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Abstract 

In the last decade, deep learning (DL) has revolutionised fields like speech and vision 

through artificial neural networks. Can DL similarly transform biological psychiatry and 

neuroimaging? This thesis explores that question for Autism Spectrum Disorder (ASD) using 

MRI data. 

ASD involves a mosaic of social, communication, cognitive, and sensorimotor differences. 

Diagnosis relies on behavioural assessments by highly trained clinicians. This process is 

challenging and resource-intensive, often involving trial-and-error before optimal 

interventions are identified. MRI offers promise for improving diagnosis and care by 

revealing ASD's brain bases. But no reproducible biomarkers have emerged, likely reflecting 

ASD's heterogeneity, small sample sizes, unimodal data, and limitations of standard tools. 

Recent advances in multivariate predictive modelling could overcome these hurdles. In 

particular, DL methods from other fields now show potential for neuroimaging 

applications. Leveraging this opportunity, this thesis had three main aims: 

1. Build a DL model for rapid, accurate quality control of structural MRI data, enabling 

analysis of huge datasets. 

2. Predict ASD from raw structural MRI scans without standard template registration, 

preserving sensitivity to anatomical alterations. 

3. Analyse functional MRI data with Transformer models that incorporate spatial and 

temporal patterns, working toward prediction from 4D data. 

These projects illustrated successful applications of DL in neuroimaging for ASD, while 

raising questions around generalisability across confounds like age and gender. Findings 

emphasise the continued need to refine preprocessing methods for atypical brains and 

quantify bias from procedural variations. 

Overall, this thesis advanced reproducible pipelines for potential MRI-based biomarkers of 

ASD. By openly sharing code and creating a novel tool, it enabled future DL applications in 

neuroimaging. Follow-up work on multi-modal prediction, optimal sample sizes, expanded 
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categorical labels, and new DL architectures will further realise the promise of 

neuroimaging to improve psychiatric diagnosis and care.  
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data and algorithms used to build every model, and with regard to the strengths and 

weaknesses the model might have.  

At every model-construction step, I was diligent with data preparation, with the 

interpretability of the algorithm, and with the level of quality of my code, to maximally 

prevent misinterpretations that could negatively impact our knowledge and understanding 

of Autism. Therefore, throughout the PhD project I made it my duty to be aware of the 

current literature on ASD neuromarkers and to integrate new findings into my work. I also 

ensured that I was highly proficient in MRI processing, deep learning, programming and 

cloud computing.  

My skills in statistics and programming grew dramatically during the PhD, thanks to practice 

and continuous training. As a result, some differences may be evident across the empirical 

studies. These differences are evidence of my own evolution and progression as a 

researcher and demonstrate how valuable the PhD has been for me.   
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Collaborating and conflict of interests: 

At the beginning of every collaborative project, I identified and reported all interests, and 

subsequently kept an eye out for new ones that might emerge over the course of the 

project. Prior to beginning work, I organised meetings to define a project management 

plan, comprising deliverables and milestones, how the tasks will be shared, the authorship 

and everyone’s interests.  

 

Autism: 

By presenting this work, I do not intend to stigmatise autistic people. I am fully aware of 

current debates on neurodiversity and questions about whether, instead of a disorder or a 

condition, Autism should be considered a divergent branch of neurodevelopment that may 

confer autistic people with a different way of thinking and atypical sensoriality.  

By doing this research, I intend to help to improve global understanding of these 

differences for better inclusion of Autistic people, and to improve and personalise care for 

people with specific needs. 

I did my best to use the best wording possible through all of my projects, and my vocabulary 

evolved all along the PhD journey. I apologise in advance if certain words are shocking, 

stigmatising, or seem inappropriate to people with Autism. I remain open to suggestions 

about how to adapt definitions and wording as necessary.  
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1. Introduction 

 

“When you have seen a child with autism, you have seen one child with autism.” 

Lorna Wing, cited by Bourgeron (2023). 

 

Autism Spectrum Disorder (ASD) is a prevalent neurodevelopmental divergence 

characterised by heterogeneous clinical presentations and unclear biological 

underpinnings. In the US, about 1 in 36 children has been identified with ASD (Maenner, 

2023). In Europe, the estimation is of 1 in 71 children (Sacco et al., 2022). While 

neuroimaging has provided clues into atypical neural patterns, methodological challenges 

have hindered biomarker discovery and translational insights. Recent trends, however, 

engender optimism. Open scientific data sharing has enabled unprecedented sample sizes, 

coinciding with advances in multivariate techniques like machine learning. Realising the full 

potential of these synergies requires navigating myriad sources of individual variability and 

thoughtfully applying cutting-edge analytics. This thesis aims to advance efforts to 

elucidate robust, generalisable MRI-based biomarkers for ASD by developing optimised 

pipelines integrating DL algorithms. 

Dimension reduction of high-dimensional neuroimaging data holds promise for enhancing 

biological psychiatry. But fully realising the potential of advanced analytics requires 

ongoing advances in critical areas like standardisation, integration, and interpretability. 

This thesis contributes methodological optimizations aimed at discovering ASD biomarkers, 

while promoting open science and reproducibility. More broadly, this work aligns with the 

evolving zeitgeist (“spirit of the age”) in computational psychiatry - embracing scale, 

heterogeneity, and cross-disciplinary innovation. The future of the field rests in building 

synergies to translate signals from diverse methodological noise into clinical insights that 

tangibly improve patient outcomes. 
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1.1. ASD Description and Phenotype 

1.1.1. Origins and diagnosis 

Autism Spectrum Disorder (ASD) is a common neurodevelopmental profile, characterised 

by social communication challenges and restrictive, repetitive behaviours (APA, Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5®), 2013; Pierce et al., 2019). The 

prevalence of ASD diagnoses has risen steadily over recent decades (Buescher et al., 2014; 

Christensen et al., 2019; Reports on the Prevalence of Autism in Ireland and a Review of 

the Services for People with Autism, 2018; Zeidan et al., 2022), posing significant challenges 

for families, educators, and clinicians. While many individuals with ASD are intellectually 

able, they face disadvantages in social, educational, and vocational outcomes (Heasman, 

2017; Heasman & Gillespie, 2018; Milton et al., 2018; Bird & Flint, 2019). 

ASD is highly heterogeneous, with a strong genetic basis but unclear biological mechanisms 

(Bourgeron, 2015; Ecker et al., 2015; Lee et al., 2019; Miller et al., 2019; Nakagawa et al., 

2019; Pagani et al., 2019; Ruzzo et al., 2019; Satterstrom et al., 2020; Schork et al., 2019; 

Silva et al., 2019; The Brainstorm Consortium et al., 2018; Yoon et al., 2020; Zhang et al., 

2020). It is likely that the underlying biological mechanisms of ASD are associated with 

differences in brain development pathways compared to neurotypical development (Dickie 

et al., 2018; Ecker et al., 2015; Emerson et al., 2017; Fishman et al., 2018; Ha et al., 2015; 

Haar et al., 2016; Heinsfeld et al., 2018; Kishida et al., 2019; Lake et al., 2019; McKinnon et 

al., 2019; MRC AIMS Consortium et al., 2020; Pagnozzi et al., 2018; Pereira et al., 2018; 

Riddle et al., 2017; Sha et al., 2019; Subbaraju et al., 2017; Yang et al., 2016; Zheng et al., 

2021). Environmental factors may interact with genetic risks (Ecker et al., 2015; Ha et al., 

2015). Phenotypic variation is high, as no behavioural or biological subtypes have been 

firmly identified (Baker et al., 2019; Elibol et al., 2016; Fishman et al., 2018; Jiang et al., 

2018; Lake et al., 2019; McKinnon et al., 2019; Milton et al., 2018; Walbrin et al., 2018; 

Wolfers et al., 2019). Co-occurring diagnoses like anxiety further complicate the picture 

(Allsopp et al., 2019; Kushki et al., 2019; Miller et al., 2019a, 2019b; Schork et al., 2019; Sha 

et al., 2019; Silva et al., 2019; The Brainstorm Consortium et al., 2018).  

Gold standard ASD diagnosis relies on specialist behavioural assessments around age 3 

years (Lord et al., 1989, 1994; Van ’T Hof et al., 2021). However, limited availability of 
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experts leads to long wait times (O’Regan, 2023). Earlier screening methods exist but are 

not widely implemented (Emerson et al., 2017; Guthrie et al., 2019; Zuckerman et al., 2017; 

Zwaigenbaum et al., 2007), despite evidence that early intervention improves outcomes 

(Clark et al., 2018; Dawson & Burner, 2011). 

Factors like gender, comorbidities, and age-related changes challenge efforts to elucidate 

ASD's neurobiological roots. For example, the marked gender imbalance in diagnosis (3-

10:1 male predominance) (Fombonne, 2009; Loomes et al., 2017) hinders the study of 

gender influences on ASD neurobiology. High comorbidity rates confound attempts to 

identify ASD-specific neural correlates (Ecker et al., 2015; Kushki et al., 2019). Further, 

symptom profiles and neural patterns change across development in heterogeneous ways 

(Sanders, 2015; Van Wijngaarden-Cremers et al., 2014; Wolfers et al., 2019). However, in 

this thesis project, it was assumed that, these factors notwithstanding, Autistic people 

share common characteristic patterns in the brain that can be identified using multivariate 

analytic approaches. 

 

1.1.2. Influence of gender 

The significant gender imbalance in ASD diagnosis poses challenges for understanding its 

neurobiological bases. ASD is diagnosed at a rate of 3:1 (boys:girls) globally, and a rate of 

10:1 in those without intellectual disability (Fombonne, 2009; Loomes et al., 2017). Girls 

meeting diagnostic criteria often go unidentified or misdiagnosed due to differing symptom 

presentation from boys and increased ability to mask difficulties (Cazalis, 2017; Dean et al., 

2017; Kirkovski et al., 2013; Loomes et al., 2017; Zeidan et al., 2022). Current assessment 

practices may be ill-suited for girls (Beggiato et al., 2017; Van Wijngaarden-Cremers et al., 

2014; Zeidan et al., 2022). The scarcity of diagnosed females hinders neuroimaging 

research on gender influences. However, growing open-science datasets now provide 

sufficient female samples (~100 with ASD) to enable preliminary investigations (Alexander 

et al., 2017; Bellec et al., 2017; Di Martino et al., 2014, 2017). 
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These observations prompt us to ask whether neuroimaging biomarkers differ between 

males and females with ASD? If so, how does this inform our understanding of gender-

dependent neurophenotypes? 

 

1.1.3. Comorbidities 

High rates of comorbid diagnoses are common in ASD and further confound the search for 

ASD biomarkers, including ADHD (~30-50%), anxiety, depression (30-70%), and other 

neurological or developmental disorders (Ecker et al., 2015; Ghaziuddin et al., 2002; C. 

Gillberg, 2010; I. C. Gillberg et al., 2016; Simonoff et al., 2008). However, exact comorbidity 

rates vary across studies (Ghaziuddin et al., 2002; Gillberg et al., 2016; Simonoff et al., 

2008). 

Extensive symptomatic, genetic, and neural overlap exists between ASD and psychiatric 

diagnoses like ADHD, OCD, and schizophrenia (Ecker et al., 2015; Kushki et al., 2019; The 

Brainstorm Consortium et al., 2018). This challenges the current model of discrete 

psychiatric diagnoses (Ecker et al., 2015; Kushki et al., 2019) and complicates identification 

of ASD-specific biomarkers. Disentangling disorder-specific neural correlates becomes 

challenging (Ecker et al., 2015; Kushki et al., 2019) and analyses ignoring comorbidity risk 

finding non-specific brain patterns (Ecker et al., 2015). 

Large datasets with deep phenotyping are required to address comorbidities. What 

methodological strategy can we build to study the impact of comorbidities on the 

identification of ASD? 

 

1.1.4. Age and development 

Autism is a neurodevelopmental disorder with clinical profiles changing across the lifespan 

(APA, Diagnostic and Statistical Manual of Mental Disorders (DSM-5®), 2013; Ecker et al., 

2015; Ha et al., 2015; Sanders, 2015; Van Wijngaarden-Cremers et al., 2014; Wolfers et al., 
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2019). For example, an analysis of electronic records identified distinct, age-dependent ASD 

symptom trajectories from ages 0-15 years (Elibol et al., 2016). 

If symptoms map to specific neural patterns, these shifting profiles over development likely 

complicate our ability to detect robust biomarkers. Each individual also grows up in unique 

environmental contexts influencing gene expression, brain and behaviour. Such factors 

include medication, social determinants, and potential traumas (Bourgeron et al., 2023).  

While ASD involves atypical neurodevelopment (Emerson et al., 2017; Ecker et al., 2015; 

Ha et al., 2015), precisely linking symptoms, brain changes, and age remains limited. This 

once again calls for large datasets with deep phenotyping, including environmental and 

developmental contexts. 

Given the age dependence of ASD, we can wonder how to best study the influence of age 

on the detection of ASD with deep learning?  

The challenges of diagnosing and subtyping ASD repeatedly underscore the need for large, 

deeply phenotyped datasets. The costs involved in neuroimaging research have typically 

precluded the generation of datasets on this scale, nor did the methods exist to capitalise 

on such data. As a result, small sample sizes, limited clinical and phenotypic measures, and 

a reliance on largely univariate statistical methods have likely hindered efforts to identify 

reliable neural correlates. 

However, the tide is turning with the emergence of open large-scale repositories like ABIDE 

(Di Martino et al., 2014, 2017), ABCD (Volkow et al., 2018), UK Biobank (Sudlow et al., 

2015), and Healthy Brain Network (Alexander et al., 2017). These datasets provide 

unprecedented sample sizes with extensive clinical, behavioural, and environmental 

phenotyping beyond conventional neuroimaging resources. Paired with new multivariate 

methods from machine learning (ML), these mega-datasets engender optimism for 

reproducible pattern discovery amidst immense heterogeneity. In this project, I 

hypothesised that these large-scale database projects would provide sufficient data with 

enough variability to build robust algorithms, enabling advances toward robust, 

generalisable MRI-based biomarkers for ASD. 
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The quest for ASD biomarkers underscores a transformative opportunity for neuroimaging. 

Fulfilling the long-held promise of illuminating brain-behaviour relationships may finally be 

possible through synergistic advances in resources and techniques. 

 

1.2. ASD detection and characterisation using brain MRI data 

1.2.1. Context 

Neuroimaging studies reveal an atypical developmental trajectory in ASD (Dickie et al., 

2018; Ecker et al., 2015; Emerson et al., 2017; Fishman et al., 2018; Ha et al., 2015; Haar et 

al., 2016; Heinsfeld et al., 2018; Kishida et al., 2019; Lake et al., 2019; McKinnon et al., 2019; 

MRC AIMS Consortium et al., 2020; Pagnozzi et al., 2018; Pereira et al., 2018; Riddle et al., 

2017; Subbaraju et al., 2017; Yang et al., 2016; Zheng et al., 2021). Autistic toddlers exhibit 

accelerated brain overgrowth and enlarged cortical surface area (Ecker et al., 2015; Ha et 

al., 2015; MRC AIMS Consortium et al., 2020; Nakagawa et al., 2019; Pagnozzi et al., 2018; 

Zhang et al., 2020), which reverses by adulthood with decreased brain volume and 

accelerated cortical thinning (Ecker et al., 2015; Pereira et al., 2018; Yang et al., 2016; Zheng 

et al., 2021). This initial overgrowth may disrupt white matter development and contribute 

to altered morphology and connectivity across the lifespan (Ecker et al., 2015; Pereira et 

al., 2018). While the evidence to date is compelling, the precise characterisation of this 

developmental trajectory awaits further longitudinal data (Lee et al., 2021; Raznahan et al., 

2013), and interrogation of the influence of factors such as gender and the presence of 

psychiatric comorbidities, as discussed above. Further, methodological and cohort factors 

influencing population norms need consideration when interpreting volumetrics (Lee et al., 

2021; Raznahan et al., 2013). In the future, integrating genetic and environmental data 

could elucidate growth dysregulation mechanisms. 

Across age groups, divergent structure is consistently found in frontotemporal, 

frontoparietal, limbic, and midline regions implicated in social, emotional, and behavioural 

functions affected in ASD (Ecker et al., 2015; Ha et al., 2015; Pereira et al., 2018). Atypical 

cortical folding, influenced by early overgrowth, is also observed (Ecker et al., 2015; Ha et 

al., 2015; MRC AIMS Consortium et al., 2020; Nakagawa et al., 2019; Pereira et al., 2018; 
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Yang et al., 2016; Zheng et al., 2021). Finally, studies using functional MRI reveal differences 

in activation and connectivity (Ecker et al., 2015; Fishman et al., 2018; Ha et al., 2015; He 

et al., 2020; King et al., 2019; Pagnozzi et al., 2018; Pereira et al., 2018), though some 

findings exhibit poor reproducibility, likely due to small samples and methodological 

inconsistencies (Ecker et al., 2015; Ha et al., 2015; He et al., 2020). Further, as noted above, 

many of these neural differences are not ASD-specific and are observed in other 

neurodevelopmental and psychiatric diagnoses such as ADHD, OCD, and schizophrenia, 

highlighting the need to model brain-behaviour relationships to isolate neural correlates of 

ASD-specific behavioural dimensions (Sha et al., 2019).  

 

1.2.2. Preprocessing methods 

While neuroimaging has yielded clues about ASD's neurobiological roots, robust 

biomarkers remain elusive (Raznahan et al., 2013; Ecker et al., 2015; Ha et al., 2015; Sha et 

al., 2019; He et al., 2020; Lee et al., 2021). As outlined above, methodological challenges 

persist, including small samples, cross-sectional designs, clinical heterogeneity, and 

developmental factors. 

Additional issues arise in MRI data acquisition and analysis. Scan quality variation, 

especially from head motion (Backhausen et al., 2016; Ecker et al., 2015; Gilmore et al., 

2019; Ha et al., 2015; Reuter et al., 2015; White et al., 2018), requires rigorous quality 

assessment. Large open datasets (Alexander et al., 2017; Bellec et al., 2017; Di Martino et 

al., 2014, 2017; Sudlow et al., 2015; Thompson et al., 2020; Volkow et al., 2018) demand 

automated quality control, but standard methods are lacking (Backhausen et al., 2016). 

Preprocessing techniques like template registration may introduce confounds by obscuring 

group differences or reducing reproducibility (Horien et al., 2022). Harmonisation 

techniques developed in neurotypical participants could have similar effects (Horien et al., 

2022). 

Overall, poor standardisation of quality control and preprocessing likely contributes to 

inconsistent findings (Dadi et al., 2019; Ecker et al., 2015; Heinsfeld et al., 2018; Horien et 

al., 2022). Recent efforts like BIDS, MRIQC, fMRIPrep, QSIprep, and, more globally, the 
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NiPreps project (https://www.nipreps.org/), aim to establish standards and enhance 

reproducibility (Cieslak et al., 2021; Esteban et al., 2017, 2019; Gorgolewski et al., 2016, 

2017). 

Several questions remain to be explored: 

● What quality control methods are optimal for large multisite datasets vs. smaller 

single site data? 

● How can preprocessing choices avoid obscuring potential group differences or 

reducing reproducibility? 

● Is it possible to build a better preprocessing pipeline on MRI data to be able to study 

more accurately the brain characteristics of ASD?  

I address these questions in my first empirical study - Chapter 3.  

 

1.2.3.  Machine Learning approaches 

Combined with the emergence of large-scale open science data repositories, recent 

advances in data analysis techniques are beginning to transform neuroimaging and 

biological psychiatry. Machine learning in particular offers multivariate analytical 

advantages over univariate techniques. Autism researchers have capitalised on ML's 

predictive capacity to build diagnostic classifiers from MRI (Dekhil et al., 2020; Ecker et al., 

2015; Jiang et al., 2018; Kunda et al., 2023; Lake et al., 2019; Pagnozzi et al., 2018; Retico 

et al., 2016; Riddle et al., 2017; Subbaraju et al., 2017; Wolfers et al., 2019; Zabihi et al., 

2019). 

However, many early studies lacked independent validation due to small samples (Pagnozzi 

et al., 2018; Traut et al., 2021). When properly validated, ML approaches achieve moderate 

prediction accuracy of 65-75% for ASD classification (Dekhil et al., 2020; Kunda et al., 2023; 

Pagnozzi et al., 2018; Retico et al., 2016; Wolfers et al., 2019). A large multisite challenge 

further demonstrated 70-80% accuracy, though performance declined when the algorithm 

was tested on novel sites (Traut et al., 2021). 
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Although promising, ML has limitations. Large samples are required, and available data may 

still be insufficient given the heterogeneity of ASD and confounds like comorbidities (Traut 

et al., 2021). Multisite differences and derivative inputs (e.g. volumetrics) can further bias 

results (Horien et al., 2022). More recently, deep learning has been explored to mitigate 

these challenges. DL can learn predictive features directly from minimally processed data, 

reducing confounds caused by preprocessing steps (LeCun et al., 2015). But DL has its own 

challenges including architecture optimization, generalisability, reproducibility, and 

computational demands (LeCun et al., 2015). 

 

1.2.4. Deep Learning approaches 

DL is a machine learning approach that learns hierarchical, multi-scale representations 

from raw data (LeCun et al., 2015). By minimising preprocessing, DL can learn predictive 

features directly (LeCun et al., 2015). Various DL architectures exist including Multilayer 

Perceptron (Hastie et al., 2009), Convolutional Neural Networks for images (Lecun et al., 

1998), and Recurrent networks for sequences (Rumelhart et al., 1988). Since the field is 

constantly evolving, new types of DL algorithms that may be revolutionary in certain fields 

may emerge in the future, just like the development of Transformers architecture in 2017 

(Vaswani et al., 2017). 

DL has shown initial promise for MRI-based ASD prediction, achieving accuracies of 65-75% 

(Arya et al., 2020; Dekhil et al., 2020; Heinsfeld et al., 2018; Hu et al., 2020; Khosla et al., 

2019; Lu et al., 2020; Traut et al., 2021; Wang et al., 2020). However, a recent challenge 

found that DL models tended to overfit compared to ML approaches (Traut et al., 2021). 

DL is similar to ML in terms of its data demands, needing large samples to mitigate factors 

such as phenotypic and clinical heterogeneity. It also remains sensitive to input quality and 

preprocessing biases. Architectural complexity introduces challenges like overfitting and 

intensive computation (Traut et al., 2021). Sharing code and parameters openly for 

reproducibility is difficult. 
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This PhD aims to address these limitations by designing DL pipelines leveraging large open 

datasets. Goals include boosting predictive performance, enhancing model interpretability, 

and promoting reproducible practices. 

 

1.3. PhD Project 

1.3.1. Importance of the proposed research 

Developing interpretable DL models that identify ASD neuroimaging biomarkers could 

advance precision psychiatry. Such tools could aid diagnosis, inform individualised 

interventions, and elucidate neural-behavioural links. This could benefit clinicians, 

educators, families, and autistic individuals themselves. 

For example, linking neurobiology to autistic traits could improve societal empathy and 

reduce discrimination in social and vocational settings (Bird & Flint, 2019; Heasman, 2017; 

Heasman & Gillespie, 2018; Milton et al., 2018). Characterising early neural patterns may 

enable earlier intervention and improved outcomes (Clark et al., 2018; Dawson & Burner, 

2011; Rogers et al., 2014; Van ’T Hof et al., 2021). Models could also track brain changes 

during care and education process. 

More broadly, this work aligns with evolving efforts to integrate neuroscience, AI, and 

genomics to better characterise mental health conditions based on underlying 

mechanisms. Advanced analytics hold promise for precision medicine but require 

continued advances in techniques like interpretability to be clinically applicable. 

 

1.3.2. Research aims and objectives 

The overall objective of the PhD project is to advance research on MRI-based biomarkers 

of Autism by designing new analytical pipelines that include DL algorithms.  

To achieve this aim, I used several large open science databases (described in Chapter 2), 

and have openly shared all code, to maximise the value of this work for the community.  
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Other goals were to:  

● Improve existing pipelines for MRI data preprocessing;  

● Create predictions of ASD diagnosis from two modalities of MRI data: structural 

data and resting-state functional data; 

● Tailor new DL pipelines to each MRI modality;  

● Boost the acceptability of DL applications in medicine by improving the 

explainability and interpretability of models. This was achieved by finding and 

implementing methods to explain DL models and to interpret the brain patterns 

driving to prediction outcomes;  

● Participate in and contribute to open science; 

● Help raise the current standards of reproducibility for neuroimaging research; 

● Share high quality, readable code for better reusability; 

● Grow as a young researcher by developing my skills in psychiatry, DL, 

communication, leadership, management, and, more globally, in topics related to 

technology and Health. 

 

1.3.3. Thesis plan 

The work performed for this thesis is described in five chapters: 

- Chapter 3 describes my first empirical study, which aimed to build a fast, reliable 

quality control pipeline for brain structural MRI data using DL. The best-performing 

algorithm was integrated into an open BIDS-app, which was shared with the 

neuroimaging community. 

- Chapter 4 aimed to build an interpretable pipeline for the prediction of detection 

of ASD diagnosis from structural MRI data using DL. Key innovations were (1) the 

model was trained on minimally preprocessed data (no registration to template), 

(2) the characterisation of regions that contributed to the prediction of ASD 

(interpretability), and (3) the examination of how age, gender, and Comorbidities 

influenced the characterisation of such regions. 
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- My third empirical study is described in Chapter 5. This project aimed to build a new 

DL approach to prediction from resting state fMRI data; we applied it to the 

detection of ASD, but also to gender, age, and performed an analysis of the brain 

areas that contributed to prediction outcomes. 

- Chapter 6 describes efforts aimed at promoting reproducibility and fostering better 

practices in neuroimaging research. 

- Chapter 7 summarises my “extra-curricular” projects - the summer schools I 

attended during the PhD, and several projects undertaken for these school 

programmes, which helped me grow as a young researcher in psychiatry and in AI.  

Finally, the General Discussion and Conclusion in Chapter 8 provides a global summary of 

the thesis and of each study. I give an overall interpretation of all the results obtained 

during the PhD, as well as the implications this project has for the broader community. 

Finally, I discuss all the limitations that this project has, and I establish a synthetic list of 

recommendations for future work related to the main thesis topics.   

 

2. Data and Methods  

2.1. Data 

This PhD project made use of five large (totalling more than 5000 individuals) publicly 

available datasets comprising phenotypic and neuroimaging data: Autism Brain Imaging 

Data Exchange (ABIDE) version 1 (Di Martino et al., 2014) and 2 (Di Martino et al., 2017), 

Healthy Brain Network (HBN) (Alexander et al., 2017), Adolescent Brain Cognitive 

Development (Volkow et al., 2018), and Attention Deficit Hyperactivity Disorder 200 (ADHD 

200) (Bellec et al., 2017). 

Table 2.1 describes the various datasets and indicates the studies in which these datasets 

were used.  
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Dataset MRI type Number of patients Related PhD Chapter 

ABIDE 1 

ABIDE 2 

structural and resting-

state functional 

1112 (539 ASD) 

1114 (521 ASD) 

3,4,5 

ABCD 
structural and resting-

state functional 
2141 (QC) 3 

ADHD200 
structural and resting-

state functional 
973 3,4 

HBN 
multimodal: resting-state 

and task functional 
2505 5 

Table 2.1: Description of datasets 

 

● ABIDE 1 (http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) 

ABIDE I (Di Martino et al., 2014) involved 17 international sites, sharing previously collected 

resting state functional magnetic resonance imaging (R-fMRI), anatomical and phenotypic 

datasets made available for data sharing with the broader scientific community. This effort 

yielded 1112 dataset, including 539 from individuals with ASD and 573 from typical controls 

(ages 7-64 years, median 14.7 years across groups). This aggregate was released in August 

2012. Its establishment demonstrated the feasibility of aggregating resting state fMRI and 

structural MRI data across sites.  In accordance with HIPAA guidelines and 1000 Functional 

Connectomes Project / INDI protocols, all datasets have been anonymized, with no 

protected health information included. 

 

● ABIDE 2 (http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html) 
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ABIDE II (Di Martino et al., 2017) was established to further promote discovery science on 

the brain connectome in ASD. To date, ABIDE II has aggregated over 1000 additional 

datasets with greater phenotypic characterisation, particularly about measures of core ASD 

and associated symptoms. In addition, two collections include longitudinal samples of data 

collected from 38 individuals at two time points (1-4 year interval). To date, ABIDE II 

involves 19 sites - ten charter institutions and seven new members - overall donating 1114 

datasets from 521 individuals with ASD and 593 controls (age range: 5-64 years). These 

data have been openly released to the scientific community in June 2016. In accordance 

with HIPAA guidelines and 1000 Functional Connectomes Project / INDI protocols, all 

datasets are anonymous, with no protected health information included. 

 

● ADHD200 (http://fcon_1000.projects.nitrc.org/indi/adhd200/) 

The ADHD-200 Sample (Bellec et al., 2017) is a grassroots initiative, dedicated to 

accelerating the scientific community's understanding of the neural basis of ADHD through 

the implementation of open data-sharing and discovery-based science. Towards this goal, 

we are pleased to announce the unrestricted public release of 776 resting-state fMRI and 

anatomical datasets aggregated across 8 independent imaging sites, 491 of which were 

obtained from typically developing individuals and 285 in children and adolescents with 

ADHD (ages: 7-21 years old). Accompanying phenotypic information includes diagnostic 

status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ) and 

lifetime medication status. Preliminary quality control assessments (usable vs. 

questionable) based upon visual timeseries inspection are included for all resting state fMRI 

scans.  

In accordance with HIPAA guidelines and 1000 Functional Connectomes Project protocols, 

all datasets are anonymous, with no protected health information included. 

 

● ABCD (https://abcdstudy.org/about/) 

The Adolescent Brain Cognitive Development (ABCD) Study (Volkow et al., 2018) is the 

largest long-term study of brain development and child health in the United States. The 
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National Institutes of Health (NIH) funded leading researchers in the fields of adolescent 

development and neuroscience to conduct this ambitious project. The ABCD Research 

Consortium consists of a Coordinating Center, a Data Analysis, Informatics & Resource 

Center, and 21 research sites across the country (see map on website), which have invited 

11,880 children ages 9-10 to join the study. Researchers can track their biological and 

behavioural development through adolescence into young adulthood. 

 

● HBN (https://healthybrainnetwork.org/about/) 

The Healthy Brain Network (Alexander et al., 2017) is the signature scientific initiative of 

the Child Mind Institute. The goal of this community-centred program is to collect data 

from and provide diagnostic consultations to 10,000 children and adolescents (ages 5–21) 

in New York City to further the study of child and adolescent mental illness. 

The HBN Biobank houses data about psychiatric, behavioural, cognitive, and lifestyle 

phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, 

diffusion MRI, morphometric MRI), electroencephalography, eyetracking, voice and video 

recordings, genetics and actigraphy (Alexander et al., 2017). 

 

2.2. Background on deep learning algorithms  

In this section, I summarise key deep learning (DL) concepts and models relevant to the 

work performed for this PhD. 

2.2.1. Deep Learning as a child class of Machine Learning 

One important point to keep in mind about deep learning (DL) is that it is a category of 

machine learning (ML). In other words, as an analogy with object-oriented programming, if 

ML was a superclass of objects (e.g., algorithms), DL would be a child class of the ML class, 

with similar attributes and methods, as well as overridden ones. Thus, ML and DL share 

similar important concepts (e.g., training and testing a model, supervised vs unsupervised 

approach, regression vs classification) but differ on several points, which I describe below. 
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The main idea behind ML is to build algorithms that combine features to model a certain 

phenomenon, and that can return predictions for new input data (Hastie et al., 2009). 

Features involved in machine learning generally require considerable engineering and 

knowledge about the given problem.  

For a given problem, the optimal ML model is obtained thanks to an iterative learning 

process of optimization, specific to the type of algorithm. The learning process is called 

“training”, and the dataset used at this stage is called the “train set” or the "training set".  

The “testing” step corresponds to the prediction of new input data - commonly called the 

test set - that was not used to train the algorithm. Testing is very important to assess the 

generalisability of a model and the replicability of outcomes (Hastie et al., 2009; He et al., 

2020).  

For instance, in the case of a Linear Regression, the training step consists of finding the 

optimal weights (𝑤𝑖)𝑖∈[1,𝑛] , where 𝑖, 𝑛 ∈ ℕ, that make the best prediction ŷ of a target 

variable 𝑦 from explicative variables (𝑥𝑖)𝑖∈[1,𝑛], under the equation ŷ = ∑𝑛
𝑖 𝑤𝑖. 𝑥𝑖   . 

When the target variable is known and used in the optimisation process, the model is called 

supervised. When the target variable is unknown or is not used in the optimisation process, 

the model is called unsupervised. In addition, when the target is continuous, the algorithm 

performs a regression whereas when the target is categorical, the algorithm performs a 

classification. Figure 2.1 represents these concepts. 

 

 

Figure 2.1: Nomenclature of algorithms in machine learning 



43 

 

Depending on the case (supervised or unsupervised, regression or classification), the 

performance of an algorithm can be evaluated with different metrics, including, for 

instance, accuracy for supervised classification, or mean absolute error in the case of 

supervised regression. 

Three metrics are particularly important when using supervised classification to develop 

diagnostic tools: sensitivity, specificity and AUROC.  

● Sensitivity represents the ability of the algorithm to correctly identify people with 

the diagnosis. Also called the True Positive Rate, it is the number of people correctly 

classified as having the diagnosis, divided by the total number of people with the 

diagnosis.  

● Specificity represents the ability of the algorithm to correctly identify people 

without the diagnosis. Also called the True Negative Rate, it is the number of people 

correctly classified as not having the diagnosis, divided by the total number of 

people without the diagnosis.  

● AUROC - area under the Receiver Operating Characteristic curve - is a metric that 

summarises both sensitivity and specificity. The closer to 1 the AUROC is, the better 

the model is. 

Additional explanations about ML techniques can be found in Hastie et al. (2009). 

As stated in the introduction, the idea behind deep learning is that a complex nonlinear 

function of variables relevant for a given problem can be learned hierarchically, and that 

the multi-scale relationship between variables can be learned implicitly. Designing the 

architecture of a DL algorithm in the shape of successive layers of analysis hence appears 

natural. In other words, as stated by LeCun et al. (2015), DL allows computational models 

composed of multiple processing layers to learn representations of data with multiple 

levels of abstraction.  

One main advantage of DL algorithms compared to more traditional ML algorithms is that 

the preprocessing applied to input data is minimised (LeCun et al., 2015). The layers of the 
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DL algorithm are trained to learn implicit relevant features automatically for the given 

problem, without the need to perform demanding feature engineering. 

Training such models requires new techniques because of the hierarchical structure of 

Artificial Neural Networks (ANN) and because millions of parameters need to be updated 

at each iteration step. 

In particular, the training loop involves two main steps: a forward step and a backward step. 

● During the forward step, at each iteration, the inputs are processed by the 

successive layers of the ANN, the computations are performed with the model 

parameter values of the current iteration, and outputs are returned. A loss function 

value for the iteration step can then be computed from the current outputs, as well 

as performance metrics (e.g., accuracy, AUROC). Estimating the loss function - also 

called the cost function - serves to guide the optimisation of the model. When the 

chosen performance metrics values are stable and high, training can stop.  

● During the backward step, backpropagation is performed across the ANN in order 

to optimise all the parameters of the model. This optimization process is performed 

in a hierarchical way thanks to an optimization algorithm that takes into account 

the loss function value computed at the end of the forward step. 

Importantly, the number of epochs is a hyperparameter that defines the number of times 

that the learning algorithm optimises the parameters on the entire training dataset. For 

instance, one epoch means that the forward step and backward step have been performed 

only once on the entire training set. For machine-related and regularisation reasons, it is 

often impossible to run one epoch at once, and a technique called “batch optimisation” is 

widely used to perform these steps on smaller data samples. Hence, one iteration 

corresponds to one forward step and one backward step performed on a batch (i.e. a sub-

sample of the training set). As a consequence, batch size is another hyperparameter that 

plays an important role in the optimisation process.  

Nowadays, there exist many optimisers, like the procedures of Stochastic Gradient Descent 

(Bottou et al., 2018), Adam (Kingma & Ba, 2017) or RMS Prop (Ruder, 2017) to name a few 

that are widely used. These optimisers all depend on a decisive hyperparameter called the 

learning rate, which makes the optimisation go faster or slower, and which also makes the 
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process converge towards a local minimum or the global minimum (the one expected) of 

the estimated loss function. Figure 2.2 illustrates the optimization of weights during 

training and the resulting loss value, and the fact that there are multiple local minima 

where the optimiser could become stuck. The learning rate value can be fixed or changed 

during the optimization.  

 

Figure 2.2: An illustration of the optimisation process: the loss function depends on the 

weight values. At the beginning of the optimisation process (i.e., the training), the loss value 

is high. At the end, the process should converge to the global minimum of the surface, 

which is made challenging because of the various local minima.  

Image source: firsttimeprogrammer.blogspot.co.uk 

 

This introduction to the main concepts of DL shows that there is a greater number of 

parameters to consider in DL than for traditional ML models. While challenging, this fact is 

also why DL models are potentially more powerful tools, particularly in domains where a 

priori knowledge is limited, such as in psychiatric neuroimaging.  

For further information on the fundamentals of DL, I recommend Hastie et al. (2009), LeCun 

et al. (2015), Goodfellow et al. (2016). 
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In the following sub-chapters 2.2.2 to 2.2.4, I provide an overview of concepts related to 

three different types of ANN that are relevant to this thesis.  

 

2.2.2. Multilayer Perceptron 

A Multilayer Perceptron (MLP) is considered as the most basic deep learning model.  

The basic unit of such models is called a neuron. In the neuron, the basic operation of an 

MLP is performed, leading to the “activation” or not of the neuron. One layer of an MLP is 

made of several neurons. The global architecture of an MLP consists of successive layers 

where each layer receives as inputs the outputs of the previous layer and returns outputs 

that form the inputs of the subsequent layer. Figure 2.3 represents an MLP. 

For instance, let’s call an input vector 𝑥 = (𝑥𝑖)𝑖∈[1,𝑛]  where 𝑛 >  1, 𝑛 ∈ ℕ. Hence, in 

neuron 1 of layer 1 of an MLP, the output 𝑦 is : 𝑦 = 𝑓(∑𝑛
1 𝑤1𝑖𝑥𝑖 + 𝑏1) where the 

(𝑤1𝑖)𝑖∈[1,𝑛] are the weights and 𝑏1is the bias computed for neuron 1 of layer 1, and where 

𝑓: 𝑧 ∈ ℝ → ℝ is an activation function. The bias term of each neuron is optional (i.e., can 

be 0), and is not represented in Figure 2.3. An example of activation function is the ReLU 

function: 𝑓: 𝑧 ∈ ℝ → max (0, 𝑧) . 

With these notations, the weights of an MLP layer can be represented as a matrix 

(𝑤𝑘𝑖)𝑘∈[1,𝑚],𝑖∈[1,𝑛] where 𝑚 is the number of neurons in this layer.   
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Figure 2.3: Architecture of a Multilayer Perceptron (binary classification)  

 

2.2.3. Convolutional Neural Networks 

Traditional image processing pipelines include filtering in order to extract patterns. Filtering 

involves multiple computations by sliding a kernel over an input image. Mathematically, 

each computation consists of performing a convolution 

(https://en.wikipedia.org/wiki/Convolution) between a patch of the input image – a matrix 

or a tensor – and a kernel – also a matrix or a tensor of the same size as the patch image 

matrix/tensor.  

Hence, it is logical to think that applying multiple different kernels can extract various 

features from an image. In addition, more implicit patterns may be learned by leveraging 

the hierarchical nature of ANN, that is by applying successive layers of multiple kernels. 

This intuition led to the development of Convolutional Neural Networks (CNN), a type of 

DL algorithm that has revolutionised the field of object detection and recognition.  

Figure 2.4 illustrates the architecture of a simple CNN applied to the task of binary 

classification. An input 2D image is represented as a matrix of numbers.  As an example, a 

convolution is performed between a sub-matrix of the input and a kernel matrix of 
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dimension 2x2. More globally, for a kernel matrix of size 2x2 (𝑤𝑖𝑗)𝑖,𝑗∈{1,2}and for a sub-

matrix (𝑥𝑖𝑗)𝑖,𝑗∈{1,2} , the result of the convolution is given by: 𝑤11. 𝑥11 + 𝑤12. 𝑥12 +

𝑤21. 𝑥21 + 𝑤22. 𝑥22 . This operation is performed on the whole input to generate a feature 

map corresponding to this kernel. In particular, a stride must be defined that sets the 

amount of movement the kernel filter has over the image. For instance, a stride of 1 means 

the kernel filter moves one pixel at a time. For a given kernel size, the smaller the stride is, 

the larger the output feature map is. Thus, one convolutional layer consists of many feature 

maps that correspond to many different kernels applied to the input layer. A pooling 

operator is then used to reduce the dimension of the feature maps. This step plays the role 

of a regularizer for the network. Next, the feature maps are flattened into a numerical 

vector that is input to a fully connected layer (FCN). The FCN has the same architecture as 

an MLP, and it returns two logits in the case of a binary classification.   

Generally, a CNN has many convolutional blocks (convolutional+pooling layers). Many 

variants of CNN architectures exist, including, for instance, VGG (Simonyan & Zisserman, 

2015), ResNet (He et al., 2015), DenseNet (Huang et al., 2018).  

 

Figure 2.4: Architecture of a simple CNN for binary classification.  

 

In neuroimaging, we typically work with 3D image volumes. Training a 3D CNN is possible, 

but technically challenging because the number of parameters to optimise soars because, 
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relative to the 2D CNN, the input image, the kernels, and the feature maps are 3D tensors 

instead of 2D matrices.  

 

2.2.4. Transformer 

In late 2022, ChatGPT sparked a revolution by democratising the use of Large Language 

Models (LLMs).  ChatGPT is derived from a particular type of Natural Language Processing 

(NLP) algorithm called a Transformer (Vaswani et al., 2017). This kind of algorithm is of 

interest because both neuroimaging and the field of NLP share a need to consider spatio-

temporal features when building models. 

Recently, Transformer algorithms (Vaswani et al., 2011) have risen to dominance in NLP. 

Transformers have also inspired new approaches in medical image processing (Bedel et al., 

2022; Kan et al., 2022; Luo et al., 2021; Malkiel et al., 2022; Nguyen et al., 2020; Thomas et 

al., 2023; Yu et al., 2022; Zhang et al., 2021; Zhao et al., 2022), demonstrating the relevance 

of such algorithms in image analysis.  

The original architecture of a Transformer is displayed in Figure 2.5 Globally, it consists of 

an encoder part and a decoder part. In the pipeline, the inputs (e.g., the words in a text) 

are embedded as token numerical vectors that are summed with a positional encoding 

vector (that represents a function on the relative positions between the inputs). Next, there 

is a succession of multiple blocks that each include a multi-head attention module followed 

by a feed-forward network (similar to an MLP). 

The idea of the attention module is that, in order to best describe the context of a word in 

a text and understand its meaning, paying attention only to a couple of relevant words in 

the text is more efficient than considering all the words with equal importance.  

In that respect, each attention head computes weights of importance of all the words for a 

given word, and it performs this computation for all the words in the text.  

Each attention module is multi-head, meaning that various sets of weights can be 

computed for a given word. The multi-head design serves to find more interesting patterns 

that could be relevant for the task, as CNNs do with multiple kernels in one convolutional 
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layer. Further, the architecture is also hierarchical, and builds implicit patterns and features 

optimised for a task during training.  

The encoder outputs are input to the decoder blocks that estimate a function of the 

encoded features in order to return consistent probabilities for a given task.   

More details on the Transformer algorithm are available in the original paper by Vaswani 

et al. (2017). 

 

Figure 2.5: Transformer architecture - adapted from Vaswani et al. (2017). 
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3. Manuscript: “BrainQCNet: a Deep Learning 

attention-based model for the automated 

detection of artefacts in brain structural MRI 

scans” 

 

Chapter 1 introduced the complex landscape and ambitions of this thesis. It demonstrated 

the value of building models using brain sMRI data to identify ASD, and ultimately, derive 

reproducible biomarkers for ASD. The creation and sharing of large-scale datasets has 

fueled great aspirations. However, upon working directly with sMRI data, I realised that 

standard neuroimaging preprocessing pipelines are ill-equipped to scale up to these goals. 

In particular, available quality control methods make this critical initial step extremely time-

consuming when handling thousands of scans. 

Seeking to develop an ASD detection pipeline that is reusable, scalable, and acceptable to 

the medical community through explainability, I wondered if DL could automate and 

accelerate quality control. Further, what is the best way to make such a tool reusable and 

improvable by the community? This study presents a new scalable model I built and shared 

for detecting sMRI quality that moves toward those goals. 

The following corresponds to a manuscript that was revised on the basis of comments 

received from three reviewers, following submission to the journal NeuroImage in June 

2022. The manuscript, authored by myself, Dr. Nico Dosenbach (Department of Neurology, 

Washington University School of Medicine, St. Louis), and my supervisor Dr. Clare Kelly, has 

now been resubmitted to the journal Imaging Neuroscience. It is re-written in English UK. 
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3.1. Abstract 

Analyses of structural MRI (sMRI) data depend on robust upstream data quality control 

(QC). It is also crucial that researchers seek to retain maximal amounts of data to ensure 

reproducible, generalisable models and to avoid wasted effort, including that of 

participants. The time-consuming and difficult task of manual QC evaluation has prompted 

the development of tools for the automatic assessment of brain sMRI scans. Existing tools 

have proved particularly valuable in this age of Big Data; as datasets continue to grow, 

reducing execution time for QC evaluation will be of considerable benefit. The 

development of deep learning (DL) models for artefact detection in structural MRI scans 

offers a promising avenue toward fast, accurate QC evaluation. In this study, we trained an 

interpretable deep learning model, ProtoPNet, to classify minimally preprocessed 2D slices 

of scans that had been manually annotated with a refined quality assessment (ABIDE 1; n 

= 980 scans). To evaluate the best model, we applied it to 2141 ABCD scans for which gold-

standard manual QC annotations were available. We obtained excellent accuracy: 82.4% 

for good quality scans (Pass), 91.4% for medium to low quality scans (Fail). Further 

validation using 799 scans from ABIDE 2 and 750 scans from ADHD-200 confirmed the 

reliability of our model. Accuracy was comparable to or exceeded that of existing ML 

models, with fast processing and prediction time (1 min per scan, GPU machine, CUDA-

compatible). Our attention model also performs better than traditional DL (i.e., 

convolutional neural network models) in detecting poor quality scans. To facilitate faster 

and more accurate QC prediction for the neuroimaging community, we have shared the 

model that returned the most reliable global quality scores as a BIDS-app 

(https://github.com/garciaml/BrainQCNet). 

 

3.2. Introduction 

Analyses of structural MRI (sMRI) data depend on robust upstream data quality control. 

This is particularly true for predictive analyses incorporating machine learning techniques, 

where artefacts and noise may severely bias results and jeopardise generalisability (Reuter 

et al., 2015; Backhausen et al., 2016; White et al., 2018; Gilmore et al., 2019). Artefacts 
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related to participant motion are a particular concern when working with very young 

participants, or those with neurodevelopmental diagnosis, such as Autism Spectrum 

Disorder and Attention-Deficit/Hyperactivity Disorder (Rauch, 2005; Nordahl et al., 2016). 

In such settings, data collection is usually a demanding and costly task, and it is crucial that 

researchers retain the maximum amount of usable data to build realistic models. 

In this age of big data, manual QC evaluation of sMRI data through visual inspection is a 

time-consuming and monotonous task, prompting the development of new tools for 

automatic (full or partial) quality assessment of brain sMRI scans (Marcus et al., 2013; 

Shehzad et al., 2015; Glasser et al., 2016; Esteban et al., 2017; Alfaro-Almagro et al., 2018; 

White et al., 2018;  Keshavan et al., 2019; Sujit et al., 2019). Such tools typically compute a 

number of diagnostic metrics using sMRI data to help researchers sort images prior to any 

analysis (Marcus et al., 2013; Shehzad et al., 2015; Glasser et al., 2016; Esteban et al., 2017; 

White et al., 2018; Alfaro-Almagro et al., 2018). For example, MRIQC (Esteban et al., 2017) 

has revolutionized QC of MRI data by providing a reliable and accurate machine learning-

based assessment of scan quality that has been made freely available to the neuroimaging 

community as an open-source application. The tool generates 64 image quality metrics, 

including Contrast to Noise Ratio and Entropy Focus Criterion (Esteban et al., 2017), chosen 

on the basis of the Preprocessed Connectomes Project (PCP) Quality Assessment Protocol 

(Shehzad et al., 2015). The MRIQC algorithm uses machine learning to find a function that 

predicts a global quality score for each scan using these metrics. Although highly accessible, 

automated, and accurate, growth in the size of datasets (e.g., thousands to tens of 

thousands of sMRI scans for database such as ABCD (Volkow et al., 2018; Karcher and 

Barch, 2021), ENIGMA (e.g., Whelan et al., 2018) and UK Biobank (Sudlow et al., 2015), 

prompts a search for developments that can further reduce execution time for QC 

evaluation. In this study, we evaluate whether deep learning models can help advance this 

goal. 

Deep learning models may prove particularly useful for the task of automated QC. While 

training a deep learning model, such as a convolutional neural network (CNN), may initially 

take longer than training a traditional machine learning (ML) algorithm (because there are 

more parameters to train), the subsequent processing and inference time is reduced 

compared to ML (which requires more data preprocessing before inference). This rapid 
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inference makes DL models more scalable for Big Data applications. Studies have already 

successfully applied DL models to the task of sMRI QC. For example, (Sujit et al.; 2019) built 

a CNN model for each axis (sagittal, coronal, axial), and used a fully connected network to 

return a final prediction based on the intermediary predictions generated by each CNN. 

Although the model performed well on an multi-site test dataset, it showed poor sensitivity 

(0.41) when applied to an independent sample. Keshavan et al. (2019) trained a CNN model 

on slices of scans from a database comprising 200 scans for which expert/gold-standard 

manual QC was available and 722 scans judged by “citizen scientists.” The AUROC for 

predicted labels (pass/fail) on a left-out (but non-independent) dataset was 0.99. The 

authors explained that this high score was due to the fact that the left-out dataset 

contained scans from similar sites as the training set and the fact that these scans were 

either very high quality or very low quality, with no intermediate quality scans included in 

the evaluation. These studies suggest that DL can usefully be applied to predict sMRI scan 

quality, but highlight the need to ensure that models are generalisable to unseen and 

independent data that is representative of the range of quality typically observed. 

Beyond generalisability, DL models suffer from a lack of interpretability. Visual attention 

models offer a means to address this. These models mimic human visual attention by 

identifying the parts of the input image most relevant to the task. For example, when 

recognising a bird species from a single image, a person might rely on specific details, such 

as the size, colour, or shape of the beak or feathers. Attention-based DL algorithms mimic 

this process such that the parts of an input that contribute most to prediction (i.e., the most 

strongly predictive features) can be identified, leading to improved interpretability. 

Here, we built on the successes of existing ML and DL approaches and leveraged the 

advantages of DL attention models to perform automated QC of sMRI data. Specifically, we 

trained the attention CNN ProtoPNet (Chen et al., 2019), as well as three standard CNNs 

(VGG19 - (Simonyan and Zisserman, 2015); ResNet152 - (He et al., 2015); DenseNet161 - 

(Huang et al., 2018)) on 2D slices of sMRI data which had been manually annotated as either 

good or poor quality. The process used by the ProtoPNet algorithm is similar to the one 

humans use when we perform manual classification of MRI scans. First, we visually search 

for the presence of artefacts, slice by slice, in 2D. To judge the quality of a given scan, we 

focus on specific features in a slice (e.g., the presence of rings or blurring) and compare 



55 

these features to prototypically corrupted scans. ProtoPNet imitates this human attention 

process artificially, and returns interpretable output: information about the areas of the 

input slice identified as being poor quality or defect-free (good). The model also provides 

another level of interpretability: it points to prototypical cases containing the predictive 

features. 

To train a deep learning model, it is crucial that the inputs are correctly labelled. We 

manually rated 980 structural MRI scans from the ABIDE 1 dataset (Di Martino et al., 2014) 

guided by (Backhausen et al., 2016), who described four types of artefacts. To train our 

algorithms, we developed an augmented training set of 270000 2D image slices, derived 

from 60 scans and a validation set of 1800 2D image slices from 12 scans, perfectly balanced 

for good quality and very poor quality slices. To identify the best-performing model, we 

tested the models on the remaining 908 scans from the ABIDE 1 dataset, which had been 

manually QCed. Finally, we evaluated the best-performing model on independent, 

multisite datasets: using 2141 scans from ABCD (Volkow et al., 2018; Karcher and Barch, 

2021), 799 scans from ABIDE 2 (Di Martino et al., 2017) and 751 scans from ADHD-200 

(Bellec et al., 2017). 

A key advantage of our algorithm over existing approaches is that it requires only minimal 

preprocessing, which dramatically reduces the total processing time for every scan. For 

instance, on a machine with a processor Intel I9-10850K, RAM 64Gb DDR4, GPU Nvidia 

GeForce RTX 3090 24 Gb, running the CPU-version of the model took 10 minutes while the 

GPU version took 50 seconds. On a laptop with a processor Intel i7-7700HQ, RAM 16Gb 

DDR4, GPU Nvidia GeForce GTX 1060, running the CPU-version of the model took 30 

minutes while the GPU version took 90 seconds.  Across our independent testing datasets, 

we observed excellent accuracy that matched or surpassed existing automated QC 

algorithms. In the context of the growth of open science datasets to tens of thousands of 

participants, our method could offer substantial savings in terms of time and computational 

resources. 

To facilitate fast and accurate QC prediction for the neuroimaging community, we have 

shared the model that returned the most reliable global quality scores, local predictions of 

quality, and maps and prototypes of local artefacts as a BIDS-app 
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(https://github.com/garciaml/BrainQCNet). For the fastest performance, we recommend 

using the GPU version of our app. 

 

3.3. Materials and Methods 

3.3.1. Datasets 

In our study, we used structural MRI data from ABIDE 1 (Di Martino et al., 2014), ABIDE 2 

(Di Martino et al., 2017), ADHD-200 (Bellec et al., 2017) and ABCD (Volkow et al., 2018; 

Karcher and Barch, 2021). Details of each of the datasets used are provided in Figure 3.1. 

 

Figure 3.1: Dataset descriptions and division into training, validation, and testing sets. 

 

3.3.2. Ethics statement 

The three databases used in the project - ABIDE 1, ABIDE 2, ADHD200 - are shared by the 

International Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org/). 
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Each dataset was fully de-identified and anonymized in accordance with the US Health 

Insurance Portability and Accountability Act (HIPAA). All the datasets were collected and 

shared in accordance with the local regulations on ethics and data protection. Data usage 

is unrestricted for non-commercial research purposes; it is openly shared with the scientific 

community under the licence Creative Commons BY-NC-SA. Our work with these open data 

is approved by the Research Ethics Committee of the School of Psychology at Trinity College 

Dublin. 

Data from the ABCD study were fully de-identified and anonymized, and each data-

collecting site obtained informed consent from participants and their parents/guardians. 

The ABCD study developed guidelines for ethical considerations to be applied by each data-

collecting site, and organised a hierarchy of workgroups who assessed whether each step 

of the collection process conformed to the ABCD guidelines (Clark et al., 2018). Data from 

the ABCD study were used under a Data Agreement between Trinity College Dublin and 

Washington University.   

 

3.3.3. Manual Quality Control 

One rater (MG) manually annotated 980 MRI scans from ABIDE 1. The annotation was 

guided by the work of Backhausen et al., (2016), which specified four different types of 

artefacts: (1) blurring (global or local), (2) ringing, (3) low contrast noise ratio between grey 

matter and white matter, and (4) low contrast noise ratio (CNR) of subcortical structures. 

For further details of the artefacts, please see the Supplementary Materials of Backhausen 

et al., (2016). For each scan and each artefact type, a score between 1 and 4 was given, 

such that a score of 1 indicates absence of that artefact while scores of 2, 3, and 4 indicate 

the presence of that artefact at worsening degrees of severity (where 4 is the worst). 

For each 3D scan, we also noted whether each of the four artefacts was evident either 

locally or globally. When no artefact was observed (score = 1,1,1,1), we labelled the 3D scan 

as good quality (Class 0). Otherwise, we labelled the 3D scan as poor quality (Class 1; see 

Figure 3.2). Class 1 is a wide spectrum that includes scans with localised artefacts (e.g., 

score = 1,2,2,1) as well as very low quality, globally disrupted scans (score = 4,4,4,4 and 



58 

artefacts present on all the slices of the volume). These labels - Class 0 and Class 1 - were 

used as the true values on which our models were trained and tested. 

 

 

Figure 3.2: Description of our system for manual sMRI scan quality annotation 

 

3.3.4. Training and Validation Datasets 

To create a set of images on which to train our deep learning algorithm, we identified 30 

high quality scans (randomly selected from those labelled Class 0) and 30 highly 

corrupted/poor quality scans (randomly selected from all the scans labelled Class 1 and 

scored 4,4,4,4) from the 980 ABIDE 1 scans we had manually annotated. We also created a 

within-training validation set comprising 6 further high quality Class 0 scans and 6 very low 

quality Class 1 (i.e. score=4,4,4,4 and artefact present on all the slices) scans. Importantly, 

these training and validation sets included all the highly corrupted scans (i.e., 

score=4,4,4,4). We did this to provide a balanced training (same number of Class 1 and 

Class 0 scans) and to maximise the chances of obtaining meaningful prototypes 

representative of scan artefacts and corruption. 

Chen et al. (2019) found that the ProtoPNet algorithm worked better on cropped images, 

so each 3D scan was tightly cropped to remove empty space, then converted from Nifti 

format to 2D PNG images (using Med2Image https://github.com/FNNDSC/med2image). 

For each scan there were between 150-200 2D slices for each of the 3 orientations (sagittal, 
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coronal, axial); resulting in approximately 450-600 images per scan. The first and last 20 

slices of each image stack were discarded since they contained little brain tissue. Taking a 

random sample of 50 slices per axis, per scan, we created a training set comprising 4500 

high quality and 4500 poor quality 2D slices from all the 60 scans in the training set. A 

validation set of 1800 slices, also balanced for quality, was created in the same way. 

Next, the training set was augmented with a set of transformations chosen randomly from 

a uniform distribution (using the library Augmentor 

https://github.com/mdbloice/Augmentor) which rotated (probability of 1, maximum left 

rotation of 15 degrees, maximum right rotation of 15 degrees), skewed (probability of 1, 

random skewing, magnitude of 0,2), left-right flipped (probability of 0,5) and sheared 

(probability of 1, maximum left shearing of 10 degrees, maximum right shearing of 10 

degrees) the images. This yielded an augmented training set of 270000 images. Data 

augmentation is used to prevent overfitting in deep learning, thus improving 

generalisability of the algorithms.  

All 2D images from good quality scans (Class 0) were defined as Label 0 and all 2D images 

from poor quality scans (Class 1) were defined as Label 1. The algorithm was trained to 

perform a binary classification between Label 0 and Label 1 2D slices using the augmented 

training set (n = 270000 slices), and validation accuracy was computed every 2 epochs (n = 

1800 slices). An epoch is a hyperparameter that defines the number of times that the 

learning algorithm has optimised the parameters on the entire training dataset. This 

process of data preparation, training, and validation is summarised in Figure 3.1.  

Since predictions were performed at the level of slices, to generate a global prediction for 

each scan, we computed the proportion of slices with a prediction of Label 1 (poor quality) 

and applied a threshold of 0.5. If greater than 50% of slices for a given scan were predicted 

Label 1, the entire scan was classified as Class 1 (poor quality). Below this threshold, the 

entire scan was classified Class 0 (good quality). We note that this is an arbitrary threshold 

and that different thresholds may be preferable, depending on the particular goal of 

subsequent analyses. Our BIDS-app (https://github.com/garciaml/BrainQCNet) returns a 

CSV file containing scan identifiers and probability scores, allowing for the specification of 

a new threshold for tailored scan classification. 
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3.3.5. Testing set for Model Selection 

To identify the best-performing model (see Section 3.3), we generated predictions for the 

remaining 908 scans from ABIDE 1 (Di Martino et al., 2014), which we had manually 

annotated. For each scan, 450-600 2D slice images were created using the process 

described above (Section 3.3.4). 

 

3.3.6. Independent Testing sets for Evaluation 

After identifying the best-performing model, we performed an evaluation using 

independent testing sets comprising 2D slice images created using the process described 

above, for 3690 sMRI scans obtained from the following sources (see Figure 3.1): 

● 2141 scans from ABCD (Volkow et al., 2018; Karcher and Barch, 2021). These scans 

had been manually QC’ed by two or more reviewers (Hagler et al., 2019), following 

the recommendation from the ABCD Data Analytics and Informatics Core (DAIC) 

(Saragosa-Harris et al., 2022), with ternary classification: pass, questionable, fail; 

● 799 scans from ABIDE 2 (Di Martino et al., 2017) with QC classification generated by 

the MRIQC algorithm (see Section 3.3.8, below); 

● 750 scans from ADHD-200 (Bellec et al., 2017). These scans had been manually 

QC’ed by 1 or 2 human raters (Bellec et al., 2017) with binary classification: pass, 

fail. 

 

3.3.7. Deep Learning Algorithm 

The algorithm we used, ProtoPNet (Chen et al., 2019), is a deep learning attention model 

that reproduces the human manual process for classifying images. The network consists of 

a regular convolutional neural network, followed by a prototype layer and a fully connected 

layer with weight matrix and no bias. Here, we compared three different architectures for 
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the regular convolutional network: VGG19 (Simonyan and Zisserman, 2015), ResNet152 

(He et al., 2015) and DenseNet161 (Huang et al., 2018). These three models are well known 

deep learning algorithms for image classification, and have shown good performance for 

2D images (Simonyan and Zisserman, 2015; He et al., 2015; Huang et al., 2018). In machine 

learning, it is common to compare different types of algorithm for a given problem, to 

detect overfitting and to identify the best-performing algorithm (Hastie et al., 2009). 

In their approach, Chen et al. (2019) constrained each convolutional filter to be identical to 

a latent training patch, to make every convolutional filter interpretable as visualisable 

prototypical image parts. In our study, the “prototypes” or “prototypical images” 

corresponded to the Class 0 (good quality) and Class 1 (poor quality) images of the 

augmented training set. The algorithm works, in part, by comparing images in the validation 

and test sets to parts of the prototypes. The number of images selected randomly as 

prototypes during each epoch of training was set to 2000. 

In the ProtoPNet global architecture, the prototype layer computes similarity scores 

between the convolutional filters of the input image and the ones from the 2000 

prototypes at a fixed epoch. The similarity scores are computed with an inverted L2 norm 

distance. 

Chen et al. (2019) explained that given a convolutional output 𝑧 =  𝑓(𝑥), the j-th prototype 

unit 𝑔𝑝𝑗
in the prototype layer 𝑔𝑝 computes the squared 𝐿2 distances between the j-th 

prototype 𝑝𝑗 and all patches of 𝑧 that have the same shape as 𝑝𝑗, and inverts the distances 

into similarity scores. The result is an activation map of similarity scores whose value 

indicates the strength of similarity between the input image and a prototype. 

Mathematically, the prototype unit 𝑔𝑝𝑗
 computes 𝑔𝑝𝑗

(𝑧) = 𝑚𝑎𝑥𝑧 ∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑧)𝑙𝑜𝑔((||𝑧̃  −

𝑝𝑗||2² + 1)/(||𝑧̃  − 𝑝𝑗||2² + 𝜖))  . The function 𝑔𝑝𝑗
 is monotonically decreasing with 

respect to ||𝑧̃ − 𝑝𝑗||2 (if 𝑧̃ is the closest latent patch to 𝑝𝑗). If the output of the j-th 

prototype unit 𝑔𝑝𝑗
 is large, then there is a patch in the convolutional output that is (in 2-

norm) very close to the j-th prototype in the latent space, and this in turn means that there 

is a patch in the input image that has a similar concept to what the j-th prototype 

represents. 
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Next, the fully connected layer predicts the label of the input image from the 2000 similarity 

scores. We obtained probability scores by applying the softmax function to the output 

logits of the fully connected layer. In theory, this method of regularisation and comparison 

should improve the generalisability of the algorithm. More mathematical details of the 

ProtoPNet model are given in (Chen et al., 2019); Figure 3.3(b) illustrates its architecture in 

our context.  

We initiated training using ImageNet (Deng et al., 2009), drawn from the model zoo of 

Pytorch (https://pytorch.org/serve/model_zoo.html). We used the same initialisation 

parameters as previous experiments (Chen et al., 2019), including 5 “warming” epochs for 

which no accuracy was computed (where each epoch is a step during which the algorithm 

is optimised by all the images of the training set). Because of the GPU memory demands of 

this process, optimization is achieved iteratively using small batches of data. Here, we used 

the same batch sizes as (Chen et al., 2019): 80 for the training and 100 for the testing phase. 

During training time, we validated every 2 epochs by assessing the prediction accuracy of 

the model for slices from the scans in the validation set. 

We trained our models in a distributed way on AWS cloud instances of type p3.8xlarge and 

p3.16xlarge initialised with the AMI Deep Learning. The instances correspond to 4 or 8 

NVIDIA V100 GPUs. We trained ResNet152 on 20 epochs and VGG19 and DenseNet161 on 

30 epochs. We saved models and associated prototypes every 10 epochs. 
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Figure 3.3: The ProtoPNet approach for automatic QC of brain sMRI scans. (a) Patches taken 

from input 2D slices of the training set; (b) Architecture of the ProtoPNet model; (c) 
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Example of a top-1 prototype (i.e., the prototype from the training set with the highest 

score for similarity with the input patch) for a given input 2D slice. 

 

3.3.8. MRIQC 

MRIQC (Esteban et al., 2017) was conceived as a tool to permit more reliable and efficient 

QA/QC of MRI data through visual reports. It integrates a classifier to provide an automatic 

assessment of the quality of brain structural and functional MRI scans. The MRIQC classifier 

is based on a machine learning algorithm that was trained on a large number of metrics of 

quality previously extracted and computed from raw scans. As outlined in the introduction, 

these metrics were chosen as part of the Preprocessed Connectomes Project (PCP) Quality 

Assessment Protocol (Shehzad et al., 2015)  to harmonise the assessment of the quality of 

brain MRI scans (Shehzad et al., 2015), like the signal-to-noise ratio. The output of MRIQC 

is a score and a binary prediction (pass/fail) for each scan. 

This method is reliable (accuracy estimated to 76%±13% on new sites, using leave-one-site-

out cross-validation, accuracy of 76% on a held-out dataset of 265 scans; Esteban et al., 

2017), and widely employed. 

Here, we used the MRIQC classifier to generate predictions of the quality of each scan on 

ABIDE 2 (Di Martino et al., 2017; 799 scans). We used the default MRIQC threshold for 

classification. In particular, we used the BIDS-app poldracklab/mriqc:0.9.6 (on DockerHub) 

to run the MRIQC classifier as is.  We treated these MRIQC-based predictions as the 

“ground truth” against which we compared the results of our algorithm. 

We also compared the distribution of the scores returned by MRIQC for ABIDE 1 (n = 980 

scans; Di Martino et al., 2014) with the distribution of scores returned by our models. In 

particular, we examined the discrimination between good quality scans (score=1,1,1,1) and 

medium quality (artefacts present only locally on the volume and/or medium intensity 

artefacts) and low quality ones (score=4,4,4,4 and artefacts present on all the slices of all 

the volume). 
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3.3.9. Comparison with traditional CNN models 

To provide a comprehensive evaluation of the attention model (ProtoPNet) approach, we 

also built three traditional CNN models for comparison. To do this, we used the pre-trained 

CNN models, VGG19, ResNet152, DenseNet161, drawn from the model zoo of Pytorch 

(https://pytorch.org/serve/model_zoo.html). We used the same training and validation 

sets, learning parameters, and methods described above. 

 

3.3.10. Data and Code availability 

Three of the datasets used in the project - ABIDE 1, ABIDE 2, ADHD200 - are openly shared 

by the International Neuroimaging Data-sharing Initiative 

(http://fcon_1000.projects.nitrc.org/). Access to ABCD data is available upon request 

(https://nda.nih.gov/abcd/request-access). 

All global predictions of quality for the 4670 scans we used from the ABIDE 1 & 2, ADHD200 

and ABCD databases are available through the GitHub repository: 

https://github.com/garciaml/BrainQCNet_paper_results. 

To maximise the reproducibility of our analyses and usability of our model, all the code to 

build the BIDS-apps is available on two other GitHub repositories 

(https://github.com/garciaml/BrainQCNet_CPU for users of CPU machines and 

https://github.com/garciaml/BrainQCNet_GPU for users of GPU machines compatible with 

CUDA technology). Non-containerized version for CPU is also available 

(https://github.com/garciaml/BrainQCNet_CPU_non_containerized). 

We have integrated the best-performing QC model into an open-source BIDS-app 

(Gorgolewski et al., 2017), to share it with the neuroimaging community in a ready-to-use 

format. Documentation for our BIDS-app for CPU or GPU is available here: 

https://github.com/garciaml/BrainQCNet. We have also shared our trained CNN baseline 

models for reuse: https://github.com/garciaml/BrainQCNet_CNN_GPU . 
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The following BIDS-apps are available on DockerHub: 

● garciaml/brainqcnet-cnn: the best CNN model (which provides a 

control/comparison for the model based on ProtoPNet architecture); 

● garciaml/bids-pytorch-cuda: a template for deep learning BIDS-app running on 

GPU/CUDA machines using the Pytorch framework; 

● garciaml/brainqcnet: the best-performing model identified in this study, for use on 

GPU/CUDA machines; 

● garciaml/brainqcnetcpu: the best-performing model of this study, for us on CPU 

machines. 

Our apps and code are available under the Apache License, Version 2.0, January 2004. 

We have also created and shared two demo videos explaining how to run our app on CPU 

and on GPU machines compatible with CUDA technology (links available on 

https://github.com/garciaml/BrainQCNet). 

 

3.4. Results 

3.4.1. Annotations 

Manual QC inspection of 980 scans from ABIDE 1 (Di Martino et al., 2014) identified 564 

high quality scans (Class 0), 36 very low quality scans (i.e. globally corrupted and 

score=4,4,4,4; which we used in the training and validation sets), and 380 scans with either 

local artefacts or with mild-moderate global corruption. Local ringing (likely reflecting 

motion) was the most commonly occurring local artefact, and was often combined with 

other artefact types. 
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3.4.2. Training performance 

In the results and figures below, we use the following naming convention: the prefix “proto-

” corresponds to the ProtoPNet algorithm, while the suffix indicates the CNN architecture: 

V19 for VGG19, R152 for ResNet152, or D161 for DenseNet161 (see Section 2.7). 

We obtained excellent accuracy for the detection of good (Class 0) and bad (Class 1) quality 

slices during training. From epoch 10, accuracy for the three attention models - proto-V19, 

proto-R152, proto-D161, was above 99% on the Training set and above 95% on the 

Validation set. This means that more than 99% of the 270000 training images were 

accurately classified from epoch 10. Likewise, more than 95% of the 1800 validation slices 

were accurately classified from epoch 10. Looking at performance on the validation set, the 

model proto-D161 out-performed proto-V19 and proto-R152 (see Figure 3.4, left).   

The traditional CNN comparator models also converged quickly (see Figure 3.4, right). The 

CNN models (VGG19, ResNet152, DenseNet161) trained on 15 epochs were used as 

comparators for the main attention models (proto-V19, proto-R152, proto-D161) in all 

further analyses. 

 

 

Figure 3.4: Evolution of accuracy across epochs for the Training and Validation sets; (left) 

training performance of the ProtoPNet models; (right) training performance of the 

traditional CNN models. 
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3.4.3. Selecting the best model using ABIDE 1 

As described above (Section 3.3.4), predictions (Class 0/1) were performed at the level of 

2D slices from a given scan. To generate a global prediction for each scan, we applied a 

threshold such that if >50% of slices for a given scan were predicted Label 1, the entire scan 

was classified as Class 1 (poor quality). Below this threshold, the entire scan was classified 

Class 0 (good quality). Producing a binary scan-level class prediction is useful in the QC 

context, because it provides a pass (Class 0) or fail (Class 1) outcome. However, there are 

likely to be applications for which an examination of the value of the proportion itself might 

be warranted, since this value gives more information about the quality of the scan.  In 

analyses and comparisons performed below, we have operationalised this proportion as a 

probability - specifically, it is the frequentist probability that a given scan is corrupted by an 

artefact. Similarly, there will be applications where a different threshold (e.g., >0.4 = Class 

1) may be preferable, depending on the particular goal of subsequent analyses. Our BIDS-

app (https://github.com/garciaml/BrainQCNet) allows for the specification of a threshold 

for scan classification. 

Table 3.2 compares the specificity and sensitivity scores for each model. While specificity 

is very high (>95%) for all the models (with the exception of MRIQC = 91.1%), sensitivity is 

relatively low. The highest sensitivity is achieved by the model proto-R152 trained on 10 

epochs (47.89%) followed by the MRIQC classifier (41.58%). This may be explained by the 

fact that since the most severely corrupted scans were used for training, the Test set 

contains scans that are generally of lower and more variable severity of artefact and poor 

quality. Scans of moderate quality (less severe global artefact, or very localised artefact) 

likely yield probabilities between 0.4 and 0.5. This means that the Class predicted is 0 (good 

quality), the scan is of moderate rather than high quality. Supplemental Figure A1.2 in 

Appendix 1 shows the distribution of probabilities for each model and each dataset. 

Table 3.2 compares the classification accuracies for global quality of the Training, 

Validation, and Test sets, obtained for each of the models, including MRIQC and the CNN 

models. These results show that the best model for the prediction of sMRI scan global 

quality is proto-R152 trained on 10 epochs. This model is at least as accurate as MRIQC and 

the CNN models. Supplemental Figures A1.1 and A1.2 in Appendix 1 provide further 

illustrations of the distribution of probability scores across models. 
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Model Training  

 (60 scans) 

Validation 

(12 scans) 

Test 

 (908 scans) 

    

All Scans 

artefact-free 

Class 0 

(528 scans) 

With artefact 

Class 1 

(380 scans) 

proto-D161 10 

epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 69.8% 

AUC = 0.775 

Sp. = 99.4% Sens. = 28.7% 

proto-D161 20 

epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 64.7% 

AUC = 0.774 

Sp. = 100% Sens. = 15.5% 

proto-D161 30 

epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 62% 

AUC = 0.758 

Sp. = 100% Sens. = 9.2% 

proto-R152 10 

epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 75.4% 

AUC = 0.825 

Sp. = 95.3% Sens. = 47.9% 

proto-R152 20 

epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 68.7% 

AUC = 0.811 

Sp. = 99.6% Sens. = 25.8% 

proto-V19  

10 epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 67.2% 

AUC = 0.823 

Sp. = 99.6% Sens. = 22.1% 

proto-V19 Acc. = 100% Acc. = 100% Acc. = 70.0% Sp. = 99.1% Sens. = 29.7% 



70 

20 epochs AUC = 1 AUC = 1 AUC = 0.849 

proto-V19  

30 epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 71.8% 

AUC = 0.847 

Sp. = 98.5% Sens. = 34.7% 

MRIQC_CLF Acc. = 96.7% 

AUC = 0.767 

Acc. = 100% 

AUC = 1 

Acc. = 70.4% 

AUC = 0.724 

Sp. = 91.1% Sens. = 41.6% 

CNN-

DenseNet161 

15epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 68.1% 

AUC = 0.787 

Sp. = 99.6% Sens. = 24.2% 

CNN-ResNet152 

15 epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 69.3% 

AUC = 0.792 

Sp. = 99.4% Sens. = 27.4% 

CNN-VGG19 

15 epochs 

Acc. = 100% 

AUC = 1 

Acc. = 100% 

AUC = 1 

Acc. = 68.6% 

AUC = 0.781 

Sp. = 99.6% Sens. = 25.5% 

Table 3.2: Accuracy (Acc.) and ROC AUC (AUC) scores for Training, Validation, and Test sets. 

Specificity (“Sp.”) and Sensitivity (“Sens.”) scores on the testing set. For each of the 

attention models, performance after 10, 20, and 30 training epochs (parameter 

optimization steps) is shown. 

We identified proto-R152 (after 10 epochs) as the best model among those compared. 

Supplemental Figure A1.3 in Appendix 1 shows the distributions of probability scores for 

the proto-R152 model for ABIDE 1 scans with different types/levels of severity of artefact. 

As described above, each algorithm selected 2000 prototype images from the augmented 

training set of 270000 images during each training epoch. Figure 3.3 and Supplemental 

Figures A1.5 and A1.6 in Appendix 1 provide examples of the prototypes. Examination of 
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the prototypes for proto-R152 after 10 epochs suggested a set of diverse prototypes that 

were highly relevant for the type of artefacts detected in the ABIDE I dataset. 

Further, the distribution of accuracies across categories and sites does not appear to 

suggest a site effect (see Supplemental Table A1.5 in Appendix 1), and there was no 

difference in the global distribution of probabilities between the three axes (sagittal, 

coronal, axial). 

 

3.4.4. Evaluation using ABCD (2141 scans) 

The ABCD dataset was annotated with gold-standard manual QC judgments thanks to the 

workgroups performing data collection and quality control (Karcher and Barch, 2021). We 

tested our algorithm on 2141 of these manually QCed scans. Figure 3.5 compares the 

distribution of probabilities between QC categories (pass, questionable, fail) for these 2141 

ABCD scans, computed by the best-performing model (proto-R152 trained on 10 epochs). 

It shows that, although there is some overlap, the central tendency and distribution of 

probability scores differ between pass and fail categories. There is greater overlap between 

scores of the questionable and pass categories, which is to be expected. We confirmed this 

observation by performing Mann-Whitney U-tests (because the normality assumption for 

a T-test was not verified for any of the samples; see Supplemental Table A1.2 in Appendix 

1). 
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Figure 3.5: The distribution of probabilities between the true QC categories (pass, 

questionable, fail) for ABCD data (2141 scans), computed by proto-R152 trained on 10 

epochs. 

Table 3.3 shows that our algorithm showed better accuracy for the category “fail” than the 

comparison models. Conversely, the three CNN baseline models and MRIQC (tested on 410 

of the 2141 scans, due to the time required for processing) initially performed better than 

proto-R152 when predicting the category “pass”. Upon closer inspection, we found that 

311 “pass” scans had probabilities between 0.5 and 0.6. When these scans are removed 

and only scans with probabilities lower than 0.5 or greater than 0.6 are retained, accuracy 

was 96.4% for the pass category. It is possible that our algorithm detected mild artefacts 

that were not considered significant by human raters. Accordingly, depending on the 

application, we suggest a second verification - either manual checking or a second model - 

for scans with “borderline” probabilities (0.5-0.6). 
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ABCD (2141 scans) pass questionable fail 

proto-R152 10 epochs Accuracy = 82.4% class 0: 255 

class 1: 304 

Accuracy = 91.4% 

MRIQC (on 410 scans 

only) 

Accuracy = 90.4% class 0: 43 

class 1: 7 

Accuracy = 76.1% 

DenseNet161 - 15 

epochs 

Accuracy = 99.9% class 0: 484 

class 1: 75 

Accuracy = 70.7% 

ResNet152 - 15 

epochs 

Accuracy = 99.9% class 0: 498 

class 1: 61 

Accuracy = 67.2% 

VGG19 - 15 epochs Accuracy = 99.2% class 0: 445 

class 1: 114 

Accuracy = 81.8% 

Table 3.3: Accuracy of predictions for each of the manually determined QC categories (pass, 

questionable, fail) for ABCD data (2141 scans). 

 

3.4.5. Evaluation using ABIDE 2 (799 scans) and ADHD-200 (750) 

To further evaluate our tool using independent data , we ran the MRIQC classifier on 799 

scans from the ABIDE 2 dataset and treated its predictions as ground truth. The MRIQC 

classifier predicted 588 Class 0 (pass) scans and 211 Class 1 (fail). Accuracy for our proto-

R152 was 75.5%. The ROC AUC score was 0.72. 

We also evaluate our model using the ADHD200 dataset, which includes manual QC (pass, 

fail) annotations for 750 scans. Our proto-R152 model attained an accuracy score of 79.2% 
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and a ROC AUC score of 0.76. Sensitivity was greater than for the CNN baseline models but 

specificity was lower. These results are summarised in Table 3.4. 

 

 ABIDE 2 - QC prediction by MRIQC ADHD200 

 All 588 

uncorrup

ted scans 

- class 0 

211 

corrupted 

scans - 

class 1 

All 711 

uncorrupted 

scans - class 

0 

39 corrupted 

scans - class 1 

proto-

R152 10 

epochs 

Acc. = 75.5% 

AUC = 0.718 

Sp. = 

83.5% 

Sens. = 

53.1% 

Acc. = 79.2% 

AUC = 0.76 

Sp. = 80.2% Sens. = 61.5% 

DenseNet

161 

15 epochs 

Acc. = 80.1% 

AUC = 0.726 

Sp. = 

94.6% 

Sens. = 

39.8% 

Acc. = 90.0% 

AUC = 0.747 

Sp. = 92.4% Sens. = 46.2% 

ResNet15

2 

15 epochs 

Acc. = 79.8% 

AUC = 0.742 

Sp. = 

93.7% 

Sens. =  

41.2% 

Acc. = 88.4% 

AUC = 0.674 

Sp. = 90.9% Sens. = 43.6% 

VGG19 

15 epochs 

Acc. = 79.5% 

AUC = 0.679 

Sp. = 

94.7% 

Sens. =  

37.0% 

Acc. = 89.3% 

AUC = 0.696   

Sp. = 91.6% Sens. = 48.7% 

Table 3.4: Accuracy (“Acc.”), ROC AUC (“AUC”), Specificity (“Sp.”) and Sensitivity (“Sens.”) 

scores for the proto-R152 and CNN comparison models for ABIDE 2 (true quality  

annotations obtained by the predictions of the MRIQC classifier) and ADHD200. 
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3.4.6. Model interpretability 

What features of the input data does our model rely on for prediction? This question relates 

to the interpretability of the model, which is often challenging for deep learning models, 

relatively to conventional machine learning methods. Interpretability is important, not only 

for revealing the input features that contribute most to classification, but also for pointing 

to opportunities for model improvement. 

First, we considered the prototypes (the 2000 images from the augmented training set of 

270000 images selected during each training epoch) used by the attention models (proto-

V19, proto-R152, proto-D161) and assessed whether these were well balanced in terms of 

the types of artefacts represented. We identified the top 5 prototypes (i.e. the 5 prototypes 

with the highest similarity scores with patches of 2D input slices) for each of the three axes 

(axial, sagittal, coronal) and observed that two prototypes (ringing and blurring) were 

highly prevalent among the top 5 (Figure A1.4 in Appendix 1). We observed that the 

prototypes used by the best-performing model, proto-R152 exhibited greater diversity and 

less redundancy than the ones used by proto-D161 and proto-V19. 

Second, to evaluate artefact localization, we examined whether the areas that the proto-

R152 algorithm compares (the focus of “attention”) between an input slice and associated 

top-prototypes (prototypes with the highest similarity scores to the input slices) appeared 

relevant. We selected 100 2D slices at random from the original training set of 62 Class 1 

scans from ABIDE 1, and examined the top 5 prototypes and the associated attention maps. 

One rater - Melanie Garcia - estimated that 52.4% of the attention maps were visually 

meaningful, in that artefacts were visible on the 2D image. For the remaining maps, either 

the artefact appeared elsewhere in the slice, or no obvious artefact could be detected by 

eye. Two examples of such attention maps are provided in Figures A1.5 and A1.6 in 

Appendix 1. This outcome suggests that while there is some congruence between human-

identified and automatically identified artefacts, the algorithm may detect and rely on 

information that is not visible to the human eye. Future work will evaluate the attention 

maps and performance at the local scale in greater detail. 
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3.4.7. BIDS Docker app 

We developed a BIDS-app (Gorgolewski et al., 2017) to share our model with the 

neuroimaging community. It is available on the open-source platforms GitHub and 

DockerHub. The model and instructions are available at: 

https://github.com/garciaml/BrainQCNet. The GPU/CUDA version is optimal. The average 

time to process a 3D sMRI scan using was about 1 minute 30 seconds on a laptop with one 

GPU Nvidia GEFORCE GTX 1060 (6GB memory) and 50 seconds on a machine with one GPU 

Nvidia RTX 3090 (24GB memory). While we strongly recommend the GPU version, there is 

also a CPU version available. Runtime will depend on the architecture available; in our 

experience, the average time to process a scan was about 30 minutes on a laptop with Intel 

Core I7-7700HQ processor (16GB memory), while it took about 10 minutes on an Intel Core 

i9-10850K (64GB memory). 

 

3.5. Discussion 

In this age of “big data'', manual quality control of T1-weighted MRI scans is a time-

consuming task requiring substantial experience and training. Our goal was to further 

advance the automatic detection of artefacts in sMRI scans by increasing the efficiency of 

the process. We trained an attention deep learning algorithm, ProtoPNet, paired with 

several different CNN architectures for the convolutional layer, to classify minimally 

preprocessed sMRI scans as pass/good quality and fail/poor quality. Specifically, the 

algorithms yielded class (0/1) predictions at the level of 2D image slices. These were 

converted to a probability value for each scan by computing the proportion of slices 

classified as fail/poor quality. Binary pass/fail global scan-level predictions were then 

generated by applying a threshold of 50% to the probability values. We evaluated our 

models’ performance by comparison to a reference tool in neuroscience (MRIQC) and to 

three traditional (non-attention) CNN models. Training, validation, and test sets comprised 

4598, largely openly available sMRI scans from a large number of data collection sites, 

enabling the validation of the best-performed model using fully independent data. 



77 

Across convolutional layer architectures, the attention model ProtoPNet combined with a 

ResNet152 CNN architecture and trained on 10 epochs showed the best performance. On 

the first, non-independent, testing set (908 scans from ABIDE 1; Di Martino et al., 2014), 

this model performed equally as well as the reference tool, MRIQC (accuracy for high 

quality scans: 95.27% vs 91.1% for MRIQC; accuracy for medium and low quality scans: 

47.89% vs 41.58% for MRIQC). Proto-R152 was also more sensitive than traditional CNNs, 

although less specific. On the second, independent, testing set (2141 scans from ABCD; 

Volkow et al., 2018; Karcher and Barch, 2021), the model showed excellent (91.4%) 

accuracy for low quality scans (i.e. high sensitivity). For high-quality scans, our model 

showed good prediction accuracy (82.4%), but this was lower than that of comparison 

models, including MRIQC (90.4%) and the CNN baseline models (from 99.2% to 99.9%). 

When we examined this more closely, we found that scans with a prediction falling in the 

mid-range of probabilities [0.5; 0.6] contained a mixture of good quality scans and 

moderately corrupted scans with more localised artefacts. If this “borderline” range was 

excluded, our model exhibited excellent accuracy for both pass and fail classes (accuracy 

for pass scans: 96.4%; accuracy for fail scans: 92.2%). 

These data illustrate an advantage of our model - the ability to adjust global classification 

thresholds, or to isolate scans with probabilities falling within a specific range for further 

quality assessment. These parameters can be adjusted to make the classification categories 

more or less inclusive according to study needs. For applications where large samples are 

available and very high quality (artefact-free) data are required (e.g., computation of 

cortical thickness), the conservative 0.5 threshold could be retained. In other words, all the 

scans with a returned probability higher than 0.5 could be ruled out. This would have the 

disadvantage of removing some relatively good quality scans but the advantage of ruling 

out a greater proportion of lower quality scans than any other automatic method. If, on the 

other hand, a researcher had a smaller sample and less stringent quality requirements, a 

more liberal threshold of 0.6 could be set. This would mean that some scans with low 

severity or localised artefacts would be included in the study, but would offer the 

advantage that no good quality scans would be unduly eliminated. A third possibility is for 

researchers to retain all scans that have a global probability lower than 0.5, and to run one 

of our CNN models (or to manually evaluate or run MRIQC) on scans that have a global 

probability between 0.5 and 0.6 to separate the good from moderately corrupted scans. To 
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facilitate these possibilities, our BIDS-app (https://github.com/garciaml/BrainQCNet) 

outputs a CSV file containing probability scores for each scan. 

Our study demonstrates that deep learning is a promising method for increasing the speed 

of scan quality evaluation by reducing the computational time required, without 

compromising classification accuracy. Importantly, preprocessing was minimal - avoiding 

even the need for data reorienting, since our model was trained to process transformed 

(rotated, skewed, sheared) 2D image slices from the three axes (sagittal, coronal, axial). 

This simplifies the process compared to approaches where knowing the data orientation is 

necessary (Sujit et al., 2019). To generate a global prediction for a single 3D scan on a GPU 

machine, our model currently takes 1 minute to process one scan (50 seconds on a machine 

with one GPU Nvidia RTX 3090, 24GB memory; 1 minute 30 seconds on a laptop with one 

GPU Nvidia GEFORCE GTX 1060, 6GB memory). On a CPU machine, our model is slower but 

still relatively fast (10 minutes on an Intel Core i9-10850K; 64GB memory; 30 minutes on 

an Intel Core I7-7700HQ processor, 16GB memory). We have openly shared our code so it 

can be further adapted to other architectures. 

In order to save resources and encourage sustainable practices, we have also shared the 

global scores predicted by our best model for the scans we used from ABIDE 1 and 2 (Di 

Martino et al., 2014; Di Martino et al., 2017), ADHD200 (Bellec et al., 2017) and ABCD 

(Volkow et al., 2018; Karcher and Barch, 2021). The scores are available through our GitHub 

repository: https://github.com/garciaml/BrainQCNet_paper_results. In addition, we have 

shared a version of the app containing the traditional (non-attention) CNN models. Even 

though our data showed that these algorithms are less sensitive (have a greater number of 

false negatives), they nonetheless show excellent accuracy (true negatives) for good quality 

(pass) scans. These characteristics may be of use for certain applications or may offer 

possibilities for further refinement. 

Deep learning models often lack interpretability - attention models reflect an attempt to 

address this. As implemented here, the attention ProtoPNet model enables the localisation 

of regions in the input images that contribute significantly to classification. This might help 

to identify specific brain regions that are more vulnerable to artefacts, such as motion, or 

highlight a scanner quality issue that can be addressed to avoid future data loss. We have 
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made it easy to inspect regions exhibiting local artefacts using our BIDS-app, using the 

parameter “n_area.” Details on how to do this can be found in the documentation. 

Future work will focus on improving our algorithm by running further experiments with 

other CNN-bases, such as ResNet34 or DenseNet121, and examining the effects of 

prototype selection. In addition, we plan to increase the training set, as well as the variety 

of artefacts in the set of prototypes, since our approach was not exhaustive. It is likely that 

signals in the background are leveraged by the current attention algorithm and this 

behaviour should be studied more precisely. To take a wider view, it is clear that MRI scan 

quality is a continuous spectrum; pass/fail (good/bad) thresholds can seem arbitrary and 

simplistically binary. Scan quality would be better captured by a more sophisticated label, 

but this is very difficult to implement concretely. Moreover, reliance on human observers 

as the ground truth for scan quality assessment introduces its own limitations, including 

subjectivity and inter-observer variability. Human judgment is inherently subjective and 

can vary significantly between observers, leading to potential inconsistencies in the ground 

truth data. Even experienced clinicians or researchers may have biases or blind spots that 

affect their evaluations. Furthermore, human observers may not be able to detect subtle 

or complex patterns in data that advanced computational methods can uncover, 

potentially leading to underestimation of a model capabilities. The ground truth 

established by human observers is often limited to the knowledge and assessment criteria 

available at the time, which may evolve with further research. Future work should explore 

these limitations to understand the potential and constraints of human-validated 

benchmarks in MRI quality control, and should investigate whether such a quality 

prediction can be refined by incorporating additional information about the 

location/extent of artefact.  

In addition, we chose to use native space for classification in this work instead of 

performing registration to template space on scans. This choice impacts the accessibility 

and interpretability of the data; certain anatomical details may be more pronounced and 

easier to analyse in native space, while the variability across subjects can make other 

information more challenging to interpret for the algorithm. Although processing scans in 

native space accelerates each run, it would be interesting to train a model with registered 

brains to determine which approach better captures inter-individual variability. 
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Investigating whether our approach could be applied to other MRI modalities is another 

important future direction. Quality Control of functional MRI is a considerable challenge 

that is exacerbated by the advent of Big Data. Future work will examine whether our 

approach can be adapted for data with a temporal dimension so that it could be applied to 

fMRI data in a framewise manner to enable faster and automated data quality control. 

There is further scope for improvement of our algorithm and app - particularly in terms of 

processing speed. While the model already exhibits fast performance on GPU, we have not 

yet attempted to optimise the implementation by better distributing the computations or 

better use of infrastructure types. These possibilities will be investigated for future versions 

of the app, to further foster reusability. 

Finally, to our knowledge, our BIDS-app is the first app that applies deep learning to 

neuroimaging and is built to be used on CUDA GPU machines. By sharing our code, we are 

providing the community with a new BIDS-app template for deep learning applications, 

facilitating the sharing of deep learning models in the community and helping to maximise 

reproducibility and collaboration. 

 

3.6. Conclusions 

In this work, we introduced a novel deep learning approach for the automatic evaluation 

of the quality of minimally preprocessed structural MRI scans. Our method is scalable to 

big datasets by taking advantage of new technologies like GPU machines with high-

computing capacity. Paths to improve our model include incorporating additional CNN 

architectures and manually selecting the prototypes used by the model to increase the 

diversity of artefacts represented during training. Our approach could be further adapted 

to functional MRI, as well as to other types of MRI scans and organs. Our model is already 

freely available for use and development by the community via the app BrainQCNet 

(https://github.com/garciaml/BrainQCNet). Since all our code is open-source, the app can 

be used as a template for future applications of deep learning in neuroimaging. 
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4. Manuscript: “Towards 3D Deep Learning for 

neuropsychiatry: predicting Autism diagnosis 

using an interpretable Deep Learning pipeline 

applied to minimally processed structural MRI 

data” 

 

Chapter 3 provided an example of an interpretable DL model that performed well when 

applied to MRI data. However, the task of detecting artefacts on a scan is solvable by a 

human whereas the task of detecting Autism on a scan is not (to my knowledge). Does a DL 

model perform as effectively on a task not achievable by humans, like predicting Autism on 

the basis of a structural MRI scan?  

In addition, Chapter 1 provided an overview of studies that have leveraged sMRI data in 

the quest to better understand the biological underpinnings of autism. Nevertheless, 

Chapter 1 also outlined the precarious framework of neuroimaging, and warned about 

biases that may be introduced as a result of preprocessing steps that imply or rely on a 

“neurotypical” baseline(e.g., normalisation to template space). What novel approaches can 

be developed to identify ASD based on structural MRI data that move away from such 

questionable preprocessing steps, yet maintain interpretability? This study proposes one 

such approach, and outlines the methodology, results, interpretations, and limitations. 

The following corresponds to a manuscript, authored by myself and my supervisor Dr. Clare 

Kelly, submitted to the journal Plos ONE in October 2022 that is currently undergoing 

revisions and due to be resubmitted by the end of September 2023. It is rewritten in English 

UK below. 
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4.1. Abstract 

By capitalising on the power of multivariate analyses of large datasets, predictive modelling 

approaches are enabling progress toward robust and reproducible brain-based markers of 

neuropsychiatric conditions. While deep learning offers a particularly promising avenue to 

further advance progress, there are challenges related to implementation in 3D (best for 

MRI) and interpretability. Here, we address these challenges and describe an interpretable 

predictive pipeline for inferring Autism diagnosis using 3D deep learning applied to 

minimally processed structural MRI scans. We trained 3D deep learning models to predict 

Autism diagnosis using the openly available ABIDE I and II datasets (n = 1329, split into 

training, validation, and test sets). Importantly, we did not perform transformation to 

template space, to reduce bias and maximise sensitivity to structural alterations associated 

with Autism. Our models attained predictive accuracies equivalent to those of previous 

machine learning studies, while side-stepping the time- and resource-demanding 

requirement to first normalise data to a template, thus minimising the time required to 

generate predictions. Further, our interpretation step, which identified brain regions that 

contributed most to accurate inference, revealed regional Autism-related alterations that 

were highly consistent with the literature, such as in a left-lateralized network of regions 

supporting language processing. We have openly shared our code and models to enable 

further progress towards remaining challenges, such as the clinical heterogeneity of 

Autism, and to enable the extension of our method to other neuropsychiatric conditions. 

 

4.2. Introduction 

Autism Spectrum Disorder (Autism) is a complex and heterogeneous neurodevelopmental 

condition characterised by divergence from typical development on a number of 

behavioural dimensions, including communication, social interaction, and repetitive or 

restricted behaviours or areas of interest (APA, Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5®), 2013). These manifest behaviours likely reflect developmental 

neurological alterations over the lifespan (Baker et al., 2019; Fishman et al., 2018; Jiang et 

al., 2018; Lake et al., 2019; McKinnon et al., 2019; Walbrin et al., 2018), a suggestion 
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supported by structural MRI studies (Bedford et al., 2020; Dickie et al., 2018; Ecker et al., 

2015; Emerson et al., 2017; Fishman et al., 2018; Ha et al., 2015; Haar et al., 2016; Heinsfeld 

et al., 2018; Hong et al., 2018, 2020; Kishida et al., 2019; Lake et al., 2019; Lord et al., 1989, 

1994; McKinnon et al., 2019; Pagnozzi et al., 2018; Pereira et al., 2018; Sha et al., 2019; 

Subbaraju et al., 2017; Yang et al., 2016; Zheng et al., 2020). Despite substantial research 

effort, however, no compelling brain-based biomarkers have yet emerged. Autism 

Spectrum Disorder is diagnosed through clinician judgment and gold standard 

observational tests, such as the Autism Diagnostic Observation Schedule (ADOS) (Lord et 

al., 1989) and the Autism Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994), typically 

around age 43 months (Van ’T Hof et al., 2021). Given the considerable heterogeneity 

inherent to the diagnosis, and the wide range of long-term outcomes, the availability of 

robust and reproducible brain biomarkers for Autism could help refine diagnoses and 

potential treatment plans, thus promoting better outcomes. The availability of predictive 

models could also help clinicians build personalized care paths (Horien et al., 2022). 

One challenge in the search for biomarkers and in the development of predictive models is 

the attainment of sample sizes that afford adequate statistical power. This challenge is 

exacerbated by clinical heterogeneity (Horien et al., 2022). Multi-site collaborative studies 

yielding well-powered samples, such as ABIDE I and II (Di Martino et al., 2014, 2017), have 

gone some way to addressing this challenge, and analyses of these samples suggest a 

distributed pattern of Autism-related structural alterations (Bedford et al., 2020; Ecker et 

al., 2015; Ha et al., 2015; Nakagawa et al., 2019; Pagnozzi et al., 2018; Pereira et al., 2018; 

Yang et al., 2016; Zhang et al., 2020). The application of multivariate approaches, such as 

machine and deep learning, offer another promising avenue for the search for brain-based 

biomarkers and the construction of predictive models. 

These methods enable the simultaneous exploration of a very large set of features, offering 

much more powerful analytical capacity than univariate approaches. To date, such 

approaches have had moderate success, with recently reported prediction accuracies (for 

Autism diagnosis) in the range of 65-70% for models built using both functional and 

structural MRI data (Arya et al., 2020; Dekhil et al., 2020; Lu et al., 2020; Wang et al., 2020). 

In an effort to boost accuracy through competition, (Traut et al., 2021) held an international 

challenge in which competing teams predicted Autism diagnosis using a large multisite 
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dataset comprising preprocessed anatomical and functional MRI data from > 2,000 

individuals. Of the 589 models submitted, the 10 best were combined and evaluated using 

a subset of unseen data (from one of the sites included in the main dataset), as well as data 

from an additional, independent acquisition site. The blended model achieved an ROC AUC 

of ~0.66 using features extracted from anatomical data only. One observation from this 

effort was the fact that prediction accuracy increased with increasing sample size. Another 

was that while prediction accuracy for the subset of unseen data was similar to validation 

accuracy, accuracy for the novel site was poorer, illustrating the challenge of 

generalisation, particularly to new data collection sites. 

Although recent gains in prediction accuracy are promising, machine learning studies 

conducted to date have two main limitations. The first is that preprocessing pipelines often 

have many steps, each of which can introduce biases to prediction models. In particular, 

preprocessing typically includes transformation to a template space, such as MNI152, 

which was created using anatomical scans acquired from neurotypical adults. Template 

normalisation may therefore negatively impact the ability to detect Autism-related 

alterations in brain structure, introduce biases, and lead to poorer reproducibility (Horien 

et al., 2022). A second limitation is that datasets used for prediction tend to be clinically 

heterogeneous, but this heterogeneity is not explicitly accounted for in the models, leading 

to inconsistent results between separate datasets (Benkarim et al., 2022). Many Autistic 

participants have a secondary diagnosis, which is often another psychological condition 

such as ADHD or anxiety, or a neurological condition such as epilepsy or Fragile X syndrome 

(Ecker et al., 2015; Pagnozzi et al., 2018; Sha et al., 2019). Ignoring these comorbidities may 

introduce biases or lead to non-specific biomarkers (Ecker et al., 2015), since in such 

analyses, the label “autism” is not well delimited. 

In the current study, we sought to develop a prediction pipeline that could overcome these 

challenges. To do this, we trained 3-dimensional deep learning models to predict Autism 

diagnosis from minimally preprocessed structural MRI data, to avoid biases introduced by 

template normalisation. To address the influence of clinical heterogeneity, we built our 

models using a large sample of 1329 patients (521 with autism) without comorbidities, 

following the classical framework of train-validate-test. To test if the patterns identified by 
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the best models were robust to comorbidity, we tested the three best models on a second 

dataset comprising 270 patients (155 with autism) with comorbid diagnoses. 

Deep learning models can extract meaningful implicit features during the optimization 

process, which minimises the preprocessing required and ultimately reduces prediction 

time. While 2D deep learning models are increasingly popular, 3D deep learning is not 

widely used in medical imaging applications, in part because of the large number of 

parameters to optimise (greater than in 2D) and concerns related to interpretability. To 

address the challenge of extracting information about predictive features (i.e., 

interpretability), we leveraged recently developed methods to build an interpretation 

pipeline that identifies predictive brain areas while avoiding the requirement for template 

normalisation. 

In this paper, we described our novel pipeline for interpretable 3D deep learning prediction 

of Autism diagnosis from structural MRI data. In our proof-of-concept analyses, our models 

achieved the same prediction accuracy as is typical for machine learning models, while 

avoiding the potential biases introduced by template normalisation. Our interpretation 

pipeline identified a set of regions that replicated well across datasets (including 

participants with comorbidities), and models, and which converged with previous 

structural imaging studies on Autism. To facilitate further development of our pipeline, we 

have openly shared all our code through GitHub (https://github.com/garciaml/Autism-3D-

CNN-brain-sMRI). 

 

4.3. Materials and Methods 

4.3.1. Data and Quality Control 

We used T1-weighted structural MRI data from the ABIDE I (980 scans) and II (857 scans) 

datasets (Di Martino et al., 2014, 2017) and 140 scans from ADHD200 (Bellec et al., 2017). 

We performed quality control using BrainQCNet (Garcia et al., 2022), retaining scans with 

a probability score below 60% as advised in (Garcia et al., 2022); 797 scans from ABIDE I, 

704 from ABIDE II and 98 from ADHD200 remained after this step. 



87 

 

Our primary analysis focused on participants with a diagnosis of Autism but no reported 

comorbidity and comparison participants with no psychiatric diagnosis. Excluding 

participants with comorbidities resulted in a dataset of 1329 participants which were used 

for training, validating and testing the models. 

All participants in the testing set (n = 65, 26 with Autism) were obtained from different 

(independent) data collection sites than participants in the training (n = 1074, 421 with 

Autism) and validation (n = 190, 74 with Autism) sets. 

To examine the impact of comorbidities on prediction accuracy, we created a second 

evaluation set of participants who had at least other diagnoses in addition to Autism, such 

as ADHD, phobias, depression, and anxiety. This dataset (testing set 2) contained scans 

from 270 participants (155 with Autism diagnosis). 

Further details on the datasets are provided in Appendix 2, A2.1 - Detailed Data 

Description. 

 

4.3.2. Preprocessing 

We employed a minimal preprocessing pipeline that did not apply transformation to 

template space, to avoid any impact of brain normalisation on the detecting of Autism-

related alterations in brain structure. Instead, we applied FSL’s Brain Extraction Tool (BET; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) to remove non-brain tissue, followed by a 

number of minor non-deforming transformations, to prepare our data to be processed by 

the deep learning algorithm: 

● Resolution homogenization: the ABIDE datasets comprise data from different data 

collection sites, each of which has different scanners and acquisition protocols, 

Accordingly, the T1-weighted volumes have heterogeneous voxel spacing that could 

bias the analysis. We used Linear Interpolation to perform resampling, with the 

Resample function from the Python library TorchIO 

(https://torchio.readthedocs.io/_modules/torchio/transforms/preprocessing/spat
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ial/resample.html#Resample), built from the Insight Toolkit 

(https://itk.org/Doxygen/html/index.html) to resample all volumes to a fixed 

resolution of 1.5mm*1.5mm*1.5mm. We also reordered the data to RAS+ 

orientation. 

● Intensity normalisation: We removed the noise generated by voxel value outliers in 

every image by truncating the intensities to the range of 0.5 to 99.5 percentiles 

using the RescaleIntensity function from TorchIO. We also normalised each volume 

by z-scoring, i.e. by subtracting the mean intensity value 𝑣𝑚 to each voxel value 𝑣𝑖  

, and then dividing by the standard deviation 𝑣𝑠𝑑 , obtaining a new voxel value 𝑣′𝑖  .  

     𝑣′𝑖 = (𝑣𝑖  −  𝑣𝑚)/𝑣𝑠𝑑    

● Cropping or Padding: We cropped or padded each volume to obtain a uniform shape 

for all the volumes of 256*256*256. This shape was sufficiently large to fit the full 

brains and was also appropriate as an input shape to our deep learning models, in 

view of the filters applied all along each network (described in detail below).   

 

4.3.3. Classification models in 3D  

Comparing different types of algorithm enables the detection of overfitting and retention 

of the best type of algorithm for the given problem (Hastie et al., 2009). We compared two 

models: (1) DenseNet121 (Huang et al., 2018) and (2) Med3D-ResNet50 (Chen et al., 2019), 

based on well-known CNN architectures with good 2D performance (Huang et al., 2018; 

Chen et al., 2019). DenseNet121 is more compact and has fewer parameters than ResNet50 

making it possible to train on 3D data, while Med3D-ResNet50 (Chen et al., 2019) is a 

version of ResNet50 that has been pre-trained on medical images, including brain sMRI 

scans. Logically, pre-trained models enable better convergence and performance on new 

data and tasks of the same context. We fine-tuned Med3d-ResNet50 to adapt it to our task 

by training the last convolutional layers (corresponding to the 4th convolutional block). We 

also appended the last classifier block, consisting of a global average pooling layer and a 

fully connected layer (see Appendix 2, A2.2 - Model architectures). 
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Like in (Huang et al., 2018) and in (Chen et al., 2019), we used the ReLU function as the 

activation function, the cross-entropy loss, and the Adam optimiser with a fixed learning 

rate of 0.001. 

 

4.4. Interpreting outcomes of deep learning algorithms 

4.4.1. Guided Grad-CAM 

In order to interpret and evaluate the reliability and relevance of our 3D deep learning 

models, we used Guided Grad-CAM (Selvaraju et al., 2019), which combines guided 

backpropagation (Springenberg et al., 2015) and Grad-CAM (Selvaraju et al., 2019). This 

represents a good trade-off between the precision offered by feature maps produced by 

interpretability algorithms and the processing time required. Mathematically, guided Grad-

CAM (Selvaraju et al., 2019) is an element-wise product of the results of the two algorithms. 

It returns a high resolution map of the fine-grained features that is also class-discriminative. 

In the context of our study, for a given trained CNN model (either DenseNet121 or 

Med3DNet-ResNet50), we used guided Grad-CAM to generate one “attention map” for 

each participant at the inference step (i.e. the first layer of the CNN). This attention map 

matched the input scan resolution and voxel dimensions, and its voxel values corresponded 

to scores of “importance” for the prediction of Autism/non-Autism by the trained CNN 

model. Mathematically, for a given input participant’s scan, we computed 𝑞50% - the 

median of the voxel values of the attention map obtained with guided Grad-CAM. We then 

built a binary mask by returning all the voxel values lower than  𝑞50% to 0 and all voxels 

greater than 𝑞50% to 1. We used this mask 𝑀 to identify the brain regions that are the most 

important for the prediction of Autism across the sample and across algorithms. 

 

4.4.2. HighRes3DNet 

As noted above, a key feature of our preprocessing pipeline was our avoidance of 

normalisation to a group template. This creates a significant challenge for the identification 
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of the brain areas that were most predictive of diagnosis across participants. We solved 

this challenge by segmenting individual scans into anatomical units and combining this  

information with the mask 𝑀 created in the preceding step. 

HighRes3DNet (Li et al., 2017) is a deep learning algorithm that segments brain MRI scans 

following the GIF brain parcellation (V3, http://niftyweb.cs.ucl.ac.uk/program.php?p=GIF ; 

(Cardoso et al., 2015)). The GIF algorithm was especially built to be robust to brain 

morphological differences, especially those encountered in populations with atypical brain 

development like Autism (Cardoso et al., 2015).  

We segmented each participant’s brain with the HighRes3dNet algorithm (first 

homogenising scans to voxel size 1mm*1mm*1mm using linear Interpolation). The 

resulting segmented images were resampled to 256*256*256 images of voxel size 

1.5mm*1.5mm*1.5mm to match the resolution of the attention maps obtained from the 

guided Grad-CAM algorithm, while retaining the segmented voxel values. 

Specifically, we know that the information on the transformations applied to the 

segmented image is contained into the affine matrix of the resulting transformed 

segmented image.   

Mathematically, we note 𝑋 =  [𝑥, 𝑦, 𝑧, 1], the column vector of the coordinates x, y, z of a 

voxel in a segmented image obtained with HighRes3DNet (voxel size: 1mm*1mm*1mm), 

𝑌 =  [𝑥′, 𝑦′, 𝑧′, 1] the column vector of the coordinates x’, y’, z’ of a voxel in the 

corresponding transformed segmented image (size: 256*256*256; voxel size: 

1.5mm*1.5mm*1.5mm), and  𝐴 ∈  |𝑅4 its affine matrix. We note 𝐵, the inverse matrix of 

𝐴, such that 𝐵𝐴 =  𝐴−1𝐴 =  𝐼, where 𝐼 is the identity matrix in 𝑅4.  

Thus, we have the relationship:  

𝐴𝑋 =  𝑌 

⇔ 𝑋 =  𝐵𝑌 , ∀ (𝑥′, 𝑦′, 𝑧′) ∈  [1, 256]³.  

Thus, if we take 𝑥′, 𝑦′, 𝑧′ the coordinates of a voxel in the mask 𝑀 obtained from guided 

Grad-CAM, we can obtain the corresponding 𝑥, 𝑦, 𝑧 voxel coordinates in the segmented 

image, and thus get the voxel value and the name of the area at (𝑥, 𝑦, 𝑧). 
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Applying this procedure for every scan, we obtained a table containing, for every area of 

the HighRes3DNet atlas, a relative frequency corresponding to the number of voxels in the 

area with value = 1, divided by the total number of voxels in this area in the segmented 

image. This relative frequency corresponds to the proportion of the area that is considered 

important for the prediction by a CNN model, for that participant. These proportions were 

then used to compare different brain areas and to draw up a ranking of brain areas for each 

model, dataset (training, validation, testing sets), and type of prediction (True Positives, 

True Negatives, False Positives, False Negatives), to improve interpretability for our CNN 

models. 

 

4.4.3. Machine and Code availability 

We trained our model on a GPU Nvidia RTX 3090 (24 GB memory) with a batch size of 2.  

We openly shared the code of this project on GitHub, in the repository:  

https://github.com/garciaml/Autism-3D-CNN-brain-sMRI. The models are also shared so 

that they can be reused as pre-trained models for similar applications. 

 

4.5. Results 

4.5.1. Training Performance 

For all the probability scores of all the models, we chose a threshold of 0.5 for the class 

“Autism diagnosis” to define the prediction and compute the accuracy and ROC AUC scores.   

We trained each model up to 100 epochs and computed model accuracy using the 

validation set (190 scans) every two epochs.  Details on the validation set accuracy during 

training for the two models DenseNet161 and Med3d-ResNet50 are provided in Appendix 

2, Figure A2.1  in A2.3 - Performance of the models. 
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For ResNet50, the best validation set accuracy was 62.6%, achieved at 42 epochs. For 

DenseNet121, 66.3% accuracy was achieved at 32 epochs and 67.4% was achieved at 70 

epochs. Next, we compared the performance of these three best models (one ResNet50 

model and two DenseNet121 models) for the prediction of diagnosis in the training, 

validation, and testing sets. 

 

4.5.2. Prediction Performance: Autism diagnosis 

For the prediction of Autism diagnosis, the three best models behaved differently, as shown 

by the Receiver Operating Characteristic curves in Figure 4.1. Med3d-ResNet50-42ep 

overfitted the data - the accuracy and ROC AUC scores were very high on the training set 

(94.2% and 99.9% respectively) but much lower on the validation (acc = 62.6% and AUC = 

62.1%) and testing sets (acc = 53.8% and AUC=57.3%). DenseNet121-32ep appeared to be 

more stable in terms of its overall performance on the training (acc = 65.5% and AUC = 

69.1%), validation (acc =66.3% and AUC = 68.8%) and testing (acc =55.4% and AUC = 60.7%) 

sets. DenseNet121-70ep had better performance on the training (acc = 69.7% and AUC = 

77.1%) and validation (acc = 67.4% and AUC = 68.1%) sets than DenseNet121-32ep, but 

poorer performance on the testing set (acc = 40% and AUC = 38.1%). 

Table 4.1 displays the sensitivity and specificity of each model for each dataset. 

DenseNet121-32ep exhibited high specificity on the training and validation sets, but low 

sensitivity. Paradoxically, it had high sensitivity but low specificity on the testing set. 

DenseNet121-70ep behaved similarly on the testing set while on the training and validation 

sets, sensitivity and specificity were balanced and fairly high. Finally, for Med3d-ResNet50-

42ep, sensitivity and specificity were very high on the training set, unbalanced on the 

validation set with low sensitivity and very high specificity, and balanced on the testing set, 

but with moderate values. 
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Sensitivity on the second testing set, which included participants with comorbidities, was 

low for all models. This demonstrates that when the training and testing sets include only 

participants without known comorbidities, predicting Autism diagnosis for participants 

with comorbidities is particularly challenging. Here, we found that this produces a large 

increase in False Negatives in particular. One potential explanation is that neuroimaging 

markers of Autism are less salient when individuals have another diagnosis involving similar 

or other neuroimaging markers. Another explanation is that more data is needed to 

adequately train DL algorithms on the whole spectrum of Autism in the context of 

comorbidities. 

Further details and comments on the performance of the models are given in Appendix 2, 

A2.3 - Performance of the models, and a comparison of the predicted scores with the 

scores of diagnosis are given in Appendix 2, A2.4 - Analysis of ADI-R and ADOS scores, age, 

gender and full IQ. 

 

 

Figure 4.1: Receiver Operating Characteristic curves for all the three models and all the four 

datasets 
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 Med3dNet - Resnet50; 

trained on 42 epochs 

DenseNet121; 

trained on 32 epochs 

DenseNet121; 

trained on 70 epochs 

Sensitivity Train: 85,3% 

Validation: 17,6% 

Test: 50% 

Test 2: 8,4% 

Train: 32,8% 

Validation: 36,5% 

Test: 84,6% 

Test 2: 7,6% 

Train: 68,2% 

Validation: 66,2% 

Test: 69,2% 

Test 2: 31% 

Specificity Train: 100% 

Validation: 91,4% 

Test: 56,4% 

Test 2: 87,8% 

Train: 86,7% 

Validation: 85,3% 

Test: 35,9% 

Test 2: 100% 

Train: 70,8% 

Validation: 68,1% 

Test: 20,5% 

Test 2: 73% 

Table 4.1: Sensitivity and Specificity of each model on each dataset (training, validation, 

testing sets with no comorbidity and testing set 2, which included patients with 

comorbidities). 

 

4.5.3. Interpretability: True Positive discriminative ROIs 

We segmented each participant’s scan using HighRes3DNet (GIF parcellation), to extract a 

measure of “prediction importance” (the output of the guided Grad-CAM algorithm) for 

each of the three best models. We identified the regions that best contributed to True 

Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN), across the 

whole dataset (training + validation + testing 1 & 2 sets). 

 

For every pair of model and dataset, we defined the “most predictive” regions as those 

with relative frequency values (see Section 4.4.2, above) greater than the 90% percentile. 



95 

This yielded 16 regions for each model and dataset pair. To compare the most predictive 

regions across models and datasets (training, validation, testing Set 1 - no comorbidities, 

testing set 2 - with comorbidities), we summed the presence (1) or absence (0) of the most 

predictive regions over all the datasets, separately for True Positives and True Negatives. 

Across all three models, 79 areas were found to be most predictive for True Positives, 

including 26 areas spanning both left and right hemisphere, 23 areas in the left hemisphere 

only, 3 areas in the right hemisphere only, and the Corpus Callosum. Retaining only areas 

that replicated across all four datasets (training, validation, and test 1/2), we found that 

areas in the left hemisphere were more replicable than those in the right, and that the 

majority of areas were in the prefrontal cortex.  In Appendix 2, the section A2.5 - Most 

important regions for the prediction of True Positives provides Table A2.6 that 

summarises the most replicable regions across models and datasets that are important to 

predict True Positives, and a detailed analysis of these most replicable regions.  

Overall, 17 regions were found to best predict True Positives across models and replicate 

across datasets (training, validation, and testing 1/2). These regions are shown in Figure 

4.2 and include regions in the left frontal lobe (medial frontal cortex, inferior and middle 

frontal gyrus, lateral and medial precentral gyrus, anterior and subcallosal cingulate gyrus, 

and posterior orbital gyrus), left temporal lobe (temporal pole, planum temporale, 

parahippocampal gyrus), parietal lobe (parietal operculum, supramarginal gyrus, and 

superior parietal lobe), as well as left parietal white matter and the right ventral thalamus., 

Looking at these data another way, and taking the regions that were most predictive across 

datasets and which replicated across the three models, we again obtained left hemisphere 

regions that are located in the frontal lobe - middle and inferior frontal gyrus (pars 

triangularis) and medial precentral gyrus - and in the limbic system and its associated 

structures - anterior cingulate gyrus, subgenual cingulate gyrus, parahippocampal gyrus 

(Figure 4.2(b)).  
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Figure 4.2: (a) Regions most predictive of Autism diagnosis; (b) Most predictive regions that 

replicate across datasets, (c) Most predictive regions for boys; (d) Most predictive regions 

for girls. 

 

● Effect of gender 

Regions important for predicting True Positives for boys were different from those for girls. 

Regions common to both genders were located in the left parietal lobe: parietal operculum, 

supramarginal gyrus, and superior parietal lobule (Figure 4.2(c), (d)). Globally, regions 

found important to predict True Positives for boys were more replicable across the datasets 

(training, validation, testing 1/2) than for girls. For boys, several left prefrontal regions were 

replicably predictive of Autism diagnosis: left anterior cingulate gyrus, middle frontal gyrus, 

inferior frontal gyrus (pars triangularis; ResNet50-42ep only), medial precentral gyrus 

(DenseNet121-32ep) and precentral and parahippocampal gyrus (DenseNet121-70ep).  

In Appendix 2, section A2.8 - True Positives by Gender shows these results in Tables A2.10 

and A2.11. 
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● Relationship with age 

Autism has been associated with disrupted brain development across the lifespan. To 

assess whether there were any developmental trends in the most predictive areas, we 

created four age categories (5-10yrs, 10-15yrs, 15-20yrs, >20yrs) and identified the most 

predictive (True Positives) regions for each category, separately for boys and girls. In 

Appendix 2, section A2.9 - True Positives by Gender and Age shows these results. 

Our results showed that the most discriminative regions varied with the age. In particular, 

left precentral gyrus, central operculum, and posterior orbital gyrus replicably predicted 

True Positives in boys aged 5-10yrs, while left inferior frontal gyrus (pars triangularis), 

subcallosal/subgenual cingulate cortex, and supramarginal gyrus, were most predictive for 

boys aged 10-15 years old. 

In addition, we found that the replicability of each region decreased as age increased. 

Indeed, we found that the left and inferior frontal (pars triangularis) gyrus, posterior orbital 

gyrus and putamen were most predictive for 15-20 years old, but only for participants 

without comorbidities. Left temporal areas - parahippocampal gyrus, superior temporal 

gyrus and temporal pole - were most predictive for males aged 20-64yrs without 

comorbidity.  

Examining global prediction performance for these different age groups reveals other 

interesting trends, such as a decrease in the number of False Negatives and True Negatives 

with increasing age, for both boys and girls. This suggests that our prediction of Autism 

diagnosis tended to be more sensitive but less specific as age increased.   

 

● True Negatives 

We adopted the same approach described above to identify regions most predictive of True 

Negatives (i.e., absence of an Autism diagnosis). The results (see A2.6 - Most important 

regions for the prediction of True Negatives in Appendix 2) showed that the most 

replicable regions for predicting True Negatives were in the left hemisphere and included 

the frontal operculum, the precuneus, the planum polare, the inferior occipital gyrus, the 
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occipital fusiform gyrus, the superior occipital gyrus and the thalamus proper. It also 

included the cerebellar vermal lobules VI and VII.   

Another result is that the regions left precuneus, parietal operculum, and superior parietal 

lobe, and right thalamus were important (at various degrees of replicability and for 

different models) for the prediction of both True Negatives and True Positives. The 23 other 

regions important for the prediction of True Negatives are different from those that were 

important to the prediction of True Positives. 

 

● Bad predictions - False Positives and False Negatives 

We adopted the same approach described above to identify regions most predictive of 

False Positives (i.e., incorrectly predicted Autism diagnosis) and False Negatives 

(i.e.,  incorrectly failed to predict Autism diagnosis). The results (see A2.7- Most replicable 

regions for False Positives and False Negatives in Appendix 2) showed that no highly 

replicable regions (replicable over all datasets) were found for False Positives. However, 

regions with a high level of replicability for False Positives for DenseNet121-70 overlapped 

with replicable regions for the prediction of True Positives for the two other models and 

included the middle frontal gyrus, precentral gyrus medial segment, and triangular part of 

inferior frontal gyrus. This illustrates differences in the calibration of each algorithm and 

demonstrates the importance of comparing different models. For False Negatives, the most 

replicable regions were again found in the left hemisphere and included the left frontal 

operculum, left precuneus, left superior temporal gyrus, left planum polare, left inferior 

occipital gyrus and left occipital fusiform gyrus.   

 

4.5.4. Does image background contribute to model predictions? 

As a final test, we examined whether image background (i.e., information outside the brain) 

contributed to predictions. For Med3d-ResNet50-42ep the relative frequency of the 

Background (RF) is the smallest (RF=0.97%) and the second smallest for DenseNet121-70ep 

(RF=0.28%), meaning that this area is not considered predictive for the models. For 
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DenseNet121-32ep, it is among the last 4% informative areas of the model (RF=0.74%). 

These results confirm that the models use information from inside rather than outside the 

brain to make a prediction, supporting their validity. 

 

4.5.5. Multi-site effect 

We observed an inhomogeneous consistency of the distributions of probability scores 

between the different sites (see Appendix 2, A2.10 - Multi-site effect). We displayed the 

accuracy scores for every site in the whole dataset (training+validation+testing sets) in 

Appendix 2, Table A2.20, and it also confirmed the multi-site effect. 

 

4.6. Discussion 

This study outlines and demonstrates a novel approach for inferring Autism diagnosis from 

structural brain imaging data using 3D deep learning algorithms. To maximise the 

interpretability of the model outputs, we also used a second type of algorithm - guided 

Grad-CAM (Selvaraju et al., 2019) - to extract patterns important for the predictions. This 

step revealed a set of regions predominantly located in the left hemisphere, including 

lateral and medial prefrontal cortex, anterior cingulate, the superior temporal gyrus, lateral 

parietal regions including supramarginal gyrus, parahippocampal gyrus. The only right 

hemisphere region highlighted in our analyses was the right thalamus. The regions 

highlighted by this interpretability analysis, the brain structural features of which were 

most important for accurate inference of Autism diagnosis (i.e., True Positives), are highly 

consistent with the literature. Our predictive modelling framework has considerable 

potential to be extended to further datasets to identify and refine sensitive and specific 

brain biomarkers of Autism using MRI data. 
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4.6.1. 3D deep learning applied to minimally processed data 

To our knowledge, this is the first time that 3D-DL CNNs have been used to predict Autism 

diagnosis from 3D structural MRI scans. Our findings show that these algorithms are 

capable of inferring Autism diagnosis on the basis of structural MRIs with at least the same 

level of accuracy as traditional machine learning algorithms, while requiring a smaller 

number of training epochs. The average accuracy score (64.1%) and ROC AUC score (0.67) 

obtained for participants without comorbidities is consistent with previous machine 

learning models trained on sMRI data (e.g., (Traut et al., 2021)). The comparable accuracy 

we achieved should be viewed in the context of the speed of inference of deep learning 

models over machine learning approaches. While machine learning algorithms require 

inputs derived following extensive preprocessing of structural MRI data, including 

normalisation to template space, our deep learning models used minimally preprocessed 

data. In particular, we avoided transformation to template space, a near-universal 

requirement of neuroimaging analyses that may negatively impact the ability to detect 

structural alterations associated with the diagnosis of interest. Although our pipeline 

included some minimal preprocessing steps to address the fact that a diversity of scanners 

and acquisition protocols was used across data collection sites, resulting in heterogeneous 

voxel spacing and signal intensities. Resolution homogenization and intensity normalisation 

were applied to address these variations, and it is possible that these steps could bias the 

algorithm. Further, despite these steps, a clear effect of the data collection site was 

observable. Future studies will incorporate specific preprocessing steps like the ComBat 

algorithm (Radua et al., 2020) to integrate scan parameters during training and minimise 

site effects. 

 

4.6.2. Interpretability 

The outputs of deep learning models are not straightforwardly understandable, giving rise 

to the challenge of poor interpretability. This challenge arises because mathematically, 

deep learning models are composed of multiple functions. Each of these functions is 

nonlinear and is itself the sum of multiple functions. Further, models such as the 3D CNNs 

used in the current study have a large number of parameters that must be optimised. One 
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of the goals of our study was to address this drawback by devising a pipeline that would 

allow for the extraction of predictive brain regions, providing interpretability. Guided Grad-

CAM (Selvaraju et al., 2019) was chosen for this purpose, due to its reasonable computation 

time and its ability to return fine-grained class-specific segmentations of important 

(predictive) voxels in the input images. 

A challenge for our novel interpretability process was to identify brain areas that were 

predictive of Autism diagnosis across participants while avoiding the requirement for 

template normalisation. To address this issue, we used a segmentation algorithm to 

partition individual volumes into established anatomical regions. We used HighRes3DNet 

(Li et al., 2017) for this task because it was built to be pathology-agnostic, robust to brain 

morphology differences, and has reduced computation time compared to other algorithms 

(e.g., the GIF algorithm (Cardoso et al., 2015)). We performed a detailed analysis of the 

regions that were most relevant for inferring an Autism diagnosis, by examining true and 

false positives and negatives separately for each dataset and algorithm. We also identified 

regions that were reproducibly identified across algorithms and datasets. This detailed 

analysis is important because each model has biases, likely resulting in a differential 

weighting of anatomical features and brain areas. This analysis showed that regions of left 

prefrontal cortex (inferior and middle frontal gyrus, medial prefrontal gyrus, anterior and 

subgenual cingulate cortex), along with the parahippocampal gyrus were brain regions 

whose morphological features contributed most to the accurate inference of Autism across 

models and datasets without and with comorbidities. The areas highlighted are consistent 

with previous studies reporting Autism-related disruptions to cortical development (Chien 

et al., 2021; Nordahl et al., 2007; Pagnozzi et al., 2018; Zielinski et al., 2014) and gyrification 

processes (Pagnozzi et al., 2018; Kohli et al., 2019) in these regions. Further, also consistent 

with the literature, we found that the most predictive regions varied according to both 

gender and age, as well as the presence of comorbidities (Ecker et al., 2015; Pagnozzi et al., 

2018; Retico et al., 2016). This is consistent with observations that Autism is a complex 

condition, with patterns of neurological divergence that vary with age (Chien et al., 2021; 

Ecker et al., 2015; Pagnozzi et al., 2018; Zielinski et al., 2014) and sex (Ecker et al., 2015; 

Pagnozzi et al., 2018; Retico et al., 2016). Interestingly, the left parietal white matter was 

found to be important for accurately predicting ASD in boys. This region contains tracts that 

may connect the parietal lobe with visual regions in the occipital lobe, among other parts 
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of the brain. Girault et al. (2022) identified a significant association between sibling brain 

connectivity and proband behaviour – in relation to the SCQ questionnaire (Rutter et al., 

2003) – specifically for functional connections between the visual and posterior 

frontoparietal networks. Therefore, examining sMRI data may provide valuable insights 

and complement findings from fMRI analyses. This underscores the value of conducting 

multi-modal experiments in future research. 

Reproducibly predictive regions in the limbic system (left parahippocampal gyrus, anterior 

cingulate gyrus, and subcallosal area), dorsal medial frontal cortex, and precentral gyrus fit 

well with previous work on the role of atypical socio-emotional and motor circuitry in 

Autism (Ameis & Catani, 2015; Carper et al., 2015; Mundy, 2003; Nebel et al., 2014; 

Patriquin et al., 2016). Many of the left-hemisphere regions identified as contributing to 

accurate inference of Autism diagnosis fall within the canonical left-lateralized language 

network, including inferior prefrontal and inferior parietal regions, and the planum 

temporale in superior temporal gyrus (Kelly et al., 2010; Malik-Moraleda et al., 2022; 

McAvoy et al., 2016). Divergent structure and function in the language network is a robust 

and reproducible finding in Autism (Floris et al., 2016; Lindell & Hudry, 2013; Sharda et al., 

2016; van Rooij et al., 2018). Since early language processing appears to be an important 

predictor of long-term outcomes in Autism (Lombardo et al., 2015; Szatmari et al., 2015; 

Tager-Flusberg & Kasari, 2013) identification of early-emerging structural alterations in the 

underlying language network has the potential to yield a powerful marker of Autism or 

Autism subtypes, which could, in turn, direct individualised interventions and improve 

prognosis. 

An important caveat is that while our novel interpretation step identified which regions of 

the brain had morphological features relevant to the model-based inference of Autism, it 

did not provide information on what these morphological features were. For example, 

features such as cortical thickness, the location of the grey-white boundary, surface area, 

and gyral/sulcal morphometry could all play a role in prediction of Autism (Andrews et al., 

2017; Hong et al., 2018, 2020; Zielinski et al., 2014); and different morphological features 

may be relevant in different brain areas. While the precise nature of the Autism-related 

morphological features are not discernable from our analyses, our predictive modelling 
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analyses can be followed up with in-depth, targeted, and hypothesis-driven examinations 

of the areas highlighted in independent samples to uncover the nature of these features. 

 

4.6.3. Limitations and Ethics 

Our pipeline for prediction of neuropsychiatric diagnosis (Autism) on the basis of minimally 

preprocessed T1 MRI scans advances progress toward interpretable 3D deep learning 

applications in biological psychiatry and toward the identification of reproducible brain 

biomarkers that will help refine diagnoses and potential intervention plans across 

conditions. Our study had several limitations, however, which may be addressed in further 

refinements of our pipeline.  

First, we trained our models on 100 epochs, which is an acceptable number relative to 

other studies using 3D MRI scans (Lam et al., 2020), but which may have limited the 

convergence and optimization of the algorithms. Future work may train on a larger number 

of epochs or may employ earlystopping (Yao et al., 2007) to optimise training. Using the 

entire structural MRI scans (to explore prediction across the whole brain) may also have 

posed a challenge for convergence towards the “True” solution. Further, although we used 

a large dataset (1074 participants to train the models, 525 to validate and test the models), 

the amount of data available is still rather limited when we consider the clinical 

heterogeneity of Autism. This idea is supported by the poor prediction performance we 

observed for test set 2, which included participants with comorbid diagnoses (average 

accuracy = 46.3%, ROC AUC = 0.47 and average sensitivity = 15.7%). There are still questions 

in the literature about whether predicting a binary label, “Autism vs non-Autism” is a useful 

or appropriate endeavour, since Autism is a wide spectrum of behaviours and abilities 

which may encompass as many as four subtypes (Hong et al., 2020), and there is also 

considerable overlap of symptoms and neuromarkers across psychological conditions 

(Ecker et al., 2015). Future analyses will need to leverage even larger datasets to better 

address the clinical heterogeneity of Autism and to explore the prediction of categories 

beyond Autism and non-Autism. 
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Another limitation is related to the segmentation algorithm we used in the interpretation 

step. We used HighRes3DNet (Li et al., 2017) to obtain rapid segmentation for each brain 

using the GIF algorithm (Cardoso et al., 2015), which was built to be robust on atypically 

developing brains. The segmentation produced is rather coarse, however - the algorithm 

outputs relatively large parcels, encompassing anatomically heterogeneous regions such as 

the anterior cingulate gyrus or superior parietal lobule. Further, as noted above, while our 

interpretation process localised regions that were important for prediction of Autism, it did 

not provide information on what the predictive morphological features of those regions 

were. 

A novel aspect of this study is the decision to perform classification in native space rather 

than template space. This approach has the potential to make certain types of information 

more readily accessible, particularly those that are sensitive to individual anatomical 

variability. However, it can also make other information more challenging to learn from, as 

it may introduce variability that is irrelevant to the classification task. This trade-off 

warrants a thorough discussion. For instance, information that is spatially normalised in 

template space might become obscured or distorted in native space, while unique 

anatomical features may become more pronounced. Additional studies are necessary to 

study such effects. 

In considering the ethical landscape of our research, it is paramount to reflect on the 

implications of our findings, especially in scenarios where models exhibit high sensitivity 

but low specificity. Such outcomes, while adept at identifying true positives, also raise the 

likelihood of false positives. In the context of ASD, the consequences of false positives—

such as unwarranted difference, unnecessary intervention or treatments, and the social 

stigma associated with misdiagnosis—can be profound and, thus, must be weighed 

carefully. 

Conversely, the costs of false negatives, where true conditions go undetected, can be 

equally grave, potentially resulting in delayed or missed opportunities for early 

intervention and support. The ethical calculus of these outcomes is complex and varies 

across ASD people and contexts. Therefore, developing and producing an identification tool 

of ASD must be accompanied by a robust ethical framework that carefully considers these 

trade-offs and strives to minimise harm. 
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4.6.4. Future Directions 

There is considerable scope to extend our interpretable deep learning pipeline to the 

prediction of other neurological or neuropsychiatric conditions or to other MRI modalities. 

(Traut et al., 2021) reported that prediction of Autism was considerably improved (from 

AUC=0.66 using only anatomical MRI to AUC=0.79 using both anatomical and functional 

data) for a blended model that incorporated both functional and structural MRI data. 

Future work will examine whether functional MRI data can also improve our models. Other 

efforts to improve our model will include training the models on more epochs, exploring 

other architectures, integrating scanning parameters and other confounds such as gender 

and age, and using different and extended class labelling.  

In addition, to evaluate the costs and benefits of native space analysis more systematically, 

future work could involve a comparative study where the same classification tasks are 

performed in both native and template spaces. Metrics such as classification accuracy, 

generalisability across diverse datasets, and the interpretability of learned features could 

provide a quantitative basis for assessing the relative merits of each approach. Additionally, 

the impact of native space analysis on computational efficiency and the requirement for 

more complex data augmentation strategies should be considered. Ultimately, such 

investigations could lead to a set of guidelines or criteria for determining when native space 

analysis is most advantageous for neuroimaging studies. 

As for the paradigm chosen, our study has primarily focused on direct classification 

approaches, where the goal is to categorise MRI data into distinct classes, such as the 

presence or absence of a neuropsychiatric condition (e.g. detecting ASD). However, an 

alternative and complementary perspective is offered by normative modelling. This 

method involves constructing models of typical brain development or structure and then 

assessing individual deviations from this norm, which may be indicative of pathology. 

Normative models can be particularly informative for understanding complex 

neuropsychiatric conditions that exhibit a high degree of inter-individual variability like for 

ASD. Using unsupervised DL algorithms such as autoencoders or Generative Adversarial 
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Networks as dimensionality reduction techniques could further help to build such 

normative modelling. 

We have shared all our code (https://github.com/garciaml/Autism-3D-CNN-brain-sMRI) to 

enable other researchers to apply, reuse, and further develop our models and approach. 

 

4.7. Conclusion 

In this paper, we described a novel methodology to build a predictive model to infer Autism 

diagnosis using 3D deep learning applied to structural MRI scans, coupled with an 

interpretation step in the form of a descriptive method that identified the brain regions 

that were most important for accurate inference. Importantly, we applied our models to 

minimally preprocessed data - completely avoiding the template normalisation step, which 

may obscure diagnosis-related alterations in brain structure. We found that the predictive 

performance of our models was equivalent to that of machine learning models reported in 

the literature, while requiring less time to generate predictions (due to minimal 

preprocessing). There is considerable scope to refine our method or to incorporate other 

modalities (e.g., fMRI) to further boost predictive performance.  

Our method for interpreting the output of deep learning models revealed highly predictive 

brain regions that were consistent with the literature, demonstrating that 3D deep learning 

models produce biologically plausible results without a priori knowledge or the 

requirement for pre-computation of morphological derivatives (e.g., volumes, cortical 

thickness, surface area). Although challenges related to the clinical heterogeneity of Autism 

remain to be addressed, we have openly shared our code and models for others to build 

on and extend, and to further progress the field towards the identification of robust and 

reproducible brain biomarkers for neuropsychiatric conditions. 
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5. Project 3: Transformer and multi-tasking to 

detect ASD using rs-fMRI 

 

Chapter 4 highlighted the challenges of developing a DL algorithm that is both robust and 

interpretable for detecting ASD using structural MRI data. 

Previous work summarised in Chapter 1 highlighted an interest in utilising functional MRI 

data for ASD detection. Chapter 1 also emphasised the potential confounding effects of 

factors like age and gender on the diagnosis of ASD. 

This prompts the question: What novel approaches can be developed to identify ASD based 

on resting-state functional MRI data, which also integrate gender and age into the 

optimization of the model? This study proposes one such approach, and describes the 

methodology, results, interpretations, and limitations. 

 

5.1. Abstract 

This study pioneered applications of Transformer neural networks, a leading DL 

architecture, for decoding predictive patterns in resting-state fMRI data related to ASD. A 

methodological framework encompassing data preprocessing, cross-validation strategies, 

multi-task learning, and interpretability analyses was developed. 

While accuracy gains over single-task models were modest, multi-task approaches 

significantly altered model behaviours in nuanced ways, demonstrating the value in joint 

training. This establishes a strong basis for refinements like loss weighting and learning rate 

optimization. With hyperparameter tuning and expanded datasets, both approaches show 

promise for distilling insights about spatiotemporal brain dynamics. 

For model interpretation, reasonable initial techniques were implemented, including 

representation visualisation and LIME relevance mapping. Analysing intermediate layers, 

aggregating local explanations, and integrating alternative interpretable modules offer 
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exciting future directions. Enhanced interpretation can uncover how predictive fMRI 

patterns are encoded. 

 

5.2. Introduction 

The advent of Functional MRI (fMRI) sparked a revolution in neuroimaging in the 1990s, 

enabling visualisation of human brain dynamics with MR for the first time. This technology 

opened new avenues for psychology and neurology research, but also posed new analysis 

challenges, given its lower spatial resolution, yet high dimensionality. Key questions arose 

around modelling relationships between brain regions across the newly captured time 

dimension. While early studies focused on characterising the activity evoked by task 

performance, more recent “resting state” fMRI (rs-fMRI) studies focus on characterising 

the functional architecture revealed by correlated intrinsic (task-independent) brain 

activity (Canario et al., 2021). Low participant demands have dramatically increased 

researchers’ ability to gather fMRI data from participant groups that were often 

inaccessible to conventional task-based fMRI, including Autistic children. Together with the 

ease of pooling data across data collection sites, this advantage of rs-fMRI has enabled the 

creation of large-scale open science data repositories that include both structural and rs-

fMRI data, such as ABIDE (Di Martino et al., 2014, 2017), ABCD (Volkow et al., 2018), UK 

Biobank (Sudlow et al., 2015), ENIGMA (Thompson et al., 2020) and Healthy Brain Network 

(Alexander et al., 2017). 

In capturing activity dynamics, fMRI data may offer an important alternative avenue toward 

brain markers for ASD. It is interesting to note that some ML models built on fMRI have 

shown better ASD classification performance than those built using structural MRI data 

(Traut et al., 2021). 

There are a number of caveats, however. Traditional rs-fMRI analysis entails extensive 

preprocessing, compressing information into derived neuroimaging features like regional 

homogeneity (Jiang et al., 2018) or functional connectivity (Laird et al., 2011; Smith et al., 

2009). While neuroscientifically meaningful, the signal processing involved may discard 

predictive signals. 
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Further, unintended replicability issues and non-reproducible fMRI findings present major 

concerns (He et al., 2019; Churchill et al. 2012; Dadi et al, 2019; Traut et al., 2021) that are 

compounded by small sample sizes; large-scale well phenotyped data gathered from 

clinical groups, such as Autistic individuals, remains scarce. Standard fMRI preprocessing 

may also introduce biases that exacerbate this issue (Traut et al., 2021; Dadi et al, 2019). 

For example, (Churchill et al.; 2012) found that optimising pipelines individually revealed 

activation patterns that were absent under fixed preprocessing, demonstrating a significant 

impact of pipeline choices. 

Can deep learning help overcome these challenges? Deep learning (DL) approaches show 

promise for ASD classification, at times outperforming traditional ML techniques (Arya et 

al., 2020; Bengs et al., 2020; Dvornek et al., 2017; Eslami et al., 2019, 2021; Eslami & Saeed, 

2019; Heinsfeld et al., 2017; Hu et al., 2020; Khosla et al., 2018a, 2018b; M. Leming et al., 

2020; M. J. Leming et al., 2021; M. Leming & Suckling, 2019; J. Li et al., 2018, 2021; X. Li, 

Dvornek, Papademetris, et al., 2018; X. Li, Dvornek, Zhuang, et al., 2018; Rakić et al., 2020; 

Sherkatghanad et al., 2020; Subah et al., 2021; Traut et al., 2021; Tzourio-Mazoyer et al., 

2002; Yang et al., 2021). Unlike ML, the DL philosophy entails using data that has been less 

extensively preprocessed (LeCun et al., 2015). To date, however, many DL studies using 

fMRI data have trained their algorithms on highly processed derived functional connectivity 

matrices. Common workflows extensively process the functional data, then parcellate 4D 

scans into regions of interest (ROIs) using atlases like AAL (Tzourio-Mazoyer et al., 2002), 

extract mean time series within ROIs, and compute Pearson correlation matrices (Biswal et 

al., 1995; Dadi et al., 2019), commonly referred to as a functional connectome “fingerprint” 

(Finn et al., 2015). Viewed as graphs or concatenated 3D images, connectivity matrices have 

been classified with graphical networks or 3D CNNs for ASD (Arya et al., 2020; Khosla et al., 

2018; Leming et al., 2020; Li et al., 2021; Yang et al., 2021). For instance, Khosla et al. (2018) 

trained 3D CNNs to predict ASD diagnosis on connectivity "fingerprint" images. Similarly, Li 

et al. (2021) constructed ASD and neurotypical connectivity graphs as spectral convolution 

network templates. Despite some promising findings, Pearson correlation matrices - 

functional connectome fingerprints - may discard important temporal patterns like phase 

shifts in comparing time series, where asynchronous responses could be meaningful. Are 

there alternative methods?  
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Several studies have incorporated temporal dynamics for ASD prediction using DL 

approaches. For example, Dvornek et al. (2017) generated rs-fMRI time series embeddings 

with LSTMs for classification. (Bengs et al., 2020; Li, Dvornek, Papademetris, et al., 2018; Li, 

Dvornek, Zhuang, et al., 2018) applied high-dimensional 3D/4D convolutional networks.  

Capturing spatiotemporal representations is also critical in Natural Language Processing 

(NLP), where Transformers - described in Chapter 2 - currently reign supreme (Vaswani et 

al., 2017). Inspired by their success, Transformers have been applied in medical imaging 

(Luo et al., 2021; Nguyen et al., 2020; Zhang et al., 2021) including fMRI analysis. I give here 

an overview of novel methodological approaches developed in recent works on brain task 

and rs-fMRI processing in order to better understand how my experiments differed from 

those.  

Notably, Nguyen et al. (2020) compressed 4D task-fMRI into 3D embeddings using a 3D 

CNN, and fed these to a Transformer encoder to determine important frames for each task. 

In a similar study, Zhao et al. (2022) predicted task states from fMRI time series sequences 

using a Transformer applied to compressed spatial data. A second model took the latent 

representation for state prediction. While effective for task fMRI, the learned embeddings 

may lack interpretability and spatial relationships important for resting state modelling.  

Bedel et al. (2022) incorporated spatial and temporal dynamics via a cross-window 

Transformer with a learned CLS token summarising latent features for classification. 

Malkiel et al. (2022) used a 3D CNN autoencoder to compress volumes into input 

representations for a downstream Transformer. However, this may discard informative 

spatial interactions across timeframes, better suited to task fMRI.  

Yu et al. (2022) also applied self-supervised Transformers to infer functional networks in 

space and time. Thomas et al. (2023) compared various Transformer architectures on fMRI, 

finding pre-training on broad neuroimaging data improved generalisation for mental state 

decoding over training from scratch. Causal modelling outperformed other approaches. 

Kan et al. (2022) fed connection profiles of mean time series from known ROIs into a 

Transformer encoder. An orthonormal clustering projection enhanced discriminability for 

downstream prediction. 
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Overall, studies have demonstrated the interest of using Transformers to process fMRI 

data. However, the focus was on predicting a diagnosis or a defined brain state. No 

phenotypical or demographical data was incorporated in the optimisation of the models 

whereas gender, age, comorbidities are known confounds of MRI studies as explained in 

Chapter 1. Furthermore, several approaches are not relevant to study brain region 

interactions between various time frames (e.g. (Nguyen et al., 2020) where spatial 

information is compressed prior to analysing time series). 

In this project, I aimed to model interactions between brain regions that may underlie 

autistic functioning at rest. This requires analysing spatial relationships across time series. 

To do this, I applied Transformers to rs-fMRI data, extracting time series using the Craddock 

parcellation (Craddock et al., 2012) to represent meaningful brain regions, akin to words in 

a sentence.  

Just as Transformers find linguistic relationships, I hypothesized they could decode 

relationships between brain region activities related to Autism. In my investigation, I 

explored whether auxiliary prediction tasks—specifically, predicting demographic variables 

like gender and age—could improve autism classification, drawing parallels to multi-task 

learning. The rationale was that optimising for these additional, yet relevant, demographic 

variables may help the model learn more useful representations. Indeed, Werling & 

Geschwind (2013) contributed significantly to the discussion of sex differences in ASD (e.g. 

genetic factors, response to environment and physiological differences, biased diagnosis), 

and underscored the necessity to tailor experiments to better understand this gender 

influence. In the multi-task learning framework where sex and ASD diagnosis are 

concurrently predicted, it is also pertinent to reference Simon Baron-Cohen’s influential 

theory (Baron-Cohen, 2002). This theory suggests that ASD might be conceptualised as an 

extreme manifestation of certain male-typical traits—a form of hyper-masculinity. Known 

as the “Extreme Male Brain” theory of autism, it posits that individuals on the autism 

spectrum tend to exhibit male-associated traits, such as a heightened systemising 

mechanism and a reduced empathising mechanism, but to an extreme degree. While the 

theory has stirred debate, its alignment with observed sex differences in ASD diagnosis 

rates and the behavioural characteristics of the condition emphasises its relevance. The 

concurrent examination of sex and ASD diagnosis in this multi-task learning model could 
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provide insights that deepen the understanding of the interplay between sex differences 

and ASD, potentially shedding light on the empirical foundations of Baron-Cohen's theory 

(Baron-Cohen, 2002).  

However, contrary to my expectations, my experiments comparing single-task (autism 

classification alone) and multi-task (autism classification in conjunction with gender and 

age prediction) Transformer architectures showed no clear performance differences. It is 

important to note that these auxiliary tasks are distinct from fMRI tasks and involve 

predicting demographic information. In the discussion, I consider refinements like loss 

weighting, hyperparameter optimization, and augmented data that may better promote 

the potential of each modelling approach. 

 

5.3. Methods 

5.3.1. Data preparation 

For this project, I used rs-MRI data available from the ABIDE 1 (Di Martino et al., 2014) and 

HBN (Alexander et al., 2017) datasets, that are described in Chapter 2.  

rs-fMRI data was preprocessed with the C-PAC pipeline (version 0.4.0 for Healthy Brain 

Network (HBN) and version 0.3.9 for ABIDE 1), with global signal correction and band-pass 

filtering (0.01-0.1Hz). A functional parcellation - Craddock 200 (Craddock et al., 2012) - was 

applied, and mean time series were extracted for each of 200 regions. ABIDE 1 

preprocessed data is open source (http://preprocessed-connectomes-project.org/abide/). 

HBN data are available to researchers authorised to use the database. In total, time-series 

files for 1102 participants were available in the ABIDE 1 dataset, and time-series files for 

1096 participants were available in the HBN dataset. The total number of time series files 

used in the experiments is lower because of the preprocessing pipeline described below. 

For ABIDE 1, manual quality control annotations were provided. I retained only the scans 

where at least one rater assessed the scan to be of good quality. 1022 scans remained after 

this step. No quality control annotations were provided with the preprocessed HBN data . 
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For each participant, I first checked that every time-series had at least one non-zero value, 

that the time-series lengths were sufficiently long (the minimum length of 100 frames was 

chosen arbitrarily to retain as many participants as possible), and that time-series were 

present for each of the 200 ROIs (following the Craddock 200 parcellation). I excluded 

participant data that did not meet these conditions. This process generated time-series 

harmonised in length (100 frames) across the whole dataset. Next, each time-series was 

normalised separately by removing the mean and dividing by the standard deviation of the 

time-series. 

For ABIDE 1,  the full Sample 1 from the University of Michigan data collection site was 

selected to be the independent test set. For the HBN dataset, I left out 10% of the dataset 

as the independent test set, where each site was represented in proportion to its 

representation in the full dataset. 

The remaining data were used to train the model in a 100-fold cross-validation (CV) fashion. 

The CV was stratified on the ASD/non-ASD labels. I used the StratifiedKFold class from 

scikit-learn's model_selection module in Python to generate the folds, with the random 

state set to 42. 

Table 5.1 summarises the datasets used for each model. 
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 Training - Validation sets Testing set 

 ABIDE 1 HBN ABIDE 1 HBN 

Model 1 773 

(353 ASD) 

/ 94 

(42 ASD) 

/ 

Model 2 773 

(353 ASD, 659 

males) 

/ 94 

(42 ASD, 70 

males) 

/ 

Model 3 773 

(353 ASD, 277 

aged between 

10-15) 

/ 94 

(42 ASD, 50 aged 

between 10-15) 

/ 

Model 4 847 

(413 ASD) 

975 

(67 ASD) 

105 

(51 ASD) 

108 

(6 ASD) 

Model 5 / 975 

(67 ASD) 

/ 108 

(6 ASD) 

Table 5.1: Description of data used in training-validation sets (100-folds CV) and in testing 

set for each model 
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5.3.2. Models 

I first trained a binary classification model for ASD diagnosis using a Transformer encoder 

followed by a fully connected layer block (see Figure 5.1). For this initial experiment, I 

included data from participants with no diagnosis and those diagnosed with ASD only. 

Next, I designed a simple multitask model that utilized a shared Transformer encoder as 

the common component for feature extraction, with separate fully connected blocks 

dedicated to predicting different targets—specifically, autism classification and 

demographic variables such as gender or age (see Figure 5.2). 

In this study, the simple classification models were implemented with a cross-entropy loss 

function: 

𝐻(𝑃∗ | 𝑃)  = ∑

𝑖

𝑃∗(𝑦|𝑥𝑖)𝑙𝑜𝑔(𝑃(𝑦|𝑥𝑖; 𝜃)   

Where: 

● 𝐻 is the cross-entropy between the true class distribution 𝑃∗ and the predicted class 

distribution 𝑃 

● 𝑦 is the class 

● 𝑥𝑖  is an input instance 

● 𝜃 are the parameters of the model 

 

For the multitask models, a weighted sum of cross-entropy computations was used as the 

total loss function: 

𝐻1(𝑃1
∗ | 𝑃1)  = ∑

𝑖

𝑃1
∗(𝑦|𝑥𝑖)𝑙𝑜𝑔(𝑃1(𝑦|𝑥𝑖; 𝜃1)   

𝐻2(𝑃2
∗ | 𝑃2)  = ∑

𝑖

𝑃2
∗(𝑦|𝑥𝑖)𝑙𝑜𝑔(𝑃2(𝑦|𝑥𝑖; 𝜃2)   

𝐻𝑠𝑢𝑚 = 𝛼𝐻1(𝑃1
∗|𝑃1)  +  (1 − 𝛼)𝐻2(𝑃2

∗ | 𝑃2)  
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Where: 

● 𝐻1 is the cross-entropy between the true class distribution 𝑃1
∗ and the 

predicted class distribution 𝑃1 

● 𝐻2 is the cross-entropy between the true class distribution 𝑃2
∗ and the 

predicted class distribution 𝑃2 

● 𝐻𝑠𝑢𝑚 is the loss criterion of the model  

● 𝜃1 are the parameters of the encoder + the FC block 1 (see Figure X) 

● 𝜃2 are the parameters of the encoder + the FC block 2 (see Figure X) 

● 𝑦 is the class 

● 𝑥𝑖  is an input instance 

● 𝛼 = 0,5  (arbitrary choice) 

 

I primarily monitored accuracy and AUROC as model performance metrics, and computed 

the mean of these two scores to evaluate overall model balance. 

The Adam optimiser (Kingma et al., 2017) was used for training with a learning rate of 10-3 

and weight decay of 10-7. 

I arbitrarily set the time-series representation dimension to 16. 

The input embedder consists of one linear layer to project the input data into a 16-

dimensional embedding space, plus a positional encoding layer similar to Vaswani et al. 

(2017). 

The encoder block (see Figures 5.1 and 5.2) comprises 3 encoder layers, each containing 4 

multi-head attention modules. 

Post-encoding, the 200x16 representation of each input is flattened and passed through a 

fully connected block with 3 layers. Finally, a softmax function is applied to produce output 

probabilities. 
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Figure 5.1: Architecture of the models 1, 4 and 5. Inputs are the 200 extracted mean time 

series (CC200 atlas - Craddock et al., 2012) cropped to 100 non-null frames. The Encoder 

part is similar to a classical Transformer encoder (Vaswani et al., 2017) and returns an 

intermediate representation of the inputs. The Fully Connected layer block processes a 

flattened representation and returns the probability of ASD diagnosis. 
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Figure 5.2: Architecture of the multitask models 2 and 3. Inputs are the 200 extracted mean 

time series (CC200 atlas - Craddock et al., 2012) cropped to 100 non-null frames. The 

Encoder part is similar to a classical Transformer encoder (Vaswani et al., 2017) and returns 

an intermediate representation of the inputs. The Fully Connected layer block 1 processes 

a flattened representation and returns the probability of ASD diagnosis. The Fully 

connected layer block 2 processes the same flattened representation  and returns the 

probability of being male (for model 2, or for being aged between 10-15 for model 3). The 

two FC blocks are optimised separately, while the Encoder is optimised taking into account 

the two tasks.   
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I led experiments on 5 models: 

• Model 1 comprised a Transformer encoder followed by a fully connected block to 

predict ASD status (ASD or non-ASD) – see Figure 5.1. Model 1 was trained only on 

a subset of ABIDE 1 data, excluding participants with comorbid diagnoses. 

• Models 4 and 5 had identical architecture to Model 1 (see Figure 5.1), but were 

trained on ABIDE 1 and HBN, and HBN only, respectively. These datasets included 

participants with diagnoses other than ASD. 

• Models 2 and 3 were intended as multitask models, with a shared Transformer 

encoder and separate fully connected blocks to predict ASD status plus another 

binary target (gender for Model 2, age 10-15 years or not for Model 3) – see Figure 

5.2. The training data for Models 2 and 3 matched Model 1, excluding 

comorbidities. 

 

5.3.3. Interpretation methods 

 

To evaluate model fit, I plotted training versus validation accuracy and AUROC score curves 

over epochs to check for underfitting or overfitting. 

I defined a metric comprising the mean of accuracy and AUROC scores on the validation set 

per epoch per fold. The best metric over all epochs for each fold corresponds to the optimal 

model. Comparing best metrics across folds assessed multitask improvements. Paired t-

tests or Mann-Whitney U tests were used after verifying assumptions. 

I evaluated the best models (optimal per fold) on independent test sets to assess 

generalisation. 

To visualise representations, I computed the mean post-encoder representation across 

subjects (see models on Figures 5.1 and 5.2). Pearson correlations between all 200 regions 

were calculated, with correlations above 0.6 visualised in a chord diagram. 
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Additionally, I implemented LIME (Ribeiro et al., 2016) to locally interpret model 

predictions. For a given input, LIME approximates the decision boundary and feature 

importance for that observation. These explanations may provide insights into model 

behaviour. 

 

5.4. Results 

5.4.1. Training performance 

This section presents outcomes for the five differently designed models shown in Figures 

5.1 and 5.2. 

Models were trained for 50 epochs with validation performed at each epoch to obtain 

accuracy and AUROC scores on the validation fold. As a reminder, 100-fold stratified cross-

validation was used, so each model was trained 100 times.  

Figure 5.3 shows the evolution of accuracy and AUROC over epochs, aggregating repeated 

fold values to plot mean and 95% confidence intervals for training and validation sets. The 

models exhibit overfitting - fast convergence on training with stagnating, near-random 

validation performance. Models 4 and 5 have higher validation accuracy scores, likely due 

to imbalanced classes in the HBN dataset (~6% ASD). However, the utility of these scores is 

limited, as the models may be biased towards predicting the majority class. To mitigate this 

issue and ensure a more robust evaluation, future work could involve testing on a balanced 

dataset or employing techniques such as oversampling the minority class, undersampling 

the majority class.  
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Figure 5.3: Evolution of accuracy and AUROC over epochs; mean and 95% confidence 

intervals are represented for training and validation sets. 

 

Figure 5.4 shows a comparison of the best metrics computed on validation sets as 

(accuracy+AUROC)/2) on all the folds between the five models. The boxplots represent the 

distribution of the best metrics of all the folds for each model.  From Figure 5.4, it appears 

that there is no clear difference between Model 1, 2 and 3 best metrics, that have 

respectively a mean of m1=0.644, m2=0.660, m3=0.644, and a standard-deviation of 

s1=0.151, s2=0.148, s3=0.144. However, Model 4 and 5 appear different from the others, 

and have respectively a mean of m4=0.794, m5=0.711, and a standard-deviation of 

s4=0.078, s5=0.180. 
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Figure 5.4: Boxplots of the best metrics computed on validation sets as 

(accuracy+AUROC)/2) on all the folds between the five models. 

 

To confirm observations, I performed statistical tests comparing models under two 

conditions (simple vs multitask, ASD-only vs ASD+comorbidities, multitask gender vs age). 

Paired t-tests were suitable for comparing metric differences across folds. 

Verifying normality assumptions, all differences passed Shapiro-Wilk except Models 4 and 

5 vs 1 (see Appendix 3, Table A3.1). Thus, I used Mann-Whitney U tests for those pairs. 

Results (Table 5.2) show no significant difference between Models 1, 2, and 3 (pm1-

m2=0.435, pm1-m3=0.984, pm2-m3=0.199). However, there were significant differences 

between Model 1 and Model 4 (pm1_m4=0.0158 < 5%), and Model 1 and Model 5  (pm1_m5 < 

10-13). 
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Paired T-

test 

T dof Alterna- 

tive 

p_val CI95% cohen-

d 

BF10 power 

Model 1 - 

Model 2 

0.783 99 2-sided 0.435 [-0.02, 

0.05] 

0.103 0.149 0.176 

Model 1 - 

Model 3 

-0.0206 99 2-sided 0.984 [-0.04, 

0.04] 

0.003 0.111 0.050 

Model 2 - 

Model 3 

1.293 99 2-sided 0.199 [-0.01, 

0.04] 

0.109 0.248 0.189 

MW U-test U-val  Alternat

ive 

p_val RBC CLES   

Model 1 - 

Model 4 

8081.0  2-sided 5,17.1

0-14 

-0.616 0.808   

Model 1 - 

Model 5 

5981.5  2-sided 0.015

8 

-0.193 0.598   

Table 5.2: Statistical tests on the best metrics of the validation fold results between the 

models.   
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5.4.2. Inference on test set 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Accuracy 50% 52.1% 47.9% 67.1% 85.2% 

AUROC 0.581 0.551 0.599 0.599 0.368 

(Acc. + 

AUROC)/2 

0,541 0,536 0,539 0,635 0,61 

Specificity 0.442 0.808 0.327 0.776 0.902 

Sensitivity 0.571 0.167 0.667 0.386 0.0 

Table 5.3: Summary of test set results for each model: accuracy, AUROC, specificity, 

sensitivity. 

 

Table 5.3 presents test set results for each model, including accuracy, AUROC, specificity, 

and sensitivity. Model 5 achieved the highest accuracy (85.2%), while Models 3 and 4 

showed the top AUROC scores (0.599). Model 5 had the highest specificity (0.902) and 

Model 3 the highest sensitivity (0.667). A drop in the mean metric (Accuracy+AUROC)/2 is 

observed, with Model 4 having the best value (0.635). 

The data description in Table 5.1 shows highly imbalanced classes for Models 4 and 5 (~26% 

and ~6% ASD prevalence) compared to Models 1-3 (~45% ASD). Despite higher accuracy, 

Model 4's performance cannot be directly compared to Models 1-3 due to this imbalance. 

For example, Model 5 has 0 sensitivity but 85.2% accuracy, correctly predicting only non-

ASD participants. 
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In summary, class imbalance introduces biases making accuracy metrics non-comparable 

between models. Future work should incorporate calibration strategies for balanced 

benchmarking. No model emerges as singularly optimal, but refinements to both 

approaches show promise in advancing ASD prediction. 

 

5.4.3. Visualisation and interpretation 

The 200 Craddock atlas (Craddock et al., 2012) time series undergo transformations 

through the Transformer encoder, resulting in a 16-feature representation per region 

before the fully connected block. I computed Pearson correlations between regions under 

this implicit 16-dimensional encoding. 

To simplify visualisation, I translated the 200 Craddock regions into the 7-network Yeo atlas 

(Yeo et al., 2011). Chord diagrams in Figure 5.5 show correlation results in this Yeo space. 

"Glass brain" visualisations in Figure 5.6 depict these correlations mapped onto brain 

networks. 
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Figure 5.5: Chord representations of the correlations between the implicit representations 

of 200 regions by 16 features after the last layer of the Transformer encoder part of each 

model. The regions were translated into the Yeo Network (Thomas Yeo et al., 2011) to 

simplify the plot: “Visual” (purple) is for the Visual Network; “SM” (blue) is for the 

Somatomotor Network; “DAN” (green) is for the Dorsal Attention Network; “VAN” (violet) 

is for the Ventral Attention Network; “Li.” (yellow) is for the Limbic Network; “FPCN” 

(orange) is for the Frontoparietal Control Network; “DMN” (red) is for the Default Mode 

Network; “Uncertain” (grey) is for regions in the CC200 atlas that did not match any region 

in the Yeo atlas. Inside the circles, I represented as pink lines with varying intensity levels 

the correlations between 0.5 and 1 (no negative correlation was found to have an absolute 

value greater than 0.5). The Python library Nichord 

(https://github.com/paulcbogdan/NiChord) was used. 
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Figure 5.6: Brain representations of the correlations between the implicit representations 

of 200 regions by 16 features after the last layer of the Transformer encoder part of each 

model. The regions were translated into the Yeo Network (Yeo et al., 2011) to simplify the 

plot. Each CC200 region is represented by dot points and coloured in function of their 

correspondence with the Yeo atlas: Purple is for the Visual Network; Blue is for the 

Somatomotor Network; Green is for the Dorsal Attention Network; Violet is for the Ventral 

Attention Network; Yellow is for the Limbic Network; Orange is for the Frontoparietal 

Control Network; Red is for the Default Mode Network; Grey is for regions in the CC200 

atlas that did not match any region in the Yeo atlas. I represented as pink lines with varying 

intensity levels the correlations between 0.5 and 1 (no negative correlation was found to 

have an absolute value greater than 0.5). The Python library Nichord 

(https://github.com/paulcbogdan/NiChord) was used. 

 

In addition to visualisations, I implemented the model-agnostic algorithm LIME (Ribeiro et 

al., 2016) to locally interpret model predictions. For a given input, LIME approximates the 

decision boundary and weights feature importance for that sample. These local 

explanations can provide insights into model behaviour. 

I did not conduct a full LIME analysis across all participants, such as separating by diagnosis 

or segmenting by age, gender, and comorbidities. Proper LIME implementation requires 

optimising many parameters including data normalisation, model settings, and LIME 

hyperparameters (e.g. number of random projections). This extensive tuning enables 

robust feature importance mapping and represents an exciting area for future work to 

elucidate how models predict autism (and auxiliary targets like age and gender for 

multitask models). 

As an initial example, Figure 5.7 shows the top 10 features driving autism classification for 

one participant with only an ASD diagnosis, explaining the importance via decision 

thresholds on continuous variables. 
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Figure 5.7: LIME algorithm executed on one autistic participant data: it explains the 

decisions of the Fully Connected Layer of the Model considered (e.g. Model 1).  The feature 

names are provided with numbers. For instance, “117_8” is for region 117 of CC200 atlas 

and encoding feature number 8 (among the 16 ones) after the Transformer encoder part 

of the model. For this feature, the value is strictly greater than 0.74 that is the threshold 

found by the LIME algorithm, meaning that it is consistent with a prediction of Autism for 

LIME. The two types of graphs are displayed in a Python 3 Jupyter Notebook.  
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5.5. Discussion 

This study explored innovative applications of the Transformer algorithm (Vaswani et al., 

2017) to analyse brain activity patterns in resting-state functional MRI data for autism 

classification. I developed several modelling approaches: Model 1 was a basic binary 

classifier trained on data from individuals with autism and neurotypical comparisons. 

Models 2 and 3 took a multi-task learning approach, jointly predicting autism diagnosis 

along with gender or age group on the same dataset. This was motivated by known gender 

differences (Beggiato et al., 2017; Van Wijngaarden-Cremers et al., 2014; Zeidan et al., 

2022) and age-related changes (Sanders, 2015; Van Wijngaarden-Cremers et al., 2014; 

Wolfers et al., 2019) in autism phenotypes. As discussed in Chapter 1, gender and age are 

known important variables for the characterisation and identification of ASD. In Chapter 4, 

it was also shown that depending on age and gender, replicable brain regions that were the 

most important to predict ASD differed. Models 4 and 5 expanded the binary autism 

classifier to include individuals with comorbid diagnoses like ADHD, anxiety, and 

depression. Such comorbidities are common in autism, and many psychiatric disorders 

show overlapping neural correlates and symptoms  like discussed in Chapter 1. Overall, this 

work aimed to explore the potential for Transformer architectures to capture informative 

patterns in brain activity time series and improve autism classification. The multi-task and 

comorbidity-inclusive approaches were creative ways to incorporate additional, relevant 

phenotypic information to potentially enhance model performance. This study provides 

promising initial results and suggests future directions for further developing 

neuroimaging-based classifiers using state-of-the-art DL methods. 

The results demonstrate that no single model emerged as an unambiguous top performer 

for autism spectrum disorder (ASD) prediction. Imbalances between datasets in terms of 

the representation of ASD diagnosis introduced biases that made direct accuracy 

comparisons between certain models unfair. Future work could incorporate strategies to 

calibrate models trained on imbalanced data to enable fairer benchmarking. 

Models 1, 2, and 3 were reasonably comparable overall. Contrary to expectations, the 

multi-task approach did not boost global performance, though it did impact specificities 

and sensitivities considerably (sp1 = 0.442, sp2 = 0.808, sp3 = 0.327; se1 = 0.571, se2 = 
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0.167, se3 = 0.667). This aligns with expectations that auxiliary tasks would modulate model 

learning. However, multi-task models did not converge to more stable performance like 

Model 1. 

Several factors may explain these observations. Multitask models summed task losses with 

arbitrary balancing (α=0.5). Optimising α more systematically could help. Additionally, 

complex inter-task loss relationships beyond a linear sum likely exist. Learning rates were 

fixed across tasks; optimising these independently may improve outcomes. Furthermore, 

no quality control was performed on HBN data while this step may be crucial here to avoid 

distorted information.  

In a nutshell, while failing to improve overall accuracy, multi-task learning impacted model 

performance in nuanced ways. With refined loss weighting, learning rates, and other 

enhancements, multi-task and single-task approaches show promise for distilling insights 

about brain function from neuroimaging data to advance ASD prediction.  

The use of 100-fold cross-validation for model training enabled robust performance 

estimation, although at the cost of greater computational demands compared to a 

standard train-test split. The large number of folds likely improved the reliability of the 

evaluated metrics. However, this extensive cross-validation constrained the extent of 

parameter optimization that could be completed within project timelines. Many 

architectural and training hyperparameters warrant deeper investigation in future work, 

including encoder layer count, attention heads, positional encoding, learning rates, 

regularisation, and loss weighting. 

In particular, the dimensionality of the time series representations may significantly impact 

model performance. The extracted 100-frame time series were compressed to 16 feature 

vectors, aiming to maximise information density. However, this compressed size could 

overlook important signals or relationships in the resting state data. Optimising 

representation dimensionality could better capture the complexity of whole-brain 

dynamics. Overall, this study developed a solid computational framework and baseline 

modelling results. With expanded hyperparameter tuning, the Transformer-based 

architectures show strong promise for decoding meaningful spatiotemporal patterns from 

rs-fMRI in relation to autism diagnosis (Kan et al., 2022). 



133 

This study highlights several interesting areas for future investigation. The 100-frame input 

sequences, though substantial, may not fully capture complex spatiotemporal dynamics 

across diverse brain networks at rest. Longer inputs could better model these interactions. 

Additionally, Transformers thrive on large datasets - the scale here, though sizable by fMRI 

standards, is small relative to typical Transformer applications, and Autistic individuals 

were underrepresented in the HBN dataset. Given the phenotypic heterogeneity and inter-

individual variability inherent to Autism, larger, balanced datasets will be key for future 

investigations. In a multi-task learning framework, data must be representative for each of 

the tasks involved, hence increasing the scale. In future work, assessing data sufficiency 

could involve evaluating the complexity of the tasks (e.g. by looking at the distribution of 

input and target variables, studying the training convergence, optimising model 

architectures…), the representativeness of the dataset (e.g. by looking at clinical and 

demographical variables), and model performance on validation sets (e.g. by using k-fold 

cross-validation technique). Traut et al. (2022) suggested estimating data sufficiency by 

analysing training performance as a function of the number of training subjects. High-

dimensional tasks and those with significant variability demand larger, more 

comprehensive datasets. In cases of data limitations, strategies such as data augmentation, 

synthetic data generation, and transfer learning could be employed. Pooling resources with 

other research entities to expand datasets may be beneficial too. Dimension reduction 

could also help in reducing the complexity of the tasks. Future experiments could be 

inspired by the work of Iwana & Uchida (2021) who built a taxonomy of time-series data 

augmentation (totalling 4 categories and 12 techniques) and highlighted pros and cons of 

every technique by leading a comparative study over 128 datasets and 6 types of ANN.  

There are also open questions related to input data characteristics. Our ABIDE 

preprocessing retained most scans, but some artefacts, particularly related to motion, likely 

remain. Spatial normalisation to template space may also distort signals. This issue was 

discussed in Chapters 1 & 4. Resting-state alone may not provide sufficient signal. Given 

my earlier empirical study predicting Autism diagnosis from structural MRI data (Chapter 

4), multimodal integration (e.g. sMRI, PET, EEG, genetics) could improve prediction 

accuracy (Traut et al., 2021; Horien et al., 2022). Controlling for factors like acquisition 

parameters and participant demographics may also be beneficial. 
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This study presented initial interpretability analyses, but Transformer model explanations 

remain challenging due to their multiple layers and attention heads. I visualised the final 

encoder representations to extract region-to-region relationships. However, studying 

intermediate representations could provide additional insights into how spatial patterns 

and dynamics evolve through the network. LIME highlighted influential regions for single-

subject predictions, but generalising these local explanations across the whole dataset is 

an important next step. The fully-connected block offers limited interpretability; replacing 

it with more interpretable algorithms like regression or decision trees is an interesting idea. 

Compared to recent Transformer studies, my models achieved lower performance, though 

Kan et al. (2022) noted stability challenges with ABIDE and addressed this via stratified 

splitting by site, age, and gender. While I balanced age and gender overall, fold-level 

stratification could improve robustness. As in (Thomas et al. 2023), more extensive 

hyperparameter optimization is needed. Positional encoding choices also strongly impact 

models - (Kan et al., 2022) found adjacency matrices superior to the original formulation 

provided by Vaswani et al. (2017). Ultimately, multimodal fusion of structural and 

functional data may hold the most promise, as the top model in (Traut et al., 2021) 

combined sMRI and rs-fMRI. Incorporating complementary anatomical patterns could 

enhance accuracy and interpretability 

In summary, this work implemented a reasonable starting point for Transformer model 

interpretation in this novel application area. As a foundation for future research, several 

promising directions were identified such as: analysing intermediate representations, 

aggregating local explanations, and substituting alternative interpretable modules. 

Enhancing interpretation methods will lead to greater knowledge of how these models 

encode predictive fMRI signals related to Autism, advancing applicability in healthcare 

settings. Expanding the datasets, input features, model capacity, and controllable variables 

represent exciting opportunities to build on these foundations in future studies. Leveraging 

the full breadth of neuroimaging, clinical, and demographic data could ultimately yield 

more robust and generalisable models.  
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5.6. Conclusion  

This study introduced innovative DL architectures for decoding brain dynamics, laying the 

groundwork for the development of robust and explainable AI systems that leverage 

diverse neuroimaging, clinical, and demographic data. Applied to Autism, this approach 

could offer new avenues towards reproducible biomarkers that will advance autism 

prediction, personalised diagnosis, and treatment in healthcare applications.  
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6. Side projects: improving Reproducibility in 

Neuroimaging 

 

Alongside the empirical research conducted for this thesis, I participated in various 

complementary projects, largely aimed at enhancing reproducibility in neuroimaging. I 

describe these various activities below, through which I gained well-rounded experiences 

in skills like scientific communication, collaboration, and outreach. 

 

6.1. Co-leading a Journal Club on Reproducibility 

During the first year of my PhD, I was strongly advised to use reproducible methods in my 

research, especially by Dr. Clare Kelly who, as an expert in neuroimaging, had flagged the 

main global concerns in the field. With my colleague Jivesh Ramduny, and under the 

supervision of Dr. Clare Kelly, we started a journal club (JC) at Trinity College Institute of 

Neuroscience in order to build awareness of that matter in the local neuroscientific 

community.  

We launched the first ReproducibiliTea JC in Ireland. The JC consisted of regular meetings 

to discuss and debate on scientific practices around reproducibility, including, for instance, 

open data, open code, paper transparency on methods and outcomes, and existing tools 

that are being developed to improve the reproducibility and replicability of studies in 

neuroscience.  

Despite the lockdown situation in 2020 due to Covid-19, we continued to organise online 

meetings and presentations. We ended the year 2020 by co-authoring an article on the 

open platform Medium that summarised everything we had talked about during the year: 

https://ramdunyj.medium.com/one-year-of-irelands-first-reproducibilitea-journal-club-

a4c217767480 . 
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6.2. Works on BIDS and BIDS-apps 

In 2020, thanks to the regular ReproducibiliTea JC sessions, I discovered many new tools 

and norms in neuroimaging. The Brain Imaging Data Structure (BIDS) was one that 

appeared particularly useful to me.  

“With the Brain Imaging Data Structure (BIDS), we describe a simple and easy to adopt way 

of organizing neuroimaging and behavioural data” (from https://bids.neuroimaging.io/). 

Standardising the way to organise datasets has many positive effects on reproducibility, 

including the possibility of developing applications that are generically reusable on any BIDS 

dataset. 

I seized the opportunity to make BIDS-apps for my first PhD project on the automatic 

quality control of sMRI scans (Chapter 3)  to dramatically enhance the reusability of the 

tool within the neuroimaging community. The project and the code of the various apps are 

available on GitHub : https://github.com/garciaml/BrainQCNet . 

In addition to developing BIDS-apps, I was offered the opportunity to participate in co-

writing a book on methods for analysing large neuroimaging datasets 

(https://osf.io/d9r3x/), in which I shared an overview of BIDS and a tutorial on BIDS-apps. 

The preprint is available here: https://osf.io/rcxg8/ . 

 

6.3. Git and GitHub tutorials  

I was invited to make a second contribution to the book on methods for analysing large 

neuroimaging datasets (https://osf.io/d9r3x/): a tutorial on git and GitHub. git and GitHub 

dramatically increase the reusability of the code of any project and foster collaborations. 

The preprint is available here: https://osf.io/jqwpv/ . 
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6.4. Reviewing (Horien et al., 2022) 

At the end of 2021, Dr. Clare Kelly offered me the opportunity to review a paper for the 

journal Biological Psychiatry. The article reviewed predictive modelling methods of ASD 

based on fMRI data. 

The published article is available here: Horien, C., et al., 2022. Functional Connectome–

Based Predictive Modeling in Autism. Biological Psychiatry. 

https://doi.org/10.1016/j.biopsych.2022.04.008 . 

My review on the preprint is presented in Appendix 4.  

 

6.5. Teaching 

From the second year of the PhD to the last one, I was a teaching assistant and co-ran labs 

on Python programming and statistics for first-year undergraduate Psychology students. I 

experienced significant  progression in teaching and communication skills over the course 

of these three years. Skills such as oral communication, English language, class 

management, leadership, empathy, all grew significantly through this experience.  

 

Overall, all these extra-curricular activities provided a dynamic and multidimensional 

complement to my core PhD research, opening my eyes to new perspectives and 

possibilities for alternative pursuits to explore in my career as a researcher.  
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7. Training courses 

 

Along with taking part in side projects, it has been very important for me to continuously 

update my knowledge, to engage my curiosity, and to keep learning new things. I took 

every relevant opportunity I had during the PhD to engage in training. Below, I describe the 

various summer schools I attended. 

 

7.1. ENERGHY 2021 

In July 2021, I participated in the 3-week ENERGHY Summer School - Energising Global 

Health Innovation and Entrepreneurship. The Summer School took place remotely, due to 

the pandemic. During the Summer School, I encountered many concepts and useful 

practices related to social entrepreneurship, taught by international experts on the topic. I 

also worked on a project as part of a team (randomly allocated) for the Social Purpose 

Organisation FRIENDSHIP, based in Bangladesh, as well as for the SANOFI Espoir foundation 

(a main FRIENDSHIP partner). 

The project was to build a business model (BM) to underpin the distribution of a new 

cooking stove in the most rural and remote areas in Bangladesh. Severe burns (requiring 

reconstruction surgeries) and chronic respiratory diseases are frequently experienced by 

women and children in these areas, due to very poor infrastructures and houses, in 

particular, substandard kitchens.  The new stove design, made by FRIENDSHIP, was 

designed to be safer, and took into account the local availability and price of the materials, 

and the ease of fabrication. 

During the summer school, my team suggested a BM inspired by Venture Philanthropy 

instead of a Charity model that would make people dependent on big funders. The stove 

could be sold at a very low price (taking into account the minimum revenue of the families 

in these areas), and this new activity could foster the development of local economies while 

reinforcing social bonds and community solidarity. Our pitch video can be viewed here: 
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https://drive.google.com/file/d/19uHAlzREA8nlo_IOX_ybcAQNOzsfgxYR/view?usp=sharin

g . 

We won the Summer School challenge and were offered an opportunity to participate in a 

6 month programme on entrepreneurship in Health with the University of Barcelona. The 

goal was to continue building the business model, mentored by two experts in social 

entrepreneurship, and to pitch it to a jury at the end. 

To help advance the project after the end of the Summer School, I took the lead on 

managing the project and the team. It was a good exercise - I did my best to organise our 

tasks in the most efficient way, and to facilitate as much as possible the implementation of 

work. I learned how to keep communicating with people and to motivate them, keeping in 

mind that what we had undertaken was  voluntary work. 

Overall, in my view, learning how to build a social BM, and how to lead and manage a team 

and a project in the context of volunteering was a great experience. 

 

7.2. OxML 2021 & 2023 

The Oxford Machine Learning summer school (OxML) takes place every year, covering the 

most up-to-date machine learning and deep learning techniques. It covers some of the 

most important topics in machine learning (ML) and deep learning (DL) in which the field is 

showing a growing interest (e.g., statistical/probabilistic ML, representation learning, 

reinforcement learning, causal inference, vision & NLP, geometrical DL) and their 

application to sustainable development goals (SDGs) (https://www.oxfordml.school/). 

I attended the school online in 2021 and in-person in 2023 for the part on Health.  

These experiences enabled me to continue developing my skills in machine learning and 

deep learning, as well as to keep up to date with practices and use-cases across many fields.  
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7.3. RYLA 2022, sponsored by the Rotary Club Paris Concorde 

“Rotary Youth Leadership Awards (RYLA) is an intensive leadership experience organised 

by Rotary clubs and districts where you develop your skills as a leader while having fun and 

making connections.” (https://www.rotary.org/en/our-programs/rotary-youth-

leadership-awards) 

I had the chance to be sponsored by the Rotary Club Paris Concorde to participate in the 

RYLA edition 2022 organised by the district, from the 21st to the 25th of February 2022.  

I was one of 16 young adults from various backgrounds who had been selected based on 

my CV and cover letter. 

The training lasted a week, during which I developed skills like management, leadership, 

communication, as well as ethics. I also made new connections and friends.  

The RYLA was a great opportunity to progress on non-technical aspects that are important 

for my career in science.   

 

7.4. ECNP Immuno-NeuroPsychiatry Bordeaux Summer 

School 2022 

From the 18th to the 22nd of July 2022, I had the opportunity to participate in the ECNP 

(European College of Neuropsychopharmacology) Immuno-NeuroPsychiatry Bordeaux 

Summer School 2022. The week featured  a host of international speakers who introduced 

their work on the emergent topic of Immuno-NeuroPsychiatry. As a young researcher 

willing to continuously self-train and be up-to-date, it was exciting to discover this area of 

biological psychiatry. I also made new connections and friends that opened potential future 

collaborations.  
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7.5. ARAPI 2022 

The ARAPI - “Association pour la Recherche sur l’Autisme et la Prévention des 

Inadaptations” - is a French association that organises a week-long autumn school on 

Autism every two years. The goal is to update all the practitioners, parents, associations, 

and autistic people on the recent advances in research, law, or tools developed to improve 

the living conditions of Autistic people. I attended the school from the 3rd to the 7th of 

October 2022, where many international speakers described their research. Discovering 

the view of the educators  and parents asking researchers practical questions  stimulated a 

constructive critical self-appraisal of my own research.  

 

7.6. NeuroHackademy 2023 

“NeuroHackademy is a summer school in neuroimaging and data science, held at the 

University of Washington eScience Institute.” 

(https://neurohackademy.org/)  

I attended the first part of the school online from the 7th to the 11th of August 2023. As a 

young researcher, NeuroHackademy contributed significantly to my goal to stay updated 

on existing tools in neuroimaging and data science - I would strongly recommend any PhD 

student in the field attend the summer school. I was positively surprised by the broad range 

of classes and activities proposed.  

By participating in the school, I improved my skills in software development, in 

collaborating with git and GitHub, and in various applications in neuroimaging. I also 

learned about AI-assisted programming, data governance, and careers in neuroimaging and 

data science.   

I was not able to spend much time socialising virtually, despite the fact that there were 

many interesting planned activities. Unfortunately I was unable to attend the second week, 

which featured  a team-based hackathon. I was sorry to miss this, as such events provide 
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invaluable opportunities to meet new people from the community and to make 

connections that are vital to the career of a young researcher.   

 

7.7. Graduate Teaching Assistant 

During summer 2022, I attended a course at Trinity College Dublin to improve my skills as 

a Graduate Teaching Assistant (GTA). Seven learning blocks introduced the role of a GTA, 

the various ways in which students learn, communication and coping strategies, session 

planning, the importance and means of assessment and feedback, and how to design an 

online activity. I was also asked to reflect on and to evaluate my teaching.  

These classes helped me to evolve the way I teach and gave me more confidence as a GTA. 

I found it very useful to write a teaching philosophy statement and to construct a session 

plan, taking into account the concepts and tools learned during the training.  

 

7.8. Research Integrity 

The first year of the PhD, I undertook a mandatory but highly relevant course at Trinity 

College Dublin on Research Integrity and Impact in an Open Scholarship Era. I had no 

particular knowledge about the topic, except my own conceptions on what constitutes 

ethical research.  

This course covered a broad range of topics, including copyright and data protection, data 

management and security, scholarly communication and open research, research 

evaluation and research impact. 

Learning about these at the beginning of the PhD was very helpful, since I subsequently had 

to deal with many of the principles and tools over the course of my PhD.  
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Overall, attending these schools has made me deeply sensitised to principles of 

reproducibility in research, emerging topics spanning psychiatry, neuroimaging, and DL, a 

diverse array of soft skills, and has opened my mind to the possibility of exploring 

alternative paths like social entrepreneurship. 

  



145 

8. Discussion and Conclusion  

8.1. Summary 

This PhD thesis sought to develop interpretable DL models to identify neuroimaging 

biomarkers of Autism spectrum disorder (ASD). Three core projects focused on structural 

MRI quality control, structural MRI biomarker discovery, and functional MRI analysis using 

Transformer models.  These efforts have contributed both methodological advances and 

new evidence to support the use of biologically-grounded AI to elucidate neural markers 

for Autism. Additional open science contributions were made through developing new 

tools, standards, and by educating peers. While several limitations motivate 

recommendations to address challenges related to model interpretation, biases, and 

optimization, overall, this PhD thesis  has successfully developed an explainable imaging 

analysis framework that, with further refinement, has the potential to elucidate and 

quantify the heterogeneous neurobiological underpinnings of ASD in a clinically meaningful 

way. 

 

8.1.1. Project 1 

Manual quality control of structural MRI data is essential but time-consuming. To address 

this, I developed an interpretable DL model called BrainQCNet to automatically detect 

artefacts in structural brain scans. After manually annotating 980 scans from the ABIDE 1 

dataset, the model was trained, validated (during training) and tested (after training), 

achieving over 90% accuracy on this initial testing set. The optimised BrainQCNet model 

was then evaluated on three large-scale independent datasets - ABCD (2141 scans), 

ADHD200 (750 scans), and ABIDE II (799 scans) - demonstrating excellent performance, 

with 91.4% sensitivity for detecting artefacts in the ABCD dataset, compared to human 

raters. Critically, BrainQCNet showed higher sensitivity than previous methods while 

requiring no intensive scan preprocessing, such as normalisation to template space. 

However, some patterns require further examination to determine their clinical relevance. 

In particular, at a local level, it was not clear whether all the patterns detected by the model 
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were relevant to the prediction. Future work will pursue these open questions. To support 

open adoption, several BIDS apps implementing BrainQCNet on GPU and CPU systems were 

developed and all code was publicly released on GitHub under an open licence. In sum, this 

project showed DL can rapidly automate and enhance sMRI quality control to improve the 

reliability of downstream analysis. 

 

8.1.2. Project 2 

Standard neuroimaging pipelines rely on intensive preprocessing like spatial normalisation 

to template space, which may obscure subtle brain patterns associated with Autism. To 

avoid this, a DL approach using 3D CNNs to predict and interpret Autism from structural 

MRI scans without spatial normalisation was developed. Two CNN architectures, 

DenseNet121 and ResNet50, were trained and tested and compared across multiple 

datasets including ABIDE 1 and 2, and ADHD200. This cross-dataset convergence provided 

more robust results. The models achieved 50-70% prediction accuracy for Autism; lower 

prediction accuracy was achieved for participants with comorbid diagnoses. Using guided 

grad-CAM visualisation, replicable predictive brain regions across models and datasets 

were identified, including frontal, limbic, and cingulate areas. The importance of these 

regions aligns with current Autism neuroscience findings. Granular analysis also revealed 

some differences in predictive regions by gender and age. Critically, models did not rely on 

non-brain background for prediction. By avoiding potentially biassed preprocessing while 

revealing interpretable neuroimaging patterns, this work provides clinically-grounded DL 

biomarkers for Autism. Integration and validation across datasets bolsters generalisability. 

Sharing the whole code contributes to the wide reuse and development of new approaches 

based on my work. Future directions include improving the models, performing multimodal 

analysis, integrating confounds (e.g. age, gender) as predictive variables to the model.  

Overall, the project advances biologically-informed ML for Autism diagnosis while 

mitigating risks of standard preprocessing pipelines.  
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8.1.3. Project 3 

Transformers have shown promise for sequential data modelling. In this last project, I 

applied Transformer architecture to resting-state fMRI data from the ABIDE 1 and HBN 

datasets, using 2035 subjects to classify Autism and capture complex spatiotemporal 

patterns. The data was preprocessed with C-PAC pipelines and parcellated into Craddock 

200 atlas regions, from which mean time series were extracted. Multiple Transformer 

configurations were tested using 100-fold cross-validation, including pioneering multitask 

models that also predicted gender and age. Cross-validation constrained model exploration 

but improved evaluation. All models achieved approximately 64.4% to 79.4% (standard 

deviation between 0.078 to 0.180) of defined metrics - accuracy and AUROC summed and 

averaged - but overfitted training data, likely from limited data, imbalanced representation 

of Autistic participants, and model complexity. To interpret learned representations, chord 

diagrams showed models partially captured functional connections. I implemented LIME, a 

local explanation method, to explain individual predictions. However, LIME explanation 

was limited by the high dimensionality of fMRI data, preventing quantitative analysis across 

subjects. Further hyperparameter optimization and regularisation may reduce overfitting 

and improve generalisability. Though predictive performance was modest, this novel 

application of Transformers with multitask learning to fMRI data demonstrated potential 

for discovering non-obvious imaging biomarkers of Autism informed by neuroscience 

priors. 

 

8.1.4. Side projects and trainings 

Early in the PhD, I engaged directly in efforts to address the reproducibility crisis in 

neuroimaging. I took action to educate myself and peers through initiatives like co-leading 

the first Reproducibility Journal Club in Ireland. Throughout my PhD, I have also 

championed open science tools such as BIDS for standardised data organisation - I have 

contributed several BIDS tutorials and I have developed multiple BIDS apps to enhance 

reusability of the projects, including the first BIDS app to use DL. I have also created and 

shared educational materials on using  GitHub for transparent, collaborative coding. These 

multifaceted efforts to promote open science led to invitations to author book chapters 
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providing practical guidance on BIDS and GitHub for the wider neuroscience community, 

and to give a hands-on tutorial at the Analysing Large Neuroimaging Datasets Workshop at 

OHBM Glasgow, 2022. 

In addition to these efforts, I actively pursued professional development by attending 

numerous specialised schools and programs including the ENERGHY social 

entrepreneurship program, where I helped develop a business model for aid distribution 

and honed project leadership abilities; the OxML summer school to stay updated on the 

latest ML and DL methods; the RYLA leadership program to build management and 

communication competencies; the ECNP neuropsychiatry program to learn about an 

emergent research area; the ARAPI, an Autism research conference, to connect with 

diverse stakeholders; and NeuroHackademy 2023, to expand data science skills in 

Neuroscience. These training programs helped me to grow my knowledge and skills, have 

provided invaluable networking opportunities, and have renewed my commitment to 

lifelong knowledge growth. 

 

8.2. Interpretations 

Several key hypotheses motivated the work on developing predictive models for ASD using 

neuroimaging data and DL. Based on the context exposed in Chapter 1, a first hypothesis 

was that structural MRI data alone contains sufficient precision to build a predictive model 

of ASD. A second hypothesis was that functional MRI data alone also holds adequate 

specificity for building an ASD prediction model. A third hypothesis was that the brain is a 

relevant variable for studying ASD, with diagnostic neuroimaging biomarkers detectable 

through ML. A fourth hypothesis was that while autistic individuals differ in terms of the 

severity of their symptoms, they share common characteristic patterns in the brain that 

can be captured by models. A final hypothesis was that current neuroimaging data 

variability is sufficient to train a robust ASD prediction algorithm that is generalisable to 

unseen individuals. These five key hypotheses were tested through studies using structural 

and functional MRI datasets with multiple predictive modelling architectures. The results 

provided insight into which hypotheses were supported and which should be reconsidered, 
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and suggested additional experiments to further evaluate the potential for brain-based ASD 

prediction. 

The first study demonstrated that DL can rapidly automate MRI quality control - a crucial 

preprocessing step, which, when performed manually,  is somewhat subjective, repetitive, 

and time-consuming. My attention-based BrainQCNet model achieved excellent global 

performance for artefact detection, demonstrating how DL can augment human 

annotators for simple but tedious neuroimaging tasks. Interpretation remains challenging, 

however - while overall accuracy was high, local model behaviour showed both realistic 

and unrealistic patterns, highlighting the difficulty of explaining complex Artificial Neural 

Networks. Additional optimisation and experiments are needed to improve local-level 

accuracy and model understanding. Nevertheless, initial results were promising - the ample 

training data yielded a fairly robust global classifier, though broader artefact diversity could 

further enhance generalisability and reduce False Negatives. On the whole, this study 

established DL, and attention-based architectures in particular, as a viable approach to the 

automation of certain MRI preprocessing steps, paving the way for larger investments to 

tackle more complex analyses. 

This argument is reinforced by the fact that other studies showed DL is a useful tool for 

automating preprocessing pipelines (Isensee et al., 2019; Tanno et al., 2017; Zhang et al., 

2017). For instance,  Zhang et al. (2017) showed that DL can be used to perform noise 

reduction, which is a critical preprocessing step in MRI. Tanno et al. (2017) proposed the 

use of CNNs for super-resolution in diffusion MRI (dMRI), automating the enhancement of 

MRI resolution. Isensee et al. (2019)  described a DL approach for automated brain 

extraction, which is a fundamental step in many MRI-based studies. Taken together with 

my work, these studies provide support for the idea that DL is not only a viable approach 

for automating MRI preprocessing steps but is already achieving state-of-the-art results in 

various tasks. Moving forward, pairing strong global performance with granular model 

interpretability remains a key challenge that must be addressed as I scale up DL for 

enhanced neuroimaging workflows. 

While showing promise, the predictive modelling studies in this thesis revealed limits on 

the efficacy of structural and functional MRI alone for robust Autism detection. Despite 

finding some consistent regional patterns that are aligned with Autism neuroscience (e.g., 
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left-hemisphere language regions contributed to sMRI-based predictions), overall 

performance across multiple algorithms was modest, with classification accuracy ranging 

from 50-70%. There was also significant variability associated with factors such as age, 

gender, and site. Globally, studies with a comparable number of participants and using an 

external independent testing dataset have yielded relatively better performance, with 

accuracies ranging from 65-79% (Heinsfield et al., 2018; Kan et al., 2022; Traut et al., 2021). 

Rafiee et al. (2022) mentions that Heinsfield et al. (2018) achieved a classification accuracy 

of 70% implementing a DL algorithm on rs-fMRI data of 505 ASD and 530 TD subjects. Their 

DNN 70% accuracy was higher than the calculated accuracy for random forest (0.63) or 

SVM (0.65) methods. Conversely, Traut et al. (2021) worked with >2000 participants and 

achieved the best AUROC scores with models using traditional ML over DL algorithms. Traut 

et al. (2021) also showed that the performance of the best model dropped on an external 

independent dataset. This variation highlights the challenges inherent in MRI-based 

classification. To be clinically useful, a prediction tool must be robust and reproducible, and 

prediction accuracy must generalise across independent datasets. It is crucial that future 

work elucidates how accuracy varies based on the methodologies, algorithms, and datasets 

used. 

The results of this thesis and reported in the wider literature underscore the diversity of 

neural phenotypes in Autism and suggest that current neuroimaging biomarkers lack the 

specificity and precision to generalise broadly, especially amidst highly prevalent comorbid 

diagnoses. The field is grappling with these challenges. In their review, Ecker et al. (2015) 

emphasised the heterogeneity of neuroimaging findings in Autism and the need for a more 

nuanced understanding that captures the diversity of neural phenotypes. Similarly, Haar et 

al. (2016) illustrated the considerable variability in anatomical findings across different MRI 

studies of autism, raising questions about the reliability and specificity of potential 

biomarkers. Finally, Kushki et al. (2019) pointed out  the high prevalence of psychiatric 

comorbidity in autism, suggesting that these comorbidities could confound neuroimaging 

findings. While this thesis does not offer a definitive answer to the challenge of 

heterogeneity, it does show that there are opportunities for progress. For example, the 

work presented in Chapters 4 and 5 shows that granular analysis of predictive features 

suggested the presence of shared neural signatures within this heterogeneity. Future work 
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will pursue these clues, using larger datasets with greater representation of both ASD and 

comorbidities. 

Critically, each model architecture yielded expectedly different results, indicating the 

importance of multi-model convergence to mitigate individual algorithm biases. In 

isolation, a single model's biases can dominate but combining diverse architectures can 

reveal more robust generalisable biomarkers. Goodfellow et al. (2016), a foundational book 

on DL, describes the benefits of ensemble methods in various sections. Long before, 

Hansen & Salamon (1990) discussed the benefits of using ensembles of ANN to improve 

generalisation performance, and (Perrone & Cooper, 1993) focused on how ensemble 

methods can help in situations when individual neural networks provide conflicting 

outputs. By leveraging the combined strengths and mitigating the individual weaknesses of 

multiple models, ensemble methods can indeed provide more robust and accurate DL 

predictions. 

 

8.3. Implications of the PhD project 

Alongside the core modelling projects, this thesis work strongly embraced open science 

practices to maximise research impact. Extensive self-directed training in programming, 

information technology tools, and artificial intelligence cultivated expertise applicable 

across studies. Participation in AI and Health summer schools also enabled honing 

techniques in responsible and interpretable DL. 

Significant time and effort was dedicated to developing the BIDS-apps the implement my 

models on GPU systems using CUDA/CuDNN. This entailed overcoming several substantial 

technical hurdles to make the shared code fully reproducible. All code has been made 

openly available on GitHub to facilitate adoption. In addition, I created video tutorials on 

use of BIDS, Git, and GitHub to lower entry barriers so that more neuroscientists from 

diverse backgrounds and with limited resources can leverage these open science platforms. 

Overall, this thesis demonstrated the feasibility of interpreting DL models and building 

ethical, responsible AI algorithms aligned with community needs. The integration of open 
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science principles follows FAIR data stewardship, enhancing discovery and collaboration. 

This multifaceted approach combining methodological advances with openness and ethics 

showcases how to translate neuroimaging AI to benefit the Autism community. The long-

term impact stems not just from novel techniques but also the commitments to openness, 

outreach, and conscientious application. 

 

8.4. Limitations of the PhD project 

My work established a novel methodological foundation but highlights significant 

remaining challenges  for prediction of Autism diagnosis  from MRI data. 

8.4.1. On interpreting and explaining DL models 

While Chapter 4 developed an initial pipeline for interpretable DL - through the 

identification of the brain regions that contributed most to prediction - my work revealed 

significant lingering challenges to the evaluation and quantification of uncertainty within 

DL models. The high complexity of modern ANN often renders their inner workings opaque 

and decision-making inscrutable, even for developers. This "black box" nature makes 

quantitative analysis of algorithm behaviour and predictions difficult. Measuring feature 

importance and relating model components to underlying mechanisms remains an open 

pursuit in AI research. Methods like LIME, Shapley values, and integrated gradients help 

“peek inside” ANN (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sundararajan et al., 2017), 

but currently lack scalability and standardisation. 

Equally crucial is the quantification of uncertainty - conveying when predictions may be 

unreliable. Chapter 5’s extensive cross-validation enabled better estimation of accuracy  

and enabled the computation of confidence intervals around model performance. Meinke 

& Hein (2020) shows the importance of uncertainty in DL models, particularly in domains 

like healthcare, where a wrong decision can have dire consequences. One can imagine that 

quantification of uncertainty may be of even greater concern for psychiatric diagnoses, 

which lack specific known biological bases. Systematic and granular uncertainty 

quantification via Bayesian DL, ensembling, conformal prediction, and related techniques 
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(Gal & Ghahramani, 2016; Angelopoulos & Bates, 2021) is essential for clinical translation. 

Both robust evaluation and uncertainty measurement will be critical to developing 

trustworthy AI systems ready for deployment in medical settings where reliability and 

transparency are paramount. 

By highlighting current gaps in practices, this thesis motivates and informs future work not 

just to advance the predictive performance of DL in neuroscience but crucially, to also boost 

model transparency, accountability, and the probabilistic understanding of limitations. 

Tackling these multifaceted open problems will require cross-disciplinary collaboration, but 

promises to accelerate responsible translation of AI innovations to improve patient 

outcomes. 

 

8.4.2. On preprocessing pipelines 

My work reveals the complex double-edged impacts of neuroimaging preprocessing on 

downstream DL analysis. Chapter 3 demonstrated the value of rigorous quality control by 

developing a model to accelerate MRI artefact detection. Common preprocessing steps like 

spatial normalisation, smoothing, and registration make assumptions about typical 

anatomy that risk distorting or obscuring subtle morphological features associated with 

ASD. Chapter 4 use of raw structural MRI data as input avoided such pitfalls. On the other 

hand, this “minimally processed” data approach subsequently limited the biological 

interpretability of the learned features and biomarkers driving model predictions, since 

there was no shared anatomical context. 

This illustrates the inherent trade-offs between preserving naturalistic, unbiased brain 

signatures in the data and gaining specific anatomical meaning needed to aggregate 

findings across participants and relate these to clinical traits and neuroscientific knowledge. 

While DL thrives on extracting signals directly from minimally processed data, further work 

on relating the discovered patterns to tangible biological insights of clinical utility remains 

essential to practical adoption. Indeed, Topol (2019) discusses the convergence of AI and 

human intelligence in Medicine and highlights the importance of interpretability and 

clinical relevance. 
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The monomodal focus of my studies also constrained the full elucidation of the predictive 

features and biomarkers detected by models. Multimodal integration of neuroimaging with 

genetics, cognitive tests, and clinical assessments appears critical for grounding DL models 

in biological mechanisms relevant to heterogeneous neurodivergences like Autism. Other 

studies have pointed out the importance of multimodal data. For example, Parikshak et al. 

(2013) showed the benefits of integrating genomics with functional data to elucidate the 

pathways and circuits implicated in autism. In a review, Sui et al. (2012) also emphasised 

the importance of multimodal data fusion, especially in capturing more complex, high-

dimensional representations of the brain. 

Overall, my work strongly motivates future research into tailored, lightweight 

preprocessing and fusion techniques that balance performance, interpretability, and 

scientific value for studying complex neurological conditions. Developing such optimised 

pipelines will require cross-disciplinary collaboration and community feedback to enable AI 

that intersects with, rather than diverges from, human-driven neuroscience. 

 

8.4.3. On dataset biases 

My work reveals considerable risks of bias amplification and skewed representation in 

current neuroimaging datasets that DL algorithms could potentially exacerbate. Crossing 

MRI data with genotypic information and stratifying analyses by genetic clusters is essential 

to efforts to build equitable models tuned to diverse populations, rather than 

overrepresented subgroups. However, despite current huge efforts by the community to 

build large datasets as seen in Chapter 1, most of these like ABIDE contain limited, if any, 

genetic data. The available samples also have potentially problematic demographic 

compositions—for example, in ABIDE datasets, a preponderance of younger male subjects 

risks models tuned only to this group. In Chapter 4, more robust replicable important brain 

regions were found for boys than for girls. While this demographic composition may be 

consistent with wider prevalence as introduced in Chapter 1, sensitive and specific models 

will require better representation of females and Autistic individuals of different ages. 

While multi-site data pooling has enabled larger samples, variability in MRI data acquisition 
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protocols across sites can further confound analysis. This phenomenon was particularly 

observed in Chapter 4. 

More concerning is the limited characterisation of clinical, behavioural, and phenotypic 

traits alongside neural data. Details on medications, comorbid conditions, symptom 

profiles, and other variables are often unreported, yet crucial for relating brain patterns to 

real-world functioning. Such issues likely stem in part from the challenges of scanning 

people with neurodevelopmental differences, where success can depend heavily on 

individual factors. Those able to tolerate MRI may represent a narrow subset. As ASD is an 

evolving, lifelong neurodivergence, studying static data slices in isolation also risks 

overlooking crucial developmental trajectories. 

Ultimately, creating more balanced, representative datasets will require active 

involvement of autistic participants and advocates in protocol co-design (Heraty et al., 

2023). This could fruitfully involve capturing multidimensional data across modalities and 

timepoints to better encapsulate heterogeneity. Sensitive accommodation of individual 

needs and preferences would enable inclusion of a broader population. Indeed, 

neuroimaging may not be ideal or feasible for many. Pursuing such inclusive, ethically-

obtained data will allow DL to complement today’s small homogeneous samples with 

equitable insights benefitting the full community. 

Overall, my work strongly motivates interweaving cutting-edge modelling with 

participatory data improvements to ensure neuroimaging AI meaningfully serves diverse 

populations. 

 

8.4.4. On deep learning 

Deep learning's explosive growth in model complexity introduces new challenges in robust 

training and generalisation. While my datasets were large compared to many existing 

studies with Autistic participants, several models in Chapters 4 and 5 still demonstrated 

overfitting - suggesting that the data contained insufficient diversity to capture 

heterogeneous neurological divergences. Aligned with my work, multiple recent studies 

have estimated that sample sizes well into the tens or hundreds of thousands are necessary 
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to reliably train deep neural networks for ASD detection without overfitting (Jiao et al., 

2021; Haar et al., 2022). Moreover, the combinatorial breadth of possible configurations 

across network architecture, hyperparameters, and optimization techniques leads to a vast 

tuning space. However, exhaustive tuning risks simply overfitting to idiosyncrasies of 

limited datasets rather than learning generalisable and replicable patterns that transfer 

robustly to new out-of-sample cases. 

My work thus underscores the pressing need for larger, more varied Autism imaging 

datasets, alongside careful methodology to develop reliable DL biomarkers ready for real-

world deployment. Assembling appropriately large and representative training data will 

require collaboration across multiple research centres and clinics. Crucially, active 

involvement of autistic community members in data collection and protocol design will 

help capture the diversity of the spectrum (Heraty et al., 2023). Complementing big data 

advances with rigorous cross-validation, regularisation, uncertainty quantification, and 

related techniques will also be key to combating overfitting given the intrinsic complexity 

of deep nets. Novel unsupervised learning methods could also be beneficial for harnessing 

the large amounts of unlabeled data (Zaadnoordijk et al., 2022). Guided by both human-

centred and technical best practices, DL holds immense potential to uncover reproducible 

neuroimaging patterns that provide clinically useful insights into heterogeneous 

neurodivergences like Autism. 

Overall, my studies underscored a number of challenges and limitations, but, in doing so, 

also outlined a research program for progress through bigger, more varied dataset 

creation, integrated predictive modelling, and grounding in behavioural dimensions. 

Though significant challenges remain, the work of this PhD thesis provides both a strong 

motivational foundation and methodological strategy for the pursuit of biologically-

grounded DL as a means to elucidate Autism's complex neural correlates in a clinically 

meaningful way. 
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8.5. Recommendations 

The limitations discussed in the preceding section prompt several recommendations for 

future work to advance biologically-grounded AI modelling of ASD using neuroimaging 

data. I suggest that future studies should: 

● Integrate multimodal data beyond MRI, including genetics, cognition, and clinical 

assessments, to enhance biological interpretation. Fusing neuroimaging with other 

biological and phenotypic data can help provide learned patterns with tangible 

clinical significance. 

● Contextualise studies with more specific inclusion criteria if dataset size is limited. 

Focusing on targeted demographic or behavioural factors can reduce heterogeneity 

and improve characterisation of neural correlates within a defined ASD context. 

● Test diverse DL model architectures for any predictive modelling task. Varying 

approaches mitigates individual algorithm biases and enables convergence on the 

most robust generalisable patterns. 

● Employ statistical methods such as N-fold cross-validation frameworks to rigorously 

evaluate model performance and uncertainty. However, model exploration time 

should be balanced with the number of experiments feasible. 

● Explore longitudinal data to extract intra-individual patterns over time, alongside 

inter-individual differences. Modelling developmental changes may reveal key 

neural trajectories. 

● Build interpretation pipelines to explain model reasoning and relate features to 

neuroscientific mechanisms. Explainable AI is essential for clinical utility and 

adoption. 

● Continually update skills in AI, programming, neuroscience, and psychiatry. All these 

disciplines are rapidly advancing, requiring lifelong learning to apply them 

effectively in multidisciplinary research. 

● Maintain openness and reproducibility in science. As research rapidly advances in 

the fields of psychiatry, neuroimaging, and AI, it is crucial to uphold these principles 

to foster work that is both impactful and reliable. 
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● Carefully evaluate the ethical implications of AI techniques prior to application in 

Autism research or care. Ensure models are transparent, fair, reproducible, and 

designed to safely complement clinicians rather than replace them. 

Adhering to these recommendations can promote development of more reliable, 

interpretable, and clinically useful AI models of ASD using brain imaging and related data. 

By attending to ethical considerations alongside methodological advances, research should 

lead to more responsible AI to benefit the Autism community. 

 

8.6. Conclusion 

This thesis presented pioneering explorations into developing interpretable deep learning 

frameworks for elucidating neuroimaging biomarkers and patterns associated with Autism 

Spectrum Disorder. Through three complementary projects analysing structural and 

functional MRI data, methods were developed and tested against specific hypotheses 

related to the viability of brain imaging and DL for prediction of Autism diagnosis in the 

presence of clinical and phenotypic heterogeneity. 

While falling short of robust prediction and subject to limitations, these projects 

highlighted pathways forward - through integrating diverse data modalities, improving 

model optimization and evaluation, and applying DL in synergy with neuroscience domain 

knowledge. Additional open science contributions provided reusable research tools and 

demonstrated commitments to ethics and rigour. 

Overall, this research established a strong motivational foundation and methodological 

strategy for biologically-grounded AI modelling to quantify and interpret complex neural 

correlates of Autism traits. The limitations identified motivate a set of recommendations 

for future work aimed at overcoming current challenges in explainable and equitable 

neuroimaging analysis. By laying this groundwork and direction for the field, this thesis 

provides a springboard for future efforts to refine data-driven imaging biomarkers that can 

translate to enhanced clinical insights and precision care for autistic individuals. 
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APPENDICES 

Appendix 1: Supplemental Information for Manuscript: 

“BrainQCNet: a Deep Learning attention-based model for the 

automated detection of artefacts in brain structural MRI 

scans” 

8.6.1. A1.1. Comparison of the distribution of probabilities 

between models 

 

Figure A1.1: Comparison of the distribution of probabilities for the test set (908 scans), 

colored by predicted class: green for Class 0 (good quality scans), blue for Class 1 

(medium/low quality scans). 

In Figure A1.1, we can see that the distribution of predictions of Class 0 scans (green) looks 

gaussian for our models. In contrast, the distribution of predictions for Class 1 (blue) looks 

like a gaussian mixture. This distribution shape is expected since there are some scans that 

are globally corrupted scans, but others with only local artefact, or less severe global 
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artefact. The proportion of slices classified as Class 1 will therefore be different for the two 

types. 

 

 

Figure A1.2: The boxplots show the predicted probabilities (% slices predicted to be Class 

1, poor quality) for scans manually judged to be free from artefact (Class 0 - good quality; 

green) vs. those manually judged to be contain some artefact (Class 1 - blue) for all models 

and for MRIQC, using 980 scans from ABIDE 1. The figure shows that there is some overlap 

in the global probabilities for Class 0 and Class 1 scans, although this varies by model and 

by epoch. The greater the overlap, the more False Positives and False Negatives there are. 

The overlap is least, and optimally located (around 40% probability) for the best-performing 

model, proto-R152 (10 epochs). 
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Figure A1.3: Comparison of probabilities for global predictions from proto-ResNet152 

trained on 10 epochs for 416 Class 1 (poor quality) scans from ABIDE 1 (30 very low quality 

scans included in the training set, 6 very low quality scans included in the validation set, 

380 less severely poor quality scans included in the test set). 51 scans have local ringing or 

blurring (blue), 60 are globally corrupted but medium quality (orange), 36 are globally 

corrupted and very low quality (green; i.e. score=4,4,4,4 and artefacts present on all the 2D 

slices), 269 are less severely corrupted or exhibit localised artefact only (red).  

Figure A1.3 shows that each of the categories of artefact severity are well segregated in 

terms of their predicted probabilities: globally corrupted scans have probabilities very close 

to 1, while scans with moderate artefact (e.g., ringing or blurring) have probabilities spread 

between 0.5-0.8, and other scans with localised or less severe artefact have probabilities 

around 0.5. 

The classes (Local/Severe/Moderate/Less corruption) were defined as follows: 

- Severe/Moderate/Less: refers to an artefact or a set of artefacts that was globally 

evident on the scan. Severe means that the scan was highly corrupted: at least one 

of the four artefact scores (blurring; ringing; CNR WM/GM; CNR subcortical 
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structures) was 4. Moderate means that at least one of the four artefact scores was 

3. Less means that at least one of the four artefact scores was 2. 

- Local: refers to an artefact or a set of artefacts (with scores between 2 and 4) that 

was present only on a demarcated area of the scan, and on for less than half of the 

slices. 

We also evaluated the results on slices for the 66 scans from ABIDE 1 we annotated with 

local ringing and/or local blurring. We found that in the extremities, the algorithm tends to 

predict the slices as Class 1, even in the cases it should be Class 0. This means that slices 

near the edge of the field-of-view containing few brain tend to be identified as corrupted 

by the algorithm. This might explain why the global distribution of probabilities of the 

model proto-ResNet152-10ep is higher than the ones of other models (see Figures A1.1 

and A1.2). 

We also found an axis effect at the accuracy level (no effect between the distribution of 

scores)  - while predictions for sagittal images were 89.3% accurate, accuracy for coronal 

images were 86.4% accurate, and for axial views, 78.8% accurate. 

 

8.6.2. A1.2 Multi-site effect 
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 good quality - 

528 scans 

globally medium 

corrupted - 60 

scans 

local ringing or 

blurring - 51 

scans 

other less 

corrupted scans - 

269 scans 

CALTECH accuracy: 1.0 

n scans: 34  

na na accuracy: 0.0 

n scans: 2 

CMU  accuracy: 1.0 

n scans: 24 

na na accuracy: 0.3333 

n scans: 3 

KKI  accuracy: 1.0 

n scans: 25 

accuracy: 1.0 

n scans: 3 

na accuracy: 0.5714 

n scans: 14 

LEUVEN_1  accuracy: 0.9259 

n scans: 27  

na na accuracy: 0.5 

n scans: 2 

LEUVEN_2  accuracy: 0.9565 

n scans: 23  

na accuracy: 1.0 

n scans: 1 

accuracy: 0.2 

n scans: 10 

MAX_MUN  accuracy: 0.9286 

n scans: 28 

accuracy: 1.0 

n scans: 2 

accuracy: 1.0 

n scans: 1 

accuracy: 0.8 

n scans: 10 

NYU  accuracy: 0.9146 

n scans: 82 

accuracy: 1.0 

n scans: 1 

 

accuracy: 0.5882 

n scans: 17 

accuracy: 0.2714 

n scans: 70 

OHSU accuracy: 0.9091 accuracy: 1.0 na na 
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n scans: 22 n scans: 1 

OLIN  accuracy: 0.75 

n scans: 12  

na accuracy: 1.0 

n scans: 2 

accuracy: 0.4286 

n scans: 7 

PITT  accuracy: 0.9524 

n scans: 21 

na accuracy: 1.0 

n scans: 5 

accuracy: 0.3913 

n scans: 23 

SBL  accuracy: 1.0 

n scans: 26 

na na accuracy: 0.0 

n scans: 4 

SDSU  accuracy: 0.8 

n scans: 10 

accuracy: 1.0 

n scans: 10 

na accuracy: 0.8 

n scans: 10 

STANFORD na accuracy: 1.0 

n scans: 10 

accuracy: 0.8333 

n scans: 12 

accuracy: 0.6667 

n scans: 6 

TRINITY  accuracy: 1.0 

n scans: 34  

accuracy: 1.0 

n scans: 3 

accuracy: 1.0 

n scans: 1 

accuracy: 0.0 

n scans: 7 

UCLA_1  accuracy: 0.8958 

n scans: 48 

accuracy: 1.0 

n scans: 6 

accuracy: 0.6667 

n scans: 3 

accuracy: 0.8 

n scans: 5 

UCLA_2  accuracy: 1.0 

n scans: 7 

accuracy: 1.0 

n scans: 3 

accuracy: 1.0 

n scans: 1 

accuracy: 0.4286 

n scans: 7 

UM_1  accuracy: 1.0 accuracy: 1.0 accuracy: 0.8 accuracy: 0.1471 
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n scans: 27 n scans: 7 n scans: 10 n scans: 34 

UM_2  accuracy: 1.0 

n scans: 13 

na accuracy: 0.6667 

n scans: 3 

accuracy: 0.25 

n scans: 12 

USM  accuracy: 1.0 

n scans: 60 

na na accuracy: 0.25 

n scans: 4 

YALE accuracy: 1.0 

n scans: 5  

accuracy: 1.0 

n scans: 5 

accuracy: 0.5 

n scans: 4 

accuracy: 0.1795 

n scans: 39 

Table A1.1: Predictions for each data collection site in the test set (908 scans) for proto-

ResNet152 trained on 10 epochs. 

Table A1.1 displays the predictions of the model proto-ResNet152 trained on 10 epochs for 

each data collection site in the first test set of 908 scans from the ABIDE 1 dataset.  

For Class 0 (good quality, pass) scans, the model attained 100% accuracy for 10 out of 19 

sites, >90% for 16 of 19, and accuracy of at least 75% for the remaining 3 sites. Overall the 

mean accuracy across sites is 94.9% with a standard deviation of 0.07. There does not 

appear to be a significant effect on site effect on the prediction of the good quality (Class 

0) scans. 

For Class 1 (poor quality, fail) scans with moderate levels of artefact, accuracy is 100% 

across sites. For scans with less severe or localised artefact, there is more variability across 

sites, but there is also large variation in the number of scans in that category, so it is difficult 

to quantitatively assess whether there is a significant site effect.  

  



196 

8.6.3. A1.3 Prototypes mostly used by proto-R152 

 

Figure A1.4: Prototypes that commonly appeared in the top-5 prototypes (i.e., those 

prototypes with the top 5 highest ranking similarity scores to the input 2D slices). 
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8.6.4. A1.4 Examples of activation maps 

 

Figure A1.5: Examples of artefact maps and prototypes judged to be meaningful: the upper 

panel shows the input slice, the lower panel shows the top-3 prototype for the model 

proto-R152 trained on 10 epochs (i.e., the prototype with the third highest ranking 

similarity score to the input 2D slices). 
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Figure A1.6: Examples of artefact maps and prototypes judged not to be meaningful: the 

upper panel shows the input slice, the lower panel shows the top-1 prototype for the model 

proto-V19 trained on 30 epochs (i.e., the prototypes with the highest ranking similarity 

score to the input 2D slices). 

 

8.6.5. A1.5 Mann-Whitney U-tests between the predicted scores 

of QC categories of the ABCD data 
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variable 1 variable 2 U-val alternative p-val RBC CLES 

pass fail 13814,5 two-sided 1,844.10e-93 0,899 0,051 

pass questionable 208800,0        two-sided 1,183.10e-56  0,459 0,271 

fail questionable 94121,5        two-sided 1,004.10e-48 -0,701 0,850 

Table A1.2: Mann-Whitney U-tests between the scores returned by BrainQCNet on each 

QC category of the ABCD dataset: pass, questionable, fail. It shows that the distribution of 

scores are well distinct between each other, which is an expected behaviour for our QC 

algorithm.  

 

Appendix 2: Supplemental Information for Manuscript: “Towards 

3D Deep Learning for neuropsychiatry: predicting Autism 

diagnosis using an interpretable Deep Learning pipeline 

applied to minimally processed structural MRI data” 

8.6.6. A2.1 - Detailed data description 
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 No comorbidity 
At least one 

comorbidity 

Dataset 

Data- 

collecting 

site 

Train set 

(1074 sub.) 

Validation set 

(190 sub.) 

Testing set 

(65 sub.) 

Testing set 2 

(270 sub.) 

ABIDE I CALTECH 

Total: 30 

(Autism: 16; No 

Autism: 14) 

Total: 6 (Autism: 

2; No Autism: 4) 
  

 CMU 

Total: 25 

(Autism: 13; No 

Autism: 12) 

Total: 2 (Autism: 

1; No Autism: 1) 
  

 KKI 

Total: 22 

(Autism: 6; No 

Autism: 16) 

Total: 3 (Autism: 

0; No Autism: 3) 
 

Total: 9 

(Autism: 7; No 

Autism: 2) 

 LEUVEN_1   

Total: 27 

(Autism: 14 ; 

No Autism: 

13) 

 

 LEUVEN_2 

Total: 28 

(Autism: 12; No 

Autism: 16) 

Total: 3 (Autism: 

1; No Autism: 2) 
  

 
MAX_MU

N 

Total: 30 

(Autism: 10; No 

Autism: 20) 

Total: 3 (Autism: 

3; No Autism: 0) 
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 NYU 

Total: 103 

(Autism: 27 ; 

No Autism: 76) 

Total: 21 

(Autism: 5; No 

Autism: 16) 

 

Total: 28 

(Autism: 28; 

No Autism: 0) 

 OHSU 

Total: 19 

(Autism: 10; No 

Autism: 9) 

Total: 3 (Autism: 

1; No Autism: 2) 
  

 OLIN 

Total: 12 

(Autism: 8; No 

Autism: 4) 

Total: 7 (Autism: 

4; No Autism: 3) 
  

 PITT 

Total: 31 

(Autism: 15; No 

Autism: 16) 

Total: 8 (Autism: 

4; No Autism: 4) 
  

 SBL 

Total: 26 

(Autism: 13; No 

Autism: 13) 

Total: 3 (Autism: 

1; No Autism: 2) 
  

 SDSU 

Total: 10 

(Autism: 1; No 

Autism: 9) 

Total: 2 (Autism: 

1; No Autism: 1) 
  

 STANFORD 

Total: 5 

(Autism: 1; No 

Autism: 4) 

Total: 2 (Autism: 

2; No Autism: 0) 
  

 TRINITY 

Total: 36 

(Autism: 18; No 

Autism: 18) 

Total: 6 (Autism: 

2; No Autism: 4) 
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 UCLA_1 

Total: 45 

(Autism: 27; No 

Autism: 18) 

Total: 7 (Autism: 

5; No Autism: 2) 
  

 UCLA_2 

Total: 13 

(Autism: 6; No 

Autism: 7) 

Total: 2 (Autism: 

0; No Autism: 2) 
  

 UM_1 

Total: 59 

(Autism: 21; No 

Autism: 38) 

Total: 13 

(Autism: 6; No 

Autism: 7) 

  

 UM_2 

Total: 28 

(Autism: 12; No 

Autism: 16) 

Total: 3 (Autism: 

0; No Autism: 3) 
  

 USM 

Total: 54 

(Autism: 35; No 

Autism: 19) 

Total: 12 

(Autism: 8; No 

Autism: 4) 

  

 YALE 

Total: 46 

(Autism: 22; No 

Autism: 24) 

Total: 4 (Autism: 

2; No Autism: 2) 
  

ABIDE II BNI 

Total: 8 

(Autism: 7; No 

Autism: 1) 

Total: 1 (Autism: 

0; No Autism: 1) 
  

 EMC   

Total: 18 

(Autism: 4; No 

Autism: 14) 

Total: 9 

(Autism: 9; No 

Autism: 0) 
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 ETH 

Total: 25 

(Autism: 7; No 

Autism: 18) 

Total: 5 (Autism: 

1; No Autism: 4) 
  

 GU 

Total: 56 

(Autism: 19; No 

Autism: 37) 

Total: 9 (Autism: 

2; No Autism: 7) 
  

 IP 

Total: 29 

(Autism: 7; No 

Autism: 22) 

Total: 7 (Autism: 

4; No Autism: 3) 
 

Total: 8 

(Autism: 5; No 

Autism: 3) 

 IU 

Total: 31 

(Autism: 15; No 

Autism: 16) 

Total: 2 (Autism: 

1; No Autism: 1) 
  

 KKI 

Total: 103 

(Autism: 1; No 

Autism: 102) 

Total: 20 

(Autism: 0; No 

Autism: 20) 

 

Total: 36 

(Autism: 32; 

No Autism: 4) 

 KUL 

Total: 12 

(Autism: 12; No 

Autism: 0) 

Total: 8 (Autism: 

8; No Autism: 0) 
 

Total: 5 

(Autism: 5; No 

Autism: 0) 

 NYU 1 

Total: 36 

(Autism: 12; No 

Autism: 24) 

Total: 5 (Autism: 

2; No Autism: 3) 
 

Total: 22 

(Autism: 22; 

No Autism: 0) 

 NYU 2 

Total: 5 

(Autism: 5; No 

Autism: 0) 

Total: 1 (Autism: 

1; No Autism: 0) 
 

Total: 15 

(Autism: 15; 

No Autism: 0) 
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 OHSU 

Total: 47 

(Autism: 11; No 

Autism: 36) 

Total: 8 (Autism: 

0 ; No Autism: 8) 
 

Total: 34 

(Autism: 24; 

No Autism: 

10) 

 SDSU 

Total: 51 

(Autism: 28; No 

Autism: 23) 

Total: 4 (Autism: 

3; No Autism: 1) 
  

 TCD 

Total: 29 

(Autism: 13; No 

Autism: 16) 

Total: 7 (Autism: 

3; No Autism: 4) 
  

 UCD   

Total: 20 

(Autism: 8; No 

Autism: 12) 

Total: 5 

(Autism: 5; No 

Autism: 0) 

 USM 

Total: 20 

(Autism: 11; No 

Autism: 9) 

Total: 3 (Autism: 

1; No Autism: 2) 
  

ADHD200 Peking    

Total: 23 

(Autism: 0; No 

Autism: 23) 

 KKI    

Total: 10 

(Autism: 0; No 

Autism: 10) 

 
NeuroIMA

GE 
   

Total: 22 

(Autism: 0; No 

Autism: 22) 
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 NYU    

Total: 65 

(Autism: 2; No 

Autism: 63) 

 OHSU    

Total: 20 

(Autism: 0; No 

Autism: 20) 

Table A2.1: Partition of ABIDE I, ABIDE II, and ADHD200 into training, validation and testing 

sets. 

 

 Gender Age FIQ 

Train Males: 853 mean   17.159562 

std     8.656338 

min     5.128000 

25%    11.005000 

50%    14.653000 

75%    20.100000 

max   64.000000 

mean     110.290806 

std       14.888248 

min       41.000000 

25%      101.000000 

50%      111.000000 

75%      121.000000 

max      149.000000 

Females: 221 mean      15.026466 

std        8.035651 

min        5.220000 

25%        9.789041 

50%       12.361644 

mean     111.308458 

std       14.835831 

min       66.000000 

25%      101.000000 

50%      113.000000 
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75%       16.800000 

max       54.000000 

75%      122.000000 

max      146.500000 

Validation Males: 153 mean      17.012265 

std        8.623991 

min        7.150000 

25%       11.262800 

50%       14.800000 

75%       20.166667 

max       64.000000 

mean     110.043750 

std       15.436532 

min       49.000000 

25%      100.750000 

50%      112.000000 

75%      119.250000 

max      147.500000 

Females: 37 mean     13.046654 

std       5.848126 

min       5.907000 

25%       9.665753 

50%      10.780822 

75%      14.060000 

max      32.000000 

mean     113.972222 

std       14.624317 

min       84.000000 

25%      105.750000 

50%      115.000000 

75%      123.000000 

max      149.000000 

Test 1  

(no comorbidity) 

Males: 57 mean     17.087350 

std       6.428793 

min       7.129363 

25%      10.663929 

50%      17.416667 

mean     109.976190 

std       12.994348 

min       83.000000 

25%      101.500000 

50%      108.500000 
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75%      22.000000 

max      32.000000 

75%      118.250000 

max      146.000000 

Females: 8 mean     12.005540 

std       4.022715 

min       6.395619 

25%       8.400411 

50%      13.500000 

75%      14.520833 

max      16.500000 

mean     113.200000 

std       14.411801 

min       92.000000 

25%      105.000000 

50%      120.000000 

75%      122.000000 

max      127.000000 

Test 2  

(with comorbidities) 

Males: 205 mean      11.946206 

std        5.006252 

min        5.598000 

25%        8.646575 

50%       10.870000 

75%       13.200000 

max       35.000000 

mean     107.235632 

std       15.966971 

min       69.000000 

25%       97.250000 

50%      108.000000 

75%      116.000000 

max      148.000000 

Females: 65 mean     11.973690 

std       5.715843 

min       5.819000 

25%       9.000000 

50%      10.260000 

mean     107.087719 

std       12.884488 

min       74.000000 

25%       98.000000 

50%      109.000000 
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75%      12.580000 

max      38.760000 

75%      115.000000 

max      132.000000 

 

Table A2.2: Gender breakdown and distribution of age and FIQ score for each dataset 

(training, validation, testing, testing 2 sets).  

 

8.6.7. A2.2 - Model architectures 

 

Layers Output Size DenseNet121 

Convolution 128 x 128 x 128 7 x 7 x 7 conv, stride 2 

Pooling 64 x 64 x 64 3 x 3 x 3 pool, stride 2 

DenseBlock 1 

64 x 64 x 64 1 x 1 x 1 conv → 3 x 3 x 3 conv 

                          

x 6 

Transition Layer 1 

64 x 64 x 64 1 x 1 x 1 conv 

32 x 32 x 32 2 x 2 x 2 average pool, stride 2 

DenseBlock 2 

32 x 32 x 32 1 x 1 x 1 conv → 3 x 3 x 3 conv 

       

x 12 
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Transition Layer 2 

32 x 32 x 32 1 x 1 x 1 conv 

16 x 16 x 16 2 x 2 x 2 average pool, stride 2 

DenseBlock 3 

16 x 16 x 16 1 x 1 x 1 conv → 3 x 3 x 3 conv 

       

x 24 

Transition Layer 3 

16 x 16 x 16 1 x 1 x 1 conv 

8 x 8 x 8 2 x 2 x 2 average pool, stride 2 

DenseBlock 4 

8 x 8 x 8 1 x 1 x 1 conv → 3 x 3 x 3 conv 

       

x 16 

Classification Layer 

1 x 1 x 1 8 x 8 x 8 global average pool 

 Fully Connected layer, softmax 

Table A2.3: Representation of DenseNet121 for our classification task of 3D scans - Input 

size: 256 x 256 x 256 
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 Layers Output Size ResNet50 

 Convolution 128 x 128 x 128 7 x 7 x 7 conv, stride 2 

 Max Pooling 64 x 64 x 64 3 x 3 x 3 pool, stride 2 

 Convolutional Layer (type 

1) 

64 x 64 x 64 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv -> 1 x 1 x 1 conv 

 Bottleneck 64 x 64 x 64  

 Convolutional Layer (type 

2) 

64 x 64 x 64 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 64 x 64 x 64  

 Convolutional Layer (type 

2) 

64 x 64 x 64 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 64 x 64 x 64  

 Convolutional Layer (type 

1) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv -> 1 x 1 x 1 conv 

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  
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 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

1) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv -> 1 x 1 x 1 conv 

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  
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 Convolutional Layer (type 

1) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv -> 1 x 1 x 1 conv 

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Convolutional Layer (type 

2) 

32 x 32 x 32 1 x 1 x 1 conv -> 3 x 3 x 3 conv -> 1 x 1 x 1 

conv  

 Bottleneck 32 x 32 x 32  

 Classification Layer 

1 x 1 x 1 7 x 7 x 7 global average pool 

 Fully Connected layer, softmax 

Table A2.4: Architecture of ResNet50 - in yellow, the layers for which we extracted the 

parameters from the pre-trained model Med3d; in light green, the layers for which we 

continued training the parameters to fine-tune the model and adapt it to the task of 

predicting Autism. 

 

8.6.8. A2.3 - Performance of the models 
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Figure A2.1: Validation set accuracy during training for the two models DenseNet161 and 

Med3d-ResNet50. 

 

Figure A2.1 compares the distributions of validation set accuracies for each model. 

DenseNet121 tended to have more sSupplemental Table and higher accuracies on the 

validation set than Med3d-ResNet50. 
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 Med3d - ResNet50 - 42 

epochs 

DenseNet121 - 32 epochs DenseNet121 - 70 epochs 

Subjects All Autism no-

Autism 

All Autism no-

Autism 

All Autism no-

Autism 

Training 

set 

Acc.: 

94,2 % 

AUROC: 

99,9 % 

Acc.: 

85,3 % 

Acc.: 

100 % 

 

Acc.: 

65,5 % 

AUROC: 

69,1 % 

Acc.: 

32,8 % 

Acc.: 

86,7% 

Acc.: 

69,7 %  

AUROC: 

77,1 %: 

Acc.: 

68,2 % 

 

Acc.: 

70,8 % 

 

Validation 

set 

Acc.: 

62,6 % 

AUROC: 

62,1 % 

Acc.: 

17,6 % 

 

Acc.: 

91,4 % 

Acc.: 

66,3 % 

AUROC: 

68,8 % 

Acc.: 

36,5 % 

Acc.: 

85,3 % 

Acc.: 

67,4 % 

AUROC: 

68,1 % 

Acc.: 

66,2 % 

 

Acc.: 

68,1 % 

 

Testing 

set 

Acc.: 

53,8 % 

AUROC: 

57,3 % 

Acc.: 

50% 

Acc.: 

56,4 % 

Acc. 

55,4 %: 

AUROC: 

60,7 % 

Acc.: 

84,6 % 

Acc.: 

35,9 % 

Acc.:  

40 % 

AUROC: 

38,1 % 

Acc.: 

69,2 % 

 

Acc.: 

20,5 % 

 

All the 

dataset 

Acc.: 87,7 %  

AUROC: 95,5 % 

Acc.: 65,2 % 

AUROC: 68,4 % 

Acc.: 67,9 % 

AUROC: 74,0 %: 

Table A2.5: Comparison of the performance of the prediction of Autism between the 

models Med3d - ResNet50 - 42 epochs, DenseNet121 - 32 epochs and DenseNet121 - 70 

epochs. 
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Figure A2.2: True and False Positives and Negatives for each of the three best models - 

Med3DNet-ResNet50 trained on 42 epochs, DenseNet121 trained on 32 epochs, and 

DenseNet121 trained on 70 epochs.  

 

Figure A2.2 shows the accuracies (in terms of True/False Positives and Negatives) obtained 

for each of the three best models for prediction of Autism (Autism vs. non-Autism) and 

each dataset. We can see that Med3d-ResNet50-42ep overfit the data, because the 

accuracy and ROC AUC scores were very high on the training set (94.2% and 99.9% 

respectively), but much lower on the validation (acc = 62.6% and AUC = 62.1%) and testing 

sets (acc = 53.8% and AUC=57.3%). DenseNet121-32ep appeared to be more 

sSupplemental Table in terms of its overall performance on the training (acc = 65.5% and 

AUC = 69.1%), validation (acc =66.3% and AUC = 68.8%) and testing (acc =55.4% and AUC = 

60.7%) sets. DenseNet121-70ep had better performance on the training (acc = 69.7% and 

AUC = 77.1%) and validation (acc = 67.4% and AUC = 68.1%) sets than DenseNet121-32ep, 

but poorer performance on the testing set (acc = 40% and AUC = 38.1%).  

 

Figure A2.2 shows that DenseNet121-32ep has high specificity on the training and 

validation sets, while having low sensitivity. Paradoxically, it has high sensitivity but low 
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specificity on the testing set. DenseNet121-70ep behaves similarly on the testing set. 

Nevertheless, on the training and validation sets, we can see that the sensitivity and 

specificity are balanced and fairly high. Finally, for Med3d-ResNet50-42ep, we observe that 

the sensitivity and specificity are very high on the training set, are unbalanced on the 

validation set with a low sensitivity and very high specificity, and are balanced again on the 

testing set, but with moderate values. 

 

The lowest panel of Figure A2.2 shows the accuracies for the second testing set, which 

included participants with comorbidities. The data show that predicting Autism in the 

presence of comorbidities is more difficult than predicting Autism when the training and 

testing sets include only participants without known comorbidities, with a particularly large 

increase in False Negatives. One potential explanation is that neuroimaging markers 

become less evident when individuals have another diagnosis involving similar or other 

neuroimaging markers. Another explanation is that more data are needed to adequately 

train DL algorithms on the whole spectrum of Autism patients.   

 

 

Figure A2.3: Comparison of model predictions across all the datasets without comorbidity 

(training/validation/test) 
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Figure A2.3 shows that there is a net difference in the distribution of probabilities for 

Autistic vs non-Autistic participants for the Med3d-ResNet50-42ep model, in line with the 

observation of overfitting and the very good performance observed for the training set 

(1074 subjects). For the two other models, the estimated means are distinct, although the 

distributions overlap. This observation also reflects the accuracy and ROC AUC scores 

obtained with these two models. 

 

T-tests indicate no significant difference between the age of patients predicted with Autism 

and the ones predicted with no Autism (p > .05).  

 

 

Figure A2.4: ROC AUC and accuracy scores in function of age (between 5 and 10, 10 and 

15, 15 and 20, 20 and 64) and gender (male or female) for each model (ResNet50 trained 

on 42 epochs, DenseNet121 trained on 32 epochs and trained on 70 epochs) for each 

dataset (training, validation, testing and testing 2 sets).  
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We observed that the ROC AUC and accuracy scores did not differ between age ranges and 

between genders in the training set. However, we observed that in the validation set, these 

scores were variable (see Figure A2.4). We also observed this variation in the two testing 

sets (see Figure A2.4). This suggests that we should examine the stability of performance 

between different age ranges and between males and females.      

 

8.6.9. A2.4 - Analysis of ADI-R and ADOS scores, age, gender and 

full IQ 

 

To better understand differences between the datasets (training, validation and testing 

sets) and between the classes (Autism and non-Autism), we performed an analysis 

incorporating the severity scores from ADI-R and ADOS, the age, the gender and the Full IQ 

scores.   

 

First, we gathered all the information on the diagnosis available in ABIDE I & II. By 

combining various questionnaires (ADI-R, ADOS Modules 2, 3 and 4), we obtained scores 

for (1) social interaction (including the Reciprocal Social Interaction Subscore A for ADI-R, 

the Social Total Subscore of the classic ADOS, the Social Affect Total Subscore for Gotham 

Algorithm of ADOS, for (2) verbal communication (including the Abnormalities in 

Communication Subscore (B) for ADI-R, the Communication Total Subscore of the Classic 

ADOS), (3) for repetitive, restricted or stereotyped behaviours (including the Restricted, 

Repetitive, and Stereotyped Patterns of Behaviour Subscore (C) for ADI-R, the Stereotyped 

Behaviours and Restricted Interests Total Subscore of the Classic ADOS, the Restricted and 

Repetitive Behaviours Total Subscore for Gotham Algorithm of ADOS) and (4) total scores 

(including the Abnormality of Development Evident at or before 36 months Subscore (D) 

Total for ADI-R, the Classic ADOS Score, the Gotham Algorithm of ADOS Score) for 452 
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subjects. Since all of these questionnaires use different scales, we transformed all the 

scores into Z-scores to compare individuals.    

 

Second, we gathered the predicted class of each patient from each model, and, from it, we 

created a variable “prediction type” representing the True Positives, False Negatives, True 

Negatives and False Positives.  

 

Finally, we compared the distributions of Z-scores across prediction types, to investigate 

whether there were differences in symptom severity scores between True Positives and 

False Negatives, and similarly, a difference between True Negatives and False Positives. We 

visually compared the distribution and performed a T-test   

 

These analyses did not reveal any discernible differences between the predictions of the 

three models. Figure A2.5 illustrates an example of this analysis using Med3d - ResNet50 - 

42ep. 

 

Figure A2.5: Comparison of social interaction Z-scores between False Negatives (FN), True 

Positives (TP), True Negatives (TN) and False Positives (FP). 
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We did not find any differences between the three models when we examined the severity 

scores on the training, validation and testing sets separately. Nor were there differences 

between males and females in the distribution of probabilities for all the models. 

 

We compared the distribution of age for each prediction type (FN, TP, TN, FP).  There was 

no noticeable difference in age between the samples corresponding respectively to each 

prediction type for all the models, compared to the distribution of age between the 

samples corresponding to true labels. 

 

Finally, we also compared the distribution of Full IQ score for each prediction type (FN, TP, 

TN, FP). There was no noticeable difference between the samples corresponding 

respectively to each prediction type or all the models, compared to the distribution of FIQ 

between the samples corresponding to true labels. 
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Figure A2.6: Probability scores of each model per category obtained from SRS T-scores in 

ABIDE 2  
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In Figure A2.6, for every model, the distribution of probability scores is shown for 

categories created on the basis of the total T-scores of the SRS-2. “Within typical limits” 

corresponds to a T-score lower than 59, “mild to moderate difficulties in social interaction” 

corresponds to a T-score between 60 and 65, “moderate difficulties  in reciprocal social 

behaviour” corresponds to a T-score between 66 and 75, and “severe difficulties, strongly 

associated with Autism” to a T-score greater than 76. We observed that DenseNet121-70ep 

had a distribution of probability scores that was consistent with these severity scores, with 

the majority of scores lower than 0.5 for the category “within typical limits”, and the 

majority of scores greater than 0.5 for the three other categories. 

 

8.6.10. A2.5 - Most important regions for the prediction of True 

Positives 

                      

   R42 D32 D70 

   No 

comor

b 

With 

comor

b 

No 

comor

b 

With 

comor

b 

No 

comor

b 

With 

comor

b  

Frontal lobe Left Frontal operculum 2 2 0 0 2 2 

Frontal lobe Left Middle frontal 

gyrus 

3 4 0 0 0 0 

Frontal lobe Left Precentral gyrus 

medial segment 

0 0 3 4 1 2 

Frontal lobe Left Precentral gyrus 1 1 0 0 2 3 
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Frontal lobe Left Triangular part of 

the inferior frontal 

gyrus 

3 4 0 0 1 1 

Limbic system 

and associated 

structures 

Left Anterior Cingulate 

Gyrus 

3 4 0 0 0 0 

Limbic system 

and associated 

structures 

Left Parahippocampal 

gyrus 

1 2 0 0 3 4 

Limbic system 

and associated 

structures 

Left Subcallosal area 3 4 0 0 0 1 

Parietal lobe Left Central 

operculum 

2 2 0 0 1 2 

Parietal lobe Left Parietal 

operculum 

0 1 2 3 2 3 

Parietal lobe Left Parietal white 

matter 

0 0 2 2 2 3 

Parietal lobe Left Supplementary 

motor cortex 

0 0 1 2 1 2 

Parietal lobe Left Supramarginal 

gyrus 

0 0 2 3 2 3 

occipital lobe Left Posterior orbital 

gyrus 

2 3 0 0 2 2 
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subcortical 

structures 

Right Ventral 

diencephalon 

0 1 2 3 1 1 

temporal lobe Left Planum 

temporale 

1 1 1 2 2 3 

temporal lobe Left Superior temporal 

gyrus 

2 2 0 0 2 2 

temporal lobe Left Temporal pole 2 2 0 0 3 3 

temporal lobe Left Transverse 

temporal gyrus 

1 1 0 1 1 2 

Table A2.6: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism): 

each row is for one region, each column is for one model (R42 for ResNet50 trained on 42 

epochs, D32 for DenseNet121 trained on 32 epochs, D70 for DenseNet121 trained on 70 

epochs) and one combination of datasets considered (training+validation+testing 1 sets 

(“no comorb” for no comorbidity), or all these sets + testing set 2 (“with comorb” for 

containing subjects with comorbidities), each case returns the number of datasets where 

the region was important for predicting TP for the model considered.  

 

Table A2.6 summarises the most important regions for predicting TP, which identified 

regions that were common across models. Limiting the results in this way enables us to 

reduce the bias effect of each algorithm (that leads to regions important only for one 

model). We used a methodology analogous to a traditional machine learning pipeline here, 

which identified features on the basis of their importance. 

Table A2.6 gives us different types of information: 

- The most replicable regions for predicting TP between the models 
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- The replicability of the regions found between the datasets not containing subjects 

with comorbidity (thanks to the number in each case in the columns “Training + val. 

+ testing 1 sets”) 

- The replicability of the regions found between datasets without comorbidity and 

dataset with comorbidity  (thanks to the number in each case in the columns 

“Training + val. + testing 1 & 2 sets”). This is also shown by the changes highlighted 

in light red. 

For instance, for the model Med3D-ResNet50 trained on 42 epochs, we found that Right-

ACgG-anterior-cingulate-gyrus is an important region for predicting TP on three over the 

three datasets into the datasets without comorbidity, and on four over the four datasets 

“Training + val. + testing 1 & 2 sets” that contains subjects with comorbidities in testing set 

2. Thus, for the model Med3D-ResNet50 trained on 42 epochs, Right-ACgG-anterior-

cingulate-gyrus is important for the prediction of TP, and, by extension, for the detection 

of Autism, and was robust to comorbidities.  

In Table A2.6, we observed that several regions were important for the three models, 

including Left Planum Temporale, Left Parietal Operculum, Right Ventral Diencephalon. 

However, we saw that for the four regions the replicability is low between the datasets. 

We also noticed that, on the one hand, a lot of regions were commonly important for the 

two DenseNet models but not for ResNet50, including Left Supramarginal Gyrus, Left 

Parietal White Matter and Left precentral gyrus medial segment. On the other hand, Left 

subcallosal area, Left Middle Frontal gyrus, Left-MFC-medial-frontal-cortex and Left 

anterior cingulate gyrus were important for ResNet50 but not for the two DenseNet 

models, and their importance replicated well over the datasets, including the one with 

comorbidities.  

 

Further, several regions were important to both ResNet50 and to DenseNet121-70ep, 

including Left triangular part of the inferior frontal gyrus, Left Temporal Pole , Left 

Precentral Gyrus, Left posterior orbital gyrus, Left Parahippocampal gyrus. We noticed that 

for Left triangular part of the inferior frontal gyrus, the replicability over the datasets 

without comorbidity was higher for the ResNet50 model than for the DenseNet121-70ep 
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model, while we observed the opposite for Left Parahippocampal gyrus. However, we 

noticed that for the ResNet50 model, the importance of Left Precentral Gyrus did not 

replicate in the testing set 2 with comorbidities whereas for DenseNet121-70ep it did. The 

converse was observed for Left posterior orbital gyrus. This disparity is illustrative of the 

bias introduced by each model, due to the different architectures and levels of 

optimisation. Even though we set the optimiser parameters similarly between the models, 

due to the inherent difference in the designs, the models tend to approximate a function 

that achieves the task of detecting Autism in different ways. This also underlines the 

importance of considering different types of models in deep learning when possible 

(machine/funding limitation), analogously to more traditional machine learning pipelines 

of analysis.  

With regard to participants with comorbidities, we see from Table A2.6 that all the regions 

important for ResNet50-42ep, but which were not shared with the other models, replicated 

well in the test set with comorbidities. Globally, the models ResNet50-42ep and 

DenseNet70-70ep have an equivalent number of areas that were important for predicting 

TP and which replicated well in the testing set 2, higher than for the model DenseNet121-

32ep.  

Another interesting point is that certain regions that were not among the most important 

for predicting TP in the datasets without comorbidities appear important for predicting TP 

in the dataset with subjects who did have comorbidities. This includes Left subcallosal area 

for DenseNet121-70ep, and Right Ventral Diencephalon, Left Parietal Operculum for 

ResNet50-42ep.  

Summarising the Supplemental Table, and taking each model separately, the most 

important regions for predicting Autism across all the models and between datasets are 

Left triangular part of the inferior frontal gyrus, Left subcallosal area, Left Parahippocampal 

gyrus, Left precentral gyrus medial segment, Left Middle Frontal gyrus and Left anterior 

cingulate gyrus. 

On the one hand, this result can help us identify neuroimaging markers of Autism, by 

combining the findings between the models, using deep learning as a way to extract feature 

importance in a manner similar to Random Forest, for instance. On the other hand, this 
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shows that each model tends to focus on specific parts in the brain, capturing different 

patterns than the other models, making it difficult to select one model that works best.  

 

8.6.11. A2.6 - Most important regions for the prediction of True 

Negatives 

 

Overall, after aggregating all the datasets, among the 79 areas most important for 

predicting TN, 10 areas combining left and right hemispheres, 24 in the left hemisphere 

and 2 in the right hemisphere were commonly predictive for TP. 

Keeping only the areas that replicated the most over the datasets, the areas predictive for 

TN were largely different from the ones that were important for TP.   

   

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Frontal 

operculu

m 

3 4 0 0 0 0 

Limbic 

system 

and 

associate

d 

structures 

Left Posterior 

cingulate 

gyrus 

1 1 2 3 1 1 
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Limbic 

system 

and 

associate

d 

structures 

Right Posterior 

cingulate 

gyrus 

0 0 2 3 1 1 

Parietal 

lobe 

Left Precuneu

s 

0 0 2 3 1 2 

Parietal 

lobe 

Left Superior 

parietal 

lobule 

0 0 2 3 2 3 

cerebellu

m 

None Vermal 

Lobules 

VI-VII 

0 0 3 4 2 2 

cerebellu

m 

Left Cerebellu

m exterior 

0 0 2 3 2 2 

occipital 

lobe 

Left Angular 

gyrus 

0 0 2 3 2 3 

occipital 

lobe 

Left Calcarine 

cortex 

0 0 0 1 2 3 

occipital 

lobe 

Left Cuneus 0 0 1 1 2 3 

occipital 

lobe 

Left Inferior 

occipital 

gyrus 

0 0 3 4 2 3 
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occipital 

lobe 

Left Lingual 

gyrus 

0 0 2 3 2 3 

occipital 

lobe 

Left Middle 

occipital 

gyrus 

0 0 2 2 2 3 

occipital 

lobe 

Left Occipital 

fusiform 

gyrus 

0 0 3 4 2 3 

occipital 

lobe 

Left Occipital 

White 

Matter 

0 0 2 3 2 3 

occipital 

lobe 

Left Superior 

occipital 

gyrus 

0 0 1 2 3 4 

subcortica

l 

structures 

Left Thalamus 3 4 0 0 0 0 

subcortica

l 

structures 

Right Ventral 

diencepha

lon 

2 3 0 0 1 1 

temporal 

lobe 

Left Middle 

temporal 

gyrus 

0 0 2 2 2 2 

temporal 

lobe 

Left Planum 

polare 

3 4 0 0 0 0 
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Table A2.7: Best regions for predicting True Negatives (TN, i.e. no diagnosis of Autism): 

each row is for one region, each column is for one model and one combination of datasets 

considered (training+validation+testing 1 sets (no comorbidity), or all these sets + testing 

set 2 (containing subjects with comorbidities)), each case returns the number of datasets 

where the region was important for predicting TN for the model considered.  

 

8.6.12. A2.7- Most replicable regions for False Positives and False 

Negatives 

         

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Frontal 

operculum 

1 1 0 0 3 3 

Frontal 

lobe 

Left Middle frontal 

gyrus 

1 2 0 0 2 3 

Frontal 

lobe 

Left Precentral gyrus 

medial segment 

0 0 2 2 2 3 

Frontal 

lobe 

Left Precentral gyrus 1 2 0 0 3 3 

Frontal 

lobe 

Left Triangular part 

of the inferior 

frontal gyrus 

1 1 0 0 3 3 
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Frontal 

lobe 

Right Precentral gyrus 

medial segment 

0 0 3 3 0 1 

Parietal 

lobe 

Left Parietal 

operculum 

1 1 2 2 1 1 

Parietal 

lobe 

Left Parietal white 

matter 

0 0 2 2 2 2 

Parietal 

lobe 

Left Supplementary 

motor cortex 

0 0 3 3 1 2 

Parietal 

lobe 

Left Supramarginal 

gyrus 

0 1 2 2 2 3 

Parietal 

lobe 

Left Superior parietal 

lobule 

0 0 3 3 1 2 

occipital 

lobe 

Left Angular gyrus 0 0 3 3 2 2 

occipital 

lobe 

Left Posterior orbital 

gyrus 

2 2 0 0 3 3 

temporal 

lobe 

Left Postcentral 

gyrus 

0 0 2 2 2 2 

temporal 

lobe 

Left Temporal pole 1 1 0 0 3 3 

Table A2.8: Best regions for predicting False Positives (FP, i.e. prediction of Autism whereas 

no diagnosis Autism): each row is for one region, each column is for one model and one 

combination of datasets considered (training+validation+testing 1 sets (no comorbidity), or 
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all these sets + testing set 2 (containing subjects with comorbidities)), each case returns the 

number of datasets where the region was important for predicting TN for the model 

considered.  

   

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal lobe Left Frontal 

operculum 

3 4 0 0 0 0 

Limbic system 

and 

associated 

structures 

Left Posterior 

cingulate 

gyrus 

0 1 2 3 1 2 

Limbic system 

and 

associated 

structures 

Right Posterior 

cingulate 

gyrus 

0 1 2 3 1 1 

Parietal lobe Left Precuneus 0 0 3 4 1 2 

Parietal lobe Left Superior 

parietal 

lobule 

0 0 1 2 1 2 

cerebellum None Vermal 

Lobules VII-

X 

0 0 1 2 1 2 
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cerebellum Left Cerebellum 

exterior 

0 0 2 3 1 2 

occipital lobe Left Angular 

gyrus 

0 0 2 3 2 3 

occipital lobe Left Cuneus 0 0 1 1 2 3 

occipital lobe Left Inferior 

occipital 

gyrus 

0 0 3 4 2 3 

occipital lobe Left Lingual 

gyrus 

0 0 2 3 2 3 

occipital lobe Left Middle 

occipital 

gyrus 

0 0 2 3 2 3 

occipital lobe Left Occipital 

fusiform 

gyrus 

0 0 3 4 1 2 

occipital lobe Left Occipital 

White 

Matter 

0 0 2 3 2 3 

occipital lobe Left Superior 

occipital 

gyrus 

0 0 1 1 2 3 
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temporal lobe Left Middle 

temporal 

gyrus 

0 1 2 2 2 2 

temporal lobe Left Planum 

polare 

3 4 0 0 0 0 

temporal lobe Left Superior 

temporal 

gyrus 

3 4 0 0 0 0 

Table A2.9: Best regions for predicting False Negatives (FN, i.e. no prediction of Autism 

whereas diagnosed Autism): each row is for one region, each column is for one model and 

one combination of datasets considered (training+validation+testing 1 sets (no 

comorbidity), or all these sets + testing set 2 (containing subjects with comorbidities)), each 

case returns the number of datasets where the region was important for predicting TN for 

the model considered.  

 

8.6.13. A2.8 - True Positives by Gender 

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal lobe Left Frontal 

operculum 

2 2 0 0 2 3 

Frontal lobe Left Middle 

frontal 

gyrus 

3 4 0 0 0 0 
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Frontal lobe Left Precentral 

gyrus 

medial 

segment 

0 0 3 4 1 2 

Frontal lobe Left Precentral 

gyrus 

1 1 0 0 3 4 

Frontal lobe Left Triangular 

part of the 

inferior 

frontal 

gyrus 

3 4 0 0 1 1 

Limbic system 

and associated 

structures 

Left Anterior 

Cingulate 

Gyrus 

3 4 0 0 0 0 

Limbic system 

and associated 

structures 

Left Parahippoc

ampal gyrus 

1 2 1 1 3 4 

Limbic system 

and associated 

structures 

Left Posterior 

insula 

2 2 0 0 2 2 

Limbic system 

and associated 

structures 

Left Subcallosal 

area 

2 3 0 0 1 2 

Parietal lobe Left Central 

operculum 

2 2 0 0 2 3 
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Parietal lobe Left Parietal 

operculum 

1 2 1 2 2 3 

Parietal lobe Left Supramargi

nal gyrus 

0 0 2 3 2 3 

occipital lobe Left Posterior 

orbital 

gyrus 

2 3 0 0 2 2 

subcortical 

structures 

Right Ventral 

diencephal

on 

0 1 2 3 1 1 

temporal lobe Left Planum 

temporale 

1 1 1 2 2 3 

temporal lobe Left Superior 

temporal 

gyrus 

2 2 0 0 2 2 

temporal lobe Left Temporal 

pole 

2 2 0 0 3 3 

temporal lobe Left Transverse 

temporal 

gyrus 

1 1 1 2 1 2 

Table A2.10: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys 
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   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal lobe Left Triangular 

part of the 

inferior 

frontal 

gyrus 

1 2 1 1 1 1 

Frontal lobe Right Precentral 

gyrus 

medial 

segment 

0 0 2 3 0 1 

Limbic 

system and 

associated 

structures 

Left Posterior 

cingulate 

gyrus 

0 0 2 3 2 3 

Limbic 

system and 

associated 

structures 

Right Middle 

cingulate 

gyrus 

0 1 0 1 1 2 

Parietal 

lobe 

Left Parietal 

operculu

m 

1 1 1 2 2 3 



238 

Parietal 

lobe 

Left Parietal 

white 

matter 

0 0 0 1 2 3 

Parietal 

lobe 

Left Supramar

ginal 

gyrus 

0 0 1 2 2 3 

Parietal 

lobe 

Left Superior 

parietal 

lobule 

0 0 2 2 3 3 

Parietal 

lobe 

Right Suppleme

ntary 

motor 

cortex 

1 1 0 1 1 2 

occipital 

lobe 

Left Angular 

gyrus 

0 0 2 2 2 2 

occipital 

lobe 

Left Occipital 

pole 

0 0 1 2 1 2 

temporal 

lobe 

Left Postcentr

al gyrus 

medial 

segment 

0 1 2 2 2 2 

temporal 

lobe 

Left Postcentr

al gyrus 

0 0 0 1 2 3 

temporal 

lobe 

Right Postcentr

al gyrus 

0 0 2 2 2 2 
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medial 

segment 

Table A2.11: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Girls. 

 

8.6.14. A2.9 - True Positives by Gender and Age 

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Middle 

frontal 

gyrus 

2 2 0 0 2 2 

Frontal 

lobe 

Left Precentral 

gyrus 

2 2 0 0 3 4 

Frontal 

lobe 

Left Triangular 

part of the 

inferior 

frontal 

gyrus 

1 2 0 0 2 3 

Limbic 

system 

and 

associat

ed 

Left Hippocamp

us 

2 2 0 0 1 2 
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structur

es 

Parietal 

lobe 

Left Central 

operculum 

2 2 0 0 3 4 

Parietal 

lobe 

Left Supramargi

nal gyrus 

1 2 0 0 1 2 

occipital 

lobe 

Left Posterior 

orbital 

gyrus 

1 1 0 0 3 4 

tempora

l lobe 

Left Temporal 

pole 

2 2 0 0 2 3 

Table A2.12: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys aged 5 to 10. 

         

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Frontal 

White 

Matter 

1 1 0 0 2 3 

Frontal 

lobe 

Left Triangular 

part of the 

inferior 

3 4 0 0 2 2 
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frontal 

gyrus 

Frontal 

lobe 

Right Precentral 

gyrus 

medial 

segment 

0 0 3 3 1 1 

Limbic 

system 

and 

associat

ed 

structur

es 

Left Parahippoc

ampal gyrus 

0 1 1 2 2 3 

Limbic 

system 

and 

associat

ed 

structur

es 

Left Subcallosal 

area 

3 4 0 0 0 0 

Parietal 

lobe 

Left Parietal 

operculum 

1 2 0 1 1 2 

Parietal 

lobe 

Left Supramargi

nal gyrus 

0 0 3 4 1 2 

Parietal 

lobe 

Left Superior 

parietal 

lobule 

0 0 3 3 1 1 
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occipital 

lobe 

Left Posterior 

orbital 

gyrus 

2 3 0 0 3 3 

tempora

l lobe 

Left Planum 

temporale 

1 1 0 1 1 2 

tempora

l lobe 

Left Postcentral 

gyrus 

0 0 1 2 1 2 

tempora

l lobe 

Left Temporal 

pole 

2 3 0 0 3 3 

tempora

l lobe 

Left Transverse 

temporal 

gyrus 

2 2 1 2 2 3 

Table A2.13: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys aged 10 to 15. 

      

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal lobe Left Precentral 

gyrus 

medial 

segment 

0 0 2 3 2 3 
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Limbic 

system and 

associated 

structures 

Left Posterior 

cingulate 

gyrus 

0 0 2 2 2 2 

Limbic 

system and 

associated 

structures 

Left Parahippo

campal 

gyrus 

1 2 1 1 1 1 

Limbic 

system and 

associated 

structures 

Right Cingulate 

White 

Matter 

1 2 0 1 2 2 

Limbic 

system and 

associated 

structures 

Right Middle 

cingulate 

gyrus 

0 0 1 2 1 2 

Parietal 

lobe 

Left Parietal 

operculu

m 

1 2 2 3 1 1 

Parietal 

lobe 

Left Parietal 

white 

matter 

0 0 2 2 2 2 

Parietal 

lobe 

Left Suppleme

ntary 

motor 

cortex 

0 0 2 3 1 2 
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Parietal 

lobe 

Left Supramar

ginal 

gyrus 

0 0 2 3 2 2 

Parietal 

lobe 

Right Suppleme

ntary 

motor 

cortex 

0 0 1 2 2 3 

occipital 

lobe 

Left Angular 

gyrus 

0 0 2 2 2 2 

occipital 

lobe 

Left Posterior 

orbital 

gyrus 

3 3 0 0 1 1 

subcortical 

structures 

Left Putamen 3 3 0 0 1 1 

subcortical 

structures 

Right Ventral 

diencepha

lon 

0 1 2 3 1 2 

temporal 

lobe 

Left Postcentr

al gyrus 

0 0 0 1 2 3 

temporal 

lobe 

Left Superior 

temporal 

gyrus 

2 3 0 0 1 1 

temporal 

lobe 

Left Temporal 

pole 

2 2 0 0 1 2 
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Table A2.14: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys aged 15 to 20. 

            

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Precentral 

gyrus 

medial 

segment 

0 1 2 2 0 1 

Frontal 

lobe 

Left Opercular 

part of the 

inferior 

frontal 

gyrus 

2 3 0 0 1 2 

Frontal 

lobe 

Left Precentral 

gyrus 

2 2 0 0 1 2 

Limbic 

system 

and 

associat

ed 

structur

es 

Left Parahippoc

ampal gyrus 

0 0 1 1 3 3 

Limbic 

system 

Left Posterior 

insula 

2 2 0 0 2 2 
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and 

associat

ed 

structur

es 

Limbic 

system 

and 

associat

ed 

structur

es 

Left Subcallosal 

area 

2 2 0 0 1 2 

Parench

yma 

None 3rd 

Ventricle 

0 1 1 1 1 2 

Parietal 

lobe 

Left Parietal 

operculum 

0 1 2 2 2 2 

Parietal 

lobe 

Left Supplemen

tary motor 

cortex 

0 1 1 1 1 2 

subcorti

cal 

structur

es 

Right Ventral 

diencephal

on 

0 0 3 3 1 1 

tempora

l lobe 

Left Planum 

temporale 

1 2 1 1 2 2 
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tempora

l lobe 

Left Superior 

temporal 

gyrus 

2 2 0 0 3 3 

tempora

l lobe 

Left Temporal 

pole 

2 2 0 0 3 3 

Table A2.15: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys aged 20 to 64. 

            

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Limbic 

system and 

associated 

structures 

Left Parahippoca

mpal gyrus 

1 1 1 1 1 1 

Parietal 

lobe 

Left Parietal 

white matter 

0 0 1 1 2 2 

Parietal 

lobe 

Left Supramargin

al gyrus 

0 0 1 1 2 2 

Parietal 

lobe 

Left Superior 

parietal 

lobule 

0 0 1 1 2 2 

occipital 

lobe 

Left Angular gyrus 0 0 1 1 2 2 
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subcortical 

structures 

Left Thalamus 1 1 1 1 1 1 

Table A2.16: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Girls aged 5 to 10. 

            

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Frontal 

lobe 

Left Precentral 

gyrus 

medial 

segment 

0 0 1 2 1 2 

Frontal 

lobe 

Right Precentral 

gyrus 

medial 

segment 

0 0 1 2 1 2 

Limbic 

system 

and 

associa

ted 

structu

res 

Left Posterior 

cingulate 

gyrus 

0 0 1 2 1 2 

Parieta

l lobe 

Left Supramargi

nal gyrus 

0 0 1 2 1 2 
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Parieta

l lobe 

Right Supplemen

tary motor 

cortex 

0 0 1 2 2 3 

Table A2.17: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Girls aged 10 to 15. 

            

   R42 D32 D70 

   No 

comor

b 

With 

comor

b 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

temporal 

lobe 

Right Postcentral 

gyrus medial 

segment 

0 0 2 2 2 2 

 

Table A2.18: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Boys aged 15 to 20. 

            

   R42 D32 D70 

   No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

No 

comorb 

With 

comorb 

Parietal 

lobe 

Left Parietal 

operculum 

1 1 1 1 2 2 
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Table A2.19: Best regions for predicting True Positives (TP, i.e. true diagnosis of Autism) for 

Girls aged 20 to 64. 

 

8.6.15. A2.10 - Multi-site effect 

 

Figure A2.7: Comparison of probabilities of Med3d-ResNet50-42ep and categories 

obtained from SRS T-scores for different sites 
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Figure A2.8: Comparison of probabilities of DenseNet121-32ep and categories obtained 

from SRS T-scores for different sites   

 

 

Figure A2.9: Comparison of probabilities of DenseNet121-70ep and categories obtained 

from SRS T-scores for different sites   
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In Figure A2.7, Figure A2.8, and Figure A2.9, we observe an inhomogeneous consistency of 

the distributions of probability scores between the different sites. Results in Table A2.20, 

which displays the accuracy scores for every site in the whole dataset 

(training+validation+testing sets), confirm the multi-site effect already observed in Figure 

A2.7, Figure A2.8, and Figure A2.9.  

 

 

  Med3d- ResNet50-

42ep 
DenseNet-32ep DenseNet-70ep 

 site n 

Acc 

Acc 

Autis

m 

Acc 

TD 
Acc 

Acc 

Autis

m 

Acc 

TD 
Acc 

Acc 

Autis

m 

Acc 

TD 

Training 

or 

validatio

n set 

ABID

EII 

BNI_

1 

9 

100.

0 

100.

0 

100.

0 
77.8 

100.

0 
0.0 77.8 100.0 0.0 

ABID

EII 

ETH_

1 

30 

96.7 87.5 
100.

0 
76.7 12.5 

100.

0 
83.3 62.5 90.9 

ABID

EII 

GU_1 

65 

98.5 95.2 
100.

0 
67.7 0.0 

100.

0 
72.3 33.3 90.9 

ABID

EII 

IP_1 

36 

86.1 63.6 96.0 69.4 0.0 
100.

0 
69.4 54.5 76.0 
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ABID

EII 

IU_1 

33 

93.9 93.8 94.1 54.5 50.0 58.8 57.6 87.5 29.4 

ABID

EII 

KKI_

1 

123 

98.4 0.0 99.2 99.2 0.0 
100.

0 
99.2 0.0 100.0 

ABID

EII 

KUL_

3 

20 

75.0 75.0 NaN 
100.

0 

100.

0 
NaN 

100.

0 
100.0 NaN 

ABID

EII 

NYU_

1 

41 

85.4 57.1 
100.

0 
65.9 0.0 

100.

0 
75.6 42.9 92.6 

ABID

EII 

NYU_

2 

6 

66.7 66.7 NaN 0.0 0.0 NaN 66.7 66.7 NaN 

ABID

EII 

OHS

U_1 

55 

98.2 90.9 
100.

0 
80.0 0.0 

100.

0 
80.0 45.5 88.6 

ABID

EII 

SDSU

_1 

55 

89.1 80.6 
100.

0 
45.5 3.2 

100.

0 
69.1 80.6 54.2 
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ABID

EII 

TCD_

1 

36 

80.6 56.2 
100.

0 
55.6 0.0 

100.

0 
52.8 31.2 70.0 

ABID

EII 

USM

_1 

23 

91.3 83.3 
100.

0 
56.5 

100.

0 
9.1 73.9 91.7 54.5 

CALT

ECH 

36 
94.4 94.4 94.4 50.0 0.0 

100.

0 
52.8 94.4 11.1 

CMU 27 
88.9 78.6 

100.

0 
48.1 0.0 

100.

0 
66.7 71.4 61.5 

KKI 25 
84.0 33.3 

100.

0 
76.0 0.0 

100.

0 
76.0 0.0 100.0 

LEUV

EN_2 

31 
83.9 61.5 

100.

0 
41.9 

100.

0 
0.0 67.7 84.6 55.6 

MAX

_MU

N 

33 

87.9 69.2 
100.

0 
60.6 0.0 

100.

0 
51.5 23.1 70.0 

NYU 124 
91.9 68.8 

100.

0 
74.2 0.0 

100.

0 
69.4 31.2 82.6 

OHS

U 

22 
77.3 63.6 90.9 50.0 0.0 

100.

0 
59.1 90.9 27.3 
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OLIN 19 
63.2 41.7 

100.

0 
63.2 

100.

0 
0.0 63.2 100.0 0.0 

PITT 39 
84.6 73.7 95.0 51.3 0.0 

100.

0 
51.3 84.2 20.0 

SBL 29 
75.9 50.0 

100.

0 
58.6 85.7 33.3 48.3 92.9 6.7 

SDSU 12 100.

0 

100.

0 

100.

0 
83.3 0.0 

100.

0 
75.0 100.0 70.0 

STAN

FORD 

7 
57.1 0.0 

100.

0 
57.1 0.0 

100.

0 
57.1 0.0 100.0 

TRINI

TY 

42 
85.7 70.0 

100.

0 
52.4 0.0 

100.

0 
50.0 40.0 59.1 

UCLA

_1 

52 
86.5 81.2 95.0 61.5 

100.

0 
0.0 65.4 87.5 30.0 

UCLA

_2 

15 
93.3 

100.

0 
88.9 46.7 

100.

0 
11.1 53.3 100.0 22.2 

UM_

1 

72 
90.3 74.1 

100.

0 
62.5 0.0 

100.

0 
66.7 22.2 93.3 

UM_

2 

31 
93.5 83.3 

100.

0 
61.3 0.0 

100.

0 
77.4 66.7 84.2 

USM 66 87.9 83.7 95.7 63.6 95.3 4.3 62.1 93.0 4.3 
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YALE 50 
88.0 79.2 96.2 52.0 0.0 

100.

0 
62.0 87.5 38.5 

Testing 

set 

LEUV

EN_1 

27 
44.4 21.4 69.2 51.9 

100.

0 
0.0 48.1 64.3 30.8 

ABID

EII 

EMC

_1 

18 

72.2 50.0 78.6 77.8 0.0 
100.

0 
38.9 100.0 21.4 

ABID

EII 

UCD_

1 

20 

50.0 
100.

0 
16.7 40.0 

100.

0 
0.0 30.0 62.5 8.3 

Table A2.20: Comparing accuracy scores between data collection sites 

 

For Med3d-ResNet50-42ep, the overall accuracy scores are between 44,4% - 100%, with 

75% of the data-collecting sites having an accuracy higher than 78,9%, and an overall 

median accuracy of 87,9%. The sensitivity is between 0% - 100%, with a median of 74%. 

The specificity is between 16,7% - 100%, with a median of 100%. 

For DenseNet121-32ep, the overall accuracy scores are between 0% - 100%, with 75% of 

the data-collecting sites having an accuracy higher than 51,6%, and an overall median 

accuracy of 60,6%. The sensitivity is between 0% - 100%, with a median of 0%. The 

specificity is between 0% - 100%, with a median of 100%. 

For DenseNet121-70ep, the overall accuracy scores are between 30% - 100%, with 75% of 

the data-collecting sites having an accuracy higher than 53,1%, and an overall median 

accuracy of 66,7%. The sensitivity is between 0% - 100%, with a median of 71,4%. The 

specificity is between 0% - 100%, with a median of 55,6%. 
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Appendix 3: Supplemental information on Transformer and 

multi-tasking to detect ASD using rs-fMRI 

8.6.16. A3.1. Shapiro-Wilk tests of normality 

 

diff_Models W p_val normal 

diff_M2_M1 0,988 0,500 True 

diff_M3_M1 0,987 0,409 True 

diff_M3_M2 0,991 0,708 True 

diff_M4_M1 0,974 0,047 False 

diff_M5_M1 0,970 0,023 False 

Table A3.1: Shapiro-Wilk tests of normality of the differences between the models 

 

Appendix 4: Review of the manuscript of (Horien et al., 2022) for 

the journal Biological Psychiatry 

 

Reviewer 4: Comments to authors: 
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The review paper by Horien et. al. discusses what can be gained from fMRI-based predictive 

models of ASD and outlines a number of considerations that are required to make these 

models clinically and biologically useful. These considerations include issues related to the 

nature of the diagnosis - ASD - and the nature of the data - functional MRI. The review 

begins by briefly considering ASD in terms of symptoms, genetics, and neuroimaging 

findings, and the suggestion that the condition likely comprises a number of subtypes. Next, 

the authors discuss a number of considerations that might present specific problems for 

predictive models of ASD using fMRI data, including sample size, data decay, site effects, 

motion, tolerability of the scanning environment, and sex imbalance. Next, the authors 

detail three predictive modelling frameworks - case-control classification, dimensional 

prediction, and subtyping. They discuss each framework in terms of biological insight and 

clinical utility. They also highlight some important limitations of each framework, including 

data reliability and the heterogeneity of autism symptomatology for case-control 

classification, the reliability of behavioural and symptom scores for dimensional prediction, 

and replicability for subtyping applications. Finally, the review concludes by discussing the 

potential for "broad" and "deep: data to support the discovery of cross-modal markers and 

brain trajectories of autism. The ethical considerations described in the Appendix are a 

welcome part of the paper. 

 

The paper is very well-written and structured. It covers a large number of studies (more 

than 160), which are very well synthesised. The considerations discussed are very 

important to consider when building predictive models and systematically outlining these 

will be beneficial to the field. Nevertheless, it is surprising that there is no mention of the 

issue of substantial rates of comorbidities amongst Autistic participants, as well as the 

considerable phenotypic overlap with other psychiatric conditions. Discussing how these 

challenging factors can be addressed in predictive models would be important (for 

instance, a link could be made with dimensional prediction and subtyping applications). 

The categorisation of predictive frameworks is very clear, and the concepts and 

frameworks are very well illustrated and accessible thanks to many concrete examples 

drawn from previous studies. It would also be beneficial to explain the types of machine 

learning algorithms each of the predictive frameworks are typically associated with. For 
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instance, most case-control classification studies have used classification algorithms, while 

studies on dimensional models mostly uses regression models, and subtyping applications 

are often based on clustering or classification algorithms. Making these links would help 

the reader to organise the different approaches from a machine learning perspective. In 

addition, it may help readers to better select an algorithm that is most appropriate for their 

particular study and predictive framework. It might also be helpful to include a section 

explaining the potential biases associated with the different types of models. 

 

Minor comments: 

- It is curious that "machine learning" is not explained or even referred to often in the text. 

Perhaps the relationship between machine learning and predictive modelling could be 

clarified 

- The section on "Balancing large sample sizes, concerns about data decay, and site-effects" 

mentions data decay, but what this means is not well explained. 

- "When a growing number of investigators analyse the same sample, the false positive rate 

increases." Why not mention Specificity vs Sensitivity - these are important notions 

typically considered for predictive models. 

- "Nevertheless, implementing GSR is not without controversy; see (40) for a full 

discussion)": could you describe in one sentence the main points from this discussion? 

- "Further, the activity of compensatory circuits may be heightened during the stressful 

experience of being scanned" - is there any evidence to support this statement? 

 

Appendix 5: Writing steps of the thesis 

As a non-native English language speaker, I experienced significant progress in written and 

oral communication in this language throughout the course of the PhD.  
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Exchanging with my PhD supervisor, my colleagues and living in Ireland had a particular 

positive influence on this progression.  

In order to increase the quality of my written communication in several parts of this 

manuscript, I used an AI tool (a prompt interface with a pretrained model of Llama 2 

(https://huggingface.co/blog/llama2) that I fine-tuned on a corpus of open scientific 

articles). Knowing that the use of AI to assist researchers in writing is currently under 

debate (Berdejo-Espinola & Amano, 2023), being transparent about the writing steps of 

this thesis appeared essential to make clear how, when and to what extent my written work 

was changed by an AI tool.  

I created an open GitHub repository (https://github.com/garciaml/PhD_thesis) where the 

old versions of the Chapter 1 ( Introduction), Chapter 5 (Third empirical study) and Chapter 

8 (Discussion) can be found, as well as the corresponding AI-modified versions (that are not 

the final chapter versions because these were polished again after).   

AI was a helpful tool to polish my communication skills without removing the core work of 

the thesis.  

  

 

Appendix 6: Approval from the School of Psychology Research 

Ethics Committee 
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Appendix 7: Poster presented at the PsySchool Symposium at 

Trinity College Dublin, 2023. 
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Appendix 8: Poster presented at the conference OHBM 2022. 
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Appendix 9: Poster presented at the conference OHBM 2021. 
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Appendix 10: Abstract and Poster presented at the workshop 

Medical Imaging meets NeurIPS 2019.  
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