least, high-end MoCap tech-
nologies such as optical motion capture, e.g., Vicon, and multi-sensor data fusion, e.g.,
XSens, are very costly, and mainly used for capturing large amounts of data in film
studios and research facilities. A real-time utilization of this data requires real-time
streaming of the data to a separate computer.

In vision-based approaches, one or multiple cameras capture the upper body limbs of the
user. Typically, the captured images are preprocessed to segment and extract informa-
tive features of the hands, e.g., a region of interest (ROI), and optical flow histograms,
which are processed for gesture/action detection. Before the advent of deep learning,
many different methods were explored, including HMMs [248, 249], SVMs [250, 251],
DTW [252, 253, 254, 255], and many more [256, 257]. For example, Cabral et al. [258]
designed an interface that the users can interact with using their heads and hands. In
their processing pipeline, a face detection algorithm finds the head position and skin
color, followed by the detection of hand positions using color segmentation. The in-
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troduction of commodity depth cameras, e.g., Kinect, was another leap forward in this
field, accelerating research in gesture recognition [259, 260, 261, 262], action recogni-
tion [263], and hand tracking [264, 265]. Similarly, Leap Motion Controller (LMC),
a sensor device released in 2013, enabled effortless hand tracking using infrared cam-
eras and LEDs, paving the way further for the translation of natural gesture motion into
computers [266]. This controller accommodated many gesture recognition studies: In
[267], Lu et al. developed a dynamic hand gesture recognition system using a Hidden
Conditional Neural Field (HCNF) classifier; Martin et al. [268] proposed a pipeline
that implements multi-class SVM operating on data from both LMC and Kinect devices
simultaneously; Chuan et al. [269] and Mohandes et al. [270] explored the use of LMC
for an American Sign Language recognition and Arabic Sign Language recognition, re-
spectively.

Deep learning has become the primary method for recognition tasks in both vision-based
and wearable-based setups due to its exceptional performance in detection and estima-
tion problems. Deep learning models are able to accurately approximate very complex
nonlinear functions by hierarchically extracting low-level and high-level features from
input data. The main limitation of deep learning is the requirement for vast amounts
of data and computational power. However, for learning tasks that utilize image and
video data, the prevalence of such datasets negates this limitation. Convolutional neural
networks (CNNs) are prevalent in learning from image [271] and time series data [272].
Tran et al. [262] extracted hand contour and fingertip information using a Kinect camera
to train a CNN to recognize seven complex hand gestures. Wu [273] proposed a double-
channel CNN (DC-CNN) network that processes hand images and edge-detected hand
images separately over several layers, connecting them at a fully-connected layer before
classification. In [274], Mujahid et al. trained YOLOv3, a highly efficient and effec-
tive object detection model [275], for gesture recognition, and also evaluated it against
several other popular object detection models, VGG16, SGD, and SSD. The sequential
modeling capabilities of LSTMs, RNNs, and three-dimensional CNNs have also been
explored. Hakim et al. [276] investigated spatiotemporal feature learning by combining
LSTMs and CNNs in an architecture for dynamic hand gesture recognition. To enhance
the utilization of temporal dynamics both ways, Pigou et al. [277] suggested an ar-
chitecture with bidirectional RNNs. A detailed survey on vision-based approaches for
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gesture recognition can be found in [256].

RNN and LSTMs can struggle due to vanishing gradients in learning very long-term,
which is required in fields such as natural language processing (NLP) and human mo-
tion learning tasks. Vaswani et al. [278] introduced Transformer, a parallelizable neural
network architecture based on attention mechanisms that excel in learning long-term de-
pendencies. Transformer architectures have been shown to perform better than LSTM
and RNN architectures in comparative studies [279, 280]. Transformers have since been
explored greatly, as discussed in detail in [281]. Also recently, Graph neural networks
(GNNs) are receiving a lot of attention from researchers due to their ability to model
complex forms of data that are structured as a graph [282]. GNNs are powerful in
utilizing the node connectivity in data that is naturally structured as a graph, e.g., so-
cial networks and chemical compounds, but other data such as human motion can also
be represented as a graph, with joints as nodes [283, 284]. In [283], Yan et al. de-
veloped spatial-temporal graph convolutional networks (ST-GCN) for skeleton-based
action recognition, in which joints and joint connections represent nodes and spatial

edges, respectively, and same-joint connections over consecutive frames represent tem-

poral edges. Adopting this approach, Li et al. [285] developed a hand gesture graph
convolutional network (HG-GCN) that can learn from a small dataset of hand motions
and achieve fast, high-accuracy detection on two hand gesture datasets.

Although vision-based approaches receive more attention due to being low-cost, ubiq-
uitous, and outside-in, wearable devices are generally more robust since they are not
affected by external conditions, such as lighting and occlusion. Many alternative ap-
proaches are being explored in the research on wearables for gesture-based interactions.
For example, triboelectric sensors utilize the triboelectric effect, a phenomenon in which
certain materials become electrically charged when they are separated from another ma-
terial with which they were previously in contact. These sensors are very low-power,
as demonstrated by the study of Tan et al. [286], in which a self-powered, i.e., with-
out needing an external energy supply, full keyboard is implemented on a novel gesture
recognition wristband with triboelectric sensors, achieving a maximum of 92.6% ac-
curacy. Similarly, Wu et al. [287] developed a self-powered smart glove for gesture
recognition using triboelectric effects. Moreover, Moin et al. [288] introduced a small
wearable biosensing system with low energy consumption that performs in-sensor adap-
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tive machine learning of gestures, achieving a classification accuracy of 97%. Their
method utilizes hyperdimensional computing (HD), a computational approach that is
inspired by the way the brain processes information. It is based on the idea that the
brain uses patterns of neural activity, i.e., high dimensional vectors, rather than scalar
numbers, to perform computations. This approach has been studied in the literature as a
way to improve computational efficiency and performance in areas such as text classifi-
cation [289], speech recognition [290], EEG classification [291], and many more. For a
thorough review of HD and triboelectric sensors literature, readers are referred to [292]
and [293], respectively.

2.2.3 Change Point Detection

The examination of time series data to detect the occurrence of an abrupt event is called
change point detection (CPD), with important applications in fields such as medical
monitoring [294, 295], climate change detection [296, 297], seismology [298], smart
homes [299], human activity recognition [300, 301], image analysis [302], and speech
recognition [303]. Time series data analysis is a heavily researched topic that is founda-
tional to the current state of technology [304], providing CPD research with numerous
tools, including many supervised and unsupervised methods [305]. Aminikhanghahi
and Cook [305] thoroughly reviewed the terminology, methods, and evaluation metrics,
laying out several of the important challenges in the field such as algorithm robust-
ness and handling non-stationary time series. In terms of using supervised methods,
an additional challenge is annotating large amounts of data containing many different
transitions, especially in fields that contain many class labels.

A fundamental difference between CPD techniques and our technique is the assumption
that the two states before and after the transition follow different distributions, which is
at the core of many introduced techniques in CPD research. In [295], Aminikhanghahi
and Cook explore transition-aware activity segmentation from continuous readings of
smart home sensors. They employ a non-parametric density ratio technique called SEP
[299], which models the density ratio of two consecutive windows of a fixed size to
decide whether a change point occurs, and use it to enhance activity recognition. Their
proposed system requires readings from times (t+1) and (t+2) to make a decision for
time t, referred to as 2-real time. In situations where sensor readings are not frequent,
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this may mean long time intervals. In our approach to release detection, we formulate
it as a prediction problem and build up our knowledge from the start of the throwing
motion. Bermejo et al. [306] tackled the same problem using an embedding-based
approach, achieving better accuracy with a computationally low-cost algorithm.

2.3 Perception of Human Motion

2.3.1 Effort and weight estimation

There have been many studies on the perception of character motion. For example, Har-
rison et al. [307] investigated sensitivity to changes in limb length during animation; Re-
itsma and Pollard [308] explored sensitivity to errors in human jumping animations; Jain
et al. [309] studied the ability to identify adult vs. child motion; McDonnell et al. inves-
tigated the perception of sex from walking motion [310]; Hodgins et al. [311] showed
that anomalies in facial motion were more disturbing than in body motion; Hoyet et
al. [312] demonstrated that people are sensitive to errors in pushing interactions, and
earlier explored the perception of human motion when lifting different weights [313].
Other work explores the attractiveness of human motion [314] and how motion attrac-
tiveness impacts people’s comfortable proximity to avatars [315].

Work examining interactions in VR includes Canales et al. [316], who compared dif-
ferent visualizations of hands for grasping tasks and found that if the hand was accu-
rately tracked and allowed to penetrate objects being picked up, performance was better,
but if the motion was adjusted to avoid interpenetration, users preferred it. Other work
showed that when people were asked to adjust an avatar to match their body proportions,
they underestimated weight by 10-20%, but other parameters were generally within +/-
6% [317].

In a very relevant study, Kenny et al. [318, 319] explored people’s sensitivity to mis-
matches between avatar body size and motion for pushing, lifting and throwing actions.
Data was collected for two weight groups of male actors performing each action. Par-
ticipants viewed the animations on avatars that matched or mismatched the size of the
performer. They were not able to detect these mismatches, and naturalness ratings were
not degraded, but participants did change their interpretation of the physical activity.
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For lifting, heavier avatars were perceived to lift heavier objects, but motion had no
significant effect, with similar results for throwing. For pushing, there was a significant
interaction with motion, where light avatars animated with the motion of heavy actors
were perceived as pushing lighter sleds than heavy avatars animated with light actors’
motions. Notably, the objects the avatars were interacting with were not visible, which
allowed observers to interpret the change in stimuli as reflecting a change in object
properties (e.g., a heavier imagined sled). Such freedom is unrealistic in most practical
scenarios, so in our work, we include visualization of the manipulated object.

Beyond computer graphics, there has been a strong interest in understanding people’s
ability to perceive dynamics from motion. Runeson and Frykholm [320] proposed the
theory of kinematic specification of dynamics (KSD), “which states that movements
specify the causal factors of events,” citing varied evidence of people perceiving var-
ied dynamic quantities (e.g., the mass of colliding objects [321]). Gilden and Prof-
fitt [322] counter-argue that people use heuristics to make these judgments, and they
are only accurate for a “single dimension of information” (particle motions). Blake and
Shiffrar [323] suggest both motion and human form are important for judging actions.

Starting with the pioneering work of Runeson and Frykholm [324], much of the re-
search on the perception of dynamics from human motion has focused on a box-lifting
task and employed point-light displays (video that shows only points, normally at joint
centers), with one study substituting a dumbbell lift [325]. Studies consistently show
that people are able to estimate the weight of the lifted box [20, 21, 324, 326, 327]
or dumbbell [325]. The accuracy of their estimates varies widely, from near perfect
correlation between actual and perceived weight (e.g. the female actor in [324]), or cor-
relations of .9 in ideal conditions [327], to much lower accuracy in other studies ([327,
Exp. 5], correlations below .5 in [21]). One paper found people were less accurate
below 30lbs [20] and another that they overestimated light weights, and underestimated
heavy [21]. The lifting phase of a lift and carry motion is sufficient to make the judg-
ment [326].

Variations of the study design that improve estimates include: showing a reference lift
of a specified weight [324, 325, 327], although this acts as an attractor [20], not telling
the actors the weight of the box [324], having people perform their own max lift to
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gain haptic experience [325, 327], knowing the size of the lifter [20], rating a single
lifter at a time [21], and using average strength actors [327]. Video outperformed point-
light displays in [328], suggesting there is important information beyond kinematics,
something we explore by adding muscle strain cues.

Studies also observed kinematic changes that correlate with weight, chiefly object veloc-
ity decreases with weight [21, 325, 326, 328], although not with all actors [21]. Dwell
time at the start of lift, hip angle [326] and max trunk velocity [21] also vary. Manip-
ulating kinematic patterns can change weight perceptions [326, 327]. However, it was
insufficient to show only the motion of the box [327, 328] or one degree of freedom
movement of the elbow for dumbbell lifts [325]. Neck strain in a filmed pilot study
was mentioned as a cue by participants [324], something we simulate. Finally, there is
a response in the motor cortex that is consistent with force cues from kinematics and
from hand contraction state, which manifests visually in the color and deformation of
the hand [329]. Other work also suggests the motor cortex may be active in motion
perception [330].

Grierson et al. [328] found that box size information does not confound the perception
of lifted weight for point-light displays that indicate box size, but people thought a
small box weighed less with a video presentation. Gordon et al. [331] found people
scale motor programs for a lighter weight when lifting a smaller box, but after the task,
estimate that the smaller box is heavier. Visual cues appear to be integrated into the
programming of manipulative forces during precision grip.

Some studies asked viewers to estimate effort as well as weight. Shim et al. [21] found
participants made fewer errors estimating lifters’ effort, but if people knew a lifter’s
size and weight before making judgments, their estimates of weight and effort became
comparable. An unexpected result showed participants judged heavier lifts of a much
stronger and larger lifter as being lighter to those of a normal, weaker lifter moving
less weight. Since ordinal judgments were correct, they suggest observers may be more
attuned to effort than weight [327]. Other work explores how physical interactions can
imply the presence of an unseen object [332].
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2.3.2 Perception of Physical Interactions

O’Sullivan et al. [333] explored the factors that affect a user’s perception of a collision
in a real-time simulation. In such systems, an approximately accurate result is usually
more acceptable than the delay caused by calculating a physically accurate response.
They determined that delayed collision responses and angular and momentum distor-
tions of an object’s trajectory affect the perceived plausibility of such simulations, and
that viewpoint also plays a role. Hoyet et al. [312] also found that errors in timing,
forces, and incorrect angles can reduce the plausibility of physical interactions between
virtual people.

Vicovaro et al. [63] tested user sensitivity to manipulations of overarm and underarm
biological throwing animations. Participants perceived shortened underarm throws to
be particularly unnatural, and simultaneously modifying the thrower’s motion and the
release velocity of the ball did not significantly improve the perceptual plausibility of
edited throwing animations. However, editing the angle of release of the ball while
leaving the magnitude of release velocity and the motion of the thrower unchanged was
found to improve the perceptual plausibility of shortened underarm throws. These stud-
ies have motivated the selection of the factors we wish to explore in our PoR experiment.

Nusseck et al. [334] investigated people’s ability to rate a bouncing ball’s elasticity and
predict its future position. They found that people employ different heuristics in solving
these tasks, which suggests the provided information is critical in how people approach
such tasks and come up with heuristics.
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3 Virtual Throwing: Initial Exploration

This chapter describes the studies conducted in the early stages of the work that have
been insightful in making important design decisions for the later work. This includes
an experiment investigating the effect of visual trajectory cues on the accuracy of virtual
throwing, and a first attempt at PoR detection using feedforward neural networks in a
supervised manner.

Throwing is one of the rudimentary actions that humans learn to perform as infants. It is
also integral to many sports games and it has even been suggested by some researchers
to have a key role in human evolution [230]. We consider throwing to be an important
inclusion in AR/VR as a virtual interaction for fields such as entertainment, sports train-
ing, and even rehabilitation in certain situations.

3.1 Exp. T1: The Effect of Visual Cue on Virtual Throw-
ing

Despite rapid developments in AR devices, their field of view (FOV) is still much lower
than for VR headsets (e.g., the diagonal FOV of 52◦ for the Microsoft Hololens™ vs.
113◦ for the HTC Vive™ Pro 2). This reduction in visual feedback can be problematic
for certain tasks, such as ball throwing. We present an experiment in VR, where par-
ticipants threw a virtual ball at virtual targets, with different levels of visual feedback.
The objective of the experiment was to investigate how visual cues affect the way that
participants perform virtual throws, which may be useful for the design of AR/VR sys-
tems. Eighteen participants used their own body motion to throw a virtual ball at virtual
targets and we simultaneously captured their full body motion (MoCap) using an optical
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motion capture system for offline analysis.

Previously, as we discussed in detail in Section 2.2.1, Zindulka et al. [17] found that
people are less accurate when throwing in VR than for real throwing, while Butkus
and Ceponis [18] found that throwing accuracy in VR increased with distance and that
throwing velocity was higher in VR than in reality. These studies used a device to
control the ball, whereas, in our study, we use VR gloves to emulate more closely the
experience of a real throw. Nusseck et al. [334] demonstrated the difficulty of predicting
the properties of a bouncing ball during manipulations of the trajectory’s visibility. We
also vary the visibility of a thrown ball’s trajectory in VR.

As a first study, we developed a VR experiment where participants used their full bodies
to throw a virtual ball at virtual targets. We varied the amount of visual information
about the ball’s trajectory and found that this visibility was an important factor in their
performance.

3.1.1 VR Implementation

The Virtual Environment (VE) was displayed using an HTC Vive™ headset and created
in Unity. The VE contained a block with the virtual ball on top and a 50cm diameter
target on the ground (see Figure 3.1). Participants entered the VE standing next to the
block, facing the target region. The block was on the same side as the participant’s hand-
edness. We aimed to generate interactions that felt natural, created a sense of agency,
and maintained focus on the task. To vary the target distances, we divided the floor
surface into three regions 2m wide and 75cm deep, starting at 1.25m from the partic-
ipant, and separated from each other by 1.25m. During development and testing, we
observed that it was difficult to throw the ball very far, so we reduced the furthest point
of the Far region by 50cm. A floor plan of the virtual environment is provided in Figure
3.2. Overall, the minimum and maximum intervals of the distances a region can contain
between a thrower and a spawned target are as follows: Near region [1.25m, 2.24m],
Medium region [2.50m,3.40,m], and Far region [3.75m, 4.12m]. All target positions
were generated randomly within each region in real-time for each participant.

We implemented two tracking types: i) an HTC Vive controller was attached to the
throwing forearm for real-time arm tracking. Manus VR gloves provided real-time fin-
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Figure 3.1: L: VR scene where users performed virtual ball throws during data capture;
R: Equipment used in the VR capture. Motion capture suit, a Manus VR glove, and an
HTC Vive controller

ger tracking through 10 sensors that measure the fingers’ proximal and intermediate
phalanges and this information is wirelessly transmitted to Unity to control VE interac-
tions; and ii) we also captured participants’ full-body motion for later offline analysis

with a 21-camera Vicon optical motion capture system and 53 body markers at 120Hz
(See Fig. 3.1). To synchronize, we established a connection between the VR computer
and the motion capture system by sending a timecode via the Vicon Datastream Unity
SDK when the virtual ball is released, allowing the PoR in the motion capture data to
be located.

We implemented two algorithms for grabbing and releasing (throwing) the ball. The
grab mechanism was initiated when two conditions were met: i) index and middle finger
phalanges made contact with the ball, which was tracked using the primitive colliders
on the hand and ball objects, and ii) index and middle fingers were flexed to the point of
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Figure 3.2: Floor plan of the virtual experiment space displaying the sizes of target
spawn regions (Near, Medium, Far) and the participant’s standing position.

a ball grab. The flexion amount was set before the capture for each participant by asking
them to hold a real tennis ball with the VR gloves as we recorded the finger flexion data.
Once the virtual ball was grabbed during the capture, its position was interpolated to the
predefined center of the hand and it followed the hand during the throw motion up until
the PoR. Between the grab and release, a velocity estimation algorithm continuously
calculated the average velocity over a window of the nine previous frames, which was
applied to the ball at the frame it was released.

A realistic implementation of the release mechanism is very critical in shaping the ex-
pectations of the user and satisfying their intentions. In reality, a ball release happens
naturally, and the forces exerted between the ball and the palm occur without much con-
scious mental effort. The details of this force exchange are calculated according to the
various properties of interacting surfaces such as friction coefficient, mass, and velocity.
For a virtual ball release, not only do we not have access to all this information, but we
also do not have the hardware to instantly measure, compute and simulate the throw
with all these details. Therefore, in order to implement a natural and simplified release
algorithm, we decided after many trials to use a rotational rate of change in index and
middle finger phalanges of 3o /sec as a threshold, which provides a good indication of
an opening hand. Once this threshold is passed, the ball is released from the hand. In
the frame that the ball is released, we fetch a timecode from the MoCap computer to
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later pinpoint the release in the motion data. We treat this timecode as the ground truth
PoR for our motion analysis (although it should be noted that this is not the true ground
truth, but rather a heuristic).

3.1.2 Method

Eighteen participants (10F, 8M, aged 18-38) were recruited from University students
and staff. Self-reported familiarity with VR was low on average. Each participant wore
the gloves, tracker, and motion capture suit, and following calibration, they each per-
formed a total of 63 virtual ball throws (out of which only the first 21 were used for the
hypothesis testing) at targets of random distances, giving an overall total of 1134 throws
for all participants. There were no restrictions or guidance on how to perform the throws
other than asking the participants to stand inside a square displayed at their feet so that
they maintained their distance from the targets. They each used their preferred hand for
all throws. Participants were allowed to repeat the throw if the ball dropped uninten-
tionally, which was a common situation in the early throws of the capture. Furthermore,
some participants found the task easier than others, which led to some noise in the data.
Visualizations of the data can be found in the Appendix.

When a target was hit or missed, the target turned respectively green or red. Two levels
of visual feedback Mode were presented: (i) in Full mode, the ball was visible through-
out the full trajectory of the throw; and (ii) in Minimal mode, the ball was only visible
until it was grabbed, after which it would gradually fade in the participant’s hand and
remained invisible for the duration of the throw. Therefore, they only knew whether
they hit the target or not when it changed color. To vary the Distance of the targets,
we divided the floor surface into three regions with a width of 2m, referred to as Near

(1.25-2m), Mid (2.5-3.25m) and Far (3.75-4m). The depth of the Far region was re-
duced in size during testing, as it proved to be very difficult to hit any targets beyond
that distance. Targets were spawned randomly within these regions at run-time.

Wearing the headset, gloves, tracker, and mocap suit, 18 participants (10F, 8M, aged
18-38) each performed a total of 21 virtual ball throws to targets at random Distances
in one of the visual Modes. They were instructed to stand inside a square at their feet in
order to maintain their distance from the targets. Each participant performed 21 throws:
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Figure 3.3: VR experiment: a participant grabbing (l), throwing (m), and receiving
visual feedback (r)

Figure 3.4: Results from the VR experiment (see Table 4.1 for all significant effects).

1 Mode (Full or Minimal, in counterbalanced order) at 3 Distances (Far, Mid, Near),
with 7 repetitions of each condition. All conditions were presented in randomized order

3.1.3 Results and Analysis

We conducted a mixed repeated measures Analysis of Variance (ANOVA), with between-
groups categorical predictor Mode(2) and within-groups independent variable Distance(3).
The dependent variables were throw Velocity (meters/second) and throw Error (distance
in meters of the ball’s first-floor contact from the center of the target). Post-hoc analysis
was performed using Bonferroni tests. The results are presented in Table 4.1 and Figure
3.4(a,b).

Post-hoc significance testing of the Mode effects revealed that Error was higher and
Velocity was lower in the Minimal mode (i.e., Minimal < Full); and the Distance effects
show that both Error and Velocity increased with distance (i.e., Near < Mid < Far).
However, the interaction effects (Mode X Distance) show that there is no significant
difference between Full and Minimal at the near distance. In Full mode, Error is largest
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Table 3.1: Significant effects (p < 0.05) for ANOVA with effect sizes (partial η2)

Effect F p η2

THROW ERROR

Mode F1,16 = 20.4 < .0005 .56
Distance F2,32 = 67.9 < .00005 .81
Mode × Distance F2,32 = 9.1 < .005 .36
THROW VELOCITY

Mode F1,16 = 17.0 < .005 .52
Distance F2,32 = 89.0 < .00005 .85
Mode × Distance F2,32 = 4.3 < .05 .21

at the Far distance, but is not significantly different for Near and Mid, i.e., (Near ≈
Mid) < Far), whereas Velocity is lowest at the Near distance, but does not differ for
Mid and Far (i.e., Near < Mid) ≈ Far). Nevertheless, our results confirm that reduced
visual feedback results in increased errors and decreased velocity. Our finding that error
increased with target distance is different from previous results in virtual throwing [18]
with a controller, but is more consistent with the real world and suggests that using one’s
own body and finger motions may be important when trying to emulate real throwing.

At the end of the experiment, participants were asked to rate their agreement or dis-
agreement with the following statements on a Likert scale from 1-6: Q1: I felt like the

arm belonged to me; Q2: I felt like I was in control of the ball; and Q3: I felt like

the ball behaved as I expected. We present the average ratings in Figure 3.4(c). The
low sample size for the between-groups factor Mode did not show any significant dif-
ferences between Full and Minimal modes. Participants agreed the most with Q1 and
the least with Q3. As ratings were recorded only once at the end, a better future option
would be to increase participant numbers or to collect ratings more frequently during
the experiment.

Finally, we processed the high-quality full-body motion capture data for follow-on anal-
ysis. We fitted a skeleton to the cluster of markers to locate body joints. Both joint po-
sitions and rotations were recorded and the correlation between the velocity calculated
from this data and that calculated at run-time was high (>0.8, p<.05, N=1134), indicat-
ing that acceptable tracking accuracy was achieved during the real-time experiment. We
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also counted the percentage of overarm and underarm throws for each combination of
factors and found that people use overarm throws more often than underarm, but that
they use them less often in the absence of visual feedback. (See Figure 3.4)(d).

Our results demonstrate that limited visual feedback detracts from virtual throwing per-
formance, as the throwing error increased and the velocity decreased when minimal
visual cues were present. However, the results of self-report questionnaires did not
demonstrate improved plausibility or immersion, which needs further exploration. We
also found that error increased with throw distance, unlike previous results with a con-
troller, which suggests that emulating natural hand/ball interactions may result in a more
realistic experience. Our results may provide insights for the design of new experiments
in AR/VR, and motivate further studies to explore factors that contribute to plausible
and immersive physical interactions, such as accurate/plausible physical simulation of
interacting objects, object and surface deformations, haptic feedback, and visual appear-
ance.

3.2 Detection of Point of Release

Following the experiment, we used the captured data in our first attempt at PoR detection
by training a binary classification model. Our approach is summarized in Figure 3.5.
In a typical immersive VR gaming setup, using a VR headset for display, a data glove,
and a single tracking sensor to trigger the throw of the virtual ball, 18 participants used
their full-body motion to throw a virtual ball at virtual targets while fully immersed in a
VE. We synchronize the mocap data with the real-time PoR using timecodes sent from
the VR engine. We trained multiple frame-level binary classifiers to detect the Point of
Release (PoR) of the ball based on different combinations of the Vicon motion features
(rotation, position, linear and rotational velocity) of the main arm joints (wrist, elbow,
and shoulder).

From our results, we are able to identify which are the most promising joint-feature
combinations for identifying the PoR in real-time (Section V). This can then provide
guidance on where to place a small number of low-cost wearable sensors or markers
that can be tracked in real-time and provide plausible results. For example, we found
that the wrist is the most informative joint and rotation is the most informative motion
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Figure 3.5: Overview of our approach. We extract joints and motion features from high-
quality motion data and use them to train binary classifiers to detect the Point of Release
(PoR) of a thrown projectile from limited real-time data.

feature for detecting the point of release of a throw.

3.2.1 Throw Detection Model

In this section, we describe the steps performed to develop our proposed throw detection
model, including data preprocessing, motion feature extraction, and model training.
The dataset consists of high-quality motion data and release timecodes of 1134 virtual
throws. We train a frame-level binary classifier that uses sliding window analysis to
detect the PoR frame based on the estimated probabilities inferred from the motion
feature input. The four motion features we use are Position (P), Velocity (V), Rotation
(R), and Rotational Velocity (RV). The classifier is supervised based on PoR timecodes.
In this study, we limited the scope to exploring the impacts of joints and motion features,
although many other features could be explored as a follow-on.
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Data Preprocessing

The motion capture system automatically fits a skeleton in real-time to the point cluster
of marker positions. The skeleton consists of a hierarchy of 30 joints with the hip joint
as the root node. The skeleton is unique for every participant as their body and limb
sizes can vary. We read joint positions and rotations from the output motion files [335].
To locate and extract throwing motion sequences, we center a window of W frames,
called the throw window (see Figure 3.6), at the PoR frame of each of the 1134 throws.
We set W to 51 frames (425 milliseconds) to include the most important phases of a
throwing motion and remove the redundant data where the participant was idle. The
cleaned dataset included W ∗ 1134 frames of human motion data.

Next, we transform the joint rotation representations of the throw data into quaternions
since they are provided as Euler angles. Euler angle parametrization is not ideal for
machine learning due to discontinuities and singularities. Despite having one addi-
tional parameter than the Euler representation to encode the rotation, their advantages
of yielding numerically stable systems outweigh this disadvantage (see [336] for a thor-
ough review of rotation parameterizations).

Position P is originally measured with respect to the center of the motion capture space,
so we convert it to the relative position by changing the origin of the coordinate system
to be the hip center of the participant. We also calculate the position of the arm joints
projected onto the direction the thrower is facing. Thus, we remove any variability
introduced by the orientation of the thrower and improve the generalizability of our ML
model. To project the position locally, we first identified local axes and then projected
global position to each local axes, i.e., dot product. In our identification of the local
axes, we assumed that local y-axis is the up direction, i.e., (0,1,0); x-axis is the vector
from the left shoulder to the right shoulder; and z-axis is the cross product between x-
and y-axis, i.e. cross(x,y).

In the VR capture, participants were instructed to move their lower body as little as
possible to maintain a distance from the virtual targets, so only the upper body contained
relevant information about the throw. To further lower the number of dimensions in the
data, we used only the three joints along the throwing arm, i.e., wrist (W), elbow (E),
and shoulder (S).
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Velocity V is estimated using the finite-difference method on positions, i.e., Vf = (Pf −
Pf−1)/∆f where f is the frame index, ∆f is the time between frames and is a constant
= 1/120 seconds (8.3 ms). We calculate Rotational Velocity RV using the angle-axis
representation of rotation data, where rotation in 3D space is a unit vector representing
the direction and a scalar θ represents the rotation magnitude. RV calculation using
this representation is identical to linear velocity calculation, so RV = ∆θ/∆f , where
∆f is the time between frames and is a constant = 1/120 seconds (8.3 milliseconds).
Applying the finite-difference method, RVf = (θf − θf−1)/∆f .

For every frame in each throw window, the joint motion features of a number of previous
frames up to and including that frame are extracted and sequenced in an array to form
a sliding window of size w . Note that this process ensures that the model can be used
in real-time as it does not require information about future frames. We extract the four
motion features P, V, R, and RV from the motion data. Besides being intuitive, these
features are central to human biomechanics studies [337] and are calculated from the
position and rotation data described above.

Lastly, for all throws, a binary vector (the target vector) of size W is also defined, where
the element corresponding to the ground truth PoR frame (i.e., the center frame) is set
to True and all others are set to False. This, however, creates a highly skewed dataset
with zeros significantly outnumbering ones by 1:(W − 1). We handle this in our model
by using a weighted loss function or downsampling the data.

Model Training

All of these data are used to define a joint-feature configuration, or design matrix X ,
which is used as input to our model for training. The size of any X is specified by
the number of joints used times their motion features (e.g., {P, V} for wrist, {R, RV}
for shoulder) and the number of sliding window frames. Let M = {M1,M2, ...,Mm}
denote the set of motion features where each Mi ∈ RDi . Let J = {J1, J2, ..., Jn} be
the set of joints and each Ji is linked to a subset of motion features Mk , Mk ⊂ M , i.e.,
Mk → Ji . Every motion feature is included as many times as the sliding window size,
w . Accordingly, the total number of columns in the design matrix can be calculated as:
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Figure 3.6: Data preprocessing: A sliding window sequences motion features from the 6
previous frames and the current frame to form the model input of a single frame. This is
repeated for each joint used by the model. Motion features are P=Position, V=Velocity,
R=Rotation, RV=Rotational Velocity; the Target vector contains a single True label at
the PoR, ft .

#columns = w
n∑

i=0

∑
∀Mk→Ji

Dk (1)

Each of the motion features contributes to the size of the input by their dimensions.
Positions are three-dimensional, rotation quaternions are four-dimensional, and both
velocity and angular velocity (magnitudes) are one-dimensional. Equation 1 is useful
because we are applying a search over multiple combinations of joints and motion fea-
tures. The number of rows in X is specified by the throw window size, W , times 1134
throws. The final size of X is (1134×W ) by #columns . To create the target array, we
stack 1134 target vectors, so the final size is 1134×W . Stochastic gradient descent was
used for optimization. All of the features were scaled and transformed where necessary,
e.g. skewness. Input data is formed by merging data from different joints with any
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subset of motion features. In total, with three joints and four features, this creates a set
of twelve joint-feature selections. A full configuration, therefore, means that all twelve
joint-feature selections are included. Following Equation 1, this creates 7×3×9 = 189

columns in X .

The models consist of stacked, fully connected feed-forward neural network layers with
a sigmoid layer at the output and binary cross-entropy as the loss function. The input
dimensions and the number of neurons in hidden layers varies based on the type of
joint-feature combination being used, but networks are shallow due to the dataset being
small. ReLU activation was used, and each fully connected layer was followed by batch
normalization and dropout.

The models are developed using PyTorch [338]. Parameters of the network are initial-
ized using uniform Xavier initialization [339] and we used a batch size of 128. The
learning rate was initially set to 0.05 and it was decayed by a factor of 0.75 when there
were no improvements. Each model was run for a maximum of 50 epochs with early
stopping.

Algorithm 1: Delayed Response (DR) algorithm
Input : Moving-averaged window of probabilities, {p0, ...pT}
Output: framemax , max

pthreshold = 0.5, max = 0

while i < T and max_reached = False do
if pi > pthreshold then

if pi > pi−1 then
max = pi ; framemax = i ;

end
else

max_reached = True;
end

end

Detection Methods: We use three methods to estimate the PoR frame in a throw window

from the model’s output probabilities (see Figure 3.7). The first approach is inspired by
the nature of a real ball throw, i.e., a release cannot be reversed and it can happen
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only once during a throw window. In our first method, First Nonzero (FN), we start
classifying each frame in the throw window starting with ft−25 and detect a release at
the first estimated PoR frame. The classification is done based on the specified threshold
value p. In our analysis, we used probabilities (p = 0.3) (FN30) and (p = 0.5) (FN50).
For each classified throw, the distance between the detected PoR frame and the real PoR
frame is stored.

The FN method offers a very basic solution but it only applies a threshold p, and it does
not assess the rate of change at the model output as the motion unfolds. We propose a
second method, Delayed Response (DR), that introduces a small delay in order to check
the rate of change at the output probabilities of the model. The delay is introduced by
a moving-average filter centered around the target frame in order to reduce the noise at
the model’s output. After searching over different filter sizes, we found a filter size of 5
frames to be optimal, causing a delay of 2 frames.

Similar to FN, we also apply a threshold to avoid the algorithm from being prone to
noise. A pseudocode is provided in Algorithm 1. We have used threshold values of
p = 0.3 (DR30) and p = 0.5 (DR50) in our analysis.

When the network is passed an entire throw window, it outputs a pseudo probability
distribution over the window. Our third method, Gaussian Fit (GF), fits a Gaussian dis-
tribution to this sequence of probabilities and sets its mode to be the detected PoR frame.
The use of all frames in a window means that this method is not applicable for real-time
use, but is useful for comparison and we expect an increase in PoR detection probability
around the ground truth. It acts as a gold standard that displays the optimal performance
of the network and avoids any performance drops introduced by the detection methods.

Model Evaluation: We evaluate a trained model using multiple metrics such as detec-
tion rate and average detection error. We use a novel metric, within, which uses the size
of the time mismatch between the actual and estimated PoR frames to calculate accu-
racy. In Change Point Detection research, it is common for algorithms to be evaluated
on within, e.g., within-x seconds change-point detection [299]. We prefer this metric
because common binary classification metrics do not provide enough insights into the
capabilities of a time series classification model. To clarify this point with an example,
let us assume that a trained model has a classification accuracy of 90 percent, meaning
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for a throw motion window of 100 frames, a significant number of frames would be
classified correctly. However, if one of the falsely classified frames is near the begin-
ning of the motion, the model would evaluate it as a release and initiate the throw at an
early point in the motion. Therefore, the model needs to be evaluated by its ability to
cluster the estimated PoR frames around the real PoR frame, whether they are correctly
classified or not. We formulate within(d) as follows:

within(d) =
1

100

100∑
i=1

1(|arg(Ŷi = 1)− arg(Yi = 1)| ≤ d) (2)

where Yi represents the target vector for one throw, Ŷi represents the predicted target
vector, 1(.) is the indicator function and 100 is the size of the test set. Since within(x)

sums up estimations that are less than x frames apart from the ground truth, within(y) >
within(x) for any y > x . It is thus a cumulative and monotonically increasing function
(see Fig. 3.9).

In words, within(d) metric displays the percentage of throws in the test set that are
detected within d frames of distance from the actual PoR. For our data captured at 120
Hz, a frame mismatch of size 10 results in a shift of 83 milliseconds (<0.1 seconds).
We provide the results using the within metric as it appears to be effective in the current
study. Clustering the estimated PoR frames around the actual PoR frame has highlighted
the importance of the correct classification of non-PoR frames rather than PoR ones.
We observed that the ideal classification of a throw, i.e., the whole throw window is
classified as zero except the throwing frame, almost never occurs. Hence, we modified
the weighted loss further to bias it towards the correct classification of non-PoR frames.

3.2.2 Results

The trained models were tested by randomly subsampling the full set of throws into 10
subsets of size 100 each. Each subset was separated from the rest of the data and was
not exposed to the model at any step until the very end for evaluation. As a baseline
classifier, we have used Scikit-learn [340] to train multiple k-Nearest Neighbor (kNN)
models with different parameters (n). The best-performing one is picked and used as the
baseline classifier. The kNN classifier with the best results was achieved with n = 2.
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Figure 3.7: Illustration of FN, DR, and GF methods. Ground truth lies at the center of
the window and scattered points represent the estimated probabilities of a frame repre-
senting a PoR. The FN method classifies the first frame that has a probability above 0.5
to be the PoR frame. The DR method runs a moving average filter and searches for the
maxima after probability 0.5 is reached (see Algorithm 1). GF method fits a Gaussian
distribution to the window of probabilities and assigns the argmax frame as the PoR of
the throw window.

In phase 1 testing, we first performed a semi-exhaustive analysis over a group of joint-
feature configurations to try to rank motion features and joints by their performance
for frame-level throw classification. We used both real-time methods, FN and DR. The
configurations are color-coded and sorted based on their within(5) accuracy using DR
method in Figure 3.8. We interpret the results of the semi-exhaustive analysis and offer
general findings. Based on these phase 1 results, in phase 2 we select several key joint-
feature configurations and a more thorough analysis of multiple metrics is presented,
shown in Figure 3.9. We choose the configurations with the goal of optimizing data size
and model performance, in order to create a relative importance ranking of features and
joints. Both phases involved training a unique model for each configuration.

Semi-exhaustive Analysis: The phase 1 results are obtained by averaging the within(5)

scores of ten test sets (see Figure 3.8). For the semi-exhaustive analysis, the config-
urations of the sets of joints {W ,E , S} and motion features {P ,V ,R ,RV } (where
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Figure 3.8: Table of joint-feature combinations and within-5 results of the First Nonzero
(FN50) and Delayed Response (DR50) methods, averaged over ten runs and sorted by
Delayed Response values. Each column in the table represents a joint-feature combina-
tion. Each row represents a joint-feature selection. The color indicates that data from
the specific feature-joint selection is used in the model, e.g., column 1 uses position and
rotation for all three joints, but does not use any other motion features. W,E,S=wrist,
elbow, shoulder; P, V, R, RV=position, velocity, rotation, rotational velocity; L1, L2 =
number of neurons in each layer.

W=wrist, E=elbow, S=shoulder, P=position, V=velocity, R=rotation, RV=rotational ve-
locity) are as follows:

• Every single motion feature Mi is linked with all possible combinations of 1, 2,
and 3 joints (i.e., {W , E , S , WE , WS , ES , WES}; e.g., in Fig. 3.8, col. 2 shows
the combination of R with all three joints.

• If device A measure features P and V, and device B measures R and RV, we choose
all combinations that they can measure. Thus, we always pair P with V (P-V) and
R with RV (R-RV). All combinations of motion feature pairs are linked with all
three joints, i.e., col. 1 is combination P-V, R-RV, col. 4 is R-RV, column 5 is
P-V.

• Position and rotation (P-R) together are linked with all joints (col. 3).

• If a device C measures all features P,V,R,RV, we apply this device to each single
joint W,E,S (col. 6, 7, 10).

61



Looking at the DR ranking, first 4 configurations have very similar results, reaching
above 70% accuracy. The only configuration that achieved above 70% using a single
motion feature is rotation (column 2), which suggests that rotational information is very
critical. The comparison of configurations 2 and 8 also show that wrist rotation is not
very critical when elbow and shoulder rotations are used. Moreover, all configurations
using only R in two-joint combinations (columns 8, 11, 14) perform relatively well,
indicating that rotation is informative for all three joints.

Another important observation is the poor performance of configurations involving only
velocity (columns 31, 33, and 34). This is intuitive for the elbow and shoulder, as they
do not move a lot in an overarm throw unless the motion is very intense, which was
rarely the case in this dataset. The motion along the arm relies heavily on the type of
throwing performed, e.g., motion occurs along the whole arm in an underarm throw, but
only in the forearm for a light overarm throw. An analysis that categorized the dataset
into overarm and underarm throws showed that there was in fact a higher percentage of
overarm throws (64%). This partly explains the poor performance of a position and/or
velocity features in all combinations of {E , S}. The surprising result of wrist velocity
with FN exceeding DR in within(5) performance has two interpretations. One is that the
network’s output hardly reaches the p = 0.5 threshold, and the smoothing introduced by
DR lowers the probability below 0.5. Secondly, the 2-frame delay pushes the predicted
PoR out of the within(5) range and thus harms the performance. However, it is not clear
why wrist velocity exhibits poor detection performance.

The slightly worse performance of rotational velocity versus rotation can be explained
by rotation having multiple dimensions and thereby containing more information about
the motion. Rotational velocity, on the other hand, is a scalar magnitude and therefore
the model finds it difficult to learn to distinguish motion patterns. The model trained
on the linear velocity of the wrist (column 31) does not suffer from the same issue,
probably because it exhibits a more distinctive pattern around the PoR frame.

The comparison of DR and FN performances provides some insights on the capabilities
of our system. While both methods require the network to be 50% convinced to make a
decision, the use of the rate of change in DR causes an advantage in informative joint-
feature configurations such that the probability curve guides DR to a more accurate
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Configuration Wrist Elbow Shoulder
C1 P,V,R,RV P,V,R,RV P,V,R,RV
C2 P,V - R,RV
C3 V - R
C4 P,V - -
C5 - - R,RV

Table 3.2: Selected joint-feature configurations for phase 2, where P = Position, V =
Velocity, R = Rotation, RV = Rotational Velocity. Results are provided in Figure 3.9.

detection. This advantage decays as the configurations become less informative of the
PoR, and even results in worse performance in some cases, caused by the moving-
average filter. FN, on the other hand, displays less variation in performance among all
of the configurations due to its more basic nature of it.

In the best 16 configurations, a clear advantage of DR is observed. Starting from config-
uration 17, the performances of both methods are fairly similar with FN being superior
in a few cases (columns 27 and 31). Thus, we are evaluating those configurations by
their FN results. Looking at configurations 20 and 28, it is seen that the exclusion of
linear velocity in the wrist joint causes a big drop in performance. This idea is supported
by the comparison of configurations 31, 33, and 34 where models are trained using lin-
ear velocity on a single joint.

Overall, the findings are:

• R is the most informative single motion feature when all joints are used (column
2).

• P, V on their own are significantly more informative for the wrist joint (columns
12, 22) than for the elbow (columns 19, 27) or shoulder (columns 31, 32).

• R-RV and P-V perform similarly when all joints are used.

Complete Analysis: As a follow-up on the semi-exhaustive analysis, we chose a selec-
tion of candidate joint-feature configurations, shown in Table 3.2, and evaluated them
using a selection of detection methods and multiple metrics. The configurations are cho-
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Figure 3.9: Point of release detection results provided as detection index histograms, de-
tection ratios (%throws), and mean absolute detection errors (#frames). The detection
methods Delayed Response (DR30, DR50), First Nonzero (FN30, FN50), and Gaussian
Fit (GF) are applied to the output of the trained neural network models of selected joint-
feature configurations (C1-C5). K-Nearest Neighbours (kNN, n = 2) with the FN50
detection method is provided as a baseline classifier. See Table 3.2 for configurations.

sen based on small but important differences between them. For example, C2 and C3
examine the impact of P and RV in classification accuracy. Comparison of C2 and C4
provides insights on the importance of rotational information, R and RV, of the shoul-
der. Similarly, C2 versus C5 conveys how necessary it is to have the position of the
wrist. For the detection methods, we have employed GF, DR, and FN methods. We
used two different threshold values, 0.3 and 0.5, to analyze their effect on DR and FN
performances. As a baseline, we have trained a kNN classifier (n = 2) for each selected
configuration. See Figure 3.9 for the different detection methods applied.

The first metric used is the detection index histogram, which shows the number of PoR
detections at each frame out of the 100 throws in the test set. It shows the bias in
detection performance with respect to early or late detection. The second metric used
is the average absolute error. The absolute values were used to avoid early and late
detection errors to cancel out each other. This metric provides a more certain measure
on how far the average prediction lies with respect to the ground truth. Lastly, we present
the undetected throw percentage, which displays the capacity of the model to detect a
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throw. Together, these metrics provide a full overview of the performance of the model
and the detection method. The results are shown in Figure 3.9.

A comparison of configurations over all detection methods shows that C1 has a clear
advantage in the throw detection ratios with around 5% of undetected throws in each
detection method, and it also has the best average error. This is significantly important
for a setting where the system is tested on a wider throwing motion. The model trained
with C1 is capable of detecting almost all of the throws within a reasonable distance
from the ground truth.

Configurations C2, C3, and C4 rank similarly in all detection methods with respect to
both average error and detection ratio. Thus, we state that the inclusion of P and RV in
the comparison of C2 and C3 does not improve the results. Moreover, the inclusion of R
and RV on top of P and V (of configuration C4) does not improve C2. The low detection
ratio of C5 in almost all graphs shows that shoulder motion information alone is not
enough to detect PoR. The comparison of C2 and C5 emphasizes the importance of the
wrist joint. The type of throw performed has a large impact on limiting the motion of the
elbow and shoulder, while wrist motion is present in both overarm and underarm throws.
The undetected throw ratio for C5 emphasizes this because the models are trained on
a dataset with 64% overarm throws. Similarly, the detection ratio for configurations
except C1 relies heavily on the type of detection method applied, indicating that the
models trained with these configurations have relatively high uncertainty about the PoR,
and therefore their performances are affected by different detection methods.

The FN method for both thresholds is skewed to the left, resulting in early detection.
This is intuitive since this method flags a PoR at the first frame the model’s output
reaches the threshold. The effect of changing the threshold is observed in the undetected
throws ratio and the average error. With a lower threshold, FN30 is able to detect above
95% of the throws for all configurations C1-C5. On the other hand, FN50 is only able
to detect half of the throws for configuration C5. This increase in detection ratio causes
a decrease in average error in all five configurations. An interesting observation at this
point is that while FN30 performs worse for all configurations in terms of average error
compared to FN50, DR30 performs similarly compared to DR50 with a much better
detection ratio. This is the result of using the rate of change of the model’s output in the
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DR method.

Using the GF method, all the selected configurations (C1-C5) achieve similar perfor-
mance, showing that each motion feature contributes to PoR detection. There are no
undetected throws in GF since there is a detection no matter how small the output prob-
abilities are. When methods FN and DR are compared with GF, significantly better
performance is observed in GF. This has two explanations: i) due to the probability
thresholds applied in FN and DR, there is a number of undetected throws, i.e. unde-
tected ratio; and ii) the threshold is reached too early in the throwing window for the FN
method, or the algorithm is stuck at a local maximum for the DR method, which causes
worse performance compared to the GF method.

We combine the results of the two analyses as follows:

• All of the chosen motion features are informative about the detection PoR.

• R is the most informative motion feature.

• Wrist is the most informative joint.

3.3 Discussion

In this Chapter, we first presented a preliminary implementation of virtual throwing
in VR, and an experiment that used this implementation to study the effect of visual
cues on virtual throwing performance. We then described a high-level semi-exhaustive
approach to determine which motion features and body joints are critical for PoR frame
classification when throwing virtual projectiles. Our analysis shows that the extracted
motion features of the arm provide a good estimate of the PoR within a reasonable
time error. The semi-exhaustive search over joint-feature configurations showed that
some motion features are more critical than others, e.g., rotation provides the most
information. Moreover, an importance ranking among joints can be observed, e.g., the
motion of the wrist is more informative than the elbow and the shoulder joints. The
complete analysis of several selected joint-feature configurations (see Table 3.2 and
Figure 3.9) extended our findings further by confirming the importance of the wrist
joint, and showing that all motion features provide useful information.
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By introducing the within metric, we presented an approach that seeks to leverage the
limitations of human perception. As a follow-up on this research, we decided to conduct
a user study to explore how throws with inaccurate release timing are perceived (i.e., too
early or too late) (See Chapter 4). Such a user study makes the results of this study more
valuable and easy to interpret. For example, one hypothesis is that humans are more
accepting of early releases than late releases, as delays would reduce the perception of
causality, which is an important factor in achieving a sense of agency. If this proves to
be true, we would need to modify the within metric which is symmetric, as we evaluate
our models with the assumption that perception of early and late throws would have
similar effects.

There are important limitations to the proposed throw detection system in this chapter.
First of all, we did not perform cross-validation, which is a crucial aspect in real-life
machine learning tasks, which makes sure a model succeeds in unseen data. We did
not perform cross-validation because our dataset contained participants of unique body
sizes. In future work, we plan to transform motion data such that the impact of these
differences in limb sizes and actor height is diminished. Another limitation is that the
model was not evaluated on a dataset containing multiple actions or longer motion se-
quences. Here, the analysis is done over the assumption that every fixed motion window
is a throw and contains a PoR, which is the main reason why the GF method acts most
successfully. A complete throw detection system needs to be evaluated on longer mo-
tion sequences with more variety. We consider the dataset to be another limitation. The
data was captured during a VR experiment and the virtual throwing algorithm was a
set of heuristics that operated plausibly for some participants but not so much for oth-
ers, with some participants reporting that the PoR felt delayed. In return, the delayed
PoR experience could have had an effect on how subjects carried out their next throws.
Therefore, we will improve the dataset for our next study.
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4 Predicting the Point of Release of a
Ball

In this chapter, we present the studies performed following the preliminary work, con-
taining a perceptual study on PoR timing errors and a revised investigation of PoR de-
tection, including a proof-of-concept real-time PoR detection system called ReTro.

4.1 Exp. T2: Perception of Point of Release

From infancy, humans can recognize when something unexpected happens in the phys-
ical world [341]. When expectations are not met in a virtual setting, such as a game or
Virtual Reality (VR) experience, the user experience will be impacted. As technologies
develop rapidly to support interactive experiences that encompass both the virtual and
the real, new problems arise when virtual physical events do not result in the expected
outcomes. Several factors may affect the perception of a thrown virtual ball, e.g., active
throwing in VR or controlling a game avatar. The most challenging aspect of simulating
virtual throws is accurately detecting the moment when the thrower releases the ball,
known as PoR.

Errors in the timing of the PoR can lead to visually disturbing results if the ball’s trajec-
tory does not match the viewer’s or thrower’s expectation (Figure 4.1). In this section,
we examine the effect of release timing on the perception of throwing. Participants
watched videos of virtual throwing motions with different levels of PoR timing errors.
Their task was to judge whether the motion had been modified or not. The questions we
wished to answer from these studies were as follows: Does the View from which you
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observe increase or decrease your ability to detect an anomalous throw, e.g., watching
the throw from a Side View, as when attending a baseball game or similar; or watching it
from a Front View, as if throwing the ball oneself? Is it easier or more difficult to detect
an error based on the Distance of the throw? Are different types of throwing motions
more or less robust to errors in timing, e.g., Underarm vs. Overarm throws? What is
the PoR timing Error beyond which an anomalous throwing motion can be detected?

With respect to active throwing, it was found that people are less accurate in VR than
in reality [17], mainly due to lower accuracy in distance and height dimensions (see
Section 2.2.1 for more details). This suggests that there were errors in release timing
along throw trajectories. Furthermore, Butkus and Ceponis [18] conducted a VR throw-
ing experiment to study distance perception and found that throwing accuracy improved
as the distance increased in VR, and the throwing velocity was higher in VR compared
to reality. Covaci et al. [19] evaluated how effective VR would be for training begin-
ner players to throw a basketball. By tracking a real ball and simulating its continued
trajectory within a Virtual Environment, they ensured that the PoR detection and ball
trajectory were very accurate. They also explored different viewpoints and found that
participants estimated the distance to the basket more accurately from a third-person
view. Finally, Faure et al. [342] examined other factors that can affect the perception of
ball-throwing, such as expertise.

Based on the above-mentioned studies, we chose several variables for an experiment
exploring viewer sensitivity to errors in the Point of Release (PoR) of a ball during
throwing motions. We hypothesized that the View from which participants observe the
throwing motions will affect their ability to detect an error, e.g., perhaps certain anoma-
lies, such as angular distortion, would be more visible from the front than from the side.
Due to the different velocity properties of long and short throws, our hypothesis was that
Distance will also play a role, e.g., it could be that errors in slower throws are easier to
detect and that the motion of the Arm will also change the dynamics of the throw, as it
did in [63]. We also hypothesized that there will be an asymmetry in early and late PoR
timing Error, which will vary depending on the other factors.
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Figure 4.1: Changes in ball trajectory caused by modifying the Point of Release (PoR)
of a throwing motion: early release (t); original trajectory (m); late release (b); for the
same five animation frames

4.1.1 Dataset

The dataset used in the preparation of the stimuli involves the simultaneous capture of
only two actors (1M, 1F) due to the circumstances of the COVID-19 pandemic. This
capture only involved the optical motion capture system as we decided to switch to Vi-
con’s full five-finger tracking from Manus VR gloves. We captured around 1000 throws
using a tennis ball with the distance between the two actors incrementally changing
from 2 meters to 6 meters. Both the catcher and the thrower were captured for efficiency
reasons and to identify the Point of Catch (PoC) which was later used to calculate the
ground truth PoR. Before the capture, we investigated the size of the capture area which
the MoCap system was able to track accurately, and found that a simultaneous capture
allows the actors to stand only up to four meters apart. To overcome this, when captur-
ing far throws, we captured the full body motion of only one actor and tracked only the
hand motion of the second actor through a marker attached to the back of the hand.

4.1.2 PoR Ground Truth Approximation

Extracting the PoR from motion data is a crucial component of the work as it forms
the ground truth used in the perceptual study of PoR and supervised machine learning
for PoR prediction. Over the course of this work, our algorithms and approach for this
problem have evolved. Our modified approach can be found in Section 4.2.2.

The question of “What constitutes the release of a throw?” does not have a straight-
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forward answer. It is not clear whether the release happens when the ball loses contact
with the hand or when the fingers start opening to release the ball. Past studies on
throwing have relied on measurements that approximate the point of release such as
pressure-sensitive microswitches [219] and joint angle calculations using LEDs [231],
which are heuristics. As we have full-body motion data for the thrower and the catcher,
we decided to approach this as a trajectory-fitting problem, in which we simulate the
trajectory of the ball and iteratively find the best-fitting release frame. There are two
assumptions to simplify the problem. The first assumption is that the release of a throw
is instantaneous rather than occurring over a period of time; and second, the velocity of
the hand is perfectly transferred to the ball at the point of release without any loss of
energy.

The motion data from the MoCap system only provides joint motions, making it neces-
sary to specify a ball release position inside the palm. We process the entire dataset by
adding a ball release node to the motion data of every actor. Figure 4.3 shows several
examples. During a throw, the positioning of the ball in the palm can significantly affect
its trajectory depending on the speed of the throw. Trajectories of the ball are simulated
from this node with the node’s velocity calculated from its position. In Figure 4.2, we
demonstrate how our approach can yield different results when the ball is assumed to
be released from different positions in the hand. The three different positions not only
lead to considerable differences in trajectory but also suggest different PoR frames. An
alternative approach is to also perform a search over different release positions together
with the time dimension, however, this results in multiple possible solutions since we
use a very simple physical model to simulate ball trajectory. Eventually, we employed
A3 (shown in Figure 4.3) as the attachment point and used that to find the PoR frame in
all throws.

The PoR and PoC frames for both actors were calculated offline in two steps using
multiple heuristics: (i) candidate PoR frames were located, (ii) a trajectory was fitted
between the thrower and the catcher. In the first step, we chose hand velocity, middle
and index finger rotations, and hip velocity as our indicators in candidate PoR frame
selection. Middle and index finger rotations provide a clear indication of a releasing
motion, however, they do not suffice on their own to decide it is a throw, hence we make
use of hand velocity and hip velocity. On both hands, we apply a constant velocity mag-
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Figure 4.2: The impact of ball attachment position in the fitted trajectory, demonstrated
on a single throw. Each trajectory is the best-fitting trajectory using a different attach-
ment point (A1,A2,A3), as shown in Figure 4.3. The catcher’s and thrower’s right hand
positions are also included. In the illustrated throw, the catcher’s hand moves in the
positive y direction during the motion.

nitude threshold and only consider the intervals that have higher velocity magnitude,
in order to locate throw swings. Similarly, a large hip velocity magnitude implies that
the motion is walking or running, and not throwing. This is because the actors were
instructed to be stationary during a throw. Therefore, if the hip velocity magnitude is
large, we filter out those regions from our set. In terms of finger rotations, we calculate
an average of the variance of the index and middle finger flexion over a window of 21
frames located around the candidate PoR frame and compared it against a threshold of
10. Finally, an interval of frames that satisfies all three conditions is obtained, in which
we choose the frame with maximum hand velocity and perform trajectory fitting around
that candidate PoR frame. A flow diagram is provided in Figure 4.4.

In step 2, we improved on these candidate frames and fitted a ball trajectory between the
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Figure 4.3: Top- and side-view visualizations of three different attachment points
(S1,S2,S3) used in the assessment of attachment position impact on trajectory fitting,
as shown in Figure 4.2.

thrower and the catcher. First, the distance between the actors, and the thrower’s hand
velocity was used to estimate the airtime for the ball and find a candidate PoC frame.
The horizontal velocity of the ball in the air was assumed to be constant. We located
search windows of 20 frames around the candidate PoC and candidate PoR frames to
calculate the best-performing trajectory. In an exhaustive manner, trajectories for the
ball were simulated for all potential PoC and PoR frames (ignoring rotational forces
and drag). The error is defined as the point on the trajectory with the minimum distance
between the ball and the hands of the catcher. The candidate PoR and PoC frames with
the trajectory that reached the lowest distance were then selected.

4.1.3 Stimuli

We selected a total of eight throws (two Overarm-Near, two Underarm-Near, two Overarm-
Far, two Underarm-Far) from our dataset to create our stimuli. A visual representation
of the throwing motion can be found in Appendix A1.1 for all of the eight throws. We
sorted all throws based on landing distance and release velocity. Two examples of over-
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Figure 4.4: Flow diagram of PoR ground truth approximation.

arm and underarm throws at two landing distances of similar release velocities were
picked based on observed motion neutrality (i.e., no noticeable features such as a lifted
left arm or a bent knee) and motion quality (i.e., no retargeting artefacts). Near and Far
distances were selected as 1.9 meters and 5 meters, respectively. 1.9 meters is close to
the upper limit of the Near region in Exp. T1 and 5 meters slightly above the upper limit
of the Far region in Exp. T1 before it was modified to 4 meters from 4.5 meters. The
PoR and PoC frames were also visualized to ensure that the PoR timing was accurate.

To create the throwing animations, we retargeted the motions of one female actor to
a 3D avatar in Unity. We created a ball with a 6cm diameter and attached it to the
throwing hand of the avatar. As very high timing precision and control were required,
we generated lookup tables to read the position of the ball rather than using Unity’s
internal event system, which can be unreliable because of changing frame rates. To
go beyond the 120 fps precision of the mocap data, quadratic interpolation between
positional data points was used to acquire 1000 fps hand position data. The lookup
tables contained time-position pairs of the hand. In Unity, the time of an animation clip
is represented by normalized time, which takes a value between 0 (start) and 1 (end).
We converted this normalized time into the original mocap time of the lookup table.

At the start of each throw, a new trajectory was generated for the ball based on the
delay specified for the current PoR, and a second lookup table was created for the new
trajectory. Using these high-precision trajectory lookup tables, the ball could be released
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with any desired delay and the trajectories were not affected by Unity’s frame rate. After
the ball was positioned using the pre-calculated values in each frame, Unity’s physics
system took over to animate the ball when it was close to hitting the ground, in order to
simulate a natural bounce (as the catch is not simulated). The clips were then recorded
from two different views: the Side view reflects the case where participants observe
another person throwing a ball, and the Front view emulates the experience of observing
one’s own avatar throwing a ball (e.g., as in a VR environment).

4.1.4 Method

A total of 34 participants (19M, 15F, ages 18-60+), with a variety of backgrounds and
expertise, were recruited via email lists and social media. The experiment was run
online using Qualtrics. After viewing the instructions and informed consent form, fol-
lowed by entering some demographical details, participants pressed a key to begin the
experiment. No personally identifying information was recorded (i.e., the fully anony-
mous mode was used), and the system ensured that each individual participated only
once. The instructions also stated that a display should be used that will allow the mo-
tion details to be clearly seen, i.e., a monitor or laptop screen.

We used a within-subjects design, with independent variables View (Side, Front), Dis-
tance/Dist (Far, Near), Arm (Overarm, Underarm), and 11 different levels of timing
Error: +/- 10, 20, 30, 40 and 50 milliseconds, plus the original motion with error 0.
This resulted in 2*View X 2*Dist X 2*Arm X 11*Error = 88 combinations, with two
repetitions of each using different motion clips, giving 176 video stimuli to be viewed
by participants.

Participants viewed either a block of Side view videos first, followed by the Front view
block; or vice versa, counterbalanced across all participants. For each block, a set of
8 stimuli was displayed at the start for training purposes, using videos that were not in
the set of stimuli. These stimuli consisted of four Original throws (i.e., no PoR delay),
from Near and Far distances, and for Overarm and Underarm. Each of the originals
was followed by the corresponding Modified throw with an early or late Error. For the
modified training examples, we used the most extreme delay of +/- 50 milliseconds.
Participants then viewed all 88 videos in that block in random order and selected a
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Figure 4.5: Four-way interaction effect VIEW*DIST*ARM*ERR with means calcu-
lated across all participants. Examples of frames of throwing motions are shown on the
right.

button to indicate whether each throw was Modified or Original.

4.1.5 Results

We performed a repeated measures ANalysis Of VAriance with multivariate analysis
(ANOVA/ MANOVA) to test for main and interaction effects of independent variables
VIEW, Distance (DIST), ARM (over or under), and Error (ERR). Newman-Keuls and
Bonferroni post-hoc tests were used to check for significant differences. All significant
effects are reported in Table 4.1.

The main effects show that participants responded Modified more often for Near throws
than for Far throws, and for Overarm than for Underarm. The errors were all statisti-
cally significantly larger than for the original, except for an early or late release of +/-
10ms. However, all the factors interacted with each other, as shown in Figure 4.5. The
interaction effects show that, when an Overarm throw had an early PoR error (-50 to -
10), it was more often reported as Modified than when the PoR error was late (10 to 50),
whereas the opposite was true for Underarm throws. We can also see that participants
were much less accurate with their responses for Near throws, where over 30% of the
Original throws (PoR error = 0) were mistakenly reported to be Modified. Furthermore,
the larger number of Modified responses for Overarm throws than for Underarm is only
true for the Side view (VIEW*ARM).
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Table 4.1: Significant effects (p < 0.05) for Perception of PoR ANOVA/MANOVA
with effect sizes (partial η2)

Effect F-Test η2

Main Effects
DIST F1,33 = 36.69, p < 0.005 0.53
ARM F1,33 = 18.64, p < 0.005 0.36
ERR F10.330 = 97.73, p < 0.005 0.75

Two-way Interaction Effects
VIEW × ARM F1,33 = 7.19, p < 0.05 0.18
VIEW × ERR F10,330 = 7.44, p < 0.005 0.18
DIST × ERR F10,330 = 21.41, p < 0.005 0.39
ARM × ERR F10,330 = 42.82, p < 0.005 0.56

Three-way Interaction Effects
VIEW × DIST × ARM F1,33 = 16.16, p < 0.005 0.33
VIEW × DIST × ERR F10,330 = 2.23, p < 0.05 0.06
VIEW × ARM × ERR F4,80 = 2.86, p < 0.05 0.10
DIST × ARM × ERR F10,330 = 3.77, p < 0.005 0.10

Four-way Interaction Effects (see Figure 4.5)
VIEW × DIST × ARM × ERR F10,330 = 3.57, p < 0.005 0.10

To explore possible reasons for the perceived accuracy or inaccuracy of these throws, we
extracted some error metrics of the ball’s motion trajectory for each type of throw and
performed a correlation analysis (Table 4.2). The Angle metric measures the horizontal
deviation of the angle of the ball’s trajectory for each throw with a PoR Error from that of
the original throw; the Landing metric gives the deviation in the length of the trajectory
from that of the original throw; and the Velocity metric measures the deviation of the
ball’s velocity from that of the original throw.

We first tested the correlation of each error metric with the PoR error size. We see,
for the Far view only, that significant positive correlations were found for the Angle
and Landing errors with the PoR timing error, but not for the Velocity error. Next, we
tested for correlations with the participants’ error detection ratio, i.e., the proportion of
Modified responses. The Front View and Side View entries refer to the average user
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Table 4.2: Correlations of ball motion errors with participants’ error detection ratio.
Significant results (p < 0.05) are highlighted in red

Angle Landing Velocity
3*FAR OVER PoR Error 0.81 0.98 0.07

Front View 0.88 0.96 0.19
Side View 0.91 0.91 0.30

3*FAR UNDER PoR Error 0.68 0.76 0.11
Front View 0.93 0.87 0.09
Side View 0.91 0.79 -0.02

3*NEAR OVER PoR Error 0.25 0.35 0.57
3*NEAR UNDER PoR Error 0.54 0.41 -0.32

Front View 0.73 0.70 -0.41
Side View 0.43 0.46 -0.18

responses to those same animations.

We can see that angular deviations are highly correlated with the participant responses,
consistent with previous work on collisions [312, 333]. This is also evident from simply
looking at the stimuli, as a slight twist of the thrower’s hand before or after the real PoR
can cause very significant angular distortions. The landing position of the ball also had
a significant impact on viewers’ judgments and, as almost all landing errors involved a
shortening of the distance the ball traveled, this is consistent with the results of Hoyet
et al. [63].

This experiment on the perception of PoR delays in throwing motion has demonstrated
how manipulating the PoR of motion-captured throwing motions can affect the per-
ception of those motions. We have assessed how noticeable a range of delays are for
different distances (Near, Far), different throwing types (Overarm, Underarm), and dif-
ferent views (Front, Side). The results suggest that people are asymmetrically sensitive
to early and late delays in overarm and underarm throws. Early release was not as no-
ticeable for underarm throws as it was for overarm throws. Similarly, late releases were
less frequently noticed for overarm throws.

However, this was just the first study to explore this problem and we cannot yet general-
ize from results with this limited number of throws and actors to the wide variety of dif-
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ferent throwing types and styles that exist. It is important for future work on this topic to
incorporate the participants’ level of expertise, as being an expert is known to be linked
with improved anticipatory skills to guide responsive motor actions [343, 344, 345].
Nevertheless, considering the prevalence of throwing motions in games and VR, we
believe that these findings offer valuable insights to guide further studies and the devel-
opment of interactive applications. Next, we present a system that performs real-time
detection of the PoR virtual throws, which is informed by the results of this experiment.

4.2 Prediction of Point of Release

In this section, we describe the steps performed to develop ReTro, a real-time PoR
detection system, including a new dataset, data preprocessing, motion feature extraction,
model training, and a thorough evaluation. This section uses the words "subject" and
"actor" interchangeably.

4.2.1 Dataset

The motions of six actors (3F, 3M) were captured in three pairs while throwing and
catching a cricket ball between them (1679 throws in total), using the default MoCap
system with 21 optical cameras at 120 fps. Both a catcher and a thrower were captured
for efficiency reasons, and to identify the PoC which was later used to calculate the
ground truth PoR. Each actor wore 53 body and 20 finger markers (two per finger)
as before. The cricket ball, which was not tracked due to interference between the
ball and finger markers, was thrown back and forth. The two actors stood between
3.5m and 4.5m meters apart and varied the force with which they threw the ball at each
other. The ball’s landing distances were later calculated by removing the catcher and
extending the simulation until contact with the ground, resulting in a set of simulated
trajectories with horizontal landing distances distributed between ca. 3.5m and 6.5m
(Figure 4.6). Compared with the data captured in Exp. T1, this dataset contains a wider
interval and more continuous distribution of samples. In Exp. T1, the gap between target
spawn regions created a discontinuity in the samples collected (See Section 3.1.1 for
details). Although target spawn positions are not equal to landing distances since people
introduce motor skill errors, we assume a high correlation between them. Therefore, the
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better homogeneity of this dataset makes it a better candidate for generalizability. We
also observed by looking at some of the motion data from Exp. T1 that throws to targets
that are very close to the thrower, e.g., 1.25m-2m in the Near condition of Exp. T1,
are generally very effortless and not very rich in terms of motion kinematics (See the
Appendix for a visual representation of Near throws).

Different from the data capture carried out for the PoR experiment in Section 4.1.2, this
data capture involves recording the audio of the capture using a mobile phone in order to
capture ball catch sounds. We have decided to include audio as an additional modality
because the sound of a catch provides us with a certain ground truth. The inclusion of
audio capture is why we moved from a tennis ball to a cricket ball in the capture since
a cricket ball is heavier and makes more sound on impact with the catcher’s palms.
To amplify the sound of a catch, we asked the actors to expose their palms during the
catch as much as possible, and we also taped a piece of aluminum foil in an effort
to amplify the sound. The foil was used in the off-hand which was only involved in
catching. We used a clapperboard with markers to synchronize audio and motion data
in post-processing (Figure 4.9). We further utilized the clapperboard to signal the actors
to perform a throw in order to make sure that both actors are back in a neutral pose
before throwing. If the throw was unsuccessful, i.e. the ball ended up on the ground, the
clapperboard was clapped twice as a flag for later removal. A single clap was executed
when the previous throw was successful.

The impact sound of the ball with the catcher’s hand was later detected from the peaks
in the audio data during post-processing and used to locate the PoC frame (Figure ??),
which was used to find the best-fitting trajectories and thereby identify the PoR audio
frames.

4.2.2 Improved PoR Ground Truth Approximation

In Section 4.1.2, we described our initial approach to ground truth PoR approximation.
With the inclusion of audio, we have an updated pipeline (see Figure 4.7). Same as
before, in two main steps, candidate PoR frame selection and trajectory optimization,
we identify the pair of best-performing PoR and PoC frames. The step of selecting
candidate PoR frames is the same as Section 4.1.2 and the readers can find the details in
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Figure 4.6: Horizontal landing distances of simulated ball trajectories for the captured
throws.

that section. Here, we discuss the modified components of the pipeline.

Trajectory fitting is performed in a window of frames around each candidate PoR frame
to select the best pair of PoR and PoC frames according to a distance error, which is
the closest distance between the simulated ball trajectory and the catcher’s hands. First,
we calculate an approximate time for the ball to arrive at the catcher, i.e., airtime, if it
was released at the candidate frame, giving us a candidate PoC frame. The calculation
of airtime assumes the horizontal velocity of the ball stays constant. Using our prior
knowledge of the PoC frames extracted from audio, we can measure how the distance
between the hands is distributed at audio PoC frames. As it resembles a Gaussian distri-
bution (µ,σ2), we’ve chosen a threshold of (µ+ 2 ∗ σ) (see Figure 4.10). Next, we look
for the earliest frame around the candidate PoC in which the distance between hands
reaches this threshold. Assuming that the hands would close up further or maintain
their distance after reaching the threshold, we perform a reverse trajectory simulation
for the current and the next eight frames to find the nine best PoR frames for each PoC.
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Figure 4.7: Flow diagram of improved PoR ground truth approximation.

Figure 4.8: Flow diagram of audio PoC and PoR extraction.

Reverse trajectory simulation uses an approximate airtime of 0.8 seconds and searches
an interval of (PoC−1,PoC−0.6) seconds to find the best-fitting PoR trajectory. Next,
we calculate the most frequent PoR frame, PoRPopular and the PoR frame with the mini-
mum error, PoRBest and test for the following to choose a final PoR frame from the set
of nine best performing PoR frames:

• If PoRPopular and PoRBest are the same, choose that as the final PoR frame.

• If PoRPopular and PoRBest are different, choose PoRPopular as the final PoR frame.

• If there is no PoRPopular , choose PoRBest as the final PoR frame.

• If the distance error of PoRBest is too large (>1), do not select a final PoR frame.

This procedure is repeated for all throws and a set of MoCap PoR frames are extracted.
As a post-processing step, we check all instances where a MoCap PoR is close to, but
different from, an audio PoR, in which case we use the latter since the audio signal is
more reliable. Drag and rotational forces in all trajectory calculations are ignored and
the acceleration of gravity is set to 9.81m/s2.
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Figure 4.9: The clapperboard used for instructing the actors and audio-MoCap synchro-
nization.

As a clear catch sound was not identified in every throw, we used an alternative method
using multiple heuristics to extract the PoR frames using only motion data, following a
similar approach to that described in Section 4.1.2. First, we located a set of candidate
PoR frames by finding the frames where the velocity of the hand exceeds a threshold
of 1.8 meters per second. To verify a candidate PoR, we looked at the mean-variance
of the index and middle finger flexion over a window of 21 frames located around the
candidate PoR frame. We compared it against a threshold of 10. We also checked the
hip velocity to ensure that a walking motion did not cause the motion of the arms. A
candidate PoR was picked when these two conditions were satisfied.

The final dataset consists of high-quality motion data of 1679 virtual throws from six
different actors. The average height of the actors was 1.68m (SD = 11cm). Out of the
1679 throws, 810 (%48) are Overarm and 869 (%52) are Underarm. The throw type
(Overarm, Underarm) is annotated automatically by comparing the height of the hand
with the height of the shoulder five frames before the PoR for every throw.

We propose a regression model that predicts the time remaining until the PoR occurs.
We use the same motion features, i.e., Position (P), Velocity (V), Rotation (R), and
Rotational Velocity (RV), and the same three joints, i.e., wrist (W), elbow (E), and
shoulder (S) as Section 3.2. The model is supervised on the time to the PoR frame.
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Figure 4.10: Histogram of the distance between the catcher’s hand at the frame of catch,
as located from the audio data.

4.2.3 Data Preprocessing

The motion capture system automatically fits a skeleton in real-time to the point cluster
of marker positions. The skeleton is unique for every participant as their body and limb
sizes can vary. As a normalization step for training, we scale all of the subject skeletons
to the same height of 170cm. We do not scale individual joints and allow variations in
bone length. This way, the model can generalize to new subjects of different heights
and different bone lengths.

The motion data is originally captured at 120 fps, which is typically too high for VR
and for ubiquitous tracking devices such as wearable sensors. We perform quadratic
interpolation on the data to resample at different frame rates. We use 60 fps and 72 fps
data depending on the evaluation mode.

We extract a window of W frames, called the throw window (see Figure 4.11), from
each of the 1679 throws. We set W to 30 frames (≈500ms for 60fps data) and the final
frame in a window is five frames after the PoR. This means the first frame of the motion
is 400ms ahead of the PoR. Compared with Section 3.2 where the extracted window is
symmetric around the PoR with a total size of ≈408ms, the first frame is 200ms earlier
than the PoR frame. This change in the window of interest by excluding most of the

85



Figure 4.11: Overview of our approach. Different from the preliminary work (see Figure
3.5), we evaluate the models in multiple ways including a real-time simulation system
and a VR application.

post-release frames comes as a result of Exp T2 which showed that even delays that we
initially considered as small, e.g., 50 ms, are distinguished quite easily in the context
of PoR perception. As we removed the motion that is more than 50ms later than the
release, we increased the starting frame from 200ms to 400ms earlier than the PoR, as
a result of our increased confidence in our improved system. The final dataset includes
W ∗ 1679 frames of human motion data.

Next, we extract the same motion features (Position, Velocity, Rotation, Rotational Ve-
locity) as described in Section 3.2. Finally, we generate the target vector for all throws.
Different from the preliminary PoR classification, the target vector is the calculated du-
ration to the ground truth PoR frame of size W , where the duration between frames is
fixed to the sampling rate of motion data.

4.2.4 Model Training

In the same way as our earlier work on per-frame PoR classification (Section 3.2), all
of this data is used to define a joint-feature configuration, or design matrix X , which is
used as input to our model for training. The size of any X is specified by the number of
motion features used by the joints.

Each of the motion features increases the size of the input by their dimensions. The
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projected positions and velocities are three-dimensional, rotation quaternions are four-
dimensional, and angular velocity (magnitude) is one-dimensional. In most of our dis-
cussions, we use the model with Full configuration, i.e., using all four motion features
from all three joints. The discussion on other configurations is to rank them based on
their performance of PoR prediction. The number of rows in X is specified by the throw
window size, W , times the number of throws, 1679. X has a final size of (1679 ×W )

by #columns . The target array consists of 1679 stacked target vectors, with a final size
of 1679×W . For a window size W of 30 frames, the design matrix for the Full config-
uration has the final size of 50,370*33.

Before training, we normalize the features using a min-max scaler. The models are
developed using Tensorflow [346]. Parameters of the network are initialized using uni-
form Xavier initialization [339] and we used a batch size of 256. The learning rate was
initially set to 0.03 and it was decayed by a factor of 0.8 when there were no improve-
ments. Each model was trained for a maximum of 100 epochs with early stopping. The
models consist of stacked LSTM layers with dropout layers (p=0.4) in between. As a
sequential model, LSTM is a suitable candidate for modeling time series data such as
ours [347]. We use two timesteps as the input, which was found as the best-performing
hyperparameter through trial and error. The models contain five LSTM layers with 80
units each. We use a weighted loss function to make the predictions more accurate to-
wards the actual PoR, where ytrue is the time to PoR and ypred is the estimated time to
PoR:

Loss =

if |ytrue − 100| ≤ 50

otherwise

We train and evaluate models using cross-validation. Out of the six actors in the dataset,
we separate one of the actors each time as the test set and train the model with the rest
of the data. We additionally train each cross-validation fold five times and average the
results to remove the effect of randomness.
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Algorithm 2: Prediction algorithm - Part 1
Input : Prediction at time t, Yt

Output : Release decision (True, False), R
Release time (ms), Yfinal

Parameters: Detection range (ms), [Ds ,De ]
Queue of size m, Qm

Fixed time between frames (ms), ∆
Prediction frequency (frame), fp
Allowed between frame difference (ms), δbtw

[Ds ,De ] = [−30, 150], ∆ = 1000/fps , δbtw = 40ms
Yprev = Yt−1, ∆t = 0
while R is False do

if Yt > Ds and Yt < De then
∆t=Yprev − Yt

lower = fp ∗∆−
√

fp ∗ 2 ∗ δbtw
upper = fp ∗∆+

√
fp ∗ 2 ∗ δbtw

if ∆t ≥ lower and ∆t ≤ upper then
if Qm is full then

Dequeue Qm and Enqueue Yt to Qm

R = True
forall Y ∈Qm do

Yfinal += Y /m
end

end
else

Enqueue Yt to Qm

end
end
else

Empty Qm

end
end
Yprev = Yt

end
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Algorithm 3: Prediction algorithm - Part 2
Input : Release time (ms), Yfinal

System time at release decision, Trel

Output : Release ball (True, False), Rb

Release time (ms), Yfinal

Parameters: Fixed time between frames (ms), ∆
Current system time, Tcurr

Network delay (ms), ∆N

Tcurr = 0, Yfinal -= ∆N

while RbisFalse do
if Tcurr − Trel ≥ Yfinal −∆/2 then

Rb = True
end
Tcurr+ = ∆

end

4.2.5 Prediction Method

The prediction model outputs a single prediction on the remaining time until a PoR,
given the motion data. As seen in Figure 4.12, the model has varying precision and
bias in different regions of the curve. For a real-time evaluation of the model, we pick a
specific range where it operates best, [−30, 150] ms, and consider predictions that fall in
that range. We choose a value for how much variation is allowed between predictions by
looking at the standard deviation of the curve in the range [−30, 150]. We chose 40 ms
as the allowed variation after testing with multiple values. We assume that the predic-
tion follows a Gaussian distribution in the range [−30, 150], and the difference between
two consecutive predictions is therefore also a Gaussian distribution. By following the
statistical rule that around 95% of samples from a Gaussian distribution fall within two
standard deviations, we specify lower and upper thresholds of Algorithm 2.

As the model outputs new predictions, we maintain a queue of size three to make a
release decision. Unless a new prediction violates the allowed variation or falls outside
the allowed range [−30, 150] ms, a release decision is made when the queue is filled.
This phase of the prediction method is provided in Algorithm 2. Once a release decision
is made, a final release time, Yfinal , is calculated. With each update cycle, we decrement
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the duration of a cycle from the final release time, and initiate the release when the
predicted time arrives (See Algorithm 3). We employ these algorithms for Simulation

and Real-time evaluation modes.

The average inference time of the prediction model is calculated to be 30ms. Therefore,
a Unity application that operates at 60 fps (∆f = 16.67ms) can request a prediction in
approximately every two frames. To account for possible performance drops, we set the
prediction frequency to once in every three frames. In addition to the inference time
bottleneck, the system is limited to making decisions during a frame. Therefore, if the
suggested decision time is reached between frames, e.g., Ypred = 8 ms when ft1 = 0 ms
and ft2 = 16 ms, the system gives a delayed response. The amount of maximum delay
introduced is half of the time between frames, i.e. 8.33 ms when the system runs at 60
fps (∆f = 16.67ms). This is depicted in Algorithm 3.

Figure 4.12: Offline performance of the Full prediction model in a window of 450ms,
averaged over all the throws in the dataset. The PoR lies at x = 0. Error bars show
standard deviation. Blue shows the distribution of all the predictions for a particular
instance of x-axis. The diagonal line (x = y ) is provided as the ideal predictor.
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Figure 4.13: Averaged projected local positions of the three arm joints for Overarm
throws in side view (y and z axes). Each plot represents one subject. The red line
represents the ground truth PoR (t=25).

4.3 Evaluation of PoR Model

In this section, we present our evaluation of the prediction model. Offline mode eval-
uations were first conducted in Python without considering the delays introduced by a
real-time implementation such as inference time, frame rate, and network delay. We
then implemented ReTro, a real-time throwing system, using the Full configuration
model, i.e., using all features of all joints. We first performed a quantitative evalua-
tion in Simulation mode, with pre-recorded motion capture data. This was followed by
a qualitative user test in Real-time mode using an interactive VR application.

4.3.1 Offline Mode Evaluation

Overarm/Underarm Comparison: The prediction model performs differently for Over-
arm and Underarm throws (Figure 4.20). Although the performances are similar when
the actual PoR is less than 100 milliseconds away, the distributions of the predictions
converge sooner for Underarm than for Overarm. There may be multiple possible ex-
planations for this: it might be that Underarm throws have a more predictable motion
pattern than Overarm throws, enabling a more accurate early prediction, or, there might
be more style variation in the early phase for Overarm throws compared to Underarm
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Figure 4.14: Averaged projected local positions of the three arm joints for Underarm
throws in side view (y and z axes). Each plot represents one subject, e.g., s1 for subject
1. The red line represents the ground truth PoR (t=25).

Figure 4.15: Averaged velocity (m/s) of hand joint calculated from the projected local
positions, separated for each axis (X, Y, Z) and throwing type (Underarm and Overarm,
denoted by U and O, respectively). Each plot represents one subject, e.g., s1 for subject
1. The window size is 30 frames and the vertical line represents the PoR (t=25).
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Figure 4.16: Averaged rotational velocities (◦/s) calculated from joint rotations, sepa-
rated for each joint (W, E, S) and throwing type (Underarm and Overarm, denoted by U
and O, respectively).

throws, requiring more actors in the dataset. In Figure 4.17, a difference between subject
performances is observed based on throwing type. In Underarm, two groups (S1,S2,S3)
and (S4,S5,S6) perform similarly, which could be due to a similarity in throwing styles
or joint length ratios for the subjects in each group. For Overarm, there is more variation
between subjects in the early region, possibly due to differences in style.

To understand the underlying differences between Overarm and Underarm throws, we
visualized the average throwing motion in projected position space, separately for Over-
arm and Underarm throws (Figures 4.13 and 4.14, respectively). Although these figures
do not display the x-axis of the data, the motion mainly takes place on the y- and z-axes
in the projected position space. In these figures, we see that almost every actor has their
unique style of performing an Overarm throw, with certain actors starting the motion
with their elbow lower and others higher. Yet, despite having many different starting
poses, the motions converge to a more similar pose, which can be seen by looking at the
PoR lines. On the other hand, Underarm throws contain many similar patterns through-
out, which shows why the model is able to start making accurate predictions early on.

To further compare actor motions, we look at averaged velocity and averaged rotational
velocity patterns shown in Figures 4.15 and 4.16. The average velocity for an actor is
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calculated by averaging the velocity that is calculated from the projected local position
over the throw window. The average rotational velocity for an actor is calculated by
averaging the rotational velocity values over the throw window. It is important to note
that both of these calculations are carried out on retargeted motions. This has different
implications for linear versus rotational velocity: In linear velocity, rescaling of the
limb sizes directly affects the velocity of the hand since the distance covered by the
hand is decreased or increased depending on whether the actor is taller or shorter than
the retargeted body, respectively. On the other hand, angular velocity is not affected by
this transformation, as a joint’s rotational motion remains unchanged.

As the values do not reflect the actual measurements for linear velocity, we mainly com-
pare their patterns. In Figure 4.15, we see that while early phases of the motion display
high interpersonal differences in mainly the y-component, the z-component of the mo-
tion follows a similar pattern in both Overarm and Underarm throws. Furthermore, the
pattern displayed in the Underarm throws for forward and upward motion is much more
similar between actors compared to Overarm throws, which also supports our claim that
there is more style variation in Overarm motion. Looking at rotational velocities in Fig-
ure 4.16, we conceivably see that the wrist accommodates the lowest angular velocity
among the arm joints except for s4. Moreover, we can observe the heavy involvement
of the elbow joint in Overarm throws compared to Underarm throws. Overall, rotational
velocity patterns are less interpretable than velocity patterns.

In Figure 4.20, there are more outliers in the prediction distributions for Overarm throws
in the early region (>200ms). A negative prediction at an early stage of a throw means
that the model is not fully capable of differentiating the "follow-through" phase of a
throwing motion from the "preparation" phase it. In Simulation and Real-time modes,
we work around this by incorporating a velocity threshold of 1.8 m/s similar to how it
was used for PoR extraction in Section 4.2.3. The model starts making predictions once
the velocity threshold is reached during a throw.
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Figure 4.17: Per subject performance of Full configuration in Offline mode separately
for Overarm and Underarm. Error bars show standard deviation.

Configuration Comparisons: For a thorough evaluation, we train models with different
joint-feature configurations and evaluate them in Offline mode, i.e., by comparing only
the curves without a prediction algorithm or any consideration of the delays introduced
by the system. The aim of this offline evaluation is to explore the feasibility of building
the system with other equipment and to determine the relative importance of joints and
motion features for this task. We also aim to compare the new results with the prelimi-
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Figure 4.18: Each plot shows the Offline results of a model trained with a different
joint-feature configuration. The first and the second parts of a label represent motion
features and joints used, respectively, e.g., PV-WE is Position and Velocity extracted
from Wrist and Elbow joints. W,E,S=wrist, elbow, shoulder; P, V, R, RV=position,
velocity, rotation, rotational velocity. The diagonal x = y line is provided as the ideal
predictor.
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nary work of Section 3.2 (see Figure 3.8).

For comparison purposes, we pick the joint-feature configurations with the assumption
that P/V and R/RV features are available simultaneously in pairs, same as Chapter 3.
We train the same neural architecture that was described in Section 4.2.4. It is possible
to further improve the performance of each configuration by tuning the network archi-
tecture and the hyperparameters individually, but we do not pursue that here.

We compare the results of 15 key configurations in Offline mode trained with 60 fps
data. For convenience, we refer to a configuration by writing motion features followed
by joints, e.g. PV-WE configuration is Position and Velocity extracted from Wrist and
Elbow joints. In Figure 4.18, configurations on the first column show that configuration
RRV-WES, i.e., rotational features from all joints, performs significantly worse com-
pared to configuration PV-WES, i.e., positional features from all joints, which perform
almost similarly as Full configuration.

The inclusion of Wrist is the most critical for the performance of a model that uses Posi-
tion and Velocity (Columns 2 and 4). Shoulder on its own contains the least information
about the PoR when positional information is considered. A comparison between con-
figurations PV-WES and PV-WE shows that the inclusion of Shoulder does not improve
the performance of the model. This is also valid for a comparison of PV-WS and PV-W.

When rotational motion features are considered (Columns 3 and 5), Elbow stands out as
the most important joint, followed by Shoulder and lastly Wrist. A comparison of joints
that use positional features versus rotational features (Columns 2 versus 3, Columns
4 versus 5) shows that none of the rotational configurations reach the same level of
performance as the positional configurations except RRW-ES versus PV-ES, which is
quite intuitive since a shoulder joint typically rotates without moving too much in a
throwing motion. Yet, in a Shoulder only configuration, RRW performs almost as poorly
as PV.

4.3.2 Simulation Mode Evaluation

In this mode, we evaluate the Full configuration model by simulating a real-time throw-
ing system using pre-recorded animation clips exported from the dataset. To create
animations from the recorded motion, we sample the data at 60 fps and retarget the
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Figure 4.19: Detection error histogram (Left) of a heuristic-based detection algorithm
that uses velocity magnitude (m/s), calculated on all throws in the dataset. Overarm:
mean=0.08, stdev=19.96, Underarm: mean=-27.46, stdev=18.99. Velocity magnitudes
(Right) are separated for each subject.

entire dataset onto a template skinned model provided by Vicon. 60 fps is generally
considered the ideal frame rate for a game [348]. We rescaled the template model to
a height of 1.70m, which is what was used for training. After importing the dataset
as animation files into Unity, a window of one second is extracted from each throwing
motion, with the PoR lying at t=0.45s.

For each actor in the dataset, we create an animation controller with their throwing mo-
tion clips and run the entire sequence in Unity. As the clips are played, motion features
from arm joints are calculated, normalized, stacked, and sent to the model as input.
Unity uses a left-handed coordinate system, so we perform necessary transformations
on the motion features to make them match with the motion features of a right-handed
coordinate system.

The model makes real-time predictions and a throw is registered based on a simple
prediction algorithm (See Algorithms 2 and 3). To access the PoR prediction model, we
use NetMQ, which creates a lightweight connection between Unity and Python. The
model runs in the background and processes an input upon request by Unity. We use the
same evaluation method used for training: when motion from a specific actor is being
evaluated, the model that separates that particular actor as the test set is used. The target
frame rate of Unity is set to 60 fps to match the data rate that was used to train the
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model.

Using the Simulation predictions of Figure 4.20, a distribution of detection errors is
measured in Unity using the prediction algorithm (see Figure 4.21). The average detec-
tion error is 10.85ms for Overarm and 2.72ms for Underarm, with most of the detections
lying within a 50ms delay. The number of undetected throws is one out of 1679 throws.
We refer to the Real-time mode to explore how these delays are experienced by users in
VR.

4.3.3 Real-time Mode Evaluation

We test ReTro in real-time in VR by streaming live motion data of new users from the
motion capture system into Unity. Throws are performed by interacting with a virtual
ball using the hands only. A separate motion capture computer processes the motion
data in real-time and sends relevant information to Unity using Vicon Datastream SDK.
A VR application built in Unity is displayed to the users on an Oculus Quest 2 headset
tethered with Oculus Link. We align the motion capture and VR coordinate systems
using an alignment tool provided by Vicon.

Since this evaluation method is tested with new users that are not in the dataset, we
re-train the Full configuration model without separating any actors as the test set. The
Oculus Quest 2, which enforces a minimum frame rate of 72, is used. As the frame rate
of the model, i.e., 60 fps, no longer matches the system’s frame rate, i.e., 72 fps, we
resample the motion data and train the model with 72 fps data.

Initially, we attempted to stream the entire skeleton of the user and render the full body,
but we eventually only rendered a hand mesh to decrease the amount of computation.
We stream motion information of five joints into Unity: hips, upper spine, shoulder,
elbow, and wrist. Shoulder, elbow, and wrist are the joints whose extracted motion
features become inputs to the prediction model. The upper spine is the parent joint of
the shoulder, and we use it to construct a hierarchy and read the local rotation of the
shoulder. Hips are needed in order to rescale the user’s body to a height of 1.70m which
is what the model is trained with. Since the global position is streamed continuously,
rescaling has to be repeated every frame.

The frame rate fluctuation amount is much larger than what it is for Simulation mode
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Figure 4.20: Offline and Simulation evaluation of regression model for the Full config-
uration for Overarm and Underarm.
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due to the introduction of VR and motion capture data streaming. Since the models are
trained with data sampled at fixed timesteps, it is possible that these fluctuations have a
negative impact on the performance of the model.

Six volunteers used ReTro and provided feedback (5M, 1F, ages 18-32). The VR scene
included a ball 7cm in diameter, a stand for the ball, a target to throw at, and a floor
plane. Two displays placed in the scene showed the type of throw to perform, i.e.,
overarm or underarm, and the instantaneous frame rate. The users were instructed to
pause throwing if they noticed large fluctuations in the frame rate. They could see their
right hand but their fingers were not tracked. In every throw, the user grabbed the ball
from the stand in from of them before performing a throw. A grab was triggered when
the hand collider made contact with the ball collider, upon which a pre-recorded grab
animation was played.

The users first practiced both underarm and overarm throws freely as a warm-up without
any restrictions. This was followed by two blocks of throws in counterbalanced order,
one each for overarm and underarm motions. In each block, they aimed at a spawned
target using either all overarm or all underarm motions for nine throws, followed by a
block using the other type of throwing motion. The targets incrementally moved away
from the user after every three throws, giving three horizontal distances of 3.25m, 4m,
and 4.75m. After a thrown ball made contact with the ground, the target was colored
green or red to indicate a hit or a miss, respectively.

After completing every nine throws in a block, the users were asked for feedback on
the type of throw they performed. At the end of the session, we asked them to com-
pare their experiences with underarm and overarm throws and to comment overall on
the system. All six users reported that Overarm throws were much less realistic than
Underarm throws because too much force was needed for the ball to reach the target
and the release of the ball felt too late. Even though the performance of the model in
Overarm and Underarm PoR detection does not differ too much, the negative experience
of the participants in Overarm throws suggests that the ground truth for Overarm throws
might be biased.

Only two reported that Underarm release times felt slightly late, but all six agreed that
this task was easier and felt much more natural or fun. Two participants suggested that
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Figure 4.21: Detection error histogram in Simulation mode for Overarm and Underarm
throws. Calculated on pre-recorded motion clips. Overarm: mean=10.85, stdev=25.87,
Underarm: mean=2.72, stdev=23.04.

seeing a fully tracked hand would enhance the sense of embodiment, but did not think
that this would affect their performance. Regarding the overall experience, these are
some of the comments received:

• "If the option was between, say, having a controller in your hand and not being able

to throw it, and not having a controller and more naturally performing the throw, I

would prefer this."

• "It feels more immersive compared to holding a controller. It feels more real. You

don’t really feel like it’s VR, it’s just your body moving."

• "Because you can’t throw a controller, I think this is better, much more natural."

• "If I had a controller for this, I would be using a button to release. This would give

you more control over the ball, but less natural. If you’re aiming to get the ball at

the correct area, control is more important than naturalness. So, in a result-oriented

task, control would be better I think."
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4.3.4 Comparisons with other evaluations

Comparison with Preliminary Results: It is necessary to compare the results of this
evaluation with the results of our preliminary work on PoR detection in Chapter 3.2,
where a similar evaluation of 35 different configurations was carried out.

In the preliminary assessment (Comp-1), differently from the current assessment (Comp-
2), we found that Rotation feature displayed better performance than other features in
several ways. First, when used on a single joint, Rotation performed better than the other
features alone. Second, the configuration using the Rotation feature on all joints was a
top performer. Several factors contribute to this mismatch between the two findings,
which are the differences in the datasets, the preprocessing steps, and the employed ML
models. The dataset used in Comp-1 was captured with a heuristic-based virtual throw-
ing algorithm operating on finger rotation, which may have failed to capture any under-
lying correlations that occur in real throws between our motion features and PoR. We
stated in Chapter 3 that some participants of Exp. T1 have experienced difficulties con-
trolling the virtual ball, affecting both their performance and motion. Furthermore, par-
ticipants were not restricted to a throwing type, which led to the dataset being dominated
by overarm throws (%64). Lastly and most importantly, in Chapter 3, we did not imple-
ment rescaling of the subjects’ skeletons as a technique to better cluster motion features
of all actors (See the Appendix for the projected position features of Exp. T1), and to
compensate for this lack of size invariance, we did not perform cross-validation during
training. In Figure 3.9 in Chapter 3, the performances of different detection methods for
Full configuration are provided. DR50, the best-performing real-time method, has an
average (non-absolute) error of ∼10ms with 16.66ms delay introduced by DR method,
which sums up to a detection delay of 25ms with around 5% of the throws undetected.
On the other hand, the average detection error demonstrated in Simulation Mode Eval-

uation (Sec. 4.3.2) is 6.62ms with only one undetected throw. It is also important to
note that the preliminary model was trained on 120 fps data while the current model
was trained on 60 fps data. Although our transition from a feedforward neural network
architecture to LSTMs might have contributed to this improvement, we think that the
dataset and the motion rescaling step have the biggest impact.

Comparison with heuristic-based solution: In the study by Butkus et al. [18], vir-
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tual throwing is implemented without a controller by using velocity as a heuristic for
releasing the ball. In this approach, the ball is released when the hand velocity, tracked
by a Vive tracker attached to the hand, starts decreasing. In our analysis of different
configurations, we found that configurations using PV features on Wrist are noticeably
more accurate, especially toward the PoR. Therefore, we decided to go back to evaluate
the heuristic-based release algorithm to understand how it compares with our approach.
As the manuscript [18] does not provide the details of their implementation, we im-
plemented the heuristic using the magnitude of global velocity. In a controlled setting
where subjects perform throws in a predetermined direction as in the case of [18], using
the forward component of the global velocity can also be feasible.

In a typical overarm or underarm throwing motion, the arm performs a swinging motion
by first moving backward and then forward with respect to the throwing direction. Such
transitions of motion direction must be considered delicately when designing an algo-
rithm based on velocity so that a release is not triggered in the early phases of a throwing
motion where velocity changes are non-monotonous. Due to this, in our evaluation of
the heuristic-based algorithms, we start our PoR search 5 frames before the ground truth
PoR frame. On the other hand, by training a model, it is possible to not only recognize
these motion segments as part of the throwing motion but also to generate accurate pre-
dictions about the PoR in the early phases.

In Figure 4.19, results of the velocity magnitude-based algorithm are presented as detec-
tion error histograms. The detections are centered around the origin for Overarm throws
but slightly shifted for Underarm throws, i.e., 27.46ms late detection on average. This
can also be inspected by looking at the averaged velocity magnitude curves per subject
on the same figure. For Underarm throws, there is a clear offset between the peak av-
erage velocity magnitude and the curves closely resemble second-degree polynomials,
but for Overarm throws, the curves do not follow very similar trends, with two local
maxima in a few of them around the ground truth. Although the reasons for this are not
evident, two possible explanations are the ground truth and style variation. It should
also be noted that these calculations are carried out on the motion data that was scaled
up/down to a skeleton height of 170cm, and therefore the visualized magnitudes are not
equal to the velocity magnitudes of the actual throws.
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4.4 Discussion

In this chapter, we first presented an experiment to explore the perceptual consequences
of PoR timing delays. An improved PoR prediction model was also presented, along
with a real-time PoR detection system, ReTro, that takes as input the motion features
extracted per each arm joint and outputs a prediction of the PoR time in real-time, were
presented. We thoroughly evaluated the model both offline and in real-time. We also
compared 15 different joint-feature configurations to understand how motion features
contribute to the task of prediction point of release. We found that the wrist is the
most informative joint and P/V features are generally superior to R/RV features. These
results differ from our analysis of different configurations in Chapter 3, which we think
is mainly caused by the use of less reliable PoR ground truth in the earlier chapter. The
current evaluation can be useful for optimizing the effectiveness of wearable motion
sensors in a system like this.

After finding that P/V features are very effective on the wrist joint for PoR detection, we
implemented a velocity-based heuristic release algorithm following the work of [18].
The results of this analysis showed that such a heuristic performs comparably well,
which might give the impression that our system does not provide much gain in return
for the complexity of the setup. However, given the simplicity of the throwing motions
evaluated in this work, we argue that our approach will be able to perform far better on
more complex and faster motions, e.g., chucking in cricket, where the capacity to learn
and the value of early detection increases.

Our real-time VR implementation of the PoR detection model using a motion capture
system enabled users to interact naturally with a virtual ball without any intermediary
device, i.e. a controller. Six volunteer users reported that underarm throws generally
felt very accurate and natural, while overarm throws felt delayed and less natural. Four
users reported that using their hands rather than a controller was much more natural
and realistic. This novel physical interaction method could be adapted to other physical
interactions that could benefit from an early prediction model.

Throwing a real ball is highly influenced by the haptic backforce exerted, and it has
been shown that when a throwing motion without a ball in the hand is made, fingers are
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opened much less rapidly [220]. The inclusion of a haptic device, such as PIVOT [4],
could therefore be helpful in emulating this experience. Furthermore, it is possible that
the use of a real ball during motion capture may have affected release detection in the
virtual ball scenario, which needs further study. The model was less robust at predict-
ing overarm throwing release points according to the users, so more improvements are
needed in this case. As this qualitative feedback does not match with the quantitative re-
sults, i.e. overarm and underarm sets perform similarly in Simulation mode (see Figure
4.21), and the velocity magnitudes display an inconsistent pattern for Overarm throws
(see Figure 4.19), it suggests that the set of ground truth for overarm throws may not
be as accurately approximated as for underarm throws, and an improved ground truth
extraction approach can help with this, e.g. pressure sensors in the palms.

In future work, we are interested in exploring TensorRT to reduce the inference time of
our model, which is currently the main computational bottleneck of the system. It is also
of interest to explore more advanced prediction algorithms and to train the model with
data of varying timesteps rather than of fixed timesteps so that it will be more robust to
fluctuating frame rates. Further ideas are suggested in Chapter 6.
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5 Perception of Dumbbell Lifting

In this chapter, we study "physicality errors", i.e., the errors that arise due to a mismatch
in the dynamics of a person’s motion and the visualized movements of their avatar in
VR, by employing the scenario of dumbbell lifts. In a series of experiments, we ask
participants to watch humanoid models performing pre-recorded dumbbell lifts and re-
spond to forced-choice and Likert scale questions.

We preferred using dumbbell lifts for this evaluation because it is a simple physical
activity that is well understood by the general public and can easily be performed with
different levels of resistance. We investigate the perceptual impact of both the kinematic
signal (i.e. the motion) and varied visual signals (the size of the virtual character, the
size of the lifted object, and the presence of muscle deformations that convey strain)
through a series of experiments. In each experiment, people watch a series of anima-
tions in virtual reality (VR) of virtual characters lifting dumbbells and estimating the
effort and weight of the action. In some experiments, they additionally rate naturalness
and one experiment employs an interval forced-choice design to evaluate if fake lifts
can be distinguished from real ones. The characters are driven by the recorded motion
of two average-strength male actors and two strong male actors. Character bodies are
matched to the actors, with the strong actors being taller and heavier. This allows mul-
tiple combinations of body type, motion kinematics, and displayed weight, along with
a blendshape model to support realistic muscle deformations.
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Actor Max Dumbbell Weight Age Weight (lbs) Height Dominant Hand
Avg. Male 1 (AA1) 27 lbs 24 139 5ft. 9in. R
Avg. Male 2 (AA2) 35 lbs 38 191 5ft. 9in. R

Strong Male 1 (SA1) 60 lbs 30 237 6ft. 1in. R
Strong Male 2 (SA2) 60 lbs 27 231 6ft. 2in. R

Table 5.1: Performers in weight lifting task.

Table 5.2: Summary of the Experiments

# Name Deformations Body Dumbbell Medium
1 Baseline No Actor Matched Not Shown VR
2 Body Shape No All Four Actors Motion Matched VR
3 Dumbbell Size No Actor Matched All weights for actor VR
4 Muscle Strain Yes Actor Matched Not Shown VR
5 Discrimination w/Strain Yes Actor Matched Matched and mismatched VR
6 Baseline No Actor Matched Not Shown Online

5.1 Methods

The study was organized into a sequence of experiments (Table 5.2) that explored var-
ious signals of physicality (kinematics, character representation, object representation,
and muscle deformations). All experiments followed the same basic design, which will
be described here.

5.1.1 Experimental Design

During each experiment, participants were recruited for a single session in which they
completed a survey in VR. After an orientation on using a VR headset and the controls
employed in the survey, they were given brief instructions on the experiment in the
headset. They were then shown a range of clips that indicated the type of variation they
might see in the experiment. This avoids learning the stimuli range taking place during
the first few trials. After this, they saw a randomized sequence of short motion clips that
showed a single person lifting a dumbbell in a simple room. After each clip, participants
were asked to rate the clip in terms of the perceived Effort of the lifter, from 0 to 100%
where 100% represented their maximum effort; their perception of the Weight that was
lifted, from 0 to 100 lbs (they were told that weights may not span the entire scale) and,
for Exps. 2-4, the Naturalness of the motion by rating the statement “The motion in
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Figure 5.1: Participants stood on an X on the floor in front of the lifter throughout the
experiment

this clip appears natural” on a 7-point Likert scale ranging from Strongly Disagree to
Strongly Agree. At the end of the experiment, they participated in a brief exit interview
and debrief.

5.1.2 Apparatus

The experiment environment was developed in Unity and presented on an Oculus Quest
2 headset. This headset has a resolution of 1832×1920 pixels per eye with around 90◦

horizontal and vertical Field of View. The virtual environment (VE) was a standard
room with a door, several lights, and several power outlets on the walls. It contained
a chair that acted as a scale marker. An X was placed on the floor to make sure that
every participant observes the stimuli from a same distance of about 1.5m (Figure 5.1).
The stimuli were presented fully facing the X mark, in order to maximize the amount
of information conveyed to the participants. Participants interacted with the VE using
an Oculus Touch controller. A visible ray coming out from the virtual representation of
the controller was used to control interface widgets.

5.1.3 Stimuli

The lifters that provided the source motion for the study were recruited through on-
line advertisements to a pool of actors. The actors submitted their maximum dumbbell
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Figure 5.2: The models for each of the four performers, AA1, AA2, SA1, SA2.

curl and a short video of themselves performing a lift. The selection was based on es-
tablishing two sets of lifters, two “strong” actors and two “average” that had clearly
differentiated maximum lifts. This allowed us to examine the impact of both body size
and lifter strength on observations of dynamics. Details on the selected actors are sum-
marized in Table 5.1.

To establish their actual maximum lift, all actors came to the studio at least a day before
the actual motion recording. They started by lifting what they estimated would be their
maximum lift. The weight was gradually increased as long as they could complete three
repetitions of the lift. They were given time to rest between each set. The process
stopped when they decided they had reached their maximum, which was recorded for
use during the motion capture session.

The motion of each actor was recorded using a Vicon, marker-based optical motion cap-
ture system featuring forty 16MP cameras. A standard marker set was used consisting
of 67 markers. Each actor performed lifts at 0 (holding nothing), 25, 50, 75, and 100%
of their maximum lift. They performed a single set of three lifts at a given weight be-
fore resting. The order of weights was randomized for each actor to avoid any fatigue
patterns. Two sets of lifts were recorded for each weight for each actor. The motion
capture data were solved to a skeleton using a custom solver that minimizes the root
mean square error over the marker set.
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5.1.4 Model and Deformations

The virtual character model needed to support two research goals: allow variation in
body shape and provide plausible muscle deformations. It was beyond the scope of the
project to create and validate a full simulation model of human muscle. Instead, we
employed an artist-driven approach whereby an artist with twenty years of experience
in the visual effects industry generated a model and set of blend shapes to control de-
formations. The muscle deformations used in Exps. 4 and 5 were designed to show a
high level of strain, rather than being tuned to each lift. This allowed us to investigate
if strain cues are impactful, but further work would be required to tune deformations
to arbitrary lifts. The effectiveness of the model deformations for conveying strain was
validated (Section 5.2.4).

The base avatar model was generated with Human Generator V2, a tool for creating
fairly realistic human models with varied body shapes in Blender [349]. Three types of
blend shapes were used on the model (Table 5.3): Body Type Shapes - were used to cre-
ate a variety of body shapes to account for various amounts of muscle mass and belly fat.
These included a thin model, a very muscular model, and a “bellyOut” shape that indi-
cated a large amount of fat around the midriff (used for AA2, who was somewhat stock-
ier). The motion capture solver automatically scales the skeleton limb lengths based on
a range of motion recording. The model was further fit to each actor by adjusting these
blendshapes, using both the markers and actor footage as reference (Figure 5.2).

Corrective Shapes were created to preserve volume and improve anatomical detail as
the model moved through a range of motion. These shapes were driven by the joint
angle of a related skeletal joint with the one exception of the “latIn” shapes that were
used to prevent penetration of the arms muscles with the latissimus dorsi. These ‘latIn”
shapes where driven by the distance between the elbow and the side of the body, and
provided a simulation of interaction between these surfaces.

Tense Shapes were a collection of shapes built to emulate muscle strain and physical
exertion (Figure 5.3). The limited range of motion in the study and the similarity of
the animation cycles allowed these shapes to be grouped into regions. This reduced
dimensionality made for easier retargeting to the animation clips.
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Figure 5.3: Muscle deformations are shown on virtual character SA1 for an intense mo-
ment in a lift with the five different deformation levels: A) no deformation, B) BODY,
C) PARTIAL, D) HEAD and E) FULL. See the video for examples of the deformations
animated.

The animation of these clips was done with shape activations offset from one another
in time. For example, shapes indicating great effort (such as the clenching of the mouth
or squinting of eyes) were dialed in during “mid curl” where the effort expended is
greatest. The video of the mocap session proved uninformative about actual deformation
as the actors were wearing black mocap suits. Instead, references of weight lifters and
videos taken by the artist helped inform the creation and animation of these shapes.
Wrap3D [350] was used as a basis for many of the facial shapes.

The muscle deformations were animated by hand for one reference clip and then retar-
geted to all clips. The retargeting process took as input the start and end frame of each
up or downswing in both the reference clip and the target clip. It then scaled the timing
of the keys from the reference clip to the target clip based on these landmarks in the
timeline.

5.1.5 Demographics

The number of participants, mean age (SD), and gender data are summarized in Ta-
ble 5.4. Other data were similar across the VR participant pools. The ethnicity of
participants was: 81.3% White/Caucasian, 6.7% Black/African/African American, 6%
Asian/Asian American, 4.4% Latin/Hispanic, and 3.1% preferred not to disclose. The
largest group had some experience with VR (48.2%), 35.2% had no experience, and the
remainder had more extensive experience. A majority had some experience exercising
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Table 5.3: Blendshapes in the Avatar Model

Body Type:
Slim Reduce overall muscle mass
BellyOut Increase torso fat
Corrective shapes:
Leg Leg lifting corrective
Forearm Corrective for arm bending at elbow
WristDown Flexion of the wrist
WristUp Extension of the wrist
LatIN Prevents arm from penetrating the side of the torso
Tense Shapes:
Torso Tense Abdominal, obliques and pectoralis strain (abs and oblique

deltas reduced dramatically for BellyOut variation)
NasilFold Nasolabial fold (crease at the inside edge of cheek)
PlatFront Platysmal sheet, the broad sheet of muscle fibers extending

from the collarbone to the edge of the jaw
Plat Platysmal sheet lateral (indicating extra strain/effort)
SternoMastoid Large muscle from the corner of jaw/head to the start of

collarbone
JawClench Clench jaw
FaceClose A “wince” comprised of closing of eyes, cheek raiser and

tightening, raising of lips
LegFlex All major muscles around knee
ArmFlex Flex the bicep/tricep muscles and also added some forearm

definition
EyeClose Used in sync with face close to offset timing

Exp. N Age Gender
1 30 37.7 (12.7) F 50%, M 46.7%, O 3.3%
2 35 35.7 (9.7) F 48.6%, M 48.6%, O 2.9%
3 & 5 35 33.9 (9.5) F 45.7%, M 45.7%, O 8.6%
4 35 34.5 (8.3) F 45.7%, M 51.4%, O 2.9%
6 194 39.3 (11.1) F 36.1%, M 63.9%

Table 5.4: Participant demographics. Gender category O is a composite of Non-
binary/third gender and Other.
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or weightlifting (62.0%) or did it regularly (31.3%). Similarly, a majority had some
experience seeing others lift weights (62.6%) with some seeing it regularly (24.2%).

5.1.6 Analysis

Analysis was generally performed using linear mixed effect models [351, 352]. These
offer a more general approach than ANOVA as they include fixed and random effects,
but similarly predict the dependence of a response term (e.g., perceived effort) on one
or more factors (e.g., the size of the virtual character’s body). The participant ID was
treated as a random effect since the participant pool is merely a sample of the more gen-
eral population. Type II Wald chisquare tests were used to evaluate significance within
the models. Post-hoc analysis was conducted by calculating pairwise comparisons us-
ing estimated marginal means with Tukey correction. Exceptions to this analysis scheme
will be noted in the relevant sections. The error bars in all plots show standard error.

5.2 Experiments 1-6

5.2.1 Exp. 1, Baseline

The first experiment was designed to provide a baseline measurement of how well peo-
ple can perceive weight and effort from motion kinematics. For this reason, the lifted
dumbbells were not shown. This also makes the work more directly comparable with
previous work on point light displays. The displayed body was approximately matched
to that of the lifter, as described in Section 5.1.4. 40 clips were used in this experiment
(4 actors x 5 different weights x 2 repetitions). Weights were evenly spaced between
0 and each person’s maximum lift, so they were not the same for each actor. Since
previous research [21] has shown that people are more accurate when making estimates
for a single actor at a time, clips were grouped by actor and randomized within actor.
Participants rated their perception of both effort and weight for each clip, but the order
of these questions was counterbalanced, so only half rated effort first.

Figure 5.4 shows perceived effort as a function of the actual effort made by the lifter,
considering their maximum lift to be 100% effort. Participants’ estimates of the weights
for the various lifts by actor are shown in Figure 5.6. For every lifter, there is a highly
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Figure 5.4: Perceived effort by lifter
compared to actual effort for the Base-
line experiment. The black line indi-
cates perfect performance.

Figure 5.5: Perceived effort, grouped by
lifter strength.

Figure 5.6: Perceived weight by actor in the Baseline experiment.
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significant correlation between perceived effort/weight and actual effort/weight (Pear-
son’s product-moment correlation with all p-values less than 1e-14). The correlations
are strong for the stronger lifters and medium for the average lifters on both measures:
(Effort Pearson’s r: AA1=.41 , AA2=.48 , SA1=.73 , SA2=.73; Weight Pearson’s r:
AA1=.36 , AA2=.41 , SA1=.61 , SA2=.64). These findings suggest that at least to some
degree, people are able to observe both weight and effort from lifters’ kinematics.

It can also be observed that correlations are somewhat stronger for effort. Using Fisher’s
Z transform to compare correlations shows that these differences are not significant for
the average strength lifters (AA1: Z=.72, p=.47; AA2: Z=1.06, p=.29), but are signifi-
cant for the strong lifters (SA1: Z=2.68, p=.0074; SA2: Z=2.08, p=.038). This suggests
that people may be better able to observe effort than weight for the strong lifters. Visual
inspection of Figure 5.4 shows similar slopes within the Average Strength and Strong
groups, but differences between them, a trend made more clear in Figure 5.5. Lifter
group does significantly affect observations based on fitting a linear mixed effects model
(χ2(1) = 15.645, p < .001). People were more accurate in their effort perceptions for
the strong group.

Observation of Figures 5.4 to 5.6 shows a curvilinear relationship between the actual
and perceived values such that the curve is flatter for lower effort/weight and more steep
towards the maximum. Mirroring previous analyses (e.g., [21]), a linear mixed effects
model was fit to each actor for each of Effort and Weight. Since the Weight levels differ
across actors, we chose to fit an individual model to each actor, rather than treating
Actor as an additional factor. In all cases, the independent variable (effort or weight)
had a highly significant impact on the perceived estimates (p<.001, details in Appendix),
reflecting that people are adjusting their judgments based on both the actual effort and
actual weight. Pairwise comparisons were done for each model. These show that the
100% lifts differed significantly from the 75% lifts for both Effort and Weight for all
actors, but lower levels were generally not significantly different for the average actors
(details in Appendix). This reflects the more moderate slope in this part of the response
curve and implies that observers may be less sensitive to these more subtle variations
in kinematics. This suggests that the motion of an actor becomes more distinct as they
approach their maximum lift. A possible explanation for this might be the involvement
of additional kinematic cues, such as the movement of the trunk.
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Relationship between Effort and Weight

In order to better understand the relationship between effort and weight estimates, we
can normalize the estimated weight values (i.e. express them as a percentage of some
max lift) so that effort and weight can be plotted on the same scale. Normalizing with
the actual max lift of each performer produces the plots in Figure 5.7, which shows
the curves have similar shapes, but are not aligned for the average actors. If instead,
we optimize for a normalizing constant for each actor by minimizing the difference
between the normalized weight and estimated effort, we produce the chart in Figure 5.8
with weights: AA1: 51.3lbs, AA2: 60.6lbs, SA1: 65.3lbs, SA2: 64.8lbs. There is
clearly a strong correspondence between the curves for estimated effort and estimated
weight (Pearson’s correlation r = 0.74), so it may be that people were making a single
judgment based on the motion and then scaling that to estimate the other quantity. We
will revisit this in the discussion (Section 5.2.7) when there is more evidence that effort
is the quantity estimated.

The weights are minimizing the error in weightest = effortest ∗ w/100 where w is the
normalizing constant, so provide an estimation of people estimate the max lift of each
actor (100% effort). Alternatively, calculating the regression between estimated weight
and estimated effort yields slightly different constants (AA1: 47.1, AA2: 55.6, SA1:
62.2, SA2: 58.7) because of the squared error term in regression, but the same pattern
emerges. With either analysis, the max lift of AA1 is slightly lower and slightly higher
for SA1 and SA2. It is worth noting that the range of these values (51.3 to 65.3 lbs or
47.1 to 62.2 lbs based on regression) is far less than the range of the actual max lifts
of the actors (27 to 60 lbs). This may suggest that people do make strength predictions
based on body size, but their accuracy in doing so is limited. Alternatively, it may be
that the virtual characters used did not adequately capture the details necessary to make
these estimates accurately.

5.2.2 Exp. 2, Body Shape

The goal of this study was to understand how the size of the virtual character’s body im-
pacted perceptions of weight and effort. This is relevant for situations where someone’s
avatar may not match their body proportions. To provide a more realistic use case for
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Figure 5.7: Perceived effort and weight for weights that are normalized based on the
actual max lift for each lifter.

Figure 5.8: Perceived effort and normalized weight where the normalizing constant is
optimized for each actor (AA1: 51.3lbs, AA2: 60.6lbs, SA1: 65.3lbs, SA2: 64.8lbs).
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VR applications, the dumbbells were visualized in the virtual character animations. In
all cases, the size of the dumbbell was matched to the lift motion used (e.g., if the lifter
had lifted 30 lbs, a 30 lb dumbbell was displayed). Each motion was displayed on the
virtual character models of each of the four actors (Body factor). Thus the motion and
visualized dumbbell provided consistent signals, but the body shape was inconsistent
(matched to the original lifter in some clips, and not in others). To maintain the balance
between the matched and unmatched groups, one matched animation was included for
each mismatched, so there were six clips for each actor-weight combination (three on
the matched actor characters and one on each of the unmatched actor characters). In to-
tal there were 96 clips (6 body-motion combinations x 4 actors x 4 weights). Note that
the zero-weight lifts were not used. The presentation was fully randomized. After each
clip, participants were asked to rate weight and effort as before and also asked to rate
the naturalness of the clip on a 7-point Likert scale to explore if mismatched clips were
less believable. Since we are combining different actor body shapes and actor motions
in this section, we add ‘m’ after an actor ID to specify motion and ‘b’ body shape, e.g.,
AA1m and AA1b.

A first question is: does body type impact the perception of effort? Effort ratings for the
motions of each actor displayed on each virtual character model are shown in Figure 5.9.
It is clear that effort ratings are largely consistent across these variations in body shape.
Linear mixed effect models fit to each actor motion show that body shape did not have
a significant impact on Effort ratings for AA1m, AA2m, or SA2m ( AA1m: Effort
χ2(3) = 533.2, p < .0001, Body χ2(3) = 3.97, p = .26, Effort:Bodyχ2(9) = 14.55,
p = .10; AA2m: Effort χ2(3) = 253.46, p < .0001 Body χ2(3) = 1.08, p = .78,
Effort:Bodyχ2(9) = 12.64, p = .18; SA2m: Effort χ2(3) = 723.9, p < .0001 Body
χ2(3) = 6.26, p = .10 Effort:Bodyχ2(9) = 13.27, p = .15) . However, there was
a significant impact of Body shape on Effort ratings for the motion of SA1m (SA1m:
Effort χ2(3) = 915.8, p < .0001 Body χ2(3) = 63.72, p < .0001 Effort:Bodyχ2(9) =

26.10, p = .0020) . Post-hoc analysis shows that the only significant differences related
to the AA1 body. Perceived effort on the AA1 character was significantly less than SA1
and SA2 bodies at 50 (p<.0001, p=.0005), 75 (p<.0001, p<.0001) and 100% (p=.0001,
p=.0003) actual effort. It was also significantly less than AA2 at 25% (p=.005) and
almost at 50% (p=.0504). It is not clear what is causing this difference.
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Figure 5.9: Perceived effort as body type is changed. Facets show motion from different
actors, colors code different character bodies.

A next question is whether changing body shape impacts the perception of the lifted
weight. Here the answer is yes. The impact of body shape on weight is shown in
Figure 5.10. Linear mixed effect models fit to the data for each actor in all cases show
significant main impacts of Body and of actual Weight on perceived weight, but no
interaction (AA1: Weight χ2(3) = 813.9, p < .0001, Body χ2(3) = 22.34, p <

.0001, Weight:Bodyχ2(9) = 14.34, p = .11; AA2: Weight χ2(3) = 711.6, p < .0001,
Body χ2(3) = 46.87, p < .0001, Weight:Bodyχ2(9) = 11.61, p = .24; SA1: Weight
χ2(3) = 730.1, p < .0001, Body χ2(3) = 62.35, p < .0001, Weight:Bodyχ2(9) =

11.72, p = .23; SA2: Weight χ2(3) = 696.7, p < .0001, Body χ2(3) = 42.8, p <

.0001, Weight:Bodyχ2(9) = 6.87, p = .65) . Post-hoc analysis shows that the weight
estimates for the average size virtual characters were always significantly lower than
the weight estimates for the strong virtual characters (larger bodies) except the virtual
characters of AA1 vs. SA1 fell slightly below significance for the motion of AA2 (t=-
2.411, p=0.076). This suggests that given the same perception of effort, people assume
the larger virtual characters are lifting more weight.

Given that body shape does impact the perception of weight, the next question is how
much? Since the effect was significant at the class level, Average vs. Strong, differences
were calculated by comparing the means of the ratings for these classes. In 15 of the
16 cases, the estimates were heavier for the Strong class. The one outlier is the lightest
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Figure 5.10: Perceived dumbbell weight as body type is changed. Facets show motion
from different actors, colors code different virtual character bodies.

lift performed by AA1 (lift was 6.75lbs, mean Average estimate 7.56, Strong estimate
7.36lbs). For the remaining classes, the mean Strong estimate was between 1.5 and 5.7
pounds heavier and generally increased for larger weights. As a percentage of the actual
lift, the Strong estimates averaged 11% higher.

Finally, we explore whether changing the body size impacts the naturalness of the mo-
tion. To analyze this, a linear mixed effects model was fit to the data with the 7-point
Likert scale Naturalness ratings as response variable and factors Effort, actor Motion
(performer of the lifts) and Body (character model used for display). There were signif-
icant main effects for Body shape and actor Motion and all two-way interactions were
significant, but the three-way was not. The two interactions related to Body shape,
Effort:Body shape and actor Motion:Body shape are shown in Figures 5.11 and 5.12,
respectively. The significant differences from post-hoc analysis are marked. Most drops
in Naturalness are related to the AA1 model, with some related to AA2. When AA1b is
used on motion from larger actors (which would also feature larger dumbbells) and at
higher efforts (heavier lifts), it looks less natural. Motion from larger actors also looks
less natural on AA2, although the difference is less pronounced.
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Figure 5.11: Naturalness for different body shapes. Facets show different effort lifts.

Figure 5.12: Naturalness for different body shapes. Facets show motion from different
actors.
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Figure 5.13: Perceived effort with and without displayed dumbbells. Facets show mo-
tion from different actors.

Impact of Showing Dumbbells

Between Exps. 1 and 2, we have data for the same motions with and without the dis-
play of dumbbells. This allows us to consider whether the visual appearance of dumb-
bells influences the perception of effort. Plots of effort with and without visualized
dumbbells for the same motion and body model from Exp. 1 and Exp. 2 are shown
in Figure 5.13. Results are mixed. There is no significant difference for SA1 and
SA2 (SA1: Effort χ2(3) = 1243.7, p < .0001, Dumbbell χ2(3) = .0020, p = .96,
Effort:Dumbbellχ2(9) = 5.68, p = .13; SA2: Effort χ2(3) = 1052.9, p < .0001,
Dumbbell χ2(3) = .083, p = .77, Effort:Dumbbellχ2(9) = 1.79, p = .62) . For
AA1, there is a significant main effect for Dumbbell, but no significant interaction be-
tween Dumbbell and Actual Effort (AA1: Effort χ2(3) = 622.7, p < .0001, Dumbbell
χ2(3) = 3.92, p = .047, Effort:Dumbbellχ2(9) = 7.63, p = .054) . Effort esti-
mates with dumbbells present are lower. For AA2, there is a significant interaction
between Dumbbell and Actual Effort (AA2: Effort χ2(3) = 421.2, p < .0001, Dumb-
bell χ2(3) = 1.92, p = .17, Effort:Dumbbellχ2(9) = 9.5, p = .023) , with post-hoc
analysis showing the clips with dumbbells rate significantly lower (t=2.10, p=0.038) at
25% effort and no significant differences at other effort levels (100% effort is tendential
(t=1.906, p=0.059)).

For interpreting these results, we can consider evidence from Exp. 1 that it seems par-
ticipants estimated the amount the average lifters could lift as being higher than it is,
in line with strong lifters. Perhaps when they saw the dumbbells, participants adjusted
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down their estimates of effort for average lifters.

Next, we consider whether the visualization of dumbbells impacted the perception of
weight. Data from Exps. 1 and 2 for the same lifts, with and without dumbbells,
is shown in Figure 5.14. The patterns are clearly different, with much improved es-
timates when dumbbells are present. This difference was confirmed by again fitting
a linear mixed effect model to the motion of each actor. In all cases, there is a sig-
nificant interaction between the lifted weight and the visual presence of dumbbells
(AA1: Weight χ2(3) = 613.6, p < .0001, Dumbbell χ2(3) = 3.04, p = .081,
Weight:Dumbbellχ2(9) = 52.62, p < .0001; AA2: Weight χ2(3) = 659.7, p <

.0001, Dumbbell χ2(3) = .514, p = .47, Weight:Dumbbellχ2(9) = 63.88, p <

.0001; SA1: Weight χ2(3) = 976.2, p < .0001, Dumbbell χ2(3) = 3.61, p = .057,
Weight:Dumbbellχ2(9) = 48.60, p < .0001; SA2: Weight χ2(3) = 870.6, p < .0001,
Dumbbell χ2(3) = 17.74, p < .0001, Weight:Dumbbellχ2(9) = 44.08, p < .0001).
The weights where the presence of the dumbbell lead to significant changes in ratings
are the ones that appear visually different in Figure 5.14, 6.75 lbs for AA1; 8.75 lbs for
AA2; 30, 45 and 60lbs for both SA1 and SA2. There does not appear to be an obvious
pattern to these differences, other than that the presence of the weights largely corrected
judgment errors made when they were not present. The correlations between real and
perceived weight substantially improved when dumbbells were shown, and in all cases
the improvement is statistically significant using Fisher’s Z transform to compare corre-
lations: AA1: r= .69 vs. .36, z = 6.2, p <.00001; AA2: r=.73 vs. .41, z = 6.49, p<.00001;
AA2: r=.77 vs. .61, z = 4.1, p<.00001; SA2: r=.76 vs. .64, z=3.14, p<.00001). This
suggests that the visual appearance of the dumbbells had a major impact on participants’
ability to accurately estimate weight.

5.2.3 Exp. 3, Dumbbell Size

The goal of this experiment was to understand how changing the size of the dumbbell
impacted perceptions of weight and effort. This corresponds to cases where a person’s
avatar is shown moving objects of different mass to what they are moving when they
drive the avatar. In all clips, the virtual character’s body was matched to the actor that
provided the source motion. The clips were displayed with all possible weights for that
actor, so here body and motion were consistent, but dumbbell size was varied. In total,
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Figure 5.14: Perceived lifted weight with and without displayed dumbbells. Facets
show motion from different actors.

80 clips were prepared (5 motions x 4 dumbbell sizes x 4 actors). The zero lift motion
was used, but only dumbbells with a mass greater than zero were displayed. As with
Exp. 1, actors were grouped and clips were randomized within each actor. Participants
rated weight, effort, and naturalness.

Figure 5.15 shows the relation between actual effort and perceived effort for each actor
when dumbbell size is changed across clips. Again, linear mixed effect models were
fit to the data for each actor. Statistical analysis indicates that in all cases, there is a
significant main effect for dumbbell size (size indicates a particular weight) and for AA2
there is also a significant interaction between dumbbell weight and effort (AA1: Effort
χ2(4) = 303.5, p < .0001, Dumbbell χ2(3) = 13.75, p = .0032, Effort:Dumbbell
χ2(12) = 15.19, p = .23; AA2: Effort χ2(4) = 176.2, p < .0001, Dumbbell χ2(3) =

39.67, p < .0001, Effort:Dumbbell χ2(12) = 35.93, p = .0033; SA1: Effort χ2(4) =

649.9, p < .0001, Dumbbell χ2(3) = 12.78, p = .0052, Effort:Dumbbell χ2(12) =

11.48, p = .49; SA2: Effort χ2(4) = 603.3, p < .0001, Dumbbell χ2(3) = 10.66,
p = .014, Effort:Dumbbell χ2(12) = 10.98, p = .53). The majority of the variation
is for Effort not dumbbell size, however, and post-hoc analysis shows that the impact
of dumbbell weight is almost exclusively limited to the lightest dumbbell for each actor
being perceived as less effort to lift than some of the heavier three. For AA1, 6.75lbs
was perceived as less effort than 20.25lbs (p=0.0038) and 27lbs (p=.0280). For AA2,
the interaction was also significant: 8.75 lbs was perceived as less effort than 26.25lbs
at 50% Effort (p=.0003) and (25% Effort (p=.0002); 8.75lbs was perceived as less effort
than 35lbs at 75% Effort (p=.0002), 50% Effort (p= 0.027) and 25% Effort (p=.0021);
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Figure 5.15: Perceived effort as a function of actual effort for different dumbbell sizes.
Facets show motion from different actors.

and in the one case involving a dumbbell other than the lightest, 17.5lbs was seen as
less effort than 26.25lbs at 50% Effort (p= .0040). For SA1, 15lbs was perceived as
less effort than 45 (p= .0027) and for SA2, (15lbs was perceived as less effort than 30
(p=.018) and 45 (p=.046). This rather limited impact is consistent with the visually
quite consistent ratings across dumbbell size shown in the figure.

The impact of dumbbell size on the perception of weight is shown in Figure 5.16. Sta-
tistical analysis confirms what is visually clear: the visual size of the dumbbell has a
very strong impact on the perceived weight. Again, linear mixed effect models were fit
to each actor. There was a significant main effect for both actual Weight and visualized
Dumbbell Weight for all actors, and no significant interactions (AA1: Weight χ2(3) =

38.3, p < .0001, Dumbbell χ2(3) = 427.1, p < .0001, Weight:Dumbbellχ2(9) = 6.24,
p = .90; AA2: Weight χ2(3) = 25.23, p < .0001, Dumbbell χ2(3) = 628.5, p < .0001,
Weight:Dumbbellχ2(9) = 15.6, p = .211; SA1: Weight χ2(3) = 65.30, p < .0001,
Dumbbell χ2(3) = 794.3, p < .0001, Weight:Dumbbellχ2(9) = 14.36, p = .28;
SA2: Weight χ2(3) = 59.66, p < .0001, Dumbbell χ2(3) = 592.7, p < .0001,
Weight:Dumbbellχ2(9) = 10.92, p = .53) . Unlike for effort, the majority of the
variance was due to visualized Dumbbell Weight, not the actual lift performed. Post-
hoc analysis showed that every dumbbell size led to significantly different perceived
weight than every other dumbbell size for all actors (all p<.0001). The impact of mo-
tion kinematics is more modest. For all actors, the heaviest lift was still seen as heavier
than all other, with the exception of the second heaviest lift for AA2. The additional
significant differences were: AA2, {0 < 26.25lb lift}; SA2, {15 < 30, 45lb lifts}. Plot-
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Figure 5.16: Perceived weight as a function of actual weight for different dumbbell
sizes. Facets show motion from different actors.

Figure 5.17: Perceived weight as a function of dumbbell size for different actual
weights. Facets show motion from different actors, colors indicate different actual
weights.

ting perceived weight as a function of dumbbell size (Figure 5.17) illustrates that much
of the weight estimate is based on the dumbbell size, but some clear variation comes
from the kinematics of the motion. It can be concluded that dumbbell size has a major
impact on perceived weight, but only a minor impact on perceived effort.

Naturalness ratings were used to evaluate if people were sensitive to mismatches be-
tween the lift motion and the displayed dumbbell. A single linear mixed effect model
was fit to the full data set with 7-point Naturalness Likert ratings as the response vari-
able and factors lifter Effort, Dumbbell shape (as a percent of largest dumbbell used
by lifter), and Motion Actor, along with all interactions. There were significant main
effects for all three factors and significant interactions for Effort:Dumbbell Shape and
Effort:Actor. Since we are most interested in the impact of dumbbell shape, we per-
formed post-hoc analysis on the Effort:Dumbbell shape interaction, which is shown in
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Figure 5.18: Naturalness ratings as a function of different dumbbell sizes. Facets show
different effort levels.

Figure 5.18 with significant differences marked. It can be seen that Naturalness ratings
decrease for the more extreme combinations. For 0 and 25% effort lifts, the largest
dumbbell was perceived as less natural. This is the most likely problem case for prac-
tical VR, as people may be moving just their hands or a light controller, but be shown
lifting a heavy object. There is a slightly more pronounced drop in Naturalness ratings
at the other end of the spectrum, where the smallest dumbbell size was seen as unnatural
at both 75 and 100% lifts. At the 100% lift, the 50% dumbbell was also seen as less
natural.

5.2.4 Exp. 4, Strain Deformations

The goal of this experiment was to understand the impact of adding muscle deformations
on the perception of weight and effort. In all cases, the motion clip was matched to the
body model of the original performer. The dumbbells were not shown to allow a direct
investigation of the relative impact of motion kinematics and visualized muscle strain.
Each lift was shown with one of five deformation strain levels: NONE (the base clips
used before), FULL (flexion of the body, face and neck in correspondence with the
lifted motion), FACE (the face and neck flexion from FULL), BODY (the body and
arm flexion from FULL) and PARTIAL (a reduced magnitude version of FULL), as
shown in Figure 5.3 and the accompanying video. See Section 5.1.4 for details of how
deformations were modeled. As this was a preliminary investigation into the impact of
muscle strain, no attempt was made to tune the strain to the particular weight lifted. In
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total, there were 100 clips (5 strain levels x 5 motions x 4 actors). Clips were randomized
within each actor group.

Manipulation Check

In order to confirm that the strain animations read as desired, we performed a manip-
ulation check as an online experiment on Amazon Mechanical Turk using Mephisto
library1. We have set qualifications such that only people who have already completed
over a 1000 tasks with above 95% approval rating could participate in the experiment.
The duration of the task was 30 minutes and the paid amount was $7.5. Fifty partic-
ipants viewed a sequence of clips and after each clip rated the prompt: “How much
strain do you think the person in the video is exhibiting? (0 - no strain, 100 - maximum
strain)”. The videos contained 5 strain levels x 4 actors x 2 samples for a total of 40
clips. All strain animations were done on a character in a static A-pose to avoid any
impact from motion. A linear mixed effect model showed a significant main effect for
Deformation (Actor χ2(3) = 6.51, p = .089, Deformation χ2(4) = 1724.4, p < .0001,
Actor:Deformation χ2(12) = 6.29, p = .90). The data averaged across actors is plotted
in Figure 5.19 and the pattern was similar for each actor. Post-hoc analysis shows that
the difference between every strain deformation was highly significant (p<.001). This
confirms that the strain deformations are read as intended.

Figure 5.20 shows the impact of deformation conditions on perceived effort. Linear
mixed effect models were fit to the data for each actor. The general ordering in terms
of increasing perceived Effort is: NONE, BODY, PARTIAL, HEAD, and FULL. The
differences largely relate to which of these are statistically separated. For AA1 and
SA1, there is a significant main effect of Deformation and no interaction (AA1: Effort
χ2(4) = 126.2, p < .0001, Deformation χ2(4) = 549.0, p < .0001, Effort:Deformation
χ2(16) = 17.1, p = .38; SA1: Effort χ2(4) = 454.3, p < .0001, Deformation χ2(4) =

482.7, p < .0001, Effort:Deformation χ2(16) = 24.77, p = .074). In both cases, HEAD
and FULL are not significantly different, but each of the other levels is. For AA2 and
SA2, there is a significant interaction between Effort and Deformation (AA2: Effort
χ2(4) = 136.5, p < .0001, Deformation χ2(4) = 809.1, p < .0001, Effort:Deformation
χ2(16) = 26.48, p = .048; SA2: Effort χ2(4) = 328.9, p < .0001, Deformation

1https://github.com/facebookresearch/Mephisto
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Figure 5.19: Manipulation check ratings for the level of strain conveyed by each defor-
mation condition.

χ2(4) = 385.7, p < .0001, Effort:Deformation χ2(16) = 30.10, p = .017). For AA2,
the differences that are not significant are: BODY - NONE and FULL - HEAD at all
effort levels, HEAD - PARTIAL 0, 50, and 100% effort and FULL - PARTIAL 50 and
75% effort. For SA2, HEAD - PARTIAL are not significantly different at 0% effort and
BODY - NONE, FULL - HEAD, FULL - PARTIAL and HEAD - PARTIAL are not
significant at 50 or 75% effort. At 100% effort, there are two separated groups: FULL,
HEAD, PARTIAL and NONE, BODY. Overall, the deformations have a clear impact
on effort, especially those involving the head and neck (FULL, HEAD, PARTIAL). The
impact of BODY on its own is more limited.

Figure 5.21 shows the impact of muscle deformations on the perception of weight. A
linear mixed effects model was fit to the data for each actor. In each case, there was
a main effect of Deformation, but not an interaction between Deformation and Weight
(AA1: Weight χ2(4) = 174.0, p < .0001, Deformation χ2(4) = 250.9, p < .0001,
Weight:Deformation χ2(16) = 15., p = .51; AA2: Weight χ2(4) = 128.7, p < .0001,
Deformation χ2(4) = 347.7, p < .0001, Weight:Deformation χ2(16) = 25.51, p =

.061; SA1: Weight χ2(4) = 499.2, p < .0001, Deformation χ2(4) = 205.6, p < .0001,
Weight:Deformation χ2(16) = 25.1, p = .068; SA2: Weight χ2(4) = 370.6, p < .0001,
Deformation χ2(4) = 101.0, p < .0001, Weight:Deformation χ2(16) = 21.74, p = .15)
. The overall pattern is the same as with Effort, with the levels ordered NONE, BODY,
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Figure 5.20: Perceived effort as a function of actual effort for different deformations.
Facets show motion from different actors.

Figure 5.21: Perceived weight as a function of actual weight for different deformations.
Facets show motion from different actors.

PARTIAL, HEAD and FULL and variation on whether they are statistically separated.
For AA2, SA1 and SA2, there are three groupings: NONE, BODY, PARTIAL, HEAD
and FULL. For AA1, all levels are significantly different except PARTIAL and HEAD.
As with Effort, the deformations have a clear impact on the perception of lifted Weight.

Figures 5.22 and 5.23 quantify the impact of the strain deformations on effort and
weight, respectively, by plotting the mean difference from the examples with no defor-
mation. The general trends across deformation conditions reflect those of the previous
analysis. Two additional points can be noted. First, the impact of the deformations can
be substantial: up to a 30% increase of perceived effort for the FULL deformations and
up to a 10-15lb increase in estimated weight. Second, the impact of deformations is
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Figure 5.22: Perceived effort as a function
of actual effort with various levels of mus-
cle deformation.

Figure 5.23: Perceived weight as a func-
tion of actual weight with various levels of
muscle deformation.

largest on the lightest lifts and reduces as the lifts become heavier. This suggests that
the deformation and kinematic signals are acting in concert and when there is limited
evidence of effort on the kinematic channel, the deformation channel can have more
impact.

To analyze any impact on naturalness, we fit a linear mixed effects model to the full
set of data with Naturalness ratings as the response variable and factors lift Effort and
Deformation, along with their interaction. We also fit a model with the additional factor
Actor, but this did not improve the fit, so we analyze the first model. It showed sig-
nificant main effects for Effort and Deformation, and a significant interaction (Effort
χ2(4) = 19.64, p < .0001, Deformation χ2(4) = 26.05, p < .0001, Effort:Deformation
χ2(16) = 63.8, p < .0001). The data for the interaction is plotted in Figure 5.24, with
significant differences marked based on a post-hoc, pairwise comparison. It can be seen
that Naturalness ratings drop at either end when the strain deformations do not match
the motion. For zero effort lifts, the strain on the head and neck was seen as signifi-
cantly less natural than no deformations or body-only deformations, which is consistent
with the strain being a mismatch with the lift. Interestingly, it was also seen as less
natural than FULL, so the combined body and facial strain cues were still plausible. At
the maximum, 100% Effort, the no deformation condition was seen as less natural than
PARTIAL, HEAD and FULL, and BODY only deformation was seen as less natural
than HEAD and FULL.

132



Figure 5.24: Naturalness ratings with changes in deformation. Facets correspond to
different naturalness levels.

5.2.5 Exp. 5, Discrimination

This experiment had twin goals. The first was to understand when people could detect
a zero-weight lift as being a fake lift and the second was to investigate if adding muscle
deformations made it more difficult to detect zero-weight lifts. Zero-effort lifts were
chosen as the comparison point because they correspond to the motion a person would
perform if they were interacting in VR using hand tracking. Unlike the previous ex-
periments, this experiment was run as an Interval Forced-Choice experiment in which
participants were shown two clips in sequence and had to decide which clip was a cor-
rect visualization of the lift. In all cases, one lift was a zero-weight lift and the other lift
was one of the weights greater than zero. They were told the weight of the target lift and
a dumbbell of that size was used in both clips. The order was randomized. Two types of
pairs were run. One had no muscle deformation on either clip. The second had FULL
deformation on the zero-weight clip and no deformation on the actual lift.

The teal bars in Figure 5.25 shows the proportion of time people can detect the real lift
compared to a zero lift, when both show the same dumbbell size. Chance level is 50%,
so discrimination experiments often use 75% as a threshold for reliable detection [22].
While there are too few weight intervals to reasonably fit a psychometric function to
the data, the overall patterns are clear. Light lifts of 25% effort are detected roughly at
chance level, meaning people had difficulty distinguishing between these and zero lifts.
For greater effort lifts, the 75% discrimination threshold is exceeded in all cases, but the
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Figure 5.25: Detection rates for zero lifts with and without deformations, compared to
actual weight lifts.

point at which this happens varies based on the lifter. For the average strength lifters,
it occurred for the 100% lifts (27 and 35 lbs for AA1 and AA2, respectively). For the
strong lifters, it occurred at lower effort, 75% and above for SA1 (45 lbs and up) and
50% effort for SA2 (30 lbs and up). Kinematic aspects of the lift such as weight shift
will depend both on the amount lifted and the size of the actor. It may be that heavier
lifts created more signal, even at lower effort, so were easier to distinguish.

The orange bars in Figure 5.25 show the proportion of people able to identify the correct
lift when the opposing lift is a zero effort lift with the FULL strain deformation applied,
and teal bars had no muscle deformations. Given that the response data, correct detec-
tion, was binary, we fit a generalized linear mixed effect model with binomial distribu-
tion and logit link function. The factors were Deformation condition (FULL or NONE),
Effort level and Actor and all interactions were included in the model. Deformation
was not significant, but all other main factors and interactions were (see Appendix for
statistical details). Given that our main interest is the impact of Deformation, we report
post-hoc analysis of the Deformation:Effort:Actor interaction in Figure 5.25. Detection
rates near 50% (chance) indicate that people were not able to reliably detect the zero lift
from the actual weight lift. Interestingly, in all cases for 25% effort lifts, adding mus-
cle deformations to the zero-lift made it easier to detect the correct lift. This is likely
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because the FULL deformation simply showed too much strain for the displayed dumb-
bell. For each actor, there was at least one case where the added deformations made it
significantly more difficult to detect the real lift compared to the zero lift. In these cases,
the addition of muscle deformation could be a useful technique for obscuring the fact
that users were unencumbered when their virtual characters were lifting objects. The
general trend is for the detection of the “zero lift with strain” to be easy at light lifts and
become more difficult at heavy lifts. This is reasonable as the strain level used in these
clips was quite intense, so only appropriate for heavier lifts. It speaks to the need to tune
the strain level to the desired exertion of the character. For the strong actors, the zero
animation with deformations was less detectable at 100% effort than the zero animation
with no deformations, but this difference was no longer significant. It may be that at
these extreme lifts, the kinematic signal was so strong, muscle deformations alone did
not provide enough counter information to override it.

5.2.6 Exp. 6, Comparison with 2D

We replicated Exp. 1 using Amazon Mechanical Turk as online surveys offer a potential
mechanism to easily scale the research to larger participant pools. In past work, we had
found an excellent match between the results of online studies and in-person VR studies,
even though the online studies were only in 2D. However, in this case, results clearly
differed.

Amazon Mechanical Turk experiment was set up the same way as described for Exp.
5 (Section 5.2.4). The duration of the experiment was 75 minutes and the pay was
$18.75. The task included a video size setting step to make sure the entire video clip is
visible to the viewer on their particular screen resolution. Due to the static nature of the
experiment, we set a viewing height of 1.4m and 6◦ angle at 1.5m horizontal distance
from the stimuli.

Figures 5.26 and 5.27 shows a comparison of VR and MTurk results for Effort and
Weight respectively. We report here the raw data and a simple filtering data that drops
all respondents that had a correlation with the mean below 0.15 [353]. While the gen-
eral trend holds across media, it is clear that the results done in VR are systematically
lower for both effort and weight than those done online using 2D videos of the stimuli.
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Figure 5.26: Perceived effort as a function of actual effort for online and VR studies.
Facets show motion from different actors.

Figure 5.27: Perceived weight as a function of actual weight for online and VR studies.
Facets show motion from different actors.

Statistical results confirm this difference.

The inter-rater coder correlation between the data was lower in MTurk. This might
suggest more sloppy work or more difficulty producing the task. Even if we increase
this threshold to 0.8, a threshold similar to the VR data, the data does not converge on
the same responses as in VR. While participants consistently order the weight and effort
levels as expected in each medium, it appears that the magnitude of their judgments
varies. It, therefore, seems wisest to study the VR impact in VR, rather than online.

5.2.7 Overall Conclusions

While estimates are not perfect, Exp. 1 provides evidence that people can gauge both
effort and weight from kinematic signals. This confirms earlier work with point-light
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displays and shows that this ability extends to characters in VR. The overall correlation
between actual and perceived values is consistent with those reported in [21], but below
the highest estimates in the literature (e.g., [324]). We did not provide a reference lift
with a specified weight in any of our experiments. While this has been shown to im-
prove the accuracy of predictions [324, 325, 327], it is not a likely scenario in real VR
applications. This may account for why our correlations are somewhat lower than the
highest values reported in the literature, although we did always include an indication
of actor size, which is also a useful leveling cue [20].

Notably, people are less sensitive to differences at lower weight/effort levels. The Dis-
crimination experiment (Exp. 5) showed a similar finding. People were not sensitive
to the differences between 0 and 25% effort lifts, but they were sensitive to differences
between higher effort lifts (somewhere between 50 and 100%, depending on the lifter),
or lifts over about 30 lbs. Designers of VR experiences may be able to mitigate much of
the potential negative impact of potential discrepancies by staying under these thresh-
olds in the object manipulations they display.

We also found people tended to overestimate lower weight lifts and underestimate
higher weight lifts [20, 21]. As with previous work [21], we found in Exp. 1 that
people made less error estimating effort than weight. We found larger, stronger lifters
were accurately perceived as lifting heavier weights when they did so, unlike previous
findings where this was unexpectedly reversed [327].

Perception of effort appears to be largely driven by motion kinematics and, if present,
displays of muscular strain. Visual size indicators of either the virtual character or
lifted object look to have a limited impact. The virtual character size had no impact
on effort for motion from three of our actors (Exp. 2). For the fourth, SA1’s motion,
the effort estimates were lower when shown on the smallest virtual character, AA1, for
25, 50, and 100% lifts, but did not otherwise significantly differ. When comparing the
same motions with and without displaying dumbbells from Exps. 2 and 1, there was no
significant impact on effort estimates for the strong actors, but effort estimates are lower
for the average actors when dumbbells are present. A possible explanation is that people
correct a faulty baseline assumption that the average actors were stronger than they are
once dumbbells are shown. Varying dumbbell size had a limited impact on effort, largely
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constrained to the smallest of the four dumbbells being seen as lower effort than the
remainder at some actual effort levels for each actor. When only kinematic information
and these visual size indicators are present, it appears that the kinematic information
dominates the perception of effort. However, when muscle deformations are added to
the animation, these have a clear impact on effort (Exp. 4), particularly deformations
involving the head and neck (FULL, HEAD, PARTIAL). The impact of BODY flexion
on its own is more limited.

Visual size indicators, especially of the lifted object, appear to dominate the perception
of weight, while kinematics still contributes. There was a consistent impact on the per-
ception of weight for body size, where the smaller virtual characters were estimated to
lift about 11% less on average. Comparing motions with and without dumbbells from
Exps. 2 and 1 established that showing the dumbbells lead to a marked improvement
in weight estimates with significantly higher correlations between actual and estimated
weight. Exp. 3 further established that visualization of the dumbbells had a large, and
likely dominant, impact on the perception of weight with every size dumbbell seen as
a significantly different weight than every other dumbbell for all actors (as an example,
the 60 lb dumbbell shown for SA1’s 15 lb lift was estimated to be 44.6 lbs on aver-
age, whereas the 15 lb dumbbell shown with a 60 lb lift was only estimated to be about
20.5lbs). Adding muscle deformations also has a clear impact on weight perception, al-
though the interaction of muscle deformation and dumbbell size remains to be explored.
For AA1, every level of deformation was significantly different from the others except
PARTIAL and HEAD. For the remaining actors, there were three groupings: {NONE,
BODY}, {PARTIAL, HEAD}, and {FULL}, going from least to most impact.

Unlike Grierson et al.’s [328] findings for point-light displays, we found visualizing the
size of the lifted object had a strong effect on weight perception. This may in part stem
from dumbbells providing a clearer indication of weight than box size as boxes may be
filled with vastly different density material.

Given the clear correspondence between effort and normalized weight estimates in Fig-
ure 5.8 when dumbbells were not shown (these are strongly correlated, with a Pearson’s
r=.74), it may be that people were making a single estimate of performance based largely
on motion kinematics in this experiment and using this to estimate both weight and ef-
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fort. When the visual dumbbell information was introduced, they relied heavily on that
channel to estimate weight, but effort estimates were still largely based on kinematics.
This lead to divergence in the two estimates when information on the channels was not

congruent (e.g., mismatched dumbbells). The comparison between effort and weight
estimates also provides evidence that people had fairly similar mental estimates of what
a person could lift across the body variations shown and these were not consistent with
the actors’ actual strength range. When they were given additional information, they
appeared to revise these estimates (e.g., when shown small dumbbells for the average
lifters, they reduced effort estimates).

We saw that body shape changes do impact the judgment of weight, with the larger
“strong” virtual characters being judged as lifting heavier weights. This is consistent
with Kenny et al. [318, 319], although their animations did not include a visualization
of the lifted object, so that may not be necessary for the difference. This study adds a
potential causal mechanism to that finding: since the impression of effort is largely con-
stant, the same effort combined with a larger body appears to produce a larger estimated
weight. We also found degradations in naturalness not observed in Kenny et al. that
may result from including a visualization of the lifted object. This grounds the task and
no longer allows people to justify mismatches by imagining the weight of the object is
different from what it is.

Muscle deformations add an additional signal that influenced the perception of both ef-
fort and weight. In Exp. 4, the impact of the strain deformations is greatest at lowest
effort/weight levels and attenuates as these increase. This suggests that the deforma-
tion and kinematic signals are acting in concert and when there is limited evidence of
effort on the kinematic channel, the deformation channel can have more impact. The
discrimination experiment (Exp. 5) showed that adding deformations to zero lifts with
heavier dumbbells can make it harder to notice the difference between these animations
and the correct lifts without muscle deformation. For light dumbbells, adding FULL
deformations to the zero lifts make it more noticeable that these are not correct, pre-
sumably because this is an unreasonable amount of strain for the visualized dumbbell.
This points to the need for real systems to carefully tune the deformations to the desired
weight/effort perception.
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A potential application of adding strain animations is to mitigate the impact of mis-
matches between user kinematics and visualized motion. It is interesting that the HEAD
deformation looks to carry much of the impact of FULL deformation for effort, and to a
lesser degree for weight. For VR applications, this provides substantial freedom to use
only face and neck deformation on characters that are clothed, wearing space suits, etc.
and still achieve most of the impact. Clearly these deformations would need to be tuned
to the desired effect. It may also vary highly on the application whether it is appropriate
to add such strain animations. They could be potentially distracting or misleading. Such
an approach would be introducing an artificial strain signal to replace a signal missing in
the motion kinematics. This raises an interesting issue of how to balance verisimilitude
with actual faithfulness to the person’s behavior.

Drops in Naturalness ratings are driven by mismatches. For mismatched body types,
naturalness ratings drop when the motion and dumbbell size of larger virtual characters
is played on smaller virtual characters (motion and dumbbell sizes from all other actors
played on AA1 and, to a reduced degree, SA1 and SA2 motion and dumbbells shown
on AA2). The AA1 motion also looked less natural at higher effort/weights. It may be
simply that the larger dumbbells looked less plausible for these smaller figures. When
changing dumbbell size in Exp. 3, naturalness fell when the size of the dumbbell was
a poor match for the actual lift (either large dumbbells with low-effort lifts or small
dumbbells with high-effort lifts). The cases where dumbbell size looked less natural
in Figure 5.18 correspond to cases where the effort was out of line with weight esti-
mates. Effort perception was largely constant across the different displayed dumbbells
for a particular weight lift, but weight varied heavily based on the displayed dumbbell.
Finally, for the muscle deformations, the HEAD deformation was less natural at 0%
effort lifts, which is reasonable as this shows a high level of strain that would mismatch
with the kinematic signal. It is interesting that there is not a similar drop for FULL.
NONE and BODY were seen as less natural at 100% effort. This is again a mismatch
of a kinematic signal indicating high effort, but muscle deformations that do not reflect
this effort. Taken together, these findings emphasize the importance of calibrating all
signals - kinematics, visual size indicators, and muscle deformation - to avoid degrading
the user experience.

There are of course limitations to the work. One significant limitation is that the study
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only involved male virtual characters and was not racially diverse. As a first study, this
allowed us to easily have quite muscular virtual characters and display them shirtless,
while also roughly matching the virtual character to the actor pool. It is important to
explore if any of the findings here might change as the gender or race of the virtual
character varies. There may be stereotype assumptions that come into play and this may
also vary with the participant pool. A much larger study would be required to explore
this. It would also be worthwhile to look at nonhuman virtual characters and the full
range of beings people might want to inhabit in VR.

5.3 Discussion

This chapter described a series of experiments that explore how people understand the
dynamic properties of actions based on motion kinematics, the virtual character’s body,
the size of manipulated objects, and muscle strain. By looking separately at people’s
perceptions of effort and weight, we were able to show that their judgments of these
quantities are impacted by different signals. While effort is influenced by all channels,
motion kinematics appears to have a dominant role, especially when muscle flexion is
not shown. On the other hand, visual indicators of size, particularly of the lifted object,
have a strong influence on the perception of weight. If kinematics and visualization
are not matched, this can produce incongruent information, where people’s estimates of
effort and weight are inconsistent and can lead to degraded naturalness. It may even be
that such mismatched signals are one of the contributors to the uncanny. While this set
of studies indicates there is an operating range of moderate weights where such discrep-
ancies are not likely noticed, going beyond that creates errors that must be avoided or
mitigated, motivating the need for new animation algorithms.
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6 Conclusions and Future Work

In this work, we investigated two specific case studies of interactions in VR systems,
i.e., throwing and lifting interactions. In these cases, human motion plays a more vital
role than for non-immersive platforms due to the heavy involvement of the human body
in user interactions. The capability of rendering fully immersive 3D scenes with natural
interactions is needed for a growing number of different tasks, activities, and training
scenarios in AR and VR, with the aim of emulating real-life experiences and skills
transfer. Our goal in this work was to identify some anomalies that occur in virtual
interactions, to understand them, and to propose solutions to enable more plausible
and diverse experiences. Our work raises important questions for future work. As the
capabilities of AR/VR hardware improve, it is essential to explore the perceptual factors
that come along with, or emerge from, these advancements, so that the full potential of
AR/VR can be harvested.

Perception of PoR

To understand the consequences of PoR errors in human perception, we conducted a
perceptual study to explore the sensitivity of viewers to PoR delays. By manipulating
the point of release of captured throwing motions, we have assessed how noticeable dif-
ferent delays are for different distances, throwing types, and views. The results suggest
that people are asymmetrically sensitive to early and late delays in overarm and under-
arm throws.

Future Work: To our knowledge, this was the first study to explore this problem. There-
fore, it is difficult to draw general conclusions from the limited set of throws and actors,
given that there are numerous other factors that might influence the results, such as the
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level of expertise of the observer and the ball type. It is known that professional ath-
letes are able to read cues from other players that help them react faster and with more
precision in ball-sports [343, 344, 345]. Such expertise may significantly improve the
ability to notice whether a PoR timing delay is present or not, which makes this an inter-
esting direction for future work. Furthermore, the perceptual study on PoR delays was
conducted with the participants in the role of viewers. Despite including a third-person
view in the experiment to simulate the experience of a thrower, the participants did not
actively perform throwing interactions (due to Covid restrictions) but answered based
on their observations. The response of a person to PoR delays might be different in the
role of a thrower, so a valuable future direction would be to test whether and how much
these results change in these circumstances.

Detection and Prediction of PoR

Focusing on the action of throwing projectiles, we first implemented a preliminary VR
system and ran a study to investigate the impact of visual trajectory feedback on throw-
ing performance. We found that limited visual feedback reduced throwing performance,
but the users did not report any significant differences in their plausibility or immersion
between these conditions. One limitation of this study was that the participants per-
formed virtual throws using a pair of VR gloves that relied on a release algorithm we
developed. Some participants reported that the release mechanism was not very accu-
rate, which could have affected the results of the study. For that reason, we decided to
investigate natural throwing without the restriction of using gloves or a controller. To
this end, we proposed a novel real-time physical interaction system, called ReTro, to
allow users to throw a virtual ball without using an intermediary device such as a con-
troller.

To develop ReTro, we employed a data-driven approach and trained supervised neural
network models that predict the PoR during a throwing motion, using motion data from
the throwing arm as input. With two different sets of virtual (from our preliminary
work) and real throwing data, we investigated how to best extract an accurate set of
ground truth PoRs. Ultimately, we used the real throwing dataset of six actors in pairs
performing 1679 total throws for ground truth PoR labeling.

Evaluation of the system with pre-recorded throwing motion data resulted in detection
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errors of less than 50 milliseconds. Qualitative results from six users of the real-time
system in VR indicated that the task of throwing without a controller was very natu-
ral, but the system delivered a more accurate release of underarm throws than overarm
throws. Our results are consistent with the literature on input modalities (Sec. 2.1.3),
which reported that the employment of physical hands led to more natural but worse
performance than the employment of controllers. We also reported the relative impor-
tance of different joints and motion features for the PoR prediction task, finding position
and velocity to be the most informative.

Future Work: ReTro enables more natural throwing interactions than hand-held con-
trollers, as confirmed by our participants. However, some reported a reduced sense of
control in terms of the PoR, which is due to errors introduced by the prediction model.
We suggest several ways in which this can be pursued in the future, e.g., implement-
ing TensorRT to reduce the inference time of the model (currently ∼35ms) to solve the
computation time bottleneck; improving the model by exploring more advanced neu-
ral network architectures such as Spatial-Temporal Graph Neural Networks (ST-GNN);
capturing more data, especially overarm throws; improving ground truth approximation.
Our perceptual study on PoR delays has shown that viewers perceive delays differently
in overarm and underarm throws. Such findings can be incorporated into the throwing
system by including a simultaneous throwing-type classifier to conceal PoR errors.

To evaluate ReTro, we tracked users in real-time via a high-end optical MoCap system
as a proof of concept. However, it is important to pursue further testing with wearable
sensors such as XSens Dot or other VR tracking devices such as Vive Trackers. Such
tracking devices will introduce lower frame rates and additional transmission delays,
which emphasizes the importance of improving ReTro’s performance. Currently, al-
though very promising, built-in hand tracking technologies, e.g., Oculus Quest 2, are
not capable of tracking fast and occluded hand motions. Once tracking technologies
advance further, detailed hand tracking will enable utilizing finger information for PoR
prediction. This might allow inferring the position of the ball inside the hand during a
throwing motion for a detailed estimation of the exerted forces on the ball that will lead
to a more realistic trajectory simulation.

As this research was carried out in VR while addressing both AR and VR, it is important
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to note the differences and similarities that will arise for AR in the use of the knowledge
explored in this work. We focus on the fundamental distinction that is the exposure
of their external surrounding to a user in AR compared to VR. Regarding our work on
throwing, everything we have learned for VR is valid for AR, including the perceptual
studies and our throw detection system, ReTRo. In the short qualitative study of ReTRo,
we did not utilize detailed hand tracking and only evaluated the release detection perfor-
mance of our system. In AR, the visibility of the real hand might introduce additional
challenges in terms of the plausibility of the ball placement inside the actual hand.

A motivating factor for finding more plausible ways of virtual throwing and developing
ReTro has been to improve the potential of AR/VR in becoming tools for motor skills
transfer. Therefore, as with the PoR perception experiment, the importance of the level
of expertise comes up again, for both the actors in the dataset and the participants of
the small case study. What feels like a reasonable or unrecognizable delay for a non-
expert thrower, will very likely feel like a large amount of delay. Currently, the system
has been trained on motion by non-experts, and it is an interesting direction to capture
throwing data from expert throwers, including longer distance throws. The inclusion of
expert throwers and more bodily-involving, longer-distance throws might enable the use
of more and different motion cues in the development of the system, e.g., the importance
of lower limbs and contralateral arm in outcome prediction by Maselli et al. [232].

Perception of Lifting

In our studies on the perception of lifting, we focused on the fundamental problem of
dynamic inconsistencies between real and virtual worlds regarding user interaction and
embodiment. We looked at the lifting motion by conducting a series of experiments
that explore how people understand the dynamic properties of actions based on motion
kinematics, the avatar’s body, the size of manipulated objects, and muscle strain. By
looking separately at people’s perceptions of effort and weight, we were able to show
that their judgments of these quantities are impacted by different signals. While effort
is influenced by all channels, motion kinematics appears to have a dominant role, espe-
cially when muscle flexion is not shown. On the other hand, visual indicators of size,
particularly of the lifted object, have a strong influence on the perception of weight. If
kinematics and visualization are not matched, this can produce incongruent information,
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where people’s estimates of effort and weight are inconsistent and can lead to degraded
naturalness. It may even be that such mismatched signals are one of the contributors to
the uncanny. While this paper indicates there is an operating range of moderate weights
where such discrepancies are not likely noticed, going beyond that creates errors that
must be avoided or mitigated, motivating the need for new animation algorithms.

Future Work: We used dumbbell lifting exercises to investigate the problem of dynamic
inconsistencies by creating tasks of effort and weight estimations. Although many sim-
ilar studies have been conducted in the past, this is one of the first investigations carried
out and aimed at VR. In the future, more VR studies should be carried out on different
interaction types and avatar shapes, using stimuli from different sets of actors including
other races and genders. Developing universal solutions for physicality errors will only
be possible once their effects are investigated for all types of interactions or a general
understanding of the problem has been reached.

We have employed a novel approach by using muscle deformations to manipulate par-
ticipants’ perceptions of effort and weight estimation. However, we have used an artist-
driven approach to create the deformations, so it would be useful to develop a more
automated approach. Furthermore, we only experimented with muscle deformations as
a way of imitating high effort, but a similar effect can be created by other signs such as
gasping and changes of color in facial skin.

Our study on lifting was aimed more distinctly at VR, with one of the main motivations
being a mismatch between the user and their avatar’s body shapes, leading to unnatural
or implausible motion kinematics. In an AR scenario with two people in the same
physical space partaking in an activity involving interactions with virtual objects, such
a transformation of body shapes is not feasible given the current state of AR technology.
Nevertheless, dynamic inconsistencies can still arise in AR regardless of the body shape,
when the interacted virtual object, e.g., a dumbbell, is different from the interacted
actual object, e.g., a controller. In this type of situation, a core preliminary challenge
would be to conceal the real interacted object, e.g., a controller, and overlay a different
object, e.g., a dumbbell. This is a particularly difficult problem for optical see-through
displays where the control over the view is highly limited compared to video pass-
through displays [354, 355]. Similarly, applying muscle deformations to modulate the

147



displayed effort would require body scanning and deformation fitting, such that muscle
deformations can be overlaid realistically. Beyond such technical challenges, what we
have learned from these studies is also valid for AR.

In response to our studies on both throwing and lifting, we identified problems and
came up with solutions (i.e., ReTro and muscle deformations resp.) to improve user
experiences in AR/VR. However, we did not attempt to explore the overall effect of
our solutions on fundamental concepts such as the sense of presence, co-presence, and
agency. Such an evaluation, in the form of a gamified experiment, would make our so-
lutions more tangible. Finally, we refer back to answer the two main research questions
addressed at the beginning.

• How sensitive are people to anomalies in the simulation of throwing and lifting in
Virtual Reality (for both first-person and third-person views)?

– People are highly sensitive to PoR delays in throwing in the role of an ob-
server, with a high detection rate of delays as small as 50ms. Their sen-
sitivity is asymmetrical and displays differences based on throwing type,
throwing distance, and viewing mode.

– In the simulation of lifting in VR, people are able to detect anomalies, i.e.
dynamic inconsistency, when the visualized interaction mismatches the ac-
tual interaction by a certain amount. The sensitivity to the anomaly is af-
fected by many factors, including the avatar’s body shape, dumbbell shape,
and motion kinematics.

• Can we use knowledge of human perception, together with modern Computer
Science techniques, to help increase the plausibility of these interactions?
In both of our studies on throwing and lifting, we have been able to use modern
techniques to help improve the interactions positively:

– By training a PoR detection model that uses arm motion, we sought to elim-
inate the need for a handheld controller for throwing. In ReTRo, this was
implemented as part of a real-time throwing system and received positive
feedback. Although the performance of ReTRo is not currently on par with
controller-based throwing, it was found more natural and enjoyable. We
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have not incorporated the results of the PoR perception study directly in the
development of ReTRo, it provided a reference interval.

– We have employed blendshape-based muscle deformations to ameliorate the
effect of dynamic inconsistencies in observing lifting motions. We found
that it is in fact possible to change people’s perception of weight and effort,
as well as enhance perceived naturalness, by adding visual cues indicating
muscle contractions.
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A1 Appendix

A1.1 Supplementary figures for Throwing

Here, we provide visualizations of the throws performed in Exp. T1 and Exp. T2. As the
motion is both spatially high-dimensional and temporal, we provide it in a transformed
space for readability, as in Figure 4.13. To transform the data, the global position is
locally projected through a procedure described in detail in Section 3.2.1. We further
average this locally projected space to get an average motion performed by each actor.
In Figures A1.1 and A1.2, only Overarm throws are presented. Each row represents a
participant (1-18), and each column represents a different distance (Near-Medium-Far)
depending on the target’s spawn position. Figures A1.3 and A1.4 visualize only Under-
arm throws. If a certain row is missing or an entry is empty, it means the participant has
not performed any such throws (Overarm or Underarm) in that region.

185



Figure A1.1: Averaged projected local positions of the three arm joints for Overarm
throws in side view (y and z axes) for participants 1-10 of Exp. T1. Each row represents
one subject, e.g., ’1’ for subject 1. Each column represents a different distance. The red
line represents the ground truth PoR (t=25).
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Figure A1.2: Averaged projected local positions of the three arm joints for Overarm
throws in side view (y and z axes) for participants 11-18 of Exp. T1.
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Figure A1.3: Averaged projected local positions of the three arm joints for Underarm
throws in side view (y and z axes) for participants 1-10 of Exp. T1.
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Figure A1.4: Averaged projected local positions of the three arm joints for Underarm
throws in side view (y and z axes) for participants 12-18 of Exp. T1.
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Figure A1.5: Averaged projected local positions of the three arm joints for Overarm
throws in Exp. T2, displayed in the side view (y and z axes).
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Figure A1.6: Averaged projected local positions of the three arm joints for Underarm
throws in Exp. T2, displayed in the side view (y and z axes).
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A1.2 Supplementary data for Lifting

Table A1.1: Significance of variation in effort and weight estimates from models for
each actor for Experiment 1 (Baseline) using Analysis of Deviance: Type II Wald
chisquare tests (Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

EFFORT WEIGHT

χ2 dof p(> χ2) χ2 dof p(> χ2)

AA1 338.05 4 < 2.2e-16 257.87 4 < 2.2e-16

AA2 295.13 4 < 2.2e-16 229.91 4 < 2.2e-16

SA1 740.88 4 < 2.2e-16 550.71 4 < 2.2e-16

SA2 685.03 4 < 2.2e-16 625.54 4 < 2.2e-16

Pairwise comparisons were performed for each level of effort and weight. In the ideal
case, each would be significantly separated from its predecessor. Instead of just look-
ing at the significance cutoff of α = .05, which can overly simplify relationships, Ta-
ble A1.2 shows the distribution of p-values for the ten pairwise comparisons for each
model. In every case, the largest effort/weight are clearly separated from all others
(p<.001). However, for the average strength actors, both effort and weight are generally
not significantly different at the lower levels, given the sample size. This reflects the
more moderate slope in this part of the response curve and a more moderate slope for
the average lifters than the strong.
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Table A1.2: Tukey-adjusted P-values for pairwise comparisons of the different stimuli
levels. There are ten comparisons for each actor. Pairs with significance lower than .001
are indicated and the remainder are marked “rest”. Grey cells are above the alpha = 0.05
test line (not significant).

p-value [1, .5) [.5, .1) [.1, 0.05) [.05, .01) [.01, .001) < .001

EFFORT

AA1
0-25

50-75 25-50 0-50 25-75 0-75 rest

AA2
0-25

25-50 50-75 0-50 rest

SA1 25-50 0-25 rest

SA2
0-25

25-50 50-75 rest

WEIGHT

AA1
0-6.75

13.5-20.25

0-13.5
6.75-13.5

6.75-20.25 0-22.5 rest

AA2
0-8.75

8.75-17.5 0-17.5 17.5-26.25 rest

SA1 15-30 0-15 rest

SA2 0-15 15-30 rest

Table A1.3: Naturalness ratings for Experiment 2 using Analysis of Deviance: Type II
Wald chisquare tests (Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

BODY SHAPE

χ2 dof p(> χ2)

Effort 1.39 3 0.7086

Body 88.09 3 < 2.2e-16 ***

Motion 38.54 3 2.168e-08 ***

Effort:Body 58.01 9 3.230e-09 ***

Effort:Motion 106.42 9 < 2.2e-16 ***

Body:Motion 75.42 9 1.304e-12 ***

Effort:Body:Motion 25.23 27 0.5615
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Table A1.4: Naturalness ratings for Experiment 3 using Analysis of Deviance: Type II
Wald chisquare tests (Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ )

DUMBBELL SIZE

χ2 dof p(> χ2)

Effort 20.08 4 < 0.0005 ***

Dumbbell 27.32 3 5.033e-06 ***

Actor 13.53 3 < 0.005 **

Effort:Dumbbell 78.50 12 7.975e-12 ***

Effort:Actor 21.97 12 < 0.05 *

Dumbbell:Actor 13.47 9 0.142

Effort:Dumbbell:Actor 38.12 36 0.373

Table A1.5: Discrimination scores (i.e., correct responses) for Experiment 5

ZERO LIFT DETECTION

χ2 dof p(> χ2)

Deformation 0.08 1 0.78

Effort 21.73 3 7.4e-05 ***

Actor 19.26 3 < 0.0005 ***

Deformation:Effort 120.30 3 < 2.2e-16 ***

Deformation:Actor 8.00 3 < 0.05 .

Effort:Actor 51.13 9 6.6e-08 ***

Deformation:Effort:Actor 25.59 9 0.37
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Table A1.6: FULL-NONE Contrasts (dof are Inf in all cases)

ZERO LIFT DETECTION

Actor Effort Estimate SE z-ratio p

AA1 25 1.561 0.408 3.826 0.0001

50 0.774 0.409 1.895 0.0581

75 -0.556 0.361 -1.540 0.1235

100 -1.212 0.384 -3.158 0.0016

AA2 25 1.945 0.455 4.275 <.0001

50 0.827 0.384 2.154 0.0313

75 -0.430 0.377 -1.142 0.2536

100 -1.547 0.431 -3.591 0.0003

SA1 25 1.619 0.387 4.182 <.0001

50 0.470 0.365 1.288 0.1976

75 -2.366 0.525 -4.510 <.0001

100 -0.485 0.591 -0.822 0.4113

SA2 25 2.552 0.530 4.814 <.0001

50 -1.202 0.414 -2.906 0.0037

75 -1.659 0.501 -3.308 0.0009

100 -1.189 0.705 -1.688 0.0915
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