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Abstract—Cognitive radio networks’ evolution hinges signifi-
cantly on the use of automatic modulation classification (AMC).
However, existing research reveals limitations in attaining high
AMC accuracy due to ineffective feature extraction from signals.
To counter this, we propose a vision-centric approach employing
diverse kernel sizes to augment signal extraction. In addition,
we refine the transformer architecture by incorporating a dual-
branch multi-layer perceptron network, enabling diverse pattern
learning and enhancing the model’s running speed. Specifically,
our architecture allows the system to focus on relevant portions
of the input sequence, thus, it improves classification accuracy for
both high and low signal-to-noise regimes. By utilizing the widely
recognized DeepSig dataset, our pioneering deep model, termed
as VT-MCNet, outshines prior leading-edge deep networks in
terms of classification accuracy and computational costs. Notably,
VT-MCNet reaches an exceptional cumulative classification rate
of up to 99.24%, while the state-of-the-art method, even with
higher computational complexity, can only achieve 99.06%.

Index Terms—Modulation classification, convolutional neural
network, wireless communications, vision transformers.

I. INTRODUCTION

In wireless communication, optimizing transmission rates
often require adaptive modulation schemes in changing chan-
nels. This necessitates exchanging modulation information
between transmitter and receiver, adding protocol overhead. To
reduce this, it’s beneficial if the receiver can autonomously de-
termine modulation types without prior knowledge. Automatic
Modulation Classification (AMC) was introduced for this pur-
pose, acting as an intermediary step between signal detection
and demodulation. AMC identifies modulation formats, even
in noisy or interfered signals, providing robust recognition.

In recent years, deep learning (DL) has emerged as a potent
tool for AMC, with researchers developing various neural
networks to enhance performance. The RadioML2018.01A
dataset for AMC, along with custom network architectures like
VGG and ResNet, was introduced in [1]. The performance of

T.-T. Dao is with the Department of Information Convergence En-
gineering, Pusan National University, Busan 46241, South Korea (e-
mail: daothanh@pusan.ac.kr). D.-I. Noh is with the Department of In-
formation Convergence Engineering, Center for Artificial Intelligence Re-
search, Pusan National University, Busan 46241, South Korea (e-mail: no-
hdi1991@pusan.ac.kr). Q.-V. Pham is with the School of Computer Science
and Statistics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland (e-
mail: viet.pham@tcd.ie). M. Hasegawa is with the Department of Electri-
cal Engineering, Tokyo University of Science, Tokyo 162-8601, Japan (e-
mail: hasegawa@haselab.ee.kagu.tus.ac.jp). H. Sekiya is with the Graduate
School of Engineering, Chiba University, Chiba 263-8522, Japan (e-mail:
sekiya@faculty.chiba-u.jp). W.-J. Hwang (corresponding author) is with the
Department of Information Convergence Engineering, Center for Artificial
Intelligence Research, Pusan National University, Busan 46241, South Korea
(e-mail: wjhwang@pusan.ac.kr).

Following are results of a study on the “Leaders in INdustry-university
Cooperation 3.0” Project, supported by the Ministry of Education and National
Research Foundation of Korea

radio classification varied when assorted convolutional neural
network (CNN) architectures were scrutinized, as the CNN
processes data through multiple convolutional layers, it learns
hierarchical representations of the In-phase/Quadrature (I/Q)
signals. Another novel data-driven AMC method based on
Long Short-Term Memory (LSTM) is presented in [2], [3].
Moreover, a composite CNN-LSTM-based method is advo-
cated in [4]. In [5], [6], novel CNN architectures for robust
AMC are proposed. [7] presented a practical threat framework
and devised an innovative intra-class universal adversarial
perturbation (IC-UAP) method, aimed at challenging deep
learning-based modulation classifiers. These studies showed
that CNNs can extract meaningful discrimination features from
multiscale representations for AMC tasks.

Transformers [8], built upon the principles of self-attention,
have recently become a standard in natural language pro-
cessing, and vision transformers [9] have been extensively
employed for image classification tasks. However, their ap-
plication in signal classification remains constrained. The
closest works to our study are [10] and [11]. While [10]
demonstrates the utility of transformer blocks, it still exhibits
limited accuracy in low signal-to-noise (SNR) conditions.
Conversely, [11] transforms input I/Q signals into a matrix
format, converting patches into sequences for the transformer
architecture, resulting in improved classification accuracy at
low SNR scenarios. However, both these studies compute
feature embedding through a linear operation on the input
signal and employ full-attention blocks, potentially losing
continuous signal details like phase, amplitude, and frequency
variations. In contrast, our research advances beyond previous
work by incorporating ViT transformer blocks with multiple
kernel sizes. This approach allows our proposed model to
extract a more diverse set of features compared to a single
kernel, enhancing the accuracy of AMC.

The main contributions of this study are summarized below:

• We provide a deep analysis of high-accuracy AMC and
prove that different kernel sizes are more effective at
capturing feature information from the input signals.

• We develop an optimized high-accuracy AMC model,
namely ViT-based AMC Network (VT-MCNet), achieved
by analyzing the representation ability of each trans-
former layer, striking a better trade-off between speed
and classification accuracy.

• We incorporate robustness into transformer blockheads
to improve signal classification performance, cumulative
accuracy of 99.24%, and maintain a fast running speed.
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Fig. 1. Visualization of multi-kernel sizes.

II. METHODOLOGY

Classification accuracy and running speed are important
in AMC, and finding a balance between these factors is
critical. In this section, we explore signal representations of
convolution operations and a novel transformer-based signal
classification approach to effectively overcome this challenge.
A. Analysis of High Accuracy Performance

To analyze the effect of kernel size, Fig. 1 shows the output
of four convolutional layers with fixed kernel sizes from 8×2
to 64 × 2 applied to a 1024 × 2 I/Q signal. The output
indicates that the kernel size plays a crucial role in feature
extraction. With a small kernel size 8 × 2, the convolution
mainly interacts with neighboring pixels, offering a detailed,
localized view. Thus, it is sensitive to short-term temporal
patterns or high-frequency components. Although adept at
delineating intricate details, this kernel size can be ensnared by
noise, causing potential misconstrual, especially amidst noise-
rich datasets. A larger kernel size such as 16 × 2, 32 × 2,
and 64 × 2 can capture broader patterns, providing a more
panoramic perspective of the input data. Notably, these large
kernels are especially proficient in capturing longer-term tem-
poral dependencies, low-frequency components, and amplitude
variations. Nevertheless, applying large convolutions to CNNs
can result in performance and speed degradation. As a result,
it becomes essential to utilize multiple kernel sizes to leverage
the advantages of both small and large kernel sizes.
B. VT-MCNet Design

The ViT [9] exhibits scalable architectures and proficiency
in capturing global features. However, extraction conventional
vision transformer-based methods commonly employ convolu-
tion 3× 3 projection during the feature embedding phase for
image classification. Adapting this approach to signal clas-
sification can result in overlooking key signal characteristics
as explained in Section II-A. To offset these limitations and
boost global feature extraction, we introduce the notion of a
multi-kernel block and engineer it to encapsulate more signal
features within a single token.

Multi-kernel block (MTK): The signal input, denoted as
a pair of complex vectors r ∈ CL×1 and referred to as I/Q
components, is first concatenated to create a data matrix R ∈
CL×2. Then, R is reshaped into the tensor I with dimensions
I ∈ C1×L×2, where L symbolizes the length of the signal
and is set to 1024 in this work. The multi-kernel block is then
engaged, featuring four parallel processing units each with a
predefined kernel size of [8×2], [16×2], [32×2], [64×2]. These
sizes allow for the capture of information at varying levels of
detail, as depicted in Fig. 2. Each unit performs a convolution

operation with a kernel K ∈ RCout×Kw×Kh , where Kw,Kh

are the kernel width and height, respectively, and Cout is the
output channels, alongside the specified padding P and stride
S. The resulting output tensor can be characterized as follows:

O0 = Conv (I,W0, b0;K0 = (Cout, 8, 2),S,P0 = (0, 0)) ,

O1 = Conv (I,W1, b1;K1 = (Cout, 16, 2),S,P1 = (4, 0)) ,

O2 = Conv (I,W2, b2;K2 = (Cout, 32, 2),S,P2 = (12, 0)) ,

O3 = Conv (I,W3, b3;K3 = (Cout, 64, 2),S,P3 = (32, 0)) ,

where Wi and bi, i = {0, 1, 2, 3}, are the weights and bias
terms of the convolutional operation, respectively. A stride of
S = (8, 2) is applied to all convolutions. Finally, the output of
the multi-kernel block is obtained by concatenating, denoted as
Concat, the output tensors from all convolutional layers along
the channel dimension as X0 = Concat (O0,O1,O2,O3) .

Position Embedding: Following the multi-kernel block
operation, we obtain an output layer defined as X0 ∈
RCout×Hout×1, where Hout signifies the output height and is
computed as Hout = L−K+2P

S + 1, while Cout represents
the total output channels. Subsequent to this, a linear position
embedding is created by flattening the transposed output XT

O .
The next step involves concatenation with the class token
xcls ∈ R1×Cout and coupling with the learnable positional
bias Epos ∈ R(Hout+1)×Cout . This entire procedure can be
symbolically represented as X1 = Concat

(
xcls, X

T
O

)
+ Epos.

Transformer Encoder: The transformer encoder is composed
of alternating layers of multi-headed self-attention (MHSA)
and multilayer perception (MLP) blocks. Layer normalization
(LN) is implemented before each block, and residual connec-
tions are established after each block.

Multi-Head Self-Attention (MHSA): is a fundamental
component in transformer architectures, built upon the concept
of “query-key-value” (qkv) self-attention (SA). SA allows the
model to consider and incorporate input features based on
their relationships, regardless of their sequential order. In this
study, an input sequence X1 ∈ R(Hout+1)×Cout is utilized.
This sequence enables the calculation of a weighted sum of
all elements in the sequence through the construction of three
vectors: the Query vector (Q = X1WQ), the Key vector
(K = X1WK), and the Value vector (V = X1WV ). The
attention weights between each pair of elements are then
computed as the dot product of their respective query and
key vectors, normalized by the square root of the key vector’s
dimension, and passed through a softmax function:

SA(X1) = softmax
(
QKT /

√
Hout+1

)
· V, (1)

where WQ, WK , and WV are trainable weight matrices.
The MHSA enhances SA by using multiple parallel self-

attention operations, referred to as “heads”. Each head com-
putes a unique learned linear projection of the input, re-
sulting in diverse versions of self-attention being computed.
The outputs of all the heads are then concatenated and
linearly transformed to generate the final output, expressed as:
MHSA(z) = Concat (SA1(X1);SA2(X1); . . . ;SANh

(X1)),
where Nh is the number of self-attention heads.

Dual-branch MLP (DB-MLP): To improve the transformer
performance, we proposed dividing the MLP input into two
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Fig. 2. Model overview. Other structures are depicted in the MLP module for comparison purposes, but only DB-MLP is utilized in our model architecture.

TABLE I
DATASET RADIOML2018.01A DESCRIPTION.

No. modulation modes 24 No. samples 2.555.904
No. SNRs/modulation 26 Sample’s shape 1024×2
No. samples/SNR 98.304 No. samples/module 4096

and applying separate linear transformations, it facilitates di-
verse pattern learning while maintaining parameter efficiency.
This dual-branch structure amplifies model capacity and flex-
ibility without significant computational burden, courtesy of
its parallel processing suitability. Its unique design enables a
broader, specialized capture of data characteristics, offering a
competitive edge in tackling intricate data patterns. In our pro-
posed dual-branch enhanced MLP, we split the output tokens
of MHSA z into two equal parts along the last dimension,
referred to as m,n = Split(MHSA(z)). Linear projection is
then utilized to generate DB-MLP, as detailed in the following

DB-MLP = Concat(Wfc4 · GELU(Wfc2 ·m),

Wfc3 · GELU(Wfc1 · n)), (2)

where Wfc1, ...,Wfc4 are learnable parameters of linear trans-
formations, referred to as Linear1, ..., Linear4 in Fig. 2.

III. EXPERIMENTAL, RESULTS, AND DISCUSSION

A. Dataset Description and Implementation Details
We assessed VT-MCNet using RadioML2018.01A. This

dataset covers prevalent communication system impairments
as detailed in Table I. The dataset was divided into training,
validation, and testing sets in a 6:2:2 ratio, respectively. We
employed the PyTorch library for training. The model trained
for 150 epochs, starting at a learning rate of 10−3 and
decreasing by a factor of 0.8 every 20 epochs using the Adam
optimizer [12]. We employed categorical cross-entropy as the
loss function and used a batch size of 1024.
B. Results

This section presents simulation results for VT-MCNet,
comparing its accuracy to benchmark schemes across different
SNRs, as shown in Fig. 3. VT-MCNet outperforms other SOTA
network architectures, including [2], [10]. The performance
gap is more pronounced at lower SNRs, where our network
achieves an accuracy of approximately 63.4% at 0 dB, a figure

VT-MCNet
FEA-T
MCLDNN
LSTM
ResNet
SCGNet

VT-MCNet
FEA-T
MCLDNN
LSTM
ResNet
SCGNet

VT-MCNet
FEA-T
MCLDNN
LSTM
ResNet
SCGNet

Fig. 3. Accuracy of different benchmarks under various SNRs.

that is substantially higher by at least 7.8% compared to other
methodologies such as 53.8% in [10], 55.6% in [2]. At 24
dB, VT-MCNet displays an improvement of 0.18% over the
baseline model, FEA-T [10], which previously demonstrated
the best performance amongst the traditional models.

Fig. 4(b) depicts a confusion matrix of 24 modulations at
0dB. Since the signal and noise powers are equal therein,
confusion matrix errors occur for most modulations. The dom-
inant noise obscures modulation features, leading to significant
misclassification as signals become easily distorted. At 24dB
in Fig. 4(c), VT-MCNet achieves almost perfect classification
for low-level modulations like FM, ASK, MSK, and PSK,
with minimal errors. Some confusion matrix errors occur for
64QAM, 128QAM, and 256QAM due to their hierarchical re-
lationship. Errors are also observed in SSB-WC with SSB-SC
modulations and DSB-WC with DSB-SC modulations. Based
on these observations, the VT-MCNet model may struggle to
classify analog signals, suggesting that more effective analog
signal characteristics can be further considered to improve
AMC performance.

We compare the computational complexity of VT-MCNet
against SOTA deep learning networks, utilizing floating point
operations per second (FLOPs) and trainable parameters. As
illustrated in Table II, VT-MCNet manages to have the lowest
FLOPs among many SOTA benchmarks. Notably, VT-MCNet
shows significant improvement over [10] in terms of train-
able parameters (148K vs 177K), besides its superiority in
classification accuracy (64.8% vs 61.81% in average). VT-
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Fig. 4. Accuracy of modulation classification over different SNR levels (a), confusion matrices for 24-modulation classification at (b) 0 dB SNR (Accuracy:
63.4%) and (c) +24 dB SNR (Accuracy: 99.24%, we only display classes that have misclassifications).

MCNet requires model parameters than the SCGNet model,
which only achieves an accuracy of 58.82% on average and
94.39% at most, both are far from VT-MCNet performance.
Furthermore, VT-MCNet surpasses all the benchmarks in
both average and maximum accuracy, achieving 64.8% and
99.24%, respectively. Consequently, VT-MCNet proves to be
an efficient solution for AMC tasks, skillfully balancing com-
putational cost and feature extraction. This balance enhances
the classification accuracy of the model while maintaining
computational resource consumption at an optimal level.
C. Ablation Study

We study the impact of hyper-parameters on the perfor-
mance of AMC in deep networks. Specifically, we focus
on key hyperparameters such as kernel dimensions in MTK,
number of layers, heads within the transformer encoder, and
hidden size of MLP. The objective of conducting a series of
comparative experiments is to analyze the impact of variations
in these hyperparameters on VT-MCNet’s performance.

1. Analysis number of layers (NL), hidden size (Hmlp),
and number of heads (Nh): To optimize the transformer
architecture in our VT-MCNet model, we need to understand
the parameter distribution. Notably, while maintaining the
model complexity at the same level, an increase in the number
of parameters also results in a corresponding increase in the
number of FLOPs. In the transformer encoder, including the
MHSA and DB-MLP modules, each MHSA employs three dis-
tinct weight matrices: WQ, WK , and WV that have dimensions
of Cout × (Cout/Nh). Consequently, the total number of pa-
rameters per attention head is given by 3×Cout× (Cout/Nh).
Considering all attention heads, the cumulative parameters
amount to Nh×3×Cout×(Cout/Nh). Additionally, the output
undergoes further processing via a linear layer with a weight
matrix of dimensions Cout × Cout, contributing Cout × Cout

parameters. Combining these elements, the total number of
parameters in the self-attention mechanism is expressed as:

P1 = NL × ((Nh × 3× Cout × (Cout/Nh)) + C2
out), (3)

TABLE II
COMPARISON COMPUTATIONAL COMPLEXITY AND ACCURACY OF

DIFFERENT CNN ARCHITECTURES

Network Size (params.) FLOPs (M) Avg/Max Acc (%)
SCGNet [13] 107K 36 58.82/94.39

OTA-Resnet [1] 236K 88 60.08/97.46
MCLDNN [14] 407K 235 61.86/98.20

LSTM [2] 203 38 62.51/98.22
FEA-T [10] 177K 55 61.81/99.06
VT-MCNet 148K 32 64.8/99.24

TABLE III
MODEL PERFORMANCE IN DIFFERENT HYPER-PARAMETER

NL Nh Cout Hmlp Size FLOPs Accuracy
(M) 0dB − 30dB/Max

4 4 64 128 115K 22.2 94.44/99.20
4 4 64 192 132K 24.3 94.63/99.24
4 4 64 256 148K 26.4 94.73/99.25
4 4 96 128 222K 39.6 94.52/99.21
6 4 64 128 166K 33.1 94.01/99.19
6 6 72 128 139K 26.2 94.66/99.22

In DB-MLP, the parameter count is calculated using equation
(2), where Wfc1 ∈ R

Cout
2 ×

Hmlp
2 . Since there are 4 linear

projections in NL layers, the number of parameters becomes:

P2 = NL × (4× (Cout/2)× (Hmlp/2)). (4)

Our study aims to explore variations in the model within
a specific parameter range of 130K to 200K. This constraint
facilitates a comprehensive analysis of different model scales,
taking into account the related computational complexity and
resource restrictions. Equations (3) and (4) reveal that pa-
rameters NL, Nh, and Cout have a more significant impact
on model size and FLOPs than Hmlp. However, the results
in Table III indicate that increasing NL, Nh, and Cout does
not substantially improve accuracy. In contrast, increasing the
Hmlp parameter noticeably enhances model accuracy. The ev-
idence suggests that selecting Hmlp = 192 rather than Hmlp =
256 provides nearly optimal accuracy and significantly reduces
both the computational demand and resource consumption.
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TABLE V
COMPARISON COMPUTATIONAL COMPLEXITY AND ACCURACY OF

CONVENTIONAL MLP, DB-GLU [10] AND DB-MLP.

Network Size (params.) FLOPs (M) Avg/Max Acc (%)
MLP 181K 30.5 63.5/99.2

DB-GLU [10] 148K 26.4 64.6/99.2
DB-MLP 132K 24.3 64.8/99.24

TABLE IV
MODEL PERFORMANCE IN DIFFERENT KERNEL SIZES.

Kernel FLOPs Throughput rate Accuracy
Size (K) (samples/sec) 0dB − 30dB

8x2 23.98 1600 91.21/98.33
16x2 24.11 1606 92.84/99.11
32x2 24.37 1625 93.63/99.16
64x2 24.9 1640 93.87/99.18
MTK 24.3 1621 94.63/99.24

2. Kernel size study: We analyze multiple kernel sizes to
select the optimal multi-kernel size for the AMC model. We
consider the input channels Cin, output channels Cout, and
bias term. The number of parameters is P = (Kwidth ×
Kheigh ×Cin +1)×Cout. Since Cin and Cout are unchanged,
our attention is turned towards modulating the kernel size
in an attempt to optimize our multi-kernel structure. Both
single-kernel and multi-kernel sizes are evaluated, as shown
in Table IV, showing a gradual increase in accuracy with
an expansion in kernel size. However, it is worth noting that
increasing the kernel size escalates the number of parameters.
For this reason, our model applies a multi-kernel size, which
not only curtails the model size but also improves feature
extraction from the input signal, as elaborated in Section II-A.

3. DB-MLP study: We compared our modified transformer
with SOTA architectures by assessing computational complex-
ity and accuracy, as shown in Table V. The architectures
considered in our evaluation were the conventional MLP, DB-
GLU in [10], and our proposed DB-MLP. Table V indicates
that the DB-MLP module achieved the highest accuracy
among the three architectures. As analytically analyzed in
Section II-B, the DB-MLP utilizes a linear projection with
half the size of the original MLP. Consequently, the number
of parameters in the DB-MLP is approximately 50% less than
the MLP and 25% less than the DB-GLU scheme. Notably,
our proposed DB-MLP architecture shows a superior speed
in terms of FLOPs compared to MLP and DB-GLU. These
findings highlight our DB-MLP as the optimal feed-forward
network for the transformer in the context of the AMC task.

IV. CONCLUSION

We have presented a highly accurate CNN architecture
for identifying different modulation modes in communication

networks. By incorporating multi-kernel blocks, our approach
can capture signal information globally and locally so as to
improve classification accuracy. Additionally, we have inves-
tigated a transformer encoder to reduce the computational
complexity without sacrificing accuracy. Experimental results
on the RadioML2018.01A dataset have demonstrated that
our deep model, VT-MCNet, achieves 99.24% recognition
accuracy for 24 modulation types at high SNRs. Compared to
many other DL architectures, our proposed approach delivers
significant performance improvements with reasonable compu-
tational costs. In our future work, we aim to employ automated
hyperparameter tuning methods like grid search or Bayesian
optimization to enhance model configurations efficiently.
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