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Abstract

Regression in a statistical streaming environment. Explore either large amounts
of data or data that is continually being generated in a meaningful way. The
streaming setting is challenging because either the proportion of data to be anal-
ysed far exceeds the available resources or the rate at which the data is arriving
and the timeliness of the inference on that data are at odds with each other.

Bayesian methods for streaming regression analysis have focused on using particle
filtering and sequential Markov chains. Bayesian regression trees have been used
as particles because they offer a tractable approach to nonlinear regression by
providing conditional basis functions that can be both smoothed over and still
allow for sudden changes in the data to be modelled. The Kalman filter, arguably
the progenitor of SMC methods, epitomises the Bayesian methodology for analysis
by using data to confirm beliefs which then become the prior beliefs for new data.

MCMC methods have been largely ignored in the statistical streaming setting
because ergodic averaging over Markov chains requires that stationarity of the
chains of sample measurements be established. Introducing new data invalidates
the claim of stationarity requiring that new chains of measures be sampled to
re-establish stationarity. What has not been shown is whether MCMC can be
used in the streaming setting if one is willing to accept that, at least temporarily,
the theoretical requirements for certainty of stationarity be set aside in favour
of reaching a target distribution that is, for all intents and purposes, either the
same as or very close to the “true” target distribution.

This document sets out to show that, using Bayesian regression trees to provide
a collection of conditional filters, MCMC can be used in the streaming setting for
nonlinear, nonstationary regression.

A tree filter based on the Kalman filter is developed. This initial stepping stone
shows that the explanatory variables are only necessary to indicate a refinement
of a partition created by the tree within which a filter provides an estimate and
prediction for the level of the signal in that refinement. Thus there is no need
to store neither explanatory variables nor observations because, by the Markov
assumption, all histories of the processes are retained in the previous state of the
latent process at the refinements and in the tree model. This fixed tree filter
is then developed into an on-the-fly adaptive learning model that searches the
space of tree models for possible models as new data is provided. It is shown
that by using Markov chain Monte Carlo it is possible to get sufficiently close
to the target distribution having only seen each new data point once. A single
tree represents only a single chain limiting the search of the model space so an
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ensemble of chains of tree measures is provided so that a more comprehensive
search of the distribution of trees can be carried out. An approximation to the
probability distribution of the trees is provided by this ensemble. A mixture of
tree models over this distribution allows for tree model weighted predictions for
the observations and estimates of the state along with their uncertainty estimates
to be made on-the-fly.

Showing that MCMC can be used in the streaming setting opens up a whole
gamut of MCMC methods for Bayesian statistical analysis that will broaden
the scope of problems that could be tackled over large and streaming data sets.
This method can be adapted to existing Bayesian tree regression methods and
extended to cover variable selection. The independent nature of the trees and
the fact that the algorithm has constant complexity with respect to the stream
of data means that the size of the ensemble is only limited by available resources
and is amenable to both parallel and concurrent computation. Almost any size
problem can be explored using this method and, because the Kalman filter can
handle vectors with ease, the dimension of the response is of concern only with
respect to local (to the leaf filter) matrix manipulation. The model provides
a method for autoregressive, on-the-fly Gaussian process regression but is also
extendable to multi-output Gaussian process regression.
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0.1 Notation

Throughout it is assumed that for every distribution P ( · ) a density, p ( · ), exists
so that these two notations can be used interchangeably.

Roman capital letters indicate random variables (unless otherwise noted) and
lower case Roman letters indicate realisations of these random variables. For
example, Z, Y are random variables and Z = z, Y = y are the obtained (realised)
values of these random variables.

Greek capital letters will indicate parameters (missing data values) unless other-
wise noted. Θ is the largest set of parameters, it is the super set of all parameters
in the ensemble of trees.

◦ Ξ ⊂ Θ is the set of parameters for all tree model functions T and ξT ⊂ Ξ
are the set of tree model parameters for a particular tree function T .

◦ Ψ ⊂ Θ is the set of parameters for all functions of every terminal node
(also called leaf node) of tree function T . ψT ⊂ Ψ is the set of leaf model
parameters for a particular tree T and ψb, b ∈ {1 . . . , KT} ⊂ ψT is the set
of parameters for a model in a particular leaf b in tree T .

T is a binary regression tree model. Excluding the rules at the nodes then T can
be described as a directed, acyclic graph (DAG), T = G = (V,E), where V is a
set of vertices and E is a set of edges. Every v ∈ V has a parent node P(v) and
a sibling node S(v). One exception is the root node RT which has neither parent
nor sibling but always has two child nodes Cl(v), Cr(v). LT and IT are a subsets
of V such that LT ∩ IT = ∅ and LT forms a partition of G.

◦ The elements of LT , also called parts, leaves or terminal nodes, have discrete
index b. Leaves cannot have children but must have both a parent and a
sibling. deg(b) = 1, where deg(b) is the degree of node b. KT is the size of
the partition (number of elements) so that |LT | = KT .

◦ The elements of IT , called the internal nodes of the tree T , have discrete
index η. Every η ∈ IT , excluding RT , has a parent, two children and a
sibling (which can be another internal node or a leaf node) and deg(η) = 3.
|IT | is the number of internal nodes in tree T and |IT | = ιT .

◦ Each η is associated with a neighbourhood and two subtrees:

◦ N = {P(η), S(η), Cl(η), Cr(η)} is the neighbourhood of η.

◦ P(η) is the parent node of an internal node and P(b) is the parent node
of a leaf node.
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◦ SL(η) and SR(η) are the left and right subtrees of η rooted at Cl(η), Cr(η)
the left and right children of η

Either ηR or RT can indicate the root of a tree.

A(v) = {P(v),P(P(v)), . . . ,P(P(. . . (P(v)))),RT} is the set of parents of parents
of v until the root node is reached, called the ancestors of v. PA(v) is the path
of nodes described by the vertices and edges that link the members of A(v).

dv = ⌈log2(v)⌉ indicates the depth of a node in G where dRT = 0. Then, for any
given tree:

◦ KT ∈ {2db , . . . 2db+1 − 1} any leaf node b.

◦ ιT = KT − 1

Index set t can be t ∈ N or t ∈ R. Generally, for some function f , f(t) represents
a function of the index but this can be amended to be written as f t to show that
f is a function of all indices from 0 . . . , t. Similarly, f could be subscripted by t,
ft, to show that a f is a function of a particular t. In general, unless otherwise
noted, t ∈ Z+.

x(t) = (x1(t), . . . , xp(t)) = xt is a vector interchangeably called the input, covari-
ate, independent or explanatory vector of variables. Each xj(t) is a deterministic
function of the index set t. The outputs of functions xj(t), j ∈ {1, . . . , p} in
general come from a mixed multi-set of possible outputs X p = X1×· · ·×Xp, such
that xj(t) could be one of: R, an interval value, Q, a ratio value or {a, . . . , z},
a mapping from categorical names or words to the letters of the alphabet. For
the most part xj(t) will be considered a real value and, without loss of generality,
normalised to be bounded between 0 and 1. xt = {xi}t

i=1 is the set of input
vectors indexed from i = 1, 2, . . . , t. xt

j is the sequence of a particular covariate
xj ∀ 1, . . . , t and xij is the value of xj(i) at index i for covariate j.

Let Y (t) be a random function on an index set t. Y (t) ∈ Rn is a vector of values
called either the measurement or observation. Y t = {Yi}t

i=1 is a collection of
random values (a stochastic process) such that p (Y t ) = p (Y1 ≤ y1, . . . , Yt ≤ yt )
represents the joint distribution for the observations over the index set t. y(t), yt

are realizations of Y (t), Yt at the tth index of the index set t. y(i), yi are the
realizations of Y (i), Yi at indices between the initial index value, usually 1 in this
document and t, the tth index value. yt is the realization of the collection Y t up
to index t so that p (Y t = yt ) is a particular realization of the joint distribution
of Y (t) over index set t.

In a similar vane to Y (t), Z(t) is a random function such that E [ Y (t) | x(t) ] =
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Z(t). Z(t) ∈ Rm is a vector of values called either the state, hidden or latent vari-
able. Zt = {Zi}t

i=0 is a stochastic process so that p (Zt ) = p (Z0 ≤ z0, . . . , Zt ≤ zt )
represents the joint distribution for the latent state over the index set t. z(t), zt

are realizations of Z(t), Zt at the tth index of the index set t. z(i), zi are the
realizations of Z(i), Zi at indices between the initial index value, usually 0 for
the latent signal, in this document and t, the tth index value. zt is the realization
of the collection Zt up to index t so that p (Zt = zt ) is a particular realization
of the joint distribution of Z(t) over index set t.

A data multiset is represented by D(t) = {x(i), y(i)}t
i=1, x(i) ∈ X , Y (i) = y(i) ∈

Rn, i ∈ {1, . . . , t}. A data point is represented by d(i) = (x(i), y(i)) ∈ {1, . . . , t}
and d(t) = (x(t), y(t)) is the tth realization of the data.
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1 Introduction

1.1 Motivation

The motivation behind this research is real-time data analysis. That this is a
statistical problem has an intuitive appeal: sensory input to an actuator is a
realization of a set of possible inputs that, conditional on the context of the
transducers, obtain and the result is some observed phenomenon with some er-
ror in measurement. The actual or true state of the sensors and their context
is unknown and the observations might be occluded or confounded due to in-
teraction effects; other exogenous factors affecting input phenomena; separation
between sensor and actuator or, quite likely, some combination of these. Further,
the phenomena acting on the sensors (inputs) might be changing resulting in
changes in the observations (outputs) and this may be happening in a partially
nondeterministic manner at random time intervals.

Thus the sample is a sequential multiset of observations from a population of
input sources, large and complex enough so complete measurement is impossible.
The task, given an instance of the sample of observed outputs is to estimate
the current true state of the system and to predict future outputs based on this
current state.

The reason for pursuing this task is that if one has better information with mea-
sured uncertainty within a time frame that is close to the time that phenomena
are produced then the actions taken as a result of this information could be bet-
ter than not having had these estimates and predictions from the most recent
epoch. Bifet, Gavald, et al. (2018) present a list of current and future applica-
tions including exploring potentially useful “hidden” data, monitoring of sensory
data from the “Internet of Things”, healthcare, disaster management, resource
management etc.

Bifet, Gavald, et al. (2018) also list a set of constraints that arise from the stream-
ing data setting, the foremost being that it is not possible to know exactly the
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number of data points in the sample. This is a restriction from the point of view
of the usual approach to statistical analysis from a sample data set but it is also
an advantage because to measure the uncertainty of a stream of data requires
that the number of samples, N , is decoupled from the analysis. This extends the
possible applications of streaming data analysis to data sets of extremely large
depth N and width, the number of covariates p.

The recursive nature of the Bayesian approach to probability and statistics has
a form that is also intuitively appealing: if the prior over a set of parameters is
updated by the likelihood to produce a posterior distribution over those param-
eters then that updated posterior is surely a prior for the parameters that will
be updated by future data to produce the next posterior over those parameters
and so on ad infinitum. The problem with this intuition is that to calculate the
posterior distribution with each new round of data requires that the evidence
of all the data accumulated so far is taken into account. The calculation of the
marginal of the data is the bugbear of Bayesian analysis but has largely been
resolved by sampling approaches to integral calculations such as Markov chain
Monte Carlo and Sequential Monte Carlo.

Sequential Monte Carlo (SMC) or particle filtering is the current preferred method
of updating estimates and making predictions when new data has been obtained.
This approach has been shown to converge to the correct posterior distribution
but for best results still requires several runs over the data set and other modifi-
cations to avoid degeneracy. Markov chain Monte Carlo (MCMC) has generally
been eschewed for streaming analysis because convergence of the chain is only
guaranteed if the samples can be repeatedly drawn from a fixed data set. How-
ever, MCMC has a whole host of associated methodologies that would be a boon
to streaming data analysis if it could be shown that the fact that MCMC does
not necessarily converge at each instant that new data is added is of negligible
consequence.

This is the task that this thesis sets out to show: using Bayesian regression trees
of the type designed by Chipman et al. (1998) can Markov chain Monte Carlo
be used with streaming data to provide accurate estimates of the state of nature
even if the target distribution changes before full convergence of the chain?

Clearly this is a hard problem, not only because of the requirements of MCMC
but the nature of the stream of data: separation between source and analyst;
non-stationarity of observations and context; non-linearity and sudden changes
between inputs and outputs as well as the time variance of observations. The
complexity of the setting requires some additional restrictions to be state before
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the problem statement is set out.

Firstly, as pointed out by Bifet, Gavald, et al. (2018) and Gama (2010) streaming
data analysis is firmly within the data mining or “knowledge discovery” realm.
It is largely an exploratory tool and hence inference based on uncertainty mea-
surements may only be temporally and temporarily relevant. Caution should be
taken in extending inference beyond the temporal context but this depends also
on the type of analysis being performed.

Secondly, the proposed modelling solution will be a stream of data in itself and
requires that there are the computational resources available for the type of sta-
tistical analysis proposed in this document. The streaming data problem is a
problem of its day: it is only recently (in the last decade or so) that the ubiquity
of relevant technology and the communication bandwidth as culminated in the
possibility of analysing data in close to real-time. This has lead to the desire,
feasibility and ultimate usefulness of this type of analysis without which this
research, while not redundant, would have much more limited interest.

Thirdly some base assumptions are needed to begin to frame the problem. These
assumptions stem from nature of the problem and the first two points previously
raised: prior to the availability of the data, in fact, prior to this type of technology
even being envisaged, statistical analysis has been founded on the assumption that
the sample is represented by a finite data set. This finite multi-set, according to
L.J. Savage in his book The Foundations of Statistics “makes no formal reference
to time” (Savage 1972, p. 10) and that events are “timeless”. In Savage’s context
temporal properties can be used to describe events, for example time can be
used as an index for ordering (as will be done in this document), but the events
themselves are not particular to the temporal context of their analysis: measuring
heights now or in two centuries time may make a difference to the outcome of
the measurements but the samples (and to a large extent the sampling processes)
themselves will not be affected by the disparity in time.

The statistical streaming setting challenges this view point in several ways. It is
assumed that:

1. the sample is a stream of data and hence the (multi-) set of data is un-
bounded in the positive direction of the ordering (time) index. Thus the
number of data points N to be analysed is not known and assumed random;

2. the sources of the data are separated from the analyses of the data, for
example by a lossy communication network, and there is limited control over
the data sources (although not over the selection of the (potentially large
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number) of sources). This restricts the sample to a rough-and-ready format
and changes to these source measurements (and methods of measurement)
might be out of the hands of the analyst (or client).

3. the lossy communications network and source separation might disguise the
temporal and spatial properties of both the inputs and observations.

Thus, unlike in Savage’s context, the timeliness of the data and the sampling
context are relevant to the analysis because of the nature of the sources, their
output and the need to include calendar time to frame the analysis. The first point
covers this to some extent but this additional variation and complexity is worth
mentioning because it adds to the challenges presented by the streaming setting
and hence to evaluation and potential application of the proposed methods.

Guided by this motivation and some assumptions the following section will present
the problem statement.

1.2 Problem Statement

Let Y (t) ∈ Y be a random function on an index set t = Z+. t represents the
current value of the index set and i represents a value of the index set between
its initial value zero and its current value t. The index t = 0 is called the
initial index and is not observed. Each Y (t) ∈ Rn is a vector of values called
either the measurement or observation and results from the interaction of some
natural phenomenon on a sensor of some kind, implying that the observations
(and inputs) are available in digital format. It is assumed that Y t = {Y (t)}t

i=1

is a nonstationary process which is exchangeable conditional on the stream of
known explanatory variables xt = {x(i)}t

i=1.

Let x(t) = (x1(t), . . . , xp(t)) be a vector of known digital inputs also called
covariates, independent or explanatory variables where each xj(t) = xtj is the
result of a deterministic function of the index set t. The outputs of functions
xj(t), j ∈ {1, . . . , p} come from a mixed multi-set of possible outputs X p =
X1 × · · · × Xp, such that xj(t) could be one of: R, an interval value, Q, a ratio
value or {a, . . . , z}, a mapping from categorical names or words to the letters of
the alphabet. For the most part xj(t) will be considered a real value and, without
loss of generality, normalised to be bounded between 0 and 1.

It is assumed that at each t inputs x(t) = xt explain Y (t) = Yt in some functional
way using f(·, t): Yt = f(xt, t). This equivalence relation is not without some
error, ε(t) = εt, usually due to a multitude of factors such as measurement
error, model uncertainty and incorrect or incomplete specification of explanatory
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variables. In the streaming setting the model f(·, t) is itself a function of t because
the relationship between Y t and xt may also be evolving. Similarly, the error
process εt = {εt}i=1 is an evolving process and the model f(·, t) = f(·, εt, t) is
also a function of the error.

There are additional data, call these {Θ(t)}t
i=0 which could be processes, that

are used to help {f(·, t)} describe the relationship between Yt and xt at each
t but these data are unobserved. The type and structure of these data, called
parameters, are based on guesses, beliefs or judgements by the analyst or as a
result of the particular modelling choices by the model designer. The central task
of the statistical analysis proposed in this paper is to infer the state of nature of
the streaming process using the model, functional assumptions supported by the
data and accumulated evidence. This state of nature is represented by a latent
process Zt = {Z(t)}t

i=0, Z
t ∈ Θ. If the process Zt is removed from the set of

parameters Θ then Θ(t) represents a set of parameters that can change at some
index t but is not, in this document, considered a process such as the random
variables Y t, Zt, εt or the deterministic functions xt.

In summary the problem to be solved, as described above, is the following:

Definition 1.1 (Problem Statement).

Y t = f(xt, Θ(t), εt, t). (1.1)

A set of real-valued, observed and measured random data Y t are,
with some error process εt, functionally related via f(·, t) to some de-
terministic inputs xt and some additional data Θ(t). The function,
f(·, t), which relates the inputs and outputs, is also uncertain. The
task is to predict current and future outputs, Y t+k, k ∈ Z+, and esti-
mate or predict the latent observations Zt using on an adaptive model,
f(·, t+ k), k ∈ Z+.

The rest of this chapter is structured in the following way: the immediate sequel
will state a proposition for solving the statement in Definition 1.1. It will present
a streaming regression model using the Bayesian methodology and Markov chain
Monte Carlo sampling to estimate the state of nature of the observed process
and make predictions on both the observed and latent processes. This will be
followed by a section that sets out the structure of this thesis in full. The final
part of this chapter will state the contributions of this thesis.
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1.3 Proposition

The proposed method of understanding and analysing data in a real-time setting
is to provide a model for the stream of data which is a stream of data itself. The
methodological framework chosen is that of Bayesian probability and statistics
which incorporates sampling as a means of accumulating evidence.

1.3.1 Proposition Statement

The proposed solution to Equation (1.1), in the subjective Bayesian context, is
to consider the joint distribution of the random processes, in this case Y t, Zt

and samples from f(·, t), via tree models T (xt, Θ(t), εt, t), conditional on the
independent variables xt and some assumed known (or at least deterministically
changing) parameters Θ(t): P (T, Y t, Zt | xt,Θ(t) ). However this probability
model is still too broad an approach because of the sheer number of possible
models and parameters. To simplify things it will be assumed that:

1. f(·, t) is approximated by f̂(·, t) = F(·, t) where F(·, t) is an ensemble
function of tree models T (xt, Θ(t), εt, t) where each T (·) is function that
uses xt ∈ X at each discrete t to assign Yt = yt to a subset of the partition
of X using some parameters.

2. The set of Θ(t), now called the ensemble parameters, can be partitioned in
the following way:

(a) Let Ξ(t) ⊂ Θ(t) be the set of parameters that will be used for providing
additional data about the tree models T (·) such that ξT (t) ⊂ Ξ(t), also
called tree parameters, are the subset of parameters for model T (·).

(b) Let Ψ(t) ⊂ Θ(t) be the set of parameters necessary for providing
additional data for a set of models, {g(Zt,Ψ(t), t)}, called leaf models,
that are assigned to each of the models T (·). The parameters indicated
by ψT (b, t) = ψb ⊂ Ψ(t), also called leaf parameters, are the subset of
Ψ(t) assigned to the bth part of the partition of X generated by T (·).
ψT is the superset of these leaf parameters associated with a particular
model T (·) which can also be called the tree leaf parameters or the leaf
parameters of tree T .

Note that Ξ(t) ∩ Ψ(t) = ∅: the former are specifically parameters for T (·) and
the latter are specifically parameters for g(·). The size of the ensemble, | F | is a
parameter of Θ(t), the ensemble parameters.

The following model is proposed as a solution to the problem statement in Defi-
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nition 1.1:

Proposition 1.1 (A Streaming Regression Model).

Y t = f(xt, Θ(t), εt, t) ≈ f̂(xt, Θ(t), εt, t) = F(xt, Θ(t), εt, t)

=
∑

∀T ∈F
T (xt, Θ(t), εt, t) P

(
T | Y t, xt, Θ(t), εt, t

)
=

∑
∀T ∈F

T (g(Zt, ψT (t), t), xt, εt, ξT (t)) P
(
T | Y t, g(Zt, ψT (t), t), xt, εt, ξT (t)

)
(1.2)

for every t ∈ Z+ where:

◦ f̂ = F is an ensemble function with a distribution generated by the models
T (·) where P (T | · ) is the posterior probability of each model T (·);

◦ T (g(Zt, ψT (t), t), xt, εt, ξT (t)) are random tree models. Each is a condi-
tional indicator function for model g(·).

◦ g(Zt, ψT (t), t) is an intermittent Kalman filter model to estimate the latent
process Zt ∈ Z at each leaf of T from the observations Y t assigned to at
least one of the models g(·) by the covariate vector xt at each t.

◦ P (T | Y t, g(Zt, ψT (t), t), xt, εt, ξT (t) ) is the posterior probability for the
tree model and hence the generator of the ensemble distribution.

Thus, conceptually, the proposal in this document is to provide an ensemble of
tree models each of which are able to indicate or point to a set of filters one of
which, conditional on the covariate vector at each t, choose a Kalman filter to
estimate the level of the state variable. The ensemble attempts to cover the space
of possible models over which Y t might be explained by xt and, by randomly
adapting the tree models using MCMC proposal moves, the tree models can
evolve and search the space of possible models. The filters infer the “true” state
of nature conditional on the tree model, the covariate xt and the observed Yt = yt

at each discrete t. The tree models are probabilistic and statistical (chosen based
on observed and latent data) so that it is possible to provide predictions for future
outputs via a probability weighted sum of the random basis functions provided
by the trees. Showing that this family of models presented in Proposition 1.1 is
a solution to the problem statement in Definition 1.1 is the central thesis of this
document.

In summary, this document will present the use of an ensemble of tree models
within the Bayesian statistical paradigm as a method for solving nonstationary,
nonlinear, time-variant stochastic processes in a streaming setting. The section
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that follows this will outline how this will be achieved.

1.4 Outline

The problem as presented in the previous section is not a new problem but, given
the technological advances, it has now become possible to not only look at old
problems in a new way but also to consider new types of problems. The purposes
of this section are to provide a structure for approaching the problem so that
the genesis of the problem and hence the thesis and its contributions can be
substantiated.

Chapter 2 will provide a review of the problem as it is currently understood as
well as present the state-of-the-art in how this or similar problems are solved.
The chapter will begin by introducing regression and time series analysis and
proceed to describe various developments of the Kalman filter and its relationship
to the Bayesian framework. The link between regression analysis, times-series
analysis and state-space analysis will be established. Hidden Markov models will
be discussed as these form a link between state-space estimation and tree models.
Trees will be introduced as graphs and their use in partitioning subspaces for
statistical analysis will be presented. The section will conclude with a discussion
on streaming, its relationship to other fields in computer science and will then
focus on streaming data analysis with particular attention given to tree modelling
in this setting.

Chapter 3 provides a summary of the main aspects of the Bayesian methodology.
This is a necessary chapter because it is the Bayesian approach for updating
inference on unknown data within a coherent framework that was the initial
inspiration behind this thesis, not-to-mention that this framework provides the
theoretical structure upon which this thesis rests. Also presented here will be
current methods for solving complex marginal integrals via sampling, specifically
Markov chain Monte Carlo and sequential Monte Carlo methods.

Chapter 4 presents the tree filter which is the stepping stone to full nonstationary
analysis in the streaming setting. This chapter will elaborate on the model from
Proposition 1.1 providing greater clarification for the assumptions made so far and
some additional assumptions necessary for showing the model’s functionality and
validity. The tree filter marginal distribution will be developed and a calibration
study for the leaf model parameters produced. This is necessary for both tree and
ensemble setup and replaces parameter estimation at the leaf models. Simulation
studies will be provided to demonstrate and support properties of the model.
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Chapter 5. This is a continuation of the previous chapter and develops the tree
filter into a tree filter that can evolve in a streaming setting. This section proceeds
to show how a collection of random tree models is mixture model over the distri-
bution of trees and how this mixture is used to perform prediction for the state
and observation processes. The chapter will present simulation studies for the
prior in the streaming setting and the individual tree models over three different
simulated models. The ensemble model will be demonstrated and compared to
two other Bayesian Models, “Dynamic trees for learning and design”(Taddy et al.
2011) and “BART: Bayesian additive regression trees”(Chipman et al. 2010) in
a static setting where both are known to converge to the true target distribution
of the posterior of the tree model. These models will then be used to perform a
comparison in a (pseudo-) streaming setting again where they both will be able
to converge to the posterior. The section will conclude with comments on the
comparison of the models.

Chapter 6 presents some minor modifications to the proposed model. The aim
of these model modifications are improve the performance of the model. Demon-
strations and simulation studies in this section will be compared with their coun-
terparts in the previous two sections. The estimation and prediction for the
Mackey-Glass differential equation is shown.

1.5 Contributions

The contributions of this these broadly follow the chapter outline of the previous
section:

◦ The first contribution is an adaptation of the Intermittent Kalman filter to a
tree filter. The tree filter provides an opportunity to filter a complex process
or signal by assuming that the support of the signal can be better specified
through explanatory variables but without storing neither covariates nor
responses. The work in this paper shows how the tree filter out performs
the Kalman filter when it is assumed that there is more than one process
generating the signal.

◦ The second contribution is to adapt the random tree model generation pro-
cess of Chipman et al. (1998) to the streaming setting. A considerable
difficulty in performing analysis in the streaming setting is that there is no
finite data set which limits choices of the modeller to the provided sam-
ple. Adaptations to the tree model include allowing for a infinite number
of threshold values and any number of covariates. The tree model is decou-
pled from the size of the data set so that the computational complexity is

9



constant in the number data points.

◦ The third contribution is to combine the all the tree models into an ensemble
of models to approximate the tree model space. Each of the tree models is
Markov chain so that the ensemble is a set of Markov chains working in par-
allel to approximate the target distribution which is the “true” distribution
of the tree model at each iteration t. That is, at each t each T is unlikely
to converge to the target posterior at t + 1 but by having | F | Markov
chains the target posterior is sampled from more often thus replicating the
(assumed) independent samples of the MCMC process. Combining these
samples as components in a mixture model for estimating the parameters
of the target distribution at each t brings the streaming approach using
MCMC close to both the SMC approach in Taddy et al. (2011) and MCMC
approach in Chipman et al. (2010) in the static and (pseudo-) streaming
setting.

◦ The final contribution of this thesis is to provide methods for adapting
the raw MCMC approach to bring the proposed model closer to the target
distribution. These methods can also be used to improve the performance
of the model in the streaming setting.

10



2 Background

2.1 Introduction

The problem to be solved in Definition 1.1 has been approached in Section 1.3.1 as
portmanteau of a mixture model, tree models and Kalman filters each of which is
a successful and thoroughly developed field in its own right. Before the proposed
model can be explained in detail in Section 4.3 and Chapter 5 it is necessary to
provide the reader with some background on how these individual approaches to
modelling were developed and how or why they they have been selected to form
the structure around the model of Proposition 1.1. Furthermore, this composite
of models has been placed in the statistical data streaming setting; an area of
study that is not necessarily new in its original guise of statistical process control
but has become more attractive to contemporary research due to advances in
technology and a concurrent growth, at least commercially, in the availability of
streaming data sources. Each of the sections that follow this introduction will
provide a brief introduction to each of these fields; some of the existing and state-
of-the-art modelling approaches used in these fields and a description of how some
of their features will be used in the proposed model.

Section 2.2 will show the links between regression and dynamics. The goals of
this section are to present the basic idea of regression, its link to time-series
and dynamic modelling and then to focus on the intermittent Kalman filter (Si-
nopoli et al. 2004) which is the approach adopted for modelling sequential data.
There are some essential assumptions and stipulations that relate to both dynamic
modelling and control theory and these will be expanded upon. The Bayesian
approach will be emphasised and there will be will be a brief mention of stochas-
tic differential equations, autoregressive Gaussian processes and jump diffusions
as these form part of the broader framework of the proposed model but they are
not essential to the presentation of the model in Chapter 4.

Section 2.3 will present a brief general description of trees as graphs and then it
will concentrate on trees in a statistical setting. A summary of the development
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of the statistical approach to tree modelling with a particular focus on regression
will be provided. Using trees for dynamic modelling has also been done before by
Taddy et al. (2011) in the framework of particle filtering, which is an alternative
to the Markov chain Monte Carlo method that this proposed model uses.

Ensemble approaches to modelling take different forms including the already men-
tioned particle approach. A successful ensemble approach is the Random Forest
(Breiman 2001) and its Bayesian counterpart, BART (Chipman et al. 2010). Mix-
ture models are another well founded approach to covering a complex space of
models and it is this approach that will be used to combine the tree models of
Equation (1.2).

The final section of this chapter will present the state-of-the-art in the approach
to statistical analysis of streaming data. Section 2.5 will present a short in-
troduction to the general streaming setting of which statistical analysis of data
streams is a small part. The data streaming setting will be introduced and some
necessary modelling assumptions based on this paradigmatic description will be
adopted. Many of the current streaming data methods are based on the classi-
cal or frequentist setting. This is in part due to the perceived intractability of
the Bayesian methodology, in particular Markov chain Monte Carlo, one notion
that this thesis will challenge. The section on streaming methods will start with
Very Fast Machine Learning (VFML) (Hulten and Domingos 2003), a tool kit for
data mining which uses trees to quickly summarise data, and progress on to the
development of adaptive Hoeffding trees (Bifet and Gavaldà 2009) and their vari-
ants. These methods form a part of, and much of the basis for, Massive Online
Analysis (MOA) (Bifet, Gavald, et al. 2018) a system of online machine learning
techniques.

2.2 Dynamic Function Approximation

Regression is a form of function approximation that relies on observed past data
to learn the form of a function. It is hoped that this functional form can then be a
way to predict unobserved or future outcomes. In the statistical streaming setting
the past data is arriving almost at the same time that inference on the model,
estimation and prediction from the model and model adjustment and evaluation
need to occur. This is a challenge that is hard if not impossible to fulfil without
some strong modelling assumptions. This section shows how some of these mod-
els, modelling assumptions and requirements have been derived and how they
have been used for static ordered data analysis. The first subsection will briefly
introduce regression and time-series analysis with a focus on autoregression. The
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second section will be focused on the Bayesian approach to dynamic and ordered
data analysis with a focus on filtering and dynamic models. This subsection will
terminate with a detailed look at the intermittent Kalman filter as developed by
Sinopoli et al. (2004).

2.2.1 Regression and Time Series

2.2.1.1 Regression

Regression or function approximation was initially developed as a means of solving
an under- or over-determined system of linear equations (Stigler 1986). Minimum
least squares approximation uses the partial derivatives of the sample residual
difference between a measured but random value, call this a dependent variable,
response or observation Yi = yi ∈ R, and some other values that are known and
not random, call these covariates, inputs or independent variables X = (xij), to
find some weights, typically denoted β = βj that provide solution coefficients to
the system:

yi = β0 + xi1β1 + · · ·+ xijβj + · · ·+ xipβp, i ∈ {1, . . . , N} (2.1)

The form of the system of equations in Equation (2.1) when generalised (viz.
Equation (2.18)), has the same form as Definition 1.1 and Equation (1.2) where
f is a linear function. In the static form the expected value or average of the
sample data is assumed to be linear:

E [ yi | β,X ] = β0 + xi1β1 + · · ·+ xijβj + · · ·+ xipβp, i ∈ {1, . . . , N} (2.2)

and that this is enough to provide a solution to the system in Equation (2.1) with
some error σ2 between the left and right hand sides of the system. The error of
the residuals or deviations is assumed to have a Gaussian distribution and so,

ri = yi − (β0 + xi1β1 + · · ·+ xijβj + · · ·+ xipβp), ∼ N(0, σ2), (2.3)

leads to the familiar form of the linear regression model,

Y ∼ N(Xβ, σ2), (2.4)

using the linearity properties of the Gaussian distribution.

As shown in Draper and H. Smith (1981) and Hastie, Tibshirani, and J. Friedman
(2001), the system of residual gradients (RSS) in Equation (2.3) can be written
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as a function of weights β,

RSS(β) = (y −Xβ)T (y −Xβ)

which can be used, by partial differentiation with respect to the parameters β, to
find a unique fixed point for β̂:

∂RSS

∂β
= −2XT (y −Xβ) = 0 (2.5)

so that

β̂ = (XTX)−1XTy. (2.6)

The estimate for the variance of the estimated β̂ can be obtained from Equa-
tion (2.5) and is given by:

Var
[
β̂
]

= (XTX)−1σ2 (2.7)

where

σ̂2 = 1
N − p− 1

N∑
i=1

(yi − ŷi)2 (2.8)

is an unbiased estimator based on the data and the fitted values

ŷ = X(XTX)−1XTy (2.9)

The statistical task is to provide a statement about the range of values within
which the estimated model parameters β̂ and σ̂2 could be found. Point estimates
provided by the above methods are convenient but of little use because changing
the data changes the values. The classical approach to statistical inference on
model eq. (2.1) is to assume that in fact this is the “true”1 or “correct” model
and then based on the distributional assumptions, test whether these initial as-
sumptions are the correct assumptions (see Hastie, Tibshirani, and J. Friedman
(2001, pp. 47–49)).

The general form of a Bayesian regression problem is:

p ( θ | y,X ) = p ( θ | X ) p (y | θ,X )∫
θ p (y | X ) dθ

1“true” is placed in inverted commas here and elsewhere because all models are wrong,
G. E. P. Box (1976), and these quotes are intended raise the awareness of this fact.
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where the task is to learn about the posterior distribution of θ based on likelihood
of the parameter L(θ) = p (y | θ,X ) supported by the evidence,

∫
θ p (y | X ) dθ.

The conditioning variables X are assumed known and hence complete so that the
conditional distribution of y | X can be analysed to learn about θ (A. Gelman
et al. 2013, p. 354). This approach to inference is the approach taken in this
thesis and more about it will explained in Chapter 3.

In the standard linear model the parameters that need prior distributional state-
ments are θ = (β, σ2). The non-informative approach is to assume that

p
(
β, σ2

)
∝ σ−2

which is the same as assuming that (β, log σ) are jointly uniform (A. Gelman
et al. 2013, p. 355). The method used to make posterior statements about these
parameters is to first determine the conditional posterior of β | σ and then to
consider the marginal distribution for σ2 via the factorization p ( β, σ2 | y ) =
p ( β | σ2, y ) p (σ2 | y ). So, conditional on σ2,

β ∼ N(β̂,Var
[
β̂
]
) (2.10)

and then

p (σ2 | y ) ∼ Inv-χ2(n− p, σ̂2) (2.11)

A necessary assumption for regression modelling in the Bayesian setting is condi-
tional exchangeability which intuitively means that, conditional the xi = ∑p

j=1 xij

the order of the yi in the sample does not matter. More will be said about this
in Section 3.2.3.1. Another assumption necessary in the above linear regression
model is that the deviation of yi from xi, ri = σ, is the same for every realisation
in the sample and hence in the population.

The above model in Equation (2.4) is simplistic in the sense that it assumes
that all variances are equal for every i, i ∈ {1, . . . , N} and that there are no
correlations between i, j, i ̸= j. Extending that model to include correlations
and unequal variances requires the specification of a variance-covariance matrix
Σy ∈ RN×N which means that

y ∼ N(Xβ,Σy) (2.12)
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and

β̂ = (XT Σ−1
y X)−1XT Σ−1

y y. (2.13)

with

Var
[
β̂
]

= (XT Σ−1
y X)−1 (2.14)

because for every i, j it is necessary to consider how i influences j in the estimates
of the posterior parameters (see A. Gelman et al. 2013, pp. 370–371).

To make predictions from the model in Equation (2.12) let X̃ be a collection of
new covariates without associated observations and let ỹ be a vector of predictions
of interest. Then it is necessary to specify a joint variance-covariance matrix for
the old observations and the new predictions. That is, it is necessary to specify
Σỹ which explains how the predictions might vary together and it is necessary to
specify how the these predictions might vary together conditional on the known
data with variance-covariance Σy (A. Gelman et al. 2013, p. 371).

Let y | X, θ

ỹ | X̃, θ

 ∼ N

Xβ

X̃β

,
 Σy Σy,ỹ

Σỹ,y Σỹ

 (2.15)

be the joint distribution Gaussian distribution between the current data y and
the predictions ỹ conditional on the current data X, the current parameters θ
and the new covariates X̃ Then it can be shown that the conditional distribution
of the predictions based on the current data is Gaussian with parameters:

E [ ỹ | y, β,Σy ] = X̃β + Σỹ,yΣ−1
ỹ (y −Xβ) (2.16)

Var [ ỹ | y, β,Σy ] = Σỹ − Σỹ,yΣ−1
ỹ Σy,ỹ (2.17)

The result in Equations (2.16) and (2.17) is a powerful one as it used in the
Bayesian formulation of the Kalman Filter by Meinhold and N. D. Singpurwalla
(1983), for Gaussian processes in Rasmussen and Williams (2006) and for stochas-
tic differential equations in Särkkä and Solin (2019).

The form of the model in Equation (2.4) is extremely flexible and a relevant
extension to the linear model is to assume that the vector of covariates is vector
of functions:

E [ Y | x ] = µ(x) =
F∑

f=1
βfhf (x) (2.18)
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where each of the hf (x) is a called a basis function model. More about this
modelling approach will be explained in Section 2.4. This section will now present
time series modelling and in particular auto-regressive modelling as an extension
to regression over ordered indices.

2.2.1.2 Time-series

Time series analysis involves modelling a sequence of data that is dependent on
the data ordering. In this section, and for most of this document, the ordering
principle is time in the positive direction and this is denoted t. The data in a
time-series model is considered a single realisation of a stochastic process. The
aim of time-series analysis is to understand the properties, for example autoco-
variance, variance and mean of the process. The canonical reference on classical
time-series modelling is Time Series Analysis: Forecasting and Control (G. E. P.
Box et al. 2008) and most of the material in this section is drawn from this refer-
ence. Section 2.2.2 will present the Bayesian approach to forecasting and control
as presented in Bayesian Forecasting and Dynamic Models (Harrison and West
1999). This will also include the Kalman filter which is a form of the linear filter
which forms the basis of classical time series modelling.

Consider Equation (2.1) but modify it by indexing the system over t rather than
i, letting the response yt = zt, each of covariates be a previous, and hence known,
response value, xt, j = zt−j, j ∈ {1, . . . , p} and let βj = ϕj be the parameter that
describes the weight of the contribution of the previous observed values to the
current observed value:

zi = ϕ1zt−1 + · · ·+ ϕjzt−j + · · ·+ ϕmzt−p, i ∈ {1, . . . , N}. (2.19)

Further, let each observed value zt be subject to a random Gaussian shock, zt ∼
N(0, σ2), at each t. Then one has the autoregressive model of order p from
G. E. P. Box et al. (2008, p. 9).

Introducing the backshift operator B such that Bzt = zt−1 then Equation (2.19)
can be written as:

ϕ(B)zt = at where (2.20)

ϕ(B) = 1− ϕ1B− ϕ2B2 − . . . ϕpBp and

at = N(0, σ2).

Stationarity of a stochastic process is a statement about the distributional prop-
erties of the process. More will be said about this in Section 3.3.1.1 but in its
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strongest form a stationary process requires that the mean, variance and auto-
covariance of the process do not change over all t. For Equation (2.20) to be
stationary requires that |ϕ| < 1 (G. E. P. Box et al. 2008, p. 10).

Another useful and popular model is the moving average model of order q,

zt = at − θ1at−1 − θ2at−2 − · · · − θqat−q

= θ(B)at where (2.21)

θ(B) = 1− θ1B− θ2B2 − . . . θqBq.

The random observation at t is deemed to be a finite linear sum of weighted
random shocks at, . . . , at−q. In G. E. P. Box et al. (2008, p. 10) it is shown
that by repeated substitution of zt−j = ϕzt−j−1 say m times that there is an
equivalence between the moving average and autoregressive models.

The combination of both the moving average and autoregressive models leads to
an ARMA(p,q) model:

zt = ϕ1zt−1 + · · ·+ ϕpzt−p − at − θ1at−1 − · · · − θqat−q or

ϕ(B)zt = θ(B)at (2.22)

which is a stationary model with wide application usually of order less than 2 for
both p and q.

For a nonstationary model define the generalised autoregressive operator

φ(B) = ϕ(B)(1− B)d (2.23)

where ϕ(B) is as before. For the autoregressive model it was stated that to
model a stationary process requires that |ϕ| < 1 which is equivalent to stating
that the roots of Equation (2.20) must lie outside of the unit circle. If roots
of Equation (2.20) lie within the unit circle an explosive or divergent process is
the result of the model (G. E. P. Box et al. 2008, p. 95). In Equation (2.23) d
represents the roots Equation (2.20) that lie on the unit circle.

The ARIMA model of order (p, d, q) is defined as a model that can represent a
homogenous, nonstationary process via:

φ(B)zt = ϕ(B)(1− B)d = θ(B)at
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or equivalently,

ϕ(B)wt = θ(B)at where wt = (1− B)dzt = ∇dzt (2.24)

and so

wt = ϕ1wt−1 + · · ·+ ϕpwt−p − at − θ1at−1 − · · · − θqat−q

Thus, by choosing polynomial of order d, the autoregressive component of the
model is differenced across d time intervals. In the discrete approach described
here this is akin to differentiating the time series if d = 1.

All of the above models can be represented as a linear filter. Let

zt = µ+ at + ψ1at−1 + ψ2at−2 + . . .

= µ+ ψ(B)at where

ψ(B) = 1 + ψ1B + ψ2B2 + . . . (2.25)

Here, µ represents a constant level for the model and, again the at are assumed
random Gaussian shocks. ψ(B) is called the transfer function of the filter (G. E. P.
Box et al. 2008, p. 9). If the ∑∞

j=0 |ψj| <∞ then the linear filter model is called
stable. This is a concept that is tied into the ideas of observability, controllability,
detectability and stabilizability that are necessary for the adjustment and control
of control models that form part of the necessary assumptions for the proposed
approach.

Taking ψ(B) = ϕ−1(B) and the autoregressive model of Equation (2.20) is recov-
ered. Similarly, let ψ(B) = ϕ−1(B)θ(B) and the ARMA model of Equation (2.22)
follows and finally it can be seen by looking at Equation (2.24) that again if
ψ(B) = ϕ−1(B)θ(B) then wt = ψ(B)at. Thus the linear filter is a powerful way to
model data that has correlations over an ordered index.

The section that follows will describe the Kalman filter (Kalman 1960), a state-
space model of which the above models are special cases. This will end with the
Intermittent Kalman filter (Sinopoli et al. 2004) and will include a description of
stability and observability and controllability.

To bring these models into the state-of-the art they will be represented in other
form called a Gaussian process. It will be shown that autoregressive Gaussian
processes are a natural extension of the above models.

Also of importance is the choice of model parameter Ft in the Kalman filter. In the
static time-series approach there are several ways of estimating this parameter
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but in the streaming modelling setting a judicious choice of parameter, for at
least some duration, reduces the complexity of the streaming model. Särkkä and
Solin (2019) provide several alternatives for choosing F and also show how the
Kalman filter is form of autoregressive Gaussian process. References to current
papers on choosing relevant kernels and multi-output processes will be provided.
A contribution of this paper is perform the filtering (and smoothing) solution to
these types of models in real-time.

2.2.2 Filtering and Dynamic Modelling

The aim of filtering is to make inference about “the state of nature” based on
some observations yt = y1, . . . , yt; yt ∈ Rn (Meinhold and N. D. Singpurwalla
1983). Let the ”state of nature” be represented by a latent process {Z}t

i=0 =
Zt = Z1, . . . , Zt; zt ∈ Rm, a collection of random variables indexed by a set t that
increases in regular steps (is a discrete ordered set Z+). In the classical filtering
setting the process that generates the observations (the observation equation)

yt = Hzt + vt; vt ∼ N(0, V ) (2.26)

is a linear function of the state of nature which is disturbed by some Gaussian
error or noise process vt with E [ vt ] = 0 and Var [ vt ] = V ∈ Rn×n so that
Yt ∼ N(Hzt, V ). H ∈ Rn×m is called the observation matrix and relates the
state process to the observation process. The unobserved or latent process that
underlies the observed process is also described by a linear equation (the state
equation)

zt = Fzt−1 + wt; wt ∼ N(0,W ) (2.27)

that has Gaussian driving process wt with E [wt ] = 0 and Var [wt ] = W ∈ Rm×m

so that Zt ∼ N(Fzt−1,W ). The driving process wt is assumed to be independent
of the noise process and to have independent increments (ws ⊥ wt; ∀s ∈ t, s < t).
F ∈ Rm×m is called either the state matrix or the transition matrix and relates
the current state of nature to the previous state.

Meinhold and N. D. Singpurwalla (1983) proceed to relate the recursive estimation
process of the Kalman filter (Kalman 1960) to the Bayesian modelling formalism

p (Zt | yt ) ∝ p (Zt | yt−1 ) p ( yt | Zt, yt−1 ) (2.28)

so that the distribution of the state of nature at time t is the posterior distribution
of the state process proportional to the likelihood of the data seen up to time t and

20



the prior distribution of the current state of nature given the observations prior
to index t. A key assumption here is the Markov assumption: all information
necessary to transition to random state Zt is contained in the previous “known”
state zt−1. However, zt−1 is never actually observed in the filtering case so its
state of nature is described by distribution p (Zt−1 | yt−1 ) ∼ N(µ̂t−1|t−1,Σt−1|t−1),
which is the posterior of the previous state of nature. To get from p (Zt−1 | yt−1 )
to p (Zt | yt−1 ) it is necessary to make a prediction for Zt which, using the state
model equation and standard theory about the Gaussian distribution, has the
form:

p (Zt | yt−1 ) ∼ N(µ̂t|t−1 = Fµ̂t−1|t−1, Σt|t−1 = FΣt−1|t−1F
T +W ). (2.29)

To get to the distribution for the current state it is necessary to update the
estimate of the predicted level of the state µ̂t|t−1 to an estimate of the current
level µ̂t|t and this requires assessing the likelihood of the current level based on
new data yt that has been acquired.

As well as predicting Zt it is not unreasonable that one might want to predict
Yt before the new data has arrived. Based on the model in Equation (2.26) a
prediction for ŷt is HF ˆµt−1|t−1 but this too has some random error, call this
εt = H(Zt − F ˆµt−1|t−1), a function of Zt which, because the εt are assumed
independent, has distribution

εt ∼ N(H(Zt − F ˆµt−1|t−1), V ). (2.30)

Meinhold and N. D. Singpurwalla (1983) provided this reasoning to show that to
reach the the posterior distribution of the state of nature

p (Zt | yt, yt−1 ) = p (Zt | yt−1 ) p ( εt | Zt, yt−1 )∫
∀Zt

p ( εt | Zt, yt−1 ) p (Zt | yt−1 ) dZt

(2.31)

one must consider the likelihood of the error at the current index over the accu-
mulation of the errors or residuals from t = 0, the index of initial guess for the
state of nature which has distribution Z0 ∼ N(µ0,Σ0).

A more direct way to obtain the update of the level parameter µ̂t|t and its vari-
ance, Σt|t, is by considering the joint distribution of the error and the state, both
of which have a Gaussian distribution. Notice that in Equation (2.31) the like-
lihood term, is a conditional function of the random state. Meinhold and N. D.
Singpurwalla (1983) show that the likelihood term independent of the state vari-
able can be obtained by exploiting the correspondence that results from the well
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known property of the Gaussian distribution which is that if two independent
conditional distributions are Gaussian the joint distribution of these conditionals
is Gaussian2. The first conditional Gaussian is the density in Equation (2.29) and
the second comes from the likelihood because, as mentioned previously, the errors
are considered independent at each index t so that the conditional distribution
of εt independent from Zt is N(0, V +HΣt|t−1H

T ) hence

p
([
Zt

εt

] ∣∣∣∣∣ yt−1

)
∼ N

([
µt|t−1

0

]
,

[
Σt|t−1

HΣt|t−1

Σt|t−1H
T

V +HΣt|t−1HT

])
(2.32)

is the joint distribution of the prediction and the likelihood. This joint distribu-
tion provides the posterior, which is conditional on both the likelihood and the
prior, as

p (Zt | εt, yt−1 ) ∼ N
(
µ̂t|t−1 + Σt|t−1H

TS−1εt,Σt|t−1 − Σt|t−1H
TS−1HΣt|t−1

)
(2.33)

where

S =
(
V +HΣt|t−1H

T
)

(2.34)

and

K = Σt|t−1H
TS−1 is the Kalman Gain. (2.35)

Therefore the equations to update the estimate of level and its variance are:

µ̂t|t = µ̂t|t−1 + Σt|t−1H
TS−1εt (2.36)

Σt|t−1 = Σt|t−1 − Σt|t−1H
TS−1HΣt|t−1 (2.37)

Meinhold and N. D. Singpurwalla (1983) proceed to point out that the Kalman
gain (Equation (2.35)) is equivalent to β of Equation (2.1) if one were to consider
Zt as the dependent variable and εt as the dependent variable: “Thus Kalman
filtering can also be viewed as the evolution of a series of regression functions of
[Zt] on εt, at times 0, 1, . . . , t− 1, t...; the evolution stems from a learning process
involving all the data”(Meinhold and N. D. Singpurwalla 1983, p. 126).

In the original paper by Kalman (1960) the eqs. (2.36) and (2.37) were proposed
as solutions to Wiener problem (Kalman 1960, p. 40) and this was achieved by

2The converse is not true. Two jointly distributed random variables need not have inde-
pendent Gaussian distributions. This would only be the case if the covariance terms were
zero.
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solving the observation and state equations as an convex optimization problem
for a discrete linear dynamic system. Indeed, Kalman (1960) shows that because
linear regression produces an orthogonal projection of the observation into the
covariate space, the estimate of this level is the optimal minimiser of the squared
error loss function L(µt) = E

[
(Zt − µt)(Zt − µt)T

]
= Σt. Kalman and Bucy

(1961) update the original paper for continuous indices and provide a “nonlin-
ear differential equation of the Riccati type” (Kalman and Bucy 1961) for the
covariance of the state estimate. This implies that there are asymptotic results
that can be applied to Kalman filtering which is one of its huge advantages: for a
linear dynamic system of the type described by Equations (2.26) and (2.27) not
only is µ̂t|t the optimal estimator of the level of the system but the total variation
of system up to small perturbations can be completely determined.

In Humpherys et al. (2012) the Kalman update equations are derived via New-
ton’s method for root finding emphasising the relationship between differential
equations and the Kalman filter. This paper also shows a linear system in its full
from t = 0 to t and from this form it is easy to see the relationship between the
Kalman filter and the time series models of Section 2.2.1.2. Indeed, in G. E. P.
Box et al. (2008) and Shumway and Stoffer (2017) the state estimation forms a
part of time series analysis and the Kalman filter features prominently in these.

The Kalman filter is ubiquitous as a technique in state estimation and has inspired
many approaches to solving sequential problems beyond that of linear dynamical
systems. The extended Kalman filter considers a first order Taylor approximation
to a nonlinear function rather than a linear function for either or both the state
or observation equations but for most part retains the Gaussian assumption. The
origins of the extended Kalman filter are not clear but it is mentioned as having
originated from the Kalman filter via Battin (1964). The unscented Kalman filter
(Wan and Van Der Merwe 2000) improves upon the extended Kalman filter by
creating a (small) set of sample points around the point of interest with aim of
locally approximating the function of the state variable rather than using the
linearization of the function as the extended Kalman filter does. These sample
points are called sigma points and these points are propagated at each prediction
by some transition function of the state variable. A weighted sum of the sigma
points provides the prediction estimate and similarly the prediction covariance.
For the update step a new set of sigma points and weights is generated and these
are propagated through some observation function. These new points provide an
empirical estimate of the updated state and covariance function.

Not only has Kalman filtering inspired techniques for filtering it has also served as
motivation for statistical techniques beyond that of engineering. Particle filtering
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(Gordon et al. 1993) is arguably the basis behind another technique for sample
based integration called Sequential Monte Carlo (Doucet et al. 2001). More di-
rectly related to the Kalman filter are the methods of Harrison and West (1999)
in which, in its most general form, uses a design matrix as the observation matrix
and the state equation is used to propagate the change in the regression coeffi-
cients over time. Harrison and West (1999) also provides a link between Bayesian
dynamic modelling, classical time series analysis (G. E. P. Box et al. 2008) and
the techniques of Goldstein and Wooff (2007).

Of particular interest is the Intermittent Kalman filter (Sinopoli et al. 2004)
which extends the Kalman filter to jump diffusions. This will be presented in the
subsection that follows.

2.2.2.1 The Intermittent Kalman Filter

Motivated by the lack of reliability across wireless networks the Intermittent
Kalman Filter (Sinopoli et al. 2004) is designed to explore the implications on con-
trol of, for example, an autonomous vehicle when the observations have stochastic
arrival rate due to the stochastic nature of the communication channel. Sinopoli
et al. (2004) uses the discrete linear Kalman filter as a starting point but modi-
fies it to the case where the parameters of the model, in particular the Kalman
gain and covariance matrix of the state estimator, are related to the random na-
ture of the communication channel. Assuming that the observations arrive as a
Bernoulli process with parameter 0 < λ < 1 they study the asymptotic average
of the state covariance matrix and show that, depending on the eigenvalues of
the transition matrix F of Equation (2.27) and the structure of the observation
matrix H of Equation (2.26), there is a critical value λc for the probability of
an update by an observation of the filter below which the state error covariance
matrix is unbounded. If the probability is λc < λ < 1 and provided that the
properties of stabilizability and detectability are met then state error covariance
is always finite.

Define the arrival of an observation to update the Kalman Filter as a binary
random variable γt with probability p ( γt = 1 ) = λt, γs ⊥ γt s ̸= t. Then the
observation noise can be modelled as:

p ( vt | γt ) =

N(0, V ), if γt = 1

N(0, σ2I), if γt = 0.
(2.38)

The approach of Sinopoli et al. (2004) is to create a dummy observation when
there is no observation (hence the variance σ2) and to find the limit as σ → ∞.
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Summarising and redefining the Kalman filter equations from Equations (2.29),
(2.36) and (2.37) they show that for the intermittent Kalman filter the prediction
and update level and variance estimates are:

µ̂t|t−1 = Fµ̂t−1|t−1 (2.39)

Σ̂t|t−1 = F Σ̂t−1|t−1F
T +W (2.40)

µ̂t|t = µ̂t|t−1 + Σ̂t|t−1H
T (HΣ̂t−1|t−1H

T + γtV + (1− γt)σ2I)−1εt

Σ̂t|t−1 = Σ̂t|t−1 − Σ̂t|t−1H
T (HΣ̂t−1|t−1H

T + γtV + (1− γt)σ2I)−1HΣ̂t|t−1

Taking the limit of the second two equations as σ →∞ provides

µ̂t|t = µ̂t|t−1 + γtKtεt (2.41)

Σ̂t|t−1 = Σ̂t|t−1 − γtKtHΣ̂t|t−1 (2.42)

where

Kt = Σ̂t|t−1H
T (HΣ̂t−1|t−1H

T + V )−1 is the Kalman gain as before. (2.43)

Notice that the covariance between the state estimate components is now esti-
mated rather than a known differential equation. This results from the random
observation updates. The prediction equations are unaffected by the random up-
date at each iteration but clearly affected in the future by the recursive nature of
the filter.

Sinopoli et al. (2004) modify the algebraic Riccati equation to contain the random
variable γt and proceed to prove the convergence conditions for this modified
Riccati equation. They show that for some special cases, including the scalar case,
that if H is invertible and the Kalman Gain K = FH−1 then the convergence
condition for Equation (2.42), the minimum probability of an update, λc = 1 −
1/α2 where α = maxi | ui | and ui is an eigenvalue of F .

Mo and Sinopoli (2008) compute the value of λc and show that under certain
conditions on the state and observation matrices, a lower probability of arrival
of the process than stipulated in Sinopoli et al. (2004) is possible. For parame-
ter estimation and adaptive control Kar et al. (2012) explore a random Riccati
equation that would result from random draws of the state estimation matrix F .
They are able show that it is possible to calculate the statistics of a stationary
process in this case.

This section has provided a very brief summary of regression and linked this to
time series analysis, filtering and intermittent filtering. The Kalman filter is far
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more wide reaching than has been displayed here. The approach of both Harrison
and West (1999) and Goldstein and Wooff (2007) are fields in their own right and
this cursory touch on their contribution to the field does not do them justice.
The adaptation of filtering to particle filtering by Gordon et al. (1993) will be
broached again in Section 3.3.2 as it forms the basis for Sequential Monte Carlo
methods currently used for streaming analysis using trees by Taddy et al. (2011)
an alternative approach to the proposed MCMC approach of this thesis.

2.2.2.2 Autoregressive Gaussian processes

Another view on the Kalman filter is as a stochastic differential equation (Särkkä
and Solin 2019). The approach is to consider two stochastic processes, {Yt} and
{Zt} where the former is an observed process and the latter is not, analogous to
the observation and latent state equations above. The statistical objective is to
infer the predictive distributions for the latent and observed processes. In this
form of model it is often the case that the state is not observed but is expected
to follow a physical process. The state transition matrix Ft will typically be of a
known form and the state noise process is seen as a Brownian process that drives
(forces) the state process through a linear function Lzt, L ∈ Rr×m, z ∈ Rm.

Let the state equation be represented as an Itô stochastic differential equation
(Särkkä and Solin 2019, pp. 45, 198):

dz = f(z, t)dt+ L(z, t)dβ (2.44)

and then the observation equation is modelled as (Särkkä and Solin 2019, p. 198):

du = h(z, t) + dη (2.45)

where Yt = du
dt and v = dη

dt .

Equations 2.44 and 2.45 represent a continuous-time state-space model (Särkkä
and Solin 2019, p. 199). However, {Yt} is often sampled at discrete but irregular
time points which leads to the continuous-discrete state-space model. Discretiza-
tion invariance, where the performance of the calculations is independent of the
sampling times and of the calculation time steps, of the Kalman filter is anther
useful attribute of the Kalman Filter.

The reason this is introduced here is that Särkkä and Solin (2019) show the link
between Gaussian processes and differential equations which leads to autoregres-
sive Gaussian processes.
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2.2.2.3 Hidden Markov Models

Before finishing off this section hidden Markov models (HMMs) (Baum and Petrie
1966) will be briefly described. HMMs are another field that extends well beyond
the aspects mentioned here but it is introduced because it is a generalization of
both filter modelling and tree modelling and hence unites these two approaches
via graphical models (Jordan 1997). The focus here will be on the showing that
the Kalman filter and intermittent Kalman filter are HMMs. The link between
trees and HMMs forms a part of the main body of the thesis but in Section 2.4
the link between HMMs and mixture/basis function modelling, of which trees are
an example, is provided.

If Zt = {Z1, . . . , Zt} is a Markov process and for each Yt in Y t = {Y1, . . . , Yy},
Yt is assumed independent of Yt−1 | Zt then Y t is called a hidden Markov model
or HMM. The term hidden arises because only the process Y t is observed and
the process Zt is considered to be the true underlying process that drives the
observations. Consider the Equations (2.26) and (2.27) and one can immediately
see that the state equation is the driving equation for the hidden Markov model
that is the observation process.

The next section will consider tree modelling in the statistical setting.

2.3 Trees

Binary trees used in statistical analysis are “a child of the computer age”(Breiman
et al. 1984): a method used to for applied problem solving due to their descriptive
capabilities. A more formal description of the binary tree model used in this
document, also called a full binary tree, is that it is a directed acyclic graph
where each node has exactly two children. It is a rooted graph that has either a
single node, the root, or each node is itself a full binary tree. Thus a full binary
tree is recursive structure made up of weak learners: a single node that provides
a boolean choice and two terminal nodes.

The tree model used here is not a graphical model in the sense of Maathuis et al.
(2018) because the nodes do not represent random variables. The model used
in this document is a statistical model in at least two senses: it summarises
the population by providing a set of subsets of summaries of the sample data
and the tree model is itself a sample of a population of possible tree models.
All tree models from ID3 (J. R. Quinlan 1986), CART (Breiman et al. 1984),
random forests (Breiman 2001) and boosting (which uses weak learners) (Robert
E. Schapire 1990) and before achieve the first sense of a tree model as a statistical
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object, that is as an method for summarising data. Both the first and second
sense are achieved by the Bayesian approach to tree modelling as presented by
Chipman et al. (1998), Taddy et al. (2011), Chipman et al. (2010) and their
derivatives. The modelling approach used in this document uses these latter
Bayesian approaches as a jumping off point.

The subsection that follows will briefly present tree models as graphs with the
intention of introducing some notation that will be used in subsequent sections.
A summary of the notation can be found in Section 0.1. The next section will
present the Bayesian approach to tree modelling and introduce the basic ideas of
their approaches which are foundation of this approach. A brief summary of the
state-of-the-art in Bayesian tree modelling will also be provided.

While ensembles of trees form a part of tree modelling in general descriptions of
these models will postponed to Section 2.4 because this fits in with the develop-
ment of the composite model: filter → tree → ensemble of trees.

2.3.1 Trees and Graphs

A graph, G = (V,E), is a pair of two sets where V is a set of vertices, {vk : k →
N}, and E is a set of pairs {ek,l = (vk, vl) : (vk, vl) → V × V }. If the pairs ek,l

are ordered for all k, l then the graph is a directed graph (DG) otherwise it is an
undirected graph (UG).

S = G = (V,E) is a full binary tree. Define a root tree as a single root node
(vertex) vR = RT with exactly two child nodes (vertices) Cl(v), Cr(v) also called
terminal nodes. A full binary tree is a recursive construction of root trees where
every subtree is itself a root tree. Every v ∈ V has a parent node P(v) and a
sibling node Sib(v). LS and IS are a subsets of V such that LS ∩ IS = ∅ and
these form a partition of S.

If SR is the root of a full binary tree then

A(v) = {P(v), P(P(v)), . . . , P(P(. . . (P(v)))), SR}

is the set of parents of parents of v until the root node is reached, called the
ancestors of v. PA(v) is the path of nodes described by the vertices and edges
that link the members of A(v). Each v is associated with a neighbourhood N(v) =
{P(v), Sib(v), Cl(v), Cr(v)}.

A statistical tree model TR begins with a root tree SR that is mapped to a
sample space, defined by the sample data set D = (yi, xi,j), i, 1 . . . N, j, . . . p, in
the following way. v ∈ IS is assigned a rule which is a covariate label xj ∈ X
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and a value, cj from the known multiset xj, called a threshold, such that D is
partitioned by the pair, ruleη = (xj, cj)η, η ∈ IT into D = (Dl, Dr) each called
parts or leaves of the partition. IT is the set of internal vertices IS with an
associated rule for each v ∈ IS. The total number of possible rules for a root tree
model is p×N , where N is the number of i in D. v ∈ LS, on the other hand, is
assigned some function, called a leaf model, g(·), that has as its domain the part
of X , Dl or Dr, formed by the rule at ηR. The codomain of g(·) is the range of
values of g(yi | ruleη) that are assigned to each of the parts. LT is the set of leaf
models and these are indexed by b.

By, “to partition” it is meant that, based on some ruleη, D is divided into two
multisets, call them Dl and Dr such that Dl ∩ Dr = ∅ conditional on the basis
coordinate (covariate) xj. “A partition” is a set of parts, a collection of multisets,
where each part is called a leaf. A leaf consists only of the data assigned to it by
the tree model. For example when creating a root tree model with a single node,
irrespective of the size of p, the model at each b is y = h(xj), j ∈ 1, . . . , p, b ∈
{1, 2}.

In a similar way to a full binary tree S, a tree model T is a recursive model built
up over the sample data by choosing a particular leaf node b ∈ LT changing it
to an internal node by removing the model g(·, b), assigning a rule from IT , to
the new internal node and then assigning two models to the two new leaves. The
analogues of the binary tree notation for the tree model are as follows:

◦ The elements of IT , called the internal nodes of the tree model T , have
discrete index η. |IT | is the number of internal nodes in tree T and |IT | = IT .

◦ The elements of LT , have discrete index b. KT is the size of the partition
(number of elements) so that |LT | = KT .

◦ TR is the root of the tree model,

◦ P(η) is the parent of an internal node and P(b) is the parent of a leaf node.

◦ A(b) are all the ancestor nodes of the leaf b so that PA(b) is the path from
the root of the tree to the leaf node b and similarly for PA(η) and A(η)

◦ Each η ∈ IT is associated with a neighbourhood N(η) = {P(η), Sib(η), Cl(η), Cr(η)}.

A full binary tree (hence a tree model) has the following properties:

◦ Let dv = ⌈log2(v)⌉ indicate the depth of a node in G where dSR = 0. Then,
for any full tree:

◦ KT ∈ {2dv + 1, . . . 2dv+1 − 1} so that min(KT ) = 2dv + 1, max(KT ) =
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2dv+1 − 1;

◦ IT = KT − 1 so that, in total, a full binary tree has 2KT − 1 nodes.

◦ The size of a tree model, |T | is measured by the number of leaf nodes
so that KT = |LT | = |T |.

◦ If the size of |D| = N then Nb is the number of data points that would be
located in the subset of the data Db assigned to leaf node b by the model
T . Similarly, Nl is the number of nodes in the left subtree of some internal
node and Nr the number of nodes in the right subtree.

The tree models that will be the focus of this paper are regression trees hence
every observation yi ∈ Rn. For sake of simple computation, each covariate space
xj ∈ X , also called a coordinate basis, will be assumed to be continuous in (0, 1).
It should also be noted that, in general, a tree with with more than one spit at a
node can be represented as a (larger) binary tree.

The section section will focus on tree models in the statistical setting. Every
tree model can be described by the recursive form given above what makes them
different is are ways that the rules are chosen, the method by which one chooses
a particular model or set of models and the model assigned to each of the leaves
of the tree.

2.3.2 Trees in Statistics

Tree modelling provides flexibility, nonlinearity, multiple dependent models, in-
terpretability (if desired) in regression modelling (Denison, C. C. Holmes, et al.
2002). All tree models, referred to as trees, have the recursive structure in com-
mon with difference being in how rules are assigned and which leaf models are
chosen. Another fact that binds all tree models is that they are strongly con-
ditional on the data set. That is, it is possible to design a tree that perfectly
describes each observation yi ∈ D. However, this tree is practically useless from
a statistical point of view as it does not generalise to a population. Each model,
in the case where Nb = 1 has zero degrees of freedom so that a mean would not
make sense, let alone a variance. Thus different approaches to tree modelling
are defined, firstly, by (arbitrarily) choosing a minimum number of data points
to be allocated to a leaf model. This is called a stopping rule. Secondly, to
choose a method of removing leaf models so that the tree model is more general.
This is called tree pruning. Finally, a method of choosing between tree models
is necessary because no tree model is unique, even tree models that completely
partition a data set might have more than one representation. Thus what defines
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the tree modelling approach is about how one chooses rules, models and then
chooses between models or sets of tree models.

2.3.2.1 Classical tree models

The Iterative Dichotomiser 3 (ID3) (J. R. Quinlan 1986), originally designed
to solve classification problems, provides an iterative approach using a random
window function over the training data set. Choosing appropriate thresholds is
based on a combination of an information theoretic approach performing a ξ2 test
on the hypothesis that the attribute is independent of the class of objects being
classified. C4.5 (J. Quinlan 1993) is an upgrade to the ID3 approach considers
systems of learners.

The approach of Breiman (1969), again originally aimed at classification, is to
choose covariates via “goodness of split“ criterion based on an impurity measure.
Initially, the tree was stopped from growing if maximum change in impurity was
less than some threshold value for all possible splitting values in the data set. This
was shown to be unsatisfactory because, ultimately, the more the tree was split,
the better the responses were classified because the re-substitution estimate, the
sum of the costs of misclassifying a response, always improves as the tree splits
in Breiman (1969, p. 29). Changing the stopping rule did not help but growing a
tree to its fullest capacity (every data point allocated to a single node or are “too
small” (Breiman 1969, p. 58)) and then retroactively pruning and comparing trees
via cross-validation using the misclassification rate of the tree proved to provide
trees that better generalized to test samples.

A difference between this approach that of J. R. Quinlan (1986) is that Bayes’
Rule is used to determine the misclassification rate at each node. This lead to
the definition of the Bayes’ rule for trees as the tree model, and its associated
partition, that minimises the expected loss at each tree node so that the best tree
is the one that minimises the sum of expected loss of each node (Breiman 1969,
pp. 262–267). In the regression case the Bayes’ rule is the mean at each leaf of
the partition and risk minimizing value is the variance of the mean at each leaf.
Thus the best tree over the dataset is the one where the mean value chosen by the
predictors at each leaf minimises sum of the variances of the leaf nodes. Breiman
(1969, pp. 317–321) provides some consistency results over empirical distributions
for tree models. Suppose that the data set is large enough, that both the data and
partition sets are considered random variables, the variance of the observations
are finite and, importantly, that the set of partitions are linearly independent
subsets of Euclidean m-dimensional space. Then in the limit the over large N ,
the probability that the set of predictive models DN(x) will have error greater

31



than ϵ is zero. Further, the sequence of tree models (predictor functions d(x)),
{dN} will be risk consistent is the sense that the risk of the predictors will equal
the risk of the optimal predictor defined by the Bayes’ rule for the predictor.

Multivariate Additive Regression Splines (MARS) (J. H. Friedman 1991), are de-
veloped as method to overcome some of the issues of regression in tree models,
specifically the discontinuity at the leaf boundaries, by using adaptive regression
splines. This model uses a weighted sum of basis functions to approximate a step-
wise regression selection of local models. Each local model is a positive piecewise
function hm(x) and for a given hm(x), the weights or coefficients of the model
are chosen by standard linear regression (Hastie, Tibshirani, and J. Friedman
2001). As this model typically over-fits it is pruned according to a generalized
cross validation criterion (Hastie, Tibshirani, and J. Friedman 2001, p. 325).

2.3.2.2 Bayesian tree models

There are Bayesian versions of some of the models presented in the previous
section, namely Bayesian MARS (BMARS)(Denison, Mallick, et al. 1998b), A
Bayesian CART Algorithm (Denison, Mallick, et al. 1998a) (BCART) and of par-
ticular interest as already mentioned, Bayesian CART Model Search (BCARTMS)
(Chipman et al. 1998).

The BMARS model adapts the MARS model by placing a prior over a param-
eter vector θk where k is the number of basis functions and θ is the parameter
vector for the components of the MARS model, namely, the knots t, the pre-
dictor T , the basis coefficient functions a, the sign of the basis function s and
the variance of the model σ2. The joint probability model is p

(
k, θk, y

)
=

p ( k ) p
(
θk | k

)
p
(
y | k, θk

)
and the aim is to find the target posterior dis-

tribution p
(
k, θk

)
= p ( k | y ) p

(
θk | k, y

)
. The number of basis functions is

changing the dimension of the models so search via MCMC requires the use of a
reversible jump algorithm (Green 1995) . There are 3 possible model changes at
each sample of the MARS model, C changes ti, the knot position for the ith basis
function, B is the birth of a knew basis function and D is the death of an existing
basis function. Each has associated with it a transition probability so that the
acceptance ratio of the MCMC approach includes the proposal odds of the new
model parameters.

The approach to BCART (Denison, Mallick, et al. 1998a) is very similar to that
of the BMARS model. Here the prior probability is Poisson(λ), k > 0, over the
number of terminal nodes k. The probability model and posterior have exactly
the same form as the BMARS model but now θk = (sk

i , s
var,k
i , srule,k

i ) is over sk
i ,
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the number of internal nodes, svar,k
i , the number of predictors and srule,k

i ) the
number of threshold values in the kth model. In the regression case the model at
each leaf is Gaussian, N(αk, σ

2
k) and as the leaves are independent the likelihood

is the product of these models where the the number of data points at each of
the k leaves is a minimum of 5 and a maximum defined by the tree model and
the data set.

Chipman et al. (1998) describe the approach of Breiman et al. (1984) as a “sophis-
ticated procedure for finding good models rather than a fully Bayesian analysis,”.
Their approach is not too dissimilar to the approach of Denison, Mallick, et al.
(1998a) in the sense that objective of the model search is to find the target pos-
terior distribution of the tree model p (T | Y,X ) via an MCMC search. To find
a prior for the tree model Chipman et al. (1998) propose sampling from a tree
prior process rather than sampling over the conditional distributions of the num-
ber of internal nodes, predictors and thresholds. The likelihood for this model
is defined over the independent leaf models where each leaf has some function
fb(Y | θ) which is the same approach to leaf modelling as Breiman et al. 1984.
The prior for each leaf model depends on the form of fb(Y | θ) but in the re-
gression case either the mean is considered the random parameter at each leaf
and the variance is assumed known or both are assumed random. The prior is
then chosen to be conjugate to the Gaussian likelihood so that the tree can be
marginalised over to form the tree likelihood. The posterior for the tree model is
then p (T | X, Y ). Of particular interest is the generation of the prior and the
model search method used by Chipman et al. (1998) and these will be further
detailed.

The prior is implicitly defined via “tree generating stochastic process”(Chipman
et al. 1998, p. 937) as follows: Tree size decreases as function of β and dη, the

Algorithm 2.1: CGM Prior Algorithm
Result: A binary tree structure including covariate values and threshold

values.
1 Set T to be the root node
2 while psplit and splitting rules available do
3 Calculate: psplit = α(1 + dη)−β

4 if psplit then
5 Uniformly draw xj from the available covariates
6 Uniformly draw cj from the available threshold values
7 Create two child nodes;
8 end
9 end

depth at node η. Note that only splits that are available in data set and are
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allowable, based on the ancestral tree structure of the new split node, are to
choose a new rule. Further, this model assumes that “every dataset is necessarily
finite”(Chipman et al. 1998, p. 939) which is true in a very general sense but the
finiteness of the dataset may mean that the multiset of data is extremely large
or that the dataset will be finite at some point but not necessarily is finite now
when the analysis is necessary or desired. There is also, in this model, a minimum
number of data points that must be allocated to each leaf node. This can only
be checked against a known number of data points.

The tree prior is a sampling process of tree models developed by Chipman et al.
(1998), the algorithm for which is provided in Algorithm 2.1. This algorithm can
be reformulated as

p (T ) =
∏

η∈IT

p ( SP LIT ) p ( RULE )
∏

b∈KT

(1− p ( SP LIT )) (2.46)

where

p ( SP LIT ) = α(1 + δη)−β

p ( RULE ) = p (xj ) p ( cj | xj ) (2.47)

and

p (xj ) = U(ALLOW ABLE xj) (2.48)

with

p ( cj | xj ) = U(ALLOW ABLE cj | ALLOW ABLE xj) (2.49)

In the above equations xj ∈ X , j = 1, . . . , p is one of the specified covariates.
In the BCARTMS model cj ∈ (min(xj),max(xj)) is defined by the minimum
and maximum of the covariates available in the data set and hence is a dis-
crete distribution and invariant over the dataset unlike the model by BCART
where (min(xj),max(xj)) is defined by a grid of possible values. The term
ALLOW ABLE refers to the additional qualifications that are imposed on the model.
In BCARTMS these rules are:

1. xj must have an available value at the chosen η. For example, if xj is binary
and it is already used in any PA(η) then xj is not allowable at η ;

2. if the pair (xj, cj) force the tree to have an empty node then the pair is not
allowable at η. (although some other cj with the xj might be allowable, if
such a cj exists in the dataset.);
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3. if the choice of a pair (xj, cj) means that there are less than 5 data points
(yi, xi) in some terminal node b then the pair is not allowable.

The term ALLOW ABLE is explained in Section 3.3.2.2 and refers to a configuration
of nodes in some graph G that the chain is allowed to transition to when sampling
the Markov Chain.

In her masters thesis, Jolicoeur-Martineau (2016)3, mentions the dependency of
the prior, not only on the data set but also on the size of the data set. This is a
possible concern in the streaming setting, because over time the influence of the
prior sampling process on the choice of model may wane.

Other authors such as Wu et al. (2007) and Pratola (2016) have suggested alterna-
tive ways of modifying the tree because, for example, the swap has been found to
be ineffective (Pratola 2016). Further reasons include to guarding against model
degeneracy, poor chain mixing and long sampling times.

The posterior of tree takes the form:

p (T | X, Y ) ∝ p (Y | X,T ) p (T ) (2.50)

where the constant of proportionality cannot be calculated directly because of
the size and complexity of the tree model space. However, using a version of
the Metropolis-Hastings algorithm, the tree model space can be sampled for a
discrete set of models. A sequence of tree models, designed to form a Markov
Chain of trees, T 0, T 1, . . . is generated by Algorithm 2.2. The grow move is to
randomly select and split a uniformly chosen leaf using the rules in Algorithm 2.1.
The prune alternative randomly selects an internal node and subsumes the child
partitions although this only works for internal nodes that have at least two
children that are leaves. The change step reassigns a splitting rule according
to Algorithm 2.1 but note that it only chooses covariates from those that are
available based on the data set. The swap rule swaps the splitting rules of internal
parent-child pairs.

The term ALLOW ABLE will be fully explained in Section 3.3.2 but for now it means
that before a change to the tree model can be evaluated, the proposed tree must
be able to accept at least 5 data points at each of the new child nodes. This means
that the choice of rule, if the move is a grow move, is dependent on the data set
and on the ancestral path PA(b∗) between the root and b∗ the node chosen to
be changed. If the move is a swap or change move, the change in the internal

3This is in French and the English interpretation comes from the brief notes on her blog
mentioned along with the reference.

35



Algorithm 2.2: Chipman et al. 1998 Stochastic Search,
Input: Initialse a root tree, T 0 with a single root node

1 while p (T | X, Y ) not stationary do
2 Change T ∗ from the existing tree using one of the grow, prune, swap or

change moves outlined below
3 if The move is allowable then
4 continue
5 else
6 Delete proposed tree and propose another move
7 Pass the data through the tree and calculate the leaf and tree marginal

likelihoods
8 Calculate p (T ∗ ) and p (T i )
9 Find the transition kernels q(T i, T ∗), q(T ∗, T i)

10 Calculate:

α(T i, T ∗) = min

{
1 , q(T

∗, T i)
q(T i, T ∗)

p(Y | X,T ∗)p(T ∗)
p(Y | X,T i)p(T i)

}
(2.51)

11 if α(T i, T ∗) < U(0, 1) then
12 T i+1 = T ∗

13 else
14 T i+1 = T i

structure of the tree must be such that every leaf in the new subtrees of η∗, the
internal node to be changed, must be able to accept 5 data points. A prune move
is nearly always approved because this is the sum of data points in two leaves
which is greater than 5 by design but can only be applied if both children of η∗

are terminal nodes.

Thus the search for better tree models is local to the existing model, always has
increasing posterior probability when accepted and is conditional on the finite set
of data. CGM caution against the temptation to select as single tree as the ‘best’
by choosing a tree with the highest probability.

The term “while p (T | X, Y ) not stationary” in Algorithm 2.2 is intentionally
vague because the number of iterations necessary to achieve the required station-
ary distribution is unknown. Further, as Chipman et al. (1998, p. 914) point out,
the tree models converge quickly to a local mode so that there are long waiting
times (run times) between steps between modes of the posterior. To deal with
this problem the chain is repeatedly restarted at a single node tree and then it
rapidly converges again around a local model.
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Alternative search methods have been proposed by Wu et al. (2007) because it has
been found that the local nature of the moves required several restarts (Chipman
et al. 1998) and because the convergence of the search process was slow. Pratola
(2016) has also developed additional evolution steps based on the same reasoning.

2.4 Ensemble Modelling

A single tree model is limited in its usefulness because of the strong dependency
between the covariate at the root node and the covariates at the nodes in the
left and child subtrees (Denison, C. C. Holmes, et al. 2002). The consequence
of this dependency being that every leaf model has its likelihood dominated by
one covariate and a single threshold value. The interactions from other covariates
at nodes in the subtrees can only describe partial effects on a single main effect
at the root. Having very large trees could, perhaps, provide greater specificity
for the analysis by supporting many possible models but the costs of this are
the increase in complexity of the tree model, the difficulty in model parameter
specification and, the more partitions there are the larger the number of data
points that are required.

A collection of models provides a better approach for estimation and prediction
by combining the efforts of simpler models (Hastie, Tibshirani, and J. Friedman
2001). Due to the problems described above for single tree models there are many
examples of ensembles of trees and basis functions. These include J. H. Friedman
(2001), Breiman (2001), Freund and Robert E Schapire (1997), Chipman et al.
(2010), Taddy et al. (2011), among many others that form a collection of models
to either average over, add together or vote for. There is even a form of the
Kalman filter called the Evensen and Leeuwen (2000) that uses a collection of
state vectors to approximate nonlinear, non-Gaussian dynamic functions.

Of particular interest in this paper are the approaches of Chipman et al. (2010),
Taddy et al. (2011) and another form of combining models called finite mixture
modelling (A. Gelman et al. 2013; W. Gilks et al. 1995) which is a sum of model
components typically weighted by the probability of that component.

2.4.1 Particle, Additive and Mixture Models

Briefly mentioned in Section 2.2.2 was the paper by Gordon et al. (1993) which
presents the bootstrap filter, a method of filtering that creates random samples
of the density of interest and propagates these samples using a filter and an
importance weight of each of the particles (samples). This approach has given
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rise to the Sequential Monte Carlo (SMC) method which will be described more
fully in Section 3.3.2. Taddy et al. (2011) uses the SMC method where each of
particles are trees thereby, in a sense, creating an ensemble of trees that cover a
range of possible models for each instance of the data.

Breiman et al. (1984) developed the CART model (Section 2.3.2.1) and then pro-
ceeded to develop random forests (Breiman 2001) which has been very successful
in the machine learning field. In a similar way, Chipman et al. (1998) devel-
oped the Bayesian approach to random tree generation and then developed the
BART model (Chipman et al. 2010) which, like “Boosting” (Freund and Robert E
Schapire 1997), is an ensemble of weak learners that approximates a function by
summing over many models each with a small contribution to overall model fit.
BART uses an MCMC method called Bayesian Backfitting (Hastie and Tibshirani
2000) which is a form of Gibbs sampling.

Mixture modelling is a parametric technique for approximating a “true” density
by summing over a weighted set of standard densities (W. Gilks et al. 1995,
p. 241). These densities or components form a functional basis for the approxi-
mate model and the weights of the components are typically probabilities. The
components of the mixture model do not necessarily have any particular meaning
and are used to provide support to different parts of the target density. While
the main objective is often to improve estimation and prediction in some cases
model component inference can provide insight into the problem.

Let f(x|θ) be a density, for the sake of argument, from the exponential family of
models. Let g(x) the “true” density that is the target of the model and ĝ(x) be
an approximation to that density. Then the mixture model is

g(x) ≈ ĝ(x) =
k∑

i=1
πif(x | θ) (2.52)

where ∑k
i=1 πi = 1 and k is large enough (but finite) so that each component does

not carry too much weight. The goal in the Bayesian setting is to estimate the
posterior distribution which is proportional to prior distribution of the component
weightings πi, the model parameters θi and the likelihood of these parameters
given the density f and the data x:

p ( π1, . . . , πk, θ1, . . . , θk | x1, . . . , xn ) ∝

p ( π1, . . . , πk )
k∏

i=1
p ( θi | ψi, λi )

n∏
j=1

(
k∑

i=1
πif(xj | θi)

)
(2.53)

where ψi and λi are constants that occur in the exponential family of models.
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The issue with this approach is that there are kn terms that require evaluation
which even modern computational hardware would be difficult to achieve for any
data set of small to moderate size. Thus a typical approach is to implement a
Gibbs sampler that exploits a hierarchical modelling structure that augments the
data set by adding a vector of missing data, integers z = (z1, . . . , zn), that assign
to each xi the component in 1 : k that xi belongs to. The reason for doing this is
that, supposing z were known, it would be easy to assign each f(·) to a particular
subset of components so that the likelihood and posterior are now

p (x1, . . . , xk, | z1, . . . , zn ) =
∏

j:zj=1
f(xj | θ1) . . .

∏
j:zj=k

f(xj | θk)

and the posterior is

p (π1, . . . , πk, θ1, . . . , θk | x1, . . . , xn ) ∝ πα1+n1−1
1 . . . παk+nk−1

1

p ( θ1 | ψ1 + n1x̄1, λ1 + n1 ) . . . p ( θk | ψk + nkx̄k, λk + nk )

where αi arises from the assumption of a Dirichlet prior over the model com-
ponents, ni = ∑

j=1 I(zj = 1) and nix̄i = ∑
j:zj=i xj. This is now a product of

k terms and much more manageable. In W. Gilks et al. (1995), Chapter 24 C.
Robert provides a general Gibbs sampling algorithm and also some examples of
binomial mixture and a normal mixture.

Also raised are interesting theoretical consequences of introducing the missing
data structure to the mixed model. Sampling from the missing data structure
and then the model parameters π, θ produces two Markov chains. Since the
missing data structure is finite it has a finite state space and hence this allows the
properties of the finite Markov chains such as geometric convergence, ϕ−mixing
and a central limit theorem to be applied from the missing data chain to the
parameter chain. These issues are not discussed in this document beyond being
mentioned here and where they might be applied to the proposed model but W.
Gilks et al. (1995) provide references and an introduction to these concepts.

An extension of the mixture modelling approach is for hidden Markov models
(HMM). As mentioned in Section 2.2.2 the Kalman filter is a form of HMM
where the random distributions Yt of the observation process Y t are assumed
independent of each other but dependent on the latent process Zt. Each Zi is
dependent on only Zi−1 by the Markov assumption thus from the mixture point
of view the observations xi have density f(x | θzi

) and belong to the hidden state
Zi with probability πz−1,i, which depends on the previous state Zi−1. To get the
mixture distribution one must marginalise out the latent data and, according to
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C. Robert (W. Gilks et al. 1995), the convergence properties of the Gibbs sampler
still hold.

Next is presented two examples of ensemble tree modelling. The first is BART
(Chipman et al. 2010). This is an example of an additive model in the Bayesian
setting which uses Markov chain Monte Carlo. Alongside, Taddy et al. (2011)
which is an example of a particle model that uses trees, BART is used as a
comparative model in subsequent chapters. The Taddy et al. (2011) model has
been adapted to the streaming setting (Anagnostopoulos and Gramacy 2013)
whereas BART has not but it uses the Sequential Monte Carlo method rather
than MCMC.

2.4.1.1 BART

Bayesian additive regression trees (BART) (Chipman et al. 2010) is a sum-of-
trees model where each T is a BCARTMS model of Section 2.3.2.2. This model
is described by

Y =
 r∑

j=1
g(x;Tj,Mj)

+ ϵ, ϵ ∼ N (0, σ2) (2.54)

where Mj = {µ1j, . . . , µKT ,j} is the set of parameter values associated with each
Tj. The function g(·) assigns to each new xi an element of M determined by
the splitting rules that form part of the parameter vector µk. The expectation of
the response yi given the new data xi, E[yi|xi], is the sum of all the assignments
of xi to µkj by g(·). Note that each observation is assumed to have an additive
Gaussian error that is independent of g(·).

The aim of the prior in BART is to regularise the trees so that one tree does not
dominate the prediction. The prior formulation for each tree is exactly that of
Section 2.3.2.2 with the additional assumption of independence of the r trees:

p ( (T1,M1), . . . , (Tr,Mr) ) =
∏

j

p (Tj,Mj )
 p (σ )

=
∏

j

p (Mj | Tj ) p (Tj )
 p (σ ) (2.55)

where p (Mj | Tj ) = ∏
k p (µkj | Tj ) is a model at each of the j leaf nodes in

each of the r trees. This model can be a constant model, linear model etc.
Assumptions of model (leaf) and tree independence and those of the BCARTMS
approach simplify the expression of the prior to p (Tj ) , p (µkj | Tj ) and p (σ )
and a few hyper-parameters, about which the authors are quite specific, the
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intention being to limit the size of the trees so that each is a ’weak learner’ as in
the Adaboost algorithm (Freund and Robert E Schapire 1997).

The prior on the p(µkj|Tj) is assumed to be conjugate normal hence the prior on
E [ Y | X ] is the sum of r N(µµ, σ

2
µ)’s which implies this prior is N(rµµ, rσ

2
µ). The

authors then continue to create a data based shrinkage of the individual trees by
rescaling and shifting the data y in each leaf of each tree to achieve:

µkj ∼ N(0, σ2
µ) where σµ = 0.5/k

√
r. (2.56)

The main data based assumption is that under the sum-of-trees approach the
mean is highly likely to fall within [ymin, ymax]. This leads to choosing rµµ−t

√
r =

ymin and rµµ + t
√
r = ymax where in this case t is a predetermined value, for

example 2 giving a roughly 95% credible interval about the mean.

The σ prior is the conjugate prior under the Inv-χ2(ν, λ) distribution. The choice
of hyperparameters here is specified such that over dispersion and over-fitting are
avoided. The value of r is also specified in the BART paper and it is recommended
that, at least for a starting off the model, the number of trees be 200. The paper
notes that all of these hyperparameters could be learnt but that the additional
computational requirements may not be worth it.

The back-fitting MCMC algorithm for searching the posterior of the forest of
trees relies on noting that the conditional distribution p

(
Tj,Mj | T(j),M(j), σ, y

)
depends on (T(j),M(j), y) through the residual:

Rj ≡ y −
∑
l ̸=j

g(x;Tl,Ml). (2.57)

Thus to sample each of the (Tj,Mj) r times is the same as r draws from (Tj,Mj) | Rj, σ

for every j = 1, . . . , r. In other words, Rj = g(x;Tj,Mj) + ϵ and, because the
structure of the individual trees is the same as that in Chipman et al. (1998), we
have the same posterior, p (Tj | Rj, σ ), as in Chipman et al. (1998) for each j.
Each draw for each tree then follows the Metropolis-Hastings method of Chipman
et al. (1998) to get a sample of trees grown locally around the jth tree. This is
followed by a draw from the normal distribution for each of the tree’s µkjs which
is needed for subsequent draws of Tj.

After a burn-in number of draws, the sequence of f ∗ = ∑r
j=1 g(·;T ∗

j ,M
∗
j ) draws,

f ∗
1 , . . . , f

∗
M , can be considered as an approximate sample from the distribution

p ( f | y ). Thus the usual statistics, such as the mean or median of the f ∗
m as

well as the variance and percentiles for construction of interval estimates, can be
calculated. This ensemble method also provides insight into the different marginal
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effects of the x on the trees via the partial dependency of one or more predictors,
xs, against their complement xc:

f(xs) = 1
n

n∑
i

f(xs, xic)

where xic is the ith observation of xc in the data.

Another interesting inferential application is variable selection involving the mon-
itoring of the frequencies of the components of the design matrix as the number
of trees r is made smaller (than the suggested 200 trees). If vi ≡ 1

M

∑M
m=1 wik

where wik is the proportion of splitting rules that use the pth component of X
then as r gets smaller, the repeated sampling of the trees causes the explanatory
variables to compete for entry to be used as internal node rules.

In Bleich et al. (2014) information about important variables can be included for
assessing the real effect of particular covariates in high-dimensional settings. In
Hernández et al. (2018) high dimensional data (data sets in excess 5000 covari-
ates) is developed for BART using Bayesian model averaging. Linero (2018) also
tackles the problem of a large number of covariates but this time using a Dirichlet
“hyperprior” over the proportions of the splits chosen from the covariate at each
node. In a different vein, Mohammadi et al. (2020) consider reversible jump ap-
proach to BART with the intention of improving mixing of the algorithm because
one weakness of tree modelling is the tendency to focus on one very successful
tree so that other rival models are not allowed to develop. There are other adap-
tations to this popular method for Bayesian ensemble learning but none have yet
provided a solution to BART in a streaming (or N independent) setting.

2.4.1.2 Trees in dynamic search

Taddy et al. (2011) propose growing trees in a sequential manner where the tree
is a representation of the model state in the state-space paradigm. Each tree is
also a particle in a Sequential Monte Carlo (SMC) setting. This model allows
for a sensible local search for sample trees in a manner similar to Chipman et al.
(1998) but also allows for a more global search of the posterior space of trees
by resampling trees in manner similar to that of mixture models as described by
Carvalho et al. (2010).

Tt is a tree which consists of set of partition rules at time t. A tree is evolved
from Tt−1 → T via:

p (Tt | Tt−1, Dt ) ∝ p ( yt | Tt, xt ) p (Tt | Tt−1, xt ) (2.58)
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which is the posterior for each particle where Dt is all the data (xt, yt) up to time
t. This posterior is used to calculate the posterior predictive distribution:

p ( yt+1 | Tt, xt+1, Dt ) = p
(
yt+1 | xt+1, D

η(xt+1)
t

)
=
∫

p ( yt+1 | xt+1, θ ) p
(
θ | Dη(xt+1)

t

)
dθ (2.59)

where Dη(xt+1)
t includes only the data of node η(xt+1) which was selected by the

new data xt+1. Thus the predictive distribution for the new data xt+1 depends
only on the leaf that is selected by xt+1 for each tree.

Algorithm 2.3 provides the SMC sampling approach used by Taddy et al. (2011)
and in Section 3.3.2 more detail on the general SMC approach will be provided.

Algorithm 2.3: Particle Learning for Posterior Simulation.
1. {T (i)

t−1}N
i=1 ∼ p(Tt−1|Dt−1) is a particle approximation to the posterior

where at t0 each particle is empty.
2. Pass data to the tree until the conditions are met such that child nodes

will have minimum data for calculation of sufficient statistics S(i)
t,η should a

grow move be selected4.
3. Once these conditions are met, to resample draw particle indices {ζ(i)}N

i=1
using the predictive probability as weights:

p(ζ(i) = i) ∝ p(yt|xt, T
(i)
t ) = p(yt|xt, St,η(xt)) (2.60)

4. Set T (i)
t−1 = T

ζ(i)
t−1

5. The propagation stage is to update the particles with a sample from the
posterior distribution of the tree including the new data, p (Tt | Tt−1, Dt ).
This is done by partition moves similar to those of the BCARTMS model.

6. Update the estimates of the sufficient statistics St,ηxt

The purpose of this method is partially based on a criticism of Chipman et al.
(1998) which is that in order to explore the posterior space an improbable number
of grow/prune moves would be required to radically alter the single tree structure.
Having many trees (particles) allows one to pick the tree with highest posterior
at time t to make a prediction. The tree at the previous time t may not be the
best tree at time t+1 but, given the data, some tree that is best at time t+1 will
give the most probable prediction given the new xt+1. However, it can be noted
from Equation (2.59) that the predictive distribution is only calculated via the
parameters of the leaf selected by xt. If each tree is a representation of the state
in a dynamic state-space model then |T | − 1 leaves (partitions) are not selected
at each time t and it may be incorrect to assume that parameters of those leaves
do not also evolve as t progresses. In other words, as new information arrives,
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the state should evolve as a whole not only in one partition.

Tree models are not a panacea for conditional modelling and even in the incar-
nation of CART (Breiman et al. 1984) limitations to the tree modelling approach
are raised, for example, the limitation of single threshold values at nodes; mis-
interpretation of the tree if one variable is masked by another; a bias towards
uneven partitioning of the data set and that growing a tree is has similar limita-
tions to one stepwise procedures in linear regression (Breiman et al. 1984, pp. 39,
41, 42). Despite these problems and others, a founding idea behind using trees,
is the operational approach that “ ‘honesty’ is more critical than ‘optimality’ ”
(Breiman et al. 1984, p. 43) so that a tree is regarded as successful if it useful
and practical under prediction.

This brings to an end the brief summary of tree modelling in Bayesian setting.
While this section has not attempted to be comprehensive because this is such
a large and well covered topic it has introduced the main ideas and background
that supports the approach that is used in this paper. The next section will look
at streaming modelling approaches with a particular focus again on regression
and trees.

2.5 Streaming

Streaming data is an extremely broad term that is, in this document, going to be
divided into two main threads: data streams that occur in computer science and
streams of data in the statistical setting which is focused on generating (possibly)
evolving statistical summaries of phenomena as recorded at source by transducers
or collected in a repeated and ordered manner from a source of unknown depth.

Statistical streaming is a small sub-branch of streaming data use and analysis.
The statistical streaming “field” has become more prevalent largely due to the rise
in machine learning and artificial intelligence along with the associated software
and hardware capabilities. However the idea of analysing streams of data, beyond
the time-series approaches mentioned above (the distinction will be made more
clear in Section 2.5.2) is not new and according to G. Box and Luceño (1997),
statistical analysis of data and control of engineering and manufacturing processes
go hand-in-hand. What has changed is that computational power has vastly
increased so that analysis in “real-time” or ”on-the-fly” is possible because the
resulting summaries, as they are available, are possibly meaningful and in some
way actionable.

In Section 2.5.2 some clarity will be provided on terminology that is used in
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this document. Before that a very brief discussion of data streams in computer
science will be provided. After these two brief sections the background on existing
streaming regression, specifically focused on tree based methods, will be provided.
The section will be rounded off with the introduction of two methods of streaming
architectures which serve as infrastructure to support streaming data analytics.

2.5.1 Data Streams

In computer science a stream could be an input/output stream, a bit stream or
any flow of data within the deterministic structure of a computational device
such as the stream of data between monitor and graphics card or the streams of
data manipulated by the scheduler. These types of stream are typically handled
in manner that is appropriate to their form. The variability of data in these
types of streams, “perfect communication over an imperfect, noisy communica-
tion channel”(MacKay 2002, p. 3) is handled in information theory and involves
minimal loss over some communication channel that is related to the entropy of
an ensemble of bits that the channel is capable of handling.

The Nyquist-Shannon theorem governs the conversion of an analogue signal (such
as that produced by a real-world phenomenon) to a digital signal. Suppose that
W is the highest frequency in a signal. Then the signal can be fully determined
from its values at a set of discrete sample points that have distance ∆t = 1/(2W )
between them (MacKay 2002, p. 178). This implies that a sufficient sample
rate, a rate for maintaining the fidelity of a signal, is anything greater than 2W
samples per second. Thus if this sample rate is achieved then, for all intents
and purposes, the phenomenon that produced the signal and the recording of the
signal are considered the same.

In the above sense a data stream is a digital signal, a sequence of bits (0-1 pulses)
that is passed over some channel (a wire, PCB, optic cable, e.t.c.). A particular
sequence of bits might represent present an identifiable object. For example a
particular known sequence of exactly 5122 bits can be used to present a black
and white image where each bit represents a pixel. Thus some data, a number or
image or word, is a collection of bits (a 0-1 sequence). However, for the purposes of
communication between transmitter and a receiver, this signal must be formatted
and processed into packets of data so exactly the right sequence can be decoded
an interpreted at the receiver. These packets would typically appear in network
communication which is the next form of streaming that is addressed.

To borrow from several applications, streaming is the process of data stream pro-
cessing (Amazon Kinesis - Streaming 2021,Confluent 2021,Apache Kafka 2021).
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A data stream in this sense is composed of a continuous sequence of records of
events that could be created at any location, typically on an electronic device
like a sensor, mobile phone, webpage, database etc. and sent over a communi-
cations network (a collection of transmitters and receivers) which could be other
sensors, actuators, databases, cloud servers, mobile phones etc. A stream of data
is typically processed sequentially and incrementally on a record-by-record basis
in near “real-time” sometimes without storing the data. In most cases the act
of stream processing entails being able to react to the information in the stream
and to be able to make requests or queries of the data in the stream as the need
arises. This type of stream of data is typified by the network of servers and clients
known commonly as the internet.

A network is a group of nodes interconnected by links. In telecommunications
this is typically a packet-switching network which acts to group data into packets
that is then utilised by application software. There are many types of network
including the familiar ARPANET and the current internet. All networks require
a network protocol to facilitate rules, syntax, semantics and synchronisation of
packets sent of the network. Typical protocols include the Internet Protocol
(IP), the Transmission Control Protocol (TCP), the User Datagram Protocol, the
Stream Control Transmission Protocol and the Common Industrial Protocol. The
Network time protocol (NTP) is a common method for synchronising computer
systems over unreliable networks (Kozierok 2005).

Not only does a network generate data about itself, for instance failures of packet
deliveries, demand, latency etc. but the packets of data may need to be prepro-
cessed (for example optimally coded or compressed), post-processed (interpreted,
standardised, recoded etc) and also analysed in some ways for example on the
fidelity of the received packet, timing, routing etc. Although streaming data anal-
ysis could be used in this setting much of the structure of protocols, regulation
and deterministic choices control this data so that this is not the type of data
that typically falls into the statistical streaming setting.

Another type of setting for streaming data is in real-time distributed computing.
A real-time system is one where the behaviour of system and the outputs of the
system depend on both logical and temporal correctness (Kopetz 2011, p. 2). A
real-time computer system is one part of a larger whole and changes with time
as does any dynamic system. A distributed system is one where computational
nodes of the computer system are connected by a network. A cluster may consist
of several nodes. What defines a “real-time” system from a network of servers and
clients is that the ”real-time” system, distributed or otherwise, must be expected
to perform certain functions that will define it as a “real-time” system and that
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can be used to evaluate the design and operation of the system. There is a
time model for this type of system and deadlines that can be soft, firm or hard
depending on the nature of the consequences if the deadline is not met (Kopetz
2011, p. 3).

These three types of streaming data setting are not exclusive but what distin-
guishes them, at least partially, from the statistical streaming setting is the rela-
tionship between the system and the user. In all of the above systems there is little
or no need for human involvement barring design, implementation and use. They
are automatic systems that do not (usually) provide for inference on the system
itself (other than for fault checking) and are not aimed at collating and coordi-
nating data that is exogenous to the system. That is, they are, for the most part,
homogenous systems that support other exogenous processes (such as changes in
phenomena, input from users, faults etc.) but do not permit the streams of data
themselves to be selected, analysed, evaluated, changed, evolved and compared
by the user. This act of choosing sources, collating them, analysing them, infer-
ring from them and modifying them is the domain of statistical streaming which
is the topic of the next section.

2.5.2 Statistical Streaming

The statistical streaming setting falls under the umbrella of “Big Data”, a broad
term that covers not only the analysis of data but the architecture to support the
analysis, evaluation and visualization of the data and analysis and the collection
and storage of the data pre and post analysis (Bifet, Gavald, et al. 2018, p. 8).
Data mining is a subfield of machine learning, computer science and statistics that
seeks to find patterns in large amounts of data. Alternatively called knowledge
discovery or, perhaps a bit worryingly knowledge management, the idea is to
provide insights into usually very large sets of data that could not be analysed
by traditional means. Implicit in this setting is caution over the inference that is
made based on these “discoveries” but bearing mind the sheer quantity of data
currently available (Bifet, Gavald, et al. 2018, p. 7) there are clear advantages
to having algorithms that can either search for patterns in these data lakes or
process the data as it is being created to create summaries that not only reduce
the amount of data that is stored but can provide useful insights into the data
in “real-time” that can help to improve business decision making, healthcare,
climate management, disaster management, computer and network security and
others (Bifet, Gavald, et al. 2018, p. 9).

The proposed approach in this document falls under the use-case: analysing
streams of data to calculate summaries of continuous outcomes. Hoped for ap-
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plications might be in any setting where regression is usually applied with the
added benefit of being independent of the size of the data set. Thus a central
assumption that stems from the definition of big data (Bifet, Gavald, et al. 2018,
p. 3) is that either the data set is too large to be managed with current analyti-
cal and statistical algorithms or the the data is being generated on a continuous
basis so that the amount of data to be processed is not known. For all intents
and purposes these two cases are the same: the number data points is big enough
to be considered unknown.

Thus a key assumption in this document is that N , the amount of data to be
processed or the size of the data set, is a random variable. There is no interest
in learning N but its randomness implies that there is no known end to the data
set so the idea of constructing tables or matrices of data fir subsequent analysis
would not make sense. The fact that N is random and potentially very large
means that traditional idea of a data set representing a sample of a population is
challenged. Further, if N is considered countable rather than finite then the data
set is not a compact multiset but, at least in the forward direction, a countably
infinite set and potentially always changing.

One of the main contributions of this thesis is to attempt to apply Markov chain
Monte Carlo to the streaming setting. This means challenging the necessary
assumption of a bounded and unchanging set of points over which to integrate by
sampling. By challenge it is meant that the necessary assumptions are retained
but a method is proposed that allows for new data to be incorporated into the
current MCMC chain while avoiding the need to rerun the analysis from the start
that would be the usual approach if the sample data were altered. This will be
discussed further in Section 3.3.2 and developed throughout the main body of
the thesis.

The terms “real-time” or “on-the-fly” are often associated with streaming data
analysis. There is no consensus on a definition for “real-time”. The phrase seems
to indicate that it has something to do with what is “real” but from engineering
to process control; computer science to economics there seems to be a difference
version of “real-time” suited to each domain, to the realities involved in each
of the subject areas rather than to wall-time or space-time or universe time or
whatever time may actually be. It is not unreasonable then to expect statistics
to be any different.

The term “on-the-fly” is more appropriate because is removes the notion that the
analysis of data is happening at exactly the same time as the event are occurring.
This term means that analysis is performed as and when the data are available
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and when the actions that must result from the decisions need to be taken. This
does not preclude the idea that one can collect a sequence of summaries of data,
indeed this is almost the definition of statistical streaming, and then at some
future point use this data in further analysis, discard it or take some action
because of it. “On-the-fly” suggests that the data is transitory and that, to some
degree, the rate of analysis is related to the transitory nature of the data. From
now on the inverted commas for real-time and on-the-fly - used to suggest their
impreciseness - will be dropped.

The focus of the approach of Bifet, Gavald, et al. (2018) is on big data stream
mining. Their approach provides a base that supports the framework for the
methods of streaming data analysis. Here are outlined some of their “axioms” of
stream mining. These axioms are provided by Bifet, Gavald, et al. (2018, p. 35)
which are a summary of the several passages in Gama (2010, pp. 4, 6, 7) that
more or less state similar requirements:

1. Only one pass is allowed on the stream.

2. The processing time must be low.

3. Memory must be low ... certainly sub-linear in the length of the stream.

4. The algorithm must be able to provide answers at any time.

5. ... they are nonstationary data sources.

It is clear that these axioms are necessitated by the desire to have have the results
of the analysis available as quickly as is reasonable and also take cognisance the
potentially unlimited sample size of the data.

A classifier or regression function has the following minimal functional require-
ments (Bifet, Gavald, et al. 2018, p. 12):

◦ It must receive a set of covariates without an associated response and make
a prediction based on the current model.

◦ It must receive a response from the past and use it to adjust the model for
training.

In the usual machine learning setting training a model happens at any arbitrary
time before the current data requires analysis or before predictions are made.
However in the streaming setting training and prediction must be able to happen
in temporal proximity to each other using the above “axioms” to achieve the min-
imal functional requirements. Therefore there is a simplified prediction/training
cycle in streaming analysis due to the complexities of the data which are: asyn-
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chronicity, buffer size limitations and the variation in data point load (too much
or too little complete data). Therefore, in the Massive Online Analysis (MOA)
approach the following assumptions are made (Bifet, Gavald, et al. 2018, p. 13):

◦ There is an observation for every labelled instance (set of covariates).

◦ The complete data points arrive in order so that both the covariates and re-
sponse to those covariates arrive before the next set of (response, covariates)
= data point arrives.

An example of a typical streaming loop is then as follows:

1. Get a set of complete covariates xt.

2. Make prediction ŷt = f(xt) from the current model.

3. Receive observation yt.

4. Use (yt, xt) to update f and (ŷt, yt) to update the statistics of the model
performance.

As pointed out by the authors this approach is too simple because it ignores
delayed, uncoordinated and missing data. It is advertised as appropriate for the
comparison of streaming algorithmsBifet, Gavald, et al. 2018, p. 13.

The above approach to the receipt, coordination and output of data in the regres-
sion setting is the one that will be adopted here. This is for the sake of simplicity
and clarity of exposition because the focus is on showing that Bayesian regression
using MCMC is possible and effective in the streaming data setting.

2.5.2.1 Massive online analysis (MOA)

The reason for the focus on this particular approach is that this framework seems
to be the most currently implemented framework across several streaming archi-
tectures and there does not seem to be a unified approach to Bayesian statistical
streaming. It also includes the use of classical decision tree methods and has the
longest historial reference to statistical streaming leading back to VFML (Domin-
gos and Hulten 2000). It is worth noting that most of the algorithms presented in
the Massive Online Analysis (MOA) approach are focused on classification rather
than regression.

Ignoring resource allocation, the defining characteristic of the classical streaming
approach, dealing with queries over non-stationary distributions, is the central
aim of classical streaming techniques. To this end Bifet, Gavald, et al. (2018) de-
fine a changing or evolving stream as when the underlying distribution of the data
in the stream changes. To evaluate an algorithm over these changing streams they
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suggest considering “the ‘average case’ performance of an algorithm by averag-
ing over all possible streams according to their probability under the generating
distribution”(Bifet, Gavald, et al. 2018, p. 68). The Markovian assumption is
made but also criticised because some streams display bursts of activity of cor-
related events. This is also bourne out by Xiangheng Liu and Goldsmith (2004)
when considering packetloss and bursts of data. A simplifying assumption is that
whatever correlations exists they are only over a short enough duration so that
over a long enough data stream the Markovian assumption is valid.

The two paragraphs below present concept drift and ADWIN (Bifet, Gavald, et
al. 2018, p. 79). The first is one aspect of nonstationarity others being varying
variance, step changes, bursty data etc. The second is a main method of dealing
with change due to model drift (when the model is no longer suitable for the
data being analysed) used by many of the models presented in Sections 2.5.2.2
and 2.5.2.3.

Concept drift: Concept drift, the idea that the stream distribution changes
with time, is specified as a sudden change; a gradual change; a global (over the
whole stream) change or partial (part of the stream) change; recurrence (such
as seasonality); regular but not periodic distortion such as the ebb and flow of
traffic and real versus virtual change where the former case concerns P (Y | X )
changing in response to X and the latter only P (X ) changes (Bifet, Gavald,
et al. 2018, pp. 69–70). Three change management strategies are suggested:

1. Adaptive estimators: Many model builders maintain a statistical quantity
and combine the values into a single model. Naïve Bayes (a probabilistic
classifier) is an example because it keeps count of values and combines them.

2. Change detectors: A change detection algorithm works in parallel to the
model builder and detects (and reports) changes in the model.

3. Ensemble methods: Complex classifiers are built out of some selection
of simple classifiers that may be focused on different aspects of the data
stream.

Several estimators are suggested for tracking changes including the exponentially
weighted moving average and the unidimensional Kalman filter (Bifet, Gavald, et
al. 2018, pp. 73–74). Suggested automatic change detectors involve (hypothesis)
testing the data for changes relative to some previous value under the Gaussian
distribution. The cumulative sum (CUSUM) test considers a significant change
in the mean of the data and the Page-Hinkley test is an extension of this idea.
The input to this test could be the residual from the Kalman filter (Bifet, Gavald,
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et al. 2018, p. 76). Another method of change detection under the assumption of
the stationarity of the data and label distribution is the drift detection method
(DDM) of Gama (2010, p. 78). Here the prediction error of the model is monitored
and a change alarm is raised when prediction error increases.

ADWIN: The adaptive sliding window (ADWIN) algorithm is used in several
streaming packages (Bifet, G. Holmes, et al. 2010; Montiel et al. 2018) and is used
to keep track of the mean of real valued numbers. The ADWIN algorithm stores a
variable length window of past data and recommends change to the length of the
window if there has been a change detected over the average of the data within
the window. That is, the window size is relative to the rate of change of the data
based on some confidence parameter δ. An exponential histogram (Bifet, Gavald,
et al. 2018, p. 57) is maintained for the window and a hypothesis test between
two window lengths is carried out, in the default but not all cases, after every
new data item arrives. A window is rejected (change is detected) if the average
value of the window has not significantly changed.

ADWIN is not the only method for dealing with drift and change and the reader
should consult Bifet, Gavald, et al. (2018, pp. 68–81) for a more thorough descrip-
tion. The next subsections will focus on tree methods in streaming statistics in
the classical setting. A Bayesian approach to sequential tree modelling has been
presented in Section 2.3.2.2 and the particular methodology, Sequential Monte
Carlo, will be presented as an alternative to MCMC in Section 3.3.2.

2.5.2.2 Trees in streaming

The tree methods suggested by Bifet, Gavald, et al. (2018) are aimed mostly at
classification models but some alternatives for regression are also offered. The
general approach is the same as the of Breiman et al. (1984) and J. Quinlan (1993)
but to estimate the splitting criteria the Hoeffding concentration inequality (Bifet,
Gavald, et al. 2018, p. 38):

P
(
|X̄ − µ| > ϵ

)
≤ 2 exp

(
−2ϵ2n

)
(2.61)

X̄ =
n∑

i=1
Xi µ = E [X ] and n is the number of data pionts, ϵ ∈ (0, 1)

is used to replace the Gini measure of Breiman et al. (1984) or the entropy
measure of J. Quinlan (1993). However, to use these measures stationarity is
required and it has also been argued that the Hoeffding bound is inappropriate
(Bifet, Gavald, et al. 2018, p. 101). Further, in the basic formulation of the
Hoeffding tree numeric attributes are not considered.
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The Hoeffding tree of Hulten and Domingos (2003) uses the Hoeffding bound to
generate an ϵ =

√
R2 ln 1/δ

2n . If the Gini criterion for the best covariate of a never-
before-seen data point is greater than that for the second best covariate, use the
first covariate as the splitting rule for a new leaf. Note that this tree only grows.
It may now grow with every data point (i.e. if G(best) - G(second best) < ϵ)
but once a tree has been grown it does not seem to be modifiable. This approach
has been modified to improve the rate of learning by creating the VFDT (Bifet,
Gavald, et al. 2018, p. 104).

The CVFDT (Bifet, Gavald, et al. 2018, p. 105) is a concept adapting approach to
the VFDT. The general idea is that a sliding window of data points for threshold
and covariate choice is maintained as well as creating subtrees that can be used
to replace existing parts of the original tree. The same criterion above is used to
check attributes and the tree continues to grow if the test is passed. In addition to
this process existing node instances are checked and if the attributes that would
now be chosen are different to those that were chosen a subtree at that node is
generated. This subtree is also monitored for some time period and if the results
are better (via hypothesis testing) than the alternate branch the existing subtree
is replaced with the new subtree, else it is discarded.

An alternative to the CVFDT is the Hoeffding adaptive tree (Bifet and Gavaldà
2009). Bifet, Gavald, et al. (2018) describe some default parameter values for the
CVFDT as saying that only the last 50000 examples of the stream are relevant,
change does not happen faster than 10000 examples and that 1000 examples are
sufficient to quantify the change between subtrees for newly chosen attributes.
Their criticism is that these default values are data and/or user dependent and
that variation in the rate of change in the stream is not accounted for (Bifet,
Gavald, et al. 2018, p. 108). Their Hoeffding adaptive tree is claimed to adapt
to change based on the “scale of time change in the data, rather than relying on
the a priori guesses made by the user.” (Bifet, Gavald, et al. 2018, p. 109).

Bifet, Gavald, et al. (2018, p. 107) extend the Hoeffding tree with VFDTc and
UFFT by using a Naïve Bayes classifier at each node, using the drift detection
method of Gama (2010) to detect evolutionary changes and they provide their
own approach to using numeric attributes based on storing a binary tree of all
the data seen by the stream (Bifet, Gavald, et al. 2018, p. 110).

In general, Bifet, Gavald, et al. (2018, pp. 109–113) state that the handling
of numeric attributes in a streaming setting is difficult. They suggest several
methods of discretization of the covariate over the range of the attributes by,
in general, creating empirical distributions of the data and sampling from these
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distributions. An alternative method to this is using a Gaussian approximation
to the empirical distribution of each covariate (for each class label) as only 3
numbers need be maintained to draw from this distribution, the minimum and
maximum of the values observed and the mean.

2.5.2.3 Ensemble methods for trees in streaming

The advantage of ensemble methods in streaming is that, if the elements of the
ensemble are independent of each other, the ensemble is easy to parallelise and
can be decentralized This latter term means greater flexibility in modifying the
members of the ensemble without having to worry about large effects in the
outcomes. The combination of elements is, in general, more accurate than an
individual element in its own right (Bifet, Gavald, et al. 2018, p. 129). This has
been notably shown in Breiman (2001) in the non-streaming setting.

For ensemble approaches an important consideration is the “weight” or proportion
of the contribution of each element to the ensemble. In its simplest form each
member of the ensemble is "voted for" by choosing, in the classification case,
the member whose class is the most popular among all classes (Bifet, Gavald,
et al. 2018)[129-130]. Another method called the Weighted Majority Algorithm
(Bifet, Gavald, et al. 2018, pp. 130–131), a version of Stacking uses experts (a
binary predictor function) to make prediction ŷt based on attribute vector xt.
When observed point yt arrives, the expert compares yt and ŷt and emits 1 if
correct (i.e. a match in the classification case), 0 otherwise for each member of
the ensemble. A prediction from the ensemble is 1 if the sum of the weights and
experts is greater than a half. A forgetting factor β is included in the model that
weights each expert so that the more an expert is correct the higher the weighting
of the ensemble. Normalisation of the weights ensures that weights sum up to 1
at each iteration.

Other methods for weighting learners or experts are bagging (Breiman 1996) and
boosting (Freund and Robert E Schapire 1997). Bagging, in the non-streaming
domain, uses bootstrapping of the training set of data to draw random samples
that are applied to a set of experts, often decision trees. In the case of clas-
sification the ensemble model makes a prediction using a majority vote of the
classifications produced by each of the experts. In the streaming setting, as-
suming sampling with replacement, the distribution of the n data points tends
towards a Poisson distribution, Pois(1), so that each of the incoming sample
points is weighted with this random draw and the expert is updated according
to this weight (Bifet, Gavald, et al. 2018, p. 133). The basic bagging models are
then updated by the ADWIN model to “replace the loser”, the worst performing

54



expert, each time the ADWIN model detects a change in the incoming data.

Boosting is a sequential algorithm where, in the non-streaming setting, current
experts are weighted according to past performance, with more weight being given
to the misclassification by experts so that in the new iteration more attention is
given to experts that performed poorly in the previous iteration. According to
Bifet, Gavald, et al. (2018) sequential weighting via boosting is more difficult
because of the sequential the chain of experts. A list of online boosting methods
are provided in Bifet, Gavald, et al. (2018, p. 135).

Hoeffding option trees (HOT) models provide several options for splitting values
at each node. Thus the ensemble is effectively a single tree with sets of subtrees
that are created when the choice of splitting attribute at a node suggests that
several attributes might be suitable. A prediction is made by a majority vote
of the classifiers over all the option trees that a data point would visit in the
traversal of a tree (Bifet, Gavald, et al. 2018, p. 136). A regression version of the
HOT has been proposed by Ikonomovska, Gama, Ženko, et al. (2011).

According to Bifet, Gavald, et al. (2018), the success of Breiman’s Random Forests
has not been matched in the streaming setting (Bifet, Gavald, et al. 2018, p. 137)
although it is suggested that the Adaptive Random Forest (Gomes et al. 2018)
is a good contender. An approach that, on the surface, seems similar BART
(Chipman et al. 2010) is the Perceptron stacking of Restricted Hoeffding trees
(Bifet, Frank, et al. 2012). Here, weak learners are created by choosing small (size
1 or size 2) subsets of the attributes and using these to grow trees. The perceptron
(a simple stochastic gradient descent weight (Bifet, Gavald, et al. 2018, p. 114))
is used to stack (connect) the trees so that a weighted majority of trees is used
to form a prediction.

A model for regression using trees is the Fast Incremental Model Tree with Drift
Detection (FIMT-DD) (Ikonomovska, Gama, and Džeroski 2011). This model is
based on the Hoeffding tree with the following modifications (Bifet, Gavald, et al.
2018, p. 146):

◦ variance reduction of the predictor ∑ (ȳ − ŷ2) /N , in a similar vein to the
regression approach of Breiman et al. (1984), is used to choose the covariates
at internal nodes;

◦ numeric attributes are incorporated;

◦ some pruning rules are used to limit tree size and hence reduce the storage
requirements of the tree;

◦ perceptrons (not unlike simple univariate Kalman filters) are used at the
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leaf nodes;

◦ concept drift via the Page-Hinkley test is used at inner nodes to detect
changes in the incoming stream;

◦ if a tree is performing badly a new tree is grown which, if the new tree
outperforms the old tree in terms of minimising, for example, the mean
square error, then the old tree can be replaced by the new tree.

This section has briefly summarised some of the many available methods of statis-
tical streaming in the classical setting using trees. The next sections will consider
two approaches to streaming architecture, both of which are commercially avail-
able. Note that the first approach has been selected because it is a widely used
framework that other streaming service providers use and AWS has been selected
as it is typical of service providers rather than special in some way.

2.5.3 Streaming architectures

Real-time distributed systems provide the foundations for streaming architec-
tures. The systems that will be discussed in this section are a few of those that
are commercially available and some that are largely academic. Only the essence
of a selection of these systems will be described.

Note that none of these architectures have been used in the proposed approach.
Bifet, G. Holmes, et al. (2010) is a stand-alone package for the algorithms de-
scribed in Bifet, Gavald, et al. (2018). Similarly, Hulten and Domingos (2003) has
its own implementation as do others. To be fully functional a streaming system
must either be able to directly connect to, or select, source data or sit on top and
architecture that provides this. Making this connection is beyond the scope of
the proposed model because it involves greater depth in computer science than
can be provided by this author.

A brief (and incomplete) list of streaming architecture approaches is:

1. Massive Online Analysis (MOA)(Bifet, G. Holmes, et al. 2010)

2. SciKit-learn(Pedregosa et al. 2011; Montiel et al. 2018)

3. TensorFlow(TensorFlow - Probability 2021)

4. Very Fast Machine Learning(VFML)(Hulten and Domingos 2003)

5. Noah’s Ark Lab(streamDM: Data Mining for Spark Streaming 2021).

6. Apache (Kafka, Storm, Spark)(Sax et al. 2018; Apache Kafka 2021)
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7. Amazon Web Services(Amazon Kinesis - Streaming 2021)

Note that some of these are streaming architectures and some are packages or
APIs that are used by the streaming data architectures to perform calculations.
These have been grouped together as together they form a streaming approach
to online calculation and analysis. MOA ((Bifet, Gavald, et al. 2018)) and the
work of Gama (2010) are closely related. SciKit-learn (Pedregosa et al. 2011)
and SkiKit-mulitflow (Montiel et al. 2018) provide an API in python for the
implementation of some of the methods provided by MOA. VFML forms the
basis for the streaming approach to using trees for data analysis used in MOA via
the Hoeffding Tree (Bifet, Gavald, et al. 2018, p. 102) and in its later revisions
as the concept-adapting very fast decision tree (CVFDT)(Bifet, Gavald, et al.
2018, p. 105), very fast decision trees (VFDTc) and ultra fast forest of trees
(UFFT)(Bifet, Gavald, et al. 2018, p. 107). Noah’s Ark Lab is a subsidiary
of Huiwei™ which has taken over the development of the implementations of
the methods outlined in MOA called StreamDM (streamDM: Data Mining for
Spark Streaming 2021). This is based on the architecture of Spark streaming,
one of the suites provided by Kafka. TensorFlow is largely concerned with deep
learning and does provide some tools for Bayesian calculation in its TensorFlow
probability module (TensorFlow - Probability 2021). Their aim is to maximise
the computational resources for large and difficult problems.

This section will provide more detail Kafka and AWS. As mentioned, this will be
only be a broad outline and there are many methods for calculation and statistical
streaming analysis that are not covered.

2.5.3.1 Kafka

Kafka (Apache Kafka 2021) defines event streaming as an “always on” system
where often “the user of software is more software”. The aim is to ensure that
real-time and stored data are continuously delivered to the “right place, at the
right time”. The architecture is based on a consumer/producer model where
servers and clients are parts of a distributed system that communicate over the
TCP network protocol. A central focus of Kafka is fault-tolerance (if one server
fails the data has been stored and is retrievable from other parts of the system
architecture) and scalability for “mission-critical” use cases. The servers can be
distributed across several data centres and across several cloud regions.
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Event, record and message are synonymous terms and consist of

⟨Key, V alue, T imestamp, Metadata⟩

headers. Producers write events and consumers (subscribers) read and process
events. These two client applications are decoupled from each other: producers
never need to wait for consumers. Servers take the form of “Brokers” where
some are responsible for storing data and others for continuously importing and
exporting data via event streams.

Events are organised into topics: these can be considered as files within folders.
Each topic has multiple producers and subscribers. Events can be accessed mul-
tiple times and Kafka’s performance w.r.t to data size is “effectively constant”.
A topic is partitioned over a number of buckets located on different brokers. It is
this distributed placement that allows for scalability and parallel access. A new
event is appended to one of the topic’s partitions that has that same event key.
Every topic can be replicated for maintainability and fault-tolerance.

The Kafka environment is much broader than what is described here and consists
of several APIs one of which is the stream API (Apache Kafka - Streaming 2021)
which is used to perform the processing and analysing of data. There is also an
admin API (Apache Kafka - Documentation 2021) for managing topics, brokers
and other Kafka objects and as well as a set of monitoring tools (Apache Kafka
- Monitoring 2021) that consist of classes of metrics for monitoring the nodes of
a Kafka cluster.

Kafka streams This is a client library of applications (Apache Kafka - Stream-
ing 2021) that can be used to process the data stored in the Kafka architecture of
the preceding paragraph. It is within this streaming environment that concepts
around time and timing are discussed within Kafka. It is also here that one is
able to make real-time queries of the application state. Note that this is sepa-
rate from monitoring the behaviour of the producers and consumers of the Kafka
system (Apache Kafka - Monitoring 2021).

The central idea of Kafka streams is that, in practice, both streams and databases
are necessary. This leads to the key concept of the duality of streams and tables
(Sax et al. 2018). A stream is considered as the changelog of a table where a
table is simply an array of ⟨Key, V alue⟩ pairs. Each state change in the table
is a record in the stream and if one attempts to collate a set of changes for a
particular key, one reconstructs the table. Thus a table is a snapshot of the
stream at a point in time. A stream is called a Kstream and a table is called
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a Ktable. A Kstream is an append only function and a Ktable is an update
only function. A GlobalKtable returns access to all partitions of a topic which
facilitates multiple joins and message broadcasting to running instances of the
application. However it has a higher storage requirement and network/server
load (possibly with consequent time delays).

The topology of stream processing is an abstraction that represents an unbounded,
continuously updating set of data. In Kafka, the stream is ordered, re-playable
and fault-tolerant. A stream processing application then uses the graph topology
of nodes (stream processors) and edges (streams) to defines its computational
logic. A source is a node with no incoming streams and sink is a node with no
outgoing streams. A node is a processor that receives a single input at a time
and transforms this before passing it on to a subsidiary node.

The notion of time in Kafka has several different definitions that can be broadly
broken down into two categories: time with respect to the outside world:

◦ Event time is a point in time assigned at source, often via a timestamp on
the local device;

◦ Wall-clock time is time as one might measure it via timing device such as the
time of day or that measured by a timer held outside of the computational
system;

and time within the Kafka architecture:

◦ Ingestion time is the time point when a record is assigned to a topic partition
via a broker.

◦ Processing time is the time when a record is being consumed by a processing
application

◦ Stream time is a per record timestamp that marks the progress of data
record through a Kafka stream. It is different from wall-clock time as it is
used by time-dependent operations that are particular to the topology of
the application and it refers to stream timing rather than real timing.

◦ New records are assigned timestamps according to certain rules that depend
on the type of function at a node. For example, for aggregations of data
records the timestamp assigned to the result is the maximum timestamp
overall records per unique key.

The choice of using ingestion time versus event time is application specific. Thus
the notion of real-time depends on the application. Using event time can relate
stream, processing and wall-clock time while using ingestion time ignores the
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source time and is only concerned with speed of the application and the rate of
stored data retrieval.

There are two general categories of operations: stateless and stateful. The former
means that the processing of an event or record is independent from the processing
of all other records and some examples include:

◦ Filter and Inverse filter: boolean operations that choose according to a
matching rule

◦ Branch: splits a stream into one or more streams according to a rule (pred-
icate)

◦ Map: modifies a single record, value or key.

◦ Group: Groups records by key, a prerequisite to other stateful functions.
Windowing is form of grouping but using timestamps.

There are other operations such as Peek, Merge, Groupby, CoGroup, FlatMap
and a function that maps tables to streams and streams to tables. The stateful
operations include:

◦ Aggregate: Calculates averages or sums of values of records independent of
a time window.

◦ Join: A function that combines data records.

Stateful operations and their associated functions can be performed within a
specified time window or over the duration of the streaming application. Each
stateful operation requires a state store to be able store and query data required
for processing.

Kafka provides several guarantees such as

◦ The ability to process events exactly once. For operations that cannot
handle missing data or data duplicated a batch orientated framework is
used in addition to stream processing.

◦ A consumer will always read a partition of events in the same order that they
are written. Out-of-order handling exists, say, for occasions when the order
of the event time is different to the order of the ingestion time. Another
case is when there is no buffer allowed for waiting for multiple records from
multiple topic partitions to be assembled. Out-of-order data for stateful
functions can cause errors in processing logic. To deal with out-of-order
data the user must trade-off latency, cost and correctness.
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This is very brief and superficial view of many of the services that are offered by
Kafka which also included interfaces with Apache Spark (Apache Spark 3.1.2
2021), a batch processing alternative to streaming bases on the MapReduce
paradigm. Apache Storm (Apache Storm 2021) seems to be the forerunner to
Kafka and exists as a lower level API for stream integration. Despite this cur-
sory overview, the main issues of streaming are highlighted that being timing and
trade-offs with respect to latency, cost and accuracy.

2.5.3.2 Amazon Web Services

Amazon Web Services also provide a suite of services not dissimilar to Kafka and
in fact include Amazon managed streaming (MSK) (Amazon MSK 2021) which
uses Kafka. It also includes Amazon Kinesis (AK) (Amazon Kinesis - Streaming
2021), AK Data Streams (AKDS) (Amazon Kinesis - Developer Guide 2017) and
AK Firehose (AKF) (Amazon Kinesis - Data Firehose 2021). AK is the platform
for the Kinesis related services and for MSK. AKDS captures and stores data and
comes with guarantees such as being available within “70ms of being collected”
and enduring the durability of the data, based on cost/user specification.

AKF loads streaming data into AWS based on the Extract load and transform
(ELT) (Smallcombe 2021) paradigm. ELT and extract transform load (ETL)
are two approaches to retrieving data from data warehouses such as AWS. The
latter is the more established approach for retrieving data as it uses the fact that
data is first stored in a warehouse in a particular format that allows or requires
some formatting of the data before it is loaded into the user’s application. ELT
bypasses the warehouse storage and staging but the data are regarded as poor
quality because they have not not been “cleansed” prior to the user’s application.
ELT is typically faster for this reason.

The structure of AKDS is similar to that of Kafka in the sense that a stream
is partitioned into “shards” with optimal timing guarantees based on cost and a
choice of parallelisms: Shared and Enhanced fan out where the former restricts
the message propagation via bandwidth manipulation.
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3 Methodology

3.1 Introduction

The previous chapter provided a review of the existing methods for solving Prob-
lem 1.1. This chapter will address Bayesian probability and modelling, the chosen
methodology within which Section 1.3 will provide a solution to Problem 1.1. The
Bayesian approach has an intuitive appeal in that, by definition, it updates the
history of a process when new data arrives. However, to perform the calculations
necessary to weigh the new data over all the evidence one must include all the
historical data along with the new in these often intractable updates. A method
that alleviates some of the difficulties is Markov chain Monte Carlo which is a
method for calculating averages of samples from the posterior distribution so
that, by the law of large numbers, the properties of posterior distribution can be
understood.

This thesis will show that the Bayesian methodology is a good choice to approach
regression in a data streaming setting. This chapter will support this argument by
stating the philosophical position of the Bayesian paradigm and showing how this
a coherent framework for the problem at hand. This brief and broad positional
statement will quickly narrow to an operational means of providing quantities that
capture the measurements of real-world phenomena. The rest of the first part of
this chapter will focus on modelling and some of the methodological structures
necessary to maintain sensible results.

The second part of this chapter will delve into stochastic processes and Markov
chain Monte Carlo (MCMC). The methods described here are foundational in
what follows in the rest of the document as many choices behind Section 1.3 have
been informed by (and possibly inform) the MCMC method. A light touch on
stochastic process theory is necessary to support the MCMC sampling approach
to problem solving and this will be followed by a description of the some specific
techniques used by MCMC practitioners.
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The final part of this chapter will consider inference in a streaming setting. This
is a can of worms that spills far out beyond the scope of this thesis because
one can very easily be dragged into questions regarding temporal relevance and
causality. These problems will be deftly side-stepped by accepting that there
are some existing methods for inference in a streaming setting, which will be
discussed, and hence it can be assumed that a new approach to modelling and
inference will not unduly upset those who raise these difficult philosophical issues.

3.2 Bayesian Methodology

3.2.1 Probability is a Belief

De Finetti et al. (1974) states that “Probability does not Exist” and that the
notion of subjective probability is the measure of the “degree of belief in the oc-
currence of an event attributed by a given person at a given instant and with
a given set of information” (De Finetti et al. 1974, p. 4). Substitute the words
judgement, expectation and probability for belief and one will have the essence
of the Bayesian approach to probability: all assessments of probability are sub-
jective and dependent on the observer, analyst or whoever is asked to make some
bet (take a defined position) on the outcome of some phenomenon often in an
experiment but commonly an everyday event.

The consequence of accepting that subjectivity is the basis for existence of prob-
ability is that its inherently biased nature becomes irrelevant: “It is purely a
question of studying [the evaluation of the probability] and saying whether it is
coherent or not.”(De Finetti et al. 1974, p. 8). The reasons for this are that, for
a subjectivist (De Finetti et al. 1974, p. 7):

◦ No two events are ever identical or else one would not be able to the dif-
ference between them. Conversely, if one cannot tell the difference between
two events then one is indifferent to these events and hence, must have the
same probability.

◦ A subjectivist is aware that it is not possible to completely account for all
factors affecting events (occurrences) but if, as far as She is aware, these
events do not affect each other then She may choose to consider these events
independently.

◦ A subjectivist is also willing to consider her position in the role of analyst as
well as the the opinions and biases of others when performing an analysis.
She incorporates this prior knowledge, fully expecting the data to modify
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these initial conditions.

Thus probability centres on coherent statements about uncertain events wherein
one must have some stake. Initially there may be bias in the assessments of the
likely outcome(s) but this bias will ultimately be irrelevant as more evidence is
obtained to support the data.

A parallel concept is that of chance: a property of the world or of objects (N.
Singpurwalla 2006, p. 50) or as the hypothesised statistical long-run behaviour
(Lindley 1991, p. 17) of some events. Thus chance is a property that may be
considered objectively if it were possible to control the experiment (clearly not
everyday events) for its entirety, study these results and show that such a property
exists.

Hacking and Romeijn (2016, p. 196) raises the point, in criticism of De Finetti,
that it is difficult, when flipping a coin to consider that the frequency of heads
is anything other than either the property of the coin or of the flipping device.
But as David Lindley points out (Hacking and Romeijn (2016, p. 196)), there is
a difference between a statement about a one off event and a statement about a
phenomenon that has been known to occur several times already. That is, it is
only after some coin, presumably the exact coin being flipped this time, has been
flipped many times and the outcome of those flips faithfully shared that one can
consider that frequency of heads is a property of the coin and not before one has
flipped the coin.

The debate about the correct definition of probability extends beyond these two
viewpoints and continues unabated. In this document the subjective Bayesian
definition has been adopted largely because within this Bayesian framework one
can begin with very little information and support inference by the accumulation
of data and hence, should the driving mechanism of the phenomenon under study
change, one can then proceed to a new position of inference in a natural and
coherent way.

3.2.2 Coherence

A subjective probability is the “extra-logical, subjective and personal” (De Finetti
et al. 1974, p. 72) attribute that all stakeholders involved in a particular pursuit
attribute to a particular event that may or may not occur as a result of the
activity being pursued.

If a stakeholder is certain of the outcome of an event then they must assign
the value 1 to that outcome and if they are certain that the same outcome is
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impossible then they must assign the value 0 to that event. Between these two
poles of certainty and impossibility it is necessary to provide weights or gradations
to the possible outcomes of the event or events about which you are uncertain
(De Finetti et al. 1974, p. 25). It is assumed that there is at least one outcome
that corresponds to exactly one event and the lack of that minimal event and
hence its outcome means that not event has taken place.

If there are several events, each with distinct outcomes from distinct events and
one is indifferent to the exchange of these events then the total outcome is the
union of these events. That is, if a stakeholder is indifferent to permutations of
the order of events and these events do not interact with each other then one can
sum these events to achieve the outcome of interest.

The previous paragraph begs the question: what if the events do interact? This
implies that for at least two events there is a third event, the event of the interac-
tion between these two events called the intersection of the events (Lindley 1991).
At the core of the Bayesian approach to probability is the assumption that all
events interact to some degree with the history of the activity of interest and even
prior to this activity being started. Call this event the History or Hypothesis and
note that “everything is conditional upon ‘hypothesis’ H” (De Finetti et al. 1974,
p. 135).

These three paragraphs simply described the three laws of probability in an in-
tuitive manner. More formally, the first paragraph is known as the convexity
law:

0 ≤ p (E | H ) ≤ 1 (3.1)

where H is now explicitly included but after this section will be implicitly as-
sumed. The second paragraph introduces the addition law:

p (E1 or E2 | H ) = p (E1 | H ) + p (E2 | H ) (3.2)

were Ei denotes some event with an unambiguous outcome. Extending Equa-
tion (3.2) to a finite number of events is called finite additivity and seems rea-
sonable. Extending Equation (3.2) to an infinitely countable number of events is
not without controversy (N. Singpurwalla 2006, p. 12). The final law is call the
multiplication law:

p (E1 and E2 | H ) = p (E1 | H ) p (E2 | E1, H ) (3.3)

which gives the probability of the aforementioned third event, that both events
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occur simultaneously. If there is no relationship between E1 and E2 (these events
come from exclusive sets with no shared history) then the events are called inde-
pendent and Equation (3.3) can be written as:

p (E1 and E2 | H ) = p (E1 ) p (E2 ) (3.4)

There are two useful theorems that result from these laws, the first is called the
the Theorem of Total Probability or the Extension of the Conversation and the
second is Bayes’ theorem. H is omitted in what follows for clarity.

Suppose that E1 are mutually exclusive and exhaustive (do not interact and fully
describe all possible outcomes of events) then some event A can, by the Theorem
of the Extension of the Conversation be calculated by considering:

p (A ) = p (A | E1 ) p (E1 ) + p (A | E2 ) p (E2 ) . (3.5)

Thus, if A is some hard to describe or calculate problem it is possible to extend
the problem to include additional events E1 and E2 that may be easier to describe
and hence calculate.

Suppose that there are two events that interact, call them event E and event F .
Then by Equation (3.3), because resulting probability does not depend on the
order of E and F ,

p (E ) p (F | E ) and p (F ) p (E | F )

so that

p (E ) p (F | E ) = p (F ) p (E | F )

Thus, provided that the event E has some non-zero probability of occurring, if
one wants to learn about the outcome of F | E ( and H) and have occurred it is
enough to know

p (F | E ) = p (F ) p (E | F )
p (E ) . (3.6)

As Lindley (1991, pp. 43–44) points out, p (F | E,H ) and p (E | F,H ) are two
different probabilities concerning the same two events where in the former E is
part of H and in the latter E is the random variable and F is part of H. It is
often that case that some event is easier to formulate than some other event so
setting up an experiment in terms of the easier to formulate events is necessary
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to learn about the (often) intractable event. However, this equally often requires
making a guess, judgement or statement of belief about p (F ) which is where the
controversy around Bayesian statistics originates.

The next section will present the Bayesian approach to statistics and modelling
based on Equation (3.6).

3.2.3 Modelling

Probability Model

The Bayesian approach to modelling requires the specification of a marginal joint
probability distribution or measure

P (Y1, . . . , Yt ) (3.7)

over the events of interest Y1, . . . , Yt called the observations or outputs. As this
paper is focused on regression it is assumed that random observations are real
numbers or vectors of dimension n: Yt ∈ Rn. It is also assumed that all distri-
butions are representable as either Lebesgue or Lebesgue-Stieltjes integrals and
that the densities for these distributions exist via the Radon-Nikodym derivative
so that

P (Y1, . . . , Yt ) =
∫

p (Y1, . . . , Yt ) dY t

where dY t = dY1, . . . , dYt denotes a differential with a joint measure that is ran-
dom over all random variables from 1, . . . , t (more accurately written

∫
dP (Y1, . . . , Yt )

but this notation is not used in the rest of the paper). t is an indicator set, in this
paper t ∈ Z+, but in general t could be any ordered set up to R. The notation Y t

means the whole set of random variables Yt up to index t, which in this document
is always increasing in the forward direction.

The motive for the subjective approach to modelling is “learning from experience”
(Bernardo and A. Smith 2007, p. 166). This is encapsulated in Equation (3.3) of
the previous section where it is implicitly implied that the joint specification of
the probability model (Equation (3.7)) can be partitioned in any way necessary
to support the modelling of some subset of the observations and that some future
possible observations, Yt+1, . . . , Ys conditional on the existing observations can be
specified as:

p (Yt+1, . . . , Ys | Y1 = y1, . . . , Yt = yt ) = p (Yt+1, . . . , Ys )
p (Y1 = y1, . . . , Yt = yt ) (3.8)
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However it is extremely difficult, if not impossible, to fully specify the marginal
and conditional judgements explicitly (Bernardo and A. Smith 2007, p. 167; Gold-
stein and Wooff 2007, p. 5) so it is necessary to resort to some specific forms of
model that the stakeholders in the problem believe will accurately make specifi-
cation of the model easier.

The first approach towards simplification is to choose which aspects of the model
are dependent on other aspects. The Bayesian approach to this is to specify which
of the observations are exchangeable with other observations hence removing a
dependence on order or rank. A further step towards simplification is to attest to
some kind of geometric or invariant relationship between observations to give a
particular symmetry to the model. Yet another way to reduce the complexity of
the model is to state that a summary of some of the data is sufficient to describe
the dependency between the data, particularly between the past and the future.
Each of these aspects of simplification are used in this paper and will be briefly
summarised in the following subsections.

3.2.3.1 Exchangeability

The assumption of exchangeability is similar to assuming that observations of the
random variables are independent which would mean that

p (Yt+1, . . . , Ys | Y1 = y1, . . . , Yt = yt ) = p (Yt+1, . . . , Ys ) = p (Yt+1 ) p (Ys )

by the Equation (3.4). However this means that there is no “learning from expe-
rience” (Bernardo and A. Smith 2007, p. 168). In the Bayesian setting, condition-
ality on the history of the observed process which may include known explanatory
variables, other random variables or missing data, also called parameters, is the
main thrust of the methodology and exchangeability of observations, which in-
cludes this history, is essential.

To include the effect of past behaviour in the current model, it is required to
specify a dependency structure between individuals, and subsets of individuals, of
the observables. This is the intention of exchangeability. That is, exchangeability
is the belief that all observations possess a symmetry with each other so that,
from the modellers point of view, the order of the distribution of events does not
matter (Bernardo and A. Smith 2007, p. 168). More formally:

Definition 3.1. The random quantities Y1, Y2, . . . Yt are considered finitely ex-
changeable with respect to the measure P (Y1, Y2, . . . Yt ) if the joint distribution
of these random quantities is the same as the joint distribution of any permutation
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of the same random quantities:

P (Y1, Y2, . . . Yt ) = P
(
Yπ(1), Yπ(2), . . . Yπ(t)

)
where π(i) represents a permutation of the index labels.

Infinite exchangeability is the extension of finite exchangeability to sequences
of finitely exchangeable random quantities. Partial exchangeability is an exten-
sion of exchangeability where the modeller considers that there are additional
“labels”on the random quantities that designate groups of data that may ex-
changeable while allowing the modeller to specify a judgement about between
group dependency (Bernardo and A. Smith 2007, p. 170). This will be dealt
with in a separate subsection below because partial exchangeability is essential
for expanding models to be able to use all available information to strengthen the
learning process (Bernardo and A. Smith 2007, p. 211).

From the some belief about the exchangeability of a sequence of random variables
De Finetti was able to prove his famous representation theorem. The idea is
that if one makes a judgement that, in some way, the sequence of observables
is exchangeable then the joint distribution of the sequence will present itself in
the form of an expectation of the observables with respect the prior (or belief
(Bernardo and A. Smith 2007, p. 179) distribution. More formally:

Proposition 3.1. General representation theorem.
If Y1, Y2, . . . is an infinitely exchangeable sequence of 0 − 1 random quantities
with probability measure p (Y1, Y2, . . . ), there exists a probability measure Q(·)
over F , Q(F ), the space of all distribution functions on R, such that the joint
distribution of Y1, . . . , Yt has the form

P (Y1, . . . , Yt ) =
∫

F∈F

t∏
i=1

F (Yi)dQ(F )

where

Q(F ) = lim
t→∞

P(Ft),

and Ft is the empirical distribution function defined by Y1, . . . , Yt

Thus there is a representation over all possible, measurable distributions, judged
exchangeable, where the empirical distribution function Ft acts as a random (un-
known) measure of the actions involved in distributing the quantities of interest
The representation theorems (finite and and general) provide the theoretical sup-
port and clarification needed that link the familiar ideas of statistical modelling
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to the subjective viewpoint (Bernardo and A. Smith 2007, p. 179).

3.2.3.2 Invariance

A further assumption of invariance places some additional restrictions on the
nature of the space of the observations. For example, suppose that the sequence of
observables has been considered to be exchangeable. Then, suppose the geometry
of the space within which all of these observables, and subsets of these observables,
is also considered symmetric in all directions, that is, spherical. i.e. Y = AYi

for all orthogonal matrices ATA = I. If the predictive model P ( · ) preserves
this distribution then Bernardo and A. Smith (2007, p. 182) show, using the
representation theorem, that the normal model of the distribution of observations
is a consequence of the assumption of rotational symmetry.

Other forms of invariance give rise to some other well known probability models.
For example, the additional assumption (after exchangeability) that any two be-
liefs that occur in the positive quadrant are symmetrical about the 45◦ line gives
rise the exponential model. Further, it can be shown (Bernardo and A. Smith
2007, p. 188) that if the line is invariant to the origin then the “memorylessness”
property of the exponential model can be explained. Similarly for the only other
model that displays the “memorylessness” property: the geometric model.

3.2.3.3 Sufficiency

Sufficiency is the judgement or belief that a summary of the observables is suffi-
cient to model the situation at hand. This summary is a number that captures a
feature of the sequence of observables upon which it is possible or perhaps neces-
sary to rest the model. This number is called a statistic (Bernardo and A. Smith
2007, p. 190):

Definition 3.2. Given a sequence of random quantities or vectors Y1 . . . Yt with
specified sets of possible values y1 . . . yt then a random vector st : y1 × . . . ×yt →
Rk(t) where k(t) ≤ t is called a k(t)-dimensional statistic.

Familiar examples of this type of summary are:

◦ The sample mean: st = t−1(y1 + . . . + yt), k(t) = 1

◦ The sample size, total and sum of squares: st = (t, (y1 + . . . + yt), y2
1 +

. . . + y2
t ) where k(t) = 3

Typically k(t) < t so that the summary produces a reduction in in t. The
reason for these summaries is to make it easier to achieve the evolution of be-
liefs. That is, based on the chosen summary one hopes to make predictive state-
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ments about new data Yt+1 + . . . + Yk described by the probability statement
p (Yt+1 + . . . Yk | Y1 + . . . Yt ). To do this one requires that a statistic is has
predictive sufficiency (Bernardo and A. Smith 2007, p. 191):

Definition 3.3. Given a sequence of random quantities or vectors Y1 . . . Yt with
probability measure P ( · ) and density p ( · ) the sequence of statistics s1, s2, . . . ,
defined over the same set as the random variables Y1 . . . Yt, is said to be predic-
tively sufficient for the sequence Y1 Y2, . . . if for all s ≥ 1, r ≥ 1 and {i1, . . . , ir}∩
{1, . . . , t} = ∅:

p (Yi1 , . . . , Yir | Y1, . . . , Yt ) = p (Yi1 , . . . , Yir | st ) (3.9)

An example of this kind of summary used extensively in this document is known
as the Markov assumption. In that case, the statistic is Yt−1 = yt−1 which means
that all relevant information about the stochastic process is summarised in the
data up to the previous value of the current observation. Another way to interpret
this kind of summary is that past observations are conditionally independent
of future observations given the current observation. Thus the assumption of
summary statistics makes is easier to make predictions about future behaviour
based on past behaviour.

Now suppose that knowing the current random value Yt = yt means that it possi-
ble to assume that the past data is also exchangeable and they can be summarised
by some parameter θ. Then it is possible to show via the representation theorem
(Bernardo and A. Smith 2007, p. 192) that learning about the unknown param-
eter θ is sufficient to transmit the new information to the posterior distribution.
Thus an alternative definition of a statistic is a parameter that is sufficient to
perform this task.

Bernardo and A. Smith (2007, p. 193) proceeds to show that predictive and para-
metric sufficiency are equivalent and that a sequence of statistics is (parametri-
cally) sufficient if and only if it is conditionally independent of some other statistic,
say θ. Further, it is clear from Definition 3.2 that st(Yt, . . . , Yt) = (t, Y1, . . . , Yt)
is always a sufficient statistic. Therefore to achieve summaries of data a mini-
mally sufficient statistic is defined as a sequence of statistics s1, s2, . . . such that
for any other sequence of statistics, u1, u2, . . . these can be represented by some
function(s) such that si = gi(ui), i = 1, 2, . . . .
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Partial Exchangeability

The idea of partial exchangeability is to be able to extend Bayesian probabil-
ity modelling to several random variables, possibly with different indices that
may themselves be either random variables or statistics. Bernardo and A. Smith
(2007, pp. 211–215) show several possible forms of partial exchangeability includ-
ing the exchangeability between sequences of exchangeable random variables,
exchangeability of sequences of random variables conditional on sufficient statis-
tics, structured exchangeability (for example, K replicates, in I groups with J

treatments), exchangeability due to the knowledge imparted by some known (or
random) covariates and exchangeability due to a structured approach of the prior
specification of random quantities, Q that occurs in hierarchical modelling.

Of particular importance in this paper is modelling due to some missing or latent
data, that is parameters which are sufficient statistics by Section 3.2.3.3, mod-
elling with covariates of which regression is an example and hierarchical modelling
because this allows one to learn and adjust parameters or hyperparameters.

In the first case partial exchangeability means that there is unrestricted exchange-
ability for sequences of predictive sufficient statistics so that one can write a
representation of the probability model as

p (Y1(k1), . . . , Yt(kt) ) =
∫

θ∈Θ∗

k∏
i=1

tk∏
j=1

p (Yi,j | θi ) dQ(θ1, . . . , θk) (3.10)

where Θ∗ = ∏
i=1 Θi. Suppose then that the parameters of interest were Zb, b ∈

{1, . . . , KT};Kt ∈ N and that KT was also a random variable. Unrestricted
exchangeability means that this relationship between Zb and KT is representable
in a Bayesian probability model.

Suppose there are some known (specified and observed) variables x(t) = (x1, . . . , xp).
Bernardo and A. Smith (2007) show that the model p (Y1(p1), . . . , Yt(pt) | x1, . . . , xp )
has representation

p (Y1(p1), . . . , Yt(pt) ) =
∫

θ∈Θ∗

p∏
i=1

tp∏
j=1

N(Yij | µi(xi), σi(xi))Q(θ(x))

where

µi(xi) = lim
t→∞

Yt(i), σ−1
i (xi) = lim

t→∞
s2

t (i), s2 is the standard error of Y t and

θ(x) = (µ1(x1), . . . , µt(xp), σ1(x1), . . . , σt(xp)). (3.11)

Thus modelling with covariates is simply a case of assuming that the random
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quantities or vectors are conditionally independent (that is, the same as Equa-
tion (3.8)) given the known covariates and assigning a prior distribution to the
parameters θ.

Hierarchical modelling involves additional beliefs about the prior distribution
Q(θ1, . . . , θk) when it is believed that additional structure to this prior may lead
to interesting and hence informative representations between the sequences of
data that were represented in Equation (3.10). The general idea is that the prior
specification takes the form

g(θ1, . . . , θk) =
∫

ϕ∈Φ
g(θ1, . . . , θk | ϕ)dΠ(ϕ) =

∫
ϕ∈Φ

k∏
i=1

g(θi | ϕ)dΠ(ϕ). (3.12)

where g(·) ∈ G is a function that is distributed according the parametric distri-
bution G.

Assuming that sufficient statistics si(ti), i = 1, . . . , k exist then Equation (3.12)
defines the hierarchical structure

p ( si(ti), . . . , sk(tk) | θ1, . . . , θk ) =
k∏

i=1
p ( si(ti) | θi ) (3.13)

g(θ1, . . . , θk | ϕ) =
k∏

i=1
g(θi | ϕ) (3.14)

Π(ϕ) (3.15)

where Equation (3.13) relates data to parameters, Equation (3.14) models the
parameters θ as if they were a random sample from some parametric distribution
G indexed by the hyperparameters ϕ and the third stage, Equation (3.15) specifies
beliefs about the hyperparameters ϕ.

The next section briefly discusses inference in the Bayesian setting.

Bayesian Inference

The development of the methodology began with explaining the philosophical
and theoretical basis behind Bayesian probability. Using this theoretical basis,
Section 3.2.3 showed how one can represent a set of beliefs about quantities so that
a measure of these observed phenomena, in a structured form called a probability
model, can be provided. This section will show how one can make inference about
these observed, but uncertain quantities for the purposes of making decisions and
taking actions.

Assuming the model prescribed has a parametric representation, Bayesian infer-
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ence concerns the manner in which one updates one’s beliefs about parameters
or missing data in the light of evidence (and new evidence) in the form of data.
The theorem for doing this is Bayes’ theorem or rule, Equation (3.6).

Bayes’ rule, as means for learning about parameters, is a step in the predictive
process (Bernardo and A. Smith 2007, p. 243) in passing from

p ( y1, . . . , yn ) =
∫

p ( y1, . . . , yn | θ ) p ( θ ) dθ

to

p ( yn+1, . . . , ym | y1, . . . , yn ) =
∫

p ( yn+1, . . . , ym ) p ( θ | y1, . . . , yn ) dθ

through

p ( θ | y1, . . . , yn ) = p ( y1, . . . , yn | θ ) p ( θ )∫
p ( y1, . . . , yn | θ ) p ( θ ) dθ . (3.16)

The equation in 3.16 is made of:

p ( θ ) the prior density for one’s beliefs about θ; (3.17)

p ( y1, . . . , yn | θ ) the likelihood function; (3.18)∫
p ( y1, . . . , yn | θ ) p ( θ ) dθ the marginal of the data and (3.19)

p ( θ | y1, . . . , yn ) , the posterior distribution. (3.20)

is called the evidence, constant of proportionality or the

Using the Representation Theorems of Subsection 3.2.3.1 it was shown that be-
liefs about parameters corresponded to long properties of observables and what
these might be in a future sample. As Bernardo and Smith put it “Inference
about parameters in thus seen to be a limiting form of predictive inference about
observables” (Bernardo and A. Smith 2007, p. 244). Parametric inference is only
part of the process and, as Andrew Gelman and Shalizi (2013) put it, should not
be seen as an end itself. However, inference about parameters is still important,
especially in the dynamic model of Subsection 2.2.2 where it is vital to transfer
information from the past into the future.

It is possible to marginalise out nuisance parameters λ from parameter vector
θ = (ϕ, λ) to focus interest on parameters of interest ϕ (Bernardo and A. Smith
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2007, p. 245). This provides the posterior

p (ϕ | y1, . . . , yn ) =
∫

p ( θ | y1, . . . , yn ) dλ =
∫

p (ϕ, λ | y1, . . . , yn ) dλ where

p ( y1, . . . , yn ) =
∫

p ( y1, . . . , yn | θ ) dθ =
∫

p ( y1, . . . , yn | ϕ, λ ) dϕdλ (3.21)

A not uncommon approach in inference is to introduce latent parameters as a
form of nuisance parameter so that one can obtain marginals over observations of
complicated objects by then integrating out the nuisance or latent parameter. An
example of this is using a continuous variable to perform regression on a discrete
data model, as explained in A. Gelman et al. (2013, p. 408), by using a latent
variable to express the the distribution of the change between 0 and 1. This is
equivalent to a Probit model.

An important consequence of parametric sufficiency discussed in Subsection 3.2.3.3
is that t(x) is therefore sufficient in inference to transfer in formation between
the existing and new state based on new or incoming data. Sufficient statistics
can themselves be partitioned in to two exclusive subsets where, given the an an-
cillary statistic a(x), the statistic s(x) | a(x), θ is sufficient for use as the record
of information in the likelihood (Bernardo and A. Smith 2007, p. 248).

Bernardo and A. Smith (2007, p. 249) point out that the Likelihood Principle
(Birnbaum 1962) (that proportional likelihood functions should produce identi-
cal inference), is a natural consequence of Bayes’ theorem rather than being an
imposed principle.

3.3 Bayesian Methods

3.3.1 Stochastic Processes

A stochastic process {Y (t)}t
i=0 is a collection of random variables ordered by an

index set t where both Y (t) and t can be either discrete or continuous. t is usually
one of the sets Z, Z+, R orR+. The state space S of the process are values s ∈ S
that the random variables Y (t) map to from the sample space Ω, indexed by
the set t so that Y (t;ω) = s. It is through observations of the sample paths,
trajectories or realisations that one attempts to infer the properties that underlie
the generation of the process.

The definition of a stochastic process used in this paper is:

Definition 3.4. A stochastic process is a collection of random variables {Y (t; ω) :
t ∈ {0, . . . , t}; ω ∈ Ω} where Ω is the sample space and t is the index set that
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describes the sample ordering. The observed processes are the sequences (path,
realizations, trajectories) of the realisations s ∈ S that the random variables Y (t)
have taken up to time t.

The difference between a discrete-time process and continuous-time process is
that in the former case the observations occur a regular, deterministic intervals
and the in the latter case the timing of the occurrence of an observation is at
random index t so that the intervals or waiting times between observations are
of random duration (length).

Definition 3.5. A discrete-time process is a collection of the random vari-
ables {Yt : t = −∞, . . . , ∞} where the index set t is a countable set. The state
space S is then mapped to a set of realizations or observations, typically denoted
by i and j but these may be elements of Rn or Zn. A (fully) discrete process is
where both the index and state spaces are discrete where the latter is often also
assumed to be finite.

Discrete-time processes are ubiquitous in the study of random processes. They
are found wherever the approximation of a waiting time can be considered to
be regular. Especially useful is the study of Markov chains in the discrete space
because the transitions from one state to another can be formulated in matrix
notation and this lends itself well to linear analysis. For the most part this paper
will consider discrete-time processes over state spaces Rn and Z however is worth
mentioning that the Kalman filter is a discretisation invariant (Särkkä and Solin
2019, p. 197) modelling procedure meaning that it can, like other finite difference
methods, be used to solve continuous time processes.

3.3.1.1 Markov Chains

Suppose there is a general stochastic process {Y (t) : t ≥ 0} on some state space
S. Then one way to describe the evolution of this process, and hence its path,
is via the conditional probability that the random variable Y (tn)1 will take some
state j, given the all the states Y (t1), . . . , Y (tn−1) that the path has visited in
the past. If this conditional probability is based only on the previous state, or
said another way, if the previous state has all the relevant information required
to assess the probability of the next state then the process is said to have Markov
Property. More succinctly:

Definition 3.6. The Markov property of some process {Y (t)} is said to exist
1Here the notation uses ti rather than i to avoid confusion with the general description of

the state indices i, j
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if:

P (Y (tn) = j | Y (t1) = i1, Y (t2) = i2, . . . , Y (tn−1) = in−1 )

= P (Y (tn) = j | Y (tn−1) = in−1 ) (3.22)

for all i1, . . . , in−1, j ∈ S and any sequence of times t1 ≤ . . . ≤ tn.

If the process is a discrete-time process then:

Definition 3.7. A discrete-time Markov chain is any discrete-time process
{Yt} that satisfies the Markov property. The transition probability from state i to
state j is pi,j = P (Yt = j | Yt−1 = i ).

When the transition matrix is known (not changing as a function of index set t)
and fixed over all t it is common to assume that the Markov chain is homogeneous.
That is:

Definition 3.8. A discrete homogeneous Markov chain is a stochastic process
with the Markov property such that

P (Yt = j | Yt−1 = i ) = P (Y1 = j | Y0 = i ) . (3.23)

is the transition probability pi,j for every (tn, tn−1) in t1 ≤ . . . ≤ tn so that the
probability of changing states is independent of the time tn of that transition.

If the stochastic process {Y (t)} is a homogenous, discrete-time process over a
finite state space the the chain is known as a finite Markov chain and it permits
description by:

Definition 3.9. A transition matrix or transition kernel, P = (pi,j), that
is the |S|×|S| matrix of transition probabilities from state i to state j as described
by the Markov property of the process 3.6. This matrix is a stochastic matrix
which means that all entries pi,j > 0 and row sums Σipi,j = 1. If both the row
and columns sums equal 1 then the matrix is called a doubly stochastic matrix.

Of particular interest are the k-fold iterations of the stochastic matrix, P0 ·
P1 · · ·Pk. If P(t, t + k) is the k-step ahead transition matrix and pij(t, t + k)
are the k-step head transition probabilities then Grimmett et al. (2001, p. 215)
use the Chapman-Kolmogorov equations, combined with the property of homo-
geneity above, to show that after repeated iterations P(t, t + k) = Pk. That is,
after k matrix multiplications of the transition matrix starting at some arbitrary
index t, the distribution of the chain is Pk where Pk contains the probability of
going to state j after k steps starting from state i at the tth index.
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If µ0 is defined as the row vector of initial probabilities for random variable Y0,
i.e. P (Y0 = i ) ∀i ∈ S, and µt is defined as the vector of transition probabilities
for all states of Yt at some index t then:

P (Yt = i;∀i ∈ S ) = µt = µ0P
t (3.24)

That is, the distribution of the state i of random variable Yt after t iterations is
determined by the initial distribution over the states and the t-fold products of the
transition matrix. Thus each µi in P t is the marginal probability distribution
of the state i over all the states j or, in other words, each row i contains the
probability of going from every state j (every column in P ) to state i after t
iterations (matrix multiplications) of P . If a chain has distribution µt at index t
then µtP

t is the distribution of the chain at index t+ 1.

From W. Gilks et al. (1995, p. 46) some additional properties of Markov chains
necessary for their use in MCMC sampling are now stated. Let τii = min{t > 0 :
Yt = j | Y0 = i} be the index of the first return to state i starting from state i.
Then:

Definition 3.10.

◦ Irreducibility If, for every state i, j in some finite Markov chain there
exists t > 0 such that, pi,j(t) > 0 then the chain is irreducible. That is,
starting from any state i, very state j as some positive chance of being
visited.

◦ If a finite chain is irreducible it is called recurrent if P ( τii <∞ ) = 1
otherwise it is called transient. Another way of seeing this is that the sum
over all transitions from state i to state j up to some large enough index t
is infinite so that the chain can return to its starting state, or the chain can
recur, infinitely often.

◦ An irreducible, recurrent Markov chain is called positive recurrent if
E [ τii ] < ∞ for some state i otherwise it is called null-recurrent. Thus
a Markov chain that has a finite average number of revisits to each of its
starting states i is positive recurrent.

◦ The of a state i is defined as d(i) = gcd{t : pi,i(t) > 0}. If d(i) = 1 then
the state i is aperiodic otherwise it is periodic. An non periodic chain is
aperiodic for every state i in S.

Another necessary property of a Markov process for MCMC sampling is stationar-
ity. Stationarity of a process means that for all t, the properties of the stochastic
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process are invariant. There are two versions of stationarity, strong and weak or
second-order stationarity. Strong stationarity means that for any two sequences
of the process {Y (t)}, {Y (t1), . . . , Y (tk)} and {Y (t1 +h), . . . , Y (tk +h)} for some
arbitrary discrete h, the two distributions have the same properties (Grimmett
et al. 2001, p. 361). Weak stationarity is a relaxation on strong stationarity by in-
sisting on equivalence of some properties of two adjacent random variables rather
than insisting on a full joint distribution over the finite dimensional distributions
mention previously in this paragraph. That is,

Definition 3.11. A weakly or second-order stationary process is a process
{Y (t) : t ≥ 0} where, for all t1 and t2 and h > 0:

E [ Y (t1) ] = E [ Y (t2) ] and (3.25)

Cov [ Y (t1), Y (t2) ] = Cov [ Y (t1 + h), Y (t2 + h) ] (3.26)

Suppose that π is the (weakly) stationary distribution of some Markov chain,
called the stationary or invariant distribution of the chain, then π = πP and
π(j) = ∑S

i π(i)pi,j, ∀j ∈ S and assuming that P = P t for “enough” t.

One final property of Markov chains that is necessary for MCMC is that of
ergodicity. The idea of ergodicity is that some transformation over the index
set t, call it ϕ, on some measure, say ψ, preserves the measure. Let A(t) be some
subset of Y (t). Then ψ(A(t)) = ψ(ϕ−1(A(t))) for all A(t) ∈ Y (t) if ϕ−1(A(t))
is a measure preserving map. Thus for any any event A(t) in Y (t), no matter
how much the map ϕ distorts A(t), if the measure ψ is invariant to begin with
its will remain invariant after the transformation. Thus, for example, if one were
to attempt to measure the area of a plane (or any bounded space) by taking
random samples, as long as the measure is invariant, no matter how one chooses
coordinates, the measure remains invariant and averaging over that measure to
get the area (volume) will make sense by the law of large numbers.

The point of MCMC, which is the topic of the next section, is to sample from
a bounded space in such a way that the ergodic average(s) of the measures of
that space can be used to define the properties of the stationary distribution that
produced the samples. In particular, a theorem taken from W. Gilks et al. (1995,
p. 47) states that,

Theorem 3.1. If a stochastic process {Y (t)} is a Markov chain that is positive
recurrent, hence irreducible, and aperiodic then its stationary distribution π is the
unique probability distribution that is positive recurrent. Thus
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1. pi,j(t)→ π(j) as t→∞ for all states i, j;

2. Ergodic Theorem if E [ |f(Y (t))| ] <∞ then P
(
f̄N → E [ f(Y (t)) ]

)
= 1.

That is, if the average of some function f(i), i ∈ S of the states of the
Markov chain is absolutely convergent then the probability that the aver-
age of the samples f̄N of this chain converges to the theoretical average,
E [ f(Y (t)) ] = ∑S

i=1 f(i)π(i) is 1.

3.3.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method for calculating averages via
sampling. Monte Carlo integration is used to calculate difficult integrals by av-
eraging over the outputs of some function f(Y = y), assuming that Y = y is
sampled from some known distribution π over the domain of f . Clearly if π is a
difficult distribution then

E [ f(Y ) ] ≈ 1
N

N∑
i=1

f(Y (i)), (3.27)

the Monte Carlo average, will be hard to achieve. Using a Markov chain with the
properties described above makes sampling more efficient because, if the stochas-
tic process that is the Markov chain fulfils the properties in Theorem 3.1, then one
is guaranteed that each sample drawn for the ergodic average in Equation (3.27)
is from π, the invariant distribution of the chain and so, on average, one is not
wasting time drawing less important parts of the domain of f .

Assume that π is the posterior of some Bayesian probability calculation. There
is no guarantee that π is a stationary distribution of a Markov chain. However, it
may well be possible to find some P for π so that π is a stationary distribution.
Thus MCMC can be seen as the inverse of finding or creating π (Levin and Peres
2017). That is, assume that π, the posterior of some Bayesian (or some other)
distribution, is a stationary distribution and the use some method to construct P
so that after a “long enough” number of samples or enough repeats of the sampling
process, the averages produced are the averages that describe the properties of π.

The first subsection that follows provides a general introduction to Metropolis
chains and this followed by a more detailed look at Glauber dynamics (Levin and
Peres 2017), a more general description of Gibbs sampling. The ideas in both of
these approaches are used to design and modify the MCMC method used in this
document.
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3.3.2.1 Monte Carlo Integral Solving

To begin with consider a transition matrix ψ that is symmetric. Thus ψ is
reversible (satisfies the detailed balance requirements π(i)pi,j = π(j)pj,i) with
respect to the uniform distribution on {Y (t)} (Levin and Peres 2017). Suppose
that i is the current state of the chain with kernel ψ and choose some new state
j using pi,j from ψ. Reject this new state j with probability 1−α(i, j) otherwise
accept the new state of the chain j. This process of accepting and rejecting
proposed new states generates a new Markov chain with transition matrix P
defined below as:

P (i, j) =


ψ(i, j)α(i, j) if i ̸= j

1− ∑
k∈S,k ̸=j

ψ(i, k)α(i, k) if i = j

which is the kernel of a stationary distribution π by Proposition 1.20 in Levin and
Peres (2017, p. 13) i.e. if π(i)ψ(i, j)α(i, j) = π(j)ψ(j, i)α(j, i). Rejecting moves
to new states is wasteful so the art of developing a MCMC method is in choosing
some π(i)α(i, j) as large as possible so fewer moves are rejected. The Metropolis
chain achieved this by insisting that α(i, j) = min(π(j)/π(i), 1) so that the kernel
of the Metropolis chain is:

P (i, j) =


ψ(i, j)(π(j)

π(i) ∧ 1) if i ̸= j

1− ∑
k∈S,k ̸=j

ψ(i, k) · (π(k)
π(i) ∧ 1) if i = j.

(3.28)

The assumption of a symmetric chain is not necessary and the Metropolis-Hastings
approach to MCMC provides a more general chain that requires additional terms
that “balance” the Metropolis approach of Equation (3.28). Thus, rather than
comparing the distributions of the states π(i) and π(j) directly (because if the
kernel is not symmetric this may introduce a bias towards one state over the
other) introduce terms Q(i, j) and Q(j, i) so that

P (i, j) =


Q(i, j)(π(j)Q(j,i)

π(i)Q(i,j) ∧ 1) if i ̸= j

1− ∑
k∈S,k ̸=j

Q(i, k) · (π(k)Q(k,i)
π(i)Q(i,k) ∧ 1) if i = j.

(3.29)

The terms Q(i, j) and Q(j, i) are proposal kernels which, from Equation (3.29),
show that in the general MCMC case, the choice between accepting and rejecting
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a new state is

P (i, j) =


1

π(i){π(j)Q(j, i) ∧ π(i)Q(i, j)} if i ̸= j

1− ∑
k∈S,k ̸=j

1
π(i){π(k)Q(k, i) ∧ π(i)Q(i, k)} if i = j

(3.30)

the minimum of the going to the new state and staying in the current state,
proportional to the current state.

Generalising Equations (3.29) and (3.30): if one makes π(i) = π(θi | yt) and
π(j) = π(θj | yt) samples from the posterior distribution of θ | yt then π(θi | yt) ∝
p ( θi ) p ( yt | θi ) and π(θj | yt) ∝ p ( θj ) p ( yt | θj ) where θ is the parameter of
interest, p ( θ ) is the prior belief in this parameter and p ( yt | θ ) is the likelihood
of this parameter over the data sequence yt. This makes the appeal of MCMC
clear because at no point is it necessary to calculate the marginal of the data
distribution. Rewriting the first part of Equation (3.30),

1
p ( θi ) p ( yt | θi ){p ( θi ) p ( yt | θi )Q(j, i) ∧ p ( θi ) p ( yt | θi )Q(i, j)}, (3.31)

it is clear that to find the target posterior it is only necessary to know the prior
and the likelihood of the parameter of interest, thus avoiding further complex,
often intractable, calculations.

3.3.2.2 Glauber Dynamics

Glauber dynamics (Levin and Peres 2017) is a generalised term for the familiar
Gibbs sampler, a very common approach to MCMC. The reason for using the
generalisation is that it is intended to show that the Gibbs sampler is one example
of sampling over graph configurations.

From Levin and Peres (2017), let V be a finite set of vertices of some graph G

and S some finite state space. Then SV is the set of configurations of the graph
G with vertex labels S and X is some subset of SV . Let π be the probability
measure with support X . For x ∈ X , v ∈ V , let X (x, v) = {y ∈ X : y(w) =
x(w) for all w ̸= v} be the set of states agreeing with x every where but at v and
define

πx,v(y) = π(y | X (x, v)) =


π(y)

π(X (x,v)) if y ∈ X (x, v)

0 if y /∈ X (x, v)
(3.32)

to be the distribution π conditioned on the set X (x, v). The rule for updating a
configuration x is: pick a vertex v uniformly at random and choose a new config-
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uration according to πx,v. The set X (x, v) is the set of allowable configurations
and πx,v(y) describe the transition probabilities of going from configuration x to
configuration y. The very useful point of this description is that one can describe
almost any type of allowable set of configurations and then perform MCMC sam-
pling over this.

An example given by Levin and Peres (2017) is over proper q-colourings (config-
urations x of G so that neighbours of v do not have the same colouring) but one
can imagine that many collections of configurations of nodes in G can be used.

In the Gibbs sampler suppose that S = Θ is the finite state space of the Gibbs
sampler and that V is the dimension of the state space so that Θ = (Θ1, . . . ,ΘV )
are the components of parameter space Θ. Then ΘV is the set of configura-
tions of some graph G with vertex set V . The Gibbs sampler aims to find the
stationary Markov chain Θ1, . . . ,ΘM that has transition matrix P (Θi,Θj) =
p ( Θj | Θi ) ,∀i, j ∈ 1, . . . V × V . This is done by iteratively updating one com-
ponent of Θ, Θj say, conditional on the components of Θ that have already been
updated, call this vector Θ̸j. Thus the set of allowable configurations at each
iteration is the set {Θk ∈ Θ̸j} that form the conditional distributions of the tran-
sition matrix p ( Θj | Θi ). That is, Θ1, . . .Θi are updated sequentially so that at
each m ∈M , Θj is conditional only on Θi, hence Markovian. The elements of P
are the conditional distributions of the parameter vector Θ and P is a tri-diagonal
matrix where each entry of the matrix is sequentially updated and full transition
from state Si to state Sj is completed when all conditional distributions have
been updated.

Markov chain Monte Carlo has very many implementations with many advantages
but none of which has been used in the streaming setting. These cannot all be
shown here but one of the motivations behind choosing MCMC rather than other
methods is that once it has been shown that MCMC can get very close to the
target distribution in the streaming setting then other methods of MCMC can
be employed to extend the proposed approach.

The section that follows this will give a brief description of another method of
solving integrals by sampling called Sequential Monte Carlo. This method is not
used in this document but it has been used in the streaming setting and is used
here as a benchmark that is known to converge to correct target distribution.

3.3.3 Sequential Monte Carlo

Not as much space will be dedicated to this section an only a flavour of the method
is required for the basis of comparison. A brief description of the method and the
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way it is used will be provided. Sequential Monte Carlo (SMC) has been used by
Taddy et al. (2011) for providing the posterior distribution of tree models and
this has been adapted by Anagnostopoulos and Gramacy (2013) for the streaming
setting. Perhaps appropriately, SMC is based on the particle filtering method
described in Gordon et al. (1993) which has Kalman Filtering (via R.S. Bucy of
Kalman-Bucy filtering (Kalman and Bucy 1961)) as one of its progenitors.

In a nutshell, SMC is a modification of sequential importance sampling that
prevents all of the importance weight falling on a single particle of the empirical
distribution used to approximate target posterior distribution. Algorithm 3.1
below, taken from Doucet et al. (2001, p. 11), shows how the particle filter is
used:

Algorithm 3.1: SMC Bootstrap filter.
Result: The empirical posterior distribution p ( zt | yt )

1 At t = 0
2 for i = 1, . . . , N do
3 Sample z0 ∼ p ( z0 )
4 At t = 1
5 Importance sampling step
6 for i = 1, . . . , N do
7 Sample z̃i

t ∼ p
(
zt | zi

t−1

)
8 Set z̃t,i = (zt−1,i, z̃i

t)
9 Evaluate importance weights w̃i

t = p ( yt | z̃i
t )

10 Normalise the importance weights: w̃i
t = w(zt,i)∑N

i=1 w(zt,i)

11 Particle selection step
12 for i = 1, . . . , N do
13 Sample particles zt,i ∼ w̃i

t from the set z̃t

14 Set t = 2 and repeat from the importance sampling step.

The attraction of this algorithm is its simplicity requiring, in its simplest form,
only modifications to the importance distributions. It can easily be implemented
in parallel and it is a black-box routine needing only importance weights and
indices as inputs.

As mentioned in Section 2.3.2.2, Taddy et al. (2011) developed trees as particles.
They use a resample→ propagate routine for each iteration where the importance
weight of the tree is generated by the tree marginal at each t and the propagation
step uses the moves of Chipman et al. (1998) to generate a new tree to act as the
prior for the tree model and then, using the new covariate to choose a terminal
node, update the tree marginal and the leaf model statistics using only the data
at the chosen terminal node.
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In Doucet et al. (2001), Chapter 2, D. Crisan shows that the particle filter is
guaranteed to converge to the target posterior distribution. However SMC still
has a degeneracy problem (a single particle tends to be preferred over others)
and methods to generate new particles have been developed (W. R. Gilks and
Berzuini 2001; Andrieu et al. 2010) that combine MCMC and SMC. The former
generates particles as one does SMC but uses MCMC proposal moves (resample
and move algorithm) to keep the particle distribution from degenerating. In the
latter case, the authors use SMC to generate proposal distributions for MCMC
sampling where the target distribution is high dimensional distributions and the
where the parameters of the posterior might also be correlated.
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4 A Regression Model for Stream-
ing Data

4.1 Introduction

The concept behind this thesis is to learn about the state of nature of an observed
process by sampling a set of possible filters. The set of filters are indicated, or
pointed to, by tree models based on explanatory variables and the rules embedded
within the tree structure. However, not only is the set of possible tree models
very large but, in the streaming setting, there is a demand that the state of nature
should be available as soon as is practically possible. Thus an ensemble of tree
models, each adapting to the changing state of nature by assessing a completed
likelihood, is proposed. This ensemble of models both covers some portion of
the space of tree models and aids in the search of models in the nonstationary
streaming environment.

Consider the ensemble model from Proposition 1.1 where:

◦ F is an ensemble function over a set of tree models T (·, xt, ξT (t)).

◦ T (·, xt, ξT (t)) provide a set of random bases for filtering models g(Zt,b, ψb, t), b ∈
1, . . . , KT where KT is the number of parts (leaves) in the partition created
by T and

◦ g(Zt,b, ψb, t) is a linear Kalman filter model for the latent process Zt that, for
each discrete t, has some probability of being updated where the probability
of an update is based on the random tree function T (·, xt, ξT (t)) at each t.

Then Equation (1.2) can be written as:

Y t ≈ F(xt, Θ, εt, t)

=
∑

∀T ∈F
T (g(Zt, ψT , t), xt, εt, ξT ) P

(
T | Y t, g(Zt, ψT , t), xt, εt, ξT

)
. (4.1)

87



which is a mixture of tree models T (·) over an approximation to the distribution of
these models weighted by p (T | · ). As such the Equation (4.1) is a composition of
model functions which will be called model constituents to distinguish them from
the usual terminology of mixture models which describe the individual models as
components.

This composition of approaches to modelling has been adapted to the streaming
setting. This setting imparts conditions and restrictions that are different to the
familiar model assumptions, formulations and approaches that were presented for
each these constituents in Chapter 2.

The immediate sequel, Section 4.2, provides a detailed description of each of the
constituents of the model. More specifically;

◦ an adaptation of the intermittent filter g(Zt,b, ψb, t) in Equation (4.2) for
inference on the state;

◦ a revision of the approach to random generation, selection and modifica-
tion of the tree models, T (·, xt, ξT ), in Section 5.2 to using MCMC in the
streaming data setting and finally;

◦ in Section 5.4 an ensemble F(·) approach to MCMC and regression which
generates a posterior weighted mixture of trees for prediction and model
search is presented.

The next part of this chapter will delve more deeply into the tree filter model. This
tree filter is a stepping stone for the next chapter but is of fundamental importance
because the tree filter not only improves upon the Kalman filter (Kalman 1960)
if it is suspected that there may be more than one process worth tracking but
provides a means for specifying the conditions under which the Kalman filter can
adapt to these suspected different processes. The result is an adaptation of the
Intermittent Kalman filter (IKF) (Sinopoli et al. 2004) to the case where there
is more than one filter, the update of the filter is conditionally structured on the
tree model and at every iteration at least 1 filter is updated if an observation is
available.

The next part of the chapter will be a detailed calibration study for the leaf
parameters of the tree filter. Unlike the IKF where interest lies predominantly in
maintaining a continuous signal or in control of the devices that rely on the signal,
the aim of this tree filter is to be able to reduce a complex signal to a simpler
collection of signals that must operate for an undefined length of time without the
opportunity for control so leaf parameter choice is important. This calibration
study has further implications for the next chapter where the number of leaves is
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randomly changing and ensuring a probability of an update is impossible.

The final part of this chapter are simulation studies that explore the effect of the
calibration study on various aspects of the simplest form of tree model: the 2-leaf
model.

4.2 Model Description

The purpose of this section is to provide a detailed description of the proposed
model as described in Equation (4.1). Chapter 4 contains only part of the fully
proposed model so this section is meant to act as an overview of contents of
this chapter and Chapter 5, where the reminder of the model is presented and
demonstrated.

This chapter focuses on leaf modelling and inference assuming a fixed tree model.
The next chapter considers the case where the tree models are changing and
model selection using MCMC acts a method for adapting models to the changing
stream environment.

When the tree structure is fixed and known the tree acts to provide a set of
conditional bases for a collection of Kalman filters. The contribution of this
model is to adapt the IKF into a tree filter where, conditional on the tree, the
support of the observation process can be specified more accurately.

The tree filter model has two constituents of the model presented in Equa-
tion (4.1). The first of these constituents is an intermittent filter at the each
of the leaves:

g(Zt,b, ψb, t) =


zt,b = Ft,bzt−1,b + N(0,Wt,b) if ηxt,T ̸= bzt,b = Ft,bzt−1,b + N(0,Wt,b)

yt,b = Ht,bzt,b + N(0, Vt,b)
if ηxt,T = b

(4.2)

where ηxt,T ∈ {2, . . . , KT} is a function that indicates the leaf number chosen by
xt in tree T .

The prediction and estimate of the level at each of the leaves is

µ̂t|t−1,b = Ft,bµ̂t−1|t−1,b if ηxt,T ̸= b (4.3)

µ̂t|t,b = µ̂t|t−1,b +KtS
−1εt if ηxt,T = b (4.4)
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where

εt = yt −Ht,bµ̂t|t−1,b

St,b = Vt,b +Ht,bΣ̂t|t−1,bH
T
t,b

Kt,b = Σ̂t|t−1,bH
T
t,bS

−1
t,b

The estimate of the covariance is

Σ̂t|t−1 = Ft,bΣ̂t−1|t−1,bF
T
t,b +Wt,b if ηxt,T ̸= b (4.5)

Σ̂t|t = Σ̂t|t−1,b −Kt,bHt,bΣ̂t|t−1,b if ηxt,T = b (4.6)

Notice that these are the IKF updates from Section 2.2.2.1 except that each filter
is subscripted with a b to indicate which of the parts b ∈ {2, . . . , KT} the filter
belongs to.

The second constituent is the tree model

T (g(Zt, ψT (t), t), xt, εt, ξT (t)) (4.7)

where

g(Zt, ψT (t), t) is from Equation (4.2);

εt = yt −Ht,ηxt,T
µ̂t|t−1,ηxt,T

(4.8)

ξT (t) = (α, β, p, B) (4.9)

xt is the set of sequential (assumed) deterministic covariates. The error εt is
a function of the tree because it changes depending on which leaf is chosen at
each t. That is, it is dependent on a particular g(·) from Equation (4.2). In
Equation (4.9) α and β have the same rôle as they do in the Bayesian tree model
of Chipman et al. (1998). p is the number of covariates which could be altered by
an analyst (G. Box and Luceño 1997) but also vary depending on their nature.
B are the bounds of the covariates. More detail on this in Chapter 5 because in
this section the tree model is fixed.

A fixed tree model means a simplified version of the tree model in Section 2.3.2.2.
All tree models in this document start as a weak-learner: a tree with a single root
node, a single covariate xj at the root node and threshold value cj ∈ B = (0, 1).
The xj and cj are deterministically chosen in the fixed tree model and do not
change throughout the analysis. In this section only a 2-leaf tree is considered
because this section and the 2-leaf tree are building blocks for the models in
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Chapter 5 that follows. However, as Section 4.3 shows, by forming a completed
marginal likelihood for the tree model over the leaf filter that is randomly updated
at each t and each of those filters at the leaves that are not updated, the tree
filter can outperform the Kalman filter if, for example, one wanted to separate
signals or track particular objects based on some conditional rules. This makes
the tree filter a useful contribution itself although fully exploring this is not the
aim of this section nor this document.

Constituent two is taken up more fully in the next chapter and a more detailed
description would be best left to there. In short, in that chapter the fixed the tree
model is allowed to change form based on a randomly sampled structure and rules
that were designed by Chipman et al. (1998). Their approach has been modified
for the streaming setting but the idea for the random sampling process for tree
modelling is theirs. The difference between their approach and this one is that
there the search is over a finite data set for a collection of appropriate models
that would then be reviewed by an expert. Here, the trees are sampled for as
long as the analysis runs so that estimation via the Kalman filter, learning and
choosing models and adapting to data is all performed on-the-fly. This approach
breaks with the train - test - validate - predict approach that is usually, in other
tree but also more general models, done in separate stages and often cycled over.

The contribution of that chapter is a Gibbs-within-Metropolis approach to MCMC
using trees and model bounds to select an appropriate set of coordinates for model
search and then using a Metropolis-Hastings acceptance ratio to choose between
trees. The marginal likelihood for the fixed tree model of the previous subsection
is incorporated into the evolving tree model in a simple way.

To do the train, estimate, predict and learn routine on the fly in a sensible way in
a probabilistic setting means that there must be some kind of well-behaved dis-
tribution from which one can sample trees. This leads on to the final constituent
of the model in Equation (4.1): the mixture over the ensemble.

Y t ≈ F(xt, Θ(t), εt, t)

=
∑

∀T ∈F
T (xt, Θ(t), εt, t) P

(
T | Y t, xt, Θ(t), εt, t

)
(4.10)

is the complete model where T (·) is from Equation (4.7) and Θ(t) represents all
parameters in the model including those of Equation (4.2). Each of the trees
T (·) represents a sample from the space of possible tree models but also each tree
represents a Markov chain. This is taking the tree sampling stochastic process
of Chipman et al. (1998) to heart because this potentially very long sampling
process forms a stochastic trajectory over the space of trees. If the sample space
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were finite then Chipman et al. (1998) show that this trajectory converges to the
target posterior for the tree using Markov chain Monte Carlo methods. Taddy et
al. (2011) and Anagnostopoulos and Gramacy (2013), using SMC (Section 3.3.3),
show that by generating an ensemble of tree particles one can maintain the tar-
get posterior for the tree model when new data is sequentially added. The third
constituent of the proposed model differs from both of these approaches because
it is an MCMC method: the tree models are compared and learned by accept-
ing/rejecting new models based on new data. However it is also an ensemble
method because there are F Markov chains that are used to cover more of the
tree model space sooner than a single chain might achieve. MCMC depends on a
finite sample space for the target distribution to be attained and for the ergodic
averages to make sense so it is not expected that at t+ 1 the target distribution
from t for T will achieved by any one of the trees individually. However, the
mixture model of Equation (4.10) sums over all posterior weighted outputs of the
tree model thereby combining estimates and predictions so that at each t, it is
not the output of a single chain that provides information about the parameters
of the target distribution. Thus, as will be demonstrated in Chapter 5 and more
convincingly in Chapter 6, the difference between the “true” target distribution
and the approximation to the target distribution produced by the ensemble is
negligible.

4.3 Tree filter

The model at each leaf of the tree is an intermittent Kalman filter (Sinopoli et al.
2004) (IKF) where the intermittency arises as only one leaf is updated at each
t. The difference between the IKF and the model proposed here is that in this
case both the updated and nonupdated filters must be considered at each t and
each leaf b. Thus, assuming that a tree has a fixed structure (number of leaves,
covariates and rules), there are a fixed number of filters that can be chosen from
at each t to provide an estimate of the level of the latent process Zt and hence
the observed process Y t.

Algorithm 4.1 provides a simplified view of the intermittent tree filter. In this
section both the xj and cj are fixed and known so the conditional statement
around cj can be ignored. It is included here for some generality in the fixed tree
approach. Also note that while it is possible to include waiting times between
predictions and updates (and between known covariates and random observa-
tions) the approach in this document is that each dt = (xt, yt) arrives as a single
data point and so 1-step ahead predictions and updated estimates are not output
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separately.

Algorithm 4.1: Streaming algorithm for a fixed tree filter.
Result: At each t ∈ 1, . . . , : µt|t,b, the estimate of the latent process Zt at

index t, Σt|t,b, the variance-covariance of the estimate of Zt and
log p (Yt | xt, T, ψT ), the log of the integrated likelihood at t

1 Initiate the fixed tree structure from tree adjacency matrix:
2 foreach η ∈ IT do
3 Get xj assigned to η
4 if cj exists then
5 assign cj

6 end
7 else
8 Get B(xj) = (LBj, UBj)
9 Choose cj ∼ U(LBj, UBj)

10 Update I(ηj)
11 end
12 end
13 foreach b ∈ LT do
14 Get ψb = (Hb, Vb, Fb,Wb, µ0,b,Σ0,b)
15 Initialise the Kalman Filter at each leaf
16 Initialise log p (Yt | xt, T, ψT )
17 end
18 Start the streaming analysis:
19 while !STOP do
20 foreach b ∈ LT do
21 Predict µt|t−1,b

22 end
23 Wait for xt

24 Using xt, choose the filter at leaf b from T
25 Wait for yt

26 Using yt, update the Kalman Filter at leaf b
27 Output µt|t,b, Σt|t,b, log p (Yt | xt, T, ψT )
28 end

Bearing in mind that a tree model is strongly conditional on the choice of rule
and coordinate at the root (Denison, C. C. Holmes, et al. 2002), the tree acts as
a prior for a set of possible models. The root covariate and threshold value can
be considered the main effect on the observation. The covariates and thresholds
at the nodes in the subtree act as interaction effects on this main effect. Thus
one way to interpret the leaves of the tree is that they present a set of possible
interaction models conditional on the main effect and hence the leaves that are not
updated provide a set of predictions of the latent state process Zt that complete
the support of the likelihood of the nonstationary process Y t. The leaf that is
chosen at index t provides a conditional likelihood for observation at Yt = yt and
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so marginalising over the tree at each t provides a completed marginal likelihood
for the observation Yt = yt.

An issue with the tree filter model is that there are 6 parameters,

ψb = (Hb, Vb, Fb,Wb, µ0,b,Σ0,b),

that must be specified for each of the filters at each of the leaves. Resolving
this issue can done by replicating the approach of Chipman et al. (1998) to the
sampling of the covariate values by assuming that these parameters come from
a set of known parameters that are selected either uniformly or deterministically
at each t. The lack of identifiability of Kalman filter parameters precludes in-
ferring all parameters and in the streaming setting this would place too much
of a time burden on the process. Sampling all parameters is also problematic
because stipulating and adapting the distributions from which samples are taken
is difficult in the streaming setting. The calibration study of Section 4.4 presents
a deterministic method for setting a large number of parameters. It is included
in this chapter because examining the leaf parameters is the focus here but the
the main consequence of the calibration study is the ease with which one can
initialise a large ensemble of trees in a sensible way and have some idea of how
the leaf filters will perform and affect the tree filter as the tree model changes.

The first part of the subsection that follows will give a simple demonstration of
the proposed model in the form of a fixed tree model of only two leaves. This sim-
ple model, called the base or 2-leaf model, is suitable to introduce the main ideas
proposed in this document and for the exploration of the ideas that are neces-
sary to perform inference on the latent state process without being distracted by
model selection. This subsection will formalise the probability model previously
described with a particular focus on the model likelihood.

The third part of this subsection will provide, firstly, a simulation study will to
investigate the effects of random updates on the filter estimates and tree marginal
for the 2-leaf tree with different update probabilities and secondly when there are
more than two leaves in the tree. In both of these cases the parameters of for
the filters, ψT will be fixed. Thus the third simulation study will focus on the
effect of random updates on the tree estimates and marginal likelihood but across
different sets of parameters.
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4.3.1 2-leaf Model

This section will begin with a description and demonstration of a specific 2 leaf
tree model with linear Kalman filters at each of the leaves. This will be followed
by the specification of the probability model for the proposed modelling approach.
The derivation of the tree marginal likelihood which is supported by the deriva-
tions in Appendix A1 in particular, Appendix A1.1.1 is the main focus of this
section with the development of the prior and posterior deferred to Section 5.2.

The data for this demonstration was simulated from a binary tree with a threshold
at the root node of 0.5. The single covariate xt1 has its values uniformly chosen
from (0, 1) hence each of the leaves has a uniformly random chance of being
selected at each t. The 1-dimensional observation at a chosen leaf is generated
from a 1-dimensional latent process:

zt,b = f s
t,bzt−1,b +N(0, ws

t,b)

yt,b = hs
t,bzt,b +N(0, vs

t,b)

where each of the leaf parameters ψs
b = (hb, vb, fb, wb) are specified in Table 4.3.1a

and the superscript s shows that the these parameters are those chosen for the
simulation.

The 2-leaf model is a binary tree model with a single covariate at the root node.
The threshold of this covariate is 0.5 so that each leaf b = 2, 3 has a 50% prior
chance of being updated because all covariate values are normalised to be in
the range (0, 1). Conditional on the tree, the 1-dimensional leaf models for each
b = 2, 3 are:

zt,b = ft,bzt−1,b +N(0, wt,b)

yt,b = ht,bzt,b +N(0, vt,b)

and the 1-dimensional predictions for the level parameters µ̂t,2, µ̂t,3, σ̂t,3 and σ̂t,3

are:

µ̂t|t−1,b = ft,b,bµ̂t−1|t−1,b

σ̂t|t−1,b = f 2
t,b,bσ̂t−1|t−1,b (4.11)

at both leaves at every index t. If a data input xt1 < 0.5 then the left leaf model
is chosen to be updated and the right leaf model level parameter prediction is
propagated to the next iteration. If the known input xt1 ≥ 0.5 then opposite hap-
pens with the right filter being updated and the left prediction being propagated.
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The update equations for the estimates of the level parameters are:

It,b ỹt,b = It,b(yt − ht,bµ̂t|t−1,b)

It,b st,b = It,b(h2
t,bσ̂t|t−1,b + vt,b)

It,b kt,b = It,b

(
ht,bσ̂t|t−1,b

st,b

)
µ̂t|t,b = µ̂t|t−1,b + It,b(kt,bỹt,b)

σ̂t|t,b = σ̂t|t−1,b − It,b(kt,bht,bσ̂t|t−1,b) (4.12)

where It,b = 1 if the leaf is chosen and 0 otherwise.

Thus at every t at least one model must be updated and all other leaf models
provide a prediction for the their trajectory. Note that the value xt1 is only used
to choose the appropriate model. This value, described here as an input, does not
form part of the prediction or update step other than to indicate which model
subspace of Zt = b best describes the latent trajectory of Yt at index t. The
predictions and updates are only functions of their prior trajectories and, by the
Markov assumption, of their position in the state subspace at index t− 1.

The estimates of the levels are not direct functions of the inputs so that the leaf
models are independent of xt ∈ X . The benefit of this is that, from the streaming
point of view, there is no need to store any of the input data: the observation
and explanatory variables are only needed at the particular index at which they
arrive; the tree stores the information about the covariate subspaces and the
leaf models store the necessary latent information about the trajectories to both
predict and estimate the level at the current index and some future indices of the
sample spaces t+ k, Zt+k and Y t+k.

The parameters for the 2-leaf model filters are specified in Table 4.3.1b. For this
demonstration these parameters have been chosen to help explain some of the
properties of the model. Choosing parameters more generally will be explained
by the calibration study.

Leaf Simulation Parameter Values
v w f h µ0 w0

2 1 1 0.75 1 0 1
3 0.5 3 0.5 1 1 1

(a) Leaf Simulation Parameters

Leaf Model Parameter Values
v w f h µ0 w0

2 1 1 0.95 1 0 1
3 0.5 1 0.75 1.5 1 1

(b) Leaf Model Parameters

Table 4.3.1

Figure 4.3.1 presents the state estimates for the 2 leaf tree model. Each of the leaf
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mean estimates for the latent process are denoted µ̂t|t,2 and µ̂t|t,3; the observation
process by yt; the latent process by the dashed line zt and the estimates chosen
by the tree model as µ̂t|t,tree. Also shown on this graph is the trajectory of the
linear Kalman filter µ̂t|t,kal which is the black dashed line. The parameters used
for this filter are the same as those used for leaf 2 As Figure 4.3.1 shows, there
is not much to distinguish between the linear Kalman filter and the tree filter,
where in some cases the Kalman filter estimate of the level at index t is closer to
the simulated state estimate and in some cases the tree filter estimate is. This
was to be expected because the Kalman filter is an optimal linear filter and both
leaf simulations are from a linear filter. However, the advantage of the tree filter
can be seen in Figure 4.3.2 where the graph shows the 95% estimate bounds for
both the tree and Kalman filters.

Figure 4.3.1: Tree and leaf filter output for the 2-leaf model.

In Figure 4.3.2 the dashed lines show the pointwise errors of the trajectories of
the tree and Kalman filters which are the solid lines in the graph. The third solid
line is the observation trajectory. Here it is clear that by using the tree filter
the bounds of the pointwise estimates are tighter than by just using the Kalman
filter estimates alone. Note that a direct comparison between the tree and filter

Figure 4.3.2: Tree and Kalman filter output for the 2-leaf model.

trajectories would be the incorrect approach. To make a valid comparison one
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would need to include the model(s) that were not selected for the tree filter
via the marginal likelihood of the tree (as opposed to the conditional marginal
likelihoods for each of the leaf filters). Including the nonupdated model broadens
the support for the distribution of the observed process so that as values tend
towards the tails (away from the mean of the process) of the distributions the
density of these values is greater than would be by using the tighter pointwise
conditional marginal distribution that is depicted in Figure 4.3.2.

Having something more concrete to discuss the next section will present the tree
filter probability model. The main focus in this section is the tree likelihood and
its benefits to filtering. The calibration study that follows the probability model
forms part of the tree prior concept but the rules and modifications made to this
prior will be further detailed in Section 5.2. The posterior distribution of the tree
is important for model prediction but again these formulations and descriptions
will be more appropriate in later sections.

4.3.2 The Probability Model

The proposed probability model for the tree is a joint distribution of a tree model
T , the observation process Y t = {Yi}t

i=1 and a latent data process Zt = {Zi}t
i=0

that completes the observation process. This model can be factorised into the
prior model for the tree, the initial distribution for the latent process, and the
joint distribution of observations that are assumed conditionally independent and
exchangeable given the explanatory variables xt and the latent process Zt:

p
(
T, Y t, Zt | xt, θT

)
= p (T | ξT ) p (Z0 | T, ψT ) ·

t∏
i=1

p
(
Yi | T, Zi, ψT , x

t
)

p
(
Zi | Zi−1, T, ψT , x

t
)

(4.13)

Using Bayes’ rule the joint posterior probability for the tree and the latent process
is:

p
(
T, Zt | xt, Y t, θ

)
∝ p

(
T | xt, ξT

)
p
(
Y t | xt, Zt, T, ψT

)
·

p
(
Zt | xt, T, ψT

)
(4.14)

where xt are the independent variables and θT ⊂ Θ are a set that contains the
parameters of the model, including ψT for the Kalman Filter models and ξT for
the tree model, but excluding latent parameter process Zt which has been made
explicit.
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The tree provides a prior domain and a set of parameters for the filter model.
The leaves of the tree are independent apriori, hence, conditional on the tree, the
filters are independent aposteriori. Thus it is possible to have a tree filter that is a
product of independent leaf filters. In this approach the term tree filter does not
imply that the trees themselves are filtered (hence this is different from Taddy
et al. (2011)). At no point is the joint distribution of the trees over t calculated.
Rather the tree acts a means of sampling from the space of tree models at each
t and the independent trajectories of each of the filters evolves from t − 1 to t

conditional on the sample model of the latent space provided by the tree.

The prior p (T | xt, ξT ) is broadly based on the prior modelling of Chipman et al.
(1998). Thus the tree prior is a tree sampling process as described in Section 2.3.2.
However, a major difference between the proposed approach and that of every
other Bayesian (or other) tree modelling approach is that at no point is there a
specification on the number of data points that must be acquired or assigned to a
partition before a rule or structural change is deemed allowable (Item BCARTMS
rules 1, Section 2.3.2.2). Rather, the allowable rules for selecting covariates in
the tree are specified independently of the data. For example, the allowable rule
could be that every covariate in the tree is unique or that every internal node
η has no matching covariate in PA(η). Another rule to determine whether a
threshold, and by extension a covariate, is allowable is to determine whether any
choice of threshold would render one of the leaves of the tree unreachable. It
is this rule that has implemented in this paper because was used to ensure that
the support of the marginal for the tree was complete. Exactly what this means
and how it is implemented will be discussed in Section 5.2 but it suffices now
to state that without this rule or other similar rules the tree filter would not
make sense because unreachable leaves means that impossible alternate models
are being included as a part of the measure of the tree marginal likelihood.

The posterior, p (T, Zt | xt, Y t, θT ), provides a joint measure over the tree and
the latent variables. Factorising this leads to

p
(
T, Zt | Y t, θT , x

t
)

= p
(
T | Y t, θT , x

t)p(Zt | T, Y t, ψT , x
t
)

= p
(
T | Y t, θT , x

t
)

A Posterior for tree model

×
KT∏
b=1

p
(
Zt

b | T, Y t, ψT , x
t
)

B Product of Gaussians from the IKF

(4.15)

where the product of Gaussian densities is provided by the product of the Kalman
filter densities at each leaf. If a leaf is updated then the density is a Gaussian with
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mean µ̂t|t,b and variance-covariance Σ̂t|t,b and if the leaf is not updated then the
density is also Gaussian but with mean µ̂t−1|t,b and variance-covariance Σ̂t−1|t,b.
This product of independent densities provides a measure over all the trajectories
conditional on the proposed tree model and is updated via a Bayesian filtering
process as described by Meinhold and N. D. Singpurwalla (1983) and others. Thus
the observed data model p (Yi | T, Zi, ψT ) of Equation (4.13) is incorporated into
the posterior.

The posterior for the tree model, A , provides a measure of the tree model itself
upon which the product of Gaussians in B is dependent. This measure is found
by using Bayes’ rule to factor out the marginal likelihood of the tree over all the
latent processes proposed by the tree prior:

p
(
T | Y t, θT , x

t
)
∝ p (T | ΘT ) p

(
Y t | T, θT , x

t
)

= p (T | ΘT )
∫

p
(
Y t | T, Zt, θT , x

t
)

p
(
Zt | T, θT , x

t
)
dZt

C Marginal for T over latent process Zt

(4.16)

It is C , the tree marginal that will form central part of the rest of this section.
The posterior of the tree model will be revisited in Sections 5.2 and 5.4 as it is
used to weight the mixture of trees.

4.3.3 The Marginal Likelihood of the Tree

In Section 2.2.2 the recursive approach to the latent process estimation provided
a coherent probabilistic structure for a single filter. Namely, starting with initial
states for the parameters µ0,b and Σ0,b that have initial Gaussian distribution
N(µ0,b,Σ0,b) which forms the prior for the state process, it is possible, at each t,
to recursively estimate the parameter µ̂t|t,b of the latent process and to determine
Σt|t,b (assuming constant ψb) by using the likelihood p ( et | Yt−1, Zt ) to update
the posterior p (Zt | Yt, Yt−1 ). This posterior is the prior predictive distribution
for the following update step.

The IKF (Sinopoli et al. 2004) had a similar recursive procedure for estimating
both µ̂t|t,b and Σ̂t|t,b however there was an additional random variable in the
likelihood, γt, such that p ( et | Yt−1, Zt, γt ) and so that Kt,b, the Kalman gain,
and hence Σt|t,b are random variables. For each leaf in the proposed model this
is still the case: a single leaf is an intermittent filter with the same recursive
procedure as described in Section 2.2.2 and the leaf likelihood is the same as the
leaf likelihood for the IKF.
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However, in the case of the tree filter both the updated and nonupdated filters
need to be taken into account to form the tree likelihood at each t. This forms a
central part of the proposed approach to streaming modelling: It is assumed that
the observed process Y t is nonstationary and hence it is not possible to know
exactly what the support of the observation process is because the properties of a
general nonstationary process can not be defined (Section 3.3.1). For example, a
nonstationary process might jump, at some random index t, from one distribution
to another. A set of models could better describe the support of Y t if that set of
models could be proposed in a way that covers a range of possible distributions
for the observation process. Using a tree model allows one to specify just such
a set of plausible models (in this case filters) by providing a set of coordinates
conditional on the coordinate at the root node.

However, because the model is imperfect and there is noise in the observation,
when a particular model is chosen the error in this choice of model (filter) must be
taken into account. In other words, one must also include, by marginalising over
the random processes at the leaves, the other (predicted) possible explanations
for the observation. It is in this sense that it has been stated that, for each t, the
tree model forms a completed marginal likelihood for an observation.

This not unusual. In the tree models presented in Section 2.3.2 the tree model
is marginalised over as a method of using the sample data to learn about the a
set of models that best describe a static population. What is different in this
approach is that here the interest lies in providing a conditional set of auxiliary
data for a single observation to account for the nonstationarity of the observation
process. That is, the observation at each index t is assumed to be a single sample
from a population of processes and a selection of these processes are modelled by
the leaves of the tree.

Assume that T is known so that the number of leaf filters are fixed. Then the
tree filter likelihood is calculated by marginalizing over the state variable of all
the leaves of the tree and over all discrete time steps from 0 to t. Starting from
C in Equation (4.16):

p
(
Y t | xt, T, ·

)
=
∫

p
(
Y t | xt, Zt, T, ·

)
p
(
Zt−1 | T, xt, ·

)
dZt

=
∏

b∈KT

∫
p (Z0,b | T, · )

t∏
i=1

PdYi | Zi,b, T, · p (Zi−1,b | T, · ) dZt

=
∏

b∈KT

∫
p ( z0,b | T, · )

t∏
i=1

p ( yi,b | zi,b, T, · ) p ( zi−1,b | T, · ) dzt

(4.17)
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where the change to lower case was for visual clarity in the full derivation and this
is continued here. The integral assumes that the other filter model parameters are
fixed and known for all t. As each of the components of the integral are Gaussian
one can use completing the square to get a recursive solution to the integral in
Equation (4.17):

p
(
Y t | xt, T, ·

)
=

KT∏
b=1

∫
p ( z0,b )

t∏
i=1

p ( yi,b | zi,b, T, · )Ii,b p ( zi,b | zi−1,b, T, · ) dzt

= p (T | · )
KT∏
b=1

(2πm|W0,b|)− 1
2

(
t∏

i=1
(2πm|Wt,b|2πm|At,b|)− 1

2 (2πn|Vb,t|)
−Ii,b

2

)
·

exp
[
− 1

2

(
µT

0,bW
−1
0,b µ0,b − dT

0,bA0,bd0,b +
t∑

i=1
Ii,by

T
i,bV

−1
t,b yi,b − dT

i,bAi,bdi,b

)]
(4.18)

where

A0,b = W−1
0,b

d0,b = W−1
0,b µ0,b

A∗
t−1,b =

(
At−1,b + F T

1,bW
−1
1,b F1,b

)
(4.19)

At,b =
(
W−1

t,b + It,b H
T
t,bV

−1
t,b Ht,b − vT

t−1A
−1
t−1,bvt−1

)
(4.20)

dT
t,b = (It,b V

−1
t,b Ht,byt,b − dT

t−1,bA
−1
t−1,bW

−1
t,b Ft,b) (4.21)

The full derivation from Equation (4.17) to Equation (4.21) can be found as part
of the derivation of marginal posterior for the tree in Appendix A1.1. Note that
in the IKF, γt represented the chance that a filter was updated at any t. In the
above derivation the symbol It,b has been used to indicate when the observation
does or does not form part of the calculation for a particular leaf marginal but
at every discrete t at least one leaf filter is always updated.

The presentation of the proposed model now returns to the the 2-leaf demonstra-
tion. Having described the tree marginal likelihood above in Appendix A1.1.1 a
1-dimensional version of the recursive equations are provided. Figure 4.3.3 shows
several components of the log tree marginal likelihood: the lines denoted ℓm2 and
ℓm3 are independent leaf marginals for each of the two leaves from t = 0 to t.
The equations for these leaf marginals can be found in Appendix A1.1.1. The
line denoted log p (T | y ) is the sum of the log leaf marginals and this includes
the log of the prior p (T ) while the line indicated by ∑ ℓmb is purely the sum of
the leaf marginals. The line shown by log p (T, z | y ) is the joint log posterior
of the tree which includes the sum of the marginals, the prior and the sum of
the log densities for each of the leaves. Finally, the line denoted ℓmkal is the
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log likelihood of the Kalman filter estimates which are calculated recursively as
follows:

ℓmk = ℓmk−1 −
1
2

(
ỹ2

skal

+ log(skal) + log(2π)
)

(4.22)

where skal = h2σ2
t|t−1 + v2 is the innovation variance. (4.23)

Returning to Figure 4.3.2 the advantage of using the tree filter, shown there by
narrower bounds on the estimates, can be seen here by the fact that the log tree
likelihood (and log tree posterior) of the model are (for the most part) more
probable conditional on the tree model than just using the Kalman filter alone.
As already mentioned, the reason for this is that the tree model increases the
support of the filtering process, in the case of the 2-leaf model, to two possible
distributions at each index t while the Kalman filter has the support of only a
single distribution. Thus a more extreme value for the Kalman filter will have
a lower log density than a tree model density because the estimated value will
occur closer to the tails of the Kalman filter likelihood than it will in the case of
tree model, assuming that the tree model has correctly chosen the leaf that best
estimates the level parameter.

Figure 4.3.3: Tree and leaf filter output for the 2-leaf model.

In this simple demonstration the simulated tree and tree model were exactly the
same up to the filter parameters. Thus no error in model design is accounted for
in Figure 4.3.3. This is not the case in general and in Section 5.2 a method for
choosing between two alternate models will be presented. This choice between
two models will still not be adequate to explore the tree model space so that in
Section 5.4 an ensemble of posterior weighted tree models is presented to attempt
to cover the tree model space, at least up to the index t.

The next part of this section will present a more detailed look at the components
of the tree and leaf likelihoods. This will be a precursor to the next section
which is a calibration study of the parameters for leaf models. The supporting
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calculations for this discussion can be found in Appendix A1.1.1, in particular
the 1-dimensional log marginal parameters:

a0,b = 1
w2

0,b

d0,b = µ0,b

w2
0,b

a∗
t−1,b = at−1,b +

f 2
t,b

w2
t,b

(4.24)

at,b = 1
w2

t,b

+ It,b
h2

t,b

v2
t,b

−
f 2

t,b

a∗
t−1,bw

4
t,b

(4.25)

dt,b = It,b
ht,b

v2
t,b

yt,b −
ft,b

a∗
t−1,bw

2
t,b

dt−1,b (4.26)

and the recursion equations of these parameters,

a0
t,b = a0,b

wt,b(
∑t−1

i=0 f
2i)a0,b + f 2t

(4.27)

a1
t,b =

(h2w + v)at−1,b + h2/vf 2
t,b

wt,bat−1,b + f 2
t,b

(4.28)

and

d 0
t,b = d0,b

t∏
i=0

(−1)ic0
i,b (4.29)

d 1
t,b = ht,b

vt,b

(
t∑

i=1
yi +

t−1∑
i=1

(−1)iyi

i∏
j=1

c1
j,b) + d0,b

t∏
i=0

(−1)ic1
i,b (4.30)

where

c
It,b
t−1,b = ft,b

wt,bat−1,b + f 2
t,b

(4.31)

In what follows the marginal random component at,b will known as the marginal
scale parameter and the random component dt,b will be called the marginal resid-
ual parameter. The recursions in Equations (4.27) and (4.28) to (4.30) have
superscripts 0, 1 which indicate that these recursions are for the cases when a leaf
is not or is, respectively, updated at each t. The importance of these recursions,
especially those of Equations (4.27) and (4.28) is that they provide upper and
lower bounds for the random variable at,b. By looking at Equation (4.25), were it
not for the indicator variable It,b, this parameter would be completely determined
by ψb = (Hb, Vb, Fb,Wb). Similarly, considering Equation (4.26), if the indicator
It,b were not present then this equation would be a random function of the data
Yt, the known parameter at,b and ψb. Thus, having some prior knowledge of
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ψb and calibrating these provides some sensible values that one might structure
alternatives for a tree model and the ensemble as a whole.

Figure Figure 4.3.4 shows the behaviour of the marginal scale parameter for the
parameters shown in Table 4.3.1b. Each graph depicts a single leaf with the
darker lines showing how at,b responds to when a leaf is chosen and the lighter
line showing how 1/at,b responds. The dashed lines are upper and lower bounds
for at,b and the dotted lines for 1/at,b. The first thing to notice in both graphs is

Figure 4.3.4: Individual leaf marginal scale parameter components at,b and 1/at,b

that the marginal scale parameter randomly oscillates according to leaf updates.
However, for the most part these oscillations are bounded between either a0

t,b and
a1

t,b or between 1/a0
t,b and 1/a1

t,b. In the graph for leaf 2, the upper bound for 1/at,b

is far above the general oscillation bounds. This difference is almost completely
attributable to parameter Fb, the state matrix (in the 1d case this is just a value
that is equal to its eigenvalue). As Table 4.3.1b shows, for leaf 2 this value is
close to 1. At Fb = 1 this upper bound increases in direct proportion to the
number of iterations so that it is possible that after many iterations the system
will transition to instability. For leaf 3, the parameter F is well below 1 and the
oscillations stick strictly to the bounds.

Keeping the marginal scale parameter between bounds is necessary because in
the streaming setting the number of iterations is assumed unknown and large.
Thus if at,b were to converge to zero then | at,b | would go to zero and 1/at,b would
become undefined. Similarly if at,b → ∞ then the scale of the tree marginal
distribution would get very large, in effect tend towards infinity which would
render any attempt at model comparison via MCMC untenable. Thus calibration
of this parameter in particular is important for the functioning of the proposed
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algorithm.

The marginal residual parameter, dt,b, is shown in Figure 4.3.5. These graphs
show: a comparison between the innovation of each of the leaf filters, ỹb, which is
the dotted line; the data yt, a dashed line shown in exactly the same way on both
graphs; dt,b the solid line on each graph and d 0

t,b and d 1
t,b, the dot-dash lines on

both graphs, are the conditional extremes of the residuals where the conditionality
is based on the data vector yt in this case but could be any Gaussian random
sequence. Because µ0,b = 0 for both leaves, by looking at Equation (4.29), it can
be seen that d 0

t,b = 0 for all t.

Figure 4.3.5: Individual leaf marginal residual parameter component dt,b

To understand how the parameters affect the marginal residual and the how these
can be used to calibrate the leaf parameters revisit Table 4.3.1b and the graph
for leaf 3 in Figure 4.3.5. The first thing to notice is the relationship between
the data vector and the upper extreme marginal residual d 1

t,3. For each yt, d 1
3,b

exaggerates the size of the data input while in the graph for leaf 2 both d 1
t,2 and

yt are closer. The reason for this is that for d 1
t,3, h/v = 3 while d 1

t,2, h/v = 1.

The dotted lines are leaf innovations which, by design, are constant when a leaf
is not updated and form the prefit-residual, ỹ from the Kalman filter when a leaf
is selected. The two noise lines, drawn as solid grey lines in both graphs, are
Gaussian white noise sequences of mean 0 and variance of either v or w. The
reason for including these is that, in general, if the innovation or pre-fit residual,
ỹt = yt−hµt|t−1,b, follows a white noise process then it can be assumed that filter
has explained all information contained within the signal. This is clearly not
the case in either of the graphs shown but in the graph for leaf 2, the marginal
residual is closer to a white noise process than in the graph for leaf 3.
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To gain further insight into the tree and leaf marginal it is worth comparing the
recursive form marginal likelihood of the Kalman filter for t = 0 to t,

ℓmt = ℓmt−1 −
1
2


(
yt − hfµ̂t−1|t−1

)2

st

+ log(st) + log(2π)

 (4.32)

and the recursive form of the leaf marginal likelihood:

ℓmt = ℓmt−1 −
1
2

(
It,b y

2
1,b

vt,b

−
d 2

t,b

at,b

+ log
(

(2π)2wt,b It,b vt,b

2πat,b

))
(4.33)

which, as shown in Equations (A1.45) and (A1.46), can be written as:

ℓmt = ℓmt−1−

1
2

((va∗
t−1,b − h2

t,b)(a∗
t−1,bwyt,b − hf vdt−1,b

(va∗
t−1,b

−h2))
2 + fvd 2

t−1,b(1− h2

(va∗
t−1,b

−h2
t,b

))

at,ba∗
t−1,b

√
v3

t,bwt,b

+

log
(

(2π)2wt,bvt,b

2πat,b

))
(4.34)

It has been assumed for the purposes of comparison that the leaf marginal in
Equation (4.34) has been updated at every t from 0 to t. Thus this version of the
leaf marginal is equivalent to the upper leaf marginals shown on both graphs of
Figure 4.3.5. The important thing to notice about both innovation equations is
that they are functions of the distribution of yt and hence, in a sense, similar. The
clear difference is that in Equation (4.32) all of the information about the previous
state is embodied in ˆµt−1|t−1 and st while in Equation (4.34) the information about
the previous state is included via several terms, most notably a∗

t,b and ct,b, and
additional information about the current state is included in at,b. Recalling that
these parameters are random functions of the tree then it can be seen how the
tree affects the innovation process and it can be seen that choosing a range of
leaf model parameters ψb for the tree can influence the performance of the tree
model.

The previous discussions about the tree and leaf marginals has paved the way for
the next section which is a study for the calibration of the leaf parameters for the
proposed tree model.
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4.4 Calibration Study

4.4.1 Introduction

In the preceding sections it has been claimed that one reason for using the tree
model in the streaming setting is to provide a set of possible models which can be
used to estimate or predict events based on explanatory data xt. The reasoning
used so far is that if the data is nonstationary in the streaming setting then if
there is some information that explains the observations, this information, in the
form of xt can be used to choose the most appropriate model for estimation.
However there is another way to look at the choice of a tree model that has
nothing to do with the nonstationarity of the data that is more in keeping with
the original objectives of Chipman et al. 1998 and that is for model design and
selection.

Experimental parameter values for KF
Exp V W F H µ0 W0

1 1 1 0.5 1 1 1
2 1 1 0.95 1 0 1
3 0.5 1 0.75 1.5 1 1
4 1 3 0.5 1.5 1 1
5 0.75 5 0.15 1 1 1

Table 4.4.1: Parameter values for several Kalman filters.

In Figure 4.3.2 the Kalman filter was compared to the tree filter using the param-
eters equivalent to those in Experiment 1 of Table 4.4.1 (and the same as those
used leaf 2 of the 2 leaf model). That graph showed how the tree filter provided
tighter bounds around the estimates because the covariate at the root was able
to distinguish the correct distribution to use for each estimate at each t.

Figure 4.4.1 shows the set of filtering experiments from Table 4.4.1 overlaid over
the tree filter. The observed data in this case is the dashed line and the simulated
latent data is the thick solid line. This figure demonstrates the second reason for
choosing a tree model: a single pass over some sequence of data is unlikely to
produce the best or most correct model and this is especially true in the streaming
setting where a single pass of the data is all that is “permitted” according the
streaming data axioms (Section 2.5).

One way to learn about suitable parameters for the filter is to estimate them
using one of several methods such as dual estimation or by using expectation
maximization as illustrated in Haykin (2004). However these methods are un-
available in the streaming setting because they either involve several iterations of
the algorithm to find a maximum, in expectation-maximisation for example, or
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Figure 4.4.1: Several Kalman filters over the same data, each with a different parameter speci-
fication.

they require tuning (repeated runs of the same experiment) or they require sam-
pling from some distribution which, in a hierarchical modelling scenario, requires
the hyper-parameters be set. Further, the Kalman filter suffers from an issue
of identifiability of parameters which limits which parameters might be inferred.
Still further, ψb = (Vb, Hb,Wb, Fb, µ0,b,Σ0,b) has 6 parameters for each leaf and for
a tree with KT leaves there are then 6×KT parameters to specify not-to-mention
that the number and position of the filters in tree is random in the case with
random tree model selection.

The tree model can provide several alternatives for a model without the need
for parameter estimation but this requires a rich set of parameters to choose
from. Choosing parameters in this manner is akin to treating parameters as
explanatory data rather than missing data. The calibration study presents a
method for setting up a collection of parameters from which one can choose
parameters appropriate to the problem at hand. The algorithms used in the
calibration study are independent of those used for streaming an can be run
before the streaming analysis has begun. The output of the analyses are bounds
for sets of the parameters.

4.4.2 Method

The calibration study is performed for 1-dimensional parameters only. The al-
gorithm uses the recursions of Equations (4.27) and (4.28), and their inverses to
estimate the upper and lower bounds of at,b and 1/at,b. These were the upper
and lower bounds shown in Figure 4.3.4. The parameter of primary interest is
Fb because, in general, for the system to be stable the state matrix must have its
leading eigenvalue1 in the range (−1, 1). However, setting this parameter alone
may be not be enough to get the best performance out of the tree model. This

1which for a 1-d matrix is the value itself
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can be seen by looking at both Figures 4.3.4 and 4.3.5 where the proportion be-
tween the leaf innovation estimates dt,b depends on several parameters and the
constants h2/v and (h2w + v) (Equation (4.26)). Equation (4.34) shows how
the leaf marginal is also dependent on more than the choice of Fb although the
complexity of this equation limits its direct use for analysis.

Apart from Fb there are two other relationships of interest: rb = Wb/Vb the
signal to noise ratio for the leaf b and the relationship between Hb and Vb, most
simply shown in Equations (4.25) and (4.26) as h2

b/vb and hb/vb respectively.
Two parameters shown in Tables 4.3.1a, 4.3.1b and 4.4.1, µ0 and W0, have so
far been ignored. These are parameters for the initial distribution of the filter
and their effect is quickly forgotten for short runs of the Kalman filter. However,
their importance will explained in Section 5.2 when the tree model is recursively
adapted because at each adaptive move, each new filter has not had a length of
run in which these parameters might be forgotten.

Table 4.4.2 provides a set of values for an initial factorial study of the parameters
ψb = (Hb, Vb, Fb,Wb) where the response is either the upper and lower bound of
at,b, namely a1

t,b and a0
t,b, or its inverse, the upper and lower bound of 1/at,b, 1/a1

t,b

and 1/a0
t,b. These initial study values were chosen based on the requirements

for stability that parameter Fb places on the leaf filter and then by considering
reasonable values of H, V,W based on some idea of the simulation data. For
example, Table 4.3.1a shows that the simulation parameters are W s

3 = 3, W s
2 =

1, V s
3 = 0.5 and W s

2 = 1 so choosing some values for the leaf models much
greater or lower than these might provide a set of distributions too extreme for
an appropriate signal to noise ratio or scale of residual (viz. Figure 4.3.5).

Parameter Values
1 2 3 4 5 6 7 8

µ0 1
W0 1
H 1.5 1 0.5 0.25
V 0.05 0.5 0.75 1 1.5 2 3 5
F -0.75 -0.5 0.05 0.15 0.5 0.75 0.95 1
W 0.05 0.5 0.75 1 1.5 2 3 5

Table 4.4.2: Parameter values used for calibration.

Based on the parameters in Table 4.4.2 the calibration was run by consider-
ing all combinations of these values generated by the recursion equations Equa-
tions (4.27) and (4.28) over 500 iterations. The choice of 500 is arbitrary as in all
cases at,b converges to its conditional bound well before 500 iterations are reached
but this high value highlights extreme values well as can be seen, for example, in
Table 4.4.4 for the inverse scale parameter.
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The values produced in the results were not generated from a tree model. This is
useful because it means that for a streaming process one can formulate some prior
expectations of leaf model performance without having access to the streaming
data itself. However, the effect of these parameters to the tree model, in particular
the tree marginal, is left to further studies and demonstrations that will appear
in Chapter 5, Sections 5.3 and 5.4.2.

4.4.3 Results

Calibrating Fb and Wb

Table 4.4.3 shows the upper and lower bound values when H2 = 1 and V2 = 1 in
the 2 leaf model. In that demonstration the value of Fb was 0.95 and Wb = 1.
When looking at Table 4.4.4 the upper bound for these same values for 1/at,b is
very high relative to the actual expected range of values for the signal (a Gaussian
range with mean zero and variance W2) at that leaf so a value of Fb closer to 0
might have been more appropriate.

F at, W, V = 1, H = 1
0.05 0.5 0.75 1 1.5 2 3 5

12.9540 3.7924 3.3388 3.0963 2.8389 2.7029 2.5606 2.4412-0.75 1.0000 0.8750 0.5833 0.4375 0.2917 0.2188 0.1458 0.0875
17.8792 4.0292 3.4664 3.1771 2.8802 2.7281 2.5729 2.4460-0.5 1.0000 1.0000 1.0000 0.7500 0.5000 0.3750 0.2500 0.1500
22.2051 4.2476 3.5821 3.2492 2.9163 2.7498 2.5832 2.45000.05 1.0000 1.0000 1.0000 0.9975 0.6650 0.4988 0.3325 0.1995
21.8463 4.2289 3.5722 3.2431 2.9133 2.7480 2.5824 2.44960.15 1.0000 1.0000 1.0000 0.9775 0.6517 0.4888 0.3258 0.1955
17.8792 4.0292 3.4664 3.1771 2.8802 2.7281 2.5729 2.44600.5 1.0000 1.0000 1.0000 0.7500 0.5000 0.3750 0.2500 0.1500
12.9540 3.7924 3.3388 3.0963 2.8389 2.7029 2.5606 2.44120.75 1.0000 0.8750 0.5833 0.4375 0.2917 0.2188 0.1458 0.0875
8.8099 3.5796 3.2207 3.0199 2.7987 2.6779 2.5481 2.43620.95 1.0000 0.1950 0.1300 0.0975 0.0650 0.0488 0.0325 0.0195
7.9269 3.5262 3.1903 3.0000 2.7880 2.6712 2.5447 2.43481 0.0385 0.0040 0.0027 0.0020 0.0013 0.0010 0.0007 0.0004

Table 4.4.3: Bounds for the tree marginal scale parameter at,b of Fb and Wb where Hb = 1 and
Vb = 1.

Notice that in Table 4.4.4 when F = 1 and W = 1, 1/at,b = 500, the exact
number of iterations of the calibration study. Thus the scale of the leaf marginal
likelihood would be unbounded in the streaming setting and, with a very large
and unknown number iterations, the bounds of an nonupdated leaf estimate could
be infinite in size which would render the MCMC algorithm, detailed in later
sections, inappropriate because to compare models in that setting it is necessary
to have finite expectation and variance.

Tables 4.4.5 and 4.4.6 show the upper and lower bound values of at,b when Fb =
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F 1/at, W, V = 1, H = 1
0.05 0.5 0.75 1 1.5 2 3 5

1.0000 1.1429 1.7143 2.2857 3.4286 4.5714 6.8571 11.4286-0.75 0.0772 0.2637 0.2995 0.3230 0.3523 0.3700 0.3905 0.4096
1.0000 1.0000 1.0000 1.3333 2.0000 2.6667 4.0000 6.6667-0.5 0.0559 0.2482 0.2885 0.3148 0.3472 0.3666 0.3887 0.4088
1.0000 1.0000 1.0000 1.0025 1.5038 2.0050 3.0075 5.01250.05 0.0450 0.2354 0.2792 0.3078 0.3429 0.3637 0.3871 0.4082
1.0000 1.0000 1.0000 1.0230 1.5345 2.0460 3.0691 5.11510.15 0.0458 0.2365 0.2799 0.3083 0.3433 0.3639 0.3872 0.4082
1.0000 1.0000 1.0000 1.3333 2.0000 2.6667 4.0000 6.66670.5 0.0559 0.2482 0.2885 0.3148 0.3472 0.3666 0.3887 0.4088
1.0000 1.1429 1.7143 2.2857 3.4286 4.5714 6.8571 11.42860.75 0.0772 0.2637 0.2995 0.3230 0.3523 0.3700 0.3905 0.4096
1.0000 5.1282 7.6923 10.2564 15.3846 20.5128 30.7692 51.28210.95 0.1135 0.2794 0.3105 0.3311 0.3573 0.3734 0.3924 0.4105
25.9500 250.5000 375.2500 500.0000 749.5000 999.0000 1498.0000 2496.00001 0.1262 0.2836 0.3134 0.3333 0.3587 0.3744 0.3930 0.4107

Table 4.4.4: Bounds for the inverse tree marginal scale parameter 1/at,b for values of Fb and Wb

where Hb = 1 and Vb = 1.

0.95 and H = 1. Using the parameter values for leaf 2 in the 2 leaf model, the
first thing to notice from Table 4.4.6 is that for every Vb (and every Hb) the
upper bound of 1/at,b is the same. This is not unexpected because by inspection
of Equation (4.27) it is clear that neither of these parameters enter the equation.
The next thing to notice is that every line in Table 4.4.6 corresponds to the second
last line in Table 4.4.4. Thus, for the purposes of setting the upper bound of the
leaf marginal scale parameter, it is sufficient to consider only Fb and Wb. Given
that for stability of the leaf marginal Fb must be in (−1, 1), to choose a set of
upper bounds for the leaf marginals requires only the consideration of Wb.

Looking again at Table 4.4.4 where Fb = 0.05 it can be seen that 1/at,b is extremely
close to Wb and that as the values of Fb diverge towards −1 and 1, 1/at,b increases
proportionately.

Figures 4.4.2a and 4.4.2b are based on the values in Tables 4.4.7 and 4.4.8. For
values of Wb less than 1 the upper bound of 1/at,b is always 1 for every value
of Fb between (−0.5, 0.5) (although only positive values are shown because in
Table 4.4.4 it was shown that changes in 1/at,b are symmetrical about 0). For
values of Wb > 1, there is a constant proportional shift between values of 1/at,b

as Wb increases. These proportional shifts are shown in Figure 4.4.2b.

Looking at Equation (4.27) one might have guessed that the relationships shown
in Figures 4.4.2a and 4.4.2b were the case because 1/a0,b has constants that include
these parameters in the numerator and the denominator. But the purpose of this
exercise is to calibrate some exact values that can be used to formulate some prior
choices and then automate the running and adaptation of the proposed model.
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V at, W, F = 0.95, H = 1
0.05 0.5 0.75 1 1.5 2 3 5

60.398240 46.925920 46.299558 45.980750 45.657996 45.495089 45.331136 45.1992050.05 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
12.797128 6.039824 5.597411 5.355791 5.096271 4.958291 4.813727 4.6925920.5 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
10.238738 4.420089 4.026549 3.808424 3.570527 3.442048 3.305528 3.1892870.75 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
8.809881 3.579565 3.220665 3.019912 2.798706 2.677896 2.548135 2.4362041 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
7.206845 2.698380 2.386377 2.210044 2.013275 1.904212 1.785264 1.6806031.5 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
6.298819 2.230422 1.949433 1.789783 1.610332 1.509956 1.399353 1.3006272 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
5.269184 1.728289 1.486948 1.349190 1.193188 1.105022 1.006637 1.0000003 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500
4.292329 1.279713 1.080949 1.000000 1.000000 1.000000 1.000000 1.0000005 1.000000 0.195000 0.130000 0.097500 0.065000 0.048750 0.032500 0.019500

Table 4.4.5: Upper and lower bounds for the tree marginal scale parameter at,b for values of Vb

and Wb where Hb = 1 and Fb = 0.95.

V 1/at, W, F = 0.95, H = 1
0.05 0.5 0.75 1 1.5 2 3 5

1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205130.05 0.0165568 0.0213102 0.0215985 0.0217482 0.0219020 0.0219804 0.0220599 0.0221243
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205130.5 0.0781425 0.1655677 0.1786540 0.1867138 0.1962219 0.2016824 0.2077392 0.2131018
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205130.75 0.0976683 0.2262398 0.2483516 0.2625758 0.2800707 0.2905247 0.3025236 0.3135497
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205131 0.1135089 0.2793635 0.3104949 0.3311355 0.3573080 0.3734275 0.3924438 0.4104747
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205131.5 0.1387570 0.3705927 0.4190453 0.4524796 0.4967032 0.5251516 0.5601413 0.5950246
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205132 0.1587599 0.4483457 0.5129697 0.5587271 0.6209898 0.6622710 0.7146160 0.7688601
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205133 0.1897827 0.5786069 0.6725185 0.7411855 0.8380906 0.9049592 0.9934064 1.0000000
1.0000000 5.1282051 7.6923077 10.2564103 15.3846154 20.5128205 30.7692308 51.28205135 0.2329737 0.7814254 0.9251132 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Table 4.4.6: Upper and lower bounds for the inverse tree marginal scale parameter 1/at,b for
values of Vb and Wb where Hb = 1 and Fb = 0.95.

Not much attention has been given to the lower bound of 1/a0,b nor the upper nor
lower bounds of a0,b. This first omission will be addressed as a part of considering
the values of Vb and Hb used in scaling the tree marginal residual. The value
a0,b occurs in the denominator of the tree marginal as Equation (4.18) shows.
Clearly this value must not reach zero for the entirety of the streaming analysis
and, from the point of view of computational stability, should not get too small
either. However, choosing Fb and Wb as suggested so far, with judicious choices
of Vb and Hb to be suggested should prevent this.
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(a) Behaviour of Wb as Fb increases. (b) Behaviour of Fb as Wb increases.

Figure 4.4.2

F 1/at, W, V = 1, H = 1
0.05 0.5 0.75 1 1.5 2 3 5 10 50 100 500 1000

0.05 1 1 1 1.0025 1.5038 2.0050 3.0075 5.0125 10.0251 50.1253 100.2004 502.5126 1000.000
0.1 1 1 1 1.0101 1.5152 2.0202 3.0303 5.0505 10.1010 50.5051 101.0101 505.0505 1010.101
0.15 1 1 1 1.0230 1.5345 2.0460 3.0691 5.1151 10.2302 51.1509 102.2495 510.2041 1020.408
0.2 1 1 1 1.0417 1.5625 2.0833 3.1250 5.2083 10.4167 52.0833 104.1667 520.8333 1041.667
0.25 1 1 1 1.0667 1.6000 2.1333 3.2000 5.3333 10.6667 53.3333 106.6098 531.9149 1063.830
0.3 1 1 1 1.0989 1.6483 2.1978 3.2967 5.4945 10.9890 54.9451 109.8901 549.4505 1098.901
0.35 1 1 1 1.1396 1.7094 2.2792 3.4188 5.6980 11.3960 56.9801 113.8952 568.1818 1136.364
0.4 1 1 1 1.1905 1.7857 2.3810 3.5714 5.9524 11.9048 59.5238 119.0476 595.2381 1190.476
0.45 1 1 1 1.2539 1.8809 2.5078 3.7618 6.2696 12.5392 62.6959 125.3133 625.0000 1250.000
0.5 1 1 1 1.3333 2.0000 2.6667 4.0000 6.6667 13.3333 66.6667 133.3333 666.6667 1333.333

Table 4.4.7: Upper bound values for 1/at,b for extended values of Fb and Wb shown in Fig-
ure 4.4.2a.

F W, at[, i]/at[, i+ 1]

0.05 0.25 0.5 0.75 1 1.5 2 3 5 10 20 50 100 500

0.05 1 1 1 0.9975 0.6666 0.75 0.6667 0.6 0.5 0.5001 0.4000 0.5003 0.1994 0.5025
0.1 1 1 1 0.9900 0.6666 0.75 0.6667 0.6 0.5 0.5000 0.4000 0.5000 0.2000 0.5000
0.15 1 1 1 0.9775 0.6667 0.75 0.6666 0.6 0.5 0.5001 0.4000 0.5003 0.2004 0.5000
0.2 1 1 1 0.9600 0.6667 0.75 0.6667 0.6 0.5 0.5000 0.4000 0.5000 0.2000 0.5000
0.25 1 1 1 0.9375 0.6667 0.75 0.6667 0.6 0.5 0.5001 0.4000 0.5003 0.2004 0.5000
0.3 1 1 1 0.9100 0.6667 0.75 0.6667 0.6 0.5 0.5000 0.4000 0.5000 0.2000 0.5000
0.35 1 1 1 0.8775 0.6667 0.75 0.6667 0.6 0.5 0.4999 0.4000 0.5003 0.2005 0.5000
0.4 1 1 1 0.8400 0.6667 0.75 0.6667 0.6 0.5 0.5000 0.4000 0.5000 0.2000 0.5000
0.45 1 1 1 0.7975 0.6666 0.75 0.6666 0.6 0.5 0.5001 0.3999 0.5003 0.2005 0.5000
0.5 1 1 1 0.7500 0.6666 0.75 0.6667 0.6 0.5 0.5000 0.4000 0.5000 0.2000 0.5000

Table 4.4.8: Values for 1/at,b where table values are the proportional increases in values found
by dividing each row of Figure 4.4.2b by is succeeding row.

Calibrating Vb and Hb

Turning to the calibration of Vb and Hb, Figure 4.4.3 presents a (longer) run of the
simulated data (the dashed black line) used for the 2 leaf model overlaid with a
set of scaled residuals that were calculated using Equation (4.30). The top graph
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shows all the various combinations of the tree likelihood residual scales assuming
that Fb = 0.95,Wb = 1, Hb = 1.5, 1, 0.5 and for all values of Vb in Table 4.4.1.
The bottom graph shows these scaled sequences but over a smaller domain and
with the more extreme values removed.

Figure 4.4.3: Calibration of the tree marginal residual scale.

Table 4.4.9 shows, in the first column, the change in statistical summaries of the
data vector, yt, for different values of Fb,Wb and constant values of Hb, Vb. The
values in the rest of the table are statistical summaries of the values of the leaf
residual dt,b that change as a function of the aforementioned parameters. The
table also shows the constants Hb/Vb and Ct from Equation (4.31) which is a
function of constant values Fb and Wb and the previous value for at,b which, in
this case, is assumed to be a1

t,b from Equation (4.28) and that has reached its
constant state.

The first thing to notice is that for all Wb, Fb, the value Hb/Vb = 1 and as Wb

gets larger Ct gets smaller (in proportion to Fb). The next thing to notice is that,
barring some small perturbations, all the statistical summaries of dt,b across the
table are very close to each other. Thus, conditional on a fixed sequence of data,
one could largely ignore the effect the values of Fb,Wb have on the scales of the
residuals shown in Figure 4.4.3.

Tables 4.4.10, 4.4.11 and 4.4.12 show the changes in the statistical summaries
of dt,b as Hb, Vb change for some selected values of Fb,Wb. As can be expected
from the previous table, Table 4.4.9, comparing values of Hb, Vb across different
tables produces roughly the same results, thus for example if Hb = 1.5, Vb = 5
for each Fb,Wb the change in the summaries of dt,b are minimal. The next thing
to notice is that as Vb increases for each Hb, unsurprisingly, so does Hb/Vb but
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F Y W, H = 1, V = 1
0.05 0.5 0.75 1 1.5 2 3 5

Mean -0.05634 -0.0401 -0.0443 -0.0457 -0.0468 -0.0484 -0.0495 -0.051 -0.0526
Std. Dev. 2.0381 2.2027 2.071 2.0491 2.0372 2.026 2.0218 2.02 2.0219

Max 7.77438 8.0705 7.7858 7.7482 7.7309 7.7192 7.7181 7.7232 7.7347
Min -6.98183 -6.2122 -6.3515 -6.4596 -6.5367 -6.6389 -6.7034 -6.78 -6.8522
H/V 1 1 1 1 1 1 1 1

0.5

Ct 0.4693 0.3139 0.2679 0.2344 0.1883 0.1577 0.1193 0.0805
Mean -0.05634 -0.1509 -0.0924 -0.0843 -0.0794 -0.0736 -0.0702 -0.0663 -0.0628

Std. Dev. 2.0381 3.5044 2.4981 2.3736 2.3011 2.2201 2.176 2.1297 2.0916
Max 7.77438 8.6614 8.1593 8.0896 8.044 7.9851 7.9476 7.9019 7.8574
Min -6.98183 -8.7646 -6.9886 -7.0896 -7.1339 -7.1625 -7.1638 -7.1478 -7.113
H/V 1 1 1 1 1 1 1 1

-0.75

Ct -0.6805 -0.4313 -0.3683 -0.3233 -0.2617 -0.2208 -0.1691 -0.1158
Mean -0.05634 -0.0501 -0.0518 -0.0524 -0.0529 -0.0535 -0.054 -0.0546 -0.0551

Std. Dev. 2.0381 2.0206 2.0205 2.0215 2.0225 2.0245 2.0261 2.0285 2.0313
Max 7.77438 7.7193 7.7283 7.733 7.7369 7.7431 7.7476 7.7536 7.7601
Min -6.98183 -6.7339 -6.8176 -6.8437 -6.8627 -6.8884 -6.9051 -6.9253 -6.9448
H/V 1 1 1 1 1 1 1 1

0.05

Ct 0.1427 0.0995 0.0852 0.0746 0.0597 0.0498 0.0373 0.0249

Table 4.4.9: Change in statistical values of yt as a function of Fb,Wb for Hb = 1, Vb = 1

also that the scale change in the standard deviation of dt,b is proportional to
twice this value. As Vb increases, for each Hb, the scale of the mean of dt,b

decreases and as Hb decreases there is a corresponding decrease in the scale of
dt,b again. Finally notice that Ct is a small number that slightly increases as
Vb increases and that as Hb decreases, it reaches a constant value faster for any
Vb. For example, if Vb = 0.5, Hb = 1.5, then Ct = 0.0211 but for the same Vb

and Hb = 0.25, Ct = 0.0952 and this is maintained for every Vb thereafter.

H Y W = 1, F = 0.95, V
0.05 0.5 0.75 1 1.5 2 3 5

Mean -0.05634 -1.6595 -0.1487 -0.0955 -0.0696 -0.0445 -0.0325 -0.021 -0.0123
Std. Dev. 2.0381 60.9738 6.0638 4.0574 3.0595 2.0664 1.5713 1.0758 0.6721

Max 7.77438 232.8796 23.1554 15.4426 11.6013 7.7773 5.8742 3.9767 2.4483
Min -6.98183 -208.5577 -20.1463 -13.2195 -9.7785 -6.372 -4.6939 -3.1006 -1.8947
H/V 30 3 2 1.5 1 0.75 0.5 0.3

1.5

Ct 0.0203 0.1518 0.2017 0.2422 0.3052 0.3529 0.4219 0.4993
Mean -0.05634 -1.0838 -0.0915 -0.0585 -0.0426 -0.0274 -0.0202 -0.0136 -0.0084

Std. Dev. 2.0381 40.546 4.092 2.7695 2.1095 1.4479 1.1144 0.7468 0.4482
Max 7.77438 155.0115 15.4866 10.396 7.8618 5.3329 4.0666 2.7203 1.6322
Min -6.98183 -138.3077 -12.9568 -8.4349 -6.2223 -4.1344 -3.1409 -2.1052 -1.2631
H/V 20 2 1.3333 1 0.6667 0.5 0.3333 0.2

1

Ct 0.0435 0.2599 0.3245 0.3728 0.442 0.4906 0.4993 0.4993
Mean -0.05634 -0.4996 -0.0396 -0.0265 -0.0201 -0.0136 -0.0104 -0.0071 -0.0045

Std. Dev. 2.0381 20.205 2.2292 1.4937 1.1202 0.7468 0.5602 0.3737 0.2248
Max 7.77438 77.196 8.1331 5.4406 4.0805 2.7203 2.0402 1.3602 0.8161
Min -6.98183 -67.3864 -6.2817 -4.2104 -3.1578 -2.1052 -1.5789 -1.0526 -0.6316
H/V 10 1 0.6667 0.5 0.3333 0.25 0.1667 0.1

0.5

Ct 0.1403 0.4906 0.4993 0.4993 0.4993 0.4993 0.4993 0.4993
Mean -0.05634 -0.2163 -0.0201 -0.0136 -0.0104 -0.0071 -0.0055 -0.0039 -0.0026

Std. Dev. 2.0381 10.4184 1.1202 0.7468 0.5602 0.3737 0.2806 0.1878 0.1142
Max 7.77438 39.0471 4.0805 2.7203 2.0402 1.3602 1.0201 0.6801 0.408
Min -6.98183 -31.5034 -3.1578 -2.1052 -1.5789 -1.0526 -0.7895 -0.5263 -0.5117
H/V 5 0.5 0.3333 0.25 0.1667 0.125 0.0833 0.05

0.25

Ct 0.3352 0.4993 0.4993 0.4993 0.4993 0.4993 0.4993 0.4993

Table 4.4.10: Change in statistical values of yt as a function of Hb, Vb Fb = 0.95,Wb = 1 for
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H Y W = 5, F = 0.5, V
0.05 0.5 0.75 1 1.5 2 3 5

Mean -0.05634 -1.6869 -0.1659 -0.1097 -0.0816 -0.0536 -0.0397 -0.0261 -0.0157
Std. Dev. 2.0381 61.1231 6.0968 4.0599 3.042 2.0249 1.517 1.0104 0.6062

Max 7.77438 233.1915 23.2866 15.514 11.6284 7.7441 5.8031 3.8648 2.3189
Min -6.98183 -209.3598 -20.8521 -13.8712 -10.3813 -6.8924 -5.1489 -3.4127 -2.0476
H/V 30 3 2 1.5 1 0.75 0.5 0.3

1.5

Ct 0.0022 0.0211 0.0308 0.0401 0.0573 0.0731 0.0952 0.0952
Mean -0.05634 -1.1218 -0.1084 -0.0711 -0.0526 -0.0347 -0.0261 -0.0174 -0.0105

Std. Dev. 2.0381 40.7326 4.0542 2.6986 2.0219 1.3471 1.0104 0.6736 0.4042
Max 7.77438 155.4285 15.5001 10.3219 7.7347 5.1531 3.8648 2.5765 1.5459
Min -6.98183 -139.4944 -13.8273 -9.1761 -6.8522 -4.5503 -3.4127 -2.2752 -1.3651
H/V 20 2 1.3333 1 0.6667 0.5 0.3333 0.2

1

Ct 0.0049 0.0445 0.0634 0.0805 0.0952 0.0952 0.0952 0.0952
Mean -0.05634 -0.5538 -0.052 -0.0347 -0.0261 -0.0174 -0.0131 -0.0088 -0.0054

Std. Dev. 2.0381 20.3277 2.0207 1.3471 1.0104 0.6736 0.5052 0.3368 0.2021
Max 7.77438 77.6332 7.7296 5.1531 3.8648 2.5765 1.9324 1.2883 0.773
Min -6.98183 -69.5376 -6.8255 -4.5503 -3.4127 -2.2752 -1.7064 -1.1376 -0.6825
H/V 10 1 0.6667 0.5 0.3333 0.25 0.1667 0.1

0.5

Ct 0.0191 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952
Mean -0.05634 -0.2656 -0.0261 -0.0174 -0.0131 -0.0088 -0.0067 -0.0045 -0.0028

Std. Dev. 2.0381 10.1173 1.0104 0.6736 0.5052 0.3368 0.2526 0.1684 0.1011
Max 7.77438 38.6998 3.8648 2.5765 1.9324 1.2883 0.9662 0.6441 0.3865
Min -6.98183 -34.3797 -3.4127 -2.2752 -1.7064 -1.1376 -0.8532 -0.5688 -0.3413
H/V 5 0.5 0.3333 0.25 0.1667 0.125 0.0833 0.05

0.25

Ct 0.067 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952

Table 4.4.11: Change in statistical values of yt as a function of Hb, Vb Fb = 0.5,Wb = 5 for

To understand the relationships shown in these tables consider Equations (4.29)

H Y W = 0.05, F = 0.05, V
0.05 0.5 0.75 1 1.5 2 3 5

Mean -0.05634 -1.6668 -0.163 -0.1085 -0.0813 -0.0541 -0.0406 -0.0271 -0.0163
Std. Dev. 2.0381 61.0118 6.0835 4.0546 3.0405 2.0267 1.5199 1.0132 0.6079

Max 7.77438 232.9615 23.2556 15.5011 11.6248 7.7491 5.8115 3.8741 2.3244
Min -6.98183 -208.7793 -20.7591 -13.8307 -10.3695 -6.9104 -5.1818 -3.4538 -2.0719
H/V 30 3 2 1.5 1 0.75 0.5 0.3

1.5

Ct 0.0154 0.0408 0.0435 0.0449 0.0465 0.0473 0.0482 0.0489
Mean -0.05634 -1.1017 -0.1083 -0.0721 -0.0541 -0.0361 -0.0271 -0.0181 -0.0109

Std. Dev. 2.0381 40.626 4.0538 2.7022 2.0265 1.3509 1.0132 0.6754 0.4052
Max 7.77438 155.2014 15.4992 10.3319 7.7486 5.1655 3.874 2.5826 1.5495
Min -6.98183 -138.8936 -13.8243 -9.2131 -6.9086 -4.6049 -3.4533 -2.302 -1.3811
H/V 20 2 1.3333 1 0.6667 0.5 0.3333 0.2

1

Ct 0.025 0.0454 0.0469 0.0476 0.0484 0.0488 0.0492 0.0495
Mean -0.05634 -0.5436 -0.054 -0.036 -0.027 -0.0181 -0.0136 -0.0091 -0.0055

Std. Dev. 2.0381 20.2799 2.0263 1.3508 1.0131 0.6754 0.5065 0.3377 0.2026
Max 7.77438 77.5228 7.748 5.1652 3.8739 2.5825 1.9369 1.2913 0.7748
Min -6.98183 -69.2101 -6.9067 -4.604 -3.4528 -2.3018 -1.7263 -1.1508 -0.6905
H/V 10 1 0.6667 0.5 0.3333 0.25 0.1667 0.1

0.5

Ct 0.04 0.0488 0.0492 0.0494 0.0496 0.0497 0.0498 0.0499
Mean -0.05634 -0.2702 -0.027 -0.0181 -0.0136 -0.0091 -0.0068 -0.0046 -0.0028

Std. Dev. 2.0381 10.1331 1.0131 0.6754 0.5065 0.3377 0.2533 0.1689 0.1013
Max 7.77438 38.7442 3.8738 2.5825 1.9369 1.2912 0.9684 0.6456 0.3874
Min -6.98183 -34.5475 -3.4526 -2.3017 -1.7262 -1.1508 -0.8631 -0.5754 -0.3452
H/V 5 0.5 0.3333 0.25 0.1667 0.125 0.0833 0.05

0.25

Ct 0.0471 0.0497 0.0498 0.0498 0.0499 0.0499 0.0499 0.05

Table 4.4.12: Change in statistical values of yt as a function of Hb, Vb Fb = 0.05,Wb = 0.05 for

and (4.30) and Equations (A1.38) and (A1.39) in Appendix A1. These tables
have shown that the strongest influence on the scale of the leaf marginal residual
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d 1
t,b, and hence any dt,b updated fewer times than this (because d 0

t,b is negligible for
appropriate Fb,Wb) is the value Hb/Vb. The value Ct achieves a constant value
that has little influence on large values of Hb, Vb but, as shown in Table 4.4.12
when Hb = 1.5, Vb = 5, the mean of the data has been shrunk to such an extent
that Ct is larger than the mean value. Thus choosing values of Hb, Vb can reduce
the effect of the data on the leaf marginal to a large extent which might prove
troublesome if the data is being used to choose tree models via the leaf marginals.

4.4.4 Conclusion

The purpose of this calibration study was to assist in the design and selection
of tree models for nonstationary data. Alternatively the tree model can be used
in place of parameter estimation for providing a selection of models that can be
chosen based on some covariate data. This study has shown that for bounded es-
timates of the leaf marginal equations presented in Equation (4.33) and hence the
tree marginal from Equation (4.18) irrespective of the probability of an update,
one must choose Fb to have its leading eigenvalue in (−1, 1). From Figures 4.4.2a
and 4.4.2b it can be seen that 1/a1

0,b, the inverse of the leaf marginal likelihood
scale parameter, scales in direct proportion to Wb for any given Fb. Tables 4.4.10,
4.4.11 and 4.4.12 have shown that judicious choice of Hb/Vb can help set the scale
of the leaf marginal innovation that could be used ensure that the leaf filters can
accommodate learning by the appropriate scaling of the distributions at the leaf
nodes.

It would tedious to have to perform a calibration study of this kind for every
streaming event. Thus it is necessary to minimise the inputs required for designing
a tree model and, by extension, a modelling ensemble. Choosing parameters alone
though is not enough. In this section and in the simulation studies to follow the
trees are fixed and so the number of leaf parameters are known. However in the
ensemble model of Chapter 5 the trees have a randomised structure so for an
individual tree it is impossible to know the number of leaves with certainty. Thus
some additional tree modelling assumptions are required. These will be detailed
in Section 5.2 but in general it is assumed that each parameter choice is some
deterministic function of the tree. For example, the value Fb could be positive
to the right of the tree and negative to the left of the tree and could decrease
in size as the either the depth or number of leaves increases. Another modelling
assumption, that could be altered by the user, is that as the tree gets deeper,
the parts of Z, an hence Y , become more homogenous so that V decreases with
depth, W increases with depth or r = W/V changes to reflect this idea. One aim
of the simulation studies in Section 5.2 will be to examine some alternatives for
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deterministically modifying parameters for model search and performance but in
this section the focus on the design of single tree and its requirements assuming
known but arbitrary number of leaves.

For a single tree model it is important that each leaf is different in some way.
There is little reason for having the same model across different leaves because
there would no differing of filter models and hence the support for the observation
process would be same as for a single filter.

For a single tree model all that is required is a single value of F because its
bounds are limited by (−1, 1) and the value is symmetric about 0 as far as at,b is
concerned. There may be reasons for entertaining negative values of Fb because
of the effect of zi−1 on zt in the filter model. Suppose the value 0.5 was input for
Fb. Then, if there are, for example three leaves, 2, 6, 7, one option would be to
choose values of Fb for each of the leaves at 0.5, 0.25, 0.25 or, if negative values of
Fb are required, 0.5,−0.25, 0.25. These could be in any order but are allocated
here according to tree depth.

Rather than fixing Wb it seems sensible to fix Vb for the tree model because even
an empirical glance at nonstationary data and some prior knowledge would give
the analyst some idea of the measurement noise. Then, it can be assumed, again
from prior knowledge, that an appropriate scaling factor will set a broad enough
range of distributions for the tree marginal residual to support the tree filtering
process but without reducing the effect of the data. That is, if the mean of an
empirical analysis of Y t were around 3 then providing a range of scales between
1.25 and 0.75 for the the three leaves mentioned above might be appropriate. V,W
and hence r would scale with the tree, by the assumptions mentioned above.

Stipulating one or several desired signal to noise ratios would possibly be easier
than stating Wb for each leaf but one could further assume that r = HW/V =⇒
V r = HW would provide a set of values for Wb given, a range of inputs, V,H
and r. Setting r = 1 implies V = HW which from the above calibration study
should have only a minimal recursive effect on the the expected scaling of the
leaf residual and will fix, for each different value of Hb, a different but reasonable
range of 1/at,b.

To continue the previous example, choose F for a 3 leaf tree with positive state
matrix values only, F2,6,7 = 0.5, 0.25, 0.25, V = 3 so V2,6,7 = 2.5, 2, 2, say, H =
(0.75, 1, 25) so that H2,6,7 = 1, 0.95, 0.95 for example then if r = 1, W2,6,7 =
2.5, 1.9, 1.9 which from Table 4.4.8 places 1/at,b in the range of values very close
to (2.1333, 2.6667) for each of the leaf marginal likelihoods. Thus the user has
to input F , V and possibly H and r, and by using some spacing of values that
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is tree size (number of leaves) and/or tree height dependent the tree parameters
can be automatically allocated.

In the simulation studies that follow this will be the process that is followed.
In this section there are two simulation studies, the first considers the effect
of incorrectly specifying the splitting threshold value given a fixed set of leaf
parameters on the tree marginal likelihood and state estimates when compared
to the Kalman filter and the true model presented above. The second study
examines how specifying the leaf model parameters affects the tree marginal and
estimates for a few different threshold values.

4.5 Leaf model simulation studies

The calibration study above has provided one possible way of approaching a
sensible method for choosing a set or sets of leaf model parameters that allows one
to avoid parameter estimation in a streaming setting; to allow for nonstationarity
of the data and to guard against extreme values of parameters that may cause
computational irregularities and impossibilities such as zero determinants and
divide-by-zero errors. One task of the simulation studies to follow is to evaluate
this method.

There are two main parts to the simulation study. The first part, Section 4.5.1,
examines the accuracy of the estimates and the effects on the tree filter marginal
over a range of threshold values at the root of fixed 2-leaf trees. One of the
experimental tree models will exactly match the model that generates the data.
In this study, ψT the leaf parameter sets for each experimental tree, will be exactly
the same for all trees. The results of this study will show that the accuracy of the
estimates depends on both the updated and predicted models at every iteration.
The full study in Appendix A1.2 will explain this in detail but the results of that
study will be elaborated upon in Section 4.5.1.

This 2-leaf model is the building block of every other tree so a clear understanding
of this model component is warranted. More so because in the tree prior sampling
process it is this model that is added and removed from a tree at some of the
model evolution steps so an analysis of this model now will go some way to setting
up the approach for more complex models later on.

A difficulty of presenting simulation studies in the streaming setting is deciding
when to present the outcomes and results. The general inductive hypothesis used
in this document is that presenting the results that have held from t = 0 to t

means that these results will hold from t to N where N is some random but un-
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known endpoint. However, in a recursive environment this inductive assumption
should be treated with some caution.

In the experiments that follow the number of data points has been limited to
1000. This is mostly due to the computational, data storage and time constraints
that occur from having to repeat these experiments many times. If the data are
assumed to be arriving at a constant rate of one data point every 100ms then
1000 represents only 10s worth of data. While this is somewhat arbitrary (if the
constant rate of arrival were assumed to be 1s then 1000 represents 16′40s of
data) it is hoped that it is enough to give support to the results presented below,
at least up to the 1000th data point.

4.5.1 2-leaf Simulation Study 1

This simulation study compares the effect of known (as opposed to randomly
chosen) wrong covariates on the filter estimates and tree marginal against both
the true model and the Kalman filter. The study averages over 100 data sets
simulated from a 2-leaf tree model with known leaf parameters. The results will
show that, on average, the 2-leaf filter accuracy of estimating the latent state
will depend on the specification of the parameters at both the leaves that are
and are not updated. The tree model is not shown to be more accurate than the
Kalman filter in every case but the error bounds around the tree filter estimates
are narrower thus confirming that the tree filter concentrates the likelihood of the
latent state by more accurately describing the support of the sequence of data
than just using a Kalman filter.

Data for the experiment are generated from 100 repeated simulations from a 2-
leaf tree model, Tsim, where there is a single covariate, x1 with bounds (0, 1) and
threshold value 0.5, at the root node. Figure 4.5.1 shows 10 samples from this
data generator.

The experimental trees are initialised as 2-leaf models with covariates at the root
fixed at T1 = 0.1, T2 = 0.2, T3 = 0.4, T5 = 0.5, T6 = 0.6, T7 = 0.7, T8 = 0.8, T9 =
0.9. The tree that exactly matches the data generator is T5. The data generator,
Tsim, provides, on average, an equal number of updates and predictions at each
of the leaves. The above setup means that, on average, the proportion of updates
to each of the leaves varies in a consistent manner. For example, for T1 leaf 2
gets 10% of the updates and makes predictions 90% of the time and for T9, the
model at leaf 3 gets 10% of the observed data for updating the filter and makes
predictions 90% of the time. This means that not only can one compare the
performance of the results to the exact model, T5 but one can make a pairwise
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Figure 4.5.1: Ten example densities of the observed and latent distributions simulated from the
2-leaf tree model.

comparison between the models at the leaves between T1, T9, T2, T8, T3, T7 and
T4, T6.

Also included in the study is the average of the Kalman filter estimates over the
same set sample data. The Kalman filter parameters were fairly arbitrarily chosen
based on those of the tree models used but there is only one set of parameters
for the Kalman filter.

The results are presented in two parts. The first considers the accuracy of the
filter estimates and the rôle of the leaf parameters in model performance. The
second part looks at the tree marginal and leaf marginals and the effects of the
scale parameters, their inverses and the data residual on these.

4.5.1.1 Estimate accuracy

There are two parts to this section. The first looks at the performance of the tree
estimates and the second at the performance of the leaf models which includes
both estimates and predictions at every t. To be clear, the tree estimates are the
estimates µ̂t|t,b provided by a 2-leaf tree where at each t a single estimate from
one of the b = 2, 3 leaves is output. The choice of the estimate that is output
is determined by xt at each t by choosing one of the two leaves b = 2, 3 of each
Tk, k = 1, . . . , 9. The variance of the state estimate at each t, Σ̂t|t,b, is a pointwise
estimate from the same leaf that was chosen by xt. The model at each leaf has
different parameters so the size of the variance estimate of the tree filter is also a
random variable not only dependent on when the filter was last updated but also
on the values used for the parameters at each leaf.

Figure 4.5.2 shows that T5, the model that exactly matches the data generator, is
the worst performing model when comparing the cumulative mean of the averaged
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tree filter estimates. The averaged Kalman filter cumulative CMSE shows that
it is not the best performing filter but the tree filters that are better than it
are pairs T1, T9, T2, T8. Pair T3, T7 fall either side of the Kalman filter estimate
and Pair T4, T6 performs worse than the Kalman filter but better than T5. The
Kalman filter estimate has been used as a benchmark because it is the optimal
filter conditional on its parameters and the mean of the estimates from this filter
over 100 random data sets should, by the central limit theorem, approach the
mean of the estimates generated data (this is shown in Appendix A1.2).

Figure 4.5.2: The cumulative MSE for 9 tree models.

The next figure, Figure 4.5.3, presents the result of comparing leaf estimates to
the data generated at the corresponding leaves. The data used to generate this
figure is the average over 100 data sets of both the estimates and predictions made
at each leaf at each t. To be clear, at every t, every leaf produces a prediction
for the filter level, µ̂t|t−1 and if a leaf is chosen that prediction for the filter
level is updated to be an estimate of the level µ̂t|t for the next iteration. Thus,
for example, the values at T5,2, leaf 2 of tree T5 that exactly matches the data
generator, Tsim, are made up, on average, of predictions 50% of the time and
estimates the other 50% of the time and this is also true for T5,3. Similarly, the
proportion of predicted values to estimates depends on the value of the threshold
ck for Tk, k = 1, . . . , 9 so that, for example, at T9,2 there are, on average over 1000
iterations and 100 simulated data sets, estimates 90% of the time and predictions
10% of the time and vice versa for T9,3.

Bearing the above in mind, Figure 4.5.3 shows the cumulative mean square error
(CMSE) between Tsim,b, the latent data generated at each of the leaves of Tsim,
and Tk,b the combination of estimates and predictions at each of the leaves of the
experimental trees. The dashed lines in Figure 4.5.3 represent the CMSE between
leaves Tsim,3 and Tk,3 and the solid lines represent the CMSE between Tsim,2 and
Tk,2. The result is in direct contrast to that shown in Figure 4.5.2 where now
the best performing model is T5, the worst performing model, on average, is the
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Figure 4.5.3: The cumulative MSE for each leaf of the 9 tree models and the Kalman filter
when compared to the data generated at each leaf of Tsim.

Kalman filter (because it cannot separate models). The pairwise degradation of
the models is not as clear as it was in Figure 4.5.2 but for leaf 2 it can be seen that
model performance degrades from T4 to T1 then from T6 to T9. In other words, at
leaf 2 for T4 to T1, as the proportion of predictions increases and the proportion of
updates decreases the leaf model performance degrades but this is only gradual.
However, for trees T6 to T9, as the proportion of predictions at leaf 2 decreases
and the proportion of updates increases the degradation of the models is more
pronounced. This counter intuitive behaviour, more data suggesting a worse
performing model, requires further examination which is shown in Figure 4.5.5.

Before turning to Figure 4.5.5, Figure 4.5.4 shows some interesting properties
of the leaf filters and relates the intermittent filter, calibration study and tree
filter model to each other. The graph consists of 4 panels and only the top two
labelled, L2:MSE and L3:MSE, will be considered now with the latter two being
considered in Section 4.5.1.2.

Figure 4.5.4 presents the average of the estimates of the filter variance Σ̂t|t,b, b =
2, 3. This is the average loss or MSE of each of the trees at each of the leaves
over 1000 iterations and averaged over 100 sample data sets. Also included is
the average loss of the Kalman filter, presented as the black line in all of these
panels as it was in the preceding graphs. The other colours correspond to the
same colours in the graphs already presented so that T1 = red, T9 = purple etc.

The first thing to notice is that in every case the MSE reaches a steady state.
The authors of the intermittent Kalman filter (IKF) pointed out that the variance
of the state is a random variable that depends on both the number of updates
and the choice of parameters of the filter. There, a critical rate of update was
established for the signal to be considered unbroken or in, other words, the number
of updates needed for the Riccati equation to converge to its steady state. Here,
based on the calibration study, some parameters were chosen that were guaranteed
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to reach steady state even though they may only be updated randomly at an
unknown rate. Figure 4.5.4 shows that the MSE at each leaf for every tree does
reach this steady state albeit at a rate that is slower than that of the Kalman
filter. Thus in the tree filter model, in a similar fashion to the IKF, the variance
of the leaf filters (hence of the tree filter) is a stochastic process rather than an
asymptotic value.

Figure 4.5.4: The variance and inverse of the scale parameter for each leaf of the 9 tree models
and the Kalman filter.

The next thing to notice is that the MSE of the leaf filters is lower than the MSE
of Kalman filter. This is due to the fact that the tree filter can have different
parameters at the leaves while the Kalman filter has only one set of parameters.
Next, notice that that for leaf 2 the spread of the processes is larger than for
leaf 3 and finally also notice that in leaf 2 the order of the mean values of the
stochastic variances proceeds from T1 to T9 while this is reversed in leaf 2. At
this point it is necessary to look at Figure 4.5.5 which shows the proportions of
the visits of the state variance to a discrete collection of continuous intervals.

Figure 4.5.4 is misleading because the values attained by the MSEs are drawn
as lines. This was done to more clearly show the sequential relationship between
the MSE values but the actual values attained by the variance of the state fall
into specific intervals (perhaps even at specific continuous values) even when
averaged or smoothed over 100 repeats of the sample data. This is most clearly
shown in panel L2:MSE of Figure 4.5.5. The values of the MSE from leaf 2 of
each model were placed in to 1000 bins and the bars represent the proportion of
instances in each bin. Each bin represents an interval but it can be seen that
there are spaces between the bins, smaller spaces between larger collections of
spaces. The collections of bins follow a colour ordering from T9 = purple that has
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the greatest number of updates and least number of predictions at leaf 2 to its
pairwise opposite T1 = red with the least number of updates and highest number
of predictions at leaf 2. There are some very small bins that count values that
occur as the tree attains its steady state and there is some overlap between bins
which can be seen most clearly in the central portion of the graph where the MSE
for T5 is spread across 6 collections of bins. The range of values with more than
10 instances in each bin for leaf 2 is (0.083, 0.283) and here the lowest values are
associated with T9 and the highest values with T1.

Figure 4.5.5: Proportion of visits of MSE

A similar analysis applies to panel L3:MSE but there the order of the bins is
reversed because the proportion of updates and predictions is reversed. In leaf 3
is the range of values is much smaller and the number of bins and collections of
bins are fewer although both sets of values were given 1000 bins to be allocated
to. The range of values with more than 10 instances in each bin for leaf 3 is
(0.037, 0.106) but for leaf 3 the lowest values are associated with T1 and the
highest values with T9.

Looking back at Figure 4.5.3 and at the solid lines that represent leaf 2, the
effect of the lower MSE values for T9 corresponds with a poor performance of
the model. Thus when T9,2 gets many updates it performs badly but when T1,2

gets few updates it performs quite well. At leaf 3 T1,2 gets many updates and T9

has fewer but the performance of the leaf models are not reversed as one might
expect. i.e. T1,3 has lower CMSE than T9,3 even though the amount of data sent
to each leaf is reversed. Then compare these two trees in Figure 4.5.2 and both
models seem perform better than all the other models.

This paints a confusing picture because what one would expect is that the more
data that is received by a model, the better that model should perform. Except,
this depends on the models that are being compared which in this case are the
filters at the leaves and their parameters. This suggests a conclusion that the
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specification of the leaf parameters, both those that are updated and those that
are not updated, may outweigh the probability of an update in determining the
performance of the model.

This study now turns to the performance of the tree marginal for the same pa-
rameter and tree settings that were used in this part of the study.

4.5.1.2 Tree marginal performance

The calibration study examined the best and worst case scenarios (updates 100%
or 0% of the time) for the behaviour of scale parameter at,b,b, its inverse 1/at,b,b

and the leaf residual parameter, dt,b,b, of the tree marginal. The first part of this
part of the study will show the tree and leaf marginals and will then progress to
analyse the parameters of the tree marginal. The end result is that choosing the
leaf parameters affects the tree marginal which in turn affects the performance
of the model. This justifies the calibration study which examined parameters of
the tree marginal with the idea of being able to choose (sets of) parameters for
initialising a tree filter that did not only prevent the filter from failing but would
help inform the prior selection of parameters (and possibly hyperparameters) for
the ensemble model to follow which has 6×KT ×F parameters at the leaves of
the tree.

Figure 4.5.6: Tree marginal for each of the experimental trees and for the Kalman filter

Figure 4.5.6 is composed of the mean of the log marginals for the tree filter over
100 samples of length 1000 from the data generator Tsim. The linear form of the
marginal is a combination of being smoothed over 100 data sets and the linear
log form of the marginals themselves shown in Equations (4.32) and (4.33).

The model with the best performance (highest log marginal) is the Kalman filter.
Again this is due to the parameters used at the model but crucially in this case
because the Kalman filter receives all of the data. The next best performing model
is T5, the model that exactly matches Tsim, the data generator, and it receives,
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50% of the data each of the leaves, on average. the next 4 best performing
models are, in order, T6, T7, T8, T9 and these receive, respectively, 60%, 70%, 80%
and 90% of the data at leaf 2. The following 4 models, again in order of degrading
performance are T4, T3, T2, T1 with, respectively, 40%, 30%, 20% and 10% of the
data being provided at leaf 2.

The effect of the data can best be seen in Figure 4.5.7. Again the dashed lines
represent the marginal for leaf 3 and the solid lines the marginal for leaf 2. T1

has a positive marginal at leaf 2 but this model is receiving only 10% of the data.
If this was a truly streaming model with very large number of data points this
suggests that with enough data this leaf model would eventually, on average, have
probability 1 based on only 10% of the data, clearly nonsense. Similarly, leaf 3
of T1 gets 90% of the data but fares the the worst out of all the leaf marginals.

Figure 4.5.7: Leaf marginals for each of the leaves of the 9 experimental trees and for the
Kalman filter.

Recall that the log tree marginal (TM) is the sum of the log leaf marginals (LM).
For T5 these values at t = 1000 are LM5,2 + LM5,3 = TM5 = −8215.047 −
471.7267 = −8686.774. Each of these leaves receives 50% of the data but leaf 3
contributes LM5,3 = (TM5−LM5,2)/TM5 ≈ 95% to the good performance of the
tree model while LM5,2 contributes only ≈ 5% to the good performance of the
model.

Returning briefly to Figure 4.5.4, the lower two panels show that, like the MSE
parameter Σ̂t|t,b the scale parameter of the marginal, 1/[a]t,b,b, is a stochastic vari-
able that reaches its steady state, although a but faster than the MSE parameter.
The similarity between these two parameters is striking but as Figure 4.5.8 shows
they are not the same.

The bar charts in Figure 4.5.8 were constructed in the same manner as those
in Figure 4.5.5 in that 1000 bins were allocated to each of the charts but in
the case of Figure 4.5.8 there are no spaces between the values that the scale
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Figure 4.5.8: Distribution of visits of the leaf marginal parameter 1/[a]t,b,b.

parameter attains (even at 2000 bins no spaces between values were present). The
distributions of the parameters have a similar form in that they tend towards a
central peak value and appear to be roughly symmetric about that value. In both
L2:AI and L3:AI the leaf that is most updated (T9,2 in L2:AI, and T1,3 L3:AI)
have the narrowest distributions and the highest peaks but in the range of values
in L2:AI is much broader than in L3:AI.

The final parameter to be considered is the residual parameter of the tree filter,
dt,b,b. Figure 4.5.9 shows that, on average the Kalman filter explains the data
most completely because the residual, on average, is zero. As this is an optimal
estimator and receives all of the data this is not surprising.

Figure 4.5.9: The residuals of the leaf marginals, [d]t,b,b.

What is surprising is that, again, the model that matches the data generator,
Tsim, exactly, T5, seems to contain more residual information than all the other
leaves. That is, it has the highest and lowest residual values corresponding to
leaf 3 (dashed lines) and leaf 2 (solid lines). The models that seem to perform
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the best are T1, T9 which reflects their performance in the comparison of tree
estimates but not in the leaf or tree marginals where T1 was the worst performer
and T9 the middle performer.

4.6 Summary and Conclusion

This chapter introduced the tree filter: an on-the-fly conditional model that
presents several sets of filters with alternate parametrisations. It was shown
that this model reduces uncertainty around the level estimates of an observed
stochastic process by adding additional explanatory information at the internal
nodes of the tree model. The marginal likelihood of the tree filter was derived
and this was compared to the marginal likelihood of the Kalman filter. A calibra-
tion study was performed with the intention of finding a priori values for setting
the multiple leaf filter parameters. Simulation studies were performed with the
intention of showing the properties of the fixed two-leaf tree filter under differ-
ent leaf parametrisations. While the it was shown that the bounds around the
level estimates were tighter than those produced by the Kalman filter it was also
shown that incorrect parametrisation could lead to spurious results over over a
long enough run of data.

In the next chapter tree model learning and adaptation is explored with the aim of
removing the dependency of the initial filter parametrisations and internal speci-
fications. The random tree model is then extended to an ensemble of random tree
models to produce a tree probability weighted mixture of estimates, predictions
and their associated bounds.
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5 Tree Filter Ensemble

5.1 Introduction

The previous chapter introduced the tree filter which is an approach to filtering
that allows one to specify independent filters for a signal conditional on some
deterministic explanatory process xt. Each leaf of the tree supports a latent
process Zt

b that is intermittently updated by observations Yηxt,T
from process Y t

assigned to it by the rules and structure of a fixed regression tree.

This chapter considers how one would search for tree models of the tree filter
type in a streaming environment. Section 2.3.2.2 presented a particular method
by Chipman et al. (1998) for sampling random trees and then searching for a
(smaller) collection of better tree models that can be assessed by an expert for
suitability for the experiment under investigation. Alternate tree models are
proposed and compared using the integrated likelihood of the current tree and
the proposed tree, the prior for each of these models and the proposal distribution
within a Markov chain Monte Carlo sampling process. The search for these models
is over a fixed sample which limits the number of possible rules at nodes and allows
one to ensure that there is enough data in each of the leaf models so that model
summaries at these nodes make sense.

The streaming setting presents several challenges to this approach because the
sample, while not infinite, is large enough to be considered countably infinite and
of a random size. This “axiom” of streaming modelling was discussed, along with
others, in Chapter 2, Section 2.5. Not knowing the sample size and also not being
able to store any data means that one must be able choose covariates and sample
splitting rules (threshold values) for proposed models based on the stream(s) of
data on-the-fly. Choosing a window of data creates a dependency on the window
size and the data therein. An empirical distribution of the known covariates does
not make sense because it assumes that these so-called1 distributions are either

1so-called because if the covariate process is assumed deterministic then they are not random
and hence are functions not distributions
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independent or, if not independent, are then complex enough to form so that
excess memory and processing power is required to maintain these distributions.
Not-to-mention that to form or adapt these so-called distributions requires enough
data, initially, to get a frequency count and subsequently an excess of data to
adjust the frequency count.

This chapter begins by describing how the tree sampling approach of Chipman
et al. (1998) is adapted to the streaming setting. This requires a change to some
basic assumptions for modelling data which includes an additional parameter
which are the bounds of the known covariate processes. The addition of this
parameter means that the calculation of the transition proposals needs updating.
Some additional proposal moves are suggested and described. This section also
includes a description of the Markov chain Monte Carlo approach (MCMC) that
will form the basis for proposing and choosing models.

The next part of this chapter will demonstrate the streaming model over three
different simulated datasets using a single tree only. It is not expected that a
single tree will perform particularly well nor that the MCMC chain will converge
to the target posterior but this is a stepping stone between the fixed tree filter
and the full mixture of tree models that will be presented and demonstrated in
the sequel to the first two parts of this chapter. The particular focus will be on
the effect of the filter parameters and how they can be adapted now that the tree
model is changing.

This chapter continues by presenting a mixture of tree models over an approxi-
mation to the distribution of the trees. This is the third constituent of the model
represented by F(·) in Equation (1.2). A central motivation of this thesis is to
demonstrate that MCMC can be used in the streaming setting but with some
modifications of the method to take into account that new data is being added to
the joint distribution of the observed process. One of these modifications is that
multiple chains can be run at the same time and that by forming a mixture over
the distribution of the tree models the difference between the current target poste-
rior, p (T | Y t, Zt, xt ), and the target posterior at t+ 1, p (T | Y t+1, Zt+1, xt+1 ),
will be small enough to be negligible.

The continuation of this part of the chapter will present a comparison between
the proposed model and some existing models that are known to converge to the
target posterior. To do this will require two comparisons, the first is the case
where the data are assumed fixed and the established models are run, according
to their recommended specifications, over the fixed data set. The proposed model
will be run but, unlike the established models, Bayesian Additive Regression Trees
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(BART) (Chipman et al. 2010) and Dynamic Trees (DT) (Taddy et al. 2011), the
data will be seen only once. In the second comparison the established models will
used in a (pseudo) streaming data setting where new data will be added to the
sample at each iteration. In the case of DT their model has already been adapted
to the streaming setting by Anagnostopoulos and Gramacy (2013) but in the case
of BART, new data is added and for each new data point the algorithm is rerun
over the entire data set from start.

5.2 Tree Model Randomization and Sampling

The second constituent of Equation (1.2), represented by T (·) is a regression
tree model as typified in Section 2.3.2.2 developed by Chipman et al. (1998)
(BCARTMS). The purpose of the fixed tree model, among other things, is to
provide a method for structuring and proposing a set of bases for the Kalman
filters. However, as mentioned in Section 2.4 single and fixed trees are limited in
their usefulness in the streaming setting. The costs of large trees in the streaming
case are the increase in complexity of the tree model, the difficulty in filter model
parameter specification and the more filters there are the fewer the number of
updates there are per filter hence further increasing the dependency of the analysis
on the leaf filter parameter specifications.

The consequences of depending on a single main effect and rule are exacerbated
in the streaming setting because the nature of the model is changing with time:
the relative2 importance of a covariate or feature may be changing with time
and the nature of the phenomenon under study may be changing in time. It is
unlikely that a single threshold value at the root node will be able to maintain
its explanatory strength for an unknown, but assumed large, duration (number
of data points). The need for real-time and any-time inference and prediction
means that one cannot stop the analysis, attempt different root or subtree node
specifications and then catch-up the analysis.

Thus there is a need, in the statistical streaming setting, for model specification
and choice “on-the-fly”. One way to achieve this is to propose alternative models,
compare these and choose the model that has the greatest odds of being the
correct model, at least for some small duration. There is, however, the difficulty
of specifying the alternative model because one is only learning about the model
and phenomenon at the same time. A way around this is to increase the number
of model proposals and choices from some (limited) set of possible models so that
the chosen models and their specification can attempt to keep up with the stream

2Importance is relative to the chosen covariates, not all possible covariates.
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of incoming data.

This section will present a method for proposing new tree models and choosing
between an existing tree model and the new proposed model. Proposal models
are randomly generated by a version of the prior tree model sampling process
of BCARTMS. Tree model samples are compared and chosen via MCMC. The
likelihood of each of the models is based on the tree filter marginal of Section 4.3
calculated at each instance t when a new data point yt is presented to each model
thereby providing an instantaneous likelihood ratio over single data point. The
jump proposal probability or transition kernel between the current tree and the
new tree is based on that of BCARTMS but now including proposals for the
additional step changes between models. Marginalising over the leaves of each
tree means that a reversible jump approach (Green 1995) between models is
avoided.

The subsection that follows will concentrate on describing and demonstrating the
tree prior sampling process and the modifications that have been made to this
process in light of the streaming setting. This will be followed by description of
the MCMC algorithm used in the model and a demonstration of its application.
The random tree model will be compared to the fixed tree models of Section 4.3.

5.2.1 Tree Prior

In the streaming setting one might interpret the tree prior as a form of automated
prior elicitation based on: some hyperparameters, α and β, that control the tree
structure; the chosen covariates and the range of parameters and functions avail-
able for choosing and adjusting the parameters of the filters at the leaf models.
However, in the streaming setting there is no fixed size dataset thus removing the
possibility of a finite number of trees. The number of covariates is finite and, if
the leaf parameters are set as was done in the Calibration Study, these too may
be finite. Further, for each covariate xj ∈ R there are an infinite number of split-
ting coordinates cj | xj. Generating a grid-like structure as was done in Denison,
Mallick, et al. (1998a) is not impossible but this adds a further specification that
may well not suit the analysis for more than a limited duration, not-to-mention
the additional overhead of setting up and maintaining the grid. Further, using the
methods suggested by Bifet, Gavald, et al. (2018) and described in Section 2.5,
to window or “reservoir” explanatory variables would not only create temporal
dependencies but could render the inference spurious because BCARTMS rules 3,
Section 2.3.2.2 requires a specific number of data points per leaf, and BCARTMS
rules 2, Section 2.3.2.2 requires that every leaf can be reached by the data, which
would be difficult if not impossible to maintain in the streaming setting.
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The complications that result from the streaming setting suggest that the tree
prior of BCARTMS requires some tweaking before being used for model selec-
tion. The remainder of this section will present modifications to choosing the leaf
threshold values in the prior function, Algorithm 2.1, Line 6 and to modifying
the tree prior jump steps so that the tree prior sampling process is more suitable
for streaming.

5.2.2 Modification of Allowable Coordinates

Calculation of the tree prior is almost exactly the same as in Equation (2.46), that
is, a single traversal of the internal and terminal nodes of the tree for each t. The
difference between the method of BCARTMS (and Bayesian CART Algorithm
(Denison, Mallick, et al. 1998a) (BCART)) and this method come about because
the allowable rules in the fixed dataset setting are not suitable in the streaming
setting. This section will describe how p ( RULE ), that is, the allowable rules from
Algorithm 2.1, Line 6 are computed in the streaming setting.

A rule for allowability that remains the same as that of BCARTMS (and BCART)
is Algorithm 2.1, BCARTMS rules 1 i.e. there must be an available rule, so that
if all the possible values have been exhausted for a particular covariate then that
covariate is not allowable. This relates primarily to categorical and finite ordinal
sets, not used in this document, but possible in general.

The streaming data setting is characterized by fact that the number of data
points, N , is considered unknown but large enough so that using a multiset of
data to limit the range of threshold choice for each covariate is not possible. Us-
ing the reservoir, discretisation or windowing methods such as done by Hoeffding
Trees (Bifet and Gavaldà 2009) creates additional temporal dependencies on the
stream of data because the covariate values are subject to either distributional as-
sumptions or other summaries that rely on frequencies of feature value occurrence
rather than the values themselves Section 2.5.

Ignoring the fact that the range of covariate values can vary over time can also
render the model spurious because some combination of threshold values chosen
at different times from different reservoirs, windows or distributions might block
all possible updates to a leaf at a later time thereby creating a measure over an
impossible set. That is, the support of the observation process is spurious because
there are latent measures included in the tree that have probability zero for every
process Y t ∈ Y .

To remedy this situation the method for choosing the allowable set of covariates
and thresholds that can be used for proposing new trees must be updated for
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the streaming setting. The idea is that the tree prior acts a method to store all
the information necessary to choose an appropriate filter. Each internal node, η,
for the duration of its existence, must hold all information about the xj assigned
to it. Let ηj be an internal node with assigned rule (xj, cj). Then I(ηj) is the
subset of IT that contains all rules that relate to covariate xj in tree T . Each xj

is assumed independent of every other xk, k ̸= j for all t, a standard assumption
in regression. Thus for each T , I(ηj) ∪ I(ηk) = ∅ and by the term “store all
information necessary” used earlier in this paragraph it is meant that each I(ηj)
must be structured in a way that allows for any value cj of xj to be used in the
tree, but not necessarily at every node, and that every b ∈ KT can be reached by
any xt at every t.

All the information that I(ηj) needs are the bounds of xj. This simple addition
to the tree model means that each time any ηj splits on some cj, a subset of
xj is created, where the bounds of the subset are created by the neighbours of
ηj in I(ηj). Alternatively, if p, the number of covariates, were large enough or
if the tree was small enough then one can enforce that each xj is unique in the
tree resulting in an orthogonal basis at each leaf where the origins of the bases
at each leaf are the coordinates of the thresholds in PA(b), b ∈ KT . In either case
choosing some set or collection of sets that allows/forbids certain rules is simply
a case of forming an allowable set of configurations for the MCMC chain and, in
essence, is no different to the rules imposed by BCARTMS or BCART other than
the fact that an infinite number of covariate values can be included in the model.

In this chapter the rule for allowable values is where the bounds are assumed
known for each xj. It has been assumed without loss of generality that all xj are
bounded in (0, 1) (but this could have been any interval) and assuming that the
bounds are known is consistent with the notion that the xj are known. Bear-
ing in mind that the min and max values of some random sequence are also
statistics one could also place a distribution over each covariate dimension with
hyperparameters and learn these but this likely adds additional complexity with
little possible gain and runs similar risks to the windowing, distributional and
discretisation methods of Section 2.5.

Each I(ηj) forms an induced subgraph of the tree, Hj, where the nodes are the
defined by the values ηc of xj and the edges are formed by considering the paths
of the nodes in base tree graph G. Singleton nodes (nodes in Hj that have no
ancestors nor descendants in G) are initially kept but discarded once a randomly
chosen new node is added to Hj if the new node does not connect any singleton
node to any other nodes in Hj. Randomly choosing some node in Hj by choosing
some η ∈ IT of G and then uniformly choosing some xj to form I(ηj) forms a
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clique of Hj if there are ancestors or descendants of η in G and then Hj is formed
into a directed graph by having the edges connect the nodes according to node
order. As each node has a value cj associated with it and as it is a directed graph
these values form an ordering of the interval xj(B) = (0, 1). Thus if a threshold
is part of a clique then choosing a new threshold means choosing a value that fits
into some interval of the existing partition of xj(B) creating a new subinterval of
xj(B). After a new threshold is added, the allowable set, the set of rules I(ηj),
is updated so that the ordering of the induced subgraph Hj is maintained for the
entirety of the existence of xj in the tree.

5.2.3 Tree Prior Simulations

The above description of forming an allowable set for choosing covariate rules
in the streaming setting highlights an essential difference between the streaming
setting and the other tree based approaches to regression: the tree prior must be
considered as a nonfinite dimensional stochastic process. In BCARTMS, the prior
tree sample was introduced as a “tree-generating stochastic process” (Chipman et
al. 1998, p. 938) and the prior distribution over the terminal nodes was produced
for several parameter settings. The tree generating density from BCARTMS is:

p ( SP LIT (η) ) = α(1 + δη)β (5.1)

The tree-generating stochastic process in this document is redefined as a reflected
random walk with a probabilistic upper boundary. The states of the random walk
are the number of leaves, KT , the lower boundary is always 2 and the upper prob-
abilistic boundary is derived from the fact that Equation (5.1) is a power law so
that as δη increases, p ( SP LIT (η) ) → 0 and hence so does maxδη→∞ KT . Fig-
ures 5.2.1 and 5.2.2 re-present a single example of those provided by BCARTMS.

5.2.4 Target Posterior

In the nonstationary streaming data environment training a tree and then using
this tree to make estimations and predictions on the stream of data without
modification would be of little value. A single tree model would either have to
be very large (such as some of those described in Section 2.5) or would have to
be retrained over some batch of data at frequent but probably arbitrary intervals
which would interfere with, if not negate, the streaming data approach.

The proposed approach does neither of these. In this case, before the streaming
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Figure 5.2.1: The tree generating process as a random walk with probabilistic reflective upper
barrier.

Figure 5.2.2: Frequency of visit to each state conditional on the tree depth and parameters
(α, β).

algorithm is begun, the tree is initialised to be a weak learner which is a single in-
ternal node and two leaf models. Each leaf model is a Kalman filter and together,
the weak learner and the Kalman filters make up the Tree Filter (Section 4.3).
However, at each index t the tree is copied and a proposed change to the tree
is made so that it is possible for xt to choose a different filter for yt to update
than in the original tree. The change to the tree constitutes a form of automatic
prior model elicitation from the set of covariates, their threshold values and leaf
parameters for the set of filter models at the leaves. After some leaf b ∈ LT has
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Figure 5.2.3: The expected size of a tree conditional on the tree depth and parameters (α, β).

Figure 5.2.4: Expected time spent in each state conditional on the tree depth and parameters
(α, β).

been chosen and the filter at that leaf updated, the two trees are compared via
an MCMC ratio and the better tree, the one with the greater odds of performing
better at this iteration, is accepted and assumed to be able to perform better
at the next iteration. This process of state estimation via the tree filter and
model prediction via the MCMC process is carried out once for every data point,
dt = (xt, yt), presented to it from the stream of data.

The weakness of this approach is immediate from the above description: a single
data point is unlikely to present enough evidence for adequate model comparison
and for every t, a new data point suggests that, in the MCMC setting, one
should restart the sampling process for model selection from t = 1, contradicting
the previous statements that in the streaming setting one cannot stop, restart
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and play catch-up with the streaming data.

A partial solution to the above issue proposed by this modelling framework is that
the latent processes Zt

b, b ∈ LT are assumed to be Markovian so that at every t, the
available history of the observation process is stored in the latent space. Having
multiple latent processes by having multiple leaf models from which to choose at
each t provides a larger history of the latent process to support the observation
process. Thus the data accrued in the tree marginal likelihood provides a more
complete history of the observation process than a single data update.

However, new data is new evidence even if it is a single data point. This means
that the joint distribution of the sequence of data

P (Y1 ≤ y1, Yt ≤ y2, . . . , Yt ≤ yt )

is not finite and evidence of the distributional properties of the stochastic process
up to index t may not necessarily hold for the joint distribution of the process

P (Y1 ≤ y1, Y2 ≤ y2, . . . , Yt ≤ yt, Yt+1 ≤ yt+1 )

after the new data Yt+1 = yt+1 has arrived. In the general statistical setting
one works with a finite data set and the problem of a changing data set does
not generally arise. If a new data point were to be added to the data set then
the MCMC process would be rerun over the entire sample. Clearly this cannot
be done in the streaming setting if contemporaneous modelling and inference
(training and learning) are to be maintained.

The best one can do is to “hope” firstly, that the target distribution, the posterior
represented by p (T, Zt | xt, Y t, θ ) at t, is the correct distribution. Secondly that
the new target distribution represented by p (T true, Zt+1 | xt+1, Yt+1, θ ), where
T true is some “true” tree model, is not too far way from the proposed distribution
p (T ∗, Zt | xt, Yt, θ ) that results from the MCMC model choice process.

From the outset it was clear that a single tree would not resolve this issue. Much
in the same way that Chipman et al. (1998) found that restarting the MCMC
process provided better coverage of possible modes of the tree posterior space,
having an ensemble of trees means that multiple searches are occurring at every
instance t to provide better coverage of the tree posterior space and the space of
latent processes. Chapter 6 will consider how to bring the posterior at instant t+1
closer to the posterior at t. Indeed, MCMC theory (viz. Section 3.3.2) guarantees
for a fixed data sample and a uniform transition between model samples, the
correct target posterior will be found but this requires a long enough run of the
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Markov chain, a luxury that is not available in the streaming setting.

Reproduced here for convenience are the probability model equations:

p
(
T, Y t, Zt | xt, θT

)
= p (T | ξT ) p (Z0 | T, ψT ) ·

t∏
i=1

p (Yi | T, Zi, ψT ) p (Zi | Zi−1, T, ψT ) (5.2)

p
(
T, Zt | xt, Y tt, θ

)
∝ p

(
T | xt, ξT

)
p
(
Y t | xt, Zt, T, ψT

)
·

p
(
Zt | xt, T, ψT

)
(5.3)

p
(
T, Zt | Y t, θT , x

t
)

= p
(
T | Y t, θT , x

t
)

p
(
Zt | T, Y t, ψT , x

t
)

= p
(
T | Y t, θT , x

t
)

A Posterior for tree model

×
KT∏
b=1

p
(
Zt

b | T, Y t, ψT , x
t
)

B Product of Gaussians from the IKF

(5.4)

p
(
T | Y t, θT , x

t
)
∝ p (T | ΘT ) p

(
Y t | T, θT , x

t
)

= p (T | ΘT )

D Prior for T

∫
p
(
Y t | T, Zt, θT , x

t
)

p
(
Zt | T, θT , x

t
)
dZt

C Marginal for T over latent process Zt

(5.5)

The focus of this section is to describe the MCMC approach for targeting the
posterior of the model in Equation (5.2), specifically the left hand side of Equa-
tion (5.5) or A . The terms in B are a product of Gaussian densities where for
each density the parameters are either µ̂t|t,b, Σ̂t|t,b if b is the leaf chosen by xt at in-
dex t or µ̂t|t−1,(b), Σ̂t|t−1,(b) for every leaf not chosen at index t, were (b) means every
leaf but b. The random variable Zt = zt is sampled from N(µ̂t−1|t−1,(b), Σ̂t−1|t−1,(b))
at each iteration.

The integral in C was the focus of the section titled, The Marginal Likelihood
of the Tree, and the formula for calculating the log of this integrated likelihood
was outlined there and is presented in full in Appendix A1.1. D was the focus of
Section 5.2.1, Tree Prior, where the difference in approach to sampling the tree
in the streaming setting were presented.

The target posterior of the model, p (T, Zt | xt, yt, θT ), is based on the prior
model sample T at instance t and the likelihood of a single data point, yt

marginalised over the latent processes Zt
b, b ∈ LT at the leaves that exist in

T at each t. The initial tree at t = 0 is a weak learner with a single covariate xR
j

at the root, a uniformly chosen (or fixed) threshold value cR
j and a linear Kalman
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filter with known, but different ψb at each of the two leaves. The initial Gaussian
state distribution at each leaf is initialised with parameters µ0,b,Σ0,b. There is an
additional initialisation parameter, W0,b, which results from the recursive nature
of the algorithm for calculating the tree marginal as shown in Equation (A1.6).
This has assumed to be the same as Σ0,b, both of which are initial guesses. Al-
gorithm 5.1 is an extension of Algorithm 4.1 and will be used as a guide to the
random tree model and to the MCMC procedure. The below bold type refers
to the relevant line in Algorithm 5.1. These provide some additional detail for
a more complete understanding of the algorithm and the streaming training and
learning processes.

Initialisation: The tree is copied so that two trees, call them T and T ∗, exist.
A move (alternatively called step, jump or evolution) is proposed for T ∗ from
the available moves which are change (Algorithm 5.2), grow (Algorithm 5.5) or
grow-shift (Algorithm 5.4), named also by numbers 1,2 and 5 respectively. These
are the only available moves when a tree is a weak learner. There are no NULL
trees nor is there a single filter option at the root. The assumption here is that
some explanatory variable xj will provide more information about the observation
process, even if this choice is strongly biased to one or the other leaf.

To generate the leaf parameters the method described in the Calibration Study
is used. Some data can be used to get an idea of the standard deviation of
the observation process Y t for setting the range of tree model parameter Vb and
likewise it is not unreasonable to use some existing data to set other limits such
as the tolerance value Tol = 0.0001 that changes the boundary of every covariate
variable from [0, 1] to (0, 1). Another way to see Tol is that it sets an absolute
minimum size on the tree partition. If any interval created in I(ηj) is smaller
than Tol the move is automatically rejected. This prevents an endless run of
partition refinement.

Other guesses for parameters Hb, Fb and Wb can also be based on expert knowl-
edge or empirical observation. However these parameters’ settings are guesses for
the tree model as a whole and they are deterministically modified for each leaf
as the tree model randomly changes form. Based on Section 5.2.3 one can get a
rough idea how deep a tree might be so that setting the scale of parameters such
as Fb can be guided.

Tree T ∗ proposal: (Algorithm 5.1 and line 4) The proposal moves have been
described in Algorithms 5.2 to 5.6 of Section 5.2.4.1. In each of these algo-
rithms on the right hand side the probability of that random component has
been shown. Baring p ( SP LIT (η) ) = α(1 + δη)β all the other densities are discrete
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Algorithm 5.1: Streaming algorithm for a random tree model.
Initialise: Set the weak learner with ηR, rule xR

j , threshold cR
j uniformly

selected and set leaves b2, b3 with parameter sets ψ2, ψ3.
Initialise parameters µ̂0,b, Σ̂0,b, A0,b, d0,b and ℓm0

Result: At each t ∈ 1, . . . , , µt|t,b, Σt|t,b and log p (T, zt | xt, yt, θT )
1 while !STOP do
2 Sample zt ∼ N(µ̂t−1|t−1, Σ̂t−1|t−1)
3 Copy T → T ∗

4 Choose move for T ∗ from Change, Grow, Grow-Shift, Prune, Prune-Shift
▷ If KT = 2 only Change, Grow and Grow-Shift apply

5 Generate Q(T ) = p (T, T ∗ )
6 Generate Q(T ∗) = p (T ∗, T )
7 foreach b ∈ LT & b ∈ LT ∗ do
8 Predict µt|t−1,b

9 end
10 Wait for xt

11 Using xt, choose the filter at leaf b from T and b∗ from T ∗

12 Wait for yt

13 Using yt, update the Kalman Filter at leaves b, b∗

14 Output µt|t,b, Σt|t,b from T only.
15 foreach b ∈ LT & b ∈ LT ∗ do
16 Update A∗

t−1,b → At−1,b

17 Update At,b according to whether b was chosen by xt or not
18 Update dt,b according to whether b was chosen by xt or not
19 Calculate ℓmt,b

20 Get log p
(
Zt,b = zt,b | µ̂t|t,b, Σ̂t|t,b, ψb, ·

)
21 end
22 Get log p (T | · ) and log p (T ∗ | · )
23 Get logQ = log p (T ∗, T )− log p (T, T ∗ )
24 Calculate log q∗(T ) = log p (T | · ) +∑KT

b=1 ℓmt,b + log p (Zt,b | · ) and
log q∗(T ∗) = log p (T ∗ | · ) +∑KT ∗

b=1 ℓmt,b + log p (Zb | · )
25 Calculate logαt{T, T ∗} = min{log q∗(T ∗)− log q∗(T ) + logQ, 0}
26 Draw log ut ∼ log U(0, 1)
27 if log ut ≤ logαt{T, T ∗} then
28 Set T ← T ∗

29 else
30 Delete T ∗

31 end
32 end

uniform densities. Not shown in those algorithms is the calculation of the thresh-
old probability. This involves considering P (LBj ≤ cj | I(ηj) ) on the left hand
side and P ( cj ≤ UBj | I(ηj) ) on the right hand side. Once I(ηj) been chosen by
uniformly choosing xj, each of the previous probabilities is the conditional prob-
ability that the interval to the left (or right) is of the size cj − LBj or UBj − cj
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respectively. Setting Tol will affect this measurement so ideally Tol should be
set much lower than the expected interval size.

The resulting transition ratios of Algorithm 5.1 and line 5 are:

Q(T ) = p (T ∗, T )
p (T, T ∗ ) = p (T | T ∗ )

p (T ∗ | T ) (5.6)

where, for the change move,

p (T ∗ | T ) = cj − LBj

UBj − LBj

× 1
ALLOW ABLE p

p (T | T ∗ ) = c(j) − LB(j)

UB(j) − LB(j)
× 1

ALLOW ABLE p
(5.7)

and for the grow and prune moves,

p (T ∗ | T ) = cj − LBj

UBj − LBj

× 1
ALLOW ABLE p

× 1
KT

× α(1 + δbRN
)β

p (T | T ∗ ) = 1
2× |pairs| × 1− α(1 + δbRN

)β (5.8)

and the grow-shift and prune-shift moves,

p (T ∗ | T ) = cj − LBj

UBj − LBj

× 1
|IT |
× 1

ALLOW ABLE p
× α(1 + δbRN

)β

p (T | T ∗ ) = 1
KT

× 1− α(1 + δbRN
)β (5.9)

where ALLOWABLE means the number of covariates that are currently allow-
able for that particular tree based on the covariates and bounds of the part of
the tree ancestral to the currently chosen node.

Note that these ratios should be reversed for the Prune and Prune-Shift moves. In
the Change move subscript (j) means the covariate at the node before the change
move was proposed. The difference between the proposal moves of BCARTMS
and this approach are now clear because in the former approach one compares a
discrete uniform chance of conditionally choosing a threshold value and in this
case one is comparing the ratio of interval sizes produced by a uniformly chosen
threshold value and the boundary from which that threshold is drawn.

Filter Predictions: (Algorithm 5.1 and line 8) At each of the leaves b in both
T and T ∗ a one-step-ahead prediction is made using:

µ̂t|t−1,b = Ft,bµ̂t−1|t−1,b

Σt|t−1 = Ft,bΣt−1|t−1F
T
t,b +Wt,b
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This prediction is not generally output and is currently only used to advance the
state processes for each of the Z(t, b). However, should one assume that xt and
yt have some difference in arrival time for the same index t3 one might want to
make (one or several) predictions between each observation. This has not been
done in this paper but is well within the capabilities of, and one of the reasons
for choosing, the Kalman Filter.

Filter Estimate: (Algorithm 5.1 and line 13) A data point, dt = (xt, yt) arrives
via a communication channel in an (again assumed) formatted state so that xt =
(x1, . . . , xp), xj ∈ (0, 1)4 and yt ∈ Rn. The explanatory vector xt is then used to
choose a leaf in both T and T ∗ and yt is used to update the filter at that leaf. At
this point the estimates of the state process:

µ̂t|t,b = µt|t−1,b + It,b Kt,bet,b; (5.10)

Σ̂t|t,b = Rt,b − It,b Kt,bHt,bRt,b (5.11)

are output.

Tree Marginal: (Algorithm 5.1 and line 15) The updating of the tree marginal
is exactly the same as done in Section 4.3 only now at each t there may be
different numbers of leaves. The marginal of each leaf keeps a recursive record
of the data that is assigned to it for as long as that leaf exists. Thus, when a
leaf is removed or added the information stored in that leaf must be maintained
within the tree. In the case of the change move nothing, with respect to the tree
structure, changes. In the case of the prune move if two nodes are removed the
log marginal of each leaf is added and divided by two. For the grow move half
the log marginal is allocated to each new leaf. This simple way of dividing and
collecting the information stored in the leaf marginals ignores whether one leaf
was updated more often than another but is based on the fact that when two
leaves are added one does not know which leaf will be updated more often in the
future.

In the case of the grow-shift and prune-shift moves sharing stored information is
not quite so strait forward because there may not be parents and children from

3Each iteration of the algorithm has been indexed by t and it has also been assumed that
each iteration of the algorithm shares a single dt = (xt, yt) but this not generally the case.
Each index of the algorithm could be indexed separately by the arrival time of xt and/or the
arrival time of yt. These two streams of data could, and probably would, have different but not
dissimilar arrival times but this leads to a level of complexity that has been avoided here and
by others (Bifet, Gavald, et al. 2018). It is assumed that for every index t, the xt at the receiver
(socket, preprocessor output connection, pipe etc.) explains the very next or simultaneous yt

at the receiver, an assumption that is dubious hence any causal inference should be avoided.
4and is correctly labelled so that each xtj actually is from source Xj
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which to collect the information. Thus the approach here is to initialise the log
marginal a one does in the Initialise step.

This is also true for the parameters µ̂0,b and Σ̂b,0. That is, in the case of prune
and grow, µ̂t|t,b is sampled from both children and averaged or from the parent
and Σ̂b,0 is initialised to Wb,0. For grow-shift both µ̂t|t,b = µ̂0,b and Σ̂b,0 = Wb,0.

A final item to note is the modification of the parameters ψb = {Hb, Vb, Fb,Wb}.
Each of these can be modified by some deterministic function as the tree changes
shape. While a seemingly obvious solution to this is to sample ψb for each of the
leaves that need modification, in a non-stationary environment the hyperparam-
eters for the distribution from which any of these parameters might be sampled
would also need to be learnt “on-the-fly”, not-mention the lack of identifiability
of the parameters of the Kalman Filter.

Sampling Vb or Wb only seems an intuitive option but this does not alleviate
the need for hyperparameter learning nor does it necessarily make sense when
considering the tree structure as method of increasing homogeneity of the model
space. That is, as mentioned in Section 2.3.2.1, one of the reasons for choosing
tree models is that the partition of the model space better explains the data by
making the data more homogenous within the partition. Thus one might expect
in the random tree modelling case that as the tree changes the signal-to-noise ratio
r = W/V would increase for a given W (because V , the measurement noise, is
getting smaller). But randomly drawing V does not guarantee this without some
form of immediate adjustment to the distribution from which V might be drawn
as the tree changes. This is one of the reasons for performing the Calibration
Study of Section 4.4.

Indeed, as mentioned in that section, one of the intentions behind choosing a
tree structure is to provide a set of alternate models and then, by using a set of
calibrated parameters, one can view possible filter parameters more along the lines
of explanatory variables rather than as random missing data as one usually does
for parameters. Thus, modifying filter parameters becomes a case of explaining
the models via adding and removing known variables as suggested by G. Box and
Luceño (1997).

The Calibration Study has presented a solution to choosing prior sets of param-
eters for the filters. In the simulation studies that follow the details for each
experiment will be explained. The general approach assumed in this document is
based on the results of the calibration study and that showed that the two main
factors that influenced the leaf models were Fb and Hb/Vb. For Hb/Vb, based on
the discount factor approach of Harrison and West (1999), it has been assumed,
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as described, that the intention of the tree model is explain the signal better by
reducing the measurement noise. Thus, as the tree depth increases, Vb decreases
and r = Wb/Vb increases for a constant Wb. Similarly, as Vb decreases, Hb/Vb

increases for a constant Hb. Thus the tree marginal does not lose its explanatory
power as the tree model increases because if Hb/Vb → 0 then, from the calibration
study it can be seen that the effect of the marginal (the effect of the data in the
tree) also tends to zero (Table 4.4.10).

The parameter Fb has possibly the largest effect on the streaming tree model be-
haviour and performance. The filters must either be updated with the probability
according to the critical parameter as defined by Sinopoli et al. (2004) or this Fb

must be limited to (−1, 1) and preferably substantially below each of the limits
of that interval. Guaranteeing that the updates conform to Sinopoli et al. (2004)
is not the best option because even if the tree were limited to 2 leaves, random
choices of the pair (xj, cj) could temporarily bias the update of a filter so that
A−1

t → 0 and the algorithm crashes because of a divide-by-zero error. Thus best
option found so far is to limit Fb to be between (−1, 1) (and actually closer to
(−0.75, 0.75)).

An example of a family of functions that have been used to deterministically
change the values of Vb and Fb are:

Fb = max{sgnF ∗
b δ

−s
b ,min

F
} F−1

b = min{sgnF ∗
b δ

s
b ,max

F
}

Vb = max{F ∗
b δ

−s
b ,min

V
} V −1

b = min{F ∗
b δ

s
b ,max

V
} (5.12)

where s is predetermined scale at which the parameter values change, minF ,minV

are the smallest values that are allowed for these parameters and maxF ,maxV

are the largest parameters allowed. The sign of Fb is allowed to randomly change
and Vb is always positive.

This above approach is only one possible way of doing things that seemed intuitive
and practical after many tests on different approaches. It is important different
models are proposed at each leaf, even if only slightly different else there seems
little reason for specifying some conditional rule. The section that follows provides
more detail on each of the proposal moves.

5.2.4.1 Modification of Tree Proposal Moves

Proposing new trees via the tree model and structure changes proposed by Chip-
man et al. (1998) is not ideal for the streaming setting because stopping and
restarting the chain, due to the chain getting stuck in local modes, means there
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will be pause between the current inference and the past inference so that in-
formation is lost. In other words, from a streaming point of view, stopping and
starting a chain is equivalent to restarting the analysis. The streaming setting
necessitates long runs of the Markov chains, which in BCARTMS was found not
to be useful. Others such as Wu et al. (2007) and Pratola (2016) have suggested
other modification steps but these are too complex for the streaming setting.
Thus some alternative simple modification steps are proposed.

Firstly, following Pratola (2016), the swap move has been abandoned. The second
change is based on the realization that the only time a tree can be pruned is when
there are a pair of siblings available. For example in Figures 5.2.5a and 5.2.5b,

(a) A tree with only left internal nodes. (b) A tree with only right internal
nodes.

Figure 5.2.5

the chance of pruning either of the trees is 2/5 but the chance of growing either
of them is 5/5 assuming that both grow and prune moves are equally likely to be
chosen, which is not true for 2 leaf trees. To remedy this the prune-shift move was
designed to prune the tree at a single leaf node and, because a reversible move
for this is required, an additional move called the grow-shift move was included.

The change move forms a part of the all the other moves in some way. For
the grow and new grow-shift moves because a new internal node is added this
change move must be performed to some degree. For the prune and prune shift
moves, because an internal node is removed I(ηj) (specifically the boundaries of
the nodes that have covariate xj) must be updated although no new covariate or
threshold value is added for these moves.

The calculation of the transition probability is written in the comments of this
algorithm. Unlike in BCARTMS and BCART the choice of cj depends on the
bounds of the covariate at each node. While the tree is a random object the
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bounds are considered deterministic and so are the bounds of each of the nodes
in I(ηj) much as the values xj are considered deterministic: they are part of the
history of the tree.

The set of ALLOW ABLE covariates (covariates from ALLOW ABLE nodes) changes as
the structure of the tree changes and it is possible that at some index t some xj is
not in ALLOW ABLE but at some other instant it is. Thus if xj is not ALLOW ABLE it
is suspended from the set of allowable covariates but it is allowed back for the next
transition. This too is considered in the same light as covariates are in general
so these changes to ALLOW ABLE do not form part of the transition probability. If
NULL is returned then the current tree is returned and the algorithm continues.

Algorithm 5.2: Choosing and modifying an internal node.
Result: Change: Tree T is modified with a new covariate xj at a random

internal node based on I(ηj) or NULL is returned.
1 Uniformly choose ηRN from the internal nodes IT ▷ p ( ηRN | T )
2 while TRUE do
3 Choose U(ALLOW ABLE xj) ▷ p (xj | ALLOW ABLE,T )
4 if xj ∈ALLOW ABLE then
5 Get Hj, the induced subgraph of xj, hence I(ηj)
6 Get new node boundary values (LBj, UBj) from I(ηj)
7 if (LBj, UBj) ̸= ∅ then
8 Choose new threshold cj ▷ p ( cj | I(ηj), xj, ηRN , T )
9 Reset boundaries of I(ηj)

10 break;
11 end
12 else
13 Suspend xj from ALLOW ABLE

14 if ALLOW ABLE = ∅ then
15 return (NULL)
16 end
17 end
18 end
19 else
20 Suspend xj from ALLOW ABLE

21 if ALLOW ABLE = ∅ then
22 return (NULL)
23 end
24 end
25 end

The algorithm for pruning and shifting is given in Figure 5.2.6a. The reverse
move, grow-shift are shown in Algorithm 5.4 and Figure 5.2.6b. Figures 5.2.6a
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and 5.2.6b provide a graphic demonstration of the above moves. In Figure 5.2.6a
in the top graphic the chosen node, bRN , is either b = 4 or b = 5 in the left tree
and the result is the tree on the right. In the bottom graphic bRN = 6 on the left
and the result is the tree on the right. Similarly, in Figure 5.2.6b, the current tree
is on the left and in the top graphic ηRN = 2 and the result is on the right. In
the bottom graphic ηRN = 2 again and the result is on the right. Looking more
closely at the top graphic it looks exactly the same as normal grow move and this
is almost true except that rather than choosing a leaf to be a new internal node
the internal structure of the tree is shifted. The bottom graphic shows this more
clearly. These prune-shift and grow-shift moves are reminiscent of the “radical
restructure” of Wu et al. (2007) except that the restructuring is not too radical
because of the complexity of changing too much in the tree. For completeness the
algorithms for the grow and prune moves follow. These are not fundamentally
different from the original moves other than the fact that the set I(ηj) and the
leaf parameters must updated in each move.

Algorithm 5.3: Removing an internal node and a single leaf. Shifting
internal subtree up one level.
Result: Prune-Shift: Tree T with a single internal and leaf node removed.

1 Choose bRN from leaf nodes with no leaf sibling ▷ p ( bRN | T )
2 Remove bRN and P(bRN) from tree ▷ 1− p ( SP LIT (bRN )
3 Renumber subtree of P(bRN) starting with new parent which is

P̃(bRN) = Sib(bRN)
▷ bRN was single leaf so P̃(RN) is internal node

4 Reset boundaries of I(ηP̃(bRN ))
▷ I(ηP̃(bRN )) is set of xj induced by the rule at P̃(bRN) and Hj

5 for b ∈ Subtree(P̃(bRN)) do
6 Renumber leaf of tree based on internal node structure of subtree
7 Modify the ψb based on change in internal tree structure
8 end
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Algorithm 5.4: Creating a new internal node and a single new leaf. Shifting
internal subtree down one level.
Result: Grow-Shift: Tree T with a single new leaf node and a single new

internal node.
1 Choose ηRN from any internal node ▷ p ( ηRN | T )
2 Choose to add either Cl(η) or Cr(η) ▷ p (Left ) = 0.5
3 if left then
4 Add C̃l(η)
5 Add C̃r(b) a new leaf node ▷ p ( SP LIT (C̃l(η)) )
6 Shift Cl(η) (the current left child) down one tree level
7 Update leaf nodes in subtree with root at C̃l(η)
8 for b ∈ Subtree(C̃l(η)) do
9 Renumber leaf of tree based on internal node structure of subtree

10 Modify the ψb based on change in internal tree structure
11 end
12 end
13 else
14 Add C̃r(η)
15 Add C̃l(b) a new leaf node
16 Shift Cr(η) (the current left child) down one tree level
17 Update leaf nodes in subtree with root at C̃r(η)
18 for b ∈ Subtree(C̃l(η)) do
19 Renumber leaf of tree based on internal node structure of subtree
20 Modify the ψb based on change in internal tree structure
21 end
22 end
23 Update internal nodes by performing change move on C̃l(η) or C̃r(η)

depending on which side was chosen
▷ p ( cj | I(ηj), xj, ηRN , T ) p (xj | ALLOW ABLE,T )

24 if change ̸= NULL then
25 return T
26 end
27 else
28 return NULL
29 end
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(a) Pruning and shifting nodes from a
single leaf.

(b) Growing, shifting nodes and adding
a leaf from an internal node.

Figure 5.2.6

Algorithm 5.5: Adding two new leaf nodes and a single new internal node.
Result: Grow: Tree T with two new leaf nodes and a single new internal

node.
1 Uniformly choose bRN from any of the leaf nodes ▷ P ( bRN | T )
2 Add Cl(bRN) Cr(bRN) as new leaf nodes

▷ p ( SP LIT (C̃l(bRN )) )2

3 Modify ψCl(bRN ) and ψCr(bRN ) based on ψbRN

4 Delete bRN from LT

5 Add ηRN to IT ; Update ηRN by performing change move.
▷ p ( cj | I(ηj), xj, ηRN , T ) p (xj | ALLOW ABLE,T )

6 if change ̸= NULL then
7 return T
8 end
9 else

10 return NULL
11 end

Algorithm 5.6: Removing two leaves and their parent leaf and generating
a replacement leaf.
Result: Prune: Tree T with two fewer leaves and new leaf node.

1 Choose bRN from leaf nodes with two siblings ▷ p ( bRN | T )
2 Get P(bRN) and delete it from IT Add P(bRN) to LT

3 Modify ψP(bRN ) based on bRN

4 Delete bRN and Sib(bRN) from LT ▷ 1− p ( SP LIT (P(bRN )) )
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5.3 Random Tree Demos and Simulations

This section aims to explore the performance of a single tree model that is evolving
to keep pace with a stream of data. It is not expected that the a single tree will
perform particularly well in terms of either estimation of the state or in finding
the target distribution of the tree. The evolution of a single tree model is a
stepping stone between the fixed tree model and the ensemble of tree models and
the main intention of this section is to explore the effects of some of the model
parameters now that the tree filter is training, learning, predicting and adapting
to new data on-the-fly.

The simulation studies and demonstrations are performed over three models
called the 2 Leaf Model, the CGM Model5 and the the Friedman Model. Each of
these are briefly described below.

Theory, the calibration study of Section 4.3 and the simulation studies of the
same chapter have shown the importance of having the parameter Fb ∈ (−1, 1)
but ideally having the upper and lower limits of this parameter closer to−0.85 and
0.85 respectively. What has not been shown is how this parameter might change
as the tree model changes. Similarly, other parameters Wb, Hb were shown relative
to Vb for fixed Fb but what has not been shown is how any of these parameters,
Vb,Wb, Hb, change as the tree model changes. That these parameters need to
change in some way is assumed essential because the point of the tree model is
to propose different, locally interactive6 models that include different parameters
and not only a different tree and rule structure so that the model can learn and
adapt to the stream of data.

The final aspect of the tree model that also needs exploring are the tree param-
eters (α, β) ⊂ ξT . Section 5.2.3 showed how the prior sampling process could
be interpreted in the streaming setting as a reflected random walk with a proba-
bilistic upper boundary. Rechecking this processes with the tree marginal and its
parameters is necessary because the accumulation of data and its proportional
effect relative to the tree prior in the streaming setting must taken into account.

The same caution and caveats regarding the choice of number of iterations and
assumptions regarding future model behaviour described in Section 4.5 apply
here. These are more applicable in the case of random model selection where the
model object itself (the tree) can be affected by computational and other errors
that result from the recursive nature of the algorithm.

5Inspired by the 5 leaf tree example in Chipman et al. 1998 but modified for the streaming
setting.

6interactive in the sense of interaction of effects with the main effect at the root node
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5.3.1 Modifying leaf parameters

The calibration study of Section 4.4 presented a method of designing trees with
different leaf model parameters that avoided estimation and sampling. This study
was aimed at showing that one can, prior to beginning the streaming exercise,
set the leaf parameters so that the model, firstly, will not fail due incorrect spec-
ifications of parameters that lead to, for example zero determinants or infinitely
(very) large variances. Secondly, one can have an idea, at least at the leaf level,
of the performance of the model. Thirdly, so that one can simplify the state
estimation process to reduce memory and complexity of the algorithm for bet-
ter streaming performance by treating leaf filter parameters in a manner akin to
explanatory, rather than missing, data. Finally, for subsequent analysis, a base
level of parameter performance is achieved for a fixed tree model so that studies
for the evolving tree model can be better understood.

For the evolving tree model, the simulation study in Section 5.2.3 showed that
for some parameter settings one might expect a large number of leaves in the
tree model. Preliminary analysis has shown that the tree prior is not the sole
determinant of tree size. Even if the model was set with (α = 0.75, β = 3), the
most restrictive of the parameters used in that study, trees larger than 2 leaves
are quite likely on average. Thus a method for adapting any of the parameters as
the tree model grows is necessary to provide local (to the tree), alternative and
interactive (interacting with the covariate at the root node) models.

Deterministically adapting parameters is also necessary for the ensemble to ex-
plore the full space of the model. Unlike in BART where there is only a single
variance parameter or in BCARTMS and Dynamic Trees where the variance pa-
rameter is marginalised out, each filter has up to 6 different parameters. In the
streaming setting marginalisation over Zt and T (Equation (4.18)) was relatively
straightforward because of properties of the Gaussian distribution. Additional
marginalization over any of the variance parameters as was done in Harrison and
West (1999) would have produced a student-t distribution which is not amenable
to easy recursive calculation.

The idea for deterministic parameter modification came from Harrison and West
(1999) where there they provide a discount factor for the signal noise relative
to the observation noise. However, in this case a discount factor is not enough
because the relationship between the models is dynamic hence a slightly more
involved set of functions are needed to modify the parameters with respect to the
changing tree shape and each other.

Figure 5.3.1a shows the increase in the minimum and maximum number of leaves

154



(a) The change in the number of leaves as
the depth of the tree increases.

(b) The change in size of Fb for several sizes
and scales.

Figure 5.3.1

as the depth of the tree increases. The depth of the tree has been limited to 25.
This is an unlikely depth of tree based on the prior study but not exceptional.
There are two important things to notice from this figure. The first is that the
number of leaves has an exponential growth shape with respect to depth. It is
this shape that informed the choice for the type of function that would be used
to control leaf parameter growth and decay. The second thing to notice is that
as the tree gets deeper so the probability that a leaf is updated exponentially
decreases. Alternatively, the deeper the tree gets the larger the effect of the
alternate models (models not selected at each t) on the tree marginal. If one
refers to Section 4.5, there it is shown how misspecification of leaf parameters
can distort the tree marginal. More specifically, if a leaf is not updated often
enough the tree marginal could appear to favour the wrong tree.

Figure 5.3.1b shows how the transition parameter decreases (increases) as a func-
tion of tree depth. The functions for adapting the transition parameter as the
tree grows are:

f(FP(b), b, s, sgn,min
F

) = max{sgn · FP(b)⌊log2(b)⌋−s,min
F
} (5.13)

f−1(FCl,r(b), b, s, sgn,max
F

) = min{sgn · FCl,r(b)⌊log2(b)⌋s,max
F
} (5.14)

where FP(b) is the transition parameter from the parent leaf in a grow move,
FCl,r(b) is the transition parameter from either of the child leaves in a prune move,
s is a scaling parameter that scales the rate of change of the parameter and
minF ,maxF are preset parameters that truncate the range of the parameter. The
different colours in the graphs show scales s = blue = 0.05, s = green = 0.1, s =
red = 0.2. The dotted (for functions that read in reverse i.e. as tree depth
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(a) The change in size of Fb when the sign of
Fb is negative.

(b) The change in size of Fb when the sign of
Fb is randomly allocated.

Figure 5.3.2

decreases) and dashed (for forward reading functions) lines are only there there
as a visual aid because the depth count is a discrete value. The different values
for Fb are Fb = (0.05, 0.25, 0.5, 0.85,−0.05,−0.25,−0.5,−0.75)) (shown by the
different shades of line: there is only a single shade for the reverse direction), the
minimum value is set to 0.05 and the maximum value to 0.85 and the sgn = 1
for all examples.

Figures 5.3.2a and 5.3.2b respectively show the effect of a negative only (sgn =
−1) ancestry of Fb parameters and randomly changing the sign of the Fb pa-
rameter when all other parameters of f(·) and f−1(·) are kept constant. The
important things to notice are that the transition parameter is always bounded
between the minimum and maximum values stipulated for Fb. Next, as the tree
grows, the transition parameter always decreases in size at a rate that is set by
s. Further, the larger (deeper) a tree gets the more restrictive the parameter
Fb becomes. Glancing back at Equations (4.24) to (4.31) it is clear to see the
intuitive appeal of this behaviour: as the tree gets bigger the contribution of each
leaf gets smaller and, because the leaf that is updated is more influenced by Hb

and Vb, the contribution of the updated leaf can be controlled independently from
those that are not updated.

In the grow-shift and prune-shift moves there are no parent or child leaves to
inherit parameters from so either a base parameter for each tree is set or a leaf
is uniformly chosen and then that parameter is adopted for the new leaf and
adapted based on f(·) or f−1(·) from Equations 5.14 depending on whether it
is a grow-shift or prune-shift move. The effects of this modification are not as
consistent as those shown in Figures 5.3.1b, 5.3.2a and 5.3.2b because one is
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either starting from a base parameter that has not been updated to the relative
depth at the previous level or one is starting from a parent/child of an arbitrary
depth.

(a) The change in size of Wb when Vb = 1 is
fixed and the tree depth is changing.

(b) The change in the signal to noise ratio
r = Wb/Vb when Vb = 2 but changes with
tree depth and Wb has a range of different
sizes.

Figure 5.3.3

Figure 5.3.3a shows the functions in Equation (5.16). These functions are very
similar to those in Equation (5.14) with the obvious necessary difference being
that neither Wb nor Vb can achieve negative values. Again the different colours
show different scales those being s = blue = 0.05, s = green = 0.1, s = red =
0.2. The different values for Wb are Wb = (0.5, 1, 2, 3, 5) (shown by the different
shades of line: there is only a single shade for the reverse direction), the minimum
value is set to 0.5 and the maximum value to 10.

g(WP(b), b, s,min
W

) = max{WP(b)⌊log2(b)⌋−s,min
W
} (5.15)

g−1(WCl,r(b), b, s,min
F

) = min{WCl,r(b)⌊log2(b)⌋s,max
W
} (5.16)

A central difference shown in Figure 5.3.3a is that g(·) is used as the tree decreases
in depth and g−1(·) is used as the tree increases in depth. This seems counter
intuitive because the signal noise seems to be decreasing as the tree becomes more
refined and increasing as the tree becomes coarser. However one must bear in
mind that as the number of leaves increases, the signal noise is getting stronger
because the number of leaves is increasing which results in more of the variation
of the observed process being explained by the tree. The aim here is to balance
the effect of the increase in the number of models that are not updated with the
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change in the contribution of each of these models at each t. Similarly, and in
keeping with the ideas expressed in Chipman et al. (1998) and “BART: Bayesian
additive regression trees”, if the size of the signal in smaller trees is favoured
then smaller trees in general might be favoured and this should help to prevent
excessive tree growth.

Turning to Figure 5.3.3b one can see the overall effect of the signal-to-noise ratio
as the tree is modified. In this diagram both Wb and Vb change as the tree
depth changes but importantly, Vb changes in the opposite direction to Wb. That
is, as tree depth increases, for Wb, g−1(·) is used and for Vb, g(·) is used. As
tree depth decreases, the reverse happens where for Wb, g(·) is used and for Vb,
g−1(·) is used. The overall effect though is that, in the forward direction that
the signal-to-noise ratio r = g−1(·)/g(·) increases but in the reverse direction
r = g(·)/g−1(·) is a constant value. In this demonstration the scale values for
Wb, sW = (0.25, 0.5, 0.75) and the values for Wb were as before. Only a single
value was used for Vb = 2 and the scale value was sV = 0.01. The minimum and
maximum values for Wb, minW = 5 and maxW = 30 and minimum and maximum
values for Vb were minV = 0.1, maxV = 5. The reason for changing the values
of Wb is that these are an example of actual values used in the experiments that
follow and because the values chosen in Figure 5.3.3a show the behaviour of Wb

more clearly than those used in Figure 5.3.3b.

The next subsection turns to demonstrations of a single tree model for 3 different
simulated data sets. The main result of these demonstrations is that the tree
model learns from the data to improve the accuracy of the estimation of the
mean level and the uncertainty of this estimate over the single tree filter. This is
assessed by comparing the models to the Kalman filter.

5.3.2 The 2 Leaf Model

The 2 Leaf Model is the same as that in the simulation studies of Section 4.5.
Again the Kalman filter is used as a benchmark because it is an optimal estimator,
conditional on its parameters. The improvement shown here does not mean that
the tree filter with random model search is in some way “more optimal” than
the Kalman filter. Rather the improvement in both accuracy and uncertainty
estimation is that one is able to specify more than one set of parameters for
several Kalman filters. The tree model is able specify particular conditional
models (filters) with different parameters at each t. Thus it is a case choosing
the right Kalman filter at each t not improving over the Kalman filter.

The improvement in the random tree model over the fixed tree filter is that
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there, like the Kalman filter, the leaf filter parameters were fixed and incorrect
specification of these meant that estimation was poor. In the random tree model
the tree structure (i.e. number of filters) can change, different filter models can
be selected from a deterministic range of parameters as described in Section 5.3.1
and the rules for choosing filters (i.e. threshold values in the tree structure) can
be chosen so that the choice of filter models, not only the number of filter models,
can be improved.

(a) (b)

Figure 5.3.4: Density estimates based on simulated and estimated parameters for the 2 leaf
model.

Figure 5.3.4a shows the density from which the data were generated and Fig-
ure 5.3.5a shows the sequence of data that were used in the simulation studies.
The lines in Figure 5.3.5a show what the signal might look like if represented as
a continuous line but the dots show the actual observed values.

The parameters used to initialise the tree model and used used for the Kalman
filter are: These parameters are quite different to those used for the same data in

Model params for Random Tree, α=0.95, β=2
Leaf Vb Wb Fb Hb Z0,b W0,b

2 1 4 0.7 1 0 10
3 1 6 -0.7 1 -4 10

Section 4.5.1. Arriving at this choice of parameters involved using the calibration
study of Section 4.4, several trials of the functions in Section 5.3.1 and their
parameter settings as well as a fair bit of experimentation.

Figure 5.3.4b shows that neither the Kalman filter nor the proposed (BTRS)
model exactly match the simulated density although the both are not too far
away but the BTRS model is closest. These estimated density plots do not show
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(a)

(b)

Figure 5.3.5: Sequences of data simulated from a 2 leaf model and then estimated by a random
tree model.

the full picture in that they calculate a “flat” density. That is, the y calculation
is based on the data as a whole rather than considering the density at different
time points in the sequence.

The sequential plot in Figure 5.3.5b addresses this to some degree by showing the
points of the data. In this plot it can be seen that the BTRS tree model adapts to
the sequence of data while the Kalman filter only does so to a lesser degree. For
example, between iterations 0 to about 100 in the lower portion of the graph both
the Kalman filter and the BTRS model are more similar at estimating the state
variable but as the number of iterations progresses the BTRS model improves
over the Kalman filter so that if one looks at the points in the lower portion of
the graph between 900 and 1000 the BTRS model (µ̂t|t,mod) has more points closer
to the simulated points than the Kalman filter does.

This improvement in the BTRS model over the Kalman filter is most clearly seen
in Figure 5.3.6a. Here the dotted line represents the cumulative MSE between
the Kalman filter estimate and the BTRS estimate of the state process. For the
first 400 iterations the CMSE of the Kalman filter and BTRS model seem fixed
at a more or less constant difference apart but after these iterations there is an
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(a) Cumulative error between the model and simulated stream and the Kalman Filter

(b) Marginal terms of a single random tree model for the the 2 leaf data simulation.

Figure 5.3.6

improvement in the BTRS model CMSE but none in the Kalman filter CMSE.

Figure 5.3.6b shows the different components that are used in calculating the
acceptance ratio of the MCMC sampling process. The first thing to notice is that
the tree marginal is no longer linearly decreasing as it was in Section 4.5.1. In
fact, the marginal of the tree looks to be (quite wildly) changing around some
constant value. A guess as to why this is happening is that the tree is changing
shape and thus changes the information in the tree. By change in information it
is meant that not only is the data accumulating in the model but the number of
models (isomorphic to the number of leaves) is also changing which means that
for each new data point added, the number of non-updated models is changing
too.

As was shown in Section 4.5.1, the contribution of the nonupdated models, via
their parameters and their contribution to the tree marginal, can have an effect to
the extent of distorting not only the estimates of the state but also the estimate
of the model itself. This changing marginal, itself an expected value of the tree
model with respect to the latent data, shows how the tree model is searching
the model space by using the latent processes and the new data. This is not to
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say that each new data point causes the swings in the marginal but these swings
suggest that the accumulation of data and the proposals of alternate models, their
associated subprocesses and their parameters collaborate to search for a better
model.

Other interesting features of this graph can be seen between iterations 250 and
300 and between 700 and 750. In both these cases the prior (the dark blue line)
decreases quite sharply followed by sudden changes in the proposal distribution
(the top dark green line) which are then followed by a change of direction in the
marginal of the tree likewise in the prior. This suggests a form of hysteresis of
the model is being reached but that a combination of prior, proposal moves and
data are allowing the tree model move away from this fixed point.

Figure 5.3.7: Estimation of the simulated stream of data including the error bounds.

The final graph, Figure 5.3.7, shows the predictions of the observed process and
the predictive uncertainty bounds. Due to the nature of the data this graph is
quite difficult to read. The Kalman filter state estimate is represented by the
orange dots and the simulated data but the red dots. The estimates of the state
by the BTRS model are represented by the dark blue and green lines and their
error bounds are, respectively, the lighter blue and green lines. The lower errors
for the Kalman filter are both the lower set of pink dots. That is, the lower bound
for the upper state estimate is the upper set of pink dots and the lower bound
for the lower state estimate is the lower set of pink dots. The upper bounds
are represented by the black dots with a similar ordering. This graph reflects the
same information that was presented in Section 4.3: the tree filter model provides
improved estimation of the uncertainty of the state estimates because the tree
model is able to conditionally associate particular predictions with particular
models.

The next section will present the same graphs but for the CGM inspired, 5 leaf
model. This example is provided to show that the proposed model works for more
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complicated data sets and it also raises some issues that are resolved in Chapter 5
where the CGM model becomes the main example model.

5.3.3 The CGM Model

The CGM Model is generated from a 5 leaf tree that was inspired by the example
given in Chipman et al. (1998) but adapted to the streaming setting and only
continuous covariates and thresholds have been used. This form of model was
chosen because the density has 4 clear modes and one occluded mode as Fig-
ure 5.3.9a shows. The leaf parameters for the CGM data generator are included

(a) The adapted tree model from (Chipman et al. 1998)

Simulation leaf parameters.

Leaf Vb Wb Fb Hb Z0,b W0,b ub Gb

4 0.02 0.1 0.25 1 0 1 1 -1
10 0.03 0.15 -0.5 1 5 1 1 5
11 0.05 0.15 0.5 1 8 1 -1 8
6 0.05 0.01 -0.5 1 4 1 1 4
7 0.05 0.15 0.25 1 2 1 -1 25

(b) The leaf parameters for the 5 leaf tree adapted from (Chipman et al. 1998) for the streaming
setting.

Figure 5.3.8

below Figure 5.3.8a. Figure 5.3.9a shows the estimation of the density for the
CGM model. Note that the visible modes of the model on the left correspond
to the data generated from leaves 7 and 11. The other three leaves generate the
two modes on the right. Figure 5.3.9b shows estimations of the densities of the
latent state based on their estimates of the parameters. The difference between
the tree model and Kalman filter in this case is more pronounced than it was in
the 2 leaf model. This is not surprising given the degree on nonstationarity of
this data generator.

Figure 5.3.10a presents the sequence of data over 1000 iterations in both a discrete
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(a) (b)

Figure 5.3.9: Density estimates based on simulated and estimated parameters for the 5 leaf,
CGM model.

and continuous form. Figure 5.3.10b shows the sequence of estimates of the state
produced by the tree model and by the Kalman filter. Not too much will be said
about this here because a great deal of Section 5.3.5, Section 5.4.2 and Chapter 6
will delve into this model in some detail. Something to notice in Figure 5.3.10b is
that the estimates of the state by both the Kalman filter and the proposed model
(BTRS) do not converge towards the simulated data. The non-convergence of the
model and Kalman filter can be seen more clearly in Figure 5.3.9a which shows
the cumulative mean square error (CMSE) between simulated state and the the
Kalman estimates of the state, CMSE(zsim, µ̂t|t,kal), between the simulated state
and the BTRS model, CMSE(zsim, µ̂t|t,BT RS) and between the BTRS model and
the Kalman filter estimates of the state, CMSE(µ̂t|t,BT RS, µ̂t|t,kal). In this case
all three measures reach a more or less fixed state and do not consistently vary
away from this state over the 1000 iterations. This in contrast to the 2 leaf model
shown in Figure 5.3.6a but this is not a reflection of the model, only an example
of the the behaviour of the model under particular specifications, only shown here
to make the reader aware of them and to point out that the issue can be resolved
through tree learning for the BTRS while it cannot, at least without stopping
and restarting the model, for the Kalman filter. Section 5.3.5 will show how this
is resolved.

Figure 5.3.12 shows the components of the acceptance ratio. Similarly to the two
leaf model the tree marginal component varies slightly wildly about some constant
rather then getting progressively lower. In contrast to the two leaf model, the
log of the densities has greater variation than it does in the two leaf model. This
means that there is greater variation in the samples that that are drawn from
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(a)

(b)

Figure 5.3.10: Sequences of data simulated from the CGM model and then estimated by a
random tree model.

Figure 5.3.11: Cumulative error between the CGM model and simulated stream and the Kalman
Filter

each leaf density which is not surprising considering the comparative range of
possible modes in this model.

The final figure shown here is the sequence of predictions made by the model and
the Kalman filter. Again this is a difficult graph to read because there is a lot
being shown. The pink dots are the lower bounds of the Kalman filter predictions
shown in orange and the black dots the upper bounds. The dashed lines are the
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(a)

Figure 5.3.12: Marginal terms of a single random tree model for the the CGM stream simulation.

upper and lower bounds of the BTRS model predictions. They are shown dashed
to emphasise that they are pointwise estimates taken from different models at
each t and not a continuous upper and lower bound. What is interesting about
this graph is the long intervals between the updates shown as straight lines in
dark blue. These two sequences are updated less frequently than the two green
sections (which actually consists of three leaves in Figure 5.3.8a). This means
that, for the single tree model not only may there be some time before an estimate
and prediction are updated but that when a prediction from the filter is updated
it is likely to be more wrong than if the predictions were updated more frequently.
This links back to Figure 5.3.12 where it was seen that there is greater variation
in the log densities of the samples taken from the latent process as a part of the
MCMC sampling procedure.

(a)

Figure 5.3.13: Estimation of the simulated stream of data including the error bounds.

The next section will briefly look at the Friedman model, a nonlinear function of
5 explanatory variables that has been used by other tree modellers most usually
to show that a tree model can distinguish between “true” model covariates and
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noisy covariates.

5.3.4 The Friedman Model

The Friedman model is a standard benchmark model that is used in many papers
on tree modelling, originally in J. H. Friedman (1991) but also in both Taddy
et al. (2011) and Chipman et al. (2010) to compare their approaches to the wider
field of tree modelling. The data are generated from a function:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + N(0, 1) (5.17)

where each of the values xi1, . . . , xi5 are generated from U(0, 1) for i ∈ 1, . . . , 1000.
An additional 5 covariates whose values are not used in the model are generated
to create some noise around the choice of covariate for the models.

(a) (b)

Figure 5.3.14: Density estimates based on simulated and estimated parameters for the Friedman
model.

The estimated densities of the generated data and estimated data are shown in
Figures 5.3.14a and 5.3.14b. The BTRS model seems to perform well in this
case, possibly slightly better than the Kalman filter. Due to the nature of this
data not much can be seen from the sequence of estimates of the generated data
but turning to Figure 5.3.16a it is there shown that the Kalman filter has better
estimates cumulatively over 1000 iterations. The cumulative predictions seem
to out perform the cumulative estimates and it appears as though the estimates
of the state level are converging towards the Kalman filter estimates. However,
several runs of this model over several different numbers of iterations and different
parameter settings showed that on average the estimates by the proposed model
did not continue to approach the Kalman filter estimates although they did not
get consistently worse either. It is not clear why this is the case and perhaps the
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ensemble method will offer some improvement.

(a)

(b)

Figure 5.3.15: Sequences of data simulated from the Friedman model and then estimated by a
random tree model.

Figure 5.3.16b shows some large deviations from what appears to be a fairly
constant fixed level. However these cannot be linked to changes in the CMSE
nor changes in the generated sequence so likely are a result of random recursive
behaviour of the tree model evolution process. The bounds of the BTRS model in
Figure 5.3.16c are again tighter than the Kalman filter bounds, where the lower
bounds of the Kalman filter are in pink while the upper bounds are in black.

There is not too much more to be said about this example but it will be briefly
revisited in Section 5.4.2 to see if the ensemble approach provides a better esti-
mated level for this benchmark data set. However, it is important to note that a
single tree model provides estimates for which the estimated density is extremely
close the to estimated density of the generated data. While an ensemble of trees
might track the latent level better at least one objective has been achieved: a
single tree model can target a benchmark density using MCMC with only a sin-
gle visit to each data point, with no storage or direct input and in constant time.
However a single chain targeting a distribution is insufficient because:

168



(a) Cumulative error between the Friedman model and simulated stream and the Kalman Filter

(b) Marginal terms of a single random tree model for the the Friedman stream simulation.

(c) Estimation of the simulated stream of data including the error bounds.

Figure 5.3.16

◦ it has its scope limited by the number and type of models,

◦ a single chain is insufficient to explore the full model space,

◦ and it is unlikely that a single chain will adapt to new data, especially new
data that is quite different from the data that has already been seen, as
well as a collection of chains might adapt.

The next subsection will show the results of a simulation study that attempts to
uncover which of the parameters have the most notable effect (or lack thereof)
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on the single tree model performance and size.

5.3.5 Experimental Simulation Study

The simulation study in Appendix A1.3 shows the effect of different tree pa-
rameters ξT = (α, β) on a collection of different leaf model parameters ψT =
(Vb, Hb, Fb,Wb, µ0,b,Σ0,b). Data are generated from CGM model above. These
data are compared with 5 independent Kalman filters with the same filter pa-
rameters settings found in the CGM leaf parameters.

The results of these experiments show:

◦ The fundamental validity of this approach: The independent Kalman filters
(with fixed parameters) cannot converge on the conditional distribution
while random generating trees doe converge more accurately to the true
distribution.

◦ The largest effect on the accuracy of the model is the filter parameter Hb.

◦ Specifying ξT can keep tree sizes small but to keep tree size under control
both ξT and ψT require ‘correct’ specification.

An additional study, not yet completed would be to look at the effects of the
adaptations of the filter parameters as the tree changes shape, both under deter-
ministic modification and sampling.
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5.4 Tree Ensemble Modelling

The final constituent of the model Equation (4.1) of the Introduction is the en-
semble F itself. Equation (4.1) is reproduced in Equation (5.18) for convenience
where Θ is the collection of all model parameters, ψT is the collection of the
model parameters for models M at the leaves of each tree and ξT are the tree
model parameters for each tree.

Y t ≈ F(xt, Θ, εt, t) =
∑

∀T ∈F
T (g(Zt, ψT , t), xt, εt, ξT )π(T | Y t). (5.18)

π(T | Y t) is shorthand notation for the posterior probability P (T | Y t, θT , x
t )

using the density from Equation (5.4) where θT is the collection of parameters
ξT , ψT for an individual tree.

This mixture model is a mixture of Gaussian densities produced by g(Zt, ψT , t)
for every T which has mean µ̂t|t,bxt

and variance-covariance Σ̂t|t,bxt
at each t where

bxt is the leaf node chosen by xt at index t in model T .

This ensemble model differs from the Bayesian Additive Regression Tree (BART)
model of Chipman et al. (2010) in several ways. Apart from the fact that this
model is a streaming model that produces estimates and predictions at index t and
does not use Bayesian backfitting, the BART model of Section 2.4 is a additive
model of mean values µi over a fixed set of data where E [ Y | T, x ] is the sum
of the terminal nodes values with Gaussian error over the ensemble. That is, the
expectation is taken with respect to the Gaussian distribution. In this proposed
model E [ Yt | T, xt, · ] is the expectation with respect to the posterior distribution
of tree models. Each estimate or prediction is a component of the mixture and
the weight of this component is provided by the (posterior) probability of that
component considered over the support of all possible tree models.

However it is not possible to fully explore every possible tree model. While each
tree is a discrete object it is possible that there are an infinitely large number of
nodes and hence terminal nodes for each tree model not to mention that there are
an infinitely large number of threshold choices for a finite number of covariates.
Rather the space of tree models is approximated by the finite ensemble which
provides the approximate probability of a tree:

P*
(
T | Y t, xt, θT

)
= π∗(T | Y t) = π(T | Y t)∑

T ∈F
π(T | Y t) (5.19)

via an approximation to p (T, Zt | Y t, θT , x
t ) which was only defined up to a
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constant of proportionality in Equation (5.3).

This section will firstly describe the predictive distributions for the latent variable
Zt and Y (t). This will be followed by a demonstration of the full model for three
different simulated data sets and a simulation study to assess the effect of the
size of the ensemble on predictive accuracy. The final part of this section will
compare the proposed model to two different models in two forms. The first two
comparisons will be to compare this model (BTRS) against that of Dynamic Trees
(DT) (Taddy et al. 2011) which has been modified in the R® package DynaTree
(Gramacy et al. 2023) to deal with streaming data and against a version of BART
(Chipman et al. 2010) that has been modified to predict a current data point based
on the all data received up to that point. The next two comparisons will again
be against DT and BART but this time the datasets will be considered fixed and
the test will be to see how the proposed algorithm performs having only had a
single pass over the data.

5.4.1 Predictive Distributions

Let z∗
xt,T be the predicted value for the random variable Zt at each tree T chosen

by xt at index t. z∗
xt,T is predicted from T by the Kalman filter model at the leaf

bT = bxt,T chosen by covariate vector xt at every t. The prediction at the chosen
leaf is p ( z∗

bT | T, θT , Y
t, xt ) which has a Gaussian distribution:

p
(
z∗

bT | T, θT , Y
t, xt

)
∼ N(µ̂t|t−1,bT , Σ̂t|t−1,bT )

where

µ̂t|t−1,bT = Ft,bT µ̂t−1|t−1,bT and Σ̂t|t−1,bT = Ft,bT Σ̂t−1|t−1,bTF T
t,bT +Wt,bT

where θT = (ϕT , ξT ) is the collection of leaf and tree model parameters for tree
T .

For the ensemble model the prediction z∗
t for Zt is taken with respect to the

marginal distribution of the tree models that is approximated by Equation (5.19).
This has value:

p
(
z∗

t | Θ, Y t, xt
)

=
∑
∀T

p
(
z∗

bT | T, θT , Y
t, xt

)
p
(
T | Y t, xt, θT

)
≈
∑
T ∈F

p
(
z∗

bT | T, θT , Y
t, xt

)
P*
(
T | Y t, xt, θT

)
(5.20)

where now Θ = (Ψ,Ξ) the collection of all ensemble model parameters. The
distribution of each prediction component p ( z∗

bT | T, θT , Y
t, xt ) is Gaussian so
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that the distribution of the prediction from the ensemble is a Gaussian mixture
with mean:

E
[
Z∗

t | Θ, Y t, xt
]

=
∑
T ∈F

P*
(
T | Y t, xt, θT

)
µ̂t|t−1,b (5.21)

and variance

Var
[
Z∗

t | Θ, Y t, xt
]

=
∑
T ∈F

P*
(
T | Y t, xt, θT

)
×(

Σ̂t|t−1,bT +
(
µ̂t|t−1,bT − E

[
Z∗(t) | Θ, Y t, xt

])2
)

(5.22)

where Σ̂t|t−1,bT is the tree (chosen leaf) model error and
(
µ̂t|t−1,bT − E [Z∗(t) | Θ, Y t, xt ]

)2

is ensemble model error.

To get the predictive distribution for yt+1 from the current set of data that in-
cludes observations up to yt, but also including the new explanatory vector xt+1,
condition on each of the tree models T ∈ F and on the prediction z∗

t to get:

p
(
yt+1 | Θ, yt, xt, xt+1

)
=
∑
∀T

p
(
yt+1 | T, θT , y

t, xt, xt+1
)

p
(
T | yt, xt, xt+1, θT

)
≈
∑
T ∈F

P*
(
T | Y t, xt, xt+1, θT

)
×∫

p
(
yt+1 | z∗

bT , T, θT , y
t, xt, xt+1

)
p
(
z∗

bT | T, θT , y
t, xt, xt+1

)
dz∗

bT

(5.23)

The integral in Equation (5.23) is the integral of the product of two Gaussian
distributions where the terms have distributions:

p
(
z∗

bT | T, θT , y
t, xt, xt+1

)
∼ N

(
µ̂t|t−1,bT , Σ̂t|t−1,bT

)
p
(
yt+1 | z∗

bT , T, θT , y
t, xt, xt+1

)
∼ N

(
Ht,bT µ̂t|t−1,bT , Vt,bT

)
.

However, the distribution of yt+1 is the conditional distribution of yt+1 on z∗
bT .

To get the predictive distribution of yt+1 consider the Kalman filter model in the
following form:

yt+1 = Hzt + vt = HFzt−1 +Hwt + vt

= HFzt−1 + εt

where εt takes into account the error of the signal and the error of the noise.
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Meinhold and N. D. Singpurwalla (1983) show that the distribution of εt is
N(0, V + HΣHT ) when one is conditioning both the state and the error on the
past sequence of observations and not conditioning the observations on the state.
That is, they show that joint distribution of the independent error and state pro-
cesses gives rise to the conditional distribution of the state on the residual errors
and hence the Kalman filter equations are a result of the properties of joint the
Gaussian distributions.

Therefore the predictive distribution for the observation sequence from the chosen
leaves that takes into account both the noise error and signal error under the
Markov assumption of the observation sequence is:

p
(
yt+1 | T, θT , y

t, xt, xt+1
)
∼ N

(
Ht,bT µ̂t|t−1,bT , Vt,b +Ht,bT Σ̂t|t−1,bTHT

t,bT

)

The predictive distribution for yt+1 from the ensemble is then also a mixture of
Gaussian distributions with mean and variance:

E
[
yt+1 | Θ, Y t, xt, xt+1

]
=
∑
T ∈F

P*
(
T | Y t, xt, θT

)
Ht,bT µ̂t|t−1,b (5.24)

Var
[
yt+1 | Θ, Y t, xt, xt+1

]
=
∑
T ∈F

P*
(
T | Y t, xt, θT

)
×(

Ht,bTVt,bH
T
t,bT + Σ̂t|t−1,bT +

(
Ht,bT µ̂t|t−1,bT − E

[
yt+1 | Θ, Y t, xt, xt+1

])2
)

(5.25)

The next section demonstrates the ensemble and this is followed by a comparison
between the proposed model and two other established Bayesian models, Dynamic
Trees (DT) and Bayesian Additive Regression Trees (BART).

5.4.2 Ensemble Model Demonstration

5.4.2.1 Introduction

Section 5.3.3 presented an adaptation of the 5 leaf tree provided by Chipman
et al. (1998) to the streaming setting. There it was shown that a single tree does
an adequate job of getting near to the the target distribution. However, this
single tree required some tuning of parameters to achieve this accuracy and to
get estimates and predictions that are an improvement over the Kalman filter.
This section aims to demonstrate that by using an ensemble of trees the settings
for parameters can be somewhat relaxed, that this will not negatively affect the
accuracy of the model and that the mixture of trees will more closely approximate
the target distribution.
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This demonstration will be begin by describing how one sets

Ψ = 2×F × (Vb, Hb, Fb,Wb, µ0,b,Σ0,b)

leaf parameters for the initial ensemble weak learners. Then, as before, the results
for 1000 iterations will be presented graphically with associated commentary. The
data sets to be used to demonstrate the ensemble approach and for comparison
will be those used in Section 5.3 but with a specific focus on the CGM model.

5.4.2.2 Choosing parameters

The calibration study and experiments in Sections 4.5.1 and 5.3.5 provided an
insight into ranges of parameters that might be used by the ensemble but in all
those cases the models were tuned to specific parameters because only one model
was being used at a time. One objective of the ensemble is to generalise the range
of choice of initial parameters so that more of the model space can be explored
and so that the ensemble can be more adaptive to new data.

However, one must also accept that huge ranges of possible parameters may not
help the tree models to converge towards the target distribution. The calibration
study and deterministic modification of parameters was one approach to help
inform a prior choice of deterministic parameter values in the same way that
one might have a prior choice of explanatory variables (i.e. assuming ‘as if’ these
parameters and covariates were known (N. Singpurwalla 2006)). Ideally this prior
choice of parameters would be accompanied by a prior distribution but due to
the number of parameters, and the consequent number of hyperparameters that
might be associated with prior distributions this has not been done. Further,
parameter inference and model identification is not the main focus of this thesis
so prior distributions over parameters, other than the initial parameters of the
latent state, would not be used further in this document.

The method to choose parameters requires that one have either some existing
response values or some expert input. It is also necessary to point out that the
parameters themselves do not necessarily need to reflect the parameters of the
“true” model. This was shown in Section 4.5.1 where the “true” model did not
necessarily outperform the known wrong models. There it was shown that more
accurate predictions depend on the appropriateness of the selected parameters to
the data not necessarily whether the parameters for modelling were the same as
the parameters that generated the model. One of the purposes of this thesis is to
show that tree filter models can learn to make better estimates and predictions
than unconditional filters. There is no interest in finding the “best” filter because
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this filter may not exist. Therefore, in choosing parameters one must consider
what is best for the tree model, not what might look like the “true” filter.

The following list will explain how choices of each of the parameters have been
approached:

◦ A fundamental rule from theory and the calibration study is that Fb for
every leaf must be in (−1, 1). It is also assumed that as the tree gets larger,
each individual leaf contributes less to the information contained in the set
of alternative models. That is, in Equations (4.11) and (4.12) it was shown
how Fb predominantly affects the state and in Section 4.5.1 it was shown
that excessive contributions from the state, particularly nonupdated mod-
els, can upset model performance. So reducing the effect of the individual
state estimates and predictions has an intuitive reasoning.

◦ It has been shown that the effect of the signal-to-noise ratio (SNR) has a
profound effect on the performance of the BTRS model. If one fixes the
noise level of the initial weak learners to be low enough and the signal level of
these learners to be high enough to provide a large enough (SNR) then one
can rely on the relationship between Wb and Vb to adjust according to the
relationships described by the tree modification functions in Section 5.3.1.
The vague terms low enough and high enough depend to some extent on
the problem so some initial investigation and expert input might be helpful.

◦ The parameter Hb has been shown in both Section 4.4 and Section 5.3.5
to have a marked effect on the predictive capability of the model. Equa-
tion (4.26) showed how this parameter affects the residual of the tree marginal
which is is used to compare trees. The tree model in general is sensitive to
this parameters so only a small range has been used in the experiments.

5.4.2.3 Demonstrations

This demonstration will be for 10, 25, 50 and 100 trees. Not all the graphs will
be shown because with a large number of trees it is difficult to see what is going
on in a graphical sense. Ensembles will be compared in two ways: the first is
to show the accuracy of the ensemble estimates and predictions as a function of
the number of trees and the second is to assess if the number of trees helps in
bringing the model closer to achieving the target distribution.

Before this, however, an example of the ensemble using ten trees is provided. Also
provided are a table of the leaf parameters generated according to the method
described above (Table 5.4.2) and a table showing the functions that manipulate
the leaf parameters and their arguments (Table 5.4.1).
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Functions and arguments for adpating parameters.
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 runif n 1 min -40.00 max 10.00
W0 runif n 1 min 1.00 max 15.00
V Vfunc ln 2 scale 0.25 min 0.10
W IVfunc ln 2 scale 0.25 max 15.00
F Ffunc ln 2 scale 0.15 sn 1.00 min 0.05

grow

H Vfunc ln 2 scale 0.03 min 0.85

Z0 runif n 1 min -40.00 max 10.00
W0 runif n 1 min 1.00 max 15.00
V IVfunc ln 2 scale 0.01 max 5.00
W Vfunc ln 2 scale 0.15 min 3.00
F IFfunc ln 2 scale 0.01 sn 1.00 max 0.95

prune

H IVfunc ln 2 scale 0.03 max 1.15

Table 5.4.1: Functions that modify the parameters as the trees change shape (grow or prune,
grow-shift or prune-shift) for the CGM model

Parameter values, SNR and H/V for 10 leaf tree.
LN PN 0 1 2 3 4 5 6 7 8 9 10

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 -0.400 0.450 -0.500 0.550 -0.600 0.650 -0.700 -0.750 -0.800 -0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 -30.00 -30.556 0.556 5.000 -35.000 5.000 -35.000 5.000 -12.778 -26.111 -17.222
W0 15.00 6.111 5.000 12.778 5.000 7.222 13.889 7.222 9.444 8.333 10.556
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

2

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 -0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 -0.800 0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 -30.00 -3.889 -30.556 -35.000 -35.000 -21.667 -8.333 -21.667 -30.556 -26.111 -8.333
W0 15.00 11.667 13.889 9.444 15.000 5.000 8.333 13.889 6.111 13.889 9.444
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

3

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

Table 5.4.2: Parameters for the initial weak learners of a 10 tree ensemble.

The first figure, Figure 5.4.1a, shows a density estimate of the sampled values.
There are several lines because the intention is to show that the proposed method
adapts to the “true” density as the number of iterations increases, although it
does start out quite close. Examples of the density estimates were taken at
250, 500, 750 and 1000 iterations and show the change in the density between
these examples. For example, the lightest blue line shows the density of the
predictions for the observations up to 250 iterations and the next light blue line
shows the density for the same samples but from iteration 201 to iteration 500
and so on.

Figure 5.4.1a needs to be read in conjunction with Figure 5.4.1b where the esti-
mated sequence is shown. It is clear that while the proposed algorithm gets close
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to the simulated density it does not quite match the target density exactly. Some

(a) Density estimates based on simulated and estimated parameters for the CGM model using
100 tree ensemble.

(b) Estimates of the latent state and predictions for the observation sequence for the CGM model
by a 10 leaf ensemble.

Figure 5.4.1

interesting observations are:

◦ The inability of the BTRS model to match the target density is similar to
the behaviour of the Kalman filter. In Appendix A1.3 it was shown that
different parameter settings for different Kalman filters produced vastly
different results. In this model there are several parameters initially set
and some functions provided that modify these parameters and the tree
finds the the best set of parameters from which to produce estimates and
predictions.

◦ The state estimation process is more adaptive than the predictive process.
This is most clearly seen in fig. 5.4.1a where the state (in green) begins
to intermingle more with the simulated state than the predictions for the
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observations do. There seems to be a constant difference between the pre-
dictions and observations in the lower graph and this seems to persist once
initial convergence in the first few iterations has been completed.

◦ There is more variability in the state estimates than in the predictions. This
is likely due to the influence of the observation parameter,H, which is able
to squeeze (scale) the predictions after the state parameter has provided
the transition from the previous state to the current state. It seems that
a correction of the available H parameters might cure this but after many
experiments this effect persists. This will be explored more in Chapter 6.

The next figures, Figures 5.4.2a and 5.4.2b, show the sequences from Figure 5.4.1b
but with the estimates and predicated values joined by lines and the piecewise
5% and 95% bounds shown by dashed lines7. It is clear that the bounds for the
state estimate are tighter than the bounds for the predictions which is not obvious
from the estimated densities in Figure 5.4.1a but consistent with theory.

(a) Estimates and pointwise error bounds for the level estimates.

(b) Predictions and pointwise error bounds for the observation stream.

Figure 5.4.2

The next figures will focus on the output from the ensemble of the components of
7The extreme lines shown in Figure 5.4.2a are due to unusual predictions and estimates

which caused bound values to be grouped in the wrong set when graphing.
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the tree marginal, the number of leaves in the tree and some other MCMC related
output. Figure 5.4.3 shows, from top to bottom, the log of the non-normalised
tree density; the number of leaves for each tree in the ensemble; the log of the
tree marginal, the log of the densities of the estimated state and the log of the
tree prior.

Perhaps the first thing to notice is that the colours, each one representing a dif-
ferent tree from 1 to 10, are changing for p (T | yt, zt, · ). This means that the
MCMC algorithm is mixing well among all trees and that not one tree dominates
the search of the model space. This mixing behaviour is essential to prevent
degeneracy of the algorithm and is one reason why this approach might be pre-
ferred over sequential Monte Carlo (SMC) methods. It is also interesting because
it highlights a difference between this approach and the approach of Chipman
et al. (1998) because there the algorithm had to stopped and started repeatedly
to avoid local degeneracy. The next thing to notice is the relationship between

Figure 5.4.3: Components of the tree marginal and the number of leaves.
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the different graphs. Focussing on T = 5, the light blue tree, one can see that
as the number of leaves increases, the log of the tree density decreases, the tree
marginal also decreases and the prior for the tree works in concert with these
two components. This shows that the tree is learning and adapting to new data.
This pattern is repeated by other trees over other iterations which shows that the
ensemble is learning and adapting as the data changes and as the tree explores
the model space but also that large trees are unlikely.

Finally, notice that there is a strong correspondence between the worst cases of
the log of the tree density and the log of the state density. This shows that if a
tree is estimating the state poorly this is reflected in the probability of the tree.
What is is not clear is if a poorly estimating tree precipitates a change in the tree
size or its evolution.

The next figures show some more information about the MCMC process. The top
left graph of Figure 5.4.4a reflects the behaviour of the tree prior in the streaming
setting. In Section 5.2.3 the effect of the prior in a streaming setting was shown
but without taking into account the effect of the data. That is, the prior is meant
to act as a penalty against ever expanding trees but it was not certain if the tree
prior would be overwhelmed by the data. Figure 5.2.2 showed that for parameters
ξT = (α = 0.95, β = 2) the expected number of leaves was between 3 and 4 for
the duration of the experiment and Figure 5.4.4a confirms this. Thus, even in
the streaming data setting where the analysis is not over a compact data set,
the tree sampling prior process designed by Chipman et al. (1998) is an effective
method of controlling tree growth which does not require the excessive tree sizes
of other methods (Domingos and Hulten 2000; Hulten and Domingos 2003; Bifet
and Gavaldà 2009) nor does it require the greedy search approach of Breiman
et al. (1984).

The number of moves offered is a reflection of the fact that the prune and prune-
shift moves can only be offered when tree has more than 2 leaves. The graph to
the left shows that there are many iterations where all trees have only 2 leaves
so it is reasonable that the number times that these two moves is offered is less
than than the other moves.

The bottom left graph shows that the number of moves accepted is greater than
the number of moves rejected. This must be true if the average number of leaves
for the duration of the process is greater than 2. Thus it might be said that the
tree is learning the “true” number of leaves. This is interesting because while the
CGM model has 5 leaves, the posterior density has only 4 modes which would
suggest that the number of filters actually needed to generate the data is 4 not 5.
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(a) Number of visits to each leaf state,
proportion of moves offered, proportions of
moves accepted and proportions of different
types of moves accepted according to tree
colour.

(b) Taken from (Chipman et al. 1998), this
plots hows the log integrated likelihood of
the tree models as a function of the number
of leaves.

Figure 5.4.4

The expected value for the distribution of the leaves is 5.33 but the most likely
number of leaves is 3. Thus, a possible interpretation for the reason that more
moves are accepted than rejected is that the trees are trying to find the average
size of tree that best suites the data but the fact that the prior mean is in this
same range makes this an uncertain conclusion.

The final graph of the 4 set shows that despite moves 1,2,5 (change, grow and
grow-shift) being offered more times, the actual mixing of the moves is about
uniform. Slightly more grow moves seem to be offered than prune moves but
again this is possibly because the true number of leaves being sought is between
3 and 5 and not 2.

Figure 5.4.4b is an adaptation of the graph from Chipman et al. (1998). Each
point on the graph represents a value for the tree marginal that is attained at each
number of leaves. The colours again represent the different tree numbers 1 to 10.
Interestingly, a tree with a few number of leaves can have a large tree marginal
and a tree with large number of leaves can have a low tree marginal but these are
exceptional cases and, if one compares the trees by colour between this graph and
Figure 5.4.3 it is likely that one excursion of the tree has produced this range of
values. In general, as the number of leaves increases the range of the tree marginal
deceases. Note that this is different to the example shown in “Bayesian CART
model search” because there the final results over 10 experiments are shown ans
here all results of the evolution of the tree are shown.

Before presenting some numerical comparisons the final graph shows the cumu-
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lative CMSE between the 10, 25, 50 and 100 tree ensemble demonstrations. As

Figure 5.4.5: The CMSE between the simulated state and the estimated state as well as simu-
lated observations and the predictions.

the key shows, the green lines represent the estimate CMSE and the blue lines
the prediction CMSE. Interestingly, while it is clear that the prediction CMSE
is lower in general for all ensemble sizes, there does not seem to be much dif-
ferentiation between different ensemble sizes. In fact, if one compares the single
tree from Figure 5.3.11 to these ensembles there seems to be little difference be-
tween a single tree and the ensemble. This is quite likely due to the fact that the
Kalman filter is an optimal estimator and once a tree is estimating well it may
well continue to do so.

Less optimistically it may mean that a single leaf is being chosen repeatedly and so
the Kalman filter at one leaf is being updated repeatedly. A few things suggest
that this is not the case: firstly Figure 5.3.12 shows that tree sizes are varied
enough and change rapidly enough so that a single leaf is unlikely to remain
chosen repeatedly. (i.e. the chains mix well) and Figure 5.4.6 shows that the
range of leaves chosen (in log2 scale) by the tree to estimate and hence predict
vary enough so that one leaf is not being repeatedly updated.

Figure 5.4.6: The log2(Kt) of the chosen leaves for three trees: 1, 5, 10

The final part of this section will present a numerical comparison between the
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different ensembles. The first table will present a series ov values for the CMSE
and their differences at different iteration numbers. The second table will com-
pare the distributions using the Kullback-Leibler Divergence and the Wasserstein
metric.

The Kullback-Leibler divergence also called the relative entropy is way for telling
how close two distributions are. It is not a formal distance measure but is often
used in statistics. The measure is defined as:

DKL(P ∥ Q) =
∫

Y
p ( y ) log

(
p ( y )
q(y)

)
µ(dy) (5.26)

but to use it over the discrete samples requires summing the integral over the
empirical distributions obtained from the data generated Ysim or Zsim for Q and
from the simulated YBT RS or ZBT RS for P.

The Wasserstein distance, also known as the earth movers distance, is a true
distance measure and ideally suited to statistical measurement because the result
can be interpreted as the cost of transforming the proposed measure into the base
measure. This measure is defined as:

Wp(P, Q) =
(

1
n

n∑
i=1

∥∥∥Y(i) −X(i)
∥∥∥p
)1/p

(5.27)

where Y(i) means the ith order statistic (the data must be sorted) and in this case
p = 2 means that the Euclidean norm is being used.

KL = Kullback-Liebler, WS=Wasserstein
Dist. F = 10, Y F = 10, Z F = 25, Y F = 25, Z F = 50, Y F = 50, Z F = 100, Y F = 100, Z

KL 83.5303 94.5762 93.2218 86.0637 90.2173 86.1748 94.2132 93.7195
WS 0.5556 0.6646 0.5840 0.5655 0.6063 0.5732 0.6080 0.6145

Table 5.4.3: Two measures of the differences between the the proposed distribution and the
generated data.

The results in Table 5.4.3 are perhaps, in one way, disappointing because the
increase in the number of trees should make the model more accurate. However,
as has already been discussed the Kalman filter is an optimal filter and already
producing estimates an predictions with a low MSE/CMSE. Also, the tree has
been shown to get close to the target posterior when new data from a fixed
distribution is being provided. Perhaps the ensemble will help capture target
distributions that changing with time?

The final table confirms what was presented in Figure 5.4.5. These figures show
that at the given iterations the CMSE is already quite low. Increasing the number
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of trees seems to make the CMSE slightly worse, at least in the case of this
example.

CMSE at Iterations 250, 500, 750, 1000
Iteration F = 10, Y F = 10, Z F = 25, Y F = 25, Z F = 50, Y F = 50, Z F = 100, Y F = 100, Z

250 0.5176 1.1876 0.6643 0.9284 0.7278 0.9316 0.6303 0.7765
500 0.4368 0.7901 0.4715 0.6084 0.5069 0.6332 0.5097 0.6106
750 0.4344 0.7929 0.4637 0.5474 0.5030 0.5780 0.5200 0.6325
1000 0.4186 0.7034 0.4596 0.5313 0.5114 0.5643 0.4992 0.6110

5.4.3 Ensemble Model Comparison

5.4.3.1 Introduction

The purpose of this section is to compare some well known Bayesian tree re-
gression methods with the proposed model. The methods that will be used are
Dynamic Trees (DT) (Taddy et al. 2011) and Bayesian Additive Regression Trees
(BART) (Chipman et al. 2010). These approaches to regression are known to
converge to the target distribution but use different methods to achieve this goal.
DT is a sequential Monte Carlo (SMC) or particle filtering method that has al-
ready been adapted to the streaming data setting (Anagnostopoulos and Gramacy
2013). BART is not a streaming method but uses a form of Markov chain Monte
Carlo (MCMC) based on Bayesian back-fitting (Hastie and Tibshirani 2000) to
perform tree based regression and it is the descendant of the CGM model (Chip-
man et al. 1998) that has formed much of the basis for this thesis.

The substance of both of these approaches has been covered Chapter 2 and, with
particular respect to SMC, in Section 3.3.3 but a brief summary of each will
begin each of the subsections that deal with the respective comparisons: DT and
BART versus the proposed model (BTRS). The differences between the proposed
approach and these methods will be highlighted and, where relevant, weaknesses
in both the proposed and existing approaches will be pointed out.

Following the comparison of approaches is a section that compares the results
of the modelling data generated by the CGM model. For the most part the
comparison is graphical because it is necessary to consider the entire length of the
stream and not only the end result. Where sensible some comparative numbers
have been provided.

5.4.3.2 Dynamic trees comparison

DT is a particle filtering method, at heart a state-space model, that uses trees
as particles to produce predictions based on models at the leaf nodes of trees
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that have been chosen at each t by xt. This cloud of trees, recommended by
the authors to consists of 1000 particles, produces posterior weighted predicted
values from local leaf models that are then averaged over the particle set so that
a mean result forms the predicted value for observation yt at each t.

This model does not produce an estimate of the state process and, with a focus
on an automatic regression, marginalises out the leaf model parameters, µη and
ση (η is some leaf node). The marginal likelihood for the data is available at each
t by an approximation over all particles in the particle set.

To learn the particle sets their approach uses SMC but first resamples particles
based on the predictive probability weight of the particle given the new obser-
vation. New trees are then propagated by creating three candidate trees from
the moves stay, prune and grow at the node that has already been chosen by the
data. Trees are equivalent above the parent of the chosen terminal node so poste-
rior probabilities for the new tree are only calculated over subtrees rooted at the
parent node. The new trees are propagated by sampling from the candidate trees
proportional to the prior probability of each move and the marginal likelihood
of the tree based on the new data. The statistics at the chosen node are then
updated.

This method is different from the proposed method in the following ways:

◦ The marginal likelihood of the tree in the proposed (BTRS) model is taken
over the latent state. Another way to see this is that at each t the BTRS
model produces a product of averages over all conditional models where the
average is with respect the previous latent processes p ( zi−1,b ). Thus the
entire history of the tree and its data is taken into account.

◦ BTRS produces an estimate of the state level at each t and predictions for
the observed process.

◦ Parameters are not marginalised over which might allow for additional pa-
rameter learning but this also creates a problem with parameter setting and
model identification.

◦ Each chain in the ensemble produces a stochastic process which mirrors to
some degree, the output of the Kalman filter. As shown in Section 4.5.1,
there are parallels between the tree likelihood scale and residual parameters
and the state variance and innovation of the Kalman filter. However, the DT
model discards its particles and hence loses information about the process
that it is learning.

◦ The MCMC method produces a chain of samples about the process under
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study rather than just predictions for the state process. These samples,
both for the state and observation processes can be used to derive many
properties of the posterior distribution while it is unclear if the particle set
that is available from the SMC algorithm provides the same amenity.

◦ Nodes chosen for evolution of the tree in the BTRS case are randomly
chosen rather than chosen based on the data. Further, the proposed model
provides a change move so that, it is hoped, preferred covariates can be
recognised and variable selection learnt.

◦ The original DT model requires that there are minimum number of data
points at each leaf before learning can begin and all the data that is received
is stored in every particle, at least for as long as the particle exists. For
a large enough data set this would cause computational issues. However,
this has been partially resolved in Anagnostopoulos and Gramacy (2013)
by retiring some of the data. However, this creates a window dependency
for the particle set which might render any saved particle set for future
analysis useless unless these retired particles are also saved. In the BTRS
model the covariates are not used in the leaf models at all. The parameters
are independent of covariate input so that no data, beyond the temporary
storages of parameter values and the current data point, are stored in the
model. The tree, including the bounds of the used covariates, stores all
information necessary to sample the next tree. The output process via the
tree marginal, like the Kalman filter, produces all the information about
the streaming process without having to resort to additional, post-inference
covariate and response manipulation.

In short, the proposed BTRS model is different to the DT model because it
provides a much richer set of data, in itself a stream, that is a summary of the
streams of data that can possibly be used to learn more about the processes under
observation than that provided by the DT model.

However, the one unmistakeable advantage of the DT model is that its method
of sampling, SMC, it is guaranteed to find to the correct posterior distribution
at each t because at each t there is a large enough cloud of samples over which
an ergodic average can be attained. Typically in SMC there are issues with
degeneration of the sample cloud as all posterior probability tends to focus on a
small number of samples, a consequence of importance sampling, but this does
not appear to be the case in the DT model and there are solutions to this for,
example, particle MCMC (Andrieu et al. 2010).
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5.4.3.3 Bayesian additive regression trees comparison

Bayesian additive regression trees (BART) (Chipman et al. 2010) is a general
additive model for regression using trees. It is a counter part to the classical
approach of boosting using weak learners (Freund and Robert E Schapire 1997)
for the Bayesian setting. It was developed by the same authors as Chipman et
al. (1998) but focuses on regression although extension to this functionality are
available.

BART provides a sum-of-trees estimate of the mean level at each of the tree’s
leaves where each estimate is shrunk in proportion to the ensemble size which
is suggested to be 200 trees. Each estimate has Gaussian error that is again
proportional to the ensemble size so that, as a whole, the estimates from the
ensemble have additive error according to a single variance parameter σ2.

BART uses a Bayesian backfitting algorithm, a form of Gibbs sampler (Hastie
and Tibshirani 2000), that samples from successive draws of each of the trees.
A residual is formed between each data observation yt and, for every jth tree,
the sum of estimates of µt for yt over all trees not including the jth tree. This
residual then takes the place of yt in each tree marginal when each tree posterior
is calculated. In this way the every tree shares information because every tree
marginal contains the residual information from the ensemble.

BART provides set of MCMC samples from which one can find any desired func-
tion of the samples from the posterior distribution. BART has also been adapted
to very wide data (large p) (Hernández et al. 2018) and for variable selection
(Linero 2018). It is hoped that these adaptations of BART might be applicable
to the BTRS model as it too provides a rich source of data that can be accessed
by concurrent processes that act upon the output stream from the BTRS model.

The main differences between BART and BTRS are that:

◦ BART is not suitable for streaming analysis. It is a traditional MCMC
algorithm in the sense that it requires multiple samples and multiple passes
over the data to achieve stationarity.

◦ BART is a sum-of-trees model where estimates are shrunk in proportion
to the ensemble size. The BTRS model is a mixture model where each
estimate and prediction is weighted according to the posterior of the tree.
The estimates and predictions are independent of the size of the ensemble
other than the case where more trees means wider and faster exploration
of the tree model sample space than fewer trees.

◦ BART shares information between all trees. This means that for each esti-
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mate every tree must be visited by every other tree to calculate the resid-
ual. The BTRS model calculates a residual (innovation) at each chosen leaf
based only on the data that exists in that leaf’s latent variable prediction
µ̂t|t−1.

◦ While the marginal for the tree in BART is a function of the ensemble, the
marginal for the tree in BTRS is a function of only the alternate models in
that particular tree. Each tree in BTRS retains its independence making it
embarrassingly parallel and amenable to concurrent computation.

◦ BART, like Chipman et al. (1998) (BCARTMS), requires that all data is
stored with the model and that there are a minimum number of data points
in each leaf before inference can be performed. The models in the leaves of
BART also require that the covariates be used for regression calculations.
As mentioned in Section 5.4.3.2, the BTRS model has none of these require-
ments but does require that the bounds of each covariate are provided.

◦ BART has a single variance parameter for all tree models so that the error
for each estimate is Gaussian and homogenous. In the BTRS model one is
able to specify a number of different variance, transition and observation
parameters which offers great flexibility in modelling but at the price of
complicated model design and specification.

BART is a successful modelling approach that is part of the inspiration behind the
proposed approach to streaming regression in this document. While primarily a
model for estimation, prediction can be performed by using a training set to learn
an ensemble of trees and then predictions can be obtained from an out-of-sample
test set.

One thing that neither of the above approaches, DT and BART, seem to offer
is flexibility in the dimension of the observation. The Kalman filter and its
variants are able to model any Y ∈ Rn, Z ∈ Rm but with a consequential cost on
performance. If, however, the components of Y ∈ R are judged to be independent
the BTRS model offers a method for dimension reduction, in a similar way to the
ensemble Kalman filter (Evensen and Leeuwen 2000). Both of the other other
methods offer different model types at the leaves. The BTRS model can offer
many different versions of the Kalman filter to deal with nonlinearity and there
is no reason other models cannot be adapted to dynamic modelling as has been
done by Harrison and West (1999) if it makes sense to do so.
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5.4.3.4 Model comparison

The rest of this subsection will show how the proposed model, BTRS, can get close
to, if not match the BART and DT models in finding the target posterior. MCMC
theory precludes actually achieving the target posterior at each t because for each
new data point the joint distribution for the data changes thereby invalidating
any stationarity assumptions. However it will be shown, between this chapter
and the next, that it is possible to get close enough to the true posterior at each
t so that the difference between the achieved posterior and “true” posterior is
negligible.

In their original formats, both BART and DT rely on the generation of a set of
trees from some existing data (a training set) and then make some predictions
based on new data (the test set). The proposed BTRS model performs estimation
and prediction for the latent state process Zt and the observed process Y t at each
index t without having been trained. That is, the BTRS model only sees the data
once. To compare the proposed streaming model with the comparative models
requires that two approaches are taken. The first approach is to assume that the
data is fixed at size N . Then the original forms of the BART and DT models can
be used against the proposed model with the disadvantage to the proposed model
that it does not get to be trained nor does it get to revisit any of the data. The
purpose of this comparison is that both BART and DT are known to converge
to the true posterior distribution. Their respective MCMC (BART) and SMC
(DT) methods hold and the proposed BTRS method of learning the model and
outputting estimates on-the-fly can be tested against these.

The second approach involves creating a streaming-like setting This requires
adapting the BART model where the DT model has already been adapted (Anag-
nostopoulos and Gramacy 2013). Adapting BART is done by allowing the model
to estimate up to the current data point, make a prediction given a new covariates
xt+1 and then to be provided with yt+1 so that the estimate up to the new data
can be made. This is repeated 1000 times on new data after training the model.
This modified BART model, along with the streaming DT model, are given a
training set of data and then they perform prediction and re-learning on the test
set. The proposed BTRS model only gets to see the test set.

The first figures, Figures 5.4.7a and 5.4.7b compare the estimated densities be-
tween the DT, BART and BTRS respectively. It is immediately apparent that
the proposed model does not quite find the proposed distribution. As this BTRS
model is the same as that used in Section 5.4.2.3 (as is the data) the reasons for
not quite getting to the target distribution are discussed there. However, it is
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worth noting that in these first examples the DT and BART models were run
several times over the data and the predictions formed here are within sample
predictions. In other words these predictions are not over a test set but over the
training set.

The BTRS model only saw the data once, in sequence, and beyond the generalised
parameter setting method described above, searched and learnt the models and
made these predictions on-the-fly.

(a) DT and BTRS (b) BART and BTRS

Figure 5.4.7: Comparison of estimated densities between Dynamic Tree model (DT), the
Bayesian additive regression tree model (BART) and the proposed streaming regression model
(BTRS)

Figures 5.4.8a and 5.4.8b show the sequences of data that produced the above
densities and these includes their point wise 5% and 95% error bounds. The
bounds of the DT model seem tighter than that of the BART model.

Figures 5.4.9a and 5.4.9b show the comparison between the BTRS model and the
streaming versions of both the BART and DT models.

Figure 5.4.11 shows a comparison between the CMSE of all of the above models.
It is clear that the BTRS model, while not quite finding the target distribution is
clearly outperforming all versions of the above models when it comes to accuracy.
The trade-off seems clear: accuracy over correctness. However, the next chapter
will consider some simple modifications that will hopefully bring the BTRS model
closer to the target distribution.

5.5 Summary and Conclusion

The aim of this chapter was to extend the tree filter model to one that can train,
estimate, predict and learn on-the-fly. Markov chain Monte Carlo was used to
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(a) Predicted values and their pointwise error bounds from the DT model.

(b) Predicted values and their pointwise error bounds from the BART model.

Figure 5.4.8

(a) sDT and BTRS (b) sBART and BTRS

Figure 5.4.9: Comparison of estimated densities between streaming Dynamic Tree model (sDT),
(streaming) Bayesian additive regression tree model (sBART) and the proposed streaming re-
gression model (BTRS)

sample alternate tree models and this was combined with a deterministic method
of adapting leaf filter parameters. The proposed model was compared with two
state-of-the-art Bayesian approaches to tree modelling using simulated data sets.
A real-world example has not been provided which limits an assessment of the
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(a) Predicted values and their pointwise error bounds from the sDT model.

(b) Predicted values and their pointwise error bounds from the sBART model.

Figure 5.4.10

Figure 5.4.11: A comparison of the cumulative mean square error between the BTRS model,
the DT and sDT models as well as the BART and sBART models.

model’s applicability. Also not shown but demonstrated in preliminary studies
was the performance of the model in O ( |F|KTm

3 ). That is, the performance of
the model is a constant in the model formulation and is independent of the input
data stream.

The next section looks at some modifications to the proposed approach and shows
an experiment using the Mackey-Glass equation.
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6 Model Modifications

6.1 Introduction

This brief section will explore two modifications to the approach of the previous
section. These modifications have not been thoroughly tested and offer demon-
strations of methods that might improve the convergence of the streaming model
to the target posterior.

The first modification is to use only the change, grow and prune moves. The
second modification is to allow for a small number of additional evolution steps
per iteration.

After these two modifications have been demonstrated and briefly explored a final
example of a nonstationary data set will be presented. This data is generated by
the Mackey-Glass differential equation. It is highly nonlinear and nonstationary
and some demonstrations will show how this model copes with this type of data.

6.2 Modifications

6.2.1 Modification to Moves

The first modification that is explored is a return to an attempt at streaming
modelling that was an earlier part of the research. The modification is to use
only the change, grow and prune moves as proposal moves rather than all the
moves that were used in the previous chapters. The reason for this is that the
grow-shift and prune-shift are moves that seem to change the location or direction
of the chain jump quite radically. These changes mean that it takes a while for the
chain to resettle and find local modes to explore and this makes the dependence on
the parameter modification functions stronger. Removing these moves suggests
that changes are less severe so that the trees can learn the streaming process and
adapt to new data in a slower fashion. This may come at a cost to performance
and convergence in more extreme cases of nonstationarity.
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The leaf parameters used for these experiments were exactly those used for the
experiments in Section 5.4.2.3. They are reproduced in Table 6.2.1 for conve-
nience. Only 10 trees were used in these experiments because if there are gains in
increasing the number of trees then, for the CGM model that is used here, these
might only be slight.

Parameter values, SNR and H/V for 10 tree ensemble.
LN PN 0 1 2 3 4 5 6 7 8 9 10

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 -0.400 0.450 -0.500 0.550 -0.600 0.650 -0.700 -0.750 -0.800 -0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 -30.00 -30.556 0.556 5.000 -35.000 5.000 -35.000 5.000 -12.778 -26.111 -17.222
W0 15.00 6.111 5.000 12.778 5.000 7.222 13.889 7.222 9.444 8.333 10.556
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

2

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 -0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 -0.800 0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 -30.00 -3.889 -30.556 -35.000 -35.000 -21.667 -8.333 -21.667 -30.556 -26.111 -8.333
W0 15.00 11.667 13.889 9.444 15.000 5.000 8.333 13.889 6.111 13.889 9.444
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

3

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

Table 6.2.1: Initial leaf parameters for the 10 tree ensemble.

The functions that modify the leaf parameters as the trees change have been
modified for each of the experiments. Tables 6.2.2 to 6.2.5 show the function
settings for each of the 4 different experiments conducted on the model with only
the change, grow and prune moves.

Functions and arguments for adapting parameters, Experiment 1.
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 runif n 1 min -40.00 max 10.00
W0 runif n 1 min 1.00 max 15.00
V Vfunc ln 2 scale 0.25 min 0.10
W IVfunc ln 2 scale 0.25 max 15.00
F Ffunc ln 2 scale 0.15 sn 1.00 min 0.05

grow

H Vfunc ln 2 scale 0.03 min 0.85

Z0 runif n 1 min -40.00 max 10.00
W0 runif n 1 min 1.00 max 15.00
V IVfunc ln 2 scale 0.01 max 5.00
W Vfunc ln 2 scale 0.15 min 3.00
F IFfunc ln 2 scale 0.01 sn 1.00 max 0.95

prune

H IVfunc ln 2 scale 0.03 max 1.15

Table 6.2.2: Function settings that exactly match those of Section 5.4.2.3.

As already mentioned, in Table 6.2.2 for Experiment 1, the parameters are no
different to the parameters for the CGM model in Chapter 5. The aim here is
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to show what the consequences might be if the model were simplified to only use
these 3 moves.

Table 6.2.3 is Experiment 2. Here the idea is see if the the function choice and
behaviour can also be simplified. Ideally one wants to have to specify as little as
possible so that the ensemble learns the process. This has been done by removing
all parameter modification functions except those that modify Vb, Hb because
from previous investigations it was shown that these parameters are essential for
maintaining tree learning and the signal-to-noise ratio as the tree changes.

Functions and arguments for adapting parameters, Experiment 2.
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 constF
W0 constF
V Vfunc ln 2 scale 0.25 min 0.10
W constF
F constF

grow

H Vfunc ln 2 scale 0.03 min 0.95

Z0 constF
W0 constF
V IVfunc ln 2 scale 0.25 max 5.00
W constF
F constF

prune

H IVfunc ln 2 scale 0.03 max 1.05

Table 6.2.3: Function settings for Experiment 1 where only the noise variance parameter and
observation matrix are modified as the tree changes.

Experiment 3 reintroduces the functions that modify the state parameters Fb,Wb.
This has been does to attempt to get some idea of the interaction effects between
parameters that is specific to this modelling approach rather than the more gen-
eral relationships that were shown in Section 5.3.1.

Functions and arguments for adapting parameters, Experiment 3.
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 constF
W0 constF
V Vfunc ln 2 scale 0.25 min 0.10
W IVfunc ln 2 scale 0.10 max 15.00
F Ffunc ln 2 scale 0.10 sn 1.00 min 0.05

grow

H Vfunc ln 2 scale 0.03 min 0.85

Z0 constF
W0 constF
V IVfunc ln 2 scale 0.10 max 5.00
W Vfunc ln 2 scale 0.10 min 3.00
F IFfunc ln 2 scale 0.01 sn 1.00 max 0.95

prune

H IVfunc ln 2 scale 0.03 max 1.15

Table 6.2.4: Function settings for Experiment 3 where functions that modify Fb,Wb have been
returned.
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Experiment 4 continues Experiment 3 by modifying the scale parameter of the
functions that affect Fb,Wb.

Functions and arguments for adapting parameters, Table 4
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 constF
W0 constF
V Vfunc ln 2 scale 0.2500 min 0.10
W IVfunc ln 2 scale 0.0001 max 10.00
F Ffunc ln 2 scale 0.0001 sn 1.00 min 0.05

grow

H Vfunc ln 2 scale 0.0500 min 0.85

Z0 constF
W0 constF
V IVfunc ln 2 scale 0.2500 max 5.00
W Vfunc ln 2 scale 0.0001 min 1.00
F IFfunc ln 2 scale 0.0001 sn 1.00 max 0.95

prune

H IVfunc ln 2 scale 0.0500 max 1.15

Table 6.2.5: Function settings for Experiment 4 where the scale parameters for functions that
modify Fb,Wb have been decreased.

The first set of images, Figures 6.2.1a to 6.2.1d shows how the model approaches
the density when only the change, grow and prune moves are used. These images
should be compared to the images in Section 5.4.2.3.

Figure 6.2.1a shows that there is a difference between modelling approaches and
based on this image alone, one might assume that it is necessary to use all 5
moves. However, Figure 6.2.1b, which uses the function settings in Table 6.2.3,
shows that, once the functions that affect Fb,Wb are removed, the model with only
three tree moves could possibly perform better than the model with 5 moves. Fig-
ures 6.2.1c and 6.2.1d show that reintroducing the functions and the parameters
based on Tables 6.2.4 and 6.2.5 weakens the estimation performance of the model.
Figure 6.2.1d shows that there is even an effect on the prediction performance of
the model as the scale parameters is further decreased.

Figures 6.2.2a to 6.2.2d show the sequences of estimates and predictions that
correspond to the estimated densities in Figures 6.2.1a to 6.2.1d. There are
some interesting things to notice in these sequences.

◦ The change in moves largely seems to affect the state estimates and not
the predictions. In fact, it seems as though the predictions become more
accurate with only 3 moves.

◦ Removing the functions that affect the state seem to show that the ensemble
is now better at learning the state and also predicts well.

◦ Reintroducing the functions that modify the state parameters not only in-
troduces a bias to the down side (or left) of the data but it also seems to
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(a) Experiment 1. (b) Experiment 2.

(c) Experiment 3. (d) Experiment 4.

Figure 6.2.1: The estimated density when the only moves used are the change, grow and prune
moves.



(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

(d) Experiment 4.

Figure 6.2.2: The sequence of estimates and predictions when only the change, grow and prune
moves are used.
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slow the convergence of the ensemble to the stream of data.

◦ Decreasing the scale parameter of the functions that modify Fb,Wb increases
the variability of the estimates around the stream of data. Note that wrong
or bad estimates seem to have more of an effect on the predictions in Fig-
ure 6.2.2d than in any of the other experiments.

The next section takes the same parameter and function settings as used in this
section but now allows for M proposal moves per iteration. For comparison,
the above parameters and the M proposal moves are repeated on models with 5
different types of moves.

201



6.2.2 More proposals per Iteration

The next modification is intended to help with the convergence and accuracy.
In this second modification each tree performs multiple evolution steps per data
point. The idea behind this is to use each data point to locally explore the
model space. In the usual MCMC approach several runs over the sample data
would be performed so that averages of chains could be used get the ergodic
summaries. It is generally assumed in that each Markov chain is independent and
that, conditional on the each previous sample, the current sample is independent
of all other sample points. Using a single data point but proposing several new
trees for this data point provides an opportunity for each data point to visit a
slightly different model, conditionally on the tree and independent of the previous
data point. In this way several samples of tree models are proposed and accepted
or rejected in a similar way to running multiple sample chains over a single data
set. The cost of these additional steps should be fairly minimal because the
ensemble is able to be parallelised over the independent trees so multiple evolution
steps per data point means that within tree resampling avoids the setup and take-
down cost of sharing data between trees, for example when new data arrives or
when the posterior of the ensemble must be calculated.

Another reason for this modification is that for the Kalman filter to converge it
should be given the chance to move away from its initial value. This can only
happen if the same filter is updated several times in a row which in general cannot
be guaranteed in the random tree modelling case. Performing multiple samples
per tree means that the probability that a leaf is updated is increased so that it is
more likely that a filter can be iterated past its initial value. For all experiments
that follow, the number of proposals per iteration is M = 5.

Figures 6.2.3a to 6.2.3d are the counterparts to Figures 6.2.1a to 6.2.1d and should
be compared accordingly. A general effect to notice is that increasing the proposal
moves “tightens” the estimates and the predictions by reducing the variability of
the estimates. Figure 6.2.3b appears to be the best performing model for the
CGM data so far. There seems to be a reduced discrepancy between the estimate
density and the prediction density and the estimate density looks to be very
accurate in terms of the location parameter which in general has been an issue.
Figures 6.2.3c and 6.2.3d both look to have improved variability but do not have
as good a location as Figure 6.2.3b with Experiment 3a, which has the largest
scale parameters for Wb, Fb, faring the worst.

Figures 6.2.4a to 6.2.4d present the samples streams for the estimated densities
in Experiments 1a, 2a, 3a and 4a. These graphs confirm the previous comments

202



(a) Experiment 1a. (b) Experiment 2a.

(c) Experiment 3a. (d) Experiment 4a.

Figure 6.2.3: The estimated density when the only moves used are the change, grow and prune
moves.



(a) Experiment 1a.

(b) Experiment 2a.

(c) Experiment 3a.

(d) Experiment 4a.

Figure 6.2.4: The sequence of estimates and predictions when only the change, grow and prune
moves are used.



about the effects of increasing the number of evolution steps per iteration. How-
ever, notice that in the sequence for Experiment 1a there is a still a slight bias
towards zero for the predictions and way from zero for the estimates. In Exper-
iment 2a the bias seems to have been resolved for the estimates but exists to a
lesser degree than 1a. for the predictions. Experiment 3a, which seemed to be
the worst in terms of densities actually seems to have best predictions although
the worst estimates. Experiment 4a goes some way to correcting the estimates
but at the expense of a bias in the predictions.

The densities in Figures 6.2.5a and 6.2.5b to 6.2.5d are estimated from sequences
when all moves are used and there are M = 5 proposals per iteration (response
and covariate). The parameters and modification functions are exactly those used
for all experiments in this section.

It is immediately apparent that increasing the number of proposals detrimentally
affects both the estimates and the predictions if the functions that modify Fb,Wb

are retained. In contrast, using all the moves and doing multiple proposals per it-
eration when only the functions that modify Vb and Hb are used seems to produce
the best output so far. Figures 6.2.6a to 6.2.6d show that by including multiple
proposals and modifying the parameters Fb,Wb increase variability of the esti-
mates and predictions and also cause the location of estimates and predictions
to be offset. Figure 6.2.6b however shows that by removing the functions that
modify the state parameters and increasing the number of proposals and using
all the moves allows the ensemble model to find the target distribution and make
accurate predictions.

A tentative reason for the effects on the state shown here may be down to the
fact that the trees are better at estimating the state with some general initial
parameters and tree model learning rather than attempting to force parameter
modification through deterministic functions. Further experimentation would be
required to confirm this.
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(a) Experiment 1b. (b) Experiment 2b.

(c) Experiment 3b. (d) Experiment 4b.

Figure 6.2.5: The estimated density when the only moves used are the change, grow and prune
moves.
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(a) Experiment 1b.

(b) Experiment 2b.

(c) Experiment 3b.

(d) Experiment 4b.

Figure 6.2.6: The sequence of estimates and predictions when only the change, grow and prune
moves are used.



6.3 Mackey-Glass Experiment

This section briefly shows how the proposed model tracks a nonlinear and non-
stationary stream of data. The iterations have been limited to 1000 but there
is enough change in the stream to highlight some of the proposed algorithm’s
properties.

The Mackey-Glass function is a delay differential equation that is used in biomed-
ical and physical sciences. The equations are defined as:

dG(t)
dt

= β0θ
nG(t− τ)

θn +G(t− τ)n
− γG(t) (6.1)

This function was adapted for this experiment by converting it into a state space
form and then by making the explanatory variables the previous points along the
series.

In contrast to the experiments in Section 6.2, in this experiment the function
modification parameters were kept at those that did not include modifying the
state parameters. The initial ensemble parameters were modified.

Parameter values 1, SNR and H/V for 10 leaf tree.
LN PN 0 1 2 3 4 5 6 7 8 9 10

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 -0.400 0.450 -0.500 0.550 -0.600 0.650 -0.700 -0.750 0.800 -0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 5.00 5.000 2.778 1.667 3.889 3.333 1.667 4.444 3.333 2.222 3.333
W0 10.00 5.556 3.778 6.444 2.889 4.667 5.556 7.333 10.000 6.444 6.444
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

2

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

V 1.00 0.250 0.444 0.639 0.833 1.028 1.222 1.417 1.611 1.806 2.000
W 20.00 10.000 11.111 12.222 13.333 14.444 15.556 16.667 17.778 18.889 20.000
F 0.85 0.400 0.450 0.500 -0.550 -0.600 -0.650 0.700 0.750 0.800 0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 5.00 3.889 0.556 1.667 0.000 4.444 3.333 3.889 1.667 3.333 3.333
W0 10.00 3.778 10.000 3.778 2.000 4.667 3.778 4.667 5.556 5.556 8.222
R 20.00 40.000 25.000 19.130 16.000 14.054 12.727 11.765 11.034 10.462 10.000

3

H/V 1.00 3.600 2.025 1.435 1.140 0.957 0.832 0.741 0.672 0.618 0.575

Table 6.3.1: Parameters with high signal-to-noise.

A further aim in this experiments was to compare the case where there was one
proposal or M = 5 proposals per iteration. Figures 6.3.1a to 6.3.1c show the
densities for these 3 experiments:

1. Parameters 1 and only 1 move per iteration

2. Parameters 1 and 5 moves per iteration
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Parameter values 2, SNR and H/V for 10 leaf tree.
LN PN 0 1 2 3 4 5 6 7 8 9 10

V 1.00 0.100 0.256 0.411 0.567 0.722 0.878 1.033 1.189 1.344 1.500
W 20.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000
F 0.85 -0.400 -0.450 0.500 -0.550 0.600 0.650 -0.700 0.750 0.800 -0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 5.00 5.000 2.222 3.333 1.667 0.556 2.778 3.889 0.556 3.889 2.778
W0 10.00 2.000 7.333 9.111 3.778 9.111 3.778 10.000 10.000 6.444 2.889
R 20.00 10.000 7.826 7.297 7.059 6.923 6.835 6.774 6.729 6.694 6.667

2

H/V 1.00 9.000 3.522 2.230 1.676 1.362 1.158 1.016 0.911 0.831 0.767

V 1.00 0.100 0.256 0.411 0.567 0.722 0.878 1.033 1.189 1.344 1.500
W 20.00 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000
F 0.85 0.400 -0.450 -0.500 -0.550 0.600 -0.650 0.700 0.750 0.800 -0.850
H 1.00 0.900 0.900 0.917 0.950 0.983 1.017 1.050 1.083 1.117 1.150
Z0 5.00 3.889 3.889 2.778 2.778 4.444 5.000 5.000 5.000 1.111 4.444
W0 10.00 8.222 9.111 2.000 8.222 3.778 4.667 2.889 4.667 10.000 2.889
R 20.00 10.000 7.826 7.297 7.059 6.923 6.835 6.774 6.729 6.694 6.667

3

H/V 1.00 9.000 3.522 2.230 1.676 1.362 1.158 1.016 0.911 0.831 0.767

Table 6.3.2: Parameters with low signal-to-noise.

Functions and arguments for adapting parameters.
move fname func argn1 argv1 argn2 argv2 argn3 argv3 argn4 argv4

Z0 constF
W0 constF
V Vfunc ln 2 scale 0.20 min 0.100
W constF
F constF

grow

H Vfunc ln 2 scale 0.05 min 0.975

Z0 constF
W0 constF
V IVfunc ln 2 scale 0.20 max 2.000
W constF
F constF

prune

H IVfunc ln 2 scale 0.05 max 1.025

Table 6.3.3: Functions to modify parameters.

3. Parameters 2 and 5 moves per iteration

Note that for all these experiments only 3 move types, change, grow and prune
were used.

Figures 6.3.2a to 6.3.2c show a sample stream from the Mackey-Glass generator.
Clearly the Experiment 3, where the signal-to-noise ratio is smallest has the
largest effect on the predictions.

Figures 6.3.3a to 6.3.3c show the cumulative square error of the experiments.
The best performing is Experiment 2 where the state estimate is stable, unlike in
Experiment 1 where it is is slightly increasing.

Figures 6.3.4 to 6.3.6 each show the MCMC component output for each exper-
iment. Of particular notice is Experiment 3 where the signal-to-noise ratio is

209



(a) Experiment 1. (b) Experiment 2. (c) Experiment 3.

Figure 6.3.1: Estimated densities for three Mackey-Glass experiments

lowest. Here, tree 1 “escapes” and becomes very large. This can cause the algo-
rithm to fail in extreme cases because the complexity of the algorithm increases
exponentially with the number of leaves.

Figures 6.3.7a to 6.3.7c show the number of leaves and some additional informa-
tion about the MCMC process. Note especially the number of leaves in Experi-
ment 3.

210



(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Figure 6.3.2: A sample stream from the Mackey-Glass data generator
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(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Figure 6.3.3: The cumulative means square error for three experiments with the Mackey-Glass
sample stream.
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Figure 6.3.4: MCMC component output for Experiment 1.
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Figure 6.3.5: MCMC component output for Experiment 2.
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Figure 6.3.6: MCMC component output for Experiment 3.
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(a) Experiment 1. (b) Experiment 2.

(c) Experiment 3.

Figure 6.3.7: MCMC analysis for three experiments of Mackey-Glass stream
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7 Review and Conclusion

7.1 Critical Review

The aim of this research was to propose a method for on-the-fly regression using
tree models in a streaming data setting. The Bayesian statistical framework was
chosen to provide estimates and predictions with uncertainty bounds. Unlike
existing approaches in the Bayesian paradigm which use Sequential Monte Carlo
(SMC) (Taddy et al. 2011; Anagnostopoulos and Gramacy 2013) or Variational
Bayes (Broderick et al. 2013; Campbell et al. 2015) the proposed approach used
Markov chain Monte Carlo (MCMC) as an iterative sampler for the space of
tree models. This is not without controversy because a fundamental assumption
behind MCMC is a stationary target distribution, an assumption invalidated by
definition in the streaming data setting. A key argument in this paper was the
approximation of the target posterior by the ensemble of tree models that was
“close enough” to the true target posterior distribution. The loss in accuracy
could be balanced by a gain in speed of inference if that loss was small enough
and the gain was necessary and large enough in the current temporal context.
This document showed the complexities and difficulties of designing a regression
modelling system that is adaptive in a nonstationary streaming data (on-the-fly)
setting. Using some simulated data, the proposed approach demonstrated that
it can outperform some of the state-of-the-art methods. However the lack of:
complete simulation studies; a real-world data comparison; comparisons outside
of the Bayesian setting and an exploration of automated parameter sampling
creates some doubt regarding the applicability of the modelling approach in its
current form. A further lack of quantified measures and measurements between
the benefits of speed and the loss of accuracy makes supporting the conclusions
drawn from the model difficult.

A fixed sized ensemble of tree models with intermittent Kalman filters (Sinopoli
et al. 2004) at all the leaves of each of the trees was used to provide estimates, pre-
dictions and their associated uncertainty bounds at each discrete index t. Every
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tree in the mixture of tree models were weighted with their posterior probabil-
ities. The prior for a tree was a sample from the space of possible trees and
the generator for these samples was a stochastic tree sampling process (Chipman
et al. 1998). The likelihood of a tree model was formed by marginalising over the
leaf models that existed at index t with respect to the state space of the filter
at those leaves. At each t a new observation was assigned, by the rules at the
internal nodes of the tree, to update the state estimate of the filter level. Thus the
likelihood of the tree increments by a single observation at each t and was relative
to the state space of all the leaf models at that t. Sampling tree models from the
prior involves proposing alternate tree model shapes and rules and these alternate
models are compared to the existing models using the MCMC acceptance ratio.
Every tree, either the accepted proposal or the current model, is passed to the
next index, t + 1, and the above procedure for choosing leaf models to update,
and propose new trees, is repeated. No covariate data is stored in the tree thus
removing the need for data reservoirs and the associated memory overheads. The
response values are used only to update the state level and, by the assumption of
conditional exchangeability given the covariates, are not necessary for subsequent
iterations. The recursive intermittent Kalman filter and the forward-only passing
of the tree models means that this proposed modelling approach has constant
complexity in: the order of the size of the ensemble; the upper bound in tree size
(number of leaves hence filters) and the order of the minimum number of matrix
inversions necessary in the chosen intermittent Kalman filter. At every t, the
evidence for the tree models is approximated by summing over the tree ensem-
ble. The posterior density for each tree is calculated using Baye’s rule and these
weights, once normalised, are applied to their respective estimates, predictions
and bound values so that a single set of values is produced by the ensemble at
each t.

The first contribution of this thesis is the fixed tree filter. A tree model (Chip-
man et al. 1998) is adapted to provide an intermittent Kalman filter at each leaf
with the intention of coping with local nonstationarity around the main effect at
the root node. This model shows how conditioning a filter can improve uncer-
tainty quantification. A significant aspect of this contribution is the combined
hidden Markov structure of the tree model and the intermittent filters at the
leaves so that storing new covariate and response data in memory is not required.
However, this complex and over-parametrised model requires significant effort in
specification. There is a lack of asymptotic bounds as shown in related models
(Kalman 1960; Harrison and West 1999; Sinopoli et al. 2004). The calibration
study (Section 4.4) was an attempt to provide some guidance for choosing a set
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of parameters. This attempt was partially successful in finding that the tree
marginal could be bounded even if updates were not as frequent as that required
by the critical probability of Sinopoli et al. (2004). Some effort was made to
examine the tree filter residual and its variance but no firm relationships were
provided.

The second contribution of this thesis was to extend the tree filter by incorporat-
ing dynamic model search into the on-the-fly estimation process. Unlike the usual
MCMC process, inference on the state of the observed process was performed at
every iteration of the model search. Including the bounds of each chosen covariate
into the tree node rules was used to ensure that all leaf measures were coherent.
Additional MCMC moves were proposed to improve chain mixing. An additional
aspect to resolve parameter selection for randomly chosen leaf models was to
assign a deterministic function to new parameters based on the parameters of an-
cestral leaf models, or where appropriate, to the initial leaf parameters. Partially
complete simulation studies of prior and tree model behaviour were provided but
the results of these did not provide enough strength to support the arguments
therein.

The third contribution of this thesis was to extend the random tree model search
to an ensemble of random tree models. This extension provides an approximate
cover for the tree model space so that at each t the tree model evidence can be
calculated and used to normalise the density of each tree model. These posterior
weights are combined with model outputs (estimates, predictions and bounds) to
form linear combinations that are the ensemble outputs. A considerable difficulty
in designing experiments with this model is setting initial values of parameters
for the filters of the ensemble. Nonstationarity renders prior values of limited use.
While a deterministic method for parameter adaptation was presented, sampling
of parameters was not explored. A reason for using an ensemble of Markov chains,
much like using particles (Carvalho et al. 2010), is to explore the model space.
Increasing ensemble size and setting a range of hyperparameters for sampling
distributions would be more in keeping within the aims of the MCMC approach.
The weakness of results and quantified boundaries from the preceding experiments
did not help to limit the scope of sampling to a subset of parameters. These
weaknesses further limited the design of subsequent experiments that would have
provided more concrete results for the assessment of the proposed method.

In the final contribution two adaptions of the initial approach were proposed, the
first adaption was to use only three simpler moves and the second was to allow
for multiple model proposals per observation. These modifications showed that
performance and accuracy could be improved but a lack of firm benchmarks in
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earlier chapters made quantification of the improvements from these adaptations
difficult.

One aim of this thesis was to show that Markov chain Monte Carlo could be
used to sample tree models for on-the-fly regression. This was achieved to some
extent in showing that it was possible and, at least with limited simulations
and comparisons, accurate “enough”. However, a lack of quantification and mea-
surement of results makes it difficult to assess the extent to which this thesis
contributes to the large body of knowledge that surrounds tree methods. At the
end of Section 5.4.2.3 some attempt was made towards measuring the perfor-
mance of the three simulations of that section but this method was not used for
comparing against the state-of-the-art Bayesian models, Dynamic Trees (Taddy
et al. 2011) and Bayesian additive regression trees (Chipman et al. 2010) let alone
other tree-based models in the wider field (Hulten and Domingos 2003; Freund
and Robert E Schapire 1997; Bifet and Gavaldà 2009). The lack of real-world
examples prevented empirical comparison.

The chosen Bayesian methodology with its recursive structure is intuitively ap-
propriate to this thesis. While there was acknowledgement of the frequentist
setting there were no direct comparisons to this methodology. Direct comparison
via a real-world example would have been best but even a comparison between
speeds/complexity on simulated data would have helped to motivate the ben-
efits of this approach. Markov chain Monte Carlo (MCMC) sampling was the
method chosen to gather evidence to support the data models. However the
MCMC method is fundamentally supported by the assumption of a stationary
target distribution. This thesis does not challenge the assumption of station-
arity but seeks to explore how this assumption can be stretched in a sampling
approach with the aim of enabling wider use of MCMC in the streaming setting.
A direct comparison with statistical mechanics and a canonical ensemble, which
does allow for gradual changes the stationary distribution, would have provided
greater structure to the approach. Further, including simulated annealing (Geyer
and Thompson 1995) would have provided a direct link to the mechanical basis
behind MCMC and strengthened this argument. The chosen MCMC approach
was compared to sequential Monte Carlo (SMC) (Gordon et al. 1993; Doucet
et al. 2001; Carvalho et al. 2010) but the variational approach of Broderick et al.
(2013) and Campbell et al. (2015) should have been further explored as this too
has a basis in statistical mechanics.

There is a clear problem statement and hypothesis. However, the development of
this hypothesis would have been better if the background section had been more
targeted towards supporting the direct interventions proposed rather than linking
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all of regression to dynamic modelling. Separating the development of the model
helped to introduce ideas in a logical way but these chapters lacked a firm goal
and outcomes that prevented the accumulation of results for a final judgement
on the model. The graphs and results that were presented were informative and
demonstrated the performance of the model. It is acknowledged that the timing
of results is pertinent to streaming analysis and the comparison of results in
this setting is difficult. However, as already mentioned, there exist methods for
quantifying the differences between distributions and these were not fully utilised
to support claims in the thesis. While the simulations showed that the proposed
model could get “very close” to a fixed target distribution, the simulations did
not show how the proposed (or any other method) would adapt as the target
distribution itself changed. Finally, despite the late addition of the Mackey-Glass
simulation, no other real-world examples were provided. Empirical evidence and
comparison would have supported the claims, that could have been stated rather
than shown, better than further simulations.

In summary, it is clear that this was a difficult problem to be solved. There
were many interactive and changing parts which required complicated coding
and preliminary analysis before experiments could be run let alone real-world
examples developed for comparison. None-the-less, as evidenced by the document
and the argument, a more considered, reductionist approach to the thesis would
have provided more way-points for benchmarks. These benchmarks, and their
quantification, would have helped to shape the development of the model which, in
turn, would have helped limit the scope and argument of the thesis. Limiting the
scope of the thesis would have pinpointed simulations and examples to be pursued
for comparison. The results of these experiments could then have been used to
simplify the specification of the model so that sampling of fewer parameters and
greater automation of the approach could have been demonstrated and tested.
The lack of experiments on at least one real-world example prevents one from
assessing the applicability of the proposed model. However, with complicated
problems some clearing of the “under brush” is necessary before the wood can be
seen so, to this extent, the exploratory analysis and testing that went into this
thesis has provided a meaningful contribution and some guidance for future work
on this interesting subject.

7.2 Future Work

The proposed model has only been initially explored. Showing that it is possible
to use MCMC in the streaming and Big Data settings for on-the-fly inference
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could open several avenues for further exploration in this field. Future work
should focus on simplifying the above model so that benchmarks and compar-
isons can be made. The first step in this process would be to explore the use
of sampling for controlling the signal-to-noise ratio. Automating the modelling
process and reducing the number of input filter parameters would likely lead to
better comparisons with existing approaches. The next step would be to assess
the mixing of the ensemble. Exploring the modifications of Chapter 6 by consid-
ering different numbers of proposal moves per data point for each tree one might
be able to have “slow” and “fast” trees that adapt to changes in the data stream.
The third initial step, which would part of exploring mixing and accuracy, would
be to use simulated annealing (Geyer and Thompson 1995) to extend the range
of “temperatures” at which the ensemble could adapt to changes in the streaming
data environment. The final initial step would be to assess the performance of
the model with respect to speed of inference and complexity. This could lead to
quantitative assessments of the trade-off between accuracy and performance.

Once these initial steps have been completed and quantified the task would be to
run the algorithm in some real-world data settings. The first of these tasks would
be a bake-off between this model, other Bayesian models and some approaches
in the frequentist setting using benchmark data with accepted standard results.
The second task would be use the proposed model with some novel data and
compare this against some existing methods. These tasks could show whether it
would be worth developing a stand-alone package or programme (in the manner of
Bifet, G. Holmes, et al. (2010) and streamDM: Data Mining for Spark Streaming
(2021)) that connects to existing streaming architecture such as Kafka (Apache
Kafka - Streaming 2021). Experimentation on real-world data would also indicate
whether this proposed model filled a particular niche or was a better alternative
to existing methods.

Once the validity and applicability of the model using base settings was estab-
lished, additional extensions of the model could be considered. These might in-
clude nonlinear filters at the leaves, dependent leaves, duration based parameter
estimation and variable selection or model interpretation.
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A1 Appendices

A1.1 Derivation of the Multivariate Marginal
Posterior

The posterior probability in Equation (4.14) is proportional to two terms, the
likelihood of the data from t = 1, . . . , t conditional on the latent process Zt from
t = 0, . . . , t and both conditional on the prior probability for the tree. The
posterior probability can be factored as:

p
(
T, Zt | Y t, θT , x

t
)

= p
(
T | Y t, θT , x

t
)

p
(
Zt | T, Y t, θT , x

t
)

= p
(
T | Y t, θT , x

t
)

A Posterior for tree model

×
KT∏
b=1

p
(
Zt

b | T, Y t, θT , x
t
)

B Product of Gaussians from the IKF

(A1.1)

where θT = {ξT , ψT}. The Gaussian posterior distributions in B are the result
of either an updated or not-updated density as described in Section 4.3 and will
not be further described here. The focus of this derivation is on A , the posterior
for the tree model conditional on the latent processes at each of the leaves.

By Bayes’ rule:

p
(
T | Y t, θT , x

t
)
∝ p (T | ξT ) p

(
Y t | T, ψT , x

t
)

= p (T | ξT )
∫

p
(
Y t | T, Zt, ψT , x

t
)

p
(
Zt | T, ψT , x

t
)
dZt

C Marginal for T over latent process Zt

(A1.2)

so that C , is the marginal likelihood of the tree over all latent processes Zi, from
i = 0, . . . , t. At each i, the tree prior, p (T | ξT ) is sampled according the method
specified in Chapter 4 so while Equation (A1.2) incorporates the joint densities
of all the observed and latent data from i = 0, . . . , t, the posterior for the tree,
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A , only reflects the density conditional on each tree sample at each t, hence the
lack of a i or t sub-or-superscript on T .

By using the Markov assumption for the Zt processes; the independence of each
of the Zt,b | T and also by the filter model assumption Ys ⊥⊥ Yt | Zt, xt Equa-
tion (A1.2) can be written as:

= p (T | ξT )
∫ KT∏

b=1
p
(
Y t

b | Zt, T, ψb, x
t
)

p
(
Zt

b | T, ψb, x
t
)
dZt

= p (T | ξT )
∫ t∏

i=0

KT∏
b=1

p ( yi,b|zi,b, T, ψb, xi ) p ( zi,b|T, ψT , xi ) p ( zi−1,b|T, ψb, xi ) dzt

(A1.3)

where the change to lower case for the integrands is for the sake of visual clarity.
Note that the densities under the integral are random functions of the parameter
Zt at each t and the differential dZt = dzt = dz0dz1 . . . dzt is with respect to the
random measure represented by the density p ( zi−1,b|T, ψT , xi ).

At each i from i = 1, . . . , t only one leaf is selected from the tree by xi and to
indicate this define:

Ii,b =

1, if η(xi, T ) = b

0, otherwise

where η(xi, T ) = b is a function η(xi, T ) : T → b, b ∈ {1, . . . , KT} that chooses
a leaf from a tree based on covariate vector xi. This simplifies the conditional
likelihood of the data over all 1, . . . , t to:

p ( yi,b | zi.b, T, xi, ψb ) = p
(
yi,b | T, zi,η(xi,T ), ψb

)
=

t∏
i=1

KT∏
b=1

p ( yi,b | T, zi,b, ψb )

=
t∏

i=1
p ( yi,b | T, zi,b, ψb )Ii,b

(A1.4)

and, as there is no observation at t = 0,

p
(
T | yt, xt, θT

)
∝

p (T | ξT )
∫ KT∏

b=1
p ( z0,b | T, ψb )

t∏
i=1

p ( yi,b | T, zi,b, ψb )Ii,b p ( zi,b | zi−1,b, T, ψb ) dzt.

(A1.5)

The covariate at each i ∈ 1, . . . , t allocates the data yi,b to one of the b ∈
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1, . . . , KT leaves. But at every i the latent state zi is predicted at every b so
the densities, p ( zi,b | T, ψb ) (where ψb are the leaf model parameters), are inde-
pendent of the xi for all t. Further, in this derivation the leaf model parameters,
ψb = (Hb, Fb, Vb,Wb, µ0,b,W0,b), may differ at each leaf but are known up to a de-
terministic functional form for the duration of the streaming analysis. The tree
model parameters, ξT = (α, β,B, p), are also assumed fixed and known. Thus θT

and xi are dropped from the equations that follow, and where necessary, the ψb

are made explicit.

KT , the number of leaves of T , is a function of the tree. Thus at each t the
number of leaves to be marginalised over may be different because the structure
of the tree model may change. However, by marginalising over all the leaves, as
is it done in Chipman et al. 1998 and others, this change in the dimension of the
tree can be ignored. Further, this marginalization means that, conditional on the
tree model and covariate vector xt, all possible latent states that complete Yt have
been accounted for at each t. Thus irrespective of the number of possible models
(leaves), the tree model (dubbed tree filter) provides a complete representation
of the support for Y t.

Combining the above marginalization with the aforementioned sample nature of
the tree prior means that p (T ) is not a sample of a sequence of trees from p (T t ),
a tree evolution process, hence there is no need to consider KTt | KTt−1 , . . . , KT0 ,
the sequence of tree dimensions nor their joint probability. Thus KTi

⊥⊥ KTj
for

all i, j ∈ 1, . . . , t.

Bearing the above in mind Equation (A1.5) can be written as:

p
(
T | yt

)
∝ p (T )

KT∏
b=1

∫
p ( z0,b | T )

t∏
i=1

p ( yi,b | T, zi,b, ψb )Ii,b p ( zi,b | T, zi−1,b, ψb ) dzt

D .The leaf likelihood

(A1.6)

Equation (A1.6) shows that the likelihood of the tree is the product of a discrete
number of leaf likelihoods. Each leaf likelihood is a stochastic process where the
joint distribution of the latent variables are modelled by the intermittent Kalman
filter.

It is clear from Equation (A1.6) that when new leaves are generated the initial
values for the latent processes at these leaves must be sampled from the latent
process of the parent leaf else these values will not be incorporated into leaf
marginal which, for each leaf runs from the initialization of the leaf up to index t.
Thus in Equation (A1.6), p ( z0,b ) represents the initial distribution of the state
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and the parameters, µ0,b and W0,b for p ( z0,b ) ∼ N(µ0,b,W0,b) for each new filter,
are typically only specified by the analyst for the initial two leaf models b = 2, 3
for each T .

Further, although the index t in Equation (A1.6) starts at 1 this is clearly not
true for every b. Each refinement of b into two children generates two new leaf
likelihoods but removes the parent leaf likelihood and similarly removing child
leaves removes two trajectories and replaces them with one trajectory. Thus the
leaf likelihood in D represents the joint marginal of all the sequences of latent
processes Zt that have occurred from 0, . . . , t. Bearing in mind that every tree
is initialized with a minimum of two leaves this means that Equation (A1.6)
represents, at minimum, the joint likelihood of the two alternative models each
conditional on the main effect at the root.

Equation (A1.6) and the above description means that up to b every integral is
the same so that for most of the rest of the derivation D , will be considered an
arbitrary leaf likelihood, will be the calculation of interest.

Using the assumptions of Gaussian distributions as mentioned in Section 2.2.2
and in Chapter 4, the densities for the initial states, z0,2 and z0,3, are:

p ( z0,b ) = ((2π)m|W0,b|)− 1
2 exp

[
−1

2(z0,b − µ0,b)TW−1
0,b (z0,b − µ0,b)

]
(A1.7)

and for each subsequent index i = 1, . . . , t the conditional densities of the state
are

p ( zi,b | zi−1,b ) = ((2π)m|Wt,b|)− 1
2 exp

[
−1

2(zi,b − Ft,bzi−1,b)TW−1
t,b (zi,b − Ft,bzi−1,b)

]
.

(A1.8)

The joint density for the conditionally exchangeable observations, following Equa-
tion (A1.4), is:

∏t

i=1 p ( yi | z0,b )Ii,b = ((2π)n|Vt,b|)
t·Ii,b

2 exp
[
−1

2

t∑
i=1

Ii,b(yi,b −Ht,bzi,b)TV −1
t,b (yi,b −Ht,bzi,b)

]
.

(A1.9)
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Thus:

p
(
T | yt

)
∝ p (T )

∏KT

b=1

∫
p ( z0,b | T ) ·∏t

i=1 p ( yi,b | T, zi,b, ψT )Ii,b p ( zi,b | T, zi−1,b, ψT ) dzt

= p (T )
∏KT

b=1

∫
((2π)m|W0,b|)− 1

2 exp
[
−1

2(z0,b − µ0,b)TW−1
0,b (z0,b − µ0,b)

]
·

∏t

i=1((2π)n|Vt,b|)
Ii,b

2 exp
[
−1

2 Ii,b(yi,b −Ht,bzi,b)TV −1
t,b (yi,b −Ht,bzi,b)

]
·

((2π)m|Wt,b|)− 1
2 exp

[
−1

2(zi,b − Ft,bzi−1,b)TW−1
t,b (zi,b − Ft,bzi−1,b)

]
dzt

(A1.10)

Now let ((2π)m|Wt,b|)− KT
2 be the Gaussian constant for the state variable density

such that this constant is raised to the power of all the current leaves at each t

and ((2π)n|Vt,b|)
t·Ii,b

2 the Gaussian constant for the observations for up to t then

k0 = ((2π)m|W0,b|)− KT
2 · ((2π)m|Wt,b|)− KT

2 · ((2π)n|Vt,b|)
t·Ii,b

2

is a constant that can be removed from the derivation. The focus now on:

k0 ·
∫

exp
[
−1

2(z0,b − µ0,b)TW−1
0,b (z0,b − µ0,b)

]
t∏

i=1
exp

[
−1

2 Ii,b(yi,b −Ht,bzi,b)TV −1
t,b (yi,b −Ht,bzi,b)

]
·

exp
[
−1

2(zi,b − Ft,bzi−1,b)TW−1
t,b (zi,b − Ft,bzi−1,b)

]
dzt (A1.11)

which is an arbitrary leaf marginal density from 0 to t. Thus is it clear that the
stochastic process that defines the tree filter is a product of leaf filter trajectories.

Writing out each term of the integral of Equation (A1.11) and bringing all terms
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under the exponential provides:

k0 ·
∫

exp
[
− 1

2

(
(z0,b − µ0,b)TW−1

b,0 (z0,b − µ0,b) +

I1,b
(
y1,b −H1,bz1,b

)T
V −1

1,b

(
y1,b −H1,bz1,b

)
+

(z1,b − F1,bz0,b)TW−1
1,b (z1,b − F1,bz0,b) +

. . . . . . . . . . . . +

It-1,b
(
yt−1,b −Ht−1,bzt−1,b

)T
V −1

t−1,b

(
yt−1,b −Ht−1,bzt−1,b

)
+

(zt−1,b − Ft−1,bzt−2,b)TW−1
t−1,b(zt−1,b − Ft−1,bzt−2,b) +

It,b
(
yt,b −Ht,bzt,b

)T
V −1

t,b (yt,b −Ht,bzt,b)+

(zt,b − Ft,bzt−1,b)TW−1
t,b (zt,b − Ft,bzt−1,b)dzt.

Further expanding each of the quadratic forms and bearing mind that because all
covariance matrices are assumed symmetric, positive semi-definite, their inverses
are too and hence:

k0 ·
∫

exp
[
−1

2

(
zT

0,bW
−1
0,b z0,b − 2µT

0,bW
−1
0,b z0,b + µT

0,bW
−1
0,b µ0,b +

I1,b
(
yT

1,bV
−1

1,b y1,b − 2zT
1,bV

−1
1,b H1,by1,b + zT

1,bH
T
1,bV

−1
1,b H1,bz1,b

)
+

zT
1,bW

−1
1,b z1,b − 2zT

1,bW
−1
1,b F1,bz0,b + zT

0,bF
T
1,bW

−1
1,b F1,bz0,b −

. . . . . . . . . . . . +

It-1,b
(
yT

t−1,bV
−1

t−1,byt−1,b − 2zT
t−1,bV

−1
t−1,bHbyt−1,b + zT

t−1,bH
T
t−1,bV

−1
t−1,bHt−1,bzt−1,b

)
+

zT
t−1,bW

−1
t−1,bzt−1,b − 2zT

t−1,bW
−1
t−1,bFt−1,bzt−2,b + zT

t−2,bF
T
t−1,bW

−1
t−1,bFt−1,bzt−2,b −

It,b
(
yT

t,bV
−1

t,b yt,b − 2zT
t,bV

−1
t,b Ht,byt,b + zT

t,bH
T
t,bV

−1
t,b Ht,bzt,b

)
+

zT
t,bW

−1
t,b zt,b − 2zT

t,bW
−1
t,b Ft,bzt−1,b + zT

t−1,bF
T
t,bW

−1
t,b Ft,bzt−1,b dz

t

Taking out terms that are not marginalised over for any zt gives a new constant
term independent of the latent variable for all t:

k1 = k0 · exp
[
−1

2

(
µT

0,bW
−1
0,b µ0,b +

t∑
i=1

Ii,b y
T
i,bV

−1
i,b yi,b

)]
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Then rearranging by lower t index order in the z terms gives:

k1·
∫

exp
[
−1

2

(
zT

0,bW
−1
0,b z0,b + zT

0,bF
T
1,bW

−1
1,b F1,bz0,b − 2µT

0,bW
−1
0,b z0,b − 2zT

1,bW
−1
1,b F1,bz0,b+

I1,b
(
−2zT

1,bV
−1

1,b H1,by1,b + zT
1,bH

T
1,bV

−1
1,b H1,bz1,b

)
+

zT
1,bW

−1
1,b z1,b + zT

1,bF
T
2,bW

−1
2,b F2,bz1,b − 2zT

2,bW
−1
2,b F2,bz1,b −

. . . . . . . . . . . . +

It-1,b
(
−2zT

t−1,bV
−1

t−1,bHt−1,byt−1,b + zT
t−1,bH

T
t−1,bV

−1
t−1,bHt−1,bzt−1,b

)
+

zT
t−1,bW

−1
t−1,bzt−1,b + zT

t−1,bF
T
t,bW

−1
t,b Ft,bzt−1,b − 2zT

t,bW
−1
t,b Ft,bzt−1,b−

It,b
(
−2zT

t,bV
−1

t,b Ht,byt,b + zT
t,bH

T
t,bV

−1
t,b Ht,bzt,b

)
+ zT

t,bW
−1
t,b zt,b

]
dzt

and after a bit more rearranging and collecting like z terms with lower index
orders taking precedence gives:

k1·
∫

exp
[
−1

2

(
zT

0,b

W−1
0,b + F T

1,bW
−1
1,b F1,b

A0,b

 z0,b − 2

W−1
0,b µ0,b + zT

1,bW
−1
1,b F1,b

bT
0,b

 z0,b +

zT
1,b

W−1
1,b + F−1

2,b W
−1
2,b F2,b + I1,b H

−1
1,bV

−1
1,b H1,b

A1,b

 z1,b−

2

I1,b V
−1

1,b H1,by1,b + zT
2,bW

−1
2,b F2,b

bT
1,b

 z1,b +

. . . . . . . . . . . . +

zT
t−1,b

W−1
t−1,b + F−1

t,b W
−1
t,b Ft,b + It-1,b H

−1
t−1,bV

−1
t−1,bHt−1,b

At−1,b

 zt−1,b −

2

It-1,b V
−1

t−1,bHt−1,byt−1,b + zT
t,bW

−1
t,b Ft,b

bT
t−1,b

 zt−1,b +

zT
t,b

W−1
t,b + It,b H

−1
t,b V

−1
b Ht,b

At,b

 zt,b − 2

It,b V
−1

t,b Ht,byt−1,b

bT
t,b

 zt,b

)]
dzt (A1.12)

Notice that every term involving the products W−1
t,b Ft,b or F−1

t,b W
−1
t,b Ft,b have been
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moved up an index. That is, they are the cross terms that result from the
quadratic product of the observation equation and the prediction equation. At
each index t the square of the current state At is only a function of the random
update and the current state variance-covariance matrix.

Now for each j = 0, . . . , t in Equation (A1.12) there is an equation of the form
zT

j Ajzj − 2bT
j zj which means we can complete the square and integrate for each

j as follows:

∫ ∞

−∞
exp

[
− 1

2
(
zT

j,bAj,bzj,b − 2bT
j,bzj,b

) ]
dzj,b

= ((2π)m|Aj,b|)
1
2 exp

[
1
2b

T
j,bA

−1
j,b bj,b

]
. (A1.13)

So let A0,b =
(
W−1

0,b + F T
1,bW

−1
1,b F1,b

)
and bT

0,b =
(
W−1

1,b µ0,b + zT
1,bW

−1
1,b F1,b

)
then we

integrate over z0,b. This is possible because the integral function is a linear oper-
ator and, although b0 contains a z1,b term, from the point of view of the integral
at z0,b, this term is constant. However this z0,b term needs to be reintroduced
into the integral at the next iteration so that its influence on the marginal can
be included in that step. The above reasoning is used for every iteration of the
integral in Equation (A1.12) from j = 0 to j = t− 1. At j = t all terms have the
same index order.

Also notice that for all j, Aj,b is dependent on whether a particular leaf is chosen
via It,b H

−1
t,b V

−1
t,b Ht,b. Thus if ψb = (Vt,b, Ht,b,Wt,b, Ft,b) are known (but possibly

different) for each b then Aj is random function of the choice of leaf.

The constant term ((2π)m|Aj,b|)
1
2 will occur at every j so

c0 = ((2π)m|W0,b|)− 1
2 exp

[
−1

2

(
µT

0,bW
−1
0,b µ0,b

)]
((2π)m|A0,b|)

1
2 then

c1 = c0 · ((2π)m|W1,b|)− 1
2 ((2π)n|V1,b|)

· I1,b
2 exp

[
−1

2

(
I1,b y

T
1,bV

−1
1,b y1,b

)]
((2π)m|A1,b|)

1
2

and

cj = cj−1 · ((2π)m|Wj,b|)− 1
2 ((2π)n|Vj,b|)

· Ij,b
2 exp

[
−1

2

(
Ij,b y

T
j,bV

−1
j,b yj,b

)]
((2π)m|Aj,b|)

1
2

j = 0, . . . , t (A1.14)

is a recursive constant term that is independent of Zt and for each t is randomly
updated by some observation if a leaf is selected at that t. Note that so far cj

is a random variable that is dependent on the chance that a particular leaf in a
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tree is updated and the random size of the update provided by the data yj,b. In
other words, if ψb is known for all b then cj(T ) is a random function of the tree
and size of the measurement 1.

Focusing on the expansion of exp
[

1
2b

T
0,bA

−1
0,bb0,b

]
and also letting d0,b = W−1

0,b µ0,b:

exp
[

1
2
(
d0,b + z1,bW

−1
1,b F1,b

)T
A−1

0,b

(
d0,b + z1,bW

−1
1,b F1,b

) ]

= exp
[

1
2

(
dT

0,bA
−1
0,bd0,b + 2dT

0,bA
−1
0,bW

−1
1,b F1,bz1,b + zT

1,bF
T
1,bW

−1
1,b A

−1
0,bW

−1
1,b F1,bz1,b

)]

= exp
[

1
2

(
dT

0,bA
−1
0,bd0,b

)]
·

exp
[

1
2

(
2 dT

0,bA
−1
0,bW

−1
1,b F1,b

w0

z1,b + zT
1,b F

T
1,bW

−1
1,b

vT
0

A−1
0,b W

−1
1,b F1,b

v0

z1,b

)]

= exp
[

1
2

(
dT

0,bA
−1
0,bd0,b

)]
exp

[
1
2

(
2w0z1,b + zT

1,bv
T
0 A

−1
0,bv0z1,b

)]
(A1.15)

The terms v0 and w0 are still coefficients of the variable z1,b and these must be
returned to the integral for next stage of the recursive calculation. Doing so
presents:

c0 exp
[

1
2

(
dT

0,bA
−1
0,bd0,b

)] ∫
exp

[
− 1

2

(
−2w0z1,b − zT

1,bv
T
0 A0,bv0z1,b +

zT
1,b

(
W−1

1,b + F−1
2,b W

−1
2,b F2,b + I1,b H

−1
1,bV

−1
1,b H1,b

)
z1,b−

2
(
I1,b V

−1
1,b H1,by1,b + zT

2,bW
−1
2,b F2,b

)
z1,b +

. . . . . . . . . . . .

)]
dz1:t

which after expansion and rearrangement gives:

c0 exp
[

1
2

(
dT

0,bA
−1
0,bd0,b

)]
∫

exp
[
− 1

2

(
zT

1,b

(
W−1

1,b + F−1
2,b W

−1
2,b F2,b + I1,b H

−1
1,bV

−1
1,b H1,b − vT

0 A
−1
0,bv0

)
z1,b−

2
(
I1,b V

−1
1,b H1,by1,b + zT

2,bW
−1
2,b F2,b − w0

)
z1,b + . . . . . . . . . . . .

)]
dz1:t

(A1.16)
1To be clear here in this appendix cj refers to a constant value and is not to be confused

with cj in the main body of the text which refers to a threshold value.
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Letting:

A−1
1,b =

(
W−1

1,b + F−1
2,b W

−1
2,b F2,b + I1,b H

−1
1,bV

−1
1,b H1,b − vT

0 A
−1
0,bv0

)
bT

1,b =

I1,b V
−1

1,b H1,by1,b

u1

+zT
2,b W

−1
2,b F2,b

v1

−w0


=
(
u1 − w0 + zT

2,bv1
)

(A1.17)

then completing the square as in Equation (A1.13) and following the same pro-
cedure as in Equation (A1.15) provides:

exp
[

1
2

((
u1 − w0 + zT

2,bv1
)T
A−1

1,b

(
u1 − w0 + zT

2,bv1
))]

= exp
[

1
2

(
uT

1A
−1
1,bu1 − 2uT

1A
−1
1,bw0 + wT

0 A
−1
1,bw0+

zT
2,bv

T
1 A

−1
1,bv1z2,b + 2z2,b(vT

1 A
−1
1,bu1 − vT

1 A
−1
1,bw1)

)]

= exp
[

1
2

(
u1 − w0)TA−1

1,b(u1 − w0) + zT
2,bv

T
1 A

−1
1,bv1z2,b + 2z2,bv

T
1 A

−1
1,b(u1 − w0)

)]

= exp
[

1
2

(
u1 − w0)TA−1

1,b(u1 − w0)
)]

·

exp
[

1
2

(
zT

2,bv
T
1 A

−1
1,bv1z2,b + 2z2,bv

T
1 A

−1
1,b(u1 − w0)

)]
and so

d1,b =(u1 − w0) = (I1,b V
−1

1,b H1,by1,b − dT
0,bA0,bW

−1
1,b F1,b) and w1 = vT

1 A
−1
1,bd1

(A1.18)

Reinserting terms that are coefficients of z2,b and starting from Equation (A1.16)
gives:

c1 exp
[

1
2

( 1∑
j=0

dT
j,bA

−1
j,b dj,b

)]
·

∫
exp

[
− 1

2

(
zT

2,b

(
W−1

2,b + F T
3,bW

−1
3,b F3,b + I2,b H

T
2,bV

−1
2,b H2,b − vT

1 A
−1
1,bv1

)
z2,b−

2
(
I2,b V

−1
2,b H2,by2,b + zT

2,bW
−1
3,b F3,b − w1

)
z2,b + . . . . . . . . . . . .

)]
dz2:t

=c1 exp
[

1
2

( 1∑
j=0

dT
j,bA

−1
j,b dj,b

)] ∫
exp

[
− 1

2

(
zT

2,bA2,bz2,b − 2
(
u2 + zT

2,bv2 − w1
)
z2,b + . . .

)]
dz2:t

(A1.19)
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and from this point forward up to t− 1 the recursion is clear:

A0,b =
(
W−1

0,b + F T
1,bW

−1
1,b F1,b

)
d0,b = W−1

0,b µ0,b

At−1,b =
(
W−1

t−1,b + F T
t,bW

−1
t,b Ft,b + It-1,b H

T
t−1,bV

−1
t−1,bHt−1 − vT

t−2A
−1
t−2,bvt−2

)
=
(
W−1

t−1,b + F T
t,bW

−1
t,b Ft,b + It-1,b H

T
t−1,bV

−1
t−1,bHt−1,b − F T

t−1,bW
−1
t−1,bA

−1
t−2,bW

−1
t−1,bFt−1,b

)
dt−1,b = (ut−1 − wt−2)

= (It-1,b V
−1

t−1,bHt−1yt−1,b − dT
t−2,bA

−1
t−2,bW

−1
t−1,bFt−1,b) (A1.20)

For the tth instance looking back at Equation (A1.12) one notices that both the
At and bT

t parts are missing terms. Thus

ct−1 exp
[

1
2

(
t−1∑
j=0

dT
j,bA

−1
j,b dj,b

)]
·

∫
exp

[
− 1

2

(
zT

t,b

(
W−1

t,b + It,b H
T
t,bV

−1
t,b Ht,b − vT

t−1A
−1
t−1,bvt−1

)
zt,b−

2
(
I2,b V

−1
t,b Ht,by2,b − w1

)
z2,b

)]
dzt

=ct−1 exp
[

1
2

(
t−1∑
j=0

dT
j,bA

−1
j,b dj,b

)] ∫
exp

[
− 1

2

(
zT

t,bA
−1
t,b zt,b − 2 (ut − wt−1) zt,b

)]
dzt

(A1.21)

which after completing the square for the final time yields:

∫
p ( z0,b )

t∏
i=1

p ( yi,b | zi,b, ψT )Ii,b p ( zi,b | zi−1,b, T, ψT ) dzt

= ct exp
[

1
2

(
t∑

j=0
dT

j,bA
−1
j,b dj,b

)]

= ct−1((2π)m|Wt,b|)− 1
2 ((2π)n|Vt,b|)

· It,b
2 exp

[
−1

2

(
It,b y

T
t,bV

−1
t,b yt,b

)]
·

((2π)m|At,b|)
1
2 exp

[
1
2

(
t∑

j=0
dT

j,bA
−1
j,b dj,b

)]
(A1.22)

where

At,b =
(
W−1

t,b + It,b H
T
t,bV

−1
t,b Ht,b − vT

t−1A
−1
t−1,bvt−1

)
and

bT
t,b = dT

t,b = (ut − wt−1) = (It,b V
−1

t,b Ht,byt,b − dT
t−1,bA

−1
t−1,bW

−1
t,b Ft,b)

(A1.23)
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Comparing Equation (A1.20) and Equation (A1.23) there is a single term differ-
ence between At−1,b and At,b, specifically the term F T

t,bW
−1
t,b Ft,b which occurs in

the (t− 1)st term although this has t index. This makes sense because at every t
there are two steps to the calculation, the prediction step, which occurs at every
leaf, and the update step. The final two equations (A1.23) make it clear that
there is no “borrowing from the future”: every term in the integral is known at
index t. Thus the recursive calculation for the parameters Ai,b and di,b are as
follows:

t = 0
A0,b = W−1

0,b

d0,b = W−1
0,b µ0,b

t = 1

A∗
0,b =

(
A0,b + F T

1,bW
−1
1,b F1,b

)
A1,b =

(
W−1

1,b + I1,b H
T
1,bV

−1
1,b H1,b − F T

1,bW
−1
1,b A

−1∗
0,b W

−1
1,b F1,b

)
bT

1,b =
(
I1,b V

−1
1,b H1,by1,b − dT

0,bA
−1∗
0,b W

−1
1,b F1,b

)

t = 2

A∗
1,b =

(
A1,b + F T

2,bW
−1
2,b F2,b

)
A2,b =

(
W−1

2,b + I2,b H
T
2,bV

−1
2,b H2,b − F T

2,bW
−1
2,b A

−1∗
1,b W

−1
2,b F2,b

)
bT

2,b =
(
I2,b V

−1
2,b H2,by2,b − dT

1,bA
−1∗
1,b W

−1
2,b F2,b

)
(A1.24)

...
...

which requires that the terms Ai,b and di,b are maintained for the entire run of the
algorithm and that at every t two matrix inversions are required for the marginal
calculation, one for Ai,b and one for A∗

i,b.

Based on the recursive integral of Equation (A1.22) the calculation of the log
marginal, ℓmt, for the leaf from the index that the leaf is generated (initially or
by a leaf move) to t is:
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t = 0
lm0 = −1

2
(
ln((2π)m |W0,b |) + µT

0,bW
−1
0,b µ0,b

)
+

1
2
(
ln((2π)m |A0,b |) + dT

0,bA
−1
0,bd0,b

)

t = 1

ℓm1 = ℓm0 −
1
2
(
ln((2π)m |W1,b |)

)
−

1
2
(
I1,b(ln((2π)n |V1,b |) + yT

1,bV
−1

1,b y1,b)
)

+
1
2
(
ln((2π)m |A1,b |+dT

1,bA
−1
1,bd1,b)

)

t = 2

ℓm2 = ℓm2 −
1
2
(
ln((2π)m |W2,b |)

)
−

1
2
(
I2,b(ln((2π)n |V2,b |) + yT

2,bV
−1

2,b y2,b)
)

+
1
2
(
ln((2π)m |A2,b |+dT

2,bA
−1
2,bd2,b)

)
(A1.25)

...

To calculate the tree marginal likelihood at each t, return to equation Equa-
tion (A1.6) to see that the tree marginal is the product of extant leaf marginals
at t conditional on the tree and its prior probability.

Let ℓmt,b be the log marginal of leaf b at index t. Then the log marginal of the
tree at each t is:

ℓ p
(
T | yt

)
∝ ℓ p (T ) +

KT (t)∑
b=1

ℓ

(∫
p ( z0,b | T )

t∏
i=1

p ( yi,b | T, zi,b, ψb )Ii,b p ( zi,b | T, zi−1,b, ψb ) dzt

)

= ℓ p (T ) +
KT (t)∑
b=1

ℓmt,b (A1.26)

where KT (t) emphasizes that the number of leaves at each t is possibly different
but this randomness has been accounted for by the marginalization over the latent
space sample denoted by the leaves.

Thus the log posterior for a particular tree at index t conditional on the data
from t = 0 to t = t is the log of the prior tree model sampled at time t, based on
its current structure and rules, added to the accumulative evidence provided by
the sum of the log leaf latent sequences.

The smaller a tree is, the more concentrated the support for likelihood should be
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because at each t there are fewer latent models to update. Similarly, the larger a
tree is the greater the uncertainty in the tree model because a single data point
can only update one of many possible leaf models. The tree prior provides a
penalty on the tree model that should limit the growth of the tree.

A1.1.1 One dimensional marginal likelihood

Using the Equations (A1.20) and (A1.23) to (A1.25) a one dimensional version
of the recursion of the marginal parameters, At,b = at,b and dt,b = dt,b are:

a0,b = 1
w2

0,b

d0,b = µ0,b

w2
0,b

a∗
t−1,b = at−1,b +

f 2
t,b

w2
t,b

(A1.27)

at,b = 1
w2

t,b

+ It,b
h2

t,b

v2
t,b

−
f 2

t,b

a∗
t−1,bw

4
t,b

(A1.28)

dt,b = It,b
ht,b

v2
t,b

yt,b −
ft,b

a∗
t−1,bw

2
t,b

dt−1,b (A1.29)

and the log marginal for each leaf b up to instance t is:

t = 0 ℓm0 = −1
2

(
ln(2πw2

0,b) +
µ2

0,b

w2
0,b

− ln(2πa0,b)−
d 2

0,b

a0,b

)
(A1.30)

t = 1 ℓm1 = ℓm0 −
1
2

(
ln(2πw2

1,b) + I1,b(ln(2πv2
1,b) +

y2
1,b

v2
1,b

)− ln(2πa1,b)−
d 2

1,b

a1,b

)

t = 2 ℓm2 = ℓm1 −
1
2

(
ln(2πw2

2,b) + I2,b(ln(2πv2
2,b) +

y2
1,b

v2
2,b

)− ln(2πa2,b)−
d 2

2,b

a2,b

)
...

...

Notice that in Equation (A1.28), at,b is a random variable that is independent
of the data yt. The randomness of at,b is derived from the indicator It,b which is
a random function of the tree. Of particular interest in this derivation are the
extreme cases where It,b = 1 or 0 for all t. In each of these cases it is possible to
calculate bounds for the these random process {at,b} conditional on some specific
ranges of the parameters ψb = (Hb, Vb, Fb,Wb). The case that It,b = 1 is the upper
bound of the random process and It,b = 0 is the lower bound of this process and
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so reconfiguring Equation (A1.28) gives:

at,b =



1
w2

t,b

+
h2

t,b

v2
t,b

−
f 2

t,b

a∗
t−1,bw

4
t,b

if It,b = 1 ∀ t

1
w2

t,b

−
f 2

t,b

a∗
t−1,bw

4
t,b

if It,b = 0 ∀ t

(A1.31)

(A1.32)

Assuming that v2 = v and w2 = w from Equations (A1.27) and (A1.28) are
variances rather than standard deviations then at,b in Equation (A1.32) can be
rewritten as:

at,b = 1
wt,b

−
f 2

t,b

w2
t,ba∗

t−1,b

= 1
wt,b

−
f 2

t,b

at−1,b + f2

wt,b

= wat−1,b

w2
t,bat−1,b + f 2

t,bw
2
t,b

= at−1,b

wt,bat−1,b + f 2
t,b

(A1.33)

and the recursion for this equation is:

a0,b = 1
w0,b

; a1,b = a0,b

w1,ba0,b + f 2
t,b

; a2,b = a0,b

w2,b(1 + f 2
t,b)a0,b + f 4

t,b

;

a3,b = a0,b

w3,b(1 + f 2
t,b + f 4

t,b)a0,b + f 6
t,b

; . . . . . . ; at,b = a0,b

wt,b(
∑t−1

i=0 f
2i)a0,b + f 2t

;

(A1.34)

If one assumes that the streaming event will go on for long enough then t → ∞
and ∑∞

i=0 f
2i = 1/(1− f 2).

The recursion for Equation (A1.31) follows that of Equation (A1.33) and can be
written as:

at,b =
h2

t,b

v2
t,b

+ 1
wt,b

−
f 2

t,b

w2
t,ba∗

t−1,b

=
h2

t,b

vt,b

+ at−1,b

wt,bat−1,b + f 2
t,b

=
h2

t,bat−1,b(wt,b + v
h2

t,b
) + h2

t,bf
2
t,b

vt,b(wt,bat−1,b + f 2
t,b)

=
h2

t,b

vt,b

c1

·
at−1,b

c2

(w + vt,b

h2
t,b

) +f 2
t,b

wt,bat−1,b + f 2
t,b

=
c1c2at−1,b + c1f

2
t,b

wt,bat−1,b + f 2
t,b

(A1.35)

Key to controlling this upper bound are the values c1c2 = h2/v · (w + v/h2) =
h2w + v and c1 = h2/v.
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A similar process can be followed for dt,b in Equation (A1.29) where:

dt,b =



ht,b

vt,b

yt,b −
ft,b

a∗
t−1,bwt,b

dt−1,b if It,b = 1 ∀ t

− ft,b

a∗
t−1,bwt,b

dt−1,b if It,b = 0 ∀ t

(A1.36)

(A1.37)

In this case the randomness in the recursion in Equation (A1.29) is based on both
It,b and yt | It,b. In the cases in Equations (A1.36) and (A1.37) the randomness
induced by the tree is removed so that the only random component of the recur-
sion is the data, yt, which occurs at every t assuming It,b = 1 ∀t. The objective
is to calibrate the effect of the parameters ψb given some sample sequence {yt}.
As a result of the independence of at,b from the data, which implies that its ex-
treme values or bounds (It,b = 1 and 0) are known before the streaming exercise
begins, it is assumed that the values at−1,b are constants in both cases, where in
the former the value of at−1,b comes from the recursion of Equation (A1.35) and
in the latter from the recursion of Equation (A1.33).

For Equation (A1.37), using the notation ut and wt from Equations (A1.15)
and (A1.17), the recursion for the lower “marginal residual” is:

dt,b = − ft,b

a∗
t−1,bwt,b

dt−1,b = − ft,b

wt,bat−1,b + f 2
t,b

c0
t−1,b

dt−1,b = −dt−1,bc
0
t−1,b

d0,b = µ0,b

W0,b

; c0,b = f0,b

d1,b = −w0 = −d0,bc
0
0,b

d2,b = −w1 = −(−d1,bc
0
0,b)c0

1,b = d1,bc
0
0,bc

0
1,b

d3,b = −w2 = −(d2,bc
0
2,b)c0

1,b = −d2,bc
0
0,bc

0
1,bc

0
2,b

. . . . . . . . .

dt,b = d0,b

t∏
i=0

(−1)ic0
i,b (A1.38)

For Equation (A1.36) and using the same notation and assumptions used in the
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equations in A1.38 the recursion for the upper “marginal residual” is:

dt,b = ht,b

vt,b

yt −
ft,b

wt,bat−1,b + f 2
t,b

c0
t−1,b

dt−1,b = ht,b

vt,b

yt − dt−1,bc
1
t−1,b

d0,b = µ0,b

W0,b

; c0,b = f0,b

d1,b = u1 − w0 = h1,b

v1,b

y1 − d0,bc
1
0,b

d2,b = u2 − w1 = h2,b

v2,b

y2 − d1,bc
1
1,b

= h2,b

v2,b

y2 −
h1,b

v1,b

y1c
1
1,b + d0,bc

1
0,bc

1
1,b

d3,b = u3 − w2 = h3,b

v3,b

y3 − d2,bc
1
2,b

= h3,b

v3,b

y3 −
h2,b

v2,b

y2c
1
2,b + h1,b

v1,b

y1c
1
1,bc

1
2,b − d0,bc

1
0,bc

1
1,bc

1
2,b

. . . . . . . . .

dt,b = ht,b

vt,b

(
t∑

i=1
yi +

t−1∑
i=1

(−1)iyi

i∏
j=1

c1
j,b) + d0,b

t∏
i=0

(−1)ic1
i,b (A1.39)

To compare the Kalman filter marginal and tree filter marginal it is necessary
to get them into a similar form. Let st be the innovation variance of the 1-
dimensional Kalman filter and ỹ = yt−hµ̂t|t−1 = yt−hfµ̂t−1|t−1 be the innovation
or pre-fit residual. Then the likelihood of the Kalman filter from 0 to t can be
written as:

p ( y | ψ ) =
t∏

i=0
p ( yt | yt−1, . . . , y0, ψ ) (A1.40)

and the marginal likelihood based on the latent state and using the Markov
assumption is:

p ( y | ψ ) =
t∏

i=0

∫
p ( yt | zt ) p ( zt | zt−1, yt−1.ψ ) dzt

p ( y | ψ ) =
t∏

i=0
N(ỹ, st | ψ) (A1.41)

where the Equation (A1.41) comes from the derivation of the Kalman filter pro-
vided in Meinhold and N. D. Singpurwalla 1983. This equation can be written in
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recursive form as:

ℓmt = ℓmt−1 −
1
2

(
ỹ2

st

+ log(st) + log(2π)
)

and expanding ỹ2 slightly gives:

ℓmt = ℓmt−1 −
1
2


(
yt − hfµ̂t−1|t−1

)2

st

+ log(st) + log(2π)

 (A1.42)

The recursive form of the leaf marginal in Equation (A1.30) can be rewritten as

ℓmt = ℓmt−1 −
1
2

(
It,b y

2
1,b

vt,b

−
d 2

t,b

at,b

+ log
(

(2π)2wt,b It,b vt,b

2πat,b

))

which takes the forms

ℓmt = ℓmt−1 −
1
2

(
y2

1,bat,b − d 2
t,bvt,b

at,bvt,b

+ log
(

(2π)2wt,b It,b vt,b

2πat,b

))
if It,b = 1

(A1.43)

ℓmt = ℓmt−1 −
1
2

(
−

d 2
t,b

at,b

+ log
(

(2π)2wt,b

2πat,b

))
if It,b = 0. (A1.44)

As It,b introduces tree dependent randomness to the tree marginal likelihood it is
necessary for comparison with the marginal in Equation (A1.42) to only consider
the case where It,b = 1 for all t. Note that dt,b is also a function of yt at every t
so that it is necessary to expand Equation (A1.43) to

ℓmt = ℓmt−1 −
1
2

(
(y1,b
√at,b − dt,b

√
vt,b)(y1,b

√at,b + dt,b
√
vt,b)

at,bvt,b

+ . . .

)

which leads to

y1,b
√at,b − dt,b

√
vt,b = yt,b

√at,b −
(
hywa∗

t−1,b − fvdt−1,b√
vwa∗

t−1,b

)

=
a∗

t−1,bwyt,b(
√
va∗

t−1,b − h) + fvdt−1,b
√
vwa∗

t−1,b

y1,b
√at,b − dt,b

√
vt,b = yt,b

√at,b +
(
hywa∗

t−1,b − fvdt−1,b√
vwa∗

t−1,b

)

=
a∗

t−1,bwyt,b(
√
va∗

t−1,b + h)− fvdt−1,b
√
vwa∗

t−1,b

(A1.45)

Let a = a∗
t−1,bwyt,b, b =

√
va∗

t−1,b, c = fvdt−1,b and d =
√
vwa∗

t−1,b and then after
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some algebra:

(a(b− h) + c)(a(b+ h)− c)
d

= a2(b2 − h2) + 2cah− c2

d

=
(b2 − h2)(a− ch

(b2−h2))
2 + c2(1− h2

(b2−h2))
d

=
(va∗

t−1,b − h2)(a∗
t−1,bwyt,b − hf vdt−1,b

(va∗
t−1,b

−h2))
2 + fvd 2

t−1,b(1− h2

(va∗
t−1,b

−h2))
√
vwa∗

t−1,b

(A1.46)
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A1.2 Simulation Study 1.1

A1.2.1 Aim

This simulation study compares the effect of known (as opposed to randomly
chosen) wrong covariates on the filter estimates and tree marginal against both
the true model and the Kalman filter. The study averages over 100 data sets
simulated from a 2 leaf tree model with known leaf parameters. The results will
show that, on average, the 2 leaf filter accuracy of estimating the latent state will
depend on the specification of the parameters at both the leaves that are and not
updated. The tree model is not shown to be more accurate than the Kalman filter
in every case but the error bounds around the tree filter estimates are narrower
thus confirming that tree filter concentrates the likelihood of the latent state by
more accurately describing the support of the sequence of data than just using a
Kalman filter.

A1.2.2 Method

A1.2.2.1 Data generation

Data for the experiment are generated from 100 repeated simulations from a 2-
leaf tree model, Tsim, where there is a single covariate, x1 with bounds (0, 1) and
threshold value 0.5, at the root node. The leaf model parameters for b = 2, 3 are
shown in Table A1.2.1:

Leaf Parameters for 2 leaf tree simulation
Vb Wb Fb Hb Gb ub

2 0.1 0.25 0.75 1 1 -1
3 0.05 0.1 -0.5 1 1 4

Table A1.2.1: Parameters for the tree simulation. Note the additional parameters Gb and ub

used to generate a constant mean at a fixed value for each of the leaves.

The model that is used for data generation, shown in, Equation (A1.47), is dif-
ferent from that used for modelling because it is necessary to generate a constant
value from each of the models at the leaves.

zt,b = Ft,bzt−1,b +Gt,but,b + N(0,Wt,b)

yt,b = Ht,bzt,b + N(0, Vt,b) (A1.47)

Figure A1.2.1a shows ten examples of the observed data Ysim and the latent
data, Zsim drawn from the 2 leaf model. The simulation is performed by drawing
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(a) Ten example densities of the observed
and latent distributions simulated from the
2-leaf tree model.

(b) The densities of the latent state mean
after being averaged over 100 sample data
sets.

Figure A1.2.1

a threshold value ct,1 uniformly from (0, 1) and using this to choose one of the
two leaf models at nodes b = 2, 3 ∈ KTsim

. A latent value, zt,b, is generated from
the chosen leaf and from this latent value an observed value, yt, is generated.
The data point dt = (xt1, yt) is then written to a file to be used for simulation
modelling. In total N = 1000 data points are generated for each of 100 trees.

A1.2.2.2 Simulation modelling

Nine weak learners are initialised with covariate values shown in Table A1.2.2a.
Each tree model is set with the same leaf parameters, shown in Table A1.2.2b,
which also match those of the simulation model.

Covariate Values for Trees 1 to 9
1 2 3 4 5 6 7 8 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Covariate values for Simulation 1.1. Tree 5 is
the ‘true’ model.

Leaf Model params for 2 leaf tree
Vb Wb Fb Hb Z0,b W0,b

2 0.1 0.25 0.75 1 1 1
3 0.05 0.1 -0.5 1 4 1

(b) Leaf parameters for the model trees.

Table A1.2.2

The simulation modelling is performed for each of the generated data sets by
reading in a data point di, i ∈ 1, . . . , N = 1000, passing the data point to each
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of the tree models T = 1, . . . , 9, and choosing a leaf from each of the trees.
At each T a prediction and update are made via the Kalman filter model of
Equations (4.11) and (4.12). That is, a prediction is made at both leaves and an
update of the model, using yi, is made only at the the leaf that is chosen by xi.
Once the one-step ahead prediction and estimated level update are completed,
the leaf marginal is recursively calculated using Equation (4.33).The log of the
tree marginal is the sum of these leaf marginals. For the purposes of analysis, the
values the values at and dt from Equations (4.27) to (4.30) are also produced.

An alternative method with a different but similar objective as this study would
be to uniformly sample the covariate values for a single tree and then to repeat
this sampling process for each of the sample data sets. In that case the objective
would be to find the covariate values that provide the best estimates given the
leaf model parameters and fixed model structure. The method chosen for this
study however is to explore the effect of known, but wrong threshold parameters
on both the average of the filter estimates and the average of their bounds. The
aim is also to explore the effect of using a tree model which marginalises over two
filters, one that is updated and one that is not.

Also included in this study is a comparison between the average performance
of the tree model against the average performance of the Kalman filter. The
parameters used for the Kalman filter are shown in Table A1.2.3. The Kalman
filter was run over each of the data sets once and then the average of these filter
estimates are what is used in the analysis that follows.

Kalman Filter Parameters
V W F H Z0 W0

1 1.5 0.5 1 0 1

Table A1.2.3: The parameters for the Kalman filter estimation.

The metric used to compare the average of the state level estimates is the cumu-
lative mean square error, CMSE, calculated using Algorithm A1.1.

There are two cases to consider:

1. CMSE(zt|t,b,b − µ̂t|t,b,b) which is the cumulative mean square error between
the generated value zt|t,b,b and the estimated level µ̂t|t,b,b which is the level
chosen from the tree at each t by covariate xt.

2. CMSE(zt|t,b,b− µ̂t|t,kal,b) which is the cumulative mean square error between
the generated value zt|t,b,b and the Kalman filter.
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Algorithm A1.1: Calculate CMSE, the cumulative mean square error.
Result: CMSE: A vector of length t of the cumulative means of the

pointwise errors between two values, xk and yk.
1 Initialise x0 and y0
2 Initialise output vector, out, to length t+ 1
3 Calculate sqdiff0 = (x0 − y0)2 and assign to out[0]
4 for i ∈ 1 : t do
5 Calculate: sqdiffi = (xi − yi)2

6 Calculate: CMSEi = (i− 1)/i× outi−1 + (sqdiffi)/i
7 Assign CMSEi to out[i]
8 end
9 return out

A1.2.3 Results

The results of the simulation study are presented mostly in graphical form in the
main body of the document. The reason for this, as described in Section 4.5.1 is
that the streaming setting does not have a defined end point so that it is necessary
to choose a point or points at which one can make reasonable assumptions about
the performance of the model if more data were to be received. The end point
for this simulation is N = 1000. Thus the results that follow are averages that
hold only up to 1000 iterations of the algorithm. The key idea with the streaming
setting is that N is arbitrary.
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A1.3 Simulation Study 3.1

A1.3.1 Aim

The aims of this simulation study are to explore the effect of different tree pa-
rameters ξT = (α, β) on a collection of different leaf model parameters ψT =
(Vb, Hb, Fb,Wb, µ0,b,Σ0,b). There are 8 pairs of ξT and 3 groups of ψT . The is not
a fully comprehensive factorial design so undoubtedly there are interaction effects
that may well be missed. This simulation study should be considered exploratory.
The results are mostly presented graphically interspersed with commentary where
necessary.

A1.3.2 Method

A1.3.2.1 Data generation

Data are generated from a 5 leaf tree, Tcgm, called the CGM model. A single run
of 1000 iterations are used. The random effects being marginalised over by 100
experiments are the random shapes of the trees and the filter model output that
results from choosing the filter predictions and updates based on the random tree
structure.

The data generator is shown in Figure A1.3.1a. This graph shows the internal
node threshold values. There are two covariates, x1 and x2. The leaf model
parameters for b = 4, 10, 11, 6, 7 are shown in Figure A1.3.1b: The parameters for
the leaves were also provided to 5 independent Kalman filters. These filters are
used to show that conditional filtering on an adaptive tree is better than using
multiple independent filters.

The model that is used for data generation is shown in Equation (A1.48). The
additional input parameters, Gt,b, and ut,b, are necessary to maintain a constant
value from each of the models at the leaves.

zt,b = Ft,bzt−1,b +Gt,but,b + N(0,Wt,b)

yt,b = Ht,bzt,b + N(0, Vt,b) (A1.48)

The simulation is performed from t ∈ 1, . . . N = 1000 by sampling xt = (xt,1, xt,2)
uniformly from (0, 1) for each of the covariate values. The data point is passed
through the tree until a terminal node is reached and then a latent value is drawn
and used to simulate an observation. These data points are written to a file and
subsequently used for modelling.
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(a) The adapted tree model from (Chipman et al. 1998)

Simulation leaf parameters.

Leaf Vb Wb Fb Hb Z0,b W0,b ub Gb

4 0.02 0.1 0.25 1 0 1 1 -1
10 0.03 0.15 -0.5 1 5 1 1 5
11 0.05 0.15 0.5 1 8 1 -1 8
6 0.05 0.01 -0.5 1 4 1 1 4
7 0.05 0.15 0.25 1 2 1 -1 25

(b) The leaf parameters for the 5 leaf tree. The additional parameters Gb and ub used to generate
a constant mean at a fixed value for each of the leaves.

Figure A1.3.1

(a)

Figure A1.3.2: The density generated by the CGM tree model.

Figures A1.3.2 and A1.3.3a show the estimated density of the observed data Ysim

and the latent data, Zsim and the generated sequence of data drawn from the 5
leaf model that is used for the simulation modelling that follows.
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(a)

Figure A1.3.3: Sequence of data simulated from the CGM model.

A1.3.2.2 Simulation modelling

The main objective of this study is to examine the effect of the tree parameters
ξT = (α, β) on both the output of the model and the random tree generation.
However, there are interaction effects between the ξT and the leaf model param-
eters ψT = (Vb, Hb, Fb,Wb, µ0,b,Σ0,b). This is not only clear from Section 4.5.1
where it was shown that the leaf models have a sizeable, possible detrimental ef-
fect on the performance on the model but also because in the random tree model
these parameters are being randomly selected from a deterministic set of possible
parameters. Further, these parameters are being modified as the tree changes
shape. This study will focus on the change in tree output accuracy and the
change in the posterior target density that results from different fixed treatments
by ξT and a fixed, limited selection of ψT .

Table A1.3.1 show the different sets of ξT that will be used in the experiments.
The labels for the experiments the numbers 1 to 8 and will be referred to by the
tag EXP or as experiments. The entries in the table are the values of ξT that
have used.

Tree parameter values for experiments 1 to 8
ξT 1 2 3 4 5 6 7 8

α 0.5 0.95 0.95 0.95 0.75 0.95 0.75 0.95
β 0.5 0.5 1 1.5 2 3 3 2

Table A1.3.1: Tree parameters ξT for each of 8 experiments.

Figure A1.3.1b shows the sets of ψT that are used for the treatments of the leaf
model parameters. The trees are divided up further into groups of experiments:

◦ Tree 1 is the base tree. Other experiments, with group names W0, H and
W for the parameters that change are deviated from these base parameters
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by either increasing or decreasing them substantially.

◦ Trees 2 and 3 are groupW0. Relative to Tree 1, W0 has been either decreased
substantially in treatment 2 and increased substantially in treatment 3.

◦ Trees 4 to 7 form the H group. The Hb parameter increases slightly from
treatment 4 to treatment 7. Preliminary investigations show that the algo-
rithm is very sensitive to this parameter so small increments are necessary.

◦ Trees 8 and 9 make up the W group. Like the W0 group these parameters
increase and decrease substantially relative to the control in Tree 1.

All parameters must be seen as not only relative to the control but relative to the
parameter Vb. This has been fixed at 2 for all experiments. Preliminary studies
and experiments have shown the maintaining a relatively high signal to noise
ratio is essential for modelling performance. Theory and the calibration study
of Section 4.4 have shown that it is necessary to keep Fb in (−1, 1) and ideally
substantially within this interval so 0.7 was fixed on. Section 4.5.1 showed that
a negative sign concentrates the scale parameter of the marginal so this has been
alternated with a positive sign to increase variation in possible models.

Model Params for all Random Trees
Tree Leaf Vb Wb Fb Hb Z0,b W0,b

2 2 12 0.7 1 10 201 3 2 16 -0.7 1 20 40

2 2 12 0.7 1 10 42 3 2 16 -0.7 1 20 40

2 2 12 0.7 1 10 43 3 2 16 -0.7 1 20 80

2 2 12 0.7 0.95 10 204 3 2 16 -0.7 0.95 20 40

2 2 12 0.7 0.99 10 205 3 2 16 -0.7 0.99 20 40

2 2 12 0.7 1.01 10 206 3 2 16 -0.7 1.01 20 40

2 2 12 0.7 1.05 10 207 3 2 16 -0.7 1.05 20 40

2 2 2 0.7 1 10 208 3 2 4 -0.7 1 20 40

2 2 24 0.7 1 10 209 3 2 32 -0.7 1 20 40

Table A1.3.2: Leaf model parameters ψT for the 9 trees.

The final set of functions used are those used to modify the leaf parameters as
the tree model changes shape.
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Functions parameters for filter modification.
Move Parameter Function Args 1 Args 1 Args 2 Args 2 Args 3 Args 3 Args 4 Args 4

Z0 runif n 1 min -40.00 max 10.0
W0 runif n 1 min 1.00 max 30.0
V Vfunc ln 2 scale 0.01 min 0.1
W IVfunc ln 2 scale 0.50 max 30.0
F Ffunc ln 2 scale 0.05 sn 1.0 min 0.10

grow

H constF

Z0 runif n 1 min -40.00 max 10.0
W0 runif n 1 min 1.00 max 30.0
V IVfunc ln 2 scale 0.01 max 5.0
W Vfunc ln 2 scale 0.50 min 5.0
F IFfunc ln 2 scale 0.05 sn 1.0 max 0.95

prune

H constF

Table A1.3.3: Leaf parameter modification functions. These change the parameters as a func-
tion of the changes in tree shape.

Functions ‘Ffunc’ (f(·)) and ‘IFfunc’ (f−1(·)) are,

f(FP(b), b, s, sgn,min
F

) = max{sgn · FP(b)⌊log2(b)⌋−s,min
F
} (A1.49)

f−1(FCl,r(b), b, s, sgn,max
F

) = min{sgn · FCl,r(b)⌊log2(b)⌋s,max
F
} (A1.50)

and functions ‘Vfunc’ (g(·)) and ‘IVfunc’ (g−1(·)) are,

g(VP(b), b, s,min
V

) = max{VP(b)⌊log2(b)⌋−s,min
V
} (A1.51)

g−1(VCl,r(b), b, s,max
F

) = min{VCl,r(b)⌊log2(b)⌋s,max
V
} (A1.52)

while, ‘runif’ is a continuous uniform sample and ‘constF’ is the constant function.

A1.3.3 Results

Figure A1.3.4a shows the fundamental validity of this approach. There are 5 in-
dependent Kalman filters each with one of the sets of ψsim,b=4,10,11,6,7. None of the
independent filters can accurately converge on the conditional process generated
by the tree model (Figure A1.3.2). This result is supported by Figure A1.3.4b
which shows that rate of convergence of conditional and independent filters is
roughly the same but that the tree (conditional) filters approach the simulated
processes more accurately, albeit not fully precisely. Bearing in mind that the
conditional filters all start from two leaves it is clear that additional information
about the relationship between the processes is learned by the trees although
specifying exactly what has been learnt is not clear.

Figure A1.3.5 shows the cumulative mean square error (detailed in Algorithm A1.1)
between the Kalman filters and the generated data as well as between the gen-
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(a) Density estimates for of the latent variable for two trees, one experiment and 5 independent
Kalman filters. The independent KFs have the same filter parameters as those that were used to
generate the data.

(b) The sequence of estimates from the two trees and the 5 Kalman filters.

Figure A1.3.4

erated data and the simulation models. This graphic shows all of the trees over
experiments 1,5,3 each of which have been repeated 100 times. Thus, using the
specifications of the previous section it is clear that under these experimental
conditions the tree model outperforms the Kalman filter irrespective of the pa-
rameters ξT .

Figure A1.3.6 leaves out the independent Kalman filters and takes a look at the
same experiments as Figure A1.3.5 but here the focus is on the effect of the
initial different parameters at the leaves of the trees. The range of CMSEs after
1000 iterations is from 0.995 for tree 4 in Experiment 5 to 1.235 for Tree 8 in
Experiment 7. Experiment 3 has the lowest initial CMSE but does not converge
below 4 as rapidly as Experiments 1 and 5. This is important because the rate at
which the accuracy of the model attains its optimal error helps to suggest both
the filter parameter relationships and the number of iterations necessary per data
point (Section 6.2.2).

Figure A1.3.7 looks at the CMSE from the point of view of a selection of individual
trees over all experiments. These graphs show that each of the trees converge for
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(a)

Figure A1.3.5: The cumulative means square error (CMSE) between the simulated data, the 5
Kalman filters and all of the trees for 3 experiments.

(a)

Figure A1.3.6: A more detailed view of the cumulative means square error (CMSE) between
the simulated data showing all of the trees for Experiments 1,5,3.

all settings of ξT . Tree 3 which has the largest range of initial parameter, W0,b,
has the largest difference in initial convergence accuracy with Tree 1, the base
tree having the least. Tree 9 which has largest initial signal-to-noise ratio is the
second most accurate and second fastest to converge. This result helps to confirm
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that preliminary investigations that showed the importance of the signal-to-noise
ratio.

(a)

Figure A1.3.7: The cumulative means square error (CMSE) between the simulated data and
Trees 9,1,6,3 for all experiments.

Figure A1.3.8 presents 4 experiments, 8,1,5,3, that show the distribution of the
largest leaf numbers (as opposed to tree size). Conditional on the parame-
ter settings, every tree was restricted to a leaf number that was less than 20
(dη < 5, |KT | + |IT | < 21). This is good because it means that, over 1000 iter-
ations repeated 100 times (100000 iterations), the combination of prior settings
and parameters were able to control the tree performance (as opposed to prelim-
inary work where the tree size was expanding chaotically). On average, all trees
obtained a maximum of 5 leaves over 1000 iterations, the same as the simulated
model, but in some of the 100 repeats of experiments trees of up to 18 nodes
(|KT | + |IT |) were found. Experiments with different tree shapes would be nec-
essary to establish if the combination of prior and parameters is able to restrict
and learn tree structure.

Another interesting item to notice are Trees 8 and 9. In Experiment 1, these
trees which have alternate s-n-r ratios to the base tree (Tree 1) also have the
largest difference in tree size when compared to Tree 1 and reach this difference
more often. This occurs to a slightly lesser extent in Experiment 5 and 8. The
frequency with with larger trees are reached, conditional on parameter settings
helps to support the case for the effect of signal-to-noise ratio (s-n-r) on tree
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control but is currently not conclusive. Experiment 3 and Tree 7 also show the
effect of the parameter Hb on the frequency of tree leaf number conditional on
the parameters ξT . That is, the tree size seems to get larger more often if Hb

exaggerates the effect of the data update on the leaf.

(a)

Figure A1.3.8: The distribution of the largest leaf number attained by the trees for Experiments
1,3,5,8 over all trees 1 to 9.

Figure A1.3.9 considers Trees 1,3,6,9 over all eight experiments (different settings
of ξT ). For the different tree parameter settings shown, Experiment 1 seems to
all allow for larger trees more often. For Tree 9, the largest trees are attained
more often for Experiments 8 and 9. Trees 6 and 3 obtain there most frequent
largest, size during Experiment 4.

These next tables, Tables A1.3.4 and A1.3.5, show the values of the CMSE at set
iterations 5, 10, 15, 20, 50, 250 as well as the maximum leaf number attained over
all experiments up to that iteration. The intention is to compare the accuracy of
the state estimates under the different experimental conditions and the stages at
which these estimates converge. Figures A1.3.6 and A1.3.7 have shown that in all
cases the CMSE converges to a small enough value. However, in the streaming
setting it is important to minimise the number of iterations necessary to get a
small enough CMSE. Thus only iterations up to 250 are shown and of particular
interest are the iterations 5,10,11 because this provide insight into the number of
iterations necessary for filter convergence if there are multiple tree proposals per
update observation.

At iteration 5, Tree 4 has the smallest CMSE for all experiments except for
Experiment 4 where Tree 9 has the smallest CMSE. The maximum leaf number
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(a)

Figure A1.3.9: The distribution of the largest leaf number attained by the trees for Tree 1,3,6,9
over all experiments 1 to 8.

is 6 for Tree 4 in Experiment 2 but is 5 for all other trees. This a negligible
difference in tree size. This ranking of trees persists until iteration 20 when all
Tree 4 is then the most accurate tree in all experiments. Considering Table A1.3.2,
Tree 4 is when Hb is the smallest: the effect of the update on the tree value is
reduced when compared to the base Tree 1. At iteration 10 Tree 4 has largest
leaf numbers 5 in Experiments 2,3,5; 6 in Experiment 7 and 7 in all the other
experiments. Tree number 9 has largest leaf number 6 in Experiment 4. The
largest leaf node does not increase hugely up to iteration 20 but by iteration 50
tree 4 in experiment 3 has grown to be the largest with leaf number 10 with only
a marginal gain in accuracy.

A1.3.4 Conclusion

The results from the above table show that for all experiments, that is, for all
different tree parameters ξT the effect of the parameter Hb appears to be the one
that contributes largely to the performance of the model. Overall, after 1000
iterations, tree 4 in experiment 6 is the largest and most accurate tree. The
smallest trees are Tree 4 in Experiments 4 and 5 and the most accurate of these
is Tree4 in Experiment 5. Bearing in mind that a tree with largest leaf 9 is
one depth greater than a tree with largest leaf 6 and the number of parameters
involved per filter is 6 then some loss of accuracy per tree might be acceptable
especially when averaging over an ensemble of trees.
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Accuracy and Max Leaf node for each Experiment and Tree.
Exp Tree CMSE 5 LN 5 CMSE 10 LN 10 CMSE 15 LN 15 CMSE 20 LN 20 CMSE 50 LN 50 CMSE 100 LN 100 CMSE 250 LN 250

1 0.633 5 0.971 7 0.651 9 0.498 9 0.965 7 1.382 7 1.143 7
2 0.704 5 0.991 6 0.664 7 0.508 6 0.987 8 1.400 8 1.173 7
3 3.529 5 2.442 6 1.632 6 1.234 5 1.263 8 1.559 10 1.236 9
4 0.126 5 0.385 7 0.259 6 0.202 6 0.484 8 0.895 9 0.941 7
5 0.500 5 0.847 6 0.568 6 0.435 6 0.855 7 1.258 8 1.121 14
6 0.717 5 1.144 6 0.767 6 0.585 7 0.990 9 1.372 7 1.169 8
7 1.262 4 1.865 5 1.255 5 0.955 6 1.644 8 1.852 7 1.370 9
8 2.183 5 5.699 6 3.890 8 2.950 9 3.300 8 2.628 11 1.694 6

1

9 0.469 5 0.696 6 0.467 6 0.360 9 0.934 7 1.324 9 1.127 9

1 0.453 5 0.975 6 0.654 6 0.500 7 0.986 7 1.338 7 1.144 6
2 0.616 5 1.057 5 0.709 5 0.542 5 1.014 6 1.329 6 1.125 9
3 0.585 5 1.003 8 0.673 7 0.515 6 1.095 7 1.485 7 1.222 9
4 0.140 6 0.397 5 0.267 5 0.208 8 0.496 8 0.864 6 0.922 8
5 1.777 5 1.619 6 1.083 6 0.822 7 1.005 7 1.296 6 1.114 6
6 2.041 5 1.831 5 1.227 6 0.931 7 1.277 6 1.497 10 1.213 6
7 1.069 5 1.882 5 1.268 7 0.965 7 1.759 7 2.004 7 1.461 7
8 2.565 5 5.705 6 3.884 5 2.943 5 3.241 7 2.516 6 1.602 7

2

9 0.911 5 0.883 6 0.592 6 0.452 7 0.901 9 1.287 7 1.108 6

1 0.529 6 0.966 7 0.649 7 0.496 8 1.003 7 1.340 8 1.133 8
2 0.550 5 0.968 5 0.649 6 0.496 6 0.977 11 1.350 8 1.153 7
3 0.602 5 1.003 6 0.673 6 0.514 7 0.986 9 1.403 8 1.234 7
4 0.108 5 0.386 5 0.260 6 0.203 5 0.441 10 0.864 9 0.903 7
5 0.453 4 0.831 6 0.556 6 0.427 8 0.849 7 1.208 6 1.059 7
6 0.723 6 1.228 6 0.823 6 0.629 8 1.144 8 1.558 7 1.247 6
7 1.196 7 1.836 6 1.238 6 0.942 6 1.706 7 2.031 7 1.457 8
8 2.145 5 6.233 6 4.280 6 3.250 5 3.927 7 2.856 7 1.744 9

3

9 0.361 5 0.654 7 0.438 5 0.338 6 0.903 9 1.340 12 1.161 7

1 0.492 5 0.931 5 0.626 6 0.479 5 0.982 6 1.324 7 1.120 9
2 0.780 6 1.106 6 0.741 6 0.566 6 1.016 6 1.398 7 1.153 10
3 0.465 5 0.956 6 0.642 6 0.492 6 1.027 6 1.372 8 1.153 10
4 1.264 5 0.878 5 0.587 6 0.448 6 0.531 7 0.907 9 0.948 6
5 0.401 5 0.869 6 0.582 8 0.446 5 0.877 9 1.278 6 1.151 7
6 0.635 5 1.158 6 0.779 6 0.595 6 1.221 5 1.491 9 1.209 7
7 1.196 5 1.905 6 1.283 6 0.976 7 1.651 10 2.028 7 1.455 6
8 2.727 5 6.306 6 4.291 5 3.249 7 3.519 5 2.715 8 1.680 9

4

9 0.363 5 0.708 6 0.474 6 0.365 8 0.929 14 1.345 8 1.130 7

Table A1.3.4: Number of iterations, CMSE and maximum tree leaf number for all trees and
Experiments 1 to 4.

Accuracy and Max Leaf node for each Experiment and Tree.
Exp Tree CMSE 5 LN 5 CMSE 10 LN 10 CMSE 15 LN 15 CMSE 20 LN 20 CMSE 50 LN 50 CMSE 100 LN 100 CMSE 250 LN 250

1 0.555 6 1.047 7 0.702 6 0.536 6 1.037 9 1.416 8 1.207 7
2 0.681 5 1.048 7 0.703 6 0.537 5 1.039 6 1.437 7 1.208 8
3 0.509 5 0.944 5 0.633 7 0.485 7 0.945 7 1.356 9 1.164 6
4 0.204 5 0.406 5 0.273 5 0.213 6 0.447 8 0.845 7 0.911 8
5 0.471 5 0.805 7 0.539 6 0.413 7 0.846 7 1.240 8 1.105 8
6 0.658 6 1.117 6 0.750 6 0.573 5 1.063 10 1.448 8 1.178 7
7 1.350 5 1.913 6 1.288 7 0.980 8 1.743 7 2.023 11 1.443 7
8 3.043 6 5.577 6 3.807 6 2.888 6 3.298 8 2.557 7 1.624 10

5

9 0.387 5 0.651 6 0.436 7 0.336 6 0.866 6 1.344 11 1.139 7

1 0.551 5 0.984 6 0.660 8 0.505 7 0.922 10 1.325 8 1.133 9
2 0.572 6 0.945 6 0.634 6 0.485 8 0.995 7 1.428 6 1.181 7
3 3.580 4 2.492 6 1.667 7 1.260 6 1.314 7 1.537 8 1.203 6
4 0.246 5 0.429 7 0.289 6 0.224 5 0.446 7 0.809 6 0.856 7
5 0.550 5 0.843 6 0.565 7 0.433 8 0.855 8 1.237 8 1.080 9
6 0.685 5 1.129 7 0.758 7 0.580 6 1.107 5 1.414 7 1.151 8
7 1.200 4 1.851 5 1.246 5 0.948 6 1.736 8 2.009 8 1.431 7
8 2.091 5 5.459 5 3.723 8 2.824 9 3.397 6 2.579 9 1.618 6

6

9 0.332 4 0.596 6 0.400 5 0.309 6 0.883 7 1.313 7 1.121 6

1 0.565 5 0.965 7 0.647 7 0.495 8 1.025 7 1.396 8 1.187 6
2 0.581 5 1.031 5 0.691 7 0.528 7 0.956 8 1.359 11 1.121 9
3 0.641 4 0.991 5 0.664 5 0.508 6 0.949 8 1.389 10 1.168 7
4 0.143 5 0.355 6 0.239 8 0.187 7 0.475 8 0.861 7 0.920 7
5 0.510 5 0.870 6 0.582 6 0.446 8 0.835 8 1.225 8 1.095 11
6 0.693 6 1.151 6 0.772 7 0.590 7 1.092 13 1.481 8 1.205 9
7 1.093 5 1.864 7 1.256 6 0.956 8 1.721 6 1.982 6 1.436 8
8 8.300 4 9.458 6 6.404 6 4.838 5 4.249 6 2.994 10 1.823 6

7

9 0.404 5 0.693 6 0.465 6 0.357 8 0.919 9 1.372 9 1.147 9

1 0.636 5 1.004 6 0.674 7 0.516 6 1.028 7 1.371 8 1.131 6
2 0.681 5 1.168 7 0.783 7 0.597 7 1.048 6 1.373 8 1.140 8
3 0.478 5 0.882 7 0.592 7 0.454 7 1.008 6 1.326 8 1.155 7
4 0.161 5 0.356 7 0.239 7 0.187 7 0.481 6 0.911 8 0.961 9
5 0.502 5 0.866 6 0.580 5 0.444 7 0.871 7 1.216 8 1.075 6
6 0.691 5 1.132 8 0.760 6 0.580 6 1.136 6 1.466 8 1.161 8
7 1.211 6 1.887 6 1.271 6 0.968 6 1.657 6 1.943 6 1.423 8
8 2.047 5 6.616 8 4.539 6 3.444 9 3.705 8 2.795 13 1.728 8

8

9 0.358 5 0.589 7 0.395 8 0.305 7 0.870 6 1.283 7 1.105 6

Table A1.3.5: Number of iterations, CMSE and maximum tree leaf number for all trees and
Experiments 5 to 8.
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