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The aim of this study is to provide a comprehensive validation of the conceptual design 

tool SUAVE, with respect to real world flight data from an extensive flight database of 737-

800NG fleet operations. A validation of the initial SUAVE model fuel burn predictions was 

performed and compared with the actual data. A surrogate propulsion model was developed 

using NPSS and integrated into SUAVE, which significantly enhanced the model accuracy. A 

calibration of the SUAVE aerodynamic model coefficients, the propulsion model idle throttle 

value, and the take-off and landing drag increments was performed which aimed to minimise 

the fleet-wide fuel burn error with respect to the actual flight data within the database. The 

model was calibrated using 26 case flights in a training database, and the final calibrated 

model performance was measured against three unseen test cases within the flight database. 

A modest reduction in error was observed for the training and test cases, however non-linear 

error effects in the presence of headwinds and tailwinds affected the model accuracy and 

limited the potential of the calibration. Despite these effects, a highly accurate model was 

developed with an average fuel-flow error of 5% with respect to real-world flight data, 

providing an accurate baseline model from which confident projections of future carbon 

reductions can be obtained for new aircraft designs. 

I. Nomenclature 

ADS-B = Automatic Dependent Surveillance-Broadcast    C  = Correction factor 

EDS = Environmental Design Space        CD  =  Drag coefficient 

FLOPS =  Flight Optimisation System         CD,p =  Fuselage parasite drag coefficient 

GS = Ground Speed             Cf  = Skin friction coefficient  

NM = Nautical Miles            k  = Form factor   

NPSS = Numerical Propulsion System Software     Ma  = Mach number  

e-SAF = Synthetic Sustainable Aviation Fuel      Sref  = Reference area 

SAF = Sustainable Aviation Fuel         V  = Velocity 

SLS =  Sea-Level Static            α  = Wind correction factor 

SUAVE = Stanford University Aerospace Vehicle Environment  δ  = True course 

TAS  = True Airspeed             ω  = Wind direction 

TASOPT = Transport Aircraft System Optimisation      

TSFC = Thrust Specific Fuel Consumption 

UHAR = Ultra-High Aspect Ratio 

VLM = Vortex-Lattice Method 
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II. Introduction 

A. Context and Motivation 

This study considers the calibration and validation of an aircraft modelling tool against a broad spectrum of real 

flight data from a large aircraft fleet as a method to evaluate decarbonisation steps for aviation. Pathways to net-zero 

have been suggested in a bid to reach the ambitious targets set by the industry for 2050. Sustainable Aviation Fuel 

(SAF) is envisaged to be the main driver of decarbonisation [1], however, bio-derived feedstocks are limited and 

compete with food and general land use, and are therefore not considered sustainable in the long term [2]–[4], whereas 

synthetic SAF (e-SAF) requires a considerable amount of renewable electricity for its production. Synkero, a start-up 

company for the production of e-SAF, claim that 30 off-shore wind turbines (1,200 GWh) would be required for the 

production of 1% of all fuel used at Amsterdam Schiphol airport during 2019 [5]. Furthermore, if all 95 billion gallons 

of jet fuel consumed by commercial airlines globally in 2019 were to be replaced with e-SAF, it could demand between 

244-489% of all wind and solar electricity generated in 2021, based on e-SAF production efficiencies of 25-50% [6], 

[7]. The significant scale of the renewable electricity required affects the availability and cost of e-SAF. Therefore, 

efficiency improvements for aircraft are of paramount importance in reducing the overall energy demand of aviation, 

and hence the demand for expensive sustainable fuels for decarbonisation.  

Research and development of several novel concepts for next-generation aircraft is ongoing, including evolutionary 

concepts such as ultra-high bypass ratio turbofans and Ultra-High Aspect Ratio wings (UHAR), whereas more 

disruptive technologies include open-rotor engines, hybrid-electric propulsion systems or the blended-wing body. 

Such concepts require effective conceptual design tools for rapid, low-fidelity simulations with sufficient accuracy. 

Furthermore, such unconventional designs require physics-based models to investigate new design envelopes, outside 

the boundaries where traditional empirical correlations are no longer valid. 

B. Evaluation of Conceptual Design Tools 

Many conceptual design tools have been developed in recent years, such as Flight Optimisation System (FLOPS) 

[8], Transport Aircraft System Optimisation (TASOPT) [9], Environmental Design Space (EDS) [10], and Stanford 

University Aerospace Vehicle Environment (SUAVE) [11]. Table 1 provides details of popular conceptual design 

tools used in recent published literature. 

Table 1 Description of popular conceptual design tools in published literature 

Design 

Tool 

Modelling 

Techniques 

Unconventional 

Aircraft Capabilities 

Design Flexibility Availability 

 

FLOPS 

Empirical weight 

correlations with 

physics-based 

mission analysis 

Only possible with 

workarounds and 

manipulation of the 

tool coupled with 

external software 

Can be coupled with some 

external software, code makes 

key assumptions that limits 

flexibility (e.g. fuel must be 

consumed) 

Broad 

availability, not 

open-source 

 

TASOPT 

Low-order physics-

based models – 

empirical 

correlations where 

necessary 

Strong for boundary-

layer ingestion, issues 

with electric aircraft 

due to lack of mission 

flexibility 

Always optimises vehicles for 

specific mission – issues with 

pre-sized aircraft. Requires 

detailed input information  

Broad 

availability, not 

open-source 

 

EDS 

Physics-based or 

surrogate models, 

empirical for 

conventional designs 

Unconventional 

designs have been 

modelled, limitations 

unclear 

Requires coupling with 

several external NASA design 

tools 

FAA tool. 

Unavailable to 

general public 

 

SUAVE 

Physics-based and 

semi-empirical 

models – depending 

on fidelity & 

analysis required 

Unconventional 

aircraft easily 

modelled for 

experienced users 

Multi-fidelity framework – 

couple with external tools 

OpenVSP, SU2, OpenMDAO, 

import propulsion / 

aerodynamic surrogates 

Broad 

availability and 

open-source 

with simple 

recompiling 

 

SUAVE was selected as the conceptual design tool for this analysis, due to its broad availability, open-source 

framework to allow for development and customisation, multi-fidelity approach and physics-based models. Some of 
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these physics-based methods, such as the aerodynamic Vortex-Lattice Method (VLM) and Blade Element Momentum 

Theory (BEMT), were recently validated against wind tunnel data [12], [13]. VLM is a low-fidelity aerodynamic 

calculation method, which discretises the wing into panels and makes use of the Biot-Savart law to calculate the 

inviscid lift [14]. An important aspect of the SUAVE’s low-fidelity VLM module is the capability for calibration 

through semi-empirical methods, since the calculation uses a number of correction factors to complete the lift and 

drag calculations. 

C. Objectives 

SUAVE has gained popularity as a tool for aircraft design and analysis in recent published literature [15]–[19], 

however it lacks a thorough, comprehensive validation against complete, current aircraft designs. For example, the 

SUAVE developers validated a Boeing 737-800 aircraft model by comparing the block fuel burn of the design mission 

with that of similar design tools [11], while a recent study of a UHAR aircraft validated the SUAVE fuel burn results 

against a similar Boeing numerical study [16]. This study aims to progress the validation of SUAVE further, by 

comparing model results with real-world flight data. Specific objectives of this work include: 

 

• Development of the SUAVE model for the Boeing 737-800NG aircraft 

• Development and validation of the NPSS propulsion model for the CFM56-7B26/3 turbofan 

• Model at least 25 real-world flights with significant variation in payload and range 

• Validate the predicted average fuel-flow of each flight segment against actual fuel burn data 

• Explore the potential for calibration through optimisation of correction factors applied to VLM 

• Compare the optimised calibrated model performance against the baseline model performance 

The aim of this study is to provide a detailed validation of the SUAVE simulation framework, by comparing the 

model’s fuel burn results with real-world flight data, for a variety mission payloads and ranges. The flight data for this 

study has been provided by Ryanair – Ryanair is Europe’s leading passenger airline, operating a fleet of 471 Boeing 

737 aircraft, with up to 3000 flights daily [20]. The company’s extensive database of flight data with details of fuel 

burn and take-off weights provided a valuable opportunity for broader validation and calibration of the SUAVE 

aircraft modelling tool, the results of which can increase the confidence in its use in other research studies to 

decarbonise future aircraft.  

III. Methodology 

A. Real-World Operations 

 

1. Flight Database 

The flight database contained flight data from an airline, such as take-off weights and average fuel-flow per flight 

segment, for 29 flights for Boeing 737-800NG aircraft over a two day period. The distribution of the sample flights is 

presented in Fig. 1 in terms of flight range and Take-off Weight (TOW), where TOW values have been redacted due 

to the sensitive nature of the data. Three test cases with varying flight range were selected to assess the performance 

of the model calibration, which is detailed in Section V. 
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Fig. 1 Distribution of B737-800NG missions from available flight database in terms of range and TOW 

2. Flight Paths 

Real flight paths were obtained from Automatic Dependent Surveillance-Broadcast (ADS-B) data to ensure the 

validation models were representative of real-world conditions. Publicly available timestamped coordinates were 

downloaded, from which the flight path in terms of altitude and speed was calculated using a MATLAB software 

routine. The flight path was approximated using linear piece-wise segments, outlining information such as the initial 

and terminal altitude, initial and terminal speed, and the rate of climb/descent to be input to SUAVE for each segment.  

The climb and descent segments each consisted of 18 linear sub-segments to ensure an accurate representation of 

the flight paths. Cruise was approximated using a single, level, linear segment with a constant speed and constant 

altitude, ignoring any step-climb/descent operations. The initial climb, approach, and final approach segments, which 

are separated from climb and descent due to the deployment of flaps and landing gear, were each represented by a 

single sub-segment using the same parameters as climb and descent.  

It is important to note that the True Airspeed (TAS) profile was unavailable for these flights, hence the effect of 

wind speed is unaccounted for in the current analysis. Instead, the model calculates the speed of the aircraft as seen 

from a stationary observer, i.e. the Ground Speed (GS). Hence, the TAS was equal to the ADS-B derived GS, and this 

model is referred to as the GS model for the remainder of the paper. The significance of omitting wind speed is 

analysed and discussed in Section IV.C. An example of the flight path approximation for a mission from the flight 

database is presented in Fig. 2. 
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Fig. 2 Flight path altitude and speed approximation for SUAVE input 

B. Aircraft Model 

 

1. Boeing 737-800NG 

A Boeing 737-800NG model was developed using SUAVE, using detailed airframe geometry information 

obtained from [21]. The initial propulsion system design was based on the CFM56-7B26 turbofan, with information 

obtained from [22]. The built-in propulsion model within SUAVE uses a simplified analysis based on the methods of 

Cantwell [23], and approximates the performance by using a single operating point efficiency, based on the design 

point efficiency. As a result, the SUAVE propulsion model does not account for off-design efficiency, and thus the 

Thrust Specific Fuel Consumption (TSFC) is a function of only the altitude and Mach number. An example of the 

simplistic propulsion modelling in SUAVE can be seen in the work of Dorsey and Uranga [19], which used fixed 

stage efficiencies and pressure ratios throughout the propulsion system simulations. 

 

2. Aerodynamics 

The aerodynamic model used within SUAVE is known as the ‘Fidelity-Zero’ model, which is based on the Vortex-

Lattice Method (VLM). The VLM is used to calculate the inviscid lift through discretisation of the wing into panels, 

and calculation of the strength of the trailing vortices and their downwash effect using the Biot-Savart law using an 

assumed circulation distribution [14]. Factor based corrections to account for the lift effects of the fuselage, 

compressibility, and viscous effects are applied to the inviscid wing lift to obtain the total aircraft lift [11].  

The aircraft drag is comprised of the parasite drag, lift-induced drag, compressibility drag and miscellaneous drag. 

The parasite drag is the drag associated with skin friction and pressure drag, and is computed for the fuselage, wings 

and nacelles. The fuselage and wing parasite drag is calculated using Eq. (1), where 𝐶𝑓 is the skin friction coefficient, 

𝑆𝑟𝑒𝑓  is the reference area, and k is the form factor which varies for each calculation [11]. The lift-induced drag is 

composed of viscid and inviscid components. The inviscid lift-induced drag is obtained from the VLM calculation, 

while the viscid component is calculated using a viscous lift-dependent drag factor [11]. The compressibility and 

Cruise Climb Descent 

Initial Climb Approach, Final Approach 
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miscellaneous drag is calculated using correlations from Shevell [24] and Kroo [25]. More information on this 

aerodynamic model can be obtained from [11]. 

 

𝐶𝐷𝑃 = 𝑘 ∙ 𝐶𝑓 ∙ 𝑆𝑟𝑒𝑓  

(1) 

3. Mission Solver 

The SUAVE mission solver works by iterating the unknowns of a mission segment, generally the throttle and pitch 

angle, until the residuals are converged. In the case of cruise, the residuals are the sum of horizontal and vertical forces, 

which are converged to zero [11]. For the climb and descent segments, a ‘linear speed, constant rate’ segment was 

used, which models an accelerating/decelerating aircraft moving with a constant vertical rate of climb/descent. The 

cruise segment was modelled using a ‘constant speed, constant rate, loiter’ segment, which models an aircraft with 

steady, constant altitude motion for a prescribed length of time.  

C. Propulsion Model 

 

1. CFM56-7B26/3 

The simplistic nature of the SUAVE propulsion model was noted in the previous section. However, SUAVE was 

designed to be used as a flexible design tool with multi-fidelity capabilities, allowing simple integration of external 

design tools to increase the fidelity of the analysis where necessary. This is an important strength of the SUAVE 

modelling tool. To analyse the influence of the propulsion system inaccuracies within the current study, NASA’s 

Numerical Propulsion System Software (NPSS) [26] was used to develop a surrogate propulsion model of the CFM56-

7B26 engine to be integrated within the overall SUAVE aircraft model, enabling accurate off-design propulsion 

analysis through the use of component performance maps. The surrogate model was generated using Gaussian process 

regression methods, which formulates a continuous function for thrust and TSFC based on the nearby points of the 

discrete NPSS dataset, using a normal distribution [27]. NPSS was chosen as the propulsion system software due to 

the extensive use of the tool throughout published literature for both existing and unconventional designs [28]–[32], 

along with the presence of documented validations [32]–[34], combined with the collective experience of contributors 

NASA and consortium members such as GE Aviation, Boeing, Rolls-Royce, Lockheed Martin and others [35]. 

Fig. 3 illustrates the CFM56 turbofan model in block diagram form, outlining the various components used within 

the model. The model was calibrated to match International Civil Aviation Organisation (ICAO) testbed data for Sea-

Level-Static (SLS) operating points, in which the component design variables were used to vary the model outputs. 

Component design variables include compressor/turbine pressure ratios and stage efficiencies, along with the 

combustor outlet temperature and the bypass ratio. For off-design analysis, generalised component performance maps 

were used, based on a late 1980’s advanced technology turbofan developed by NASA in their energy efficient engine 

programme [36]. 

 

Fig. 3 Block diagram of NPSS CFM56-7B26/3 turbofan model [35] 
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2. Validation 

The final validation results of the calibrated turbofan model are presented in Table 2. Validation errors are 

calculated with respect to the ICAO SLS data, obtained from the ICAO Emissions Databank [37], along with published 

CFM56-7B TSFC values for top-of-climb and rolling take-off operating points from a NASA numerical study [34]. 

The exact engine variant modelled by NASA in that publication is unclear, hence there is uncertainty in these reported 

TSFC figures. The propulsion model had a high level of accuracy, with the TSFC for three out of four SLS points 

predicted within 1% accuracy of the measured values. The largest TSFC error occurred for the 30% power point at 

SLS, with a relative error of -5.71%. This outlier in the validation results may be explained by the use of the generalised 

component performance maps, since the shape of the speedlines could vary significantly with respect to the actual, 

proprietary performance maps of the CFM56 turbofan. While this error is relatively insignificant due to the low fuel-

flow values at this operating point, further improvements could be obtained through using an optimiser to calibrate 

the component design variables, and generate scaling coefficients for the component performance maps in order to 

minimise the validation errors. 

Table 2 NPSS validation results for CFM56-7B26/3 turbofan model 

Operating Point Thrust (lbf) Thermal Eff. Predicted TSFC 

(lbm/hr.lbf) 

NASA/ICAO  

TSFC 

Error 

Top-of-Climb 5960 54% 0.635 0.650 -2.31% 

Rolling-Take-Off 20954 46% 0.473 0.474 -0.21% 

SLS – 100% power 26300 46% 0.369 0.366 0.82% 

SLS – 85% power 22355 45% 0.352 0.350 0.57% 

SLS – 30% power 7890 32% 0.314 0.333 -5.71% 

SLS – 7% power 1841 15% 0.464 0.466 -0.43% 

IV.Validation Results 

A. SUAVE Validation 

An initial validation of SUAVE was performed by comparing the predicted fuel-flow of the initial, unchanged 

SUAVE model for a sample mission against the actual fuel-flow data within the flight database. The sample mission 

was a flight of approximately 1300 NM, and the initial SUAVE model used the built-in SUAVE propulsion model 

(Cantwell [23]) along with the initial ‘Fidelity-Zero’ VLM aerodynamic model. Fig. 4 shows the predicted fuel-flow 

and corresponding fuel burn for this model, while Fig. 5 presents the validation of these predictions against the actual 

flight data. The presented fuel-flow and fuel burn data throughout this study have been non-dimensionalised due to 

the sensitive nature of the data. 
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Fig. 4 Initial SUAVE model predictions of B737-800NG fuel-flow for a 1300 NM mission 

 

Fig. 5 Validation of Initial SUAVE B737-800NG model against actual flight data (1300 NM) 

The model performed reasonably well for the climb and cruise segments. The initial climb and climb fuel-flow 

was under-predicted with a relative error of 3.4% and 10.3%, respectively, while the cruise segment fuel-flow was 

over-predicted with a relative error of 5.4%. The accuracy dropped significantly for the descent and approach phases, 

with under-predictions between 63.7% and 73.1%. The drop in accuracy during these phases was primarily due to 

several zero fuel-flow segments, associated with the negative throttle segments highlighted in Fig. 4. These zero fuel-

flow segments were caused by the solver demanding negative throttle, as the aircraft demanded a higher drag to satisfy 
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the deceleration requirements imposed by the flight path approximation outlined in Section III.A.2. Of course, in 

reality the aircraft would still consume some fuel as the engine is throttled back to an idle state, hence these zero fuel-

flow segments were unrealistic. Despite the large inaccuracies in the descent phases, the total block fuel consumption 

was under-predicted by just 2.1%, as the over-prediction of the cruise segment was essentially balanced by the under-

predictions of the remaining segments. This emphasises the importance of performing detailed validations where 

possible, analysing the fuel-flow accuracy per segment rather than the total mission fuel burn, in which the latter is 

common practice in published research [16].  

B. SUAVE-NPSS Validation 

 

Fig. 6 Validation of SUAVE-NPSS B737-800NG model against actual flight data (1300 NM) 

Fig. 6 shows the validation of the SUAVE-NPSS model against the actual flight data for the same flight presented 

in the previous section. Inclusion of the NPSS propulsion had a substantial effect on fuel-flow performance – the fuel-

flow of the cruise segment was reduced to yield an under-prediction of 4.5%, while the descent and approach phase 

errors improved significantly. The under-prediction of descent improved from a relative error of -63.7% to -7.7%. 

This was primarily due to the minimum idle fuel-flow applied to the propulsor surrogate, in which segments with 

negative throttle were set to an idle power setting of 7%. The approach segment yielded a similar improvement, 

whereas the final-approach segment showed some improvement, but a large under-prediction of 53.9% remained. The 

initial climb and climb segments showed minor improvements – initial climb was over-predicted by 2.1%, whereas 

climb was under-predicted by 9.7%. Despite the reduction in relative error for all segments, the block fuel relative 

error magnitude increased to an under-prediction of 6%. Again, this highlights the issues with validating design tools 

against total fuel burn performance, as it fails to capture the accuracy of the model against actual performance in 

different flight segments. Table 3 compares the total fuel burn and average total fuel-flow errors for the 26 flights for 

the initial SUAVE and the SUAVE-NPSS models. When considered across the collection of different flights, the 

combined SUAVE-NPSS model almost halved the fuel burn error without any recalibration for specific flights, and 

displayed significantly superior performance due to the more comprehensive propulsion model. 
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Table 3 Total fuel burn and fuel-flow errors for the SUAVE and SUAVE-NPSS model 

Model Total Fuel Burn Error Average Total Fuel-Flow Error 

SUAVE 13.4% 

7.5% 

9.41% 

SUAVE-NPSS 5.53% 

 

C. Effect of Wind Speed 

The TAS for the missions within the flight database was unavailable for the current analysis. To analyse the effect 

of wind speed on flight performance, an estimated average wind speed was applied to the two longest flights (outward 

and return) within the database, which had a range of approximately 1300 NM. The average wind speed was estimated 

by interactively tracking each flight from an online ADS-B tool. It was found that for the outward route, an average 

headwind of approximately 18 m/s was present, while for the return route an average tailwind of approximately 20 

m/s was present. The SUAVE code was developed to account for wind speed in the analysis, and the flights were re-

modelled with a constant 20 m/s headwind/tailwind, and compared to the initial GS model. Eq. (2) shows the 

calculation used to incorporate the wind speed in to SUAVE, where V is velocity, 𝛿 is the true course of the aircraft, 

𝜔 is the wind direction, and 𝛼 is the wind correction angle, as defined in Eq. (3). 

 

𝑉𝑔𝑟𝑜𝑢𝑛𝑑 = √𝑉𝑡𝑟𝑢𝑒
2 + 𝑉𝑤𝑖𝑛𝑑

2 − 2(𝑉𝑡𝑟𝑢𝑒 ∙ 𝑉𝑤𝑖𝑛𝑑 ∙ cos(𝛿 − 𝜔 + 𝛼)) 

(2) 

 

𝛼 = sin−1 (
𝑉𝑤𝑖𝑛𝑑
𝑉𝑡𝑟𝑢𝑒

∙ sin(𝜔 − 𝛿)) 

(3) 

 

1. Headwind 

With the 20 m/s headwind applied, the TAS became equal to 220 m/s, while the GS was equal to 200 m/s. This 

was in contrast to the GS model used in this study, in which TAS = GS = 200 m/s. As fuel-flow performance was 

related to the aircraft TAS, it was clear that the GS model would under-predict the fuel consumption for a mission that 

experiences a headwind. The results for the outward route with a 20 m/s headwind are presented in Fig. 7, where the 

GS model produced an average normalised fuel-flow of 28.2% during the cruise segment, while the wind-modified 

model that accounted for TAS predicted an increased fuel-flow rate of 30.2%. The wind model for the headwind flight 

produced a cruise fuel-flow error of -2.2% with respect to the actual flight data, compared to -4.5% with the GS model. 
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Fig. 7 Comparison of fuel-flow performance for GS model and wind model with a 20 m/s headwind 

 

2. Tailwind 

With a 20 m/s tailwind applied, the opposite effect occurred. The TAS became equal to 220 m/s, while the GS was 

240 m/s. Using the same logic outlined in the previous paragraph, the GS model used in this study would over-predict 

the fuel consumption. However, as the drag is dependent on the square of velocity, and wave drag becomes dominant 

at >0.85 Ma, the over-prediction of fuel consumption for the tailwind mission would be greater than the under-

prediction of fuel consumption for the headwind mission This was observed in the results for the tailwind mission 

presented in Fig. 8, where the GS model produced a normalised fuel-flow rate of 30.7%, while the fuel-flow rate for 

the wind-modified model reduced to 26.7%. Hence, the fuel-flow error for the GS model for the tailwind flight was 

4%, compared to 2% for the headwind analysis. The wind model for the tailwind flight produced a cruise fuel-flow 

error of 1.6% with respect to the actual flight data, compared to 14% for the GS model.  

 

Fig. 8 Comparison of fuel-flow performance for GS model and wind model with a 20 m/s tailwind 
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The results of this analysis highlights the non-linear characteristics of the fuel burn errors for flights that experience 

a headwind or tailwind when using the GS model. The non-linear nature of these errors compromised the potential of 

the SUAVE calibration, as increased drag coefficients yielded a greater effect on the flights that experienced a 

tailwind, disturbing the error gradients of the optimiser. 

V. Calibration 

A. Calibration Approach 

 

1. Climb and Cruise 

As noted in Section III.B, the ‘Fidelity-Zero’ aerodynamic method within SUAVE utilised various correction 

factors to complete the lift and drag calculations. Following the validation of the SUAVE model against real-world 

flight data, a calibration of these correction factors was performed in order to minimise the fleet-wide fuel burn error. 

The correction factors include the fuselage and wing parasite drag form factors, along with the fuselage lift, trim drag, 

and viscous lift-dependent correction factors. The two objective functions were set as the cumulative climb and cruise 

fuel burn error magnitudes. Setting the objective function as the cumulative fuel burn errors implicitly defined the 

weighting function of the optimisation problem, as the optimiser prioritised segments and flights with the greatest fuel 

burn error magnitudes. Furthermore, only the climb and cruise segments were used to calibrate the aerodynamic 

coefficients, as they represented the most reliable segments of ADS-B data. The multi-objective optimisation problem, 

including the variable bounds and the optimisation objectives, is described in Table 4. The ‘fgoalattain’ optimiser 

within MATLAB was utilised for this analysis. Bounds for the ‘Fidelity-Zero’ coefficients were kept relatively small 

to avoid over-fitting and negatively impacting the generalisation capabilities of the calibrated model outside the 

training cases.  

Table 4 Range of calibration variables 

Segment Calibration Vars Lower Base Upper 

 Fuselage Lift 1.10 1.14 1.16 

 Trim Drag 1.01 1.02 1.04 

Climb, Cruise Wing Drag 1.07 1.10 1.13 

 Fuselage Drag 2.25 2.30 2.35 

 Viscous Drag 0.36 0.38 0.40 

Descent Minimum Throttle 0.04 0.07 0.08 

Initial Climb T/O     +𝐶𝐷 0.00 0.00 0.03 

Approach APP    +𝐶𝐷 0.00 0.00 0.03 

Final Approach F-APP +𝐶𝐷 0.00 0.00 0.06 

2. Descent 

Once the optimum aerodynamic coefficients were obtained, the remaining segments in the descent, initial climb, 

approach and final approach were calibrated separately via single-objective optimisations. The descent segment was 

calibrated by setting the minimum idle throttle value to be used when evaluating the fuel-flow from the propulsor 

surrogate model. The SUAVE code was modified to set the fuel-flow of negative throttle segments equal to the 

minimum idle fuel-flow, initially prescribed as the fuel-flow for a 7% power operating point at the given altitude and 

Mach number. It was found that the descent fuel-flow was highly dependent on this minimum idle value, hence the 

descent segment was calibrated through optimisation of this minimum idle power variable.  

 

3. Initial Climb, Approach, Final Approach 

The initial climb, approach and final approach segments required modelling of flaps/slats and landing gear drag, 

as these were not included in the initial SUAVE model. These segments were calibrated using separate drag increment 

variables applied to each segment, as outlined in the final three rows of Table 4. These drag increment variables simply 
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increased the drag coefficient 𝐶𝐷 by a prescribed amount. This method of drag modelling is justified as the slats and 

flap configurations were relatively consistent throughout the flight database.  

B. Calibration Results 

 

1. Aerodynamic Coefficients 

Table 5 Optimised aerodynamic calibration coefficients 

 Fuselage Lift Trim Drag Wing Drag Fuselage Drag Viscous Drag 

Optimum Value 1.10 1.01433 1.07 2.3455 0.40 

Table 6 Error reductions for optimised calibration coefficients 

Error Value Base Climb Opt Climb Base Cruise Opt Cruise 

Total Fuel Burn 5.4% 4.7% 6.7% 6.1% 

Average Fuel Flow 5.4% 4.8% 8.8% 8.2% 

The optimised results for the ‘Fidelity-Zero’ aerodynamic coefficients are presented in Table 5, and the updated 

fuel-flow and fuel burn errors are presented in Table 6. The base error refers to the cumulative fuel burn error 

magnitude and average fuel-flow errors for all training cases using the baseline aerodynamic model values presented 

in Table 4, while the opt error refers to the cumulative fuel burn error and average fuel-flow error magnitude for the 

optimised calibrated model, using the optimised coefficients outlined in Table 5. Modest fuel burn error reductions of 

0.7% and 0.6% were observed for the climb and cruise segments, respectively, which reduced the average fuel-flow 

error magnitudes for each flight by approximately 0.6%. The optimiser struggled to make a significant impact on the 

error, as the model was slightly over-predicting cruise fuel burn, while the model was simultaneously under-predicting 

the climb fuel burn. Hence, the optimiser was working against conflicting objectives which limited the potential 

solution.  

This was likely due to the non-linear error effects as a result of using the GS model. As previously noted, the fuel 

burn during a tailwind was over-predicted by the GS model, whereas the fuel burn was under-predicted during a 

headwind, where tailwinds had a greater effect on the fuel burn error. Airlines tend to operate take-off and climb 

segments with a headwind due to the additional lift obtained, enabling a steeper climb. Conversely, during cruise an 

airline will aim to maximise the tailwind to save fuel. Therefore, it is possible that these operations, and the lack of 

TAS available in this model, was the cause of these discrepancies.  

2. Minimum Throttle 

Table 7 Optimised idle throttle value and error reductions 

Calibration Variable Optimum Value Base Fuel Error Opt Fuel Error 

Minimum Throttle 0.0592 13.4% 11.0% 

(15.9%) (12.3%) 

The optimised results for the minimum idle throttle value and the associated fuel errors for the descent segment 

are presented in Table 7. The fuel error value in the first row represents the cumulative fuel burn error, whereas the 

error value in parenthesis represents the average fuel-flow error of each flight. The baseline model used an idle throttle 

value of 7%, corresponding with published ICAO test data [37], which was reduced to a value of 5.92% following the 

optimisation. The cumulative descent fuel burn error was reduced by 2.4%, while the average fuel-flow error 

magnitude for each flight was reduced from 15.9% to 12.3%.  
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3. Take-off and Landing Drag 

Table 8 Optimised drag increments and error reductions 

Calibration Variable Optimum Value Base Fuel Error Opt Fuel Error 

T/O     +𝐶𝐷 0.0198 11.9% 10.3% 

  (12.2%) (10.4%) 

APP    +𝐶𝐷 0.0175 12.7% 14.0% 

  (11.8%) (13.8%) 

F-APP +𝐶𝐷 0.0569 40.9% 10.5% 

  (40.8%) (10.5%) 

The optimised results for the initial climb, approach and final approach drag increment variables and the associated 

fuel errors are presented in Table 8. The baseline fuel errors correspond to the results with no drag increment to account 

for deployment of flaps/slats and landing gear. The initial climb segment yielded a modest improvement, with 1.6% 

of the fuel burn error reduced,  improving the average fuel-flow error magnitude from 12.2% to 10.4%. The approach 

segment error was increased compared to the baseline model due to the change in the minimum idle throttle value, 

which negatively impacted the approach segment error. The final approach segment yielded significantly improved 

accuracy with a drag increment of 0.0569, reducing the fuel burn error by >30%. The large drag increment in this 

phase was required due to high flap deflections and the deployment of landing gear.  

C. Calibration Assessment 

To assess the performance of the optimised calibrated model, the sum of the total block fuel errors and the average 

total fuel-flow error of the calibrated model was compared to that of the baseline SUAVE-NPSS model for the 26 

training case flights included in the calibration model. Furthermore, three test cases, which were omitted from the 

calibration training data, were analysed in further detail. 

 

1. Training Data 

Table 9 Total fuel burn error reduction for calibrated SUAVE-NPSS model 

Model Total Fuel Burn Error Average Total Fuel-Flow Error 

Baseline 7.5% 

6.3% 

5.5% 

Optimised 4.9% 

Table 9 outlines the total fuel burn and average fuel-flow errors for the baseline and optimised model, in which 

the fuel burn error was reduced by 1.2% through optimisation of the calibration variables outlined in Section V.A. 

While these error reductions were relatively modest, it must be noted that the lack of TAS in the data limited the 

potential of the optimisation, as discussed in Section IV.C. Despite this, an average fuel-flow error magnitude <5% 

with respect to real-world data is considered an acceptable accuracy for conceptual design.  

 

2. Test Cases 

 

Table 10 Total fuel burn error reduction of test cases for calibrated SUAVE-NPSS model 

Model Total Fuel Burn Error Average Total Fuel-Flow Error 

Baseline 6.9% 

6.5% 

5.5% 

Optimised 5.0% 

 

Three test cases of varying range were selected to assess the performance of the calibrated model against unseen 

data, as highlighted Fig. 1. Table 10 shows that the optimised model generalised reasonably well, with a total fuel 

burn error reduction of 0.4%. It must be noted that one of these test case flights was the flight analysed in Section 
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IV.C with strong tailwinds present during cruise. As the optimised calibration tended to increase the fuel consumption 

of the modelled flights by increasing the drag coefficients, the cruise fuel burn of this test case yielded even greater 

error following the optimisation. Despite this increase in cruise fuel burn error, the total fuel burn error for the three 

test flights was still reduced with the optimised model.  

The 500 NM test case was analysed in further detail through comparison of validation graphs of the baseline 

SUAVE-NPSS model and the calibrated SUAVE-NPSS model. Figs. 9 and 10 show validation for the baseline and 

calibrated model, respectively.  

 

Fig. 9 Validation of baseline SUAVE-NPSS B737-800NG model against actual flight data (500 NM)  
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Fig. 10 Validation of calibrated SUAVE-NPSS B737-800NG model against actual flight data (500 NM) 

Error reductions were observed for four of the six segments – climb, cruise, descent and final approach, where the 

greatest error reductions were obtained for the descent and final approach segments, followed by the cruise and climb 

segments. The error of the initial climb and approach segments was increased, however the length of these segments 

meant that the fuel consumption error was relatively insignificant. It was clear that the calibration resulting from the 

optimisation process had an overall positive effect on the model accuracy, which was reflected in the reduced block 

fuel error – reducing from -3.6% to -2.1%. While the error reductions are highly dependent on the missions selected 

for validation, and the associated unknown wind speeds for these missions, the results from Table 9 and 10 clearly 

show that the calibration was successful in enhancing the overall model accuracy for both training and test cases – 

which was further emphasised in the test-case validations presented in Figs. 9 and 10. 

VI. Conclusions 

A validation and calibration of the conceptual design tool SUAVE was performed, where the fuel burn accuracy 

was measured against real-world B737-800NG flight data for 29 flights. The performance of the initial SUAVE model, 

utilising the standard physics-based ‘Fidelity-Zero’ VLM aerodynamic model and the built-in propulsion model, was 

analysed in detail for one flight within the database, and the total error for all flights was obtained. A propulsion model 

of the CFM56-7B26/3 turbofan was developed and validated against ICAO data, and connected to the SUAVE tool 

via a surrogate model. The SUAVE-NPSS model was validated against the same flights, where a significant reduction 

in fuel burn error was observed, indicating the primary source of inaccuracies within the SUAVE propulsion model.  

Following the validation, a calibration of the ‘Fidelity-Zero’ model was performed, in which the aerodynamic 

correction factors were optimised to minimise the fleet-wide fuel burn error. Further calibration was performed for 

the minimum idle throttle value of the propulsion model, and the additional drag during the take-off and landing 

segments to account for the deployment of flaps, slats and landing gear. While the potential of the calibration was 

found to be limited due to non-linear error effects in the presence of headwinds and tailwinds, the calibration yielded 

a 1.2% reduction in the fuel burn error magnitude against the training data, resulting in a final error magnitude of 

6.3%. The calibrated model was further validated against three test cases of unseen data, in which the total fuel burn 

error was reduced from 6.9% to 6.5%. The final average fuel-flow error magnitude for the flights modelled was 

approximately 5%, for both the training and test data. Such a level of accuracy with respect to real-world data is 

sufficient for conceptual design, hence it can be concluded that SUAVE is a useful tool for modelling unconventional 

aircraft configurations. 
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Future work will aim to enhance the calibration through expansion of the flight database to account for a greater 

number of flights, multiple aircraft configurations, and the inclusion of TAS data. The calibrated model provides an 

accurate baseline model with respect to real-world flight data, from which future aircraft models with alternative fuel 

and propulsion systems can be compared. Furthermore, this model provides an accurate and rapid physics-based 

modelling platform from which advanced propulsion systems and airframe configurations can be assessed and 

optimised in the context of a full fleet operating over a wide range of scheduled routes, such that confident projections 

of future carbon reductions can be obtained for new aircraft designs. 
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