
Efficiently Removing Sparsity
for High-Throughput Stream Processing

Philippos Papaphilippou§*, Zhiqiang Que*, and Wayne Luk*

*Dept. of Computing, Imperial College London, UK {pp616, z.que, w.luk}@imperial.ac.uk
§School of Computer Science and Statistics, Trinity College Dublin, Ireland papaphip@tcd.ie

Abstract—Big data analytics and machine learning are in-
creasingly targeted by FPGAs due to their significant amount
of computing capabilities and internal parallelism. Different
programming models are used to distribute the workload to
the internals of the FPGAs at different granularities. While
the memory bandwidth has been steadily increasing, there are
some challenges in the way system-on-chips use this bandwidth.
One way system-on-chip architects exploit the increasing memory
bandwidth is by widening the datapath width. This is reflected
at various points in the system including the widening of
vector instructions. On FPGAs, many analytics accelerators are
memory-bound, and would benefit from making the most of
the available bandwidth. In this paper we present a scalable
and highly-efficient building block for building high-throughput
streaming accelerators, which removes sparsity on-the-fly without
backpressure.

Index Terms—FPGA, stream compaction, aggregation, high-
throughput computation, analytics, interconnects, prefix scan

I. INTRODUCTION

There is steady progress with the improvement of memory
speed. This has led to the incorporation of high-bandwidth
memory (HBM) in modern FPGAs [1] and in general-purpose
processors that achieve a memory throughput of over 1 TB/s
[2]. However, as the number of processing elements and their
performance increases, it is becoming increasingly challenging
to efficiently distribute and utilise this bandwidth [3].

From the programmer’s perspective, this challenge is re-
flected on the parallel programming models that make algo-
rithm design decisions less trivial. To maximise efficiency, par-
allel algorithms need to match specific platforms. For example,
merge trees are still considered in state-of-the-art sorters on
FPGAs [4], [5], while on CPUs prominent algorithms include
radix sort [6], quicksort [7] and others [8]. Memory use is
not the only reason for this discrepancy, but still, the main
outcome is that there are different parallel memory access
patterns, which can benefit from different memory topologies.

One way system-on-chip architects exploit the increasing
memory bandwidth is by widening the datapath width. This is
reflected at various points in the system including the widening
of vector instructions. For instance, this led to the rise of Intel’s
AVX-512 single-instruction multiple-data (SIMD) instructions
[9]. ARM’s scalable vector extension (SVE) is a promising
alternative for incorporating micro-architecture-independent
vector instructions to general purpose processors. Between
a processor’s L1 and L2 caches, there are already instances

where the communication is 1024-bit wide, such as the ARM-
based A64FX supercomputer processor [10].

The widening of the datapath is observed in FPGAs as
well. An example is with the move from Xilinx’ Zynq Ul-
traScale to UltraScale+, which increased the width of high-
performance (HP) AXI ports from 64 to 128 bits [11], or up
to 256-bits for special memories in Versal [12]. Given that
these are designed to run with high operating frequencies
[13], moderately complex FPGA designs can benefit from
multiplying their widths. For instance, the 128-bit wide HP
AXI ports of Zynq UltraScale+ can act as 256-bit buses at
half the frequency [4]. Due to the increased flexibility and the
absence of instructions, FPGAs can be the best candidate to
benefit from wide datapaths.

This paper presents an efficient FPGA-based building block
for removing sparsity on-the-fly from wide data streams. The
goal is to be able to exploit the proposed approach for building
high-throughput streaming accelerators, and without blocking
the data stream while doing so. The proposed design is an
asymptotically more efficient algorithm for implementing the
parallel round-robin arbiter (PRRA) than related work [14].

Our key contributions are as follows:
• An optimal-complexity switch topology for implementing

the parallel round-robin arbiter (PRRA).
• Formal proofs for correctness and optimality.
• An open-source FPGA-based evaluation.
Following is the background (section II) on the functional-

ity. Section III introduces the novel architecture. Section IV
elaborates on its correctness and optimality. The evaluation
(section V) studies its scalability and behaviour. The paper
ends with related work and conclusions (sections VI and VII).

II. BACKGROUND

A. Parallelism in data analytics

Most data-intensive parallel algorithms can be classified into
vertical, horizontal [15] and hybrid. Horizontal parallel compu-
tation involves multiple workers/cores operating concurrently
after splitting data into large independent chunks, such as the
map phase of MapReduce [16]. Vertical computation involves
fine-grained parallelisation, such as adopting SIMD on a single
stream. Sometimes both could be used to efficiently utilise
the available resources, such as when multi-cores run vector
instructions, which is what the hybrid class stands for.

On FPGA accelerators, a vertical computation is desirable,
as it promotes fewer data movements and more-linear access
patterns. This is important since such accelerators are usu-
ally distant from main memory, and their memory accesses
are optimised for high-bandwidth, including with HBM. The
length of the accesses from the programmable logic is shown
to have a considerable impact on performance [17]. While
making thoughtful algorithm selections can enable a design to
use multiple workers and faster random accesses [18], this can
come at the cost of software and hardware complexity [14].

Finally, in modern systems with FPGAs, there is already an
order of magnitude of difference in the operating frequency
of the FPGA and the other components. Moving the FPGA
nearer to the processor or the data can magnify this gap, which
can be detrimental to the adoption of FPGAs as accelerators
in the future. Our proposed building block can alleviate
this by simplifying high-throughput computation for certain
workloads through a physical or emulated wide datapath.

B. Parallel round-robin arbiter

This work considers the parallel round-robin arbiter
(PRRA) [14]. The PRRA is a recursive function that reads
batches/chunks of sparse data, and performs a permutation so
that the valid or desired entries are produced in round-robin
fashion. This output can then be stored in memory banks or
read by other stream processors, for example. Figure 1 and
algorithm 1 illustrate the high-level functionality of the PRRA,
where P is the size of the batches received per cycle.

Parallel
Round-Robin

Arbiter

Incoming data

3rd

4th

1st

2nd

5th

Fig. 1. Example visualisation of the PRRA (P = 4)

1 int offset;
2 input in[P]; output out[P];
3 while forever do
4 receive (positive clock edge);
5 int j ← 0;
6 for int i ← 0, 1, ..., P-1 do
7 out[(offset +j)%P]←Null;
8 if in[i].valid then
9 out[(offset +j)%P]← in[i];

10 j++;
11 end
12 end
13 offset ← (offset+j)%P ;
14 end

Algorithm 1: PRRA functionality pseudocode

Figure 2 shows the building blocks of the implementation
in related work [14]. The idea of this design is that a sorting
network [19] sorts its inputs based on their valid bit, whilst
an adder tree calculates the popcount of those valid bits. The
sorting network is used as a concentrator of the valid entries,
while the popcount is the number of valid elements in the

batch, which is then used to update the rotation counter. The
rotation counter is used by the barrel shifter to make the
appropriate rotation to the batch to achieve the PRRA effect.

...Barrel
shifter

(rotator)

...

(validi, i,
datai)

log2(P)·(log2(P)+1)/2 steps log2P steps

Sorting
network

Popcount

offset
update

...

(validk,
datak)

(validj,
dataj)

Fig. 2. PRRA implementation using a sorting network

Since most sorting networks are not stable, i.e. they do not
necessarily keep the order between equal values, the valid bit
is not enough to keep the original order of valid values. Thus,
there are two versions of the PRRA. The non-stable version
uses the “binary” [20] sorter, while the stable version also uses
the port number in the sorter’s comparators. This paper only
focuses on the stable version as a baseline, since it achieves
greater applicability.

III. PROPOSED APPROACH

This section provides an alternative implementation for the
parallel round-robin arbiter with lower hardware complexity.
We notice that the switching logic of parallel round-robin
arbiters can be implemented with fewer 2x2 switches by using
a reverse butterfly network as a permutation network (III-A). A
rolling prefix scan is used to calculate the permutation indices
(III-B). The novel architecture is presented in III-C.

A. Reverse butterfly network

The butterfly network, also referred to as a banyan or omega
network [21], is a permutation network. Butterfly networks
have log2(P) parallel stages, where P is the number of inputs.
There is a control bit for every 2x2 switch, with a high value
denoting a swap, and a low value denoting a forwarding.

in0
in1
in2
in3
in4
in5
in6
in7 0 1 2 3

out0
out1
out2
out3
out4
out5
out6
out7

stages

Fig. 3. Reverse butterfly network (P = 8)

The reverse butterfly network (also called inverse butterfly)
is also a permutation network. It is based on a butterfly
network with its inputs and outputs reversed, as presented in
figure 3. In the (non-reverse) butterfly network case, a widely
used algorithm [22] for the input of the control bits is based on
reading the destination index bit-by-bit. More specifically, the
most significant (MSB) of the values are used for the switches

of the first stage, MSB-1 for the switches of the second stage,
and so on. If the inputs are a permutation of indices (0 to P-1),
this becomes a permutation network, but not for all possible
permutations. The main difference from the butterfly network
is that the control bits are assigned starting from the LSB for
the first stage, rather than the MSB.

They can perform an (interesting) strict subset of all possible
permutations of their input. Thus, they are known as blocking
networks, and this is easy to show. The number of possible
switch configurations is smaller than the number of possible
permutations (e.g. 23∗8/2 = 4096 < 8! = 40320 for P = 8).
This subset is key to our proposed approach.

B. Rolling prefix scan

The prefix scan (or prefix sum) is a parallel algorithm that
provides the cumulative sum up to each number in a list,
and has many applications including in radix sort [23]. The
resulting number of additions are more than what would be
required by a simple serial implementation with a cumulative
sum. However, as a parallel algorithm it is advantageous, as
it is able to provide the result in log2N number of steps for
a list of N numerical elements. SIMD-based implementations
have also emerged [15], including on GPUs [24].

The rolling prefix scan is a hardware adoption of prefix
sum that allows it to be used for arbitrarily long lists [25].
It is analogous to vertically-parallelised prefix scan for SIMD
[15] and similar arrangements. The flexibility for an arbitrary
input size makes it desirable for FPGA use. This is because,
as a hardware design has size limits, streaming or thrashing
applications (not fitting on the FPGA) can benefit from reusing
the same logic. A linear access pattern can be achieved, while
making full use of the available datapath width.

in0

in1

in2

in3

in4

in5

in6

in7
0 1 2 3

stages

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
4

out0

out1

out2

out3

out4

out5

out6

out7

+

+

+

+

+

+

+ >

+

Fig. 4. Rolling prefix scan (P=8)

This modification for hardware implementation is shown
in figure 4. The idea is that the first log2P steps are an
implementation of the original prefix sum in a pipeline, while
the last stage keeps the sum of all previous elements. As the
last stage is stateful, it is the only stage where it is compulsory
to have a register, i.e. in a pipeline. The rolling prefix scan has
a depth of log2(P) + 1 stages.

C. Proposed architecture

The proposed architecture consists of two easily pipelinable
components connected together, as shown in figure 5.

Rolling
Prefix
Scan

Reverse
Butterfly
Network

(validi,

datai)

(validi,

indexi,

datai)

(validj,

dataj)

log2 P+1 steps
(no switches)

log2P steps

...

Fig. 5. Novel parallel round-robin arbiter architecture

First, the input goes through a rolling prefix scan (see
section III-B) to provide the control bits for the reverse
butterfly network. The PRRA’s input consists of batches of P
elements alongside their valid bits, i.e. ini ≡ (validi, datai)
for i ∈ {0, 1, ..., P}. Note that it is not permuted by the rolling
prefix scan, hence the reuse of i in the middle of figure 5. The
rolling prefix scan only reads the valid bits of the elements in
the input, and provides the final positions of each element
after its last stage, which holds the last offset. The last offset
counter is essentially the last log2P bits of the count of all
inputs encountered in previous cycles, minus 1. It is initialised
with the value P−1 on reset, as the positions would start from
position 1 instead of 0, since valid bits indicate presence.

Then, the reverse butterfly (see section III-A) acts as a
permutation network on the elements of the input batches.
Each of the 2x2 switches in the network (as in figure 3) swaps
the inputs that are connected to it, when its control bit is high.
The swap condition C acts as the control bit and is based on
the fields of the carried information alongside the data.

C = (inA.valid∧inA.index[l])∨(inB .valid∧¬inB .index[l])

where inA and inB are the first and second inputs to the
2x2 swap switch (sorted spatially), and the valid field is the
valid bit. The index field is the desired destination position
calculated by the prefix scan. l ∈ {0, 1, ..., log2(P)} is the
stage number, which is here used to perform bit selection on
the index field, starting from its LSB position for the first
stage of the reverse butterfly network.

IV. CORRECTNESS AND OPTIMALITY

A. Network passability

In order to prove that the reverse butterfly network routes
all desired input combinations (passable permutations), it is
enough to show that its output is a bitonic sequence with
respect to the order of its input (up to one local minimum and
up to one local maximum). This is enough because the regular
(non-reverse) butterfly is shown to sort all bitonic sequences
in the bitonic sorter [19], and any scheduling that would allow
routing of bitonic sequences would also enable non-blocking
routing for all bitonic sequences for sorted input, using the
inverted circuit (with its inputs and outputs swapped) [4].

Figure 6 shows a butterfly network, as found in the bitonic
sorter. The shaded box on the bitonic sorter indicates one

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

out0
out1
out2
out3
out4
out5
out6
out7
out8
out9
out10

out11

out12

out13

out14

out15

Bitonic sorter (P =16)

Bitonic merger (P=16)

Butterfly (P=8)Bitonic sorter (P=8)

a

b

min(a, b)

max(a, b)

Fig. 6. Building blocks of a bitonic sorter, including a butterfly network

of its two equally-sized butterfly networks near its output.
Though, instead of compare-and-swap (CAS) units of the
sorting networks that operate on the magnitude of the input,
the butterfly as a permutation network uses 2x2 switches.

The order/magnitude of the inputs of the reverse butterfly as
a PRRA can be considered to be the port number. The possible
order of the outputs can be seen as all rotations (according to
the rotation offset) of the concatenation of the valid bit and the
local order (there are two different orders: among the subsets
for valid and invalid elements). For the stable version of the
parallel round-robin arbiter, the local order of the valid subset
must be the same as in the input (following port numbers).
With respect to the local order of the non-valid set, the order
does not matter for the requirements of the parallel round-robin
arbiter. Therefore, in order for this to be a bitonic sequence,
the local order of elements in the non-valid set is considered
to be the same (constant function).

For no rotation, the expected output is a bitonic sequence.
This is because its form is e0, ..., en−1, en, ..., eP−1, where ei
is the local order of the ith element, and n is the number
of valid inputs. The sublist e0, ..., en−1 is already sorted
according to the port number, and the sublist en, ..., eP−1

consists of equal values and is below all elements in the first
sublist. This only yields up to one local maximum en−1 (or
e0 when all inputs are invalid), and up to one local minimum
eP−1 (or e0 when all inputs are valid), and thus is a bitonic
sequence. For all other rotations, the output will still be a
bitonic sequence, as a rotated bitonic sequence is also bitonic
[26]. This finalises the proof that the required permutations to
implement PRRA are passable inside the reverse butterfly.

B. Network configuration

The correctness of the swap condition C = (inA.valid ∧
inA.index[l]) ∨ (inB .valid ∧ ¬inB .index[l]) can be shown
by breaking down the possible cases. When both inA.valid
and inB .valid are false, then their order does not invalidate

the result, as we do not care about the invalid entries in the
output. When one of them is valid, then the LSB algorithm (see
section III-A) is followed for that stage, which overrides the
decisions of the invalid counterpart, which is invalidated. Since
the LSB algorithm is followed, the valid entry will follow the
correct path to reach its destination as shown by the prefix
sum, at least for the studied stage l (a longer format of this
proof could include an inductive step).

The remaining case is when both inA.valid and inB .valid
are true. Assuming that there is a configuration where there is
a conflict, both inputs want to follow the same output port of
a 2x2 switch (i.e. inA.index[l] ̸= ¬inB .index[l]). Since there
is a unique control bit configuration for single entries to be
permuted to a designed output index, as given by LSB, the only
way for this to happen is with a non-passable permutation.
Given the proof in section IV-A, all index sequences given by
the rolling prefix sum only produce passable permutations on
the reverse butterfly network. This leads to a contradiction and
completes the proof for the correctness of C.

C. Optimality

The reverse butterfly network is optimal with respect to the
number of stages and 2x2 swap switches. This can be derived
as follows. Every input port needs to be able to provide paths
to all positions, as it can be rotated by an arbitrary amount
according to the output of the previous rotation. Thus, there
needs to be at least log2(P) 2x2 swap switches for each path
for this to happen, one for each bit of the binary representation
of the destination port. Every switch can have at most 2 inputs,
therefore it can be shared to achieve switch reuse. The reverse
butterfly network is proven to pass all required permutations of
the inputs while always using the maximum number of inputs
per switch (two), and thus being optimal in this aspect.

Note that this does not prove optimality with respect to
implementation efficiency, as place-and-route relates to wire
length, target FPGA architecture etc. It also does not cover the
control bit calculation (prefix sum). Its few-bit widths make
it of secondary importance for optimisation, but future work
includes the exploration of circuits with fewer assumptions.

V. EVALUATION

In this section we study the behaviour of the proposed
PRRA architecture when implemented on an FPGA1. First,
the implementation characteristics are observed for an in-
creasing amount of throughput (section V-A). Second, a less
technology-dependent comparison is provided (section V-B).

A. Scalability

This part of the evaluation studies the FPGA implemen-
tation efficiency of the proposed approach, and compares
it to previous work [14]. The studied designs are out-of-
context with respect to the use cases, but are tested on a
real FPGA as AXI peripherals. Their functionality is for
debugging, but it is enough to study the logic’s behaviour.
A memory-mapped input vector is released into the PRRA
upon request, and the result is also stored in memory-mapped
registers, which are read with AXI. For this part, the data width

1 Source available: https://philippos.info/prra

https://philippos.info/prra

of each element is indicatively set to 64-bits. The resulting
implementation dataset is produced with Vivado 2020.1, and
the target platform is Xilinx/AMD Alveo U280.

There are two main designs in our design space. The
baseline is the sorter-based approach [14], which uses “odd-
even sorting” [19]. The proposed approach is referenced as
“reverse-butterfly based”. The design space for each of the
two focuses on its scalability with the number of ports P .
Another variable in the design space is the placement of
registers in the design’s stages, as they are fully pipelineable.
This is a manual equivalent to register retiming, and is done
to study the behaviour of the pipelines. A Python script
generates Verilog HDL code for each of the (type, P, S)
combinations, where type is a boolean that selects between
the two approaches, P ∈ {2, 4, 8, ..., 256} is the number of
ports, and S ∈ {1, 2, 4, 8, 16} denotes the register placement
(e.g. S = 2 skips every other pipeline register stage).

100

1000

10000

100000

1x106

2 4 8 16 32 64 128 256

Odd-even sorting-based

Reverse butterfly-based (proposal)

C
L

B
 L

U
Ts

1
1.5

2
2.5

3
3.5

2 4 8 16 32 64 128 256

Reduction in LUTsT
im

es
 (

×
)

Number of inputs (P)

Fig. 7. Look-up table (LUT) utilisation

The first set of results are shown in figure 7 that compares
the Look-up table (LUT) utilisation of the designs for different
numbers of inputs (P). On the top plot, there are 3 series: the
min., the average and the max. LUTs. The reason for multiple
values is the existence of the S parameter that studies the
register placement, which is summarised here. An observation
is that there is little variation to the main logic according to S,
as S only impacts register placement. The bottom plot shows
the LUT reduction of the best variations per PRRA design (the
S values with the fewest LUTs), which demonstrates that the
proposal is more efficient in terms of pure logic.

In our design space, the proposed PRRA was always effi-
cient enough to be able to be placed-and-routed successfully.
However, the odd-even-based PRRA was not always able to
be generated for P = 256, as only the S = 1 variation made
it past place-and-route, hence the absence of any variation for
the corresponding data points.

Figure 8 shows how the register utilisation varies according
to the obtained maximal operating frequency (fmax). The way
to read this plot is as follows. Same colour indicates the same
PRRA architecture, same point type indicates same P -value,
and the points connected by the same line are small variations

100

1000

10000

100000

1x106

0 100 200 300 400 500 600

P=2
P=4
P=8

P=16
P=32
P=64

P=128
P=256

C
L

B
 r

eg
is

te
rs

fmax (MHz)

Odd-even Proposed

Fig. 8. PRRA register utilisation and maximal operating frequency

occurring from the exploration of the register placement (S,
not explicit in the figure) for the same PRRA architecture.

We notice that for the same P value, for P ≥ 16, the new
architecture is always superior to the corresponding line for
the prior work “odd-even”-based. That is, every point of the
blue lines are in the Pareto front (lower right is better) when
combined with the corresponding yellow line. Additionally, as
the y-axis is logarithmic, it is easy to see that points from the
higher values of P can differ an order of magnitude in their
register utilisation between the different architectures.

With respect to fmax, for P ≤ 8, a clear win is not apparent
due to the stages being similar (e.g. 5 vs 5 for P = 4, but
also note the different functions of these). Still, the obtained
operating frequencies are already rather high due to the design
of both candidates focusing on scalability.

B. Gate count

It is also important to see how the proposed design scales
independently of the FPGA architecture technology. The last
part of the evaluation provided empirical results with Vivado
place-and-route for a specific FPGA. In this part, we isolate
the Verilog designs from the rest of the system, such as the
AXI interconnect-related logic, and measure the gate count.
The comparison is done with Yosys 0.25, and the only allowed
gates in our library model are NAND and NOT gates.

In order to widen the applicability of this evaluation, this
technology-independent comparison also includes a dataset
from Vivado HLS. The way this dataset is obtained is by
performing C-synthesis using a behaviourally-described PRRA
in C code. The source code for these designs are simple and
they follow the pseudocode in algorithm 1. After Vivado HLS
produces the Verilog files, the PRRA module is then read
by Yosys, also ignoring any additional interfacing beyond the
main logic. The idea is to show that this functionality and
scalability is not a given with a modern HLS tool.

Figure 9 introduces this comparison, where the proposed
architecture is asymptotically more efficient in terms of logic
complexity. The difference is magnified for large P values,

100

1000

10000

100000

1x106

1x107

2 4 8 16 32 64 128 256

C-based, Vivado HLS
Odd-even sorting-based

Reverse butterfly-based (proposal)N
um

be
r

of
 g

at
es

4

8

12

16

2 4 8 16 32 64 128 256

Gate reduction over C-based
Gate reduction over Odd-even

T
im

es
 (

×
)

Number of inputs (P)

Fig. 9. Gate utilisation comparison

with up to around 4 and 16 times over the odd-even sorter-
based and the HLS version. The dataset of Vivado HLS stops
at P = 64, as C-synthesis starts to take impractically long
times surpassing a day. In contrast to the other designs, Vivado
HLS is not able to produce a fully-pipelined code. Thus, the
latency and initiation interval are manually restricted to 1. For
a fairer comparison, the other designs here use a high S-value
to only leave one register level and match this latency. Still,
irrespective of the register placement and the HLS latency
parameter, the logic utilisation (analogous to gate count) varies
little between variations of the same design (see figure 7).

VI. RELATED WORK

Stream compaction is a common operation having ap-
plications in sparse matrix compression, encoding, collision
detection and more [24]. On FPGAs the directly competing
approach [14] is used as a baseline. There are specialised
designs that do not provide this high-throughput streaming
functionality. One example [27], while operating on chunks
of data, it provides significant speedup on LSM-trees. The
PRRA can be considered a vertical parallelisation [15] of
stream compaction. The proposed design is reminiscent of
modern software equivalents due to the inclusion of the prefix
scan [24]. The combination of prefix sum with a permutation
network existed before [20] for different applications; they
have high complexity due to using sorters for permutation.

VII. CONCLUSIONS

High-throughput computation is becoming increasingly im-
portant on FPGAs, due to the increased memory bandwidth
and lower FPGA operating frequencies when compared to the
rest of the system. In this paper, an optimal switch structure
is introduced for the implementation of the parallel round-
robin functionality. The parallel round-robin arbiter performs
stream compaction with high-throughput, which has a variety
of applications including aggregation analytics for relational
databases and sparse matrix encoding. The proposed architec-
ture has low overhead and a high scalability potential for wide
datapaths, which would benefit high-bandwidth systems, near
data processing, and future system architectures.

ACKNOWLEDGEMENT
The support of EPSRC (EP/L016796/1, EP/P010040/1, EP/V028251/1 and

EP/S030069/1), United Kingdom, and the SCSS and the HCI at Trinity
College Dublin, Ireland is gratefully acknowledged.

REFERENCES
[1] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and G. Alonso,

“High bandwidth memory on FPGAs: A data analytics perspective,”
in 30th International Conference on Field-Programmable Logic and
Applications (FPL), IEEE, 2020, pp. 1–8.

[2] J. Dongarra, “Report on the Fujitsu Fugaku system,” University
of Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep.
ICLUT-20-06, 2020.

[3] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim, “An
analysis of system balance and architectural trends based on top500
supercomputers,” in The International Conference on High Performance
Computing in Asia-Pacific Region, 2021, pp. 11–22.

[4] P. Papaphilippou, “Reconfigurable acceleration of big data analytics,”
Ph.D. dissertation, Imperial College London, 2021.

[5] P. Papaphilippou, W. Luk, and C. Brooks, “FLiMS: A Fast Lightweight
2-Way Merger for Sorting,” IEEE Transactions on Computers, vol. 71,
no. 12, pp. 3215–3226, 2022.

[6] Intel (R), Integrated performance primitives: Developer reference, vol.
1, signal processing. [accessed july-2023]. [Online]. Available: https :
//intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/.

[7] B. Bramas, “A novel hybrid quicksort algorithm vectorized using AVX-
512 on Intel Skylake,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 8, no. 10, pp. 337–344, 2017.

[8] Boost.sort 3.- parallel algorithms, [accessed July-2023]. [Online]. Avail-
able: https://www.boost.org/doc/libs/develop/libs/sort/doc/html/sort/
parallel.html.

[9] Intel (R), Intel intrinsics guide, [Online; accessed July-2023]. [Online].
Available: https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

[10] J. Domke et al., “At the locus of performance: A case study in enhancing
cpus with copious 3d-stacked cache,” arXiv preprint arXiv:2204.02235,
2022.

[11] Xilinx Inc., Zynq UltraScale+ FPGA Product Tables and Product Selec-
tion Guide, 2016-2021.

[12] Xilinx Inc., “Versal architecture and product data sheet: Overview,”
DS950 (v1.15) Advance Product Specification,, 2022.

[13] X. inc., “LogiCORE IP Product Guide v2.1, AXI Interconnect,” PG059,
Xilinx, December, vol. 20, 2017.

[14] P. Papaphilippou, H. Pirk, and W. Luk, “Accelerating the merge phase
of sort-merge join,” in 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), IEEE, 2019, pp. 100–105.

[15] W. Zhang, Y. Wang, and K. A. Ross, “Parallel Prefix Sum with SIMD,”
International Workshop on Accelerating Analytics and Data Manage-
ment Systems Using Modern Processor and Storage Architectures,
ADMS@VLDB, vol. 5, p. 31, 2020.

[16] K. Tangwongsan, M. Hirzel, and S. Schneider, “Sliding-window aggre-
gation algorithms,” in Encyclopedia of Big Data Technologies. Springer
International Publishing, 2018, pp. 1–6.

[17] K. Manev, A. Vaishnav, and D. Koch, “Unexpected Diversity: Quantita-
tive Memory Analysis for Zynq UltraScale+ Systems,” in Int. Conf. on
Field-Programmable Technology (FPT), IEEE, 2019, pp. 179–187.

[18] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins,” in CIDR, 2015.

[19] K. E. Batcher, “Sorting networks and their applications,” in Proc. of the
April 30–May 2, spring joint computer conference, 1968, pp. 307–314.

[20] T. Jain, “Nonblocking on-chip interconnection networks,” Ph.D. disser-
tation, Technische Universität Kaiserslautern, 2020.

[21] M. J. Narasimha, “The batcher-banyan self-routing network: Universal-
ity and simplification,” IEEE Transactions on Communications, vol. 36,
no. 10, pp. 1175–1178, 1988.

[22] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE
Trans. on Computers, vol. 100, no. 12, pp. 1145–1155, 1975.

[23] W. D. Hillis and G. L. Steele Jr, “Data parallel algorithms,” Communica-
tions of the ACM, vol. 29, no. 12, pp. 1170–1183, 1986.

[24] M. Safari and M. Huisman, “Formal verification of parallel prefix sum
and stream compaction algorithms in CUDA,” Theoretical Computer
Science, vol. 912, pp. 81–98, 2022, ISSN: 0304-3975.

[25] P. Papaphilippou, P. H. J. Kelly, and W. Luk, “Simodense: a RISC-V
softcore optimised for exploring custom SIMD instructions,” in 31st Int.
Conf. on Field Programmable Logic and Appl. (FPL), IEEE, 2021.

[26] G. Zachmann, “Adaptive bitonic sorting,” Encyclopedia of Parallel Com-
puting, David Padua, Ed, pp. 146–157, 2013.

[27] X. Sun, J. Yu, Z. Zhou, and C. J. Xue, “FPGA-based compaction engine
for accelerating LSM-tree key-value stores,” in 36th Int. Conf. on Data
Engineering (ICDE), IEEE, 2020, pp. 1261–1272.

https://intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/
https://intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/
https://www.boost.org/doc/libs/develop/libs/sort/doc/html/sort/parallel.html
https://www.boost.org/doc/libs/develop/libs/sort/doc/html/sort/parallel.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

	Introduction
	Background
	Parallelism in data analytics
	Parallel round-robin arbiter

	Proposed approach
	Reverse butterfly network
	Rolling prefix scan
	Proposed architecture

	Correctness and optimality
	Network passability
	Network configuration
	Optimality

	Evaluation
	Scalability
	Gate count

	Related work
	Conclusions

