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ABSTRACT

Electron microscopy allows academic and industrial users to investigate the struc-
ture and properties of a variety of materials. However, some limitations are
imposed by the instrumentation and the nature of the analyzed specimen. This
work proposes machine-learning-based approaches to overcome some of nowadays
impediments in the field of 2D and 3D electron microscopy data. In the first project,
machine learning is employed to enhance the quality of Scanning Transmission
Electron Microscope (STEM) data, effectively reducing noise levels across various
electron beam intensities. The algorithm developed undergoes rigorous testing
using both synthetic and actual microscopy data. Furthermore, a quantitative and
impartial benchmarking protocol for comparing various denoising workflows is
proposed, based on the precision of atomic column localization. The second project
focuses on STEM data analysis in the context of quantifying vacancies in transition
metal dichalcogenides (TMD). Here machine learning improves the quality of
STEM-acquired TMD images, facilitating the vacancy-counting process in materials
science research. The third project explores the application of a powerful neural
network, developed for video-frame interpolation, for the enhancement of 3D
tomography. This innovative approach significantly increases the resolution of
tomographic images, with applications ranging from materials science, where it
aids the study of graphene nanosheets, to medical imaging, where it potentially
reduces ionizing radiation doses in Computed Tomography (CT) scans and en-
hances cardiovascular assessment in coronary angiography videos. Throughout the
entire work, a particular effort is dedicated to the development of the techniques
needed to quantify the improvement resulting from the application of the pro-
posed methodologies, which are compared to the state-of-the-art approaches. This
research development demonstrates the versatility and transformative potential
of machine learning in advancing imaging techniques across diverse scientific
domains.

Key words: scanning transmission electron microscope, image denoising, autoen-
coder, neural network, transition metal dichalcogenides, vacancies, FIB-SEM,
graphene, MRI, CT, coronary angiography.
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CHAPTER 1

INTRODUCTION

Electron microscopes are powerful imaging tools that have contributed to
countless discoveries in a wide range of research fields and industrial appli-

cations. Much progress has been made since the assembly of the first electron
microscope, in 1931 [1]. This prototype, built by Ernst Ruska and Max Knoll, was
a Transmission Electron Microscope (TEM) with a resolution (i.e. the smallest
distance at which two points can be identified as distinct) of hundreds of nm. To-
day, aberration-corrected TEMs, operating in scanning mode (AC-STEM), provide
the highest resolution of all imaging instruments, below 0.1 nm, and allow one
to investigate the structure and chemical composition of materials at the atomic
scale [2]. Some of the fields that benefit the most from electron microscopy are
material science, where this technology is used for characterizing the structure,
composition, and properties of materials at the nanoscale [3]; biology and life
sciences, with important results in the observation and study of viruses [4]; phar-
maceutical industry, where electron microscopes are widely used to characterize
drug structures [5].

Despite these unprecedented achievements, there are still constraints that affect
the extent to which electron microscopy can be applied successfully. These limita-
tions are mainly related to the technological state of the microscopy instrumentation
and the fragility of the analyzed specimen, with impacts on the quality of the infor-
mation retrievable from microscopy data. Researchers and engineers are constantly
working on possible expansion of electron microscopy capabilities, mainly from the
instrumentation perspective. However, it is important to note that these efforts are
both time-consuming and expensive, requiring significant investments in hardware
production and integration. The development and implementation of aberration
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correction in TEM is an example of technological instrumentation advancement in
electron microscopy. Before this upgrade, traditional TEM instruments suffered
from optical imperfections that degraded image quality and limited resolution.
The first aberration-corrected TEM images were published in 1998 [6], obtained
using specialized electromagnetic lenses. These correctors allowed explorations at
the nanoscale with unprecedented detail and are now standard features in state-
of-the-art instruments. Another illustration of progress in the microscopy field is
represented by the introduction of Cryo-Electron Microscopy (Cryo-EM) [7]. This is
a hardware advancement designed for biological samples, consisting of specialized
specimen holders and cooling systems, which allow researchers to freeze biological
specimens in vitreous ice. The goal is to preserve the sample’s native structure and
minimize electron beam-induced damage, making this implementation ideal for
studying biological macromolecules and cellular structures. Both the mentioned
technological advancements have been instrumental in significant improvement in
electron microscopy capabilities, and are, therefore, widely employed. Nonetheless,
the financial cost associated with these state-of-the-art infrastructures must be
considered [8].

In this research project, a different type of approach will be explored, based
on improvements that do not require hardware modifications, a practice that is
becoming increasingly more popular in the microscopy community [9]. Specifically,
machine-learning-based strategies will be investigated to enhance today’s electron
microscopy capabilities. The application of some of these methodologies will be
also extended to other imaging instruments, belonging to the medical area, in
order to demonstrate the model’s potential. The aim of this project is to serve as
an interdisciplinary overview of the power of computer-aided solutions for the
enhancement of imaging instruments.

In a nutshell, machine learning involves developing algorithms able to extract
patterns from data of various nature [10]. The learned patterns are then used by
these models to make predictions on unseen datasets. Significant advancements
in computational power and the increased availability of data have facilitated
substantial progress in machine learning, with meaningful impacts on several
aspects of contemporary society. Examples of machine-learning tools that can be
encountered on a daily basis are recommendation systems for streaming services
and e-commerce platforms [11], chatbots and virtual voice assistants [12, 13], email
filtering [14].

Notably, applications to visual data, such as images, videos, and volume ren-
dering, are particularly advanced. In fact, machine-learning models can expedite
the interpretation and understanding of visual data, leading to several practical
applications. For instance, algorithms have been developed for tasks such as
image classification (i.e. classifying images into predefined categories), image
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segmentation (i.e. dividing images into meaningful regions), object detection (i.e.
locating and recognizing multiple objects within an image), video analysis (i.e.
tracking objects across video frames), and many others [15]. The majority of these
models are trained on the so-called natural data, meaning visual representations
involving people, animals, and everyday objects. As a consequence of the success
of these approaches, an increasing number of algorithms are currently being de-
veloped also for applications in other contexts, such as electron microscopy [16]
and healthcare [17]. Some of the architectures have been developed from scratch
for these specific fields, while others have been adapted from algorithms built for
the more general natual scene context. This is common practice in the development
of machine learning models, which often involves reusing and adapting existing
architectures for new purposes. In this project, both development approaches are
explored.

An important aspect of any machine-learning scheme is the development of
validation methods for the assessment of the model’s capabilities. In many cases,
a complete understanding of the decision process behind this technology is not
obtainable, due to the complexity of the algorithms. Therefore, meticulous results
evaluations are needed, to provide an objective measure of model performance and
to allow for comparisons between different approaches. Depending on the field of
applications and the nature of the algorithms, numerous strategies can be pursued.
However, all the approaches share some crucial steps: goal definition, metrics
selection, data preparation, and results interpretation. In certain cases, defining
evaluation procedures is straightforward. For example, in classification models
used to assign labels to input data, such as distinguishing between images of cats
and dogs, one can compare model predictions with manually assigned labels. This
allows for easy testing of unseen images and unequivocal comparison with human
perception. Nonetheless, in other circumstances, it can be quite challenging to
identify adequate methods for results assessment. Focusing again on computer
vision applications, this is certainly true in the case of algorithms developed to
improve image quality. This is a consequence of several factors. Firstly, there may be
a lack of a well-defined ground truth, namely the absolute and objectively known
information used as a reference for model assessment. Moreover, subjectivity
should be considered when evaluating an image quality, as perception can vary
from person to person. In general, in this context, there are no standardized
metrics that can be used for assessing image quality enhancement. Therefore, the
evaluation strategies are developed depending on the specific application, which
might require different features from the data.

This can be particularly challenging when dealing with datasets from the medi-
cal context, where machine-learning frameworks aim at improving the diagnostic
value of the data and assisting doctors in the decision-making process. Indeed,
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good-performing algorithms may not necessarily lead to better patient outcomes,
which is the ultimate goal of this type of application. In the medical imaging field,
it is sometimes difficult to establish objectively whether one image provides more
information than another one, and the opinion of certified medical experts is often
required.

The approach pursued in this work, aimed at providing a quantitative results
assessment, is to focus on the information retrievable from the data, intrinsic
to the examined application. Therefore, particular attention is devoted to the
identification of adequate metrics, which should correspond to quantities that are
commonly used to extract insights from the analyzed data. Throughout the entire
research development, the advantages and limitations of different assessment
techniques will be discussed.

With the primary objectives and strategies outlined, attention can now shift
toward the actual implementation of the individual projects.

Firstly, a description of all the methodologies involved in the research study
will be provided in Chapter 2, which is divided into three main sections. Starting
from a general description of electron microscopy, the first section will focus on
Scanning Transmission Electron Microscope (STEM) and on Focussed-Ion-Beam
Scanning-Electron-Microscope (FIB-SEM) tomography. In order to motivate the
projects finalized within this research development, some of the limitations of these
imaging instruments will be detailed. The second section will introduce the topic
of machine learning and some of the related concepts, with particular attention on
the models that will be useful for the purposes of this work, namely autoencoders
and neural networks developed for video frame interpolation. Lastly, an overview
of some medical imaging techniques will be presented, including a discussion on
the advantages and drawbacks of the application of machine-learning approaches
in the healthcare context.

The purpose of the first project, presented in Chapter 3, is to overcome one of
the main limitations of Scanning Electron Transmission Microscope (STEM) data.
These are extremely powerful imaging instruments, which allow achieving atomic
resolution images, as mentioned previously. However, this usually involves the
use of a high electron dose, which can lead to specimen damage and affect the
observation. As a consequence, the application of high-resolution microscopy is
usually limited to non-beam-sensitive materials. The solution proposed in this
work is to use a strategy, based on machine learning, to significantly improve the
quality of STEM data acquired at low electron dose, strongly affected by Poisson
noise, an effect that cannot be corrected at the instrumentation level. The developed
algorithm, namely an autoencoder, is trained on synthetic data and it is subject to
rigorous testing using both synthetic and actual microscopy data. Following a first
qualitative model evaluation, achieved through visual comparison, more objective



Introduction 12

assessment approaches will be investigated. This analysis will demonstrate that the
presented framework can effectively reduce noise levels and approximate ground-
truth precision across a wide range of electron beam intensities. Importantly,
no human data pre-processing or explicit dose knowledge is required, and it
operates at a speed compatible with real-time data acquisition. Furthermore, a
quantitative and unbiased benchmarking protocol will be introduced, based on
the evaluation of the atomic column localization. This is in accordance with the
evaluation strategy introduced above, whose goal is to employ metrics related to
the physical properties intrinsic to the information content that can be retrieved
from the data. The main goal of this first project is to propose a scheme, rooted on
machine learning, that can be ideally applied to any STEM investigation. Having
demonstrated that this approach is valuable and facilitates obtaining insights from
the data, the following project, detailed in Chapter 4, describes a possible practical
use of this type of strategy.

The aim of this next chapter is to illustrate how a machine-learning model can
assist STEM data analysis, with a practical application to vacancies investigations in
transition metal dichalcogenides (TMD). These materials present many interesting
properties, which make them promising candidates for applications in several fields.
However, these properties can be altered, positively or negatively, by the presence
of vacancies, which should therefore be properly quantified. A common strategy
to assess the quality of TMD is to image them with a STEM. However, it can be
challenging to identify light atoms, such as chalcogens, even when the images are
acquired with technologically advanced instruments. The approach suggested in
this study involves employing a machine-learning model to enhance the quality of
STEM-acquired TMD images, and therefore ease the vacancy-counting process. A
procedure for the quantification of these defects will be proposed and discussed.
The major factors affecting the results will be also reviewed.

The following project revolves around a different imaging technique, namely
three-dimensional (3D) tomography, with the main focus on 3D volumes achiev-
able with FIB-SEM (Focussed-Ion-Beam Scanning-Electron-Microscope) technology.
3D tomography represents a powerful investigative tool for many scientific do-
mains, going from materials science, to engineering, to medicine. This is realized
through a multitude of experimental techniques, that can image objects of the
most diverse nature and across many length scales. Many factors can limit the
3D resolution, which often remains spatially anisotropic. This undermines the
ability to achieve cubic-voxel definition in the three dimensions, a fact that hampers
the precision of the information that one can extract from the 3D reconstructions.
The solution proposed in this work is to use a powerful neural network, devel-
oped for video-frame interpolation, to augment tomographic images and to bring
them to cubic-voxel resolution. The aim of the numerous neural networks devel-
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oped for video frame interpolation is to increase the frames per second (fps) of
a video by generating one or more frames between the existing ones, resulting
in a smoother and visually fluid motion. In the proposed work, this method is
applied to radically different situations. The ground truth is not available for
all circumstances and, as a consequence, different assessment strategies are used.
As a first application, the morphology of ink-jet printed networks of graphene
nanosheets will be investigated, obtained by milling a specimen with a Focused
Ion Beam (FIB), while imaging with a Scanning Electron Microscope (SEM). For
this FIB-SEM technique, the resolution is in the range of nanometers to tens of
nanometers and it is limited by the destructive milling. This work will demonstrate
how a neural network developed for a different purpose, namely the interpolation
of video frames, can be successfully implemented to increase the resolution of
FIB-SEM-generated data, at different levels of complexity. In order to quantitatively
validate the results, several metrics will be implemented. Specifically, in addition
to conventional computer-vision metrics, physical parameters that can be derived
from the resultant 3D reconstructions, such as network porosity and tortuosity, will
be evaluated and compared across different image interpolation techniques. For
this analysis, images are removed from the original dataset and used as ground
truth.

The extensive applicability of the proposed method will be demonstrated by
implementing it on datasets of different scales, namely medical images of various
types. For these cases, the resolution is in the millimeter range and it is limited by
both the instrumentation and the necessity to keep the acquisition time low, primar-
ily for the patient’s benefit. The first case consists of magnetic resonance imaging
(MRI) acquisitions of the human brain. Being the resolution already isotropic,
frames can be removed from the original dataset and used as ground truth, for
validation purposes. Specifically, metrics such as the gray-matter volume varia-
tion [18] will be investigated. Then, X-ray computed tomography (CT) scans of the
abdomen region will be considered. In this context, the use of image interpolation
methods could potentially imply a reduction of the released ionizing radiation
dose, which is known to have several negative biological effects on humans [19].
For this example, being the resolution of the 3D volume significantly anisotropic,
no ground truth can be extracted from the original data source. Therefore, the noise
power spectrum is evaluated for correspondent areas of the original and artificially
augmented datasets, to investigate the image quality enhancement. Furthermore,
the same video frame interpolation strategy will be applied to videos of coronary
angiography, a medical procedure using a contrast dye and real-time X-ray imaging
to assess the cardiovascular system. The main limitation of this practice is related
to the release of ionizing radiation associated with each X-ray-generated frame.
Integrating a video frame interpolation technique into this procedure could allow
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a reduction of the harmful radiation delivered to both patients and practitioners.
Lastly, Chapter 6 will provide a comprehensive overview of the key findings and

outcomes derived from the study, offering insights into the possible applications
of this research. Moreover, it will outline potential areas for future exploration.

To summarize, the aim of this project is to demonstrate how machine-learning-
based approaches can expand today’s capabilities in the field of electron microscopy,
with some applications extended to the medical imaging area. The goal of the
proposed tools is to enhance various aspects of the imaging systems, such as
expanding the range of analysable materials, accelerating the acquisition process,
and improving the quality of the extracted information. Ultimately, this work
wants to contribute toward the integration of machine-learning algorithms into
imaging devices, enhancing their performance and leading to new discoveries.



CHAPTER 2

METHODOLOGY

This chapter aims at introducing the primary methodologies involved in this
research project, namely electron microscopy, both from the experimental and

simulation point of view, and machine learning. An overview of medical imaging
techniques is also provided, in support of the last section of Chapter 5.

2.1 Electron microscopy

The term microscopy defines the discipline of inspecting small objects that would
not be visible by the naked eye, but require using an instrument named microscope,
from the Greek words mikros (= small) and skopein (= to look at). These devices are
generally classified into two types, depending on the nature of the wave employed
to interact with the specimen: light and electron microscopes.

The invention of the first microscope is not certain, but it is usually attributed
to Hans and Zacharias Janssen, who built, in the 16th century, the first so-called
compound light microscope, namely a magnifying instrument with more than
one lens [20]. In a light microscope, also known as optical microscope, a set of
lenses is used to focus visible light on a sample and to bend the light, allowing
the magnification of the image [21]. The resolution of light microscopes, which
is defined as the shortest distance between two points identifiable as distinct, is
limited by several factors. A theoretical value for the resolution limit can be found
by using the Abbe diffraction limit relationship [22],

d ⇡ l

2 ⇥ NA
, (2.1)
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where d is the resolution limit, l is the light wavelength, and NA is the numerical
aperture of the objective lens. This last term is a dimensionless quantity that
describes the range of angles the system can accept for the incoming light and
depends on the refraction index, n, of the medium between the objective lens and
the sample, and the half angular aperture of the objective, µ, according to the
formula,

NA = n ⇥ sin µ. (2.2)

In the case of air between the lens and the specimen, and green visible light, the
resolution is limited to approximately 200 nm. It is worth mentioning that modern
microscopes can achieve higher resolution, by employing techniques that belong
to the super-resolution optical microscopy field [23]. However, the main limiting
factor remains the wavelength of the light, a limitation that can only be overcome
by using a different beam, made of electrons, i.e. by using electron microscopes. In
fact, electrons have a typical wavelength 100,000 shorter than that of visible light,
and therefore they show a much higher resolving power, of the order of 0.1 nm.
The invention of the first electron microscope dates back to 1931, when Ernst Ruska
and Max Knoll built the first prototype, which achieved a resolution of hundreds
of nm [1].

Both light and electron microscopes present advantages and drawbacks. They
are chosen depending on the specific needs of the application. For instance, light
microscopes are more beneficial for studying live specimens and larger structures,
such as in the context of biological research [24]. In contrast, electron microscopes
are more suitable when atomic-level details are needed, with applications ranging
from material characterization to nanotechnology [25]. For this project, the focus
will be on electron microscopes.

Electron microscopes are usually classified into two main categories: Scanning
Electron Microscope (SEM) or Transmission Electron Microscope (TEM). This
distinction is mainly based on the type of electrons used to generate the image. In
fact, different families of electrons are involved in the imaging process of electron
microscopes and carry different types of information. The so-called primary electrons
are the high-energy constituents of the incident electron beam. They can interact
with the specimen following different mechanisms. The primary electrons can
interact elastically with the atoms from deeper regions of the sample and generate
backscattered electrons, meaning that the primary electrons undergo a change in
trajectory and are reflected back, with approximately the same energy; they are
highly sensitive to differences in atomic number and therefore carry information
on the sample’s composition. The primary electrons can also interact inelastically
with the atoms of the specimen, mainly on the surface or near-surface region. They
have lower energy than the backscattered electrons and provide information about
the topography of the specimen surface. If the sample is sufficiently thin, the
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electrons can also be transmitted through it, after interacting with the internal
atoms.

Secondary electrons and backscattered electrons are collected and used to
reconstruct images in the case of SEM, which operates by scanning a focused
electron beam across the surface of a specimen. State-of-the-art SEMs achieve a
0.4 nm resolution [26], which is limited by factors such as the electron probe size
and the volume of interaction between the electron beam and the specimen. SEMs
are widely used to study the external morphology and chemical composition of
solid objects. When combined with a FIB (Focused Ion Beam) instrument, they can
be employed to investigate the 3D internal structure of materials at the nanoscale,
as it will be described later in this chapter.

TEMs are used to investigate the crystal structure and their operation is based
on transmitted electrons. Specifically, an electron gun produces an electron beam,
which is accelerated and transmitted through a thin specimen. Subsequently, the
electron beam passes through a series of electromagnetic lenses, which play the
same role as optic lenses in light microscopes [27]: they are employed to produce a
magnification of the specimen. Lastly, the information carried by the electrons can
be recorded, in the form of an image. Depending on the technique used to address
the specimen, two types of transmission electron microscopes can be distinguished:
conventional TEM (CTEM) and TEM operating in a scanning mode (STEM) [2].
CTEM is characterized by a wide-beam approach, in which a close-to-parallel beam
invests the entire area of interest [28]. This apparatus will not be considered in this
project.

2.1.1 Scanning Transmission Electron Microscopes (STEMs)

A more sophisticated technique is implemented in STEM, which operates by
focusing a convergent electron beam on a small area and by scanning it across
the sample. This approach presents some advantages, such as highly controlled
positioning of the electron beam, the possibility to collect additional signals such
as secondary electrons and scattered beam electrons, improved resolution, and
easily interpretable data. One of the STEM available at Trinity College Dublin,
namely the state-of-the-art Nion UltraSTEM, is displayed in Fig. 2.1, both from the
outside (on the left-hand-side panel) and the inside (on the right-hand-side panel).
Fig. 2.2 displays a schematic of the STEM structure. Electrons are emitted from the
heated tip of an electron gun, made of a material with a high melting point, such
as Tungsten. Depending on the population of electrons considered for the image
formation, the main imaging modes are the bright field (BF) and the dark field
(DF). As shown in Fig. 2.2, the BF detector is placed in the path of the electrons
transmitted through the specimen; in this case, only the unscattered electrons
contribute to the image formation. In bright field images, crystalline or high-mass
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Figure 2.1 – Pictures of the state-of-the-art Nion UltraSTEM available at Trinity College
Dublin, displaying the microscope from the outside (on the left-hand-side panel) and from
the inside (on the right-hand-side panel). The pictures are courtesy of Danielle Douglas-
Henry.

density areas appear dark on a white background. In contrast, DF detectors
collect the electrons scattered out of the path of the electron beam, therefore the
atom areas appear bright on a dark background. Examples of a sample image
taken with the two imaging modalities are displayed in Fig. 2.3, which shows
Graphene data simulated with the simulation software Prismatic [30, 31], described
in the following section. DF images are particularly valuable due to the fact that
the signal is chemically sensitive; the generated images show different levels of
contrast, which depend on the chemical composition of the analyzed specimen [32].
Specifically, the image intensity is proportional to the atomic number, Z, of the
atoms in the specimen: elements with a high Z have strong scattering interaction
with the incident electron beam, and therefore the image intensity is higher for
the correspondent pixels. This mechanism is known as Z-contrast and allows
easy interpretation of the data, making it possible to distinguish different atomic
species [33, 34].

Limitations of STEMs

Despite being the instrument that provides the highest resolution, below 0.1 nm,
STEMs present some limitations. Sample preparation and environmental con-
straints are critical factors that can significantly impact the feasibility and success
of experiments in electron microscopy. For instance, the specimen should satisfy
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Figure 2.2 – Schematic representation of a STEM. Simplified version of Fig. 2.3 of refer-
ence [29]. An electron beam passes through some objective lenses, which focus the beam
on a small area of the specimen. The beam is then scanned across the entire sample. The
electrons, which pass through the specimen, are collected by the bright field detector (BF),
while the scattered electrons are collected by the dark field detectors (DF).

specific thickness requirements and a high-vacuum environment should be main-
tained for the experiments, to ensure image quality. Certainly, these conditions
pose some challenges on the range of materials that can be analysed. Nonetheless,
even when these demands are fulfilled, there are additional constraints that can
hinder the analysis. One of the major restrictions is that atomic resolution is
achievable only when the specimen is illuminated by a very intense electron beam.
This maximizes the signal-to-noise ratio, but may damage the sample and the
observation. In fact, the damage is a function of the electron dose, defined as the
total number of electrons per unit area hitting the specimen, and it is caused by
various energy-loss mechanisms. The most common ones are knock-on damage
and radiolysis or ionization damage. In the case of knock-on damage, the atoms of
the sample are displaced from their sites due to a transfer of momentum from the
incident electrons [35]. The specimen can be also affected by radiolysis, which is
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Figure 2.3 – Example of Graphene STEM data, imaged with the dark-field (on the left-
hand-side panel) and bright-field (on the right-hand-side panel) techniques. The images
are simulated using the simulation software Prismatic [30, 31].

a consequence of the inelastic scattering of the incident electrons: the transfer of
energy from the incident electrons to the specimen electrons can lead to the forma-
tion of excited states and consequent structural and chemical modifications [36].
In both these conditions, the specimen under investigation changes in time as the
measure progresses, compromising the experiment result.

The sample integrity can be protected by decreasing the electron dose, but this
leads to a deterioration of the image quality, thus reducing the chance of extracting
useful information from the data, such as the atom’s position and the identification
of defects. The reason behind such a loss of resolution can be ultimately identified
with the presence of Poisson noise, which increases upon reducing the number of
incident electrons [37], according to the relation,

f µ
1
p

r
, (2.3)

where f is the noise and r the dose. Poisson noise is related to the quantized
nature of the electron beam, meaning that it is related to the discreteness of the
electrons. Indeed, the electron beam can be described as a movement of discrete
packets (i.e. the electrons). During the imaging process, a discrete number of
electrons, independent from each other, reaches a specific location of the sample,
at a constant rate. Processes of this type are described by a Poisson distribution.

A Poisson distribution is expressed by the relationship:

p(k) =
lk

k!
e�l, (2.4)
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where p(k) is the probability of an event happening k times, and l is the mean
number of events, which is assumed to be constant. It is a discrete probability
distribution, which means that involves the probability of a discrete outcome. In
this case, it is the number of times a specific event happens. It is also required
that the events are independent from each other. For a high value of the mean
number of events, the Poisson distribution can be approximated with a normal (i.e.
Gaussian) distribution. In practice, in the electron microscopy context, this means
that if the electron dose is increased (each sample location is illuminated by more
electrons) the collected signal will be less noisy.

In contrast to other types of signal distortions, such as Gaussian noise, scan
noise, and drift [38], Poisson noise cannot be eliminated by improving the instru-
mentation or by changing the working conditions, due to its nature. For instance,
it is possible to eliminate Gaussian noise completely by replacing standard ac-
quisition with electron counting, a strategy that itself represents one of the latest
electron microscopy advancements [39]. Within this thesis, in accordance with
the work [39], the standard acquisition method will be referred to as analog ac-
quisition, while the electron-counting process will be referred to as digital. The
digital approach was developed with the purpose of obtaining high signal-to-noise
images even at low-dose settings. It consists in pulse-counting the individual
electrons that are scattered to the dark field detector. Among the advantages of this
strategies, detailed in [39], it is worth mentioning the ability to generate images,
where the pixel intensity corresponds to the number of electrons detected at a given
pixel, namely the pixel intensity is a directly observable quantity. In our opinion,
digital data acquisition represents the ultimate future of electron microscopy, a
consideration that motivated our choice of considering only Poisson noise in the
work presented in Chapter 3.

Simulation of STEM data

Over the last decades, numerous tools have been developed for the simulation
of STEM images, which plays an essential role in several aspects of microscopy,
such as planning, optimization, and interpretation. In fact, the simulation of
data under different imaging conditions allows one to investigate and optimize
the microscope’s setting parameters for the experimental measurements. In the
case where the sample structure is known, it is possible to use simulations to
compare the experimental data with the theoretical representation provided by the
simulation. This helps the interpretation of the investigated structure.

Furthermore, simulation data are particularly useful for the training and testing
of machine-learning models. The use of experimental datasets in this context is not
advisable for two main reasons: first of all, the dataset preparation could require
unsustainable time and cost. Secondly, in many cases, the so-called ground truth,
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namely the goal perfect image is needed to evaluate the model’s performance during
training, and this is not achievable with experimental acquisition. Some papers
propose simple linear methods to generate a synthetic dataset [40]. However,
despite being fast approaches, electron microscope images do not follow a simple
linear image model and therefore any linear method cannot be quantitatively
precise [29]. In fact, in order to have a more realistic dataset, it is advisable to
use simulation techniques that implement the Bloch-wave method [29] or the
multislice algorithm [41]. These quantum mechanical techniques employ a detailed
description of the specimen and of the instrument settings to generate the images,
meaning that they implement a more faithful simulation of an actual measurement.
Some of the information provided by the user are: location and atomic number of
each atom in the test structure, specimen thickness, energy of the electron beam,
and others.

The mentioned simulation techniques propose two different approaches for
modelling the effect that the beam-specimen interaction has on the probe wave
function, which can be found by solving the Schrödinger equation for fast electrons
travelling in the z-direction,

∂y(r)
∂z

=
il
4p

r2
xyy(r) + isV(r)y(r), (2.5)

where y(r) is the electron wavefunction, describing the electron beam, r is the 3D
spatial coordinate with components (x, y, z), l is the incident electrons wavelength,
s is the interaction parameter, and V(r) is the sample’s electrostatic potential [29,
31]. The term on the left side of the equation represents the evolution of the
electron wavefunction with respect to the distance along the beam axis. The first
term on the right side of the equation is a free-space propagator operator, which
measures the gradient of the wavefunction at every location and describes the
behaviour of the wavefunction in free space, in the absence of electrostatic potential.
Lastly, the second term on the right side is the electrostatic potential.

According to the Bloch-wave method, the interaction between the electron
beam and the specimen can be described following the Bloch’s theorem [42], valid
under the assumption of crystal-structure periodicity. This states that the electron
waves can be modelled as a product of a plane wave and a periodic function. In
practice, the application of this method requires calculating a scattering matrix
which, multiplied by the incident wavefunction, returns the exit wavefunction.
Building the matrix involves the eigen-decomposition of approximations of Eq.
(2.5), this will provide us with a basis set, which is used to simulate different
probe positions on the sample surface, by means of weighting coefficients. This
process can be extremely time-consuming for simulations of large samples and it
is therefore only applied to the case of small STEM simulations.
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The multislice method is more advanced and flexible for applications to speci-
mens with defects and to amorphous materials [29]. According to this algorithm,
the sample structure is split into several thin slices, whose interaction with the
electron beam is described by the weak phase object approximation, valid for thin
samples [29]. According to this approximation, the electrons in the imaging beam
undergo a small deviation of their wavelength when passing through the specimen,
due to the higher energy they have compared to the specimen’s electrons. This
step corresponds to solving the second term on the right-hand side of Eq. (2.5),
meaning to compute the 2D projected potential for each slice. After the electron
wave passes through one of the slices, the propagation to the next one is described
by Fresnel diffraction in the free space between slices. This is the diffraction (i.e.
the deviation of a wave from its propagation) that happens when the distance
between the source and the obstruction is comparable to the obstruction’s size.
This process is repeated for the entire sample and, under appropriate conditions,
the wavefunction exiting from the bottom slice of the sample is the simulated
image. This technique can become excessively slow for large simulations, where
the transmission and propagation steps are repeated for each probe position.

A more sophisticated simulation technique was developed in 2017, namely,
PRISM (plane-wave reciprocal-space interpolated scattering matrix), which incor-
porates features from both the previously described methods and is implemented
in the Prismatic simulation software [30, 31]. This algorithm delivers a significant
acceleration in the simulation, a fundamental aspect when dealing with the gener-
ation of large datasets. The initial steps of PRISM are the same as in the multislice
method: the sample is divided into a series of thin slices along the beam directions
and the projected potential is computed for each of them. This describes how
the atoms in the slice interact with the electron beam. In traditional multislice
simulations, the propagation is independently evaluated for each STEM probe po-
sition. In contrast, in the case of the PRISM algorithm, a compact scattering matrix
is computed, for a basis set of the incident plane waves. This is a mathematical
representation of how the incident wavefunction is transformed when passing
through the specimen. Notably, this scattering matrix is only computed once and
can be reused for any probe wavefunctions to model their propagation, with great
impact on the model speed. Significant acceleration of the computational time is
also facilitated by the definition of an interpolation factor, necessary for Fourier
interpolation of the scattering matrix.

2.1.2 FIB-SEM tomography

The SEM, briefly described at the beginning of this chapter, can be used in com-
bination with a Focused Ion Beam (FIB) to obtain an imaging system known as
FIB-SEM, which allows for 3D imaging of nanoscale specimens. The imaging
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procedure, schematically illustrated in Fig. 2.4 [43] involves a FIB, which mills
away slices of a specimen, while a SEM takes images of the exposed planes, as
displayed in the left panel of the figure. After repeating this process for the entire
specimen, the outcome is a stack of hundreds of 2D images. These are then aligned
and used to produce a high-fidelity 3D reconstruction [44], schematized in the
middle and right panels of Fig. 2.4, respectively. The tomographic reconstruction
can be produced by using software such as Fiji [45] or Dragonfly [46].

A FIB is an instrument that utilizes a beam made of ions, typically generated
from a Gallium source, for different purposes: imaging, when operated at low beam
current, or milling, at high beam current. In the context of FIB-SEM tomography,
the FIB is used at a high beam current, as a milling instrument. The Gallium ion
beam is generated by an ion gun and then accelerated, usually with voltages in the
range of 1 � 30 kV. Subsequently, the beam goes through condenser and objective
lenses, and it is scanned across the sample surface.

The milling phase is based on ion-atom elastic collisions. Specifically, atoms
from the specimen are removed, when the incident ion is able to transfer enough
kinetic energy to overcome the binding energy of the sample’s atoms. The incident
ions can also undergo different processes. They can lose their energy after a cascade
of collisions and stop inside the specimen, according to a process known as ion
implantation, which is correlated to radiation damage. They can be backscattered
and deposited on the specimen surface or they can interact inelastically with
the target’s atoms and produce secondary electrons and other particles [47, 48].
The main factors that impact the milling rate are the angle of incidence, the
type of target material, and the voltage that is used to accelerate the ion beam.
Notably, the milling capability of FIB instruments is not only used for FIB-SEM
tomography, but also for sample preparation, mainly for TEM investigations [48].
This application will not be covered in this work. More advanced FIB-SEM systems
are also combined with instruments for chemical and crystallographic analysis
in 3D data, such as electron dispersive spectroscopy (EDS) and electron back-
scatter diffraction (EBSD) [49]. FIB-SEM tomography is widely used in material
science, biology, natural sciences, semiconductor industry, nanotechnology, and
other fields [50, 47, 51, 52]. Recent studies showed that FIB-SEM tomography is
particularly suited for the analysis of printed nanostructured networks [44]. In
this case, due to the length scale involved, it is more appropriate to describe the
technique as FIB-SEM nanotomography (FIB-SEM NT). The main dataset used for
the project described in Chapter 5, belongs to this category.

Limitations of FIB-SEM tomography

The presented imaging technique is characterized by some limiting aspects, which
motivated the work described in Chapter 5 of this research project. Firstly, FIB-SEM
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Figure 2.4 – Schematic illustration of FIB-SEM tomography, from reference [43]. The panel
on the left shows the acquisition process, which consists of serially removing slices of
material with the FIB (yellow beam in the figure), and imaging the resulting cross-section
with the SEM (blue beam in the figure); the black layer on top of the specimen is a
platinum coating, necessary to protect the sample and prevent artefacts during the imaging
process. The middle panel displays the stack of 2D images obtained at the end of the
experimental procedure. The panel on the right illustrates the 3D reconstruction of the
specimen, obtained from the 2D stack.

tomography is a destructive procedure, meaning that the sample is destroyed at
the end of the experiment and cannot be recovered. This implies that, in case not
enough data was collected, it is impossible to experimentally acquire additional
2D frames.

Another limitation of this technique is that the resolution of the generated
3D volume is often anisotropic, especially when working at high resolution. In
fact, while the cross-section (also referred to as the xy-plane) is imaged at the
SEM resolution, about 5 nm in the case of high-resolution images of the graphene
dataset used for the project developed in Chapter 5, the resolution along the
milling direction (the z-direction) corresponds to the slice thickness and it is
usually around 10 � 20 nm. As a consequence, the reconstructed 3D volume will
not be characterized by cubic voxels (the 3D equivalents of pixels). Note that cutting
thinner slices is hindered by the instrumentation, the nature of the specimen, and
by economic constraints. Moreover, a reduction of the slice thickness implies a
detriment of the resolution in the xy-plane, since the damage produced during
one cut can propagate to the following one. This limitation is linked to another
problem of FIB-SEM instruments, namely the slow imaging speed [53], which has
an impact on the overall economic cost associated with the procedure. Therefore,
considering all these issues, one would then desire a method to interpolate images,
which preserves and possibly enhances the information quality and ideally reduces
the number of milling steps to perform. A solution to this problem is proposed
and discussed in Chapter 5.
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2.2 Machine learning

Since ancient times, philosophers believed that the process of human thinking could
be automatized and reduced to mechanical calculation [54, 55]. This ambition of
replicating human intelligence in machines was and still is driven by the desire to
enhance decision-making, automate tasks, improve efficiency, and tackle complex
challenges. The attempts to perform, with the aid of computers, tasks usually done
by humans are enclosed in the discipline of Artificial Intelligence (AI), which was
officially founded in 1956 [56]. Since then, the development of computer science
and the availability of data allowed much progress in the field, with extensive
impact on a variety of areas of nowadays society: robotics [57], healthcare [58],
finance [59], education [60], and many others.

Machine learning (ML) is a subcategory of the more extensive field of AI. It
refers to the practice of using algorithms to extract patterns from data and use
this information to learn how to perform specified tasks. Despite being often used
interchangeably, ML and Deep Learning (DL) do not express exactly the same
concept. In fact, DL is a subfield of ML. It does not require structured data as input
and automatizes the feature extraction pre-processing necessary for ML models.

The most common algorithms, which are the key component of DL, are Neural
Networks (NNs), models that try to mimic the neurons of the human brain and
their connections. NNs are universal function approximators, meaning that, given
the right architecture and complexity, they can approximate any mathematical
function.

The architecture consists of one input layer, one or more hidden layers, and one
output layer. The number of hidden layers defines the depth of the algorithm; in
order to be identified as a deep-learning algorithm, a neural network must have at
least three hidden layers. Each layer consists of a set of individual units known as
nodes or neurons, whose task is to receive some inputs from other neurons and
produce an output, after processing the inputs. Many neural network architectures
have been designed in the past decades. In the next sections, the models employed
for the development of this research project will be described.

The main difference between classical programming and ML lies in the kind
of input and output involved. In fact, classical programming accepts some data
and some rules as input and delivers some answers as outputs. In contrast,
machine learning receives data and answers as input, and from this information
is able to retrieve, during a process called training, the rules that link them. The
described process belongs to the so-called supervised type of learning, where labels
(namely the answers) for the input data are available; this is used for classification,
regression, and other applications. When the dataset is unlabeled, the machine-
learning model can be trained to find patterns by clustering the data. In this case,
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the learning is called unsupervised and can be used for dimensionality reduction
and other tasks. The last main type of learning is reinforcement learning; this does
not need labelled data and is used to find the best behaviour, in specific contexts, to
obtain the maximum reward, for example when performing autonomous driving
tasks.

In order to explain the ML workflow, let us consider the case of supervised
learning. A fundamental aspect of every machine-learning project is the dataset,
which usually undergoes some pre-processing steps to ensure it is suitable for the
model’s purpose. The first step is usually data cleaning, which consists of removing
input data that may hinder the training of the models because they are corrupted,
duplicated, or for example formatted incorrectly. A process called data augmentation
is commonly performed before (or during) the training of the algorithms. This
is a strategy used to artificially increase the size of a dataset, by generating new
elements from the modification of existing ones. Depending on the type of data,
different approaches are available. For instance, in the case of images, elements of
the training set can undergo rotation, shift, magnification, change of brightness,
and others. Finally, before the training phase begins, some datasets are subject
to data transformation (sometimes referred to as data preparation), to facilitate the
learning process. For instance, data can be normalized to ensure that all elements
are on the same scale of values.

For our example, each element of the dataset D(x, y) is a pair of an input x
and a target or label y. This collection of data is split into three subsets, namely
the training set D(xtrain, ytrain), the validation set D(xval, yval), and the test set
D(xtest, ytest). The training set is used by the model to learn patterns from the data
that will be used to make predictions on new examples (a phase that is known as
training). Specifically, it is used to feed a model M and get an output y⇤train in the
form y⇤train = M(xtrain, q), where q is a set of parameters that needs to be optimized.
The parameters q must be optimized in order to minimize the discrepancy between
the computed y⇤ and the expected value y. This discrepancy cannot be evaluated
on the training set, because it would prevent the model from generalizing1 properly
to unseen data. It is necessary to use an unbiased dataset, known as validation set.
Specifically, the training set is used by the model to identify a set of parameters q

to fulfill the model’s purpose. The suitability of these parameters is validated by
using the model on a different dataset, namely the validation set. The discrepancy
between the expected yval and the computed y⇤val = M(xval, q) is evaluated in terms
of a loss function, whose definition varies depending on the purpose of the model
and the type of data. Some examples of commonly used loss functions are,

1In the machine-learning context, the term generalization refers to the ability of a trained
model to perform well on new data, not encountered during the training process.
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• Mean Squared Error (MSE), which can be defined as,

MSE =
ÂN

i (oi � ri)
2

N
, (2.6)

where N is the number of data points under evaluation, oi is the original data
and ri is the reconstructed data.

• Binary Cross Entropy, often used for classification problems and mathemati-
cally expressed as,

Loss =
1
N

N

Â
i
�
⇥
yi ⇤ log(pi) + (1 � yi) ⇤ log(1 � pi)

⇤
, (2.7)

where N is the number of data points under evaluation, y is a binary indicator
of the class (0 or 1), pi is the probability of class 1, (1 � pi) is the probability
of class 0.

The most commonly used process for training a neural network is a two-step
procedure consisting of forward pass and backpropagation. At first, the input data
is passed through the neural network and each layer performs specific calculations
using an initial set of parameters, to produce an output. This prediction is then
compared to the target value or ground truth, resulting in a loss that quantifies
the discrepancy between the predicted and the expected results. In the subsequent
step, known as backpropagation, this loss is used to calculate gradients, which
indicate how much each parameter in the network should be adjusted to minimize
the loss. The backpropagation process begins from the output layer and moves
backwards through the network layers to compute the gradients. These are used
to guide the optimization algorithm, a mathematical function used to adjust the
model’s parameters, in the direction that reduces the loss. It is worth mentioning
that during training, data is often divided into batches (subsets), and parameter
updates are calculated based on the average gradient computed from each batch.
This approach helps the training process converge efficiently. Some examples of
commonly used optimizers are: stochastic gradient descent, Adam, RMSProp,
and AdaDelta. More details on the advantages and disadvantages of the different
kinds of optimizers can be found in [61]. The described procedure is repeated for
multiple iterations, also known as epochs, until a specific stopping criterion is met.
This criterion depends on the tackled problem. It often involves monitoring the
convergence of the loss or achieving a desired level of accuracy on a validation
dataset.

Once this process, namely the training, is completed and all the parameters
have been optimized, the model can be used on unseen data, namely the test
set, to evaluate its performance and limitations. In the case the results are not
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satisfactory, one can follow different approaches, such as increasing the training
and validation set size, and changing the model’s hyperparameters (the optimizer,
the loss function, the number of layers, the number of nodes, etc.).

The operation used to find the most advantageous set of hyperparameters
for a specific model and dataset is known as hyperparameter tuning. It consists in
assigning different values to the set of hyperparameters and separately training
the model, with each different set of values. Several techniques are available for
this purpose, the most commonly used are:

• grid search, which consists of creating a set of possible discrete hyperpa-
rameter values, namely a grid, and training the model with every possible
combination of those values. This investigation is comprehensive, but it can
be extremely slow when several hyperparameters need to be optimized;

• random search, which, in contrast to grid search, selects only a limited num-
ber of combinations of the possible hyperparameters value chosen randomly.
This ensures less computational time and avoids biases linked to the user’s
choice of values. However, the resulting combination of hyperparameters
might not be the best possible, being this method not exhaustive;

• Bayesian optimization, which takes into consideration the results of the previ-
ous evaluation and uses a probabilistic function to select a new combination
of hyperparameters. This method allows one to find an adequate set of
values after a relatively low number of iterations. However, it is applied
sequentially, due to the need to consider the results of the previous iteration,
and therefore the optimization time might be longer.

Another common practice in ML applications is the so-called fine tuning. In fact,
sometimes it can be convenient to re-use an existing model instead of training
a new one from scratch. This is particularly useful when one wants to perform
a task that is similar to the one for which the original model was trained. For
instance, a model trained to recognize cars can be fine-tuned to recognize trucks.
The fine-tuning process consists of using the parameters of the original model as
starting values for training the new model.

2.2.1 Autoencoders

The deep-learning model chosen for the first part of this project is a neural net-
work structure known as autoencoder (AE), traditionally used for dimensionality
reduction and feature extraction [10]. This consists of two main parts: an encoder
and a decoder, which usually have the same number of layers, with the number of
nodes per layer in reverse order. Therefore, the majority of autoencoders present a
symmetrical structure.
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As its name suggests, the role of the encoder is to encode the input and
produce a latent representation of it. In contrast, the output of the decoder is a
reconstruction of the input obtained using only the latent representation. The goal
of an autoencoder is to generate an output as equal as possible to the input.

It is crucial to impose constraints on the copying task, which act as forms
of regularization2, so to prevent the neural network from learning the identity
function (i.e. copying the input into the latent representation and into the output)
and to extract useful properties from the data. The most common solution is
to impose that the size of the latent representation is smaller than the size of
the input. In this case, the model is called undercomplete autoencoder and it is
forced to learn only the most important features of the input during the encoding
task. Another possibility is represented by denoising autoencoders [62]. In this
approach, the model is trained to reconstruct the input given a noisy version of it.
The encoder receives some noisy data as an input and the loss function compares
the original uncorrupted data with the reconstruction generated by the decoder.
By removing the noise from a corrupted input, the model is forced to extract the
essential features that characterize the original data. A schematic representation of
a denoising autoencoder workflow can be found in Fig. 2.5, which displays STEM
data as an example. Given a dataset of clean original data (known as infinite-dose
images, which, in the case of STEM data, refers to ideal images that are not affected
by any type of noise), some kind of noise is added to it; these corrupted data are
used as input of the autoencoder. The encoder generates a latent representation
of them and the reconstruction of the decoder is then compared to the original
uncorrupted data, by means of a loss function. After the training, aside from
feature extraction, denoising autoencoders can be used to remove noise from data
that are generated corrupt. In order to exploit this functionality, it is crucial to train
the model with noisy data that are similar to the real corrupted data of the chosen
context.

It should be noted that denoising autoencoder can be undercomplete or over-
complete. In the latter case, the dimension of the latent space is the same or larger
than the dimension of the input. As mentioned before, having a latent space with
a size smaller than the input, as in the case of undercomplete autoencoders, forces
the model to learn a compressed representation of the data, which ideally retains
only the most important features. This can be considered a form of regulariza-
tion, which leads to better generalization. Moreover, in general, undercomplete
autoencoders are less computationally expensive than the alternative, namely
overcomplete autoencoders. However, the compressed representation may not

2Regularization is a tool used to improve the generalization performance of machine
learning models. It aims at reducing the complexity of a model, making it less likely to fit
noise in the training data and more likely to capture underlying patterns that generalize
well to unseen data.
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Figure 2.5 – Schematic representation of a denoising autoencoder workflow, applied to
a dataset made of STEM data. Some noise is added to a clean image (named Original,
infinite dose, in this case). The noisy image is fed to the encoder, which produces a latent
representation of it. The decoder part of the model receives the latent representation as
input and uses it to reconstruct the noise-free data. This is compared to the original image
through a loss function.

capture all the essential information in the data. Overcomplete autoencoders have
increased capacity from this point of view, being able to capture intricate data
patterns and fine details. Nonetheless, some drawbacks are associated with this
type of architecture, namely the higher demand for computational resources and
the risk of low generalization ability. This last disadvantage can be prevented by
including regularization techniques, such as adding noise. The choice between
overcomplete and undercomplete autoencoders depends on the specific task and
dataset.

In the case of autoencoders developed for image processing, the so-called
convolutional layers are commonly employed to extract features from the data [63].
The output of convolutional layers is usually called feature map. In order to obtain
these maps, a linear operation is performed between the input and an array of
weights (known as filter), whose size is smaller than the input. A dot product is
performed between a filter-size area of the input and the filter. This operation is
repeated for each overlapping filter-size area of the input, moving the filter along
the width and the height of the image, according to a defined stride. The resulting
feature map summarizes some features detected in the input (i.e. edges, corners,
objects). During the training process, the numerical values encoded within the
filters are optimised. In fact, different values in the filters allow the identification
of different features from the data. Convolutional layers require also the choice of
an activation function, which determines the output of such layers. Two examples
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of activation functions, which will be also used for this research project, are:

• ReLu, which stands for Rectified Linear Activation Unit and applies element-
wise non-linearity. It is expressed by the function,

f (x) = max(0, x). (2.8)

• Sigmoid, which requires more computational effort compared to Relu, but it
is commonly used in the output layer of autoencoders applied to grayscale
images because it guarantees an output in the range [0, 1]. For this reason, it
can be interpreted as a grayscale image and makes the learning process more
stable. It can be written as,

f (x) =
1

1 + e�x . (2.9)

Another argument that needs to be specified when working with a convolutional
layer is the padding. Padding refers to the addition of pixels, usually of value zero,
to the borders of the images. When padding is specified as valid, no additional
pixels are added. In this case, some information on the border of the image will
be lost and the output will be smaller than the input, depending on the filter size
and the stride. In contrast, the padding value same implies the addition of as many
pixels as required to have the output of the convolutional layer of the same size
as the input. Moreover, it will be possible to extract more information from the
border of the input. A powerful feature of convolutional layers is the possibility to
apply multiple filters in parallel and therefore to learn various features at the same
time. However, this will imply an increase of the time required to train the model,
being the filters made of the weights that are learned during the training process.

The variation of the size that the input undergoes when passes through an
autoencoder is achieved by using MaxPooling and UpSampling layers. Specifically,
MaxPooling layers are used to downsample the input (the feature map generated by
a convolutional layer) by taking the maximum value over a region smaller than the
input that is shifted across the image, according to a certain stride. The role of this
layer is to reduce the size of its input and to summarize the features observed in it.
When passed through an UpSampling layer, the rows and columns of an input are
repeated as many times as specified in the size argument of the layer. A common
choice is to set the repeating factor to two for both directions.

2.2.2 Neural networks for video frame interpolation

As mentioned in the introductory chapter, video frame interpolation neural net-
works are widely developed and can also be used in applications not related to the
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Figure 2.6 – Schematic representation of a video frame interpolation process, applied to a
video of a dog running in a garden. The original and the augmented videos are presented
as sequences of frames, along the time direction indicated by the blue arrow. The top row
displays the original video, of only three frames. The video on the second row, obtained
by applying the video frame interpolation algorithm rife, is made of five frames. The
movements of the dog appear more visually fluid in the augmented video segment.

original purpose of their development. Video frame interpolation is a computer-
vision, whose aim is to generate more visually fluid videos by creating additional
frames between consecutive existing frames, namely by increasing the so-called
frame rate or frame per second of videos [64]. This approach is widely used in the
generation of slow motion videos [65] and video prediction [66].

The concept of adding frames between existing frames is depicted in Fig. 2.6,
where two videos are displayed in terms of consecutive frames, ordered according
to the time direction indicated by the blue arrow. The top row shows the original
video segment, made of only three frames, of a dog running in a garden. The
bottom row presents the video segment obtained after applying a video frame
interpolation technique, namely rife [67], which will be introduced shortly. In
this case, the video consists of five frames, which makes the dog’s movements
more visually fluid. A variety of deep-learning frameworks have been proposed
to pursue this task. One of the state-of-the-art algorithms for video frame inter-
polation is rife (Real-Time Intermediate Flow Estimation), developed by Huang
et alii [67]. Five main methodologies are usually employed for video-frame in-
terpolation, namely flow-based methods, convolutional neural networks (CNN),
phase-based approaches, GANs, and hybrid schemes. These typically differ from
each other because of the network architecture and their mathematical founda-
tion [68]. rife belongs to the flow-based category, whose focus is the determination
of the nature of the flow between corresponding elements in consecutive frames,
namely, the optical flow. When compared to other popular algorithms [69, 70, 71],
rife performs better both in terms of accuracy and computational speed. Models
belonging to the same class usually involve a two-phase process: the warping of
input frames in accordance with the approximated optical flow, and the use of
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CNNs to combine and refine the warped frames. The outcome of the intermediate
flow estimation often requires the presence of additional components, such as
depth-estimation [69] and flow-refinement models [70], so to mitigate potential
inaccuracy. Unlike other methods, rife does not require supplementary networks,
a feature that impacts significantly the model speed. In fact, the intermediate
flow is learned end-to-end by a CNN. Specifically, rife adopts a neural-network
architecture, IFNet, which directly estimates the intermediate flow adopting a
coarse-to-fine approach with progressively increased resolution. This allows for
capturing finer motion details and producing high-quality intermediate frames.
Moreover, a privileged distillation scheme is introduced to train the model. This
means that a teacher model, that has access to the ground truth (the intermediate
frame), guides a student model during the learning process. The input of the rife
model can either be a video or a sequence of two images. For this project, the most
straightforward solution is to use images. Therefore, the model was adapted to
accept a series of any number of images, instead of only two at a time. As with
any large machine-learning model, rife updates regularly. At the current moment
in time, the best version available is the HD model v4.6 referred to as rife hd [72].
This is trained on the Vimeo90K dataset, which covers a large variety of scenes and
actions, involving people, animals, and objects [73]. Clearly, none of the datasets
examined in Chapter 5 is included or is similar to the data of the Vimeo90K dataset.
For this reason, fine-tuning of the available pre-trained model was performed for
one of the proposed applications. Since fine-tuning of rife hd is currently not
possible, the second-best model is here considered, namely rifem [74]. More details
about the training set used for the fine-tuning will be provided in Chapter 5.

Validation and limitations of video frame interpolation algorithms

Despite being extensively used in the context of video frame interpolations, these
kinds of algorithms are associated with several challenges. Firstly, the outcome
quality is degraded in the case of abrupt changes in lightning, fast-moving objects,
occlusions, and other factors, which hinder the ability to predict the optical flow
accurately.

Moreover, the models are trained on a limited amount of data and they need to
be able to generalize to unseen types of motion. The resolution of the generated
frame should be at the same level as the original frames, in order to ensure smooth
transitions among them and to guarantee the extraction of precise information
from the data, hampered in the case of outcomes with blurred features.

Another aspect that should be taken into account is computational efficiency,
meaning the time and resources needed to achieve satisfactory results; near-real-
time performance would be preferable.

Finally, objective evaluation of the results is often not achievable. In fact,
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the majority of the algorithms rely on traditional full-reference computer vision
metrics [75]. A full-reference metric is based on a direct comparison between the
analysed output and the ideal outcome, namely the reference data. In the case
of video frame interpolation applications, these metrics are evaluated on pairs of
frames. Some examples are:

• MSE (Mean Squared Error), defined in Eq. (2.6), provides pixel-by-pixel
comparison; for two identical images the MSE is zero;

• PSNR (Peak Signal to Noise Ratio) is a variation of MSE, defined as,

PSNR = 10 · log10

✓
MAX2

I
MSE

◆
, (2.10)

where MAXI is the maximum signal in the image and the log is used to
express PSNR as a logarithmic quantity in the decibel scale; the PSNR
approaches infinity as the MSE approaches zero;

• SSIM (Structural Similarity Index Method) aims at being more correlated
with the human quality perception, by taking into account three factors:
luminance, l, contrast c, and structure, s. The SSIM between two images
or windows x and y is expressed as a weighted combination of these three
measurements, with weights a, b and g, according to the relation,

SSIM(x, y) = l(x, y)a · c(x, y)b · s(x, y)g, (2.11)

with:

l(x, y) =
(2µxµy + c1)

(µ2
x + µ2

y + c1)
, (2.12)

c(x, y) =
(2sxsy + c2)

(s2
x + s2

y + c2)
, (2.13)

s(x, y) =
sxy + c3

sxsy + c3
. (2.14)

Here µx (µy) is the pixel sample mean of x (y); s2
x (s2

y ) is the variance of x
(y); sxy is the cross-correlation of x and y; c1, c2, and c3 are values used to
stabilize the division (c3 = c2/2). As their names suggest, the luminance
factor compares the pixel intensity or brightness between the two images; the
contrast term measures the loss in terms of contrast, and the structure element
correlates with the spatial arrangement of pixels. A simplified version has
been proposed [75], obtained by setting the weights a = b = g = 1:

SSIM(x, y) =
(2µxµy + c1)(2sxy + c2)

(µ2
x + µ2

y + c1)(s2
x + s2

y + c2)
. (2.15)
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SSIM can assume decimal values between -1 and 1: 1 means perfect similarity
(i.e. same image), 0 corresponds to no similarity, and -1 indicates complete
dissimilarity or inversion between the two images, a rare circumstance in real-
world scenarios, usually requiring deliberate manipulation to be achieved.

• MS SSIM (Multi-Scale Structural Similarity Index Method) is an extension of
the SSIM. It considers image details at multiple scales and is therefore useful
for capturing both local and global structural information in images. This
makes the comparison more robust. To calculate this metric, the original data
are downsampled to several scales, typically using a Gaussian pyramid3, in
order to obtain a set of images at different resolutions, both for the generated
and the reference (ground truth) data. The traditional SSIM is then calculated
separately for each pair of corresponding images. Finally, these values
are combined together to obtain a single Multi-Scale SSIM score. For this
combination, different weights are assigned to each SSIM value. Usually,
these weights are inversely proportional to the scale, meaning that, in the final
MS SSIM score, more importance is given to finer scales (higher resolution).

These metrics are not necessarily consistent with human visual perception [76]
and they often fail in evaluating image quality attributes such as sharpness, noise,
distortion, contrast, and artefacts (i.e. blurring, flickering, blocking, and others).
Clearly, simple visual comparison, always presented for the assessment of video
frame interpolation methods, cannot be exhaustive for an objective quantitative
evaluation.

Some reduced-reference [77, 78] and no-reference [79, 80] metrics have been
proposed. Reduced-reference metrics, used when the reference video is not fully
available, assess the model by comparing features extracted from the two analyzed
videos. In contrast, no-reference metrics do not require any reference. Due to the
lack of exhaustive information from a reference video, both these categories of
metrics provide inaccurate results, compared to full-reference metrics. Notably,
some methods to assess the quality of video by using neural networks have been
proposed [81, 82]. However, these practices are rarely employed in the video frame
interpolation papers that can be found in the literature, and they are usually only
applicable to the so-called natural video scenes, namely videos involving people,
animals, and objects. Therefore, this solution must be excluded for the purpose of
this research project, which does not involve such kinds of videos.

The approach proposed in this work is to identify some features related to the
information that is usually extracted from the investigated dataset. For instance,

3A Gaussian pyramid is a multi-scale representation in which an image undergoes
repeated Gaussian blurring and downsampling operations. The final result is a stack of
images representing the original data at different levels of detail. This representation is
widely used in various image processing and computer vision applications.
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in the case of nanostructured graphene networks, we compare the target and
reference outcome in terms of network porosity. This feature is regularly studied
by experts in the field of nanostructured specimens to understand the material’s
properties. This approach allows one to confirm that the outcome of the proposed
model preserves or improves the quality of the information characterizing the
original dataset. In fact, for the applications investigated in this work, the focus is
not on the image quality per se, but on the knowledge that we can retrieve from
the data.

2.3 Medical imaging techniques

Medical imaging allows investigation of the inside of the human body and plays a
fundamental role in diagnosis and treatment. It encompasses several modalities,
a few of which will be covered in this chapter. Specifically, a description of the
techniques used to extend the application of the video frame interpolation neural
network rife is provided. Additionally, a brief overview of AI applications in
healthcare is proposed, including a discussion of the limiting aspects of this field.

2.3.1 X-ray medical imaging

X-rays are electromagnetic waves with wavelengths ranging from 0.01 to 10 nm,
which can be used to image the inside of the human body [83]. X-rays are produced
by an X-ray tube, where a difference of potential is used to accelerate electrons
toward a target material (typically Tungsten) and turn them into electromagnetic
radiation.

When a beam of X-rays passes through the body, it undergoes different levels
of absorption, depending on the atomic number and the density of the tissues en-
countered. The beam attenuation is determined by two main types of phenomena:
Compton and photoelectric interactions. The first occurs when X-rays interact with
the outer electrons in the body’s soft tissues, such as muscles and organs. The
consequence is energy loss and a change of direction for the scattered particles.
Photoelectric interactions describe the process happening between the X-ray beam
and the inner electrons of the invested tissue: the X-ray photon is absorbed and a
photoelectron is released. This happens for body parts containing atoms with high
atomic numbers, such as bones and radiocontrast agents, in addition to Compton
interactions. Radiocontrast agents, usually iodine-based or barium-based, are
substances that are sometimes administered to patients undergoing X-ray imaging
procedures. By absorbing external X-rays, they improve the visibility of internal
structures and, therefore, enhance diagnostic capabilities.

Measurements of the attenuation profile of the transmitted beam can be used
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to form an image on a film or a digital detector. The pixels in the image will be
brighter in areas corresponding to dense tissues (e.g. bones), while darker pixels
will represent less dense tissues.

This imaging modality is mainly used to assess bone fractures, detect certain
types of tumours, and examine lung conditions. Among the advantages of this
technique, the speed and the relatively low cost of the procedure should be
mentioned. The disadvantages include the limited performance in distinguishing
soft tissues with similar density and the ionizing radiation exposure. This is a
known risk factor for cancer development [19]. However, due to the speed and the
number of procedures people require on average during their lives, this imaging
modality can be considered safe in most cases. In other words, in the majority of
the circumstances, the benefits of this technique largely outweigh the risks.

2.3.2 X-ray computed tomography

The X-ray imaging modality described in the previous section can also be used
in a more advanced setup, which allows the generation of 3D reconstructions
of internal parts of the human body, namely X-ray computed tomography (CT).
The functioning of CT is based on a rotating X-ray beam that invests the body
from different angles. The attenuation profile is measured for each position and
processed by a computer. The outcome is a stack of cross-sections of the body, that
can be used to produce a 3D representation.

In CT scans, the radiodensity of different materials is quantified according to
the Hounsfield unit (HU) scale, which measures the level of X-ray absorption by
these materials. The term radiodensity is commonly used in the medical context
and refers to the level to which a material absorbs X-rays passing through it. A
radiodense material absorbs more X-rays and will appear whiter in CT scans. A
material with lower radiodensity interferes less with the passage of X-rays and
will be represented by darker shades in the CT image. By applying a linear
transformation to the X-ray attenuation coefficient measurement, the HU scale
expresses the radiodensity of tissue relative to the radiodensity of distilled water,
which is set to be 0 HU. Values in the HU scale can either be positive or negative.
For instance, bones have a Hounsfield value of +1, 000 HU, while air is around
�1, 000 HU.

Compared to standard X-ray imaging, CT provides better visualization, both
in terms of contrast and resolution. With this imaging modality, it is possible to
obtain a detailed representation of organs and soft tissues, whose visualization
is limited in the case of standard X-rays. In fact, the algorithms used for image
reconstruction can enhance the attenuated differences between tissues with simi-
lar densities. Applications of this imaging modality include the investigation of
complex fractures, tumours, vascular diseases, and others. Notably, the relatively



Methodology 39

small amount of time needed to acquire detailed information makes this imag-
ing procedure particularly beneficial for decision-making in emergency contexts.
However, CT involves higher costs and higher risks linked to increased radiation
exposure, compared to standard X-ray and other imaging modalities, such as
magnetic resonance imaging.

Dose reduction strategies have been and are currently investigated, with the
goal of reducing the dose delivered to the patient by preserving the image qual-
ity [84]. First of all, unnecessary radiation can be reduced by tailoring the procedure
needs to the patient’s characteristics. The X-ray tube output can be varied during
the procedure by modulating the tube current with the goal of reducing the dose
for low-attenuation areas and increasing it for high-attenuation areas, such as
bones.

Another possible solution is the so-called Dual-Energy CT [85], where two differ-
ent X-ray energy levels are used, depending on the addressed material. The choice
of the algorithms used to generate the 3D representation has an impact on the
dose delivered to the patient: iterative methods [86] provide better reconstruction
compared to traditional filtered back projection methods, allowing a reduction
of the radiation dose needed for high-quality results [87]. Furthermore, noise
reduction techniques can be used during the 3D reconstruction to improve the
accuracy of areas acquired at lower doses.

It should be noted that this measurement technique is not limited to the medical
environment, but it is also widely used in industrial settings and, in general, as a
research tool across materials science [88, 89].

2.3.3 Fluoroscopy and coronary angiography

X-rays can also be used in medical practices like fluoroscopy [90] and coronary
angiography [91], widely employed in cardiology to investigate heart and blood
vessel conditions.

Fluoroscopy is an X-ray imaging technique that allows continuous visualization
of moving body structures. It involves using an X-ray machine with a fluoroscope,
which is a specialized X-ray detector that can display images in real time on a
monitor. During this medical practice, a continuous X-ray beam is passed through
the patient’s body, and the transmitted X-rays are detected by the fluoroscope. The
detector sends the X-ray images to a monitor, where they appear as moving frames.
This real-time imaging technique enables physicians to observe the movements of
organs, blood flow, and the progression of medical procedures.

In particular, fluoroscopy is employed during a procedure known as coronary
angiography [91], used to assess the cardiovascular system. Specifically, a contrast
dye is injected into the coronary arteries through a thin flexible tube, namely a
catheter, usually inserted in the groin or wrist. X-ray imaging is needed during



Methodology 40

the procedure to guide the wire inside the patient’s body and assess how the
blood flows. In fact, the dye is visible on X-ray images and outlines the blood
vessels, allowing the medical practitioner to identify possible blockages, which are
evidence of coronary artery diseases [92].

Contrary to the other medical operations described in this chapter, coronary
angiography is an invasive procedure. Risks and complications associated with
it are both patient- and procedure-related. Some examples are bruising, allergic
reactions to the contrast dye, hematoma, but also artery damage and heart attack,
in some extreme cases. However, it is considered a safe procedure in the majority
of circumstances [93]. Furthermore, in many cases, it allows one to avoid surgery,
which involves higher invasiveness and costs [94].

It should be noted that, for fluoroscopy-assisted protocols, there are some
risks also for the physician performing the procedure, mainly related to X-ray
exposure [95]. In fact, contrary to the case of CT scans, the practitioner needs to
be in the same room as the patient, to guide the wire inside their body. Modern
equipment can guarantee a reduction of radiation exposure. However, some
radiation risks cannot be controlled. Prolonged and repeated exposure over time
poses some serious risks for practitioners. According to current regulations [96], the
dose limit for medical professionals is 20 mSv per year averaged over 5 consecutive
years, with a maximum of 50 mSv for each year. This value is larger than the one
for the general public, which is 1 mSv per year. However, it still limits the number
of procedures that professionals can perform during their lifetime.

One of the factors affecting the amount of radiation dose released to the
patient and the operators is the frame rate. This indicates how often X-ray images
are collected and displayed on the monitor during the procedure. As in the
case of any other type of video, a high frame rate provides a more continuous
transition between frames. In the context of coronary angiography, this translates
to a smoother visualization of the movement of the contrast dye through the
blood vessels, which can ultimately facilitate the identification of cardiovascular
irregularities. However, higher frame rates also imply higher X-ray exposure.
Therefore, a trade-off should be identified between radiation release and diagnostic
information. The most commonly employed frame rates are 30 fps (i.e. frames
per second), 15 fps, and 7.5 fps, chosen depending on the specific procedure’s
requirements and the patient’s condition. Notably, the most advanced X-ray
technologies allow one to adjust and optimize the frame rate during the medical
procedure [97].

2.3.4 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging technique, used
for diagnostic purposes [98]. Contrary to X-ray imaging and related practices,
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in this case, no radiation risk is involved. In fact, MRI is based on the use of
strong magnetic fields and low-energy radio frequency signals, interacting with
the hydrogen atoms in the human body. Precisely, the patient is placed in a strong
static magnetic field, between 1-3 T, generated by superconducting magnets. In
this condition, the spin of the protons in the body tissues aligns with the magnetic
field, parallel or antiparallel to it, leading to a magnetization vector with the same
direction as the external magnetic field. Precisely, the spin of the atoms shows a
precession behaviour (namely a change of the direction of the rotation axis) around
the direction of the magnetic field. The frequency of this precession is known as
Larmor frequency. By applying energy to the precessing spins it is possible to
alter the net magnetization vector and, consequently, retrieve information from
the spins. The energy is applied in the form of radiofrequency, at the Larmor
frequency, and alters the orientation of the spins. When radiofrequency is switched
off, the spins return to their original position, emitting back the radio waves. A
computer receives these signals and converts them into an image.

The realignment time and amount of released energy depend on the environ-
ment and the characteristics of the tissues, namely thickness, hardness, and amount
of water molecules. Therefore, these features allow one to distinguish the location
and shape of different body components.

Compared to CT, MRI achieves better contrast, especially in imaging soft tissues.
It is therefore widely used to investigate anomalies in the human brain, tumours,
and several other diseases [98]. Sometimes, contrast agents are used to enhance
the contrast among body features. However, the MRI acquisition time is quite
long and therefore this procedure is not suited for emergency diagnosis. The long
time required, together with the loud acoustic noise created by this technology,
makes this medical exam uncomfortable for some patients. Notably, modern MRI
instruments have made significant progress in improving patients’ well-being
during the procedure [99].

2.3.5 AI for medical applications

An increasing number of studies involve the application of AI to healthcare. The
reason behind this technological advancement is linked to the ability of neural
networks to process vast amounts of data and identify complex patterns among
them, which might be too subtle for the human eye. As a consequence, decision-
making processes can be accelerated and human errors can be reduced.

It has been demonstrated that neural networks can support and assist medical
practitioners in performing several tasks and ultimately enhance diagnostic and
treatment capabilities. Some examples include drug discovery [100], disease
detection [101], hospital operations and management [102], remote monitoring
of patients [103], robot-assisted surgery [104], and many others. A large and
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widespread branch of this field involves the use of deep-learning models for
medical imaging, including both data generation and data analysis. Several models
have been developed to perform tasks such as segmentation, feature extraction,
classification, and visualization, just to name a few [105].

In the case of CT data, neural networks can be, for instance, used to facilitate the
3D reconstruction process, especially when a limited number of views is available.
This is achieved either with an end-to-end [106] or help-to-end [107] modality. The
term end-to-end refers to models that go directly from the sinogram space (i.e. the
complete set of attenuation profiles) to the image space. Help-to-end solutions
are developed to assist traditional reconstruction processes by using AI to define
optimal parameters and post-process the data. Neural networks have also been
developed to overcome one of the main challenges of MRI data generation, namely
the long acquisition time [108]. Interestingly, some deep-learning models have been
developed to generate synthetic MRI and CT data, which can be for instance used
as a data augmentation tool [109], but also to convert MRI data into CT scans. This
is particularly useful when the patient’s radiation exposure needs to be limited,
such as in the case of pregnancy [110].

The development of AI-powered medical tools has led to high expectations but
has also raised concerns from the medical community, the regulatory bodies, and
the general public. These issues include data security concerns, ethical debates,
and the need for scrupulous assessment. Recent studies [111, 112] demonstrated
some scepticism among clinicians and patients towards the use of AI in healthcare.
The lack of trust is often linked to difficulties in understanding how algorithms
perform the tasks for which they are built and what are the motivations behind
their inference. From an ethical perspective, some controversy can arise when, for
example, a treatment suggested by an AI model is not beneficial for the patient.
Current regulations are not able yet to provide guidance on the responsibility
of the algorithms, in these circumstances. Regulatory challenges also involve
considerations about patient safety and data privacy. In fact, since such algorithms
require access to extensive databases, it is crucial to guarantee secure storage of
sensitive information and avoid possible patient re-identification.

In order to overcome these concerns, it is essential to improve the communica-
tions between practitioners and AI experts and to provide a rigorous assessment
of the results. Two main types of validations are possible for AI-assisted medi-
cal devices (including software): internal and external validation. The former is
performed on a subset of the dataset used for training the model, which can be
selected randomly or according to some criteria. External validation, which is
preferable when possible, consists of assessing the model’s capabilities through a
dataset totally unrelated to the training set. For instance, a dataset provided by
a different hospital using an imaging instrument from a different manufacturer
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would be an ideal solution.
In the case of binary classification models, used for example to diagnose

diseases, it is relatively easier to identify quantitative metrics to assess the results.
In fact, in the majority of the cases, the ground truth is provided by human-
generated labels or can be obtained with additional medical tests. Some examples
of quantitative metrics include [113]:

• Accuracy, namely the percentage of correctly assigned labels, expressed as,

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.16)

where TP (TN) is the number of true positives (negatives) and FP (FN) is the
number of false positives (negatives)4.

• Precision, which expresses the percentage of actual positive cases out of all
the cases that are predicted as positive, calculated according to the formula,

Precision =
TP

TP + FP
. (2.17)

• Sensitivity or true positive rate, which is the ability of a model to correctly
identify a patient with a disease, and it is expressed as,

Sensitivity =
TP

TP + FN
. (2.18)

• Specificity or true negative rate, which is the ability of a test to properly
identify a patient without a disease, expressed as,

Speci f icity =
TN

TN + FP
. (2.19)

• ROC (Receiver Operating Characteristic), this metric provides a graphical
representation of a model’s performance, depending on the discrimination
threshold used for the classification task. In fact, when performing classi-
fication, the output of the model is a continuous value of probability. A
threshold must be selected to assign predictions to different classes (two in
the case of binary classification). The ROC metric displays the true positive

4The term true positives (TP) refers to the cases where the model correctly predicts the
positive class, which could be the presence of a disease, in the case of medical applications.
True negatives (TN) are the cases where the model correctly assigns the negative class (e.g.
g. absence of disease). The term false positives (FP) identifies the cases where the model
assigns a positive label and the correct prediction would be a negative label. Contrarily, the
cases where the model predicts a negative class when the correct answer would be positive,
are referred to as false negatives (FN).
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rate (Sensitivity) on the x-axis and the false negative rate (1� Specificity) on
the y-axis, across various threshold values.

• AUC (Area Under the ROC curve), this is a scalar value in the 0 � 1 range,
used to quantify the overall performance of a classification model. It is
obtained by integrating the ROC curve. The value AUC = 1 identifies a
perfect classifier, while a random classifier has AUC = 0.5.

The assessment of a deep-learning model can be achieved easily also in the case of
segmentation tasks, where the model-inferred segmentation can be compared to
manual segmentation provided by experts or obtained with different techniques.
In these circumstances, the Dice similarity coefficient [114] can be used to compare
segmentation results, also known as masks. It ranges from 0 to 1, where 1 indicates
perfect overlap and can be computed according to the formula,

Dice =
2 ⇥ Area of Overlap

Total number of pixels in both masks
. (2.20)

It is evident that the metrics described so far cannot be used when working with
AI-assisted tools, whose goal is to improve image quality. In this context, it is
more challenging to define valuable metrics to validate the quality of synthetically-
produced images. Most of the time, physical parameters are not available to
objectively compare images and uniquely state, which one provides more relevant
information. When ground-truth data is available, which is not always the case,
commonly used objective metrics comprise the computer vision analysis measures
described in the previous section, such as MSE, PSNR, and SSIM. Additionally,
other metrics have been introduced with the advent of generative models [115],
aiming at assessing the quality and realism of artificially-produced images. A
commonly used metric for this purpose is the Fréchet Inception Distance (FID) [116],
which measures the similarity between the distribution of real images and the
distribution of generated images, in a feature space. As the name suggests, this is a
combination of the Fréchet distance [117] and Google’s inception model [118]. The
latter is a pre-trained convolutional neural network used to extract features from
the images. This latent space retains properties of images at different scales and
locations in the data. The mean and covariance matrix of the features in each image
are then computed. Finally, the Fréchet distance is calculated, to compare the
difference between each image’s mean and covariance matrixes. Obtaining a lower
FID score indicates that the generated images are more similar to the real images
in terms of feature distribution, suggesting higher image quality and realism, with
FID = 0 implying two identical images. Another commonly used metric in the
field of generative models is the Wasserstein Distance Score (WDS) [119]. This is
based on calculating the Wasserstein distance between the pixel values of real and
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generated images. It quantifies the cost required to transform one distribution into
another. Lower WDS values suggest that the distributions are more similar.

One of the limitations of these metrics is that they can only be used when
ground-truth data is available. When this requirement is not fulfilled, it is even
more challenging to evaluate the generated medical images. In some contexts,
the noise power spectrum [120] can be calculated to compare different datasets
(namely the original and the AI-improved version of it). Contrary to pixel standard
deviation, the noise power spectrum describes both the magnitude and spatial
frequency characteristics of the noise in an image, which affects the visibility of
structures. This measurement is generally used for the assessment of the image
quality of CT scanners and other imaging instruments, and it is evaluated over
uniform regions of interest in phantoms [121]. In the medical context, a phantom
is a specialized object that can be used for different purposes, including medical
equipment testing. Phantoms are fabricated with the intent of mimicking charac-
teristics of the human body or specific body tissues. They allow for standardized
testing and comparisons across different medical facilities and equipment. They
are simplified models of the human body features, which cannot replicate exactly
the clinical data. Therefore, the applicability of the same metric to clinical data is
limited to small uniform regions of the examined image.

It should be noted that all the described metrics present some limitations.
Importantly, the results of these analyses might not be consistent with human
perception. Furthermore, in general, an image quality improvement may not
necessarily imply a positive impact on the diagnostic capabilities.

This issue can be partially overcome by involving medical experts in the assess-
ment process. These professionals can provide an evaluation of medical imaging
data through surveys and subjective scores. This process is crucial to quantify
the perceived image enhancement and identify inconsistencies in the algorithms’
outcomes. Moreover, the involvement of practitioners is also important to ensure
that the AI-driven results are clinically relevant. A commonly used strategy is to
include both quantitative metrics and experts’ opinions, when possible.

Importantly, different characteristics may be required for certain imaging data,
depending on the specific application case. Therefore, extensive analysis should be
developed depending on the particular use.

In conclusion, the integration of AI models into healthcare can enhance today’s
medical imaging capabilities and improve diagnostic accuracy, in a variety of
applications. However, some challenges must be taken into consideration, including
ethical concerns, data privacy regulations, and the need for scrupulous validation.



CHAPTER 3

DENOISING OF LOW-DOSE
STEM DATA

This chapter presents and discusses the results of applying an in-house-developed
deep-learning model to low-dose STEM data to enhance their resolvability

and extract useful information from them. The work has been published in [122].
The first author and main contributor of this paper is the same as this PhD thesis.

3.1 Problem description and state-of-the-art methods

At present, aberration-corrected scanning transmission electron microscopes (STEM)
provide the highest resolution of all imaging instruments, below 0.1 nm, and allow
to investigate the structure and chemical composition of materials at the atomic
scale [2]. However, a strong electron beam is needed to achieve atomic resolution
and maximize the signal-to-noise ratio. This requirement often implies sample
damage and alteration of the observation, with consequent limitations on the ap-
plicability of high-resolution electron microscopy. A reduction of sample damage
could be achieved by decreasing the electron dose, but this would imply difficulties
in extracting useful information from the data, due to the presence of Poisson
noise, which increases when the electron dose is reduced [37]. More details about
noise affecting STEM images can be found in Chapter 2.

Notably, noise removal is a common practice in image processing. However,
most of the denoising techniques provide accurate results only in the case of addi-
tive noise, such as Gaussian. On the contrary, Poisson noise is signal-dependent
and requires more advanced techniques [123]. One of the most commonly used
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strategies for noise removal in electron microscopy is the application of a smooth-
ing Gaussian filter [124, 125]. However, as it will be shown in this work, such a
method can sometimes lead to results that are less precise than the original noisy
version of the image. A more sophisticated technique is known as block matching
and 3D filtering [126]. In this case, images are decomposed into fragments, which
are grouped by similarity, and then the fragments are passed through filters. Unfor-
tunately, such a denoising scheme assumes that the images to process correspond
to a 2D periodic structure, an assumption potentially leading to artefacts, such as
the inability to identify genuine vacant sites. Furthermore, this technique is usually
more suitable for the removal of additive noise, such as Gaussian noise, and, when
adapted to Poisson-noised data, the computation time increases significantly.

An alternative to these methods is provided by deep-learning techniques, which
are becoming increasingly popular in the microscopy field across several applica-
tions [16]. The majority of the available denoising algorithms involve Gaussian
noise only, so that they are useful exclusively for analog data acquisition. For
instance, the state-of-the-art neural networks for Poisson-noise removal have been
proposed [127]. These provide significant noise reduction, but their performance
rapidly degrades at low doses. The reason behind such low-dose accuracy loss can
be identified in the nature of the training set, made of simulated STEM images
obtained by using a simple linear imaging model. In fact, in order to have a more
realistic dataset, it is advisable to use simulation techniques that implement the
multislice algorithm [41] or the Bloch-wave method [29], described in Chapter 2.
These techniques incorporate information about the specimen and the instrument
setting, and therefore achieve a more realistic simulation of an actual measurement.
Furthermore, such state-of-the-art technique requires inputs from the users, who
should decide whether or not to apply some level of up-sampling/down-sampling
before processing the image. This condition hinders the feasibility of real-time
denoising.

Other methods have been proposed before [128] and after [129] the publication
of our paper [122] upon which this chapter is based. However, to the best of our
knowledge, our method is the only one that fulfils the following requirements: 1)
the denoising algorithm does not require any human pre- and post-processing of
the images, allowing the model to be employed during live data acquisition; 2) our
scheme removes the noise from digital images and excludes any types of noise
that can be corrected at the instrumentation level, which is not required for state-
of-the-art image acquisition instrumentation; 3) we propose a fully quantitative
approach to evaluate the results of any denoising scheme; 4) the result of our
model preserves the intensity information retained in the pixel value of the digital
images. With respect to this last claim, it is worth mentioning that the intensity
values in dark-field STEM images are indicative of critical information about the
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quantity of atoms of each atomic column, as well as their composition. Future
studies will involve an analysis of the scattering cross sections [130] to quantify
the model’s performance in preserving such physical information.

As mentioned in the previous chapter, only Poisson noise was considered for
this project, since the main focus is the improvement of images acquired with the
state-of-the-art digital acquisition (i.e. electron counting procedure, more details in
Section 2.1.1 and [39]). Strategies to eliminate other types of distortions are not
investigated within this project.

3.2 Model construction and training

The deep-learning model chosen for this denoising project is an autoencoder,
whose general characteristics are described in Chapter 2. The model was built
using the Keras library [131], which runs on the open-source machine-learning
platform Tensorflow [132]. The architecture, schematized in Fig. 3.1, consists of ten
layers in total: five for the encoder and five for the decoder. Images of size (n, n, 1)
are provided to the input layer, where n represents the number of pixels in the two
spatial directions, which can be any size, while the last value identifies the number
of channels of the image. This is 1 in the case of a grayscale input, as requested
by this model (it would be 3 in the case of RGB images). The input image then
goes through a sequence of two blocks made of one Convolutional layer and one
Pooling layer. Each Convolutional layer consists of 32 filters of size 3 ⇥ 3, moved
with a stride of 1 pixel. The padding chosen for this model is same, with value 0.
Finally, the activation function used to apply element-wise non-linearity is ReLu.
Regarding the Pooling layers, used for dimensionality reduction and to summarize
the feature map generated by the Convolutional layers, MaxPooling was selected,
with size (2, 2) and a stride of 2 pixels. The outcome of these steps is the encoded
version of the input, also known as latent representation. For an input with size (128,
128, 1), the latent space representation size is (32, 32, 32). Subsequently, the data
is processed by the decoding part of the model, made of two blocks consisting of
one Convolutional layer and one UpSampling layer, which presents a repeating
factor of 2 for both directions and is used to increase the data dimension. The
hyperparameters of the Convolutional layers in the decoder are the same as the
encoder part, with the only exception of the last layer, which has only one filter, in
order to ensure that the output size coincides with the input size.

The definition of the loss function is particularly significant in constructing
the autoencoder. The commonly used Mean Squared Error (MSE), described in
Chapter 2, is not suitable for training the proposed dataset. In fact, in the standard
MSE equal importance is given to both black (low intensity) and non-black (high
intensity) pixels, even if the interest sits mainly with the non-black pixels, which
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Figure 3.1 – Schematic of the proposed autoencoder, made of ten layers. The input data
goes through an encoder, whose output is the so-called latent space. This representation
then is decoded by the decoding part of the model.

indicate the presence of the atoms (here we consider dark-field images). Note that
the importance of black and white pixels is reversed when the image is taken in the
bright field. It should also be noted that Poisson noise varies according to the pixel
intensity. Therefore, when a pixel is black no noise is detected and the corrupted
and uncorrupted images are identical. For this reason, we employ a customized
loss function, which gives more importance to the pixels that are not black in the
original images contained in the training set. This loss function can be described
as a weighted MSE (WMSE), with a 1000:1 weight ratio for non-black pixels. It can
be expressed as

WMSE =
1
n

n

Â
i=1

wi(eyi � yi)
2 (3.1)

wi =

(
1 if i = min(y);
1000 otherwise.

where n is the number of pixels in each image, wi is the weight associated to the
i-th pixel, eyi the predicted value and yi the true value.

The model architecture was optimized by performing hyperparameter tuning
over a validation set, with the random search approach (more details can be found
in Section 2.2). A list of all the hyperparameters of the model and the range of
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Table 3.1 – List of all the hyperparameters defining our model together with the corre-
sponding range of values investigated.

Hyperparameter Investigated values
Number of layers 6, 10, 14
Number of filters in the Conv2D layers 8, 16, 32, 64
Loss function weight 10, 100, 1000, 10000
Optimizer Adam, Adadelta
Batch size 16, 32, 64

values investigated can be found in Table 3.1. It should be noted that, in the table,
the number of layers include also the MaxPooling and UpSampling layers, not only
the convolutional ones. Depending on the number of layers and the number of
filters in each convolutional layer, the tested models present a different number of
trainable parameters. The number of parameters for each convolutional layer can
be computed as (input channels ⇥ f ilter size ⇥ output channels) +output channels.
For instance, in the case of the first convolutional layer of the selected model, the
input channel size is 1, the filter size is 3 ⇥ 3, the output channel size is 32, and
therefore the number of trainable parameters is 320. In total, the chosen model
presents 28353 trainable parameters. The investigated parameters space goes from
a minimum of 737 parameters to a maximum of 185857 parameters.

The model has been trained on Quadro RTX 8000 GPUs, for 500 epochs, with a
batch size of 64 and the Adam optimizer, for a total time of 2 h and 30 min. GPUs,
provided by Nvidia, allowed us to significantly speed up the training time. In fact,
the time required to train one epoch over the Quadro RTX 8000 GPUs is about 15 s,
while with a Tesla K40c GPU approximately 120 s are needed. The training of one
epoch of the same dataset on a CPU would require 717 s.

3.3 Training set

The autoencoder is trained on a dataset made of about 27,000 simulated images,
all generated by using the Prismatic software [30, 31]. As described in Chapter 2,
the use of this software ensures a faithful simulation of actual measurements.

Different materials have been considered in the creation of the training set,
namely, graphene, graphite, GaAs, InAs, MoS2, SrTiO3, and Si, generated across
various imaging conditions. Several parameters need to be defined to perform
simulations using the Prismatic software, whose details can be found in the related
documentation [30, 31]. The values selected for the generation of this training set
are:

• the pixel size varies from 0.08 to 0.3 Å;

• the size of the simulated potential varies from 0.04 to 0.16 Å;
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• the sample thickness range is 250 � 630 Å;

• the electron beam energy range is 80 � 200 keV;

• the maximum probe angle range is 25 � 32 mrad;

• the inner and outer detector collection angles are 30 and 60 mrad, 30 and
70 mrad, 50 and 180 mrad, 60 and 180 mrad, 65 and 180 mrad, 75 and
180 mrad, 80 and 180 mrad;

• the potential bound is 2 Å;

• the probe tilt is 0 mrad in both horizontal and vertical directions;

• the probe defocus is 0 mrad;

• the number of frozen phonon configurations to calculate is one;

• the thermal effects are included in the simulation;

• the occupancy values for likelihood of atoms existing at each site are included.

These intervals and values correspond to realistic imaging and materials pa-
rameters, commonly encountered in actual STEM experiments, and were defined
following the recommendation of microscopists. For each simulation, values for
the specified parameters were randomly selected from a uniform distribution
within the predefined ranges. For each material, 10 to 12 images were generated,
including pristine and defective structures incorporating vacancies. In order to
avoid reconstruction bias (the autoencoder learning the periodicity of the lattice),
each simulated image has been rotated at two random angles to increase the variety
of the dataset. Undoubtedly, the choice of training data poses limitations on the
model’s generalizability. Images with some features non included in the training
set are investigated within this chapter, such as samples of different materials,
sample placed on amorphous substrate, and samples affected by additional kind
of noise. A complete analysis of the model’s applicability will be conducted in
future studies.

The choice of the dose values included in the training set highly affects the
performance of the model and the ability to denoise images taken over a wide
range of doses. As such, one wishes to keep that range as wide as possible.
However, both the time required for training and the computational costs also
scale with the size training set and the diversity of the data, so that a compromise
between data variety and computational effort must be found. For this reason,
we have selected a dose range going from 500 e�/Å2 to 10,000 e�/Å2. In the
construction of the dataset, the dose value for each image is randomly selected
within the defined range, so that there is no dose bias across the various materials.
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It is worth mentioning that a different dose distribution across the dataset has also
been tested. In this case, the number of images Ni at a certain dose value, r, was
proportional to the selected dose value, according to the relation:

Ni(r) µ
1
p

r
, (3.2)

which is the same relation that occurs between Poisson noise and dose [see Eq. (2.3)].
However, this solution did not improve the model’s performance. Another option
for the dose distribution in the training set consists of generating different datasets
for the different dose levels and using them to train separate models. However, this
would imply the requirement for the user to choose which model to use depending
on the dose level of the test data, a quantity that is often unknown or not precisely
defined in the case of an experimental acquisition. This goes against the desire
to make the tool feasible for real-time application and requires prior knowledge.
Moreover, in the test performed, we experienced a deterioration in the model
reconstruction performance, and therefore this option was discarded.

All images have been cropped into 128 ⇥ 128-pixel plots, which is the format
used to train the autoencoder. Note that, common real images are usually larger
(at least 512 ⇥ 512 pixel), but dealing with reduced size allows one to increase the
computational efficiency and to identify more details in the reconstructed data. It
should be noted that the model accepts images of any size, however, it was trained
only on 128 ⇥ 128-pixel plots to simplify the dataset construction. The result is a
collection made of about 30,000 images: 10 % was used as validation set and 90 %
as training set, as commonly done in machine-learning projects.

The pixel intensity of the images generated by Prismatic corresponds to the
fractional intensity of the entire electron beam that is scattered to the specified
STEM detector at a given pixel. This takes values comprised between 0 and 1, and
usually corresponds to around 10 � 15 % of the entire beam intensity. Measuring
the signal in fractional units does not allow us to directly retain information on
the actual physical electron dose used. As such, before applying the Poisson
noise, it is necessary to convert the pixel values into integers, representing the
physical number of electrons at a given pixel. This can be obtained by multiplying
the original pixel value by the total electron dose (in units of electrons per Å2)
and then by multiplying by the pixel size (in Å2). Such conversion is important
to generate a training set with an intensity distribution compatible with that of
typical experimental data. As a consequence, any type of pre-processing of the
test data can be avoided. This is a crucial condition enabling one to use our
machine-learning tool during the actual microscope real-time data acquisition. It is
also important to remark that, in doing so, the pixels value, namely the outcome of
our autoencoder, will describe a directly measurable quantity with proper physical
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Figure 3.2 – Examples of elements of the training set. The first raw displays the original
noise-free data and the second raw displays the Poisson-noised data. It should be noted
that different levels of noise are applied for each one of the original images. Moreover, the
images are rotated are random angles and cropped to 128 ⇥ 128-pixel plots before training.
The materials displayed in this illustration, from left to right, are: Si, graphene, SrTiO3,
MoS2.

meaning. This is not common practice in the case of analog-acquired data, where
the pixel value cannot be directly associated with an observable, and the images
are usually scaled between 0 and 1 before training and testing.

Some examples of the images of the training set are displayed in Fig. 3.2,
where the original and Poisson-noised data are presented in the first and second
raw, respectively. It is important to mention that these are just some examples of
the considered levels of noise (multiple levels of noise were considered for each
original image) and that these data still need to undergo the rotation and cropping
processing.

3.4 Qualitative assessment of the results

The most straightforward qualitative evaluation consists of a visual comparison
between the reconstructed and the corrupted images. The improvement brought
by the denoising process is easily recognizable even by researchers, who are not
experts in electron microscopy. A visual example is shown in Fig. 3.3, which dis-
plays the reconstruction of the digital experimental images of a Gold nanoparticle
deposited on an amorphous Carbon substrate, obtained at different dose levels
(note that Gold is not included in the training set). The data, acquired by Tiarnan
Mullarkey and Clive Downing at the CRANN Advanced Microscopy Laboratory
(AML www.tcd.ie/crann/aml/), Trinity College Dublin, are provided in the form
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of twenty different frames of the same sample region; by rigidly aligning and
summing up the signals of an increasing number of frames one can obtain multiple
images at different doses. It is worth mentioning that, while the single acquisition
is affected by Poisson noise only, additional types of noise characterise the images
obtained by summing the individual frames. These can be due to a combina-
tion of factors, including particle rotation during the image series, which are not
investigated in this work. In the experimental acquisition, the dwell time was
2 µs for each frame and the beam current was approximately 5 pA. This means
that the dose of a single frame is 62 e�/pixel. The dose of each image is then
62 e�/pixel multiplied by the number of frames used for the image. For the sake of
brevity, only three of the twenty consecutive sums are presented here. In particular,
128 ⇥ 128-pixel portions of the images acquired at 62 e�/pixel, 372 e�/pixel, and
744 e�/pixel are shown in Fig. 3.3. The dose values expressed as e�/Å2 are 968
e�/Å2, 5808 e�/Å2, and 11616 e�/Å2. The top row displays the noisy images,
the second one corresponds to the reconstructions obtained after the application
of the autoencoder, the third row contains the difference between the noisy and
the reconstructed images (referred to as Residual), and the bottom row shows the
Fast Fourier Transform (FFT) of the Residual. Although Gold is not classified as
a beam-sensitive material, the example provided is effective, since it tracks the
model performance across different dose levels, a task that remains challenging
when dealing with experimental data. The reconstructed data always display
a significant quality improvement over the original noisy images. In fact, from
the reconstructions, one can immediately recognize the five crystallites forming
the Gold nanoparticle, regardless of the noise level of the original image. The
most notable difference between the three reconstructions is in the shape of the
individual atoms, which appear progressively more round as the dose increases.
Note that our algorithm is not trained to necessarily return round atoms, but
only to denoise the signal. This is why at a very low dose, as in the case of 62
e�/pixel, there is significant atomic distortion. It is also worth noting that no
further progress is found when adding additional frames to the 744 e�/pixel case
(namely when increasing the dose). This result allows one to conclude that, upon
autoencoder reconstruction, an increase in the dose is not needed to obtain a
satisfactory reconstruction. As a consequence, the beam damage to the sample can
be reduced.

The two bottom rows of Fig. 3.3 show some periodicity in the removed noise.
This is an expected feature of the Poisson noise, which scales with the pixel intensity,
and does not imply a loss in crystallographic information. Such periodicity
in the residual appears to be more evident for high-dose images, a fact that
simply demonstrates that the autoencoder can remove the noise at high doses
more efficiently than at low doses. It is worth mentioning that crystal structure
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Figure 3.3 – Image reconstruction of a Gold nanoparticle deposited on an amorphous
Carbon substrate, and imaged at different dose levels. Top row: the original noisy images;
second row: the reconstructions obtained after the application of the autoencoder; third
row: the difference between the noisy and the reconstructed images (called Residual);
bottom row: Fast Fourier Transform (FFT) of the Residual. The three columns correspond
to different dose levels, respectively from left to right 62 e�/pixel, 372 e�/pixel, and 744
e�/pixel.
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Figure 3.4 – Effect of Poisson and Gaussian noise on the difference between original and
noised data. The first column displays a simulated infinite-dose image of simulated TePb.
In the second row, noised data are shown, with Poisson and Gaussian noise in the first and
second rows, respectively. The difference between the noised and the original data can be
found in the third row, from which it is evident that Poisson noise is intensity-dependent,
while Gaussian noise is just additive.

information in the residual would not be found in images affected by Gaussian
noise only. Gaussian noise, in fact, is not intensity-dependent and therefore does
not map onto the crystal structure. Fig. 3.4 can be used as an example to explain
the difference between the effect of Poisson and Gaussian noise on the Residual.
In the first row, going from left to right, is shown an infinite dose (i.e. noise-
free) simulated image of TePb, the same image including Poisson noise, and the
difference between the two (noisy-original). In the second row, Gaussian noise
has been added in place of the Poisson one and both the noised image and the
difference are shown. Focusing on the third column, some periodicity can be seen
in the case of the Poisson noise, contrary to the Gaussian case.

A final important consideration is that, for the presented test, the model is able
to efficiently denoise the data despite the presence of an amorphous substrate,
which generates diffuse scattering and hence additional non-Poisson noise. Sub-
strate scattering was not included in the training set, so that the reconstructed
images should be considered as Poisson denoised but still inclusive of substrate
scattering.
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3.5 Quantitative assessment of the results

Despite being a valuable and rapid practice to inspect the results, visual comparison
does not suffice for the purpose of objectively assessing the method’s capability.
Therefore, some quantitative approaches are proposed in this section, applied
to simulated data. Indeed, the ground truth image is needed to quantitatively
evaluate the denoising power of the proposed method, and this is not available in
the case of experimental microscopy data.

3.5.1 Line profile analysis

A quantitative evaluation of the model performance can be achieved through the
so-called line profile analysis. This consists of selecting one line of pixels, along
the horizontal direction in this case, and by plotting the pixel intensity at each
position. One thus obtains an intensity scan profile that can be used to distinguish
atoms of different elements, as shown in Fig. 3.5. The line profile analysis is here
conducted on a synthetic image of a 252 Å-thick TePb specimen oriented along the
001 direction, taken at the low dose of 1,000 e�/Å2, with a pixel size of 0.18 Å. This
corresponds to a pixel dose of 32 e�/pixel. As we can see from the figure, although
the intensity profile of the reconstructed image is not identical to that of the
infinite-dose one, the reconstruction appears to be accurate enough to localize and
distinguish Te and Pb atoms, namely it contains the same content of information of
the ground-truth case. In contrast, when the same line profile analysis is conducted
over the noisy image the two different species appear indistinguishable so that the
chemical information cannot be extracted. The original images used to perform
the line profile analysis can be seen in the bottom row of Fig. 3.5, where the red
line specifies the line selected for the study, approximately crossing the atoms at
their centre.

3.5.2 Precision of atomic column localization

Another technique that can be used to quantitatively validate the model, involves
the determination of atomic column localization. This essentially defines the
position of the various atomic columns, thus allowing one to extract quantitative
structural information from the STEM measurements. By performing atomic
column localization, one can quantify possible lattice strain and measure its error.
This is a technologically useful information, since strain affects many physical
characteristics of a material, such as the mechanical and electronic properties [134].
Several computational schemes and associated software are available for this
purpose, one of them is the Matlab-based package StatSTEM [135]. StatSTEM
is based on the principle that, in STEM images, the intensity peaks are located
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Figure 3.5 – Line profile analysis. On the top row, the image intensity is shown as a function
of the horizontal position for the infinite-dose, the reconstructed and the noisy image.
A comparison of the peaks intensity allows one to distinguish atoms corresponding to
different elements. The high peaks correspond to Pb, which has the highest atomic number,
while the lowest peaks correspond to Te atoms, the species with the lower atomic number.
In fact, the pixel intensity in dark field images increases with the atomic number [133].
The test is conducted on a simulated image of TePb. The dose value of the noisy image is
32 e�/pixel with a pixel size of 0.18 Å. The image corresponds to a 252Å-thick TePb slab
oriented along the 001 direction. In the bottom row, we show the original images used to
conduct the line-profile analysis. The scanning line is plotted in red.
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Figure 3.6 – Left-hand side panel: simulated image of a 252 Å-thick Tellurene sample
oriented along the 001 direction. The image is taken with a pixel size of 0.2 Å and a dose
of 10,000 e�/Å2. The red arrows represent the horizontal and vertical distances measured
to verify the precision of the atomic column localization. Right-hand side panel: schematic
of the crystal structure.

at the atomic column position and these can be approximated by a Gaussian
function [136]. Since several localization methods can be used to determine the
position of the Gaussians, it is important that our quantitative analysis considers
both the localization method and the denoising algorithm, in order to provide a
quantitative benchmark of the various possible image-processing workflows.

The precision of the atomic column localization can be estimated by measuring
the distances between the various atoms, in both the horizontal and vertical
directions. As these are determined solely by the crystalline structure, a statistical
distribution of the distances provides a quantitative measure of the accuracy of
the combined denoising and localization algorithm. Thus, the standard deviation
of the computed distances can be taken as a measure of the accuracy of the
localization process and one can compare results obtained for the infinite-dose,
the noisy, and the reconstructed images. A reduction in the distance standard
deviation corresponds to an enhancement in the image resolvability. The strain
error along the horizontal and vertical direction can then be found by dividing
the standard deviation in the position by the reference horizontal and vertical
distances, respectively.

Figure 3.6 shows the simulated image used for this investigation. This corre-
sponds to a 252 Å-thick Tellurene sample oriented along the 001 direction and
imaged with a pixel size of 0.2 Å. The reference horizontal and vertical distances, a
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and b respectively, are marked by the red arrows. The easiness of identifying these
distances makes Tellurene a good candidate for strain error analysis. The plot in
Fig. 3.6 corresponds to the highest dose considered for this analysis, namely 10,000
e�/Å2, while denoising is also performed for images taken at 500 e�/Å2, 1,000
e�/Å2, 2,500 e�/Å2, 5,000 e�/Å2 and 7,500 e�/Å2.

Our denoising autoencoder is then tested against a commonly used algorithm
for image processing, namely a Gaussian filter [137]. The procedure to measure
the column localization by using StatSTEM is as follows. Firstly, one needs to
define the starting coordinates for the atomic column positions, namely the local
maxima in the image. This can be achieved by using one of the two available peak-
finder routines, which include techniques to smooth the image, to ease the atom
localization. The difference between these routines lies in the way the smoothing of
the image can be achieved. Specifically, in Peak-finder routine 1, there is the option
to apply three different filters: an average filter, a disk filter, and a Gaussian filter.
In contrast, Peak-finder routine 2 does not offer an explicit filter adjustment feature,
but this can be indirectly achieved by modifying the estimated radius parameter
for the atomic columns. For both peak-finder routines, it is possible to specify
a threshold value to eliminate undesired pixel intensities from the background.
Additionally, Peak-finder routine 2 provides an additional option, allowing users to
define the minimum distance between projected atomic columns in the image. In
this work, the Peak-finder routine 2 was used. The estimated radius parameter was
kept to the default value (10 pixels), for each image. The definition of a threshold
value to remove nuisance pixel intensities from the background is a necessary
step to avoid the identification of too many fictitious atoms in the case of images
characterized by strong noise. In order to set the same value for each image and to
make the analysis coherent, the intensity is normalized to 1. Then we find that the
minimum threshold value compatible with the algorithm memory requirement is
0.12. The minimum distance between atomic columns is kept to the default value
of 0 pixels, to avoid the input of material-related information.

After this first step, one has the option to manually add atom positions, an
operation that is not considered in this case in order to avoid any human bias in
the workflow. Once the starting coordinates are identified, a fitting procedure can
be used to model the image as a superposition of Gaussian peaks. In this step, it
is possible to specify the width of the atomic columns, by choosing between the
Same and Different options. In the first case, all Gaussian are taken with the same
width. In contrast, the second more computationally demanding option, chosen
for this analysis, makes the approach more general, since it does not assume that
all the Gaussian peaks have the same width. As such, it avoids the introduction of
any a priori knowledge of the image. The final result of this procedure is a set of
coordinates, which correspond to the atomic columns in the image. These values
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can be used to measure the horizontal and vertical distances a and b between the
atomic columns, as shown in Fig. 3.6.

The data used for this analysis are displayed in Fig. 3.7. The first column shows
128 ⇥ 128-pixel images of Tellurene simulated at various dose levels, ranging
from 500 e�/Å2 to 10,000 e�/Å2. The reconstruction obtained by using the
proposed autoencoder (Reconstructed AE) and that obtained with a Gaussian filter
(Reconstructed GF) can be seen in the second and third columns, respectively.
The resolution enhancement is more evident for higher dose levels, for both
reconstruction techniques. However, the autoencoder appears to be significantly
more successful in the reconstruction task at low doses, and in general at any dose
value. Once the atomic columns are localized, following the described procedure,
the horizontal and vertical distances, displayed in Fig. 3.6, are measured and they
can be represented as histograms, for each image. Fig. 3.8 shows the histograms
for the horizontal distance, a, while Fig. 3.9 shows the histograms for the vertical
distance, b. The results are here represented as probability histograms, which
means that the data are normalized to one. The data associated with the noisy
images are placed in the first column, while those associated with the autoencoder
and the Gaussian filter reconstructions are in the second and third columns,
respectively.

The distribution appears to be more uniform for the autoencoder-reconstructed
data (Reconstructed AE), compared to the other results. In the noisy and Gaussian-
filter-reconstructed (Reconstructed GF) images some atoms are misplaced and incor-
rectly localized, therefore the spread in the histograms appears wider. It should
be noted that the scale of the x-axis in the case of the autoencoder-reconstructed
data is different from that of the other two columns. The distances reported in the
central column of both Fig. 3.8 and Fig. 3.9 appear to be more localized around a
single value with a distribution following an approximately normal distribution.
Such a feature facilitates the atoms’ localization. From the histogram correspond-
ing to each image, the strain error can be computed and compared at different
dose values. This is shown for the distances a and b of Tellurene (see Fig. 3.6
for the definition of the distances) in Fig. 3.10. In the figures, the strain error for
the infinite-dose case is represented as a blue line and, by definition, it is dose-
independent. This, in fact, represents the ultimate theoretical precision achievable
by noise-free STEM. In contrast, the noisy images have a strain error that grows
with reducing the dose, in an approximate exponential behavior. The autoencoder
is able to drastically improve over the noisy images and returns us a strain error
that trails closely that corresponding to the infinite-dose case. In more detail, we
find that the denoised images present a strain error, which is approximately dose
independent when the electron dose is higher than 2,500 e-/Å2. For lower doses
a sharp error increase is reported. Such an increase, however, leaves the strain
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Figure 3.7 – Noisy, autoencoder-reconstructed and Gaussian-filter-reconstructed images of
simulated Te at various dose levels.
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Figure 3.8 – Probability histograms obtained from the measurement of the horizontal
distance a between atomic columns for noisy, autoencoder-reconstructed, and Gaussian-
filter-reconstructed images of simulated Te at various dose levels.
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Figure 3.9 – Probability histograms obtained from the measurement of the vertical dis-
tance b between atomic columns for noisy, autoencoder-reconstructed, and Gaussian-filter-
reconstructed images of simulated Te at various dose levels.
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Figure 3.10 – Comparison of the strain error along the horizontal (top panel) and vertical
(bottom panel) direction at various dose levels for simulated images of Te. The strain
error is computed for the infinite dose (blue line), the noisy image (orange line), and the
reconstruction obtained by using the proposed autoencoder (AE - green line) and the
Gaussian filter (GF - red line).
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error far below what is computed for the noisy images. We then conclude that
the autoencoder is less effective at ultra-low doses, but still remains significantly
performing across the entire range. Interestingly, simple Gaussian filtering (red
lines in the figures) appears unable to improve the column localization of noisy
images, with the only exception at very high doses. Therefore, the commonly used
Gaussian filter should be avoided when performing accurate quantitive measures
of atomic positions, at least when the data-processing workflow remains com-
pletely users unbiased. In this situation, our results suggest that even the untreated
images provide a better estimate of the column positions, unless rather large doses
are used.

We believe that the comparison provided here should represent a general
benchmarking scheme to compare different denoising workflows in a completely
unbiased way.

3.6 Application to experimental analog data

As a further test, the model was also applied to experimental analog data, charac-
terized by the presence of Gaussian noise in addition to Poisson noise. Specifically,
the test was conducted on an image of MoS2 hold on an amorphous Carbon
substrate, acquired at a low dose on a STEM, provided by Valeria Nicolosi (Trinity
College Dublin). Therefore, the data is characterized by two additional kinds of
disturbance, compared to the dataset used to train the model: Gaussian noise and
the noise caused by the presence of the amorphous substrate. Nevertheless, the
reconstructed MoS2 image, displayed on the right-hand side of Fig. 3.11, shows
that the denoising process is still successful. Specifically, in the denoised image, it
is possible to observe some of the Sulfur atoms that were not visible in the original
noisy image. Importantly, despite the presence of MoS2 in the training set, some of
the Sulfur atoms are missing from the reconstruction. This is a significant proof
that the model is not biased by the knowledge of the crystalline structure. In fact,
if the signal is too low, we do not expect the autoencoder to display any atoms.

The physical reason behind the absence of some of the Sulfur atoms could
be correlated to the sample preparation process, which impacts the number of
vacancies present in the crystalline structure. Quantification of the percentage of
vacancies related to each preparation procedure is often hindered by the presence
of noise, which characterizes the low-dose measurements. Fig. 3.11 demonstrates
that, with the help of denoising machine-learning techniques, this quantification
can be pursued. This result motivated the development of the project described in
Chapter 4.
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Figure 3.11 – Example of application of the proposed model to an analog experimental
image of MoS2 deposited on an amorphous Carbon substrate, imaged at low dose on a
STEM. This example is particularly challenging due to the presence of Gaussian noise,
which characterizes analog data acquisition, and the amorphous substrate: none of these
features was included in the training set. The left-hand-side panel shows the original noisy
image and the right-hand-side panel displays the reconstruction after the application of
the autoencoder. Notably, some of the Sulfur atoms that were not visible in the original
data, appear in the reconstructed image. Although MoS2 was included in the training
set, the absence of some of the Sulfur atoms demonstrates that the model is not biased by
information about the crystalline structure.

3.7 Conclusions

This chapter proposed a solution to one of the limiting factors of STEM technology,
namely the requirement of a high electron dose to achieve atomic resolution images,
which can damage the analyzed specimen. In fact, a high electron beam maximizes
the signal-to-noise ratio, but, due to knock-on and radiolysis damage mechanisms,
can alter the specimen during the experimental measurement. Depending on the
level of electron dose employed, the resulting image will be affected by a different
level of Poisson noise. Other kinds of noise can be neglected in the case of digital
acquisition in state-of-the-art imaging instruments.

To tackle this problem, we have proposed a neural network trained on simulated
dark-field STEM images, which allows one to successfully remove Poisson noise
from low-dose digital data. The proposed dataset reproduces realistic data acquisi-
tion conditions and includes variety in terms of specimen and microscope settings,
which prevent biases in the model, such as awareness of materials symmetries.

Tests on both simulated and experimental images have been conducted to
thoroughly validate the model. The results obtained from these tests show a
clear improvement in the image resolution and in the possibility of extracting
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useful information from the data in a completely unbiased way. The use of this
model may allow a drastic reduction of the dose level to be employed in real-life
measurements, making it possible to analyze very beam-sensitive compounds, that
would otherwise be challenging to study due to their susceptibility to radiation
damage.

Notably, our proposed denoising algorithm is completely autonomous and
does not require any human input or knowledge of the actual beam intensity, being
trained over a broad range of doses. This ensures its adaptability to a wide range
of experimental conditions, and the possibility to use it during live acquisition.

Crucially, the denoising process of a 128 ⇥ 128-pixel image can be performed
within approximately one second.

Future developments of this project involve an integration of this tool into the
microscope setup, in order to obtain denoised data during live acquisition. This
would allow the user to denoise part of the image during the measurements and
adjust the electron dose depending on the quality of information retrievable after
the application of the autoencoder.

Another interesting study would concern the investigation of the latent rep-
resentation generated by the encoder. This type of analysis is mainly conducted
in the case of generative models. However, for this case, it could allow further
understanding of the feature extraction process carried out by the autoencoder
to remove the Poisson noise. Due to the presence of multiple layers in the latent
space, simple visualization might not be adequate to explore the data. Clustering
algorithms might be an appropriate solution to aid the latent space interpretation.
Representations of the first layer of the latent space are displayed in Fig. 3.12, for
two cases, Si and MoS2, indicated as Case 1 and Case 2, respectively. From these
representations, it is evident that the association of features in the input and output
cannot be automatically linked to the latent space.

Finally, to further validate the proposed model, it would be important to
develop additional assessment procedures applicable to the experimental data. In
this case, full-reference metrics cannot be used, due to the lack of ground-truth
data. No-reference metrics for the investigation of the reconstruction results might
involve microscopy experts, who could provide quality scores for images before
and after processing them.
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Figure 3.12 – Visualization of the first layer of latent representation for two different
materials (on the top row Si, on the bottom row MoS2), in the central column. The
autoencoder’s input and output data are in the first and third columns, respectively.



CHAPTER 4

VACANCIES COUNTING IN
STEM-IMAGED TMDS

This chapter can be considered an extension of the previous one. The main
aim of this research project is to estimate the amount of vacancies present in

exfoliated transition metal dichalcogenides (TMDs) samples, imaged with scanning
transmission electron microscopes (STEMs). In order to make the atoms more
visible and facilitate the counting process, the same denoising algorithm described
in the previous chapter will be used. However, being the data affected by different
types of noise, as explained briefly, the model will be trained on a different training
set.

4.1 Problem description and state-of-the-art methods

One of the most significant achievements in the field of material science, in the last
century, is the isolation and characterization of graphene [138]. This achievement
has led to great effort and advancements in the study of layered materials, due to
their potential applications across a wide range of research and industrial domains.
Among others, the class of materials known as transition metal dichalcogenides
(TMDs) has gained particular attention in the materials science and condensed
matter physics communities. These are layered compounds consisting of transition
metal atoms, which are placed between two layers of chalcogen atoms. Transition
metals are chemical elements located in the central part of the periodic table,
specifically, in groups 3 to 12. Chalcogen atoms, instead belong to group 16. These
atomically thin layers are stacked together through weak van der Waals forces
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(i.e. weak electrostatic interactions induced by transient dipoles). The general
formula of these compounds is MX2, where M represents the transition metal,
such as Molybdenum or Tungsten, and X identifies the chalcogens, which can
for example be Sulfur or Selenium. They exhibit several interesting properties,
from the electronic, optical, and mechanical points of view. These features make
them suitable for numerous applications in photonics, electronics, catalysis, energy
storage, and others [139]. Contrarily to graphene, which usually exhibits semi-
metallic properties, TMDs predominantly present semiconductor behaviour. This
means that by applying an external electric field or by varying their thickness it is
possible to modify their electrical conductivity. Clearly, the presence of vacancies
can significantly impact the material’s properties and, therefore, the possible use.
However, the exact correlation between vacancies and property alteration is still
not completely established [140].

Two main techniques are used to isolate single-layer TDMs: mechanical exfolia-
tion and liquid phase exfoliation. Mechanical exfoliation [141], also used in the
original work that led to the isolation of graphene, allows one to extract atomically
thin layers of materials from a bulk sample by using a piece of adhesive tape on
the surface of the material. When the tape is peeled off the bulk material, thin
layers are obtained. This simple and low-cost method allows the production of
high-quality flakes. In this context, the term flakes refers to individual atomically
thin layers of materials obtained from a bulk source. They can be monolayer or
a few-layers thick. The mechanical exfoliation technique presents some disad-
vantages. In fact, it is not suitable for large-scale production and lacks precise
control over layer thickness, size, and contamination. A possible alternative is the
so-called liquid phase exfoliation method [142], which requires a liquid dispersion
to break down bulk materials into layers. The procedure consists of reducing the
material into a fine powder, which is then mixed with a solvent. Ultrasonication is
applied to disperse the material in the liquid and obtain individual or few-layer
flakes. This method has the advantage of being scalable and therefore suitable
for industrial production. Moreover, by adjusting the sonication time and the
solvent, it is possible to control the thickness of the exfoliated layers. However,
some drawbacks are associated with this procedure. Firstly, the quality and size of
the obtained flakes can vary among batches, making the results inconsistent and
unpredictable. Additionally, the property of the resulting material can be affected
by surfactants or stabilizers used to prevent re-aggregation of the exfoliated flakes
in the dispersion. Another disadvantage concerns the choice of solvent, which
might not be suitable for all materials.

Regardless of the chosen preparation method, it is crucial to examine the
obtained flakes in order to assess their quality, which will affect the material’s
properties. A valuable strategy is to use a Scanning Transmission Electron Micro-
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scope (STEM), whose functioning principle is detailed in Chapter 2. By imaging
the samples at the atomic level, it is possible to ascertain the quality of the flakes.
Specifically, it is possible to assess how many chalcogens were lost during the sam-
ple preparation process. In fact, several mechanisms can cause the loss of these light
elements, including oxidation, chemical reactions, and surface contamination [143].

As already mentioned, the presence of defects can highly affect the material’s
properties, both positively and negatively. In order to have a more complete
understanding of this effect, it is important to quantify the amount of vacancies
present in the specimen. This can be challenging, even with a high-resolution
STEM, due to difficulties in capturing light atoms coexisting with heavy ones, in
the presence of several types of noise. It should be noted that Sulfur can also be
removed during the characterization process, for instance, due to the electron beam
used during STEM imaging, as explained in Chapter 2. The solution proposed
in this work is to use a machine-learning model to improve the quality of low
dose STEM-acquired images of TMDs and therefore facilitate the vacancy-counting
process, while keeping the dose low.

The test set used for this purpose is made of experimental images acquired
both on the Titan and Nion microscopes, available at Trinity College Dublin, which
will be described in the next section. The data are acquired in an analog mode,
not digital. Therefore, the main types of noise affecting them are Gaussian and
Poisson. In the case of analog data, the pixel values are usually rescaled between
0 and 1 before being processed by machine-learning models. In fact, in this case,
in contrast to what happens for digital data, the units of the pixel intensity are
arbitrary intensities and do not have physical meaning. The choice of analog
images over digital ones is motivated by data availability. For future studies, digital
acquisition will be considered.

It should be noted that, for this project, we are not interested in achieving the
best possible reconstruction with the developed neural network. The main goal is
to retrieve enough signal to localize the atoms in the image, in order to quantify
the vacancies and, consequently, assess the sample quality.

As mentioned before, the sample preparation process is not the only source
of possible vacancies, but more factors should be considered. Firstly, the type of
microscope can affect the observation from two perspectives: on the one hand
using a more powerful microscope, such as the Nion, enables the acquisition of
higher-resolution data, easing light-elements identification. On the other hand,
using a stronger electron beam to image the material can generate additional
vacancies. Using a microscope like the Titan can hinder the procedure, due to
the high noise affecting the images. Additionally, the proposed denoising process
also has an impact on the results, since it can generate apparent vacancies. This
effect needs to be quantified. Finally, results inaccuracy can also be caused by
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the vacancy localization and counting procedure, which is performed using the
software Atomap [144] in this case.

This study aims to be an example of possible applications of a machine-learning
approach to assist investigations in the field of electron microscopy imaging, but
further investigations are needed. Importantly, the purpose of this chapter is to
present a practical application of the denoising model developed in the previous
chapter and to demonstrate the importance of image denoising in microscopy data
analysis. Future studies will involve a comparison between the proposed pipeline
and neural networks developed for direct vacancies counting in noisy electron
microscopy data [145]. This will allow a more complete understanding of the
impact of the denoising model within the vacancy counting procedure.

4.2 Model construction and training set

The neural network used for this applicative example is similar to the one de-
veloped in the previous chapter. However, being the data affected by noise of
a different nature, some modifications are needed, both for the model and the
training set.

The model’s architecture is identical to the one described in Section 3.2, except
for the last layer, which, in this case, uses Sigmoid instead of ReLu, as an activation
function. The reason behind this choice is correlated to the nature of the training
set. In fact, in this case, the model is constructed with the aim of being used on
analog data. Being the pixel intensities not associated to physical meaning, all
images are rescaled in order to have grayscale values, between 0 and 1. This means
that the output of the autoencoder should be in the range 0-1, a feature that makes
the use of the Sigmoid function suitable for this application, since it always returns
values within the mentioned range.

Regarding the dataset construction, which is made of 512 ⇥ 512-pixels images,
the Prismatic software [30, 31] is used. However, less variety of materials is included
compared to the training set presented in Chapter 2, being the main focus of this
project on transition metals dichalcogenides. Therefore, the species included are
MoS2, WS2, MoSe2. Importantly, different versions of each material are generated,
with different levels of vacancies, in several spatial configurations. For each
material, the following imaging conditions are considered (more information on the
meaning of these parameters can be found in the Prismatic documentation [146]):

• the pixel size values are 0.14, 0.18, 0.25 and 0.3 Å;

• the size of the simulated potential is 0.08 and 0.1 Å;

• the electron beam energy is 100 keV;
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• the sample thickness range is 6 � 36 Å.

• the inner and outer detector collection angles are 60 and 180 mrad for MoS2

and WS2, 30 and 70 mrad for MoSe2;

• the maximum probe angle is 27 mrad;

• the potential bound is 2 Å;

• the probe tilt is 0 mrad in both horizontal and vertical directions;

• the probe defocus is 0 mrad;

• the number of frozen phonon configurations to calculate is one;

• the thermal effects are included in the simulation;

• the occupancy values for likelihood of atoms existing at each site are included.

The steps followed to generate the different types of noise are displayed in
Fig. 4.1, for one example from the training set, namely a simulated image of MoS2,
without any Sulfur vacancies. The various steps of the procedure are displayed
in the first column, while the second column shows the different types of noise
added at each step. It should be noted that the pixel values are scaled between
0 and 1 after each step. The first image in the first row, designated as Step 0, is
the infinite-dose image (without noise) generated by Prismatic. Poisson noise is
applied to this image, with dose value randomly selected from the range 1,000 -
10,000 e�/Å2. One example of this is depicted in the first column of the second row,
with label Step 1, while Poisson noise is shown in the same row, on the right-hand-
side panel. As can be seen from this image and as discussed in Chapter 3, this kind
of noise depends on the intensity of the image to which it is applied. Subsequently,
Gaussian noise is added to the Poisson-noised image, with variance within the
range of 0-0.05. This phase is indicated as Step 2, in the panel located in the first
column and the third row of the plot, where an image affected by both Poisson and
Gaussian noise is displayed. The added noise is represented on the right-hand-side
of this panel. In order to obtain more realistic results, as displayed in the last panel
of the first column, namely Step 3, the presence of a non-constant background is
reproduced. To do so, a black image of the same size as the training set elements
was created, namely a 512 ⇥ 512-pixels image made of all zeros. Twenty random
white points on the black background are then generated by setting random pixel
coordinates to white (pixel value set to 1). Gaussian blur is subsequently added to
this image, to create a smooth and diffused appearance in correspondence of the
white points. Finally, this blurred background (right-hand-side panel of the last
row) and the image with Poisson and Gaussian noise are blended together, using a
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blending factor of 0.5. It should be noted that different combinations of several
levels of noise were considered for each image.

As it can be deduced by this description, the dataset proposed in this case
presents less variety, compared to the one detailed in the previous chapter. This is
due to the different goals of the two projects. In fact, for this investigation, the aim
is not to provide the best-performing model but to develop a model that returns
enough signal to distinguish atoms and vacancies in a specific class of materials.

Different data augmentation strategies are implemented, namely rotation and
resizing. The final training set consists of about 10,000 images. The model is
trained for 200 epochs, using the Adam optimizer and the customized loss function
defined in Eq. (3.1).

Some examples of reconstruction achievable with this model can be found in
Fig. 4.2, for the case of simulated MoS2 data with some vacancies, affected by
different levels of noise. The first column shows the original infinite dose image,
which is the same for all five displayed cases. Some noisy versions of it can be found
in the second column. Specifically, different dose values are considered, which
determine different levels of Poisson noise, while the intensity of Gaussian noise
is selected randomly within the defined range. The background is also simulated
randomly, according to the previously described procedure. Going from Case (a) to
Case (e), the selected values of electron dose are: 1,000 e�/Å2, 2,500 e�/Å2, 5,000
e�/Å2, 7,500 e�/Å2, 10,000 e�/Å2. The reconstruction obtained with the developed
autoencoder is presented in the third column. The first three columns are displayed
in scales of gray, with values ranging from 0 to 1. The last column shows the
difference between the original image and the autoencoder reconstructed image,
for all the examined cases, computed by subtracting the grayscale intensity of each
pixel. In this representation, the blue regions indicate that the reconstructed image
is lighter than the original image, while the red regions represent the opposite
situation, where the reconstructed image appears darker than the original one. As
can be deduced from these results, the reconstruction obtained with the proposed
autoencoder is not perfect. In particular, the most evident inaccuracy from the
difference plots depicted in the fourth column of Fig. 4.2, is the presence of blue
circles surrounding the atom locations. The white centre indicates that the atomic
column centre is correctly identified. However, the reconstruction seems to generate
atoms that are systematically wider than the original data, as indicated by the blue
pixels around the atom locations. Nonetheless, this feature does not seem to have
a significant impact on the atom localization, which is the main goal of this project.
An accurate quantification of the model effect on the vacancy counting process
needs to be performed, as will be discussed later in the chapter.
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Figure 4.1 – Illustration of the procedure followed to add noise to training set samples. A
simulated image of MoS2 without any Sulfur vacancies is used as an example. The various
steps of the noising procedure are depicted in the first column, where in Step 0 there is
no noise, image, in Step 1 Poisson noise is added, in Step 2 Gaussian noise is added, and,
lastly, Step 3 is the final result, which includes a background. The images in the second
column display the type of noise that is added at each step.
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Figure 4.2 – Image reconstruction of simulated MoS2, with vacancies, at five different noise
levels. The first column displays the original data, which is the same for all five examples.
The second column shows the noisy version of the data, generated by randomly adding
Gaussian noise with variance within the range 0-0.05 and a synthetic background obtained
following the procedure described in Section 4.2. Poisson noise is applied according
to five dose levels, namely 1,000 e�/Å2, 2,500 e�/Å2, 5,000 e�/Å2, 7,500 e�/Å2, 10,000
e�/Å2. The dose level increases going from Case (a) in the first row to Case (e) in the last
row. The reconstruction achieved with the proposed autoencoder is displayed in the third
column. Finally, the fourth column presents the difference between the original and the
reconstructed data, for all examined cases.
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4.3 Vacancies counting procedure on experimental data

The software used in this case for atomic column localization is Atomap [144].
This was chosen, in place of the previously used StatSTEM [135], due to its
Python implementation, which is open-source, in contrast to MATLAB, upon which
StatSTEM is built. Additionally, Atomap provides a pipeline for localizing atoms of
different species separately (namely different sublattices), which is favourable for
the set of data investigated in this part of the project. Nonetheless, the localization
process appears to be less efficient compared to StatSTEM, requiring additional
input from the user, especially in localizing the atoms at the boundary of the
images. An interactive interface can be used to remove or add atom positions in
the examined data.

The procedure to quantify the vacancies in TMD data consists of several phases,
which are now described.

Data acquisition

The experimental images presented in this chapter are acquired on a Nion Ultra-
STEM and a Titan S/TEM, by Danielle Douglas-Henry, at the CRANN Advanced
Microscopy Laboratory (AML www.tcd.ie/crann/aml/), at Trinity College Dublin.
The maximum resolution achievable by these instruments is 0.78 Å for the Nion,
and 2 Å for the Titan, respectively. The materials considered for this investigation
are MoS2, WS2, and PtSe2, all placed on a Carbon substrate grid. All the samples
were prepared through liquid phase exfoliation, with a resulting thickness of a few
layers. Additionally, mechanically exfoliated samples are available for the case of
PtSe2.

For the preliminary results presented in this chapter, only the MoS2 dataset is
considered, with images generated with both microscopes. In particular, for the
Titan acquisition, a current of about 20 pA and voltage of 300 kV is used, while
for the Nion acquisition, the current is about 40 pA and the voltage 40 kV. It is
worth mentioning that an exact dose value is not available in the case of analog
acquisition.

Data pre-processing

All the experimental images need to be pre-processed before undergoing the
atomic column localization with the software Atomap. Specifically, after rescaling
the pixel intensities between 0 and 1, the developed denoising autoencoder is
used to improve the image quality and therefore facilitate the vacancy counting
process. Nonetheless, the quality of some of the images remains low even after the
application of the autoencoder. Therefore, these data are discarded. Examples of
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Figure 4.3 – Examples of STEM-acquired images of MoS2, before (top row) and after
(bottom row) denoising them with the developed autoencoder. The first two columns
display data captured with the Nion microscope, while the last two columns show Titan-
acquired data. These are all examples of images that can be considered for our analysis
since the amount of signal enables Sulfur atom localization.

acceptable original noisy (top row) and denoised (bottom row) images are depicted
in Fig. 4.3, which show good signal content. Some of the discarded cases are
illustrated in Fig. 4.4. In this case, it is evident that for both the original (top row)
and reconstructed (bottom row) images the signal content does not allow one
to clearly distinguish atoms. In both Figures, the first two columns show data
acquired with the Nion microscope, while the last two columns represent data
acquired with the Titan microscope.

At the end of this denoising and screening process, for the case of MoS2, 27
images from the Nion dataset and 13 from the Titan dataset are retained. In order
to illustrate the procedure presented in this chapter, an image from the Nion
dataset is considered. The original and denoised versions of this example are
presented in panels (a) and (b) of Fig. 4.5, respectively. From both images, the
presence of scan noise can be detected. However, this does not seem to impact the
atom identification. It should be noted that the neural network was not trained to
remove scan noise.

First lattice identification and refinement

The selected images are then analyzed with Atomap. The first step consists in
localizing the atomic column of the first sublattice, made of the most intense atoms,
meaning the atoms with the higher atomic number. In the case of TMD, these
are the transition metal atoms, Molybdenum for the analysis of MoS2. According
to the Atomap documentation [147], a peak finding algorithm from the Python
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Figure 4.4 – Examples of STEM-acquired images of MoS2, before (top row) and after
(bottom row) denoising them with the developed autoencoder. The first two columns
display data captured with the Nion microscope, while the last two columns show Titan-
acquired data. These are all examples of images that cannot be considered for our analysis
since the amount of signal does not enable Sulfur atom localization. Therefore, these
images are discarded.

package skimage [137] is used to find the initial atom positions. The minimum
separation of the features should be provided, measured in pixels. It is important
to select an appropriate value for this parameter. In fact, if the peak separation
value is too small, too many atoms are found, while if it is set to a very high
value, too few atoms are localized. For the examples of MoS2 data displayed in
this section, this parameter was set to 20 pixels; this value is selected after a visual
assessment of the resulting initial atom positions. In fact, the appropriate distance
depends on the magnification of the experimentally captured data. If some of the
atoms are incorrectly located, which happens principally at the image boundaries,
the user can manually add/remove them from an interactive interface. Once the
initial positions are established, the nearest neighbours of each atomic column are
found, and then they are refined by Atomap by using the centre of mass and 2D
Gaussians, as detailed in the Atomap documentation [147]. An example of the first
sublattice localization is shown in panel (c) of Fig. 4.5, for a Nion-generated image
of MoS2.

Second lattice identification and refinement

After the localization of the atoms belonging to the first sublattice, these need
to be hidden from the image, to allow the identification of the second sublattice.
In fact, as mentioned before, the peak finding procedure detects the atoms with
the highest intensity. The procedure proposed by the Atomap documentation is
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Figure 4.5 – Illustration of the proposed solution for vacancies localization in STEM-
captured MoS2 data. In this example, an image acquired with the Nion microscope is
considered. Panel (a) shows the original noisy image. The autoencoder-reconstructed
version of the same image can be found in panel (b). This is the input data for the
localization procedure performed with the software Atomap [144], whose first step is
depicted in panel (c), representing the localization of Mo atoms. Once their position is
established [red dots in panel (c)], they are hidden from the image through black circles, as
can be seen in panel (d). This facilitates the localization of S atoms, whose locations are
depicted with blue dots in panel (e). Manual changes are needed for this step to refine
the positions of the atoms. The final lattice is shown in panel (f), from which it is evident
that some atoms have been manually discarded, in order to fulfill wraparound lattice
conditions.

to mask out these atoms by generating a Gaussian blur in correspondence with
their positions. However, an alternative masking process was implemented within
this project, which uses black circles of customizable diameter to mask the atoms.
Panel (d) of Fig. 4.5 shows the outcome of this masking phase, where a diameter
of 12 pixels was chosen for the masks.

Now the atoms belonging to the second sublattice, namely the chalcogens
(Sulfur in the case of MoS2), can be localized, following the same procedure
described for the first sublattice. In this case, the peak separation value is set to
14 pixels. The resulting atomic columns are represented with blue dots in the
illustration presented in panel (e) of Fig. 4.5. This phase of the procedure is less
efficient, due to the small distance and the lower intensity of the atoms. Therefore,
numerous modifications from the user are expected.

Importantly, the chalcogen atoms at the top and right border of the image are
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intentionally discarded, in accordance to the wraparound lattice approximation.
This is done in view of the vacancy counting phase, which can be challenging
at the edge areas, since the atoms might not be visible due to the finite field of
view. The wraparound lattice approximation can be used to mitigate this edge
effect when dealing with images of periodic materials and involves considering the
atoms near the edges as if they are connected to the atoms located at the opposite
edge. Clearly, this is an approximation and can lead to misleading results, since it
assumes that the amount of vacancies at one edge of the image is the same as that
at the opposite edge.

Results analysis

The outcome of the image taken as an example of the proposed procedure can be
found in panel (f) of Fig. 4.5. The same process is followed for all the available data.
A list of coordinates for each sublattice is obtained after the use of the software
Atomap. Clearly, the length of these two coordinates lists is equivalent to the
number of located atoms for each of the species, namely transition metals and
chalcogens. The stoichiometry for TMD, MX2, indicates that two chalcogen atoms
are expected for each metal atom, for an ideal lattice. Therefore, if this condition is
not satisfied, it indicates the presence of some vacancies in the examined image,
and a percentage of defects can be calculated. According to the investigated data,
the images acquired with the Nion present an average percentage of vacancies
of 4.3 %, while the average percentage for the Titan is 6.1 %. The distribution
of these percentages can be found in Fig. 4.6, where the black dots represent the
mean values for the two investigated datasets (Nion and Titan), and the dark gray
diamond-shaped markers indicate the outliers in the distributions.

It is important to note that these results are affected by several sources of errors,
and some of the vacancies are probably just apparent. Firstly, the level of detail that
can be achieved with the two microscopes surely affects the results, with an impact
on the denoising process and, ultimately, on vacancy identification. Specifically, the
Nion provides better resolution compared to the Titan, due to its more advanced
technology. Moreover, the atomic localization procedure implemented with the
software Atomap is not fully accurate, even after the manual correction provided
by the user. The wraparound lattice approximation should also be included in the
possible sources of errors. Furthermore, the denoising performed by the neural
network can cause some inaccuracies, especially when high levels of noise affect
the images. All the described causes should be further investigated for a more
comprehensive study, which also provides an estimation of the impact of each
source of inaccuracy. Possible approaches to complete this study are proposed in
the next section.
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Figure 4.6 – Distribution of the percentage of vacancies found in images acquired with the
Nion and Titan microscopes. The black dots show the mean of the vacancy percentage,
while the gray diamond-shaped markers are commonly used in box plots to portray
outliers.

4.4 Conclusions and outlook

This chapter presented some preliminary results for the investigation of vacancies
in STEM-acquired images of TMD samples. As a first investigation, datasets made
of MoS2, imaged with two types of STEM microscopes were considered (Nion
and Titan). In order to improve the identification of vacancies, a machine-learning
approach was introduced, where a denoising autoencoder was used to enhance
STEM images. These denoised images were then processed with the Atomap
software to locate atomic columns of transition metal atoms (Mo) and chalcogen
atoms (S). A percentage of vacancies was calculated based on the difference between
the expected and observed number of chalcogen atoms for an ideal lattice.

The conducted analysis demonstrates an average percentage of vacancies of
about 4 % for the Nion dataset and about 6 % for the Titan dataset. Importantly,
these results do not only depend on the capability of the considered imaging instru-
ments but it is affected by several factors, which can alter the vacancy counting task.
Specifically, the neural-network-based-denoising algorithm, although effective in
enhancing image quality, can introduce inaccuracies, particularly when dealing
with images affected by high levels of noise. To quantify this source of error, the
following approach should be implemented. A dataset of simulated images of
TMD should be generated, separately from the training set construction. Noise
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should be added to these data, following the same procedure used for training set
preparation. Subsequently, the vacancy counting process should be performed on
both the original noise-free images and the denoised data. A comparison of the
amount of vacancies identified in the two cases should give an estimation of the
impact of the denoising algorithm in the vacancy counting process.

Moreover, the atom localization performed by Atomap can also be a source of
error. A comparison with the results achievable with a different software, such as
StatSTEM should be implemented [135].

Furthermore, to account for edge effects, the wraparound lattice approximation
is applied, assuming that atoms near the image borders are connected to atoms
on the opposite edge. While a useful approximation, it can introduce inaccuracies,
especially in cases with non-uniform edge effects. Importantly, the finite size effect
should be taken into consideration. According to this phenomenon, the properties
of a system are influenced by its finite size.

Future studies will also involve other TMDs, such as WS2 and PtSe2. Ad-
ditionally, a comparison of the vacancies counting between samples prepared
following different procedures, such as mechanical exfoliation, will be pursued.
Some examples of STEM-acquired images of PtSe2, before (on the top row) and
after autoencoder denoising (on the bottom row) can be found in Fig. 4.7. In this
case, the samples were prepared through mechanical exfoliation. The data in the
first two columns were acquired with the Nion microscope, while the last two
columns show data captured with the Titan microscope. The same procedure
described in this chapter will be pursued for this dataset.

It is worth mentioning that at the moment the proposed methodology does not
allow for distinguishing vacancies located in different layers of the material. For
instance, when there are two chalcogen atoms on top of each other, the absence of
a chalcogen atom on the top layer can result in reduced intensity in that area of
the image. At the moment, the model is not able to identify this lower-intensity
atom as a vacancy. A possible solution to this problem is to apply a threshold to
distinguish vacancies located in different layers. Different strategies need to be
pursued depending on the type of stacking configuration and the number of layers.

Finally, an investigation of digitally acquired data should facilitate the identifi-
cation of vacancies, eased by the absence of Gaussian noise, which can hinder the
atom localization process.
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Figure 4.7 – Examples of STEM-acquired images of PtSe2, before (top row) and after
(bottom row) denoising them with the developed autoencoder. The first two columns
display data captured with the Nion microscope, while the last two columns show Titan-
acquired data. These are all examples of images that will be considered for our analysis
since the amount of signal enables atom localization.



CHAPTER 5

VIDEO FRAME INTERPOLATION FOR
3D TOMOGRAPHY

The objective of this chapter is to demonstrate how a neural network developed
for video frame interpolation can be used to enhance the resolution of 3D

tomography data. The examined datasets are generated through diverse imaging
instruments and encompass different length scale categories. This work is based
on a paper that is currently under review. The first author and main contributor of
the paper is the same as this Ph.D. thesis.

5.1 Problem description and state-of-the-art methods

Three-dimensional (3D) tomography refers to a collection of imaging methods
used for obtaining 3D representations of the internal structure of a solid object.
Generating detailed cross-sectional descriptions is a practice commonly used in
many fields, including material science, medicine, and engineering. It is used for
the study of specimens, where the material properties are strongly related to their
internal structure.

In a general context, the first step of this practice involves a data acquisition
process, where two-dimensional (2D) images or projections of an object are captured
from different perspectives, for example, different angles or different cross-sections.
The second step concerns the alignment of the acquired data, which ensures the
matching of corresponding points in different images. This is fundamental to
guarantee accurate execution of the following phase, namely the 3D reconstruction,
which can be achieved by using different types of algorithms. Some examples
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include filtered back-projection, algebraic reconstruction techniques, and iterative
reconstruction methods [148, 149]. Finally, once the reconstruction is completed,
the generated volume can be visualized from different angles and cross-sections.

The morphology of a sample can be investigated over many different length
scales, using several imaging instruments to produce a tomographic reconstruction.
For instance, in the materials science area, a technique known as FIB-SEM tomogra-
phy, described in Chapter 2, is used to investigate networks of solution-processed
nanomaterials, widely employed in electronics, energy, and sensing [150, 151]. For
these, the analysis of their internal structure is a crucial aspect, since the charge
transport is determined by the morphology of the contacts between nanosheets,
which are defined at a few tens of nanometers length scale. At the opposite side
of the length-scale spectrum, one finds medical imaging techniques [152], such as
magnetic resonance imaging (MRI) and X-ray computed tomography (CT), where
the relevant information is typically available with millimeter resolution.

It should be noted that there are several limitations to 3D tomography, common
to many experimental techniques and length scales. Firstly, the resolution achieved
must be sufficient for extracting information, but it is often limited by the measuring
technique and the necessity to keep the acquisition time short. For instance, in a
CT scan one wants to have enough details to make an informed medical decision,
but limit the radiation dose the patient is exposed to [153]. Furthermore, in several
cases the measurement is destructive, meaning that the specimen being imaged
is destroyed during the measurement process [44, 154]. In this situation the 3D
resolution is often anisotropic, meaning that cubic-voxel definition in the three
dimensions is not achieved. In addition, in a destructive experiment one cannot go
back and take a second measurement, should the first have not achieved enough
resolution. The mentioned limitations could be overcome by using an image
augmentation technique, which, by improving the quality of the available images,
should make it possible to extract more accurate information.

This approach can be employed, for instance, in the case of FIB-SEM nanotomog-
raphy (FIB-SEM-NT), where the term nano refers to the length scale involved [44].
FIB-SEM-NT is an imaging technique that involves destructive procedures, where
a Focused Ion Beam (FIB) is used to gradually remove sections of a specimen, often
a composite material, while concurrently capturing images of the exposed planes
using a scanning electron microscope (SEM). This process generates a stack of hun-
dreds of 2D images, which are subsequently employed to construct a high-fidelity
3D representation. However, the resulting 3D volume often exhibits anisotropic
resolution, particularly when operating at high magnification. Specifically, the
cross-sectional images (referred to as the xy-plane) are obtained at the SEM’s native
resolution, approximately 5 nm in the cases examined in this work, while the
resolution along the milling direction (the z-direction) corresponds to the slice
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thickness, usually around 10 � 20 nm. Consequently, the resulting 3D volume may
not feature uniform cubic voxels. It is essential to note that producing thinner
slices faces limitations imposed by instrumentation, specimen characteristics, and
economic considerations. Additionally, reducing slice thickness can compromise
the resolution in the xy-plane due to potential damage propagation between suc-
cessive cuts. This challenge is closely related to another drawback of FIB-SEM
instruments, namely, their relatively slow imaging speed [53]. Therefore, there is a
need for an image interpolation method that can effectively preserve and ideally
enhance information quality while reducing the number of milling steps required.

The simplest solution is linear interpolation [155]. However, this is reliable only
when one can safely assume that the structural variations across consecutive cross-
sections are smooth. Unfortunately, when this condition is only approximately met,
linear interpolation tends to blur feature edges and generate inaccurate results.
This can be partially improved [156] with interpolation strategies that account for
feature changes among consecutive images by using optical flow [157], but the
performance remains poor at the image borders. As a consequence, such portions
of the frame must be discarded, with a consequent loss of valuable information.
Alternative solutions involve deep-learning algorithms. For instance, Hagita et
al. [158] proposed a deep-learning-based method for super-resolution of 3D images
with asymmetric sampling. The model was trained on images obtained from
the cross-section and applied to frames co-planar to the milling direction and
obtained from the 3D reconstruction. Unfortunately, this strategy works only
when it is possible to assume that the three directions have the same morphology,
but does not provide unbiased reconstruction. In a different effort, Dahari et
al. [159] developed a generative adversarial network (GAN) trained on pairs of
high-resolution 2D images and low-resolution 3D data, aiming at generating a
super-resolved 3D volume. The scheme showed success on a variety of datasets.
However, generative models are ambiguous to use in this context, since they do
not allow one to find a unique solution, due to the nature of this deep-learning
architecture.

In this work, an alternative solution is proposed, which relies on the use of
a deep-learning model trained for video-frame interpolation. This is a process,
where the frame per second of a video is increased by generating additional frames
between the existing ones, thus creating a more visually fluid motion [64]. As
described in Chapter 2, among several deep-learning frameworks developed for
this task, one of the most advanced is the Real-Time Intermediate Flow Estimation
(rife) [67], which will be extensively used in this research project. Compared to
other methods, this model can achieve highly accurate results at a significant speed.
This is a consequence of the coarse-to-fine approach with increased resolution
employed for the inference of the intermediate flow between existing frames.
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The main objective of this work is to show how (rife) can be used for purposes
that are far from the original aim for which it was developed. To do so, datasets
obtained with different imaging instruments, that generate data characterized by
different length scales, are considered. The first investigated dataset is made of
printed graphene-nanosheet images, obtained with FIB-SEM, where the milling
direction is taken as equivalent to the video time direction. The resolution of this
dataset is then improved by the application of rife, and quantitatively validated
using several approaches. In particular, together with standard computer-vision
metrics, physical quantities are evaluated, which can be extracted from the final
3D reconstructions, after appropriate image binarization with standard software
such as Fiji [45] or Dragonfly [46]. These are the porosity, tortuosity, and effec-
tive diffusivity, and their precise evaluation facilitates an understanding of what
information content is preserved/improved during the interpolation. Furthermore,
the proposed scheme is benchmarked against another flow-based deep-learning
algorithm, dain [69], and against non-deep-learning methods. In particular, the
examined approaches include the simple but widely used linear interpolation and
the IsoFlow algorithm [156], a novel interpolation technique that takes into con-
sideration the variation among slices by using optical flow [157]. Then, the same
scheme is applied, at a completely different length scale, to both MRI and CT scans.
In the first case, the 3D mapping is already isotropic, so that the reconstructed
images can be compared to an available ground truth, as in the case of FIB-SEM. In-
stead, for CT scans, no ground truth can be used to validate the results. Therefore,
a different approach, based on noise power spectrum evaluation, is used to show a
significant enhancement of the picture quality. This result may enable to reduce
the scanning rate and therefore the radiation dose for the patient. Additionally, the
application of rife on coronary angiography data is investigated. In this instance,
the data comprise actual videos rather than 3D tomographic reconstructions. The
aim of this section is to explore a potential integration of video frame interpolation
techniques in this medical procedure, live. This could allow for a reduction of
radiation exposure during the assessment of the cardiovascular system, both for
the patient and the medical practitioner.

It is worth mentioning that, in the context of 3D tomographic reconstruction,
some neural networks have been developed to generate detailed 3D represen-
tations from a reduced number of 2D projections [160, 161]. However, for the
applications investigated in this project, the goal is not only to obtain an enhanced
3D reconstruction but also to generate additional frames that can be analysed
to retrieve important information about the examined systems. For instance, in
the case of FIB-SEM-generated data, the individual 2D frames are used to study
material-related properties, such as network porosity. For this reason, this work
will focus on approaches capable of generating additional frames that can be used



Video frame interpolation for 3D tomography 90

to improve 3D reconstructions rather than algorithms that facilitate and enhance
the reconstruction process.

5.1.1 Neural Network

rife [67] is the neural network chosen to augment the resolution of the tomographic
reconstruction described in the introductory section of this chapter. This is a video-
frame interpolation technique belonging to the flow-based category, as detailed
in Chapter 2. It allows determining the flow between corresponding elements in
consecutive frames with remarkably high accuracy and speed. For the purpose
of this research project, some adjustments were made to the original code, mainly
regarding the data upload and saving process, in order to make it more suitable for
the examined dataset. Apart from this, the original architecture was not altered.

Like any extensive machine-learning model, rife undergoes regular updates.
As of now, the HD model v4.6, referred to as rife hd [72], is the most advanced
version available and it is trained on the Vimeo90K dataset. This dataset covers
a wide range of scenarios, including various activities involving people, animals,
and objects [73]. Despite being trained on data from significantly different contexts,
rife hd allows for achieving valuable performances on the datasets studied in
this research project, as will be detailed in this chapter. Nonetheless, some fine-
tuning of the pre-trained models was also implemented. It is worth noting that
fine-tuning the rife hd model is currently not feasible. Consequently, the fine-
tuning was performed on the second-best model, namely rifem [74]. To avoid
overfitting1, the fine-tuning procedure should be realized on data that is not used
for testing. This is available only for the application to printed graphene networks,
described in the next sections. Therefore, fine-tuning was avoided for the medical
applications. Specifically, the fine-tuning is performed on a subset of the graphene
dataset, made of 1,000 portions of the original images, cropped to a 510 ⇥ 510-
pixel size, and not used for testing. The results of both the original and the
fine-tuned model are presented in the following section and compared throughout.
It is worth mentioning that, despite being commonly used to enhance the model
performance for specific tasks and datasets, fine-tuning can be counterproductive
from a practical point of view, especially in the medical context. In fact, it would
imply the need for relatively large datasets that must adhere to ethical and privacy
regulations, in terms of training and sharing usage. Moreover, data might present
different features depending on the manufacturer of the instruments used to
generate them, hindering the possibility of developing a comprehensive and

1The term overfitting refers to a phenomenon that occurs when a machine-learning
model nearly memorizes the training data, without recognizing underlying patterns. As a
consequence, the model will have satisfactory performance on the training set but it will
not be able to generalize to unseen data.
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exhaustive model.

5.2 Application to Printed Graphene Network dataset

The main dataset used in this work is made of 801 images, generated with FIB-
SEM, of printed nanostructured graphene networks, with a nanosheet length of
approximately 700 nm. Each image, made of 4041 ⇥ 510 pixels, has a 5 nm resolu-
tion in the cross-section, while the slice thickness is 15 nm. Therefore, the voxel
size in the resulting reconstructed volume is 5 ⇥ 5 ⇥ 15 = 375 nm3. Note that
the voxel size achievable with conventional micro CT scanners is 10 � 1000 times
larger [162, 163]. Therefore, FIB-SEM nanotomography is more suitable than CT
for the quantitative characterization of the graphene network morphology, which
highly affects the material’s properties, such as the network connectivity [164]. As
previously mentioned, these graphene networks belong to the class of networks
of solution-processed nanomaterials, which are currently being investigated for
applications in many domains, including electronics, energy, catalysis, and sens-
ing [150, 151, 165, 166]. The FIB-SEM nanotomography was performed by Cian
Gabbett and Luke Doolan at Trinity College Dublin, on a ZEISS ATLAS 5 software
(Version 5.3.3.31). The FIB was operated with a Gallium ion beam, at a voltage
of 30 kV and current of 600 pA. Further details on sample preparation and data
acquisition can be found in reference [44].

In order to prove the method’s efficacy, some frames are removed from the
dataset and used as ground truth for results assessment. Different scenarios
are considered, where one, three, and seven consecutive frames are removed,
respectively, although the seven-frame error suggests that it is not advisable to
reduce so drastically the image density along the milling direction. A fraction of
the original dataset is considered for the majority of the analysis, to reduce the
computational effort and to inspect the images in more detail. Specifically, for the
computer-vision metrics and porosity analysis, 100 images of the original dataset
are considered. Each image of this subset is cut to a 510 ⇥ 510 pixels size. In
contrast, for the tortuosity and effective diffusivity study, ten randomly selected
volumes are considered, ranging from 55 % to 60 % of the original volume. It
should be noted that in all cases the resolution is not altered.

5.2.1 Qualitative assessment of the results

A simple visual comparison offers a qualitative overview of the efficacy of the
various interpolation methods examined. This is shown in Fig. 5.1 for the case
where three consecutive frames are removed from the FIB-SEM sequence and then
reconstructed by the different models. The first column shows the ground-truth
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Figure 5.1 – Visual comparison of the frame reconstruction in the case where three frames
are removed from the FIB-SEM sequence. From left to right it is shown: the ground truth
image (original FIB-SEM), and those reconstructed by rife hd, the fine-tuned rifem, dain,
IsoFlow, and linear interpolation. The second row displays the difference between the
ground truth and the reconstructions. A 100 ⇥ 100-pixel portion of each image (see green
box in the upper left panel) is magnified and shown in the third row, while the differences
from the original image are in the fourth row.
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image, namely that removed from the original dataset, while the remaining ones
contain the pictures reconstructed with the various methods. In order to better
appreciate the quality of the reconstructions, additional pieces of evidence are
provided, such as the difference between the ground truth and the reconstructed
images (second row), the magnification of a 100 ⇥ 100-pixel portion of each picture
(third row), and again the difference from their ground truth (fourth row). The
differences are obtained by simply subtracting the grayscale bitmap of each pixel.
Blue (red) regions mean that the reconstructed image appears lighter (darker) than
the original one.

The inspection of the figure leads to some qualitative considerations on the
different methods, and the comparison is particularly clear for the magnified
images. The most notable feature is the loss of sharpness brought by the linear
interpolation, which is not motion-aware. In fact, instead of tracing the motion of
the border between a graphene nanosheet and a pore, namely the border region
between dark and bright pixels, linear interpolation simply fills the space with an
average grayscale. As a result, the image difference (e.g. see the rightmost lower
panel) presents some dipolar distribution, which, as will shown below, causes
information loss. A similar, although less pronounced, drawback is found for
images reconstructed by dain, which also tends to over-smooth the graphene
features. In contrast, IsoFlow appears to generate generally good-quality pictures,
in particular in the middle of the frame. However, one can clearly notice a
significant error appearing at the image border, which is not well reproduced and
whose information thus needs to be discarded. Finally, the two rife models are
clearly the best-performing ones. Of similar quality, they are able to maintain the
original image sharpness across the entire field of view and do not seem to show
any systematic failure.

Analogous illustrations can be found in Fig. 5.2 and Fig. 5.3, with examples of
results for the one- and seven-replaced-frames cases. It is worth mentioning that the
colourbars for the difference plots are not the same for the three proposed figures,
due to different levels of inaccuracy of the various cases. A visual inspection of
the results confirms the considerations made for the three-replaced-frames case,
with the rife schemes being the better performing. Moreover, these figures seem
to demonstrate that the capabilities of each model deteriorate when increasing
the number of replaced frames. In fact, the difference plots of Fig. 5.3 present
higher error values compared to the other cases, which indicated the presence
of more inaccurate results when seven frames are replaced. This is an expected
behaviour, which will be further investigated in the following section. In fact,
although instructive, visual inspection just provides a qualitative understanding,
and more quantitative metrics need to be evaluated in order to determine what
image content is preserved by the various reconstructions.
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Figure 5.2 – Visual comparison of the frame reconstruction in the case where one frame
is removed from the FIB-SEM sequence. From left to right it is shown: the ground truth
image (original FIB-SEM), and those reconstructed by rife hd, the fine-tuned rifem, dain,
IsoFlow, and linear interpolation. The second row displays the difference between the
ground truth and the reconstructions. A 100 ⇥ 100-pixel portion of each image (see green
box in the upper left panel) is magnified and shown in the third row, while the differences
from the original image are in the fourth row.



Video frame interpolation for 3D tomography 95

Figure 5.3 – Visual comparison of the frame reconstruction in the case where seven frames
are removed from the FIB-SEM sequence. From left to right it is shown: the ground truth
image (original FIB-SEM), and those reconstructed by rife hd, the fine-tuned rifem, dain,
IsoFlow, and linear interpolation. The second row displays the difference between the
ground truth and the reconstructions. A 100 ⇥ 100-pixel portion of each image (see green
box in the upper left panel) is magnified and shown in the third row, while the differences
from the original image are in the fourth row.
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Figure 5.4 – Different phases of the procedure used to segment each frame into pore
and nanosheet components. This generates binarized data, by using the trainable weka
segmentation plugin of Fiji [167, 44]. In panel (a) the user first manually assigns the label
of pore (red circles) and nanosheet (green circles) to some areas of the original image.
This information is used to build the dataset for training a classifier, whose output is the
probability map displayed in panel (b). Here the probability of each pixel being either pore
or nanosheet is displayed using pixel intensity values. Panel (c) shows the final output
of the procedure, namely the binarized image, obtained by applying a threshold on the
probability map.

5.2.2 Quantitative assessment of the results

A full quantitative analysis is better performed on segmented images, where the
pore and nanosheet components are well separated [44]. This can be obtained
by using the trainable weka segmentation tool [167] available in Fiji [45]. The
procedure to produce binarized data is demonstrated in Fig. 5.4. A set of images
from the original dataset is used to train a model, whose goal is to classify each
pixel of the image either as pore or as nanosheet. The training set is automatically
built by weka following the manual identification of pore and nanosheet areas
from the user. This is shown in Fig. 5.4(a), where the red circles identify pixels that
are labelled as pores and the green circles represent pixels labelled as nanosheets.
Panel (b) of the same figure displays the outcome of the application of the trained
model, where the grayscale expresses the probability of each pixel being labelled as
pore or nanosheet. This is called a probability map. Finally, a threshold is applied
to obtain a binary classification, as shown in Fig. 5.4(c). In particular, here the
Isodata algorithm [168], available in Fiji, is used to select an appropriate threshold.
Once the classifier is trained and the threshold is established, all the datasets
obtained from the different interpolation strategies can be binarized. It should
be noted that the performance of the classifier depends on the manual selection
performed by the user. However, using the same classifier for all the analyzed
datasets guarantees consistency in the segmentation process and, consequently, in
the quantitative assessment of the various reconstruction methods.

The Mean Square Error (MSE) and the Structure Similarity Index Method (SSIM)
are some of the standard metrics used in computer vision to evaluate results [169],
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as discussed in Chapter 2. Both are full-reference metrics, meaning that the ground
truth is required to assess their value. The MSE focuses on the pixel-by-pixel
comparison and not on the structure of the image, while SSIM performs better in
discriminating the structural information of the frames. Here the MSE is calculated
between each of the generated frames and the corresponding image removed
from the original dataset. The average of these values over 100 frames is then
computed for each case of study (one, three, and seven replaced frames) and for
each technique (rife hd, rifem, dain, IsoFlow and linear interpolation). The
same procedure is followed for the evaluation of the SSIM and the results are
available in Fig. 5.5. As expected, all models perform better when the number
of removed frames remains limited, and in general there is a significant loss in
performance for the case of seven replaced frames. In more detail, rife-type
schemes are always the top performer, with linear interpolation, and also dain,
remaining the most problematic. Interestingly, IsoFlow appears quite accurate
according to these computer-vision metrics, which clearly do not emphasize much
the loss of resolution at the frame boundary. However, it will now be demonstrated
that this does not necessarily translate into the ability to preserve information.

Ultimately, the quality of a reconstruction procedure must be measured with
the quality of the information that is able to transfer/retrieve. In the case of printed
graphene-nanosheet ensembles, some morphological properties can be measured
and compared. The so-called network porosity, P, defined as the percentage of
pores contained in each frame, is one of the most important features measured
in 2D networks and it affects the material electrical properties [170]. This can
be evaluated from the binarized images by the conventional image-processing
software fiji [45], and such analysis is performed here for each case of study and
technique. The results are then expressed in terms of delta porosity, DP, which is
the fractional difference between the porosity computed from images reconstructed
with a particular method m, Pm, and that of the ground truth, PGT, namely

DP = 100 ⇤ | Pm � PGT |
PGT

. (5.1)

For this study, the DP of each image is computed and the average of these values
is presented in Fig. 5.6. From the figure, the advantage of using rife is quite clear.
In fact, although all methods, except for the linear interpolation, give a faithful
approximation of P when one frame is removed from the sequence, differences start
to emerge already at three replaced frames, where rife significantly outperforms
all other schemes. The difference becomes even more evident for seven replaced
frames, for which the rife error remains below 2 %. Also, it is interesting to note
that, in contrast to what is suggested by the computer-vision metrics, IsoFlow
is not capable of accurately returning a precise porosity, mainly because of the
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Figure 5.5 – Mean Squared Error (MSE - top panel) and Structural Similarity Index Method
(SSIM - bottom panel) evaluated for each test case (one, three, and seven replaced frames)
and each interpolation method. The MSE and SSIM are evaluated for each frame against
the ground truth and they are expressed as an average over 100 frames.

poor description of the image borders. In contrast, the weak performance of linear
interpolation has to be attributed to its inability to describe sharp borders between
nanosheets and pores. In fact, using this method corresponds to performing a
simple averaging between frames. It is worth emphasizing that using the proposed
expression for the porosity, it is not possible to evince biases in the deviation from
the ground truth values. In fact, the absolute value prevents the identification of
systematically higher or smaller results for the investigated methods. However, as
no discernible trends in the results were found, the absolute value was chosen for
representation to achieve clearer visualization. This consideration applies also to
the other metrics investigated in this section.

A second important structural feature that can be retrieved from nanostructured
networks is the network tortuosity, t, which can be evaluated using the TauFactor
software [171]. This quantity describes the effect that a convolution in the geometry
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Figure 5.6 – Porosity, P, evaluated for each test case (one, three, and seven replaced frames)
and each interpolation method. The porosity is evaluated for each frame against the ground
truth and it is expressed in terms of DP [see Eq. (5.1)], namely as a percentage deviation
from the ground-truth value. The image displays the average DP over the test set and the
associated variance.

of heterogeneous media has on diffusive transport and can be measured for both the
nanosheet and pore volumes. The nanosheet network tortuosity factor influences
charge transport through the film. Pore tortuosity affects performance in nanosheet-
based battery electrodes, while in gas sensing applications the pore tortuosity is
directly linked to gas diffusion. The tortuosity, t, and volume fraction, #, of a
phase are used to relate the reduction in the diffusive flux through that phase by
comparing its effective diffusivity, Deff, to the intrinsic diffusivity, D:

Deff = D
#

t
. (5.2)

It has been proved that for the evaluation of the tortuosity and diffusivity, the
sample volume needs to be adequately large, in order to be representative of the
bulk and to reduce the effect of microscopic heterogeneities [172]. For this reason,
ten randomly selected volumes are considered, ranging from 55 % to 60 % of the
original one. As the size of the input sample highly affects the computation speed
and memory requirement, not all methods are considered for this comparison.
In particular, only rife hd and dain results are used as input for the tortuosity
and diffusivity study. These two methods are chosen since they provide the best
evaluation of the porosity. Then, the Python version of TauFactor [173] is run on
Quadro RTX 8000 GPUs.

Also for this analysis, the fractional change of any given quantity from the
ground truth is computed, and the results are displayed in Fig. 5.7. Confirming
the results obtained for DP, also in this case rife is the best-performing method,
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Figure 5.7 – Delta tortuosity, Dt (top side panel), and effective diffusivity, DDeff (bottom
panel), evaluated for each test case (one, three, and seven replaced frames) for rife hd, and
for one replaced frame for the dain interpolation. The metrics are evaluated for each frame
against the ground truth and averaged over the sequence. The variance is also displayed,
and in the case of rife it is smaller than the symbols’ size.

with errors remaining below 2 % at three replaced frames for both t and Deff.
In contrast, dain displays significant errors, exceeding 10 %, already for a single
replaced frame, an error that suggested analysis at other replaced-frame rates was
unnecessary.

Dependence on the features size

As demonstrated in the previous section, rife performs well at reconstructing the
replaced frames of the FIB-SEM sequence, with errors on physically relevant quan-
tities remaining below 10 % even for seven replaced frames. This is equivalent to
having a milling thickness of about 100 nm, indeed a very favourable experimental
condition. In this section, the limitations of the proposed approach in relation to
the type of sample are discussed. A relevant problem with image interpolation
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Figure 5.8 – Cross-sections of printed graphene nanosheets of different lengths (L). The
nanosheet length decreases going from the top panel to the bottom one. In each case the
image width shown is 6510 nm.

techniques concerns the level of continuity between consecutive frames, as detailed
in Chapter 2. In fact, it is well understood that rapid changes between the images
in a sequence can reduce the quality of the interpolated frames [64]. The same
issue may arise when considering FIB-SEM measurements of graphene nanosheets
of different lengths. In this case, shorter nanosheets will result in FIB-SEM images
with more abrupt changes between consecutive frames. For instance, if the average
nanosheet length is L and the milling distance L0, for L ⇠ L0 one will encounter
often the situation where a nanosheet present in one image will not appear in the
next one.

In order to explore how the proposed model works with increasingly chal-
lenging datasets, the cases of networks made of shorter graphene nanosheets
are investigated, specifically those with average lengths of 80 nm and 298 nm.
Examples of such networks, together with the original one of 695 nm can be found
in Fig. 5.8. It should be noted that all the images displayed in the figure have
the same width, namely 6510 nm. This clarification is necessary to confirm that
they are generated using different samples, and are not different magnifications
of the same image. In this case, DP is used as an evaluation criterion for three
replaced frames case, together with the original rife hd model. The results can
be found in Fig. 5.9, where DP is shown against the average nanosheet length.
For this comparison, the data are binarized following the procedure described
in the previous section and DP is computed as an average over 100 images. It is
evident from the figure, as expected, that the performance of the proposed model
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Figure 5.9 – Porosity evaluated for the three replaced frames case, for different nanosheet
lengths (80 nm, 298 nm and 695 nm). The porosity is evaluated for each frame generated
by rife hd against the ground truth and it is expressed in terms of DP [see Eq. (5.1)]. The
average DP over 100 images and the associated variance is shown.

indeed deteriorates when reducing the nanosheet’s length. However, even for the
smallest sample, 80 nm, the error remains below a very acceptable 2 %. Note that
in these conditions (nanosheet length 80 nm and three replaced frames, equivalent
to ⇠50 nm milling distance) the milling distance is about half of the average feature
size of the sample. Since networks made of small flakes are certainly structurally
more fragile than those made with larger ones, the fact that the milling frequency
can be reduced significantly without a sensible loss in the accuracy of the morphol-
ogy determination, establishes a possible new experimental condition, where the
milling effects on the final morphology are strongly minimized.

5.3 Application to 3D medical datasets

The strategy proposed in this work is not limited to FIB-SEM generated data, but
can be employed to increase the frame rate of datasets of materials at different
scales, obtained by using different imaging instruments. The purpose of this
section is to show such transfer across scales, and for this reason, no additional
training or fine-tuning of the original model is performed. Being the original rife
hd version the only one considered in this section, it will be referred to as rife
from now on.
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Figure 5.10 – Application of rife to a MRI dataset. An example of the original and the
corresponding rife-generated frame in the sagittal view is shown in the first and second
top panels, respectively. The third panel displays the intensity difference between the
ground truth and the rife-generated images. The two datasets are segmented by using
the Anatomical pipeline of the BrainsSuite software, as displayed in the second row. The
original and corresponding rife-generated data are shown in the first and second panels,
respectively, while the third panel presents the difference between them. Although the
results are here presented in axial view only, the segmentation is performed on the full
volume.

5.3.1 MRI scans

The first example is an application of rife to human brain MRI scans. For this
dataset, the voxels of the reconstructed volume are already cubic with a 1 mm3

resolution. However, this is a useful case study, since it is possible to remove frames
from the scan sequence and use them as ground truth for the validation, as in
the case of FIB-SEM. In particular, every other frame is removed from the original
dataset, which has been downloaded from the Brainstorm repository [174, 175].
This is well documented and freely available online for download under the GNU
general public license. For this study, brain scans in the sagittal view are considered
as input for rife.

A visual comparison of one original and the corresponding rife-generated slice
in the sagittal view is shown in the first row of Fig. 5.10, where the patient was
defaced to fulfil privacy requirements. The third column of the mentioned figure
shows the difference between the original and the generated image. Clearly, the
visual inspection of the reconstructed image appears very positive with a difference
from the ground truth (see top right panel), which presents an error similar to that
of the FIB-SEM data, despite the rather different length scale, and little structure
in its distribution. The BrainSuite software [176] is then used to quantitatively
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compare the original and the rife-generated volumes, again trying to understand
whether the information content is preserved. One of the main components of
the BrainSuite software is the Anatomical pipeline, which allows one to retrieve
cortical surface models from MRI data. Moreover, it conducts surface-constrained
volumetric registration (i.e. the process of aligning or matching different images or
datasets so that they are in a common coordinate system or spatial relationship),
aligning the MRI with a labelled anatomical atlas. This alignment facilitates the
delineation of anatomical regions of interest within the MRI brain volume and on
the cortical surface models. In this context, the Anatomical pipeline is performed
on both stacks to obtain the full brain segmentation, whose output is shown in
the axial view in the first two panels of the second row of Fig. 5.10. Also in this
case, the visual inspection is similar to that made for the original images, with
similar error characteristics. These segmentations are then used to evaluate the
gray-matter volume variation (GMV), a widely used metric for the investigation of
brain disorders such as Alzheimer’s disease [18, 177]. This is defined as,

GMV =
pgray

pgray + pwhite
, (5.3)

where pgray and pwhite indicate the number of gray and white pixels, respectively.
The percentage error between the GMV of the two datasets is computed to be
0.5 %, again very low.

5.3.2 CT scans

The second medical application investigated here refers to CT scans. Note that this
measurement technique is not limited to the medical space, but it is also widely
used in industrial settings and, in general, as a research tool across materials
science [88]. The use of interpolation methods for medical CT could be really
transformative since a reduction of the collected frames translates into a reduction
of the radiation dose delivered to the patient. As a consequence, the potential
risk of radiation-induced cancer will diminish [19]. Alternatively, one may have
the possibility to perform more frequent scans for close monitoring of particular
diseases.

The dataset used for this investigation is downloaded from the Cancer Imaging
Archive [178, 179] and is provided as a set of 152 frames in the axial view, with a
pixel size of 0.74⇥ 0.74⇥ 2.49 mm. For this example, the voxels in the reconstructed
volume are not cubic and no ground truth is available. rife is then used to generate
three additional frames between every two existing ones.

The result can be seen in Fig. 5.11, Fig. 5.12, and Fig. 5.13. Fig. 5.11 show the
data in axial view. The panel on the left-hand side show one of the original frames
of the CT dataset, while the right-hand-side panel presents a frame generated



Video frame interpolation for 3D tomography 105

Figure 5.11 – Application of rife to an X-ray Computed Tomography dataset. Here the
results are presented in the axial view, namely the view in which the original sequence,
used as input for rife, is depicted. On the left-hand-side panel, there is one of the original
frames from the CT dataset, while the right-hand-side panel displays a frame created using
rife, with the former image serving as an input for the interpolation model. It is essential
to emphasize that these two panels depict different sections of the body, allowing for only
a qualitative comparison. This figure enables us to discern that rife effectively produces
reasonable representations of CT scans in the axial view.

with rife, using the former image as an input for the interpolation model. It
is important to note that in this case, the two panels do not represent the same
section of the body, therefore they can only be compared from a qualitative point
of view. From this figure, we can only observe that rife is able to generate realistic
representations of CT scans in the axial view. Fig. 5.12 displays the original
and rife-augmented datasets in coronal view, on the left- and right-hand-side
panels, respectively. The original-sized data are shown in the first row, while the
second row presents 150 ⇥ 150-pixels magnified portions of the data (indicated
by green boxes in the first row). The red and blue boxes are used for the noise
power spectrum analysis that will be described shortly. For the coronal view, the
comparative figure helps assess the improvement introduced by rife. This visual
comparison appears quite favourable, with the rife reconstruction being in general
smoother than the original image. This is, of course, the result of having more
frames added to the sequence. A similar comparison is proposed in Fig. 5.13, for
the sagittal view. Also in this case, and especially from the magnified portion
displayed in the second row, it is evident that the rife-augmented dataset presents
a more natural appearance of the body features.

Since no ground truth is available in this case, a different approach is needed
to provide a quantitative assessment of the interpolation procedure. Therefore,
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Figure 5.12 – Application of rife to an X-ray Computed Tomography dataset. Here the
results are presented in the coronal view. The left-hand-side panel displays the original
dataset, while the right-hand-side panel show the rife-augmented dataset, where three
additional frames have been added between every two consecutive frames. The green boxes
in the first row of the figure indicate a 150 ⇥ 150-pixels portion of the original-sized data
that is magnified in the second row. The red (Case 1) and blue (Case 2) boxes represent the
uniform regions used for the noise power spectrum analysis, whose results are presented
in Fig. 5.14.



Video frame interpolation for 3D tomography 107

Figure 5.13 – Application of rife to an X-ray Computed Tomography dataset. Here the
results are presented in the sagittal view. The left-hand-side panel displays the original
dataset, while the right-hand-side panel show the rife-augmented dataset, where three
additional frames have been added between every two consecutive frames. The green
boxes in the first row of the figure indicate a 150 ⇥ 150-pixels portion of the original-sized
data that is magnified in the second row.



Video frame interpolation for 3D tomography 108

the two image stacks, the original and the rife-reconstructed one, are compared
by estimating the noise power spectrum on the coronal plane, computed over
uniform regions of a sequence of ten images. This metric is generally used for the
assessment of the image quality of CT scanners and it is evaluated over uniform
regions of interest in water-filled phantoms [121]. As such, in order to adapt this
metric to clinical datasets, it is necessary to select uniform areas of the image. For
instance, the areas in Fig. 5.12 marked with the red and blue squares represent
two possible regions of interest, here called Case 1 and Case 2, respectively. The
noise power spectrum of these areas, evaluated over a stack of ten frames, is shown
in Fig. 5.14. From the analysis of both cases, it is evident that augmenting the
number of frames using rife is associated with a reduction of the noise in the data,
a reduction visible across the entire frequency range. This quantifies the original
observation that rife-augmented images look smoother. The same consideration
holds for other uniform regions that have been investigated with this approach.

It is worth mentioning that medical images undergo significant processing,
which impacts how noise and resolution appear in the final results. This is
influenced by several factors, such as image acquisition techniques, reconstruction
methodologies, and any additional post-processing steps. Further improvements,
achievable with different approaches, are not investigated in this work. Evaluating
the effect that different enhancement strategies have on the performance of rife, in
different contexts, will be the subject of future studies.

5.4 Application to coronary angiography videos

This section discusses an additional application of the video frame interpolation
method rife in the medical context. In this case, the technique is not used for
applications involving 3D tomography data, but for purposes closer to its original
development objective, namely increasing videos’ frame rates.

Notably, data in video format plays a crucial role in several medical procedures,
such as coronary angiography [91]. This practice employs fluoroscopy [90], a
real-time X-ray imaging technique, to assess the cardiovascular system. Coronary
angiography is an invasive, but relatively safe medical operation, where a catheter
is inserted into the human body, in order to deliver a contrast dye into the coronary
arteries. Live X-ray imaging helps to guide the catheter and visualize anomalies
in the blood flowing through the blood vessels. As explained in Chapter 2, one
of the drawbacks of this procedure is that both the patient and the medical
practitioner are exposed to ionizing radiation, which is associated with cancer
risks [19]. This aspect is particularly concerning for doctors, who perform several
procedures during their lifetime and need to adhere to the guidelines for radiation
protection [96].
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Figure 5.14 – Noise power spectrum analysis over two uniform regions in the coronal view
(see Fig. 5.12 for definition). The comparison is conducted between the original and the
rife-augmented dataset. The use of rife results in noise reduction for both the selected
regions and across the entire frequency range. The figure on the top panel shows the
results for the first case (red box in Fig. 5.12), while the bottom panel displays the results
for the second case (blue box in Fig. 5.12).
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One key factor in estimating the dose to which they are exposed is the frame
rate of the generated videos. In fact, a higher frame rate enhances video quality,
resulting in a more detailed and smoother representation of the procedure, though
at the cost of increased X-ray exposure due to the greater number of frames
captured. One possible solution to this problem is to generate synthetic frames to
reduce the exposure to X-rays. The aim of this section is to demonstrate how rife
can be used to obtain higher frame rates by adopting a fixed amount of ionizing
radiation, or, equivalently, how to reduce the X-ray exposure while working at
an established frame rate. To give an example, this technique could enable the
transformation of a video initially captured at a rate of 15 fps into a video operating
at a higher frame rate of 30 fps, allowing good quality visualization and low X-ray
exposure at the same time.

Remarkably, some investigation on the topic has been already carried out [180].
According to this study, which is limited to models realized before the development
of rife, the best-performing algorithm is rrin [181], which stands for Residue
Refinement Interpolation. This video frame interpolation neural network utilizes
adaptive weighting and residue refinement to generate intermediate frames be-
tween existing ones. In the coronary angiography study of reference [180], rrin
is compared to five other interpolation approaches, including dain [69]. The
comparison is realized in terms of PSNR and SSIM, after fine-tuning the models
on a large dataset, which is not made available to the public. Regrettably, the time
required for frame generation is not investigated. This is a crucial factor in contexts,
where the algorithm should be applied in real-time, as in the case of coronary
angiography procedures, and not as a post-processing optimization. Furthermore,
as previously discussed, the estimation of metrics such as PSNR and SSIM alone
might not be the best strategy to assess the quality of the information one can
retrieve from the data.

The aim of this section is to propose a more complete investigation of this
subject, by considering additional evaluation metrics. Three main approaches are
being investigated, namely rife, rrin, and linear interpolation. To be consistent
with the mentioned study [180], fine-tuning is performed on the pre-trained rrin
model.

Two types of datasets are considered for testing the different strategies. The
first dataset consists of quality assurance test objects. Secondly, clinically acquired
video frames of human patients are analyzed.

5.4.1 Quality assurance test objects

In order to assess the model’s performance, quality assurance test objects are
considered, also known as phantoms. These are specialized tools developed to
inspect the accuracy of medical imaging instruments. They are designed to replicate
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Table 5.1 – Video Frame Rate, Length, and Number of Frames for the data acquired with
the Leeds test object.

Frame Rate (fps) Video Length (s) Number of Frames
4 17.00 68

7.5 10.53 79
15 10.46 157
30 11.93 358

different human tissue densities and structures. For this research project, the
Leeds test object set [182] for digital subtraction fluorography2 [183] is considered.
Specifically, the to j3 component is used. This consists of two plates, each one
divided into four sections, with the relevant test details. One of the plates is a
fixed-base plate, while the second is a rotatable top plate. Videos of the Leeds test
object were acquired at the Mater Misericordiae University Hospital, Dublin, on a
Siemens Artis Zee angiography system, using the FL Service Mode, which is the
standard dose mode. The energy of the X-ray was set to 70 kVp, while the field of
view was 42 cm. To specify, kVp, or kilovoltage peak, refers to the peak voltage
applied across the X-ray tube in an X-ray machine. This value allows radiologists
to control the quality and penetration of X-rays used in medical imaging systems.

The videos were acquired at different frame rates, for different intervals of time.
More details can be found in Table 5.1. The object was manually rotated with a
stick by an operator. Therefore, the rotation speed is unknown. The software fiji
was used to convert the files from video format (.IMA extension) to sequences of
images (size 960 ⇥ 960 pixels) in .tiff format. For this analysis, rife is compared
to linear interpolation results. rrin is excluded from the investigation due to
the unfeasibility of performing fine-tuning on it. This is caused by the lack of
additional data that could be used for training, which should be separated from
the test set, in order to avoid overfitting. For this preliminary investigation, only
the videos captured at 15 and 30 fps are considered. For these datasets, frames
are removed from the original sequence and used as ground truth for comparison.
Specifically, two cases are considered: one and three frames are discarded every
two frames. The selected datasets will be referred to as 15 fps and 30 fps in this
work, meaning that the original frame rate will be used to indicate them. However,
it is worth observing that a 30 fps video from which every other frame is removed
corresponds to a 15 fps video. Similarly, removing three frames between every two
existing frames of a 30 fps video is equivalent to having a 7.5 fps video.

Firstly, the results are analyzed visually. Fig. 5.15 displays a visual comparison
for the case of the 30 fps video and one replaced frame. rife and linear interpolation

2Digital subtraction fluorography is an imaging technique that combines real-time X-ray,
namely fluoroscopy, with digital image processing, in order to enhance the visualization of
anatomical features.
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are applied to the full sequence, but only four frames are shown to examine the
performance of the different augmentation methods. The first column displays
the original ground-truth data. The second and third columns show the images
generated using rife and linear interpolation, respectively. The difference between
these results and the ground-truth image is depicted in the fourth and fifth columns,
for the two analyzed methodologies. The red/blue colourbar refers only to the
images in these last two columns. The first three columns show grayscale images,
with intensity within the range of 0 � 1.

A similar comparison is presented in Fig. 5.16, for the case of three removed
frames. The same kind of investigation is performed for the case of videos acquired
at 15 fps, whose results are displayed in Fig. 5.17 and 5.18, for the one- and three-
replaced-frames cases, respectively.

From all the figures, it is evident that rife performs better than linear interpo-
lation in the intermediate frame generation task. In fact, rife is able to correctly
depict the objects’ movement and presents errors mainly on the static background,
which shows some noise. In contrast, the linear interpolation results show system-
atic failures around the borders of the moving parts of the phantom, in addition
to small errors in the static areas. Undoubtedly, errors are more evident for both
methods in the three-replaced-frames cases, for any frame rate of the original
video. This feature is expected and was experienced also for the other datasets
investigated in this chapter. It should be noted that the dark stick seen in various
locations across all the images is not part of the Leeds test object but is the tool
used by the operator to rotate the test equipment.

In order to provide a more quantitative interpretation of these results, several
metrics are considered. Firstly, some standard computer vision metrics, such as
MSE, PSNR, and SSIM. Multi-scale SSIM is also considered, referred to as MS SSIM.
Additionally, FID (Fréchet Inception Distance) and WDS (Wasserstein Distance
Score) are computed. More details about the listed metrics can be found in Chapter
2. To recap their meaning, the metrics that indicate good performance when they
have higher values are PSNR, SSIM, and MS SSIM. In contrast, MSE, FID, and WDS
show better outcomes when they are low. It should be noted that only the frames
artificially generated are considered for the comparison, meaning that the identical
frames (i.e. the ones not removed from the original dataset) are not included in the
error evaluation, since there would be no associated error. In this section, the results
are shown as violin plots (Fig. 5.19, 5.20, 5.21, 5.22, 5.23, 5.24), in order to highlight
the distribution of the examined metric over the considered sequence of frames.
This provides a summary of the metric across the frames, which can be insightful
for understanding the overall performance. For each metric, the cases of one and
three replaced frames are presented, both for the video collected at 30 fps (left-hand
side panel) and the video collected at 15 fps (right-hand side panel). The rife and
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Figure 5.15 – Visual comparison of the frame reconstruction in the case where one frame is
removed from the 30 fps Leeds test object sequence. Four examples of results are presented,
one for each row. From left to right the figure displays: the ground truth image (original
frame removed from the dataset), those generated by rife and linear interpolation, the
difference between the original data and rife, and the difference between the original data
and the linear interpolation result. Regarding the image intensities, the first three columns
are grayscale images with values between 0 and 1, while the last two columns both follow
the colourbar depicted on the right side of the figure.
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Figure 5.16 – Visual comparison of the frame reconstruction in the case where three frames
are removed from the 30 fps Leeds test object sequence. Four examples of results are
presented, one for each row. From left to right the figure displays: the ground truth image
(original frame removed from the dataset), those generated by rife and linear interpolation,
the difference between the original data and rife, and the difference between the original
data and the linear interpolation result. Regarding the image intensities, the first three
columns are grayscale images with values between 0 and 1, while the last two columns
both follow the colourbar depicted on the right side of the figure.
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Figure 5.17 – Visual comparison of the frame reconstruction in the case where one frame is
removed from the 15 fps Leeds test object sequence. Four examples of results are presented,
one for each row. From left to right the figure displays: the ground truth image (original
frame removed from the dataset), those generated by rife and linear interpolation, the
difference between the original data and rife, and the difference between the original data
and the linear interpolation result. Regarding the image intensities, the first three columns
are grayscale images with values between 0 and 1, while the last two columns both follow
the colourbar depicted on the right side of the figure.
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Figure 5.18 – Visual comparison of the frame reconstruction in the case where three frames
are removed from the 15 fps Leeds test object sequence. Four examples of results are
presented, one for each row. From left to right the figure displays: the ground truth image
(original frame removed from the dataset), those generated by rife and linear interpolation,
the difference between the original data and rife, and the difference between the original
data and the linear interpolation result. Regarding the image intensities, the first three
columns are grayscale images with values between 0 and 1, while the last two columns
both follow the colourbar depicted on the right side of the figure.
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Table 5.2 – Comparison of mean values of several metrics, detailed in the first column.
The mean values are presented for a video acquired at 30 fps. The case of one and three
replaced frames are considered, for both the investigated interpolation methods, namely
rife and linear interpolation. The data refers to the Leeds test object.

Video 30 fps
1 replaced 3 replaced

RIFE Linear Int. RIFE Linear Int.
MSE 0.00012 0.00027 0.00019 0.00054

PSNR 87.5151 84.2797 85.4859 81.2677
SSIM 0.97682 0.98260 0.96896 0.97566

MS SSIM 0.98416 0.98119 0.97690 0.96909
FID 0.05102 0.13586 0.08285 0.26514

WDS 0.00147 0.00154 0.00166 0.00236

Table 5.3 – Comparison of mean values of several metrics, detailed in the first column.
The mean values are presented for a video acquired at 15 fps. The case of one and three
replaced frames are considered, for both the investigated interpolation methods, namely
rife and linear interpolation. The data refers to the Leeds test object.

Video 15 fps
1 replaced 3 replaced

RIFE Linear Int. RIFE Linear Int.
MSE 0.00020 0.00034 0.00044 0.00065

PSNR 85.4398 83.3016 82.1740 80.4832
SSIM 0.97194 0.98312 0.96320 0.97688

MS SSIM 0.97550 0.97631 0.96451 0.96496
FID 0.09638 0.17980 0.21860 0.34800

WDS 0.00155 0.00197 0.00214 0.00310

linear interpolation methods are considered. For each method-case combination,
the mean value of the analyzed metric is displayed in the relevant violin plot, as a
black dot. The exact numeric values of the mean for each metric distribution are
detailed in Table 5.2 and Table 5.3. As expected, and in agreement with the visual
analysis of the images, the results are more inaccurate when increasing the number
of replaced frames from one to three, for all the considered metrics. Overall, errors
appear to be higher for all results obtained on the 15 fps sequence, as foreseeable.
The comparison between rife and linear interpolation is consistent with what can
be evinced for the visual analysis of the results for all metrics except SSIM, for both
the 30 fps and 15 fps cases. In this latter case, also the MS SSIM metric appears
to be slightly better for the linear interpolation method than rife; indeed, the MS
SSIM mean value of linear interpolation is 0.0831 % higher than the one of rife.
For all the other metrics, error reduction is experienced when using rife instead of
linear interpolation.

Additional studies are needed to expand and complete this investigation. Firstly
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Figure 5.19 – Comparison of Mean Squared Error (MSE) distributions for rife and linear
interpolation methods across two test cases (one and three replaced frames). The results
for video acquired at 30 fps are presented on the left-hand side panel, while the results for
the 15 fps video are on the right-hand side panel. Violin plots illustrate the distribution
of metric values, with the black dot representing the mean value for each method-case
combination.

Figure 5.20 – Comparison of Peak Signal to Noise Ratio (PSNR) distributions for rife and
linear interpolation methods across two test cases (one and three replaced frames). The
results for video acquired at 30 fps are presented on the left-hand side panel, while the
results for the 15 fps video are on the right-hand side panel. Violin plots illustrate the
distribution of metric values, with the black dot representing the mean value for each
method-case combination. The results refer to the Leeds test object.
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Figure 5.21 – Comparison of Structural Similarity Index Method (SSIM) distributions for
rife and linear interpolation methods across two test cases (one and three replaced frames).
The results for video acquired at 30 fps are presented on the left-hand side panel, while
the results for the 15 fps video are on the right-hand side panel. Violin plots illustrate
the distribution of metric values, with the black dot representing the mean value for each
method-case combination. The results refer to the Leeds test object.

Figure 5.22 – Comparison of Multi-Scale SSIM (MS SSIM) distributions for rife and linear
interpolation methods across two test cases (one and three replaced frames). The results
for video acquired at 30 fps are presented on the left-hand side panel, while the results for
the 15 fps video are on the right-hand side panel. Violin plots illustrate the distribution
of metric values, with the black dot representing the mean value for each method-case
combination. The results refer to the Leeds test object.
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Figure 5.23 – Comparison of Frechet Inception Distance (FID) distributions for rife and
linear interpolation methods across two test cases (one and three replaced frames). The
results for video acquired at 30 fps are presented on the left-hand side panel, while the
results for the 15 fps video are on the right-hand side panel. Violin plots illustrate the
distribution of metric values, with the black dot representing the mean value for each
method-case combination. The results refer to the Leeds test object.

Figure 5.24 – Comparison of Wasserstein Distance Score (WDS) distributions for rife and
linear interpolation methods across two test cases (one and three replaced frames). The
results for video acquired at 30 fps are presented on the left-hand side panel, while the
results for the 15 fps video are on the right-hand side panel. Violin plots illustrate the
distribution of metric values, with the black dot representing the mean value for each
method-case combination. The results refer to the Leeds test object.
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videos acquired at different frame rates should be examined with the proposed
approaches. In line with the results obtained for the 30 fps and 15 fps cases, a
deterioration of the performance of each model is expected when reducing the
video frame rate. Secondly, other test objects should be taken into consideration,
such as the NEMA phantom [184], widely used to benchmark cardiac fluoroscopy
performance.

Furthermore, it would be beneficial to examine the metrics values by focusing
only on the moving parts of the images, without considering errors related to the
background. In fact, these regions are affected by static noise, which is not too
relevant to the aim of fluoroscopy procedures. This alternative analysis would help
to focus on the key areas of interest for fluoroscopy and could potentially lead to
more clinically relevant results. It must be noted that the background-related noise
would be removed only for evaluation purposes and not for the frame generation,
for instance with some smoothing filter. Indeed, this would cause flickering in the
video, due to different noise levels between the original and the artificially added
frames.

Lastly, the acquisition of fluoroscopy videos at different X-ray energy levels
should be addressed. The kVp is a critical parameter in X-ray imaging that
determines the energy and penetration of the X-ray beam, with impact on image
contrast, quality, and radiation dose to the patient. Having images with different
levels of contrast could affect the interpolation performance, for all the examined
methods. Therefore, interesting results could be deduced from this analysis, which
could have an effect on the kVp settings during clinical acquisition too.

5.4.2 Clinical data

Clinical data from coronary angiography procedures are also considered for this
study. The aim of this section is to describe some preliminary results, obtained on
a dataset made of 124 frames (size 512 ⇥ 512 pixels), extracted from a coronary
angiography video, with a frame rate of 30 fps. Also for this case, one frame every
two frames is removed and used as ground truth, for performance assessment.
For this investigation, three techniques are compared: rife, rrin, and linear
interpolation. In order to make the study consistent with the one conducted by Yin
et al. [180], fine-tuning is performed on the pre-trained rrin model. Specifically,
the algorithm is fine-tuned for 100 epochs on 233 triplets from a clinical dataset
acquired at 30 fps, different from the dataset used for testing.

As always, the first comparison is visual. Fig. 5.25 and 5.26 show the results
for two different frames, randomly selected from the clinical dataset. In both
representations, the image in the first column shows the original frame removed
from the dataset, namely the ground truth. The same frame, generated with
different interpolation methods, is presented in the following columns. Going
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from left to right, the figure displays the results obtained with rife, rrin, and
linear interpolation. On the second row, the difference between the ground truth
and the mentioned methods can be found. In order to investigate the results
more in detail, a portion of size 100 ⇥ 100-pixel of the images in the first row is
magnified and displayed in the third row. The exact location of this portion is
specified by the green box in the upper left panel. Finally, the differences between
the ground truth and the analyzed interpolation method, for the reduced images,
are presented in the fourth row. From both examples, it is evident that linear
interpolation should be avoided, since it provides inaccurate results, especially in
areas separating the background from the moving objects (i.e. the blood vessels
in this case). rife and rrin seem to provide similar results in terms of vessel
localization. However, the frame generated by using rrin presents smoothed
features and, in general, higher brightness, as it can be evinced by the prevalence
of blue pixels in the panels in the second and fourth rows. Blue pixels correspond
to negative values in the difference, meaning that the rrin-generated image is
made of pixels with systematically higher values, compared to the ground-truth
data. In contrast, rife difference images present a more uniform error distribution
in the background areas, which reflects the expected static noise effect. This is not
necessarily a problem when the goal of the analysis is to examine the blood flowing
through the vessels per se, but it can make the video visualization unpleasant, due
to flickering between the experimentally acquired and the artificially generated
images. Therefore, real-time use during the medical procedure would be hindered
by this aspect.

Another important investigation concerns the time required to generate one
additional frame, using two different methods, namely rife and rrin. The com-
parison is carried out both with and without the use of a GPU, which can have a
significant impact on the model speed. This investigation is performed considering
clinical images of size 512 ⇥ 512 pixels. Without a GPU, the average time to gener-
ate an image using rrin is about 6.14 s, which can be reduced to 1.39 s with rife.
The performance improves for both models when a GPU is employed. Specifically,
rrin requires 0.03 s on average to produce a 512 ⇥ 512 pixels image, while rife
only takes 0.01 s. In order to be suitable for real-time applications, the model
should be able to perform the interpolation task in less than the human reaction
time, that is in the range of 0.20 to 0.25 s. Therefore, the solutions without GPU
need to be excluded from live applications. When employing a GPU, rife appears
to be more advantageous from the speed perspective. It is worth mentioning that
linear interpolation was excluded from this speed analysis, due to the numerous
inaccuracies found in the generated frames.

Another aspect that makes rife a better candidate for the purpose of this
investigation, is that there is no requirement for fine-tuning. In fact, this would
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Figure 5.25 – First example of visual comparison of the image reconstruction in the case
where one frame is removed from the clinical coronary angiography sequence. From left
to right the figure displays: the ground truth image (original frame removed from the
dataset), those generated by rife, rrin, and linear interpolation. The second row displays
the difference between the ground truth and the reconstructions. A 100 ⇥ 100-pixel portion
of each image (see green box in the upper left panel) is magnified and shown in the third
row, while the differences from the original image are in the fourth row.
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Figure 5.26 – Second example of visual comparison of the image reconstruction in the
case where one frame is removed from the clinical coronary angiography sequence. From
left to right the figure displays: the ground truth image (original frame removed from the
dataset), those generated by rife, rrin, and linear interpolation. The second row displays
the difference between the ground truth and the reconstructions. A 100 ⇥ 100-pixel portion
of each image (see green box in the upper left panel) is magnified and shown in the third
row, while the differences from the original image are in the fourth row.
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Table 5.4 – Comparison of mean values of several metrics, detailed in the first column. The
mean values are presented for a clinical video acquired at 30 fps. The case of one replaced
frame is considered, for all the investigated interpolation methods, namely rife, linear
interpolation, and rrin.

Video 30 fps
1 replaced

RIFE Linear Int. RRIN
MSE 0.00025 0.00034 0.00019

PSNR 84.0746 82.7833 85.3158
SSIM 0.94925 0.93639 0.97158

MS SSIM 0.94635 0.92827 0.96208
FID 0.10755 0.14205 0.08813

WDS 0.00250 0.00276 0.00171

require additional data, ideally coming from other acquisition sessions, carried
out with different equipment, to avoid the risk of overfitting. Moreover, any data
belonging to the medical context should undergo some ethical approval procedures,
which might limit the model distribution. It should be noted that the original
pre-trained rrin model has been considered for an initial visual performance
assessment. However, the images were more inaccurate and, therefore, only the
fine-tuned version of rrin is presented in this work.

A quantitative analysis, similar to the one performed for the Leeds test object,
was conducted also in this case. The results can be found in Fig. 5.27, 5.28, and 5.29,
which displays the distribution of several metrics (MSE, PSNR, SSIM, MS SSIM,
FID, and WDS), for the 30 fps video and one replaced frame. The mean value of
each distribution is detailed in Table 5.4, for each method-case combination. For
all the analyzed metrics, the results are not consistent with what can be concluded
from the visual comparison. In fact, as it can be seen from Fig. 5.27, 5.28, and
5.29, rrin appears to be the best-performing approach, according to all metrics,
followed by rife and lastly by the linear interpolation. The reason behind these
outcomes could be related to the smoothing that characterizes the rrin images,
which contributes to lowering the error, especially in the background areas, which
is the greater part of the image.

This controversy between the visual evaluation and the computed results
seems to indicate that the presented metrics are not adequate for performance
assessments, in this context. The same analysis was also conducted on two other
datasets, also retrieved from 30 fps video sequences, with similar results. Therefore,
these metrics might not fully capture the nuances of clinical data or the preferences
of medical experts. For this reason, the described evaluation was not extended to
other videos, obtained at different frame rates.

Different approaches are currently being investigated to analyze the results
related to clinical data. One possible solution is to adopt a strategy similar to the
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Figure 5.27 – Comparison of Mean Squared Error (MSE) distributions (top panel) and Peak
Signal to Noise Ratio (PSNR) distributions (bottom panel) for rife, linear interpolation,
and rrin methods. The results for video acquired at 30 fps are presented, for the case
of one replaced frame. The black dot represents the mean value for each method-case
combination.
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Figure 5.28 – Comparison of Structural Similarity Index Method (SSIM) distributions
(top panel) and Multi-Scale SSIM (MS SSIM) distributions (bottom panel) for rife, linear
interpolation, and rrin methods. The results for video acquired at 30 fps are presented,
for the case of one replaced frame. The black dot represents the mean value for each
method-case combination.
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Figure 5.29 – Comparison of Frechet Inception Distance (FID) distributions (top panel) and
Wasserstein Distance Score (WDS) (bottom panel) for rife, linear interpolation, and rrin
methods. The results for video acquired at 30 fps are presented, for the case of one replaced
frame. The black dot represents the mean value for each method-case combination.
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one followed for the FIB-SEM dataset, meaning the segmentation of images before
evaluating specific metrics. However, in this case, being the nature of the images
more convoluted, a more sophisticated approach would be necessary, compared
to the binarization performed with the weka segmentation tool [167] available in
Fiji [45]. In the clinical case, a neural network developed for image segmentation
should be used. Notably, several algorithms are available for image segmentation,
also for medical data [185, 186]. However, the images and the correspondent
segmentation masks needed to train or fine-tune these models are not easily
accessible. Interestingly, segmentation methods developed for retinal vessels
datasets could be good candidates for the segmentation of coronary angiography
data, since the images present similar features [187]. The use of these pre-trained
models could potentially overcome the limitation posed by the scarcity of labelled
coronary angiography data.

In addition to the factors discussed earlier, there are other crucial aspects
that demand consideration when assessing medical images. Among these, two
noteworthy features are the level of noise and the image sharpness, both of
which can substantially influence the comprehensibility and utility of clinical data.
Specifically, the presence of noise corresponds to variations in pixel intensity, which
can obscure details and structures in the image, affecting the data interpretability.
Image sharpness refers to the clarity and definition of edges and fine details
within an image. In the medical context, images with poor sharpness can lead
to misinterpretations, with severe consequences for the patient care. Therefore,
this aspect should be an integral part of image quality assessment in the clinical
context.

Furthermore, it is important to verify that the artificially generated data have a
positive effect on the diagnostic process. A possible solution to solve this ambi-
guity is the involvement of medical experts in the development of the evaluation
procedure. Specifically, doctors can provide their opinion on the generated data by
assigning quality scores to the different video frames. This approach is also useful
for the identification of possible inconsistencies and biases that could affect the
algorithms. It is worth mentioning that, for clinical applications, the identification
of suitable assessment metrics is not as straightforward as it is for the FIB-SEM
example. Indeed, for the dataset analyzed in Section 5.2.2, features such as network
porosity and tortuosity can be easily computed to achieve an exhaustive description
of information retrievable from the data, which affects the materials’ properties. In
the healthcare context, the desirable image characteristics depend on the specific
purpose of the procedures. Notably, coronary angiography can serve different
purposes [188].
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5.5 Conclusions and outlook

This chapter demonstrates that a state-of-the-art neural network, developed for
video-frame interpolation, can be used to increase the resolution of image se-
quences in 3D tomography. This can be applied, without further training, across
different length scales, going from a few nanometers to millimeters, and to the
most diverse types of samples. As the main benchmark, a dataset of images of
printed graphene nanostructured networks has been considered, obtained with
the destructive FIB-SEM-NT technique. For this, computer-vision metrics have
been carefully evaluated, but most importantly the quality of the information
content that can be extracted from the 3D reconstruction has been investigated. In
particular, the porosity, tortuosity, and effective diffusivity of the original dataset
have been computed. The outcomes of this evaluation were then compared to
datasets where an increasing number of images were removed and replaced with
computer-generated ones.

In general, this study demonstrates that motion-aware video-frame interpo-
lation outperforms any other interpolation strategies. In particular, it has been
shown that it is not prone to image blurring, typical of simple linear interpolation,
or to resolution loss at the image boundaries, as shown by some hybrid optical-flow
algorithms. Most importantly, the error on the determination of morphological
observables, such as the porosity, remains below 2 % as long as the milling thick-
ness is less than approximately half of the nanosheet length. This suggests a
very favourable experimental condition, where the effects of the milling on the
measured morphology are significantly mitigated. Further investigations in this
context will involve the application of rife to other FIB-SEM-generated datasets,
made of different materials, such as printed WS2 nanosheets and Silver nanosheets.
The results presented in this work suggest that the performance should not change
when considering materials with similar nanosheet lengths. In fact, the rife hd
model shows excellent performance on datasets never seen before, without being
fine-tuned. Additionally, more complex network features should be investigated
to compare the different interpolation methods. Some examples are nanosheet
alignment and connectivity [170].

The analysis was also extended to datasets taken from the medical field. These
include a 3D tomography of the human brain volume, acquired with magnetic
resonance imaging, an X-ray computed tomography of the human torso, and
coronary angiography videos. In the first case, a ground truth was available
and allowed us to show that the estimate of the gray-matter volume variation
is only affected by 0.5 %, when half of the images in a scan are replaced by
video-frame interpolated ones. This suggests that the scan rate can be actually
reduced during the experimental procedure, saving acquisition time. In contrast,
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for the CT scan, no ground truth was available. Therefore, other metrics have
been estimated. In particular, it has been shown that data augmentation with
computer-interpolated images, improves the power spectrum of the tomographic
reconstruction, confirming the visual impression of smoother images. This result
may be potentially transformative, since it can pave the way for reduced scan
rates, with the consequent reduction in the radiation dose to be administrated to
the patient. For both the described healthcare applications, further studies are
necessary to quantify the improvement provided by the synthetically generated
data. For instance, organ segmentation, using specialized tools, might be performed
on the original and augmented datasets and compared through metrics such as
the Dice similarity coefficient [114].

The last investigated application, in the medical context, concerns the use of
interpolation techniques to increase the frame rate of coronary angiography videos,
aiming to reduce the ionizing radiation exposure. Comparative analyses involving
the methods rife, rrin, and linear interpolation are conducted on quality assurance
test objects and clinically acquired video frames. For both cases, visual evaluations
show that rife maintains better object movement representation. rrin results also
demonstrate good interpolation capability. However, it is also associated with
systematic image smoothing, which can cause flickering in the videos and interfere
with the clinical interpretation of the data. Importantly, the interpolation speed is
also analyzed, with outcomes that indicate rife as the most suitable method for
real-time applications with a GPU. In the clinical dataset, discrepancies between
visual evaluation and quantitative metrics (MSE, PSNR, SSIM, MS SSIM, FID, and
WDS) suggest that the chosen metrics might not fully capture clinical preferences or
nuances. Future investigations are planned, including the examination of different
frame rates and alternative test objects like the NEMA phantom [184]. The analysis
will also focus on evaluating specific image features in clinical data, considering
factors such as noise and image sharpness.

In general, for all the explored medical applications, the aim of this research
project is only to be a proof of concept, to demonstrate the feasibility of the
proposed approach. Further investigations are needed before claiming a practical
use in the clinical context. Additional studies should involve applications to data
generated with different instrumentation, in order to ensure the model’s ability to
generalize well on data that might have different characteristics.

Moreover, the opinion of medical professionals is crucial to assess the infor-
mation content retrievable from the data. This can be achieved through surveys,
where the medical experts are exposed to a set of artificially generated images
and are asked to grade their quality according to a specified scale. Despite being
a subjective evaluation, this approach is widely employed in the healthcare field,
to guarantee that the model results are in accordance with human experts. In
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fact, medical practitioners could be able to identify artefacts and biases affecting
the algorithms, not easily recognizable by computer vision metrics. Lastly, for all
medical applications, in order to have an accurate analysis and identify appropriate
metrics, it is advisable to define a specific purpose for which the data is used.
This allows us to assess the model’s performance in generating information that is
useful for a precise purpose.

In addition to all the proposed investigations, the effect that different imaging
conditions have on the performance of the rife algorithm should be explored, for
all the applications. For instance, the input data could present different brightness,
contrast, and resolution levels, all factors that could affect the interpolation output.

In summary, this chapter has shown that video-frame interpolation techniques
can be successfully applied to 3D tomography regardless of the acquisition experi-
mental technique and of the nature of the specimen to image. This can improve
practices when radiation-dose damage or the acquisition time are issues limiting
the applicability of the method.



CHAPTER 6

CONCLUSIONS

Electron microscopy plays a decisive role in a multitude of research fields and
industrial applications, yielding invaluable insights and discoveries. However,

despite its remarkable achievements, electron microscopy still faces challenges
rooted in instrumentation limitations and specimen fragility, which can affect the
quality of the retrieved information. Overcoming these limitations traditionally
required substantial investments in hardware advancements.

This research project explored an alternative strategy, that is steadily gaining
more recognition in the field of electron microscopy and that does not necessitate
hardware modifications. This approach is based on the use of machine-learning
techniques to enhance imaging capabilities. Furthermore, this project extended its
scope beyond materials science and electron microscopy, with applications in the
domain of medical imaging instruments.

Throughout the entire work, particular effort was devoted to the development of
accurate and relevant validation methods, to assess the results objectively. This can
be particularly challenging when dealing with visual data enhancement, especially
in the medical context.

The first electron-microscopy-related problem tackled in this work concerns one
of the main limitations of Scanning Transmission Electron Microscopes (STEMs).
These are powerful imaging instruments, that allow achieving the highest resolu-
tion of all electron microscopes, below 0.1 nm. However, this capability typically
necessitates the use of high electron doses, a practice that can induce specimen
damage and compromise observation quality, mainly due to knock-on and radioly-
sis damage mechanisms. These detrimental factors can be reduced when the beam
intensity is decreased. However, this approach hampers the prospect of extracting
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valuable insights from the data. This is due to the presence of Poisson noise, an
effect, related to the quantized nature of the electron beam, that cannot be cor-
rected at the instrumentation level and that increases when the number of incident
electrons is reduced. In the context of modern imaging instruments and digital
acquisition, other types of noise can be disregarded. To overcome this challenge
and be able to examine beam-sensitive materials, this work proposed a machine
learning-based strategy designed to noticeably enhance the quality of STEM data
acquired at low electron doses. Trained on a dataset of simulated images, which
reproduce realistic data acquisition scenarios, the model was tested on both syn-
thetic and experimental data. The results of these tests clearly demonstrated an
enhanced image quality and the ability to extract valuable information from the
data without any bias. Several dose levels were available for the experimental
images, representing a Gold nanoparticle deposited on an amorphous Carbon
substrate, acquired in digital mode. This allowed an investigation of the model’s
performance at different levels of complexity. The primary distinction among the
displayed reconstructions lies in the morphology of the individual atoms, which
becomes increasingly more spherical with higher doses. This serves as evidence of
the algorithm’s impartiality in generating spherical atoms. Moreover, the residual
(i.e. the difference between the original noisy and the reconstructed images) and
the Fast Fourier Transform of the residual are presented, to demonstrate the fea-
tures of the removed Poisson noise. Quantitive assessments of the results have been
performed on simulated data, which allows the comparison of the investigated
metrics with ground truth results. Firstly, the line profile analysis was performed
on noise-free, noisy, and reconstructed images of TePb, simulated at a dose of 1,000
e�/Å2. The comparison of the three intensity profiles along a defined scan line
demonstrates that the outcome of the proposed denoising approach maintains the
same content of information of the ground truth (namely the original noise-free
image), in terms of locations and discernment between distinct atomic species.
Additionally, a workflow was proposed to compare the precision of atomic column
localization in datasets obtained with different strategies, which are validated
against the ground truth values. Atomic column localization is crucial for extract-
ing structural information and quantifying lattice strain, which impacts material
properties. The investigation was performed on simulated images of Tellurene,
at different dose levels, within the range 500-10,000 e�/Å2. The results of this
study show that the strain error, both in the horizontal and vertical directions,
is dose-dependent, with noisy images exhibiting higher errors. The denoising
autoencoder significantly improves strain error, offering adaptability to different
dose levels. In contrast, Gaussian filtering, a commonly used solution for denoising,
fails to enhance column localization except at very high doses.

Future developments of this project involve a potential integration of the
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algorithm into the live data acquisition. This would be useful to assist microscopy
users during the experimental procedure. In fact, based on the denoised data, the
user would be able to adjust the implemented electron dose. Several aspects of the
developed method would make it suitable for this pursuit. Firstly, the denoising
process for a 128 ⇥ 128-pixel image can be completed in just about one second.
Additionally, the proposed scheme operates autonomously and does not rely on
human input or specific knowledge of electron dose.

Perspective studies will also focus on the development of quantitative validation
methods to further assess the results achieved on experimental images. In this
case, full-reference metrics cannot be used, due to the lack of ground-truth data.
Among others, one possible solution is to involve expert microscopists to grade the
quality of the artificially generated images, according to specified quality scores.

A comprehensive exploration of the autoencoder’s latent space is crucial to
obtain a deep understanding of the model’s performance and to gain valuable
insights into the denoising process. Analyzing the latent space can reveal the
clustering and distribution of encoded features, disclosing the model’s ability to
capture essential information while filtering out noise. The study of the relation-
ships between encoded representations and their corresponding denoised images
has the potential to offer a clear understanding of how the model converts noisy
inputs into cleaner outputs.

In summary, utilizing this model could lead to a significant reduction in the
required electron dose for experimental acquisitions, enabling the analysis of highly
beam-sensitive materials that would otherwise be challenging to study.

The application of the developed model to analog data, also affected by Gaus-
sian noise led to the development of the next project. The main goal of this next
project was to facilitate the defects quantification of STEM-acquired images of
transition metal dichalcogenides (TMDs) by using a denoising autoencoder, whose
capabilities have been confirmed by the results presented in Chapter 3. The model
is here applied to experimental analog data, acquired with two different micro-
scopes (Nion and Titan), which can achieve different resolutions. The presented
preliminary results are obtained on MoS2 samples, produced following the liquid
phase exfoliation preparation method. The denoised images were subsequently
processed using the software Atomap [144] to locate atomic columns belonging to
the different sublattices. The percentage of vacancies was then calculated based
on the deviation from the expected number of chalcogen atoms in an ideal lattice.
Results indicated an average vacancy percentage of approximately 4 % for the
Nion dataset and about 6 % for the Titan dataset. However, these findings are influ-
enced by various factors impacting vacancy counting. The neural network-based
denoising algorithm, while effective, could potentially introduce inaccuracies when
applied to noisy images. To assess the impact of this source of error, future investi-
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gations should include a comparison of vacancy identification between the original
noise-free images and the denoised version, for simulated data. Furthermore,
the precision of Atomap’s atom localization could be evaluated by comparing its
results with those obtained from alternative software like StatSTEM [135]. The
utilization of the wraparound lattice approximation, designed to account for edge
effects, may also introduce inaccuracies.

Future research will extend the study to other TMDs such as WS2 and PtSe2

and explore differences in vacancy counts between samples prepared using dif-
ferent methods, including mechanical exfoliation. It’s important to note that the
current methodology does not distinguish vacancies in different layers of the
material. To address this, a threshold-based approach will be considered. Lastly,
digitally acquired data should be investigated to simplify vacancy identification by
eliminating Gaussian noise as an obstacle to atom localization.

Another electron microscopy-related problem was addressed in this work,
namely, the anisotropic resolution of FIB-SEM-generated 3D tomography. FIB-
SEM imaging technique is instrumental in the investigation of nanostructured
networks. However, the lack of isotropic resolution in the reconstructed volumes
can hinder the analysis of the morphology of these materials. For this project,
an interdisciplinary approach was followed. In fact, a neural network developed
for video frame interpolation was used to generate additional frames between
existing ones, which allows for achieving cubic voxels in the volume reconstruc-
tion. The application of this strategy on a dataset made of networks of printed
graphene nanosheets was presented, together with a meticulous analysis of the
results, according to different strategies. Comprehensive assessments included
computer-vision metrics and a focus on the quality of information extracted from
3D reconstructions, such as porosity, tortuosity, and effective diffusivity. These fea-
tures were evaluated on datasets generated using different interpolation methods,
which are compared throughout the analysis. It should be noted that all the used
metrics are full-reference. In fact, frames were removed from the original dataset
to be used as ground truth.

The results indicate that motion-aware video-frame interpolation, like the cho-
sen rife model, outperforms other interpolation methods. It effectively mitigates
issues like image blurring and resolution loss at image boundaries, making it par-
ticularly advantageous for improving morphological measurements. Even when
milling thickness is a significant factor, this technique maintains an error below 2 %
for the porosity evaluation, indicating its suitability for challenging experimental
conditions.

Importantly, the exploration of a diversified set of validation metrics led to the
conclusion that standard computer-vision metrics can lead to imprecise results. For
instance, the interpolation method isoflow appears to be better performing than
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another video frame interpolation neural network, namely dain, according to the
evaluation of both MSE and SSIM metrics. However, an examination of properties
specific to the analyzed system, such as the network porosity, demonstrated that
the results are actually reversed for these two approaches. As a consequence,
an inspection of other sample-related features should be performed, in order to
sustain the proposed approach. Some examples include the study of the alignment
and connectivity of the nanostructured networks, which highly affect the properties
of the investigated materials. Future research endeavours will also extend the
application of this approach to other FIB-SEM-generated datasets, acquired with
samples made of different materials.

Notably, the investigation was not limited to FIB-SEM data, and the method’s
versatility was demonstrated across various length scales, from nanometers to
millimeters, and diverse sample types. In fact, the described approach was further
extended to healthcare applications, including Magnetic Resonance Imaging (MRI)
of the human brain, X-ray Computed Tomography (CT) of the torso, and coronary
angiography videos. In the case of MRI, the study revealed a 0.5 % impact on
the estimate of gray-matter volume variation when replacing half of the scan
images with interpolated ones, potentially leading to shorter scan times. This test
was made possible by the availability of ground-truth data, namely the frames
removed every two existing frames from the original dataset, described by cubic
voxels. In contrast, in the case of X-ray CT, the ground truth was not available.
Therefore, the assessment of the results was achieved by comparing the noise
power spectrum of the original and the artificially-augmented datasets, evaluated
after 3D reconstruction. This comparison indicated a noise reduction in the latter
case, which supports the perceived smoother image appearance. As a consequence,
the patient’s radiation exposure could be potentially reduced.

Likewise, in the case of the application of rife on coronary angiography videos,
the ultimate goal is to limit the ionizing radiation delivered not only to the patient
but also to the medical practitioner performing the procedure in the same room.
For this study, two different types of datasets were investigated, videos acquired
on a quality assurance test object and clinical data, both obtained at various frame
rates. Comparative analyses have been conducted, involving methods such as
rife, rrin, and linear interpolation. Visual evaluations have demonstrated that
rife excels in preserving object movement representation. rrin also exhibits good
interpolation capabilities but introduces systematic image smoothing, potentially
causing flickering in the resulting video and interfering with clinical data inter-
pretation. Additionally, the study includes an assessment of interpolation speed,
which suggests that rife is the most suitable method for real-time applications with
GPU support. For both datasets, the visual comparison was followed by a more
quantitative evaluation, comprising full-reference metrics such as MSE, PSNR,
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SSIM, MS SSIM, FID, and WDS. In the case of the test object videos, the results
are consistent with the visual assessment of the generated video frames, depicting
rife as the best-performing model. This outcome was not experienced in the case
of clinically acquired videos of human patients. Indeed, according to this analysis,
rrin is the most advantageous of all methods, despite the defects identified from
visual comparison. Therefore, different evaluation metrics should be addressed, in
order to fully capture the features of this kind of data. As discussed throughout the
entire work, establishing appropriate metrics for the evaluation of image quality is
a challenging task, especially in the medical context. For instance, image sharpness
and noise should be considered, characteristics that could highly affect the clinical
interpretation.

In general, for all the described medical applications, additional assessment
procedures should be explored. Specifically, the input of medical experts should
be considered, through surveys and quality grading systems. Indeed, medical
practitioners may have the ability to identify artefacts and biases that affect algo-
rithms, which might not be easily recognizable through computer vision metrics.
Furthermore, the assessment procedures should be defined according to a specific
medical purpose, which could facilitate the identification of meaningful metrics.
Despite the need for further inspection in the medical application, this part of
the research work demonstrated the successful implementation of video-frame
interpolation techniques to enhance 3D tomography across diverse scales and
sample types.

To conclude, this research project has effectively demonstrated the successful
application of neural networks to enhance today’s capabilities in the field of electron
microscopy, also extended to the medical imaging areas. Thanks to these tools,
imaging efficiency can be improved, in terms of the range of material that can be
analyzed, the speed of the acquisition process, and the quality of the retrieved
information. Importantly, once the models are trained, they operate autonomously,
meaning that they do not require input from the users. This makes them accessible
to individuals from diverse backgrounds, even those without training in data
science or machine learning.

The ultimate goal of this work is to make a contribution toward the integration
of machine-learning techniques into imaging systems, with a particular focus on
electron microscopy instruments, in order to assist and advance the imaging power.
This integration has the potential to open doors to exciting new discoveries in
various domains.
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