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Abstract

Materials discovery has always been constrained by the classic approach to sci-

entific discovery, often characterized by a combination of either human intuition or

luck. Machine learning (ML) gives us the opportunity to turn this paradigm on its

head. Computational techniques, based on ML algorithms, offer the potential to invert

the discovery-to-design pipeline and target materials design to pre-defined properties,

which are desirable for given applications.

This thesis developed new methods for executing the various stages of this inverse-

design pipeline, by employing techniques that originate in several disparate fields within

the domain of ML, ranging from regression techniques all the way to the newest gen-

eration of transformer networks, primarily used for natural language processing. Li-

braries of SNAP potential energy surfaces for two-dimensional materials were gener-

ated, with which the vibrational and thermal properties of composite heterojunctions

could rapidly be computed. Such a step allows for the materials property space to

be sampled for rapid property screening applications. These computations were per-

formed and benchmarked against their first-principles equivalents and also experimen-

tal results, demonstrating very good agreement with both.

Further to this, a pipeline was constructed to isolate arbitrary compound-property

relationships directly from scientific literature with minimal human intervention, in or-

der to bypass any materials property calculations to construct property screening mod-

els. This step was executed by leveraging the superior natural language understanding

of transformer networks. Models based on these networks were chained together to

form an extraction pipeline that could be constructed using a few annotated examples,

representing the totality of human intervention required. The resulting databases were

demonstrated to be useful for rapid property screening, demonstrating the screening

of high-Curie temperature compounds with a precision of 97%.

Finally, these same transformer networks were leveraged to construct materials rep-

resentations for machine learning tasks, with context learned from literature embed-

ded in the resulting representations. The resulting representations were subsequently
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demonstrated to show potential for improving the future ability of ML models to pre-

dict materials properties, a potential which exists due to the encoding of contextual

information in the representation. The embedded contextual information can further

inform ML model predictions by including a consideration of material properties that

would otherwise be immensely difficult to include.

Keywords: Materials Science, Inverse-Materials Design, Machine Learning, Thermal

Properties, Natural Language Processing



Contents

1 Introduction 1

1.1 Rapid Property Screening . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Screening for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Energetic Stability . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Dynamical Stability . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 First-Principles Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methods 11

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Kohn-Sham Theory . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Exchange-Correlation Energy . . . . . . . . . . . . . . . . . . . 34

2.2.4 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 First-Principles Phonon Calculations 39

3.1 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Frozen-Phonon/Finite Displacement Calculations . . . . . . . . 46

3.1.2 Density Functional Perturbation Theory . . . . . . . . . . . . . 48

vii



Contents viii

3.2 Niobium Disulphide (NbS2) . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Band Structure Calculations . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Vibrational Dynamics . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Machine-Learned Thermal Properties 61

4.1 Machine-Learned Interatomic Potentials . . . . . . . . . . . . . . . . . 63

4.1.1 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.4 Comparison with DFPT . . . . . . . . . . . . . . . . . . . . . . 75

4.1.5 Van der Waal’s Interaction . . . . . . . . . . . . . . . . . . . . . 78

4.2 Calculation of Thermal Properties . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Interfacial Thermal Conductance . . . . . . . . . . . . . . . . . 90

4.3 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Databases from Language Models 97

5.1 Early Use of Language Models In Materials Science . . . . . . . . . . . 98

5.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.4 GPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.5 Transformer Models in Materials Science . . . . . . . . . . . . . 106

5.3 Transformer Models for Database Construction . . . . . . . . . . . . . 108

5.3.1 BERT-PSIE: Precise Scientific Information Extraction . . . . . 109

5.4 Evaluation of Resulting Databases . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Curie Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.2 Electronic band gap . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 GPT-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 139



ix Contents

6 Contextual Representations for Materials 141

6.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.3 Contexualized Representations . . . . . . . . . . . . . . . . . . . 149

6.2 Word Embeddings in Materials Science . . . . . . . . . . . . . . . . . . 150

6.2.1 Mat2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.2 Word Embeddings for Materials Property Predictions . . . . . . 153

6.3 Contextual Embeddings in Materials Science . . . . . . . . . . . . . . . 154

6.3.1 Impact of Domain-Specific Pre-Training . . . . . . . . . . . . . 156

6.3.2 Comparison of Contextual Embeddings . . . . . . . . . . . . . . 163

6.4 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Conclusions and Future Work 167

A List of Publications 191



Contents x



List of Tables

4.1 Evaluations metrics of the fit for the library of SNAP potentials for

non-magnetic, hexagonal 2D monolayers. . . . . . . . . . . . . . . . . . 74

4.2 Binding energy of MoS2 as calculated with a variety of different flavours

of VdW corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Thermal conductivities of materials that were estimated using SNAP at

300 K, compared with DFT and experiment. . . . . . . . . . . . . . . . 86

5.1 Performance of the three NLP modules developed for the Curie temper-

ature extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Performance of the three NLP modules developed for band-gap extraction.115

5.3 Comparison of the performances of the different Curie temperature databases

on their query quality and their predictive quality. . . . . . . . . . . . . 121

5.4 Comparison of the performances of the different band-gap databases on

their query quality and their predictive quality. . . . . . . . . . . . . . 133

6.1 Sizes of the different databases for the evaluation of the static embed-

dings reduced from contextual representations. . . . . . . . . . . . . . . 155

xi



List of Figures

1.1 The inverse materials-design pipeline. . . . . . . . . . . . . . . . . . . . 2

1.2 Substituting first-principles calculations with surrogate methods. . . . . 5

2.1 A comparison of the outcomes of regression against classification meth-

ods in supervised machine learning. . . . . . . . . . . . . . . . . . . . . 12

2.2 The result of overfitting and underfitting a machine learning model. . . 14

2.3 The confusion matrix for classification tasks. . . . . . . . . . . . . . . . 19

2.4 A simple feed-forward neural network. . . . . . . . . . . . . . . . . . . 25

2.5 Jacob’s ladder of exchange-correlation functionals. . . . . . . . . . . . . 35

3.1 The procedure for calculating the matrix of force constants. . . . . . . 47

3.2 The atomic structure of monolayer 2H-NbS2. . . . . . . . . . . . . . . . 52

3.3 Energy band diagrams for ferromagnetic and non-magnetic monolayer

2H-NbS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The phonon dispersion and phonon density of states for monolayer 2H-

NbS2, calculated using DFPT. . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The general workflow for the construction of machine-learned inter-

atomic potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Plots describing the optimal displacement to create a dataset of distorted

cells for training SNAP-MLIPs. . . . . . . . . . . . . . . . . . . . . . . 70

4.3 An example of a standard parity plot of the predicted values of energy

against the DFT values for 2H-NbS2 after a SNAP fit. . . . . . . . . . 73

4.4 Comparison of the phonon dispersion calculated using first-principles

DFPT and finite-difference using the SNAP-MLIP for monolayer NbS2. 76

xii



xiii List of Figures

4.5 Comparison of the phonon dispersion calculated using first-principles

DFPT and using the SNAP-MLIP for graphene and MoS2. . . . . . . . 77

4.6 A comparison of the phonon dispersion and density of states for bilayer

graphene obtained using SNAP and DFPT. . . . . . . . . . . . . . . . 80

4.7 A supercell of graphene encapsulated between two monolayers of hBN

along with the phonon dispersion of the system. . . . . . . . . . . . . . 81

4.8 Phonon lifetimes, calculated using SNAP-MLIPs for monolayer, bilayer,

and trilayer hBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 The cumulative thermal conductivity of monolayer hBN with the con-

tributions of phonon modes of increasing frequencies. . . . . . . . . . . 90

4.10 A MoS2 monolayer encapsulated with two monolayers of hBN. . . . . . 92

4.11 An example of the time-dependent temperature of a MD simulation to

calculate interfacial thermal conductance. . . . . . . . . . . . . . . . . . 93

4.12 The linear fit of the temperature gradient between the hBN layers and

the higher-temperature MoS2 layer. . . . . . . . . . . . . . . . . . . . . 94

5.1 A flowchart of a typical transformer network architecture. . . . . . . . . 103

5.2 A diagram of the input representations of BERT models. . . . . . . . . 104

5.3 A diagram of the BERT-PSIE workflow for the automated extraction of

scientific information from unstructured literature. . . . . . . . . . . . . 110

5.4 A diagram of the variant of the relationship classification strategy used

in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Comparison between the distributions of the different Curie temperature

databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Violin plots comparing the TC distribution of the compounds between

the different databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Comparison between the TC queried from the manual and BERT-PSIE

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Parity plot for the predicted TC from BERT-PSIE against the manually

extracted TC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 Violin plots showing the TC distributions of the compounds screened

using a RF model for different temperature brackets. . . . . . . . . . . 128



List of Figures xiv

5.10 Comparison between the distributions of the different band-gap databases.131

5.11 The distribution of band-gap values for the five most common chemical

formulas found in the extracted database. . . . . . . . . . . . . . . . . 132

5.12 Comparison between the band gaps queried from the manual and BERT-

PSIE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.13 Comparison between the TC queried directly from ChatGPT and the

values contained in the manually curated dataset. . . . . . . . . . . . . 136

5.14 Flowchart of the parsing of compound/property mentions from a corpus

of scientific literature, using GPT-based models. . . . . . . . . . . . . . 138

6.1 A diagram depicting word offset vectors in word representations. . . . . 145

6.2 A diagram of the CBOW Word2Vec architecture. . . . . . . . . . . . . 147

6.3 A diagram of the skip-gram Word2Vec architecture. . . . . . . . . . . . 148

6.4 A diagram depicting word offset vectors in word representations for ma-

terials science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Evaluation metrics for the prediction of the formation energies of elpaso-

lite compounds from various decontextualized and pooled BERT models. 157

6.6 Evaluation metrics for the prediction of the Curie temperature of ferro-

magnetic compounds from various decontextualized and pooled BERT

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Evaluation metrics for the prediction of the bulk modulus compounds

from various decontextualized and pooled BERT models. . . . . . . . . 162

6.8 A comparison of the performance of the best BERT representation,

GPT-3 and mat2vec for various material property predictions. . . . . . 164



Chapter 1

Introduction

“An luibh ná faightear is ı́ a fhóireann.”

Advancing our mastery over materials has been one of the main driving forces behind

every technological leap forward that we have collectively achieved. Our eras are de-

fined by it, from the stone age to the silicon age. Currently, we are faced with more

challenges now than ever before. These challenges necessitate numerous, rapid tech-

nological advances. Historically, however, such technological advancement has largely

been serendipitous in nature. Science has been reliant on experiments in labs, relying

primarily on a combination of human intuition and luck, except in cases where a theory

had already been established for the studied phenomenon.

As the field of machine learning (ML) has rapidly developed, opportunities have

presented themselves to turn this convention on its head. We now have the capability

to analyse research trends and physical phenomena at scale and identify promising re-

search directions to take, which have the potential to drastically reduce the experiment-

to-application pipeline. The aim of this research has been to utilise the toolkit of a

machine learning practitioner in order to achieve this potential in the domain of ma-

terials science.

Fig. 1.1 outlines some of the key steps in the process of establishing a workflow

that can help to cope with the vast compositional and structural space that constitutes

every conceivable material, a space that encompasses an incomprehensible quantity of

compounds. Such an amount of potential materials is a result of the combinatorial

explosion that results from every possible compositional and structural configuration

1



Chapter 1. Introduction 2

Candidate 

Materials

ab initio Analysis

Stability Screening

Rapid Property 

Screening

Massive 

Chemical 

Space
C

o
m

p
u
ta

tio
n
a

l 

In
te

n
s
ity

A
c
c
u
ra

c
y

Figure 1.1: The steps required to efficiently identify promising candidates from the vast
space of possible chemical structures and configurations such that they are optimised
for a given targeted property. The steps are as follows: 1. A coarse scan to rapidly
compute the probable properties of a given structure or configuration. 2. The funnelling
of resulting candidate materials into a system which can rapidly predict how stable they
are likely to be. 3. Performing ab initio analyses on the materials which are likely to
be stable, to identify the best candidates for synthesis and experiment.

of atoms. It is clear that trial and error is not a viable process to find regions of interest

in this vast compositional space and, therefore, a sequence of simple and rapid tests to

quickly narrow down the possible number of candidates from the original compositional

space is the only strategy that has any potential for addressing this particular issue. A
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streamlined pipeline necessitates the initial assessment of a material’s suitability for a

specific application to be both lightweight and computationally efficient. This ensures

comprehensive sampling of the entire chemical space, resulting in a subdomain that

encompasses the optimal compounds for the desired property. This step should serve as

a filter through which the initial massive configurational space can be narrowed down to

a smaller quantity of candidates. This step has been effectively executed if the resulting

subdomain of the initial configuration space is biased towards materials configurations

that are high-performing for the target application. This target application could be

any intrinsic material property for which there are valid computational tests.

After this initial filtering, a separate study should be performed such that the

stability of the structures and compositions that are deemed reasonable candidates

from the prior step can be assessed. This is also required to be lightweight as the initial

step will not be sufficiently discriminative to ensure that the resulting subdomain is of

a manageable size. Thus, this step will also act as a filter, further limiting the number

of candidates to a more manageable size for more computationally demanding tasks.

Further to this, the rapid property screening generally will have no way of knowing if

a compound that is predicted to have the desired property is energetically favourable,

or is of sufficient mechanical stability to exist.

The final step in this pipeline is that of the more computationally intensive, ab

initio analysis of the resulting set of candidate materials after these prior, coarser

steps. This final analysis serves to verify the results of the predictions of previous steps

in the workflow, by analysing whether the structures are indeed energetically favourable

and structurally stable. It would additionally determine whether the initial screening

model’s property prediction accuracy aligns with the desired property as per the true

theoretical prediction derived from first principles. The final step of this workflow acts

as a final barrier, which limits the total number of candidate materials further and,

hopefully, would contain the optimal existing material for the target application. Thus,

the need for an experimental, trial-and-error approach and the associated wastage of

resources is eliminated.

The need for a sequence of progressively more computationally intensive, but more

accurate steps, to identify the optimal candidate materials for a given task is clear.

The next question that needs to be addressed, however, is how exactly can each of
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the steps in this computational workflow for materials discovery be constructed and

executed in a high-throughput manner. Furthermore, we must ask how can these steps

be executed in such a way that the methods involved are sufficiently efficient such that

the full pipeline is, in fact, useful, practical and accessible for general applications.

This thesis aims to highlight some methods that may be useful in constructing

such a pipeline and leverage the potential of machine learning techniques to improve

our ability to rapidly identify candidate materials. Ultimately, the goal of this work

is to contribute to practical solutions to aid in the creation of a fully data-driven

pipeline, with the potential to reduce the theory-to-application bottleneck and, thereby,

accelerate progress within the materials science community.

1.1 Rapid Property Screening

Two main challenges generally face the computational prediction of materials proper-

ties, particularly when attempting to do so in a high-throughput workflow. The first of

these challenges is, as mentioned, the intensive nature of a lot of these calculations. The

feasibility of using a computational method to rapidly sample the materials space and

look for promising new candidate materials is very much contingent on the method’s

efficiency in performing that search. Thus, a key driver in considering new methods

for property prediction is the computational expense of such a new method.

The second difficulty that is faced when attempting to conceive of a materials

property prediction pipeline is that many useful properties are quite inaccessible to

calculations at all. Many of these predictive techniques require the computation of the

full electronic charge density, wavefunction, or the phonon wavefunction such that their

dependent properties can be deduced by solving the corresponding Hamiltonian. Even

after this, certain materials properties require the computation of a range of related

phenomena and are inaccessible directly to calculation, meaning their use in a high-

throughput pipeline is limited. To further compound this issue, many calculations fail

to take into account a myriad of real-world sources of confusion and error due to no

experimental information about these systems being readily available.

Therefore, to construct a valuable means of achieving a high-throughput screening

for materials properties, we have an array of criteria that must be fulfilled. The first is
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Chemical 
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Figure 1.2: Using surrogate methods to map the chemical space directly to the prop-
erty space can bypass much of the computational expense that is a feature of more
traditional computational methods for property prediction, such as DFT.

that, where practically possible, we must conceive of approximations that simplify the

computational complexity of the prediction itself. This may mean attempting to bypass

the computation of more fundamental quantities from first principles (see Fig. 1.2) and,

instead, attempting to come up with some function that maps the compositional and

structural space directly to the property space. Further to this, it would be immensely

valuable for practical applications if there was some way to incorporate information

derived from experiments, in order to bias the predictions towards real-world outcomes,

as opposed to theoretical ones, which may not represent the complete scenario.

It is a non-trivial issue to map a chemical space directly onto a property space. It

is also quite likely that there is no analytical function that maps these two spaces to

each other, and any function that performs this task is bound to be prohibitively high-

dimensional. Therefore, it is reasonable to attempt to construct some form of approx-

imate expression that can generally capture some relationship between the chemical

space and the property space, given some features that are reasonably descriptive of

the material in question. This can serve its purpose well as a coarse screening step

to rapidly filter out the majority of materials that are unlikely to exhibit the desired

behaviour, as described in the pipeline of Fig. 1.1.

Thus, a means of achieving a computationally efficient approximation of a complex,
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non-linear and high-dimensional function is necessary in order to execute the first step

of the inverse-materials-design pipeline. Such a task is an ideal fit for the field of

ML, which has recently been demonstrating its immense usefulness to basically every

domain, as modern computers have become more powerful. There is, however, a vast

array of potential applications that remain unexplored in the domain of materials

science.

1.2 Screening for Stability

Once reasonable predictions have been given for compositions or structures that exhibit

the targeted property, the next step is ensuring that the predicted material can exist.

This can either involve checking that a predicted structure is stable, or if the rapid

screening step was purely compositional in nature, it can involve determining stable

structures with the predicted optimal composition. There are generally two considera-

tions to make for the screening of material stability, that of the energetic stability and

the dynamical stability. If these two criteria are not satisfied, any material yielded by

the initial step is of no use as it is probably not synthesizable.

1.2.1 Energetic Stability

The first of these criteria is that of the energetic stability. That is, if the structure and

composition is not the most thermodynamically favourable combination available, it

will be more difficult to synthesise because it will likely spontaneously decompose into

a lower-energy phase. Thermodynamic favourability involves the minimization of the

Gibbs free energy G of the system which is a combination of the enthalpy H = U+PV

and entropy S of the system

G = H + TS, (1.1)

where T is the temperature. When performing a high-throughput search, T is normally

set to 0, meaning the entropy term can be dropped. Further to this, the pressure P is

generally also set to 0, meaning a single total energy calculation is all that is needed to

calculate the system enthalpy and, thereby, the Gibbs free energy. Once this quantity
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has been calculated, it must be compared with other material phases to ensure the

system is in the lowest energy phase possible.

The energetic stability aspect of the inverse design workflow was not made a priority

in this thesis as there has been an intensive focus on screening of this nature elsewhere.

In fact, some of my colleagues have done extensive work in determining the optimal

structure for a given composition, which is a key aspect of the workflow [1,2].

1.2.2 Dynamical Stability

The second consideration of analysing the stability of a material is in evaluating the

dynamical stability of the material. Dynamical stability is the tendency of a material

to maintain a well-defined, stable crystal lattice structure in spite of the displacements

of atoms and their oscillations within the crystal structure. Generally, the ability

of a material to resist structural distortion and phase changes is encapsulated by the

phonon dispersion and phonon density of states of the material, which generally involves

intensive calculations to obtain. If there are negative phonon frequencies present in the

density of states and dispersion, it generally means that the structure is dynamically

unstable and will not remain in that configuration without undergoing some lattice

distortion or some phase change, which could potentially change the physical properties

of the system.

Thus, it is of immense value to rapidly assess whether or not it is dynamically

feasible to synthesise a material without these potentially detrimental effects. Once

again, ML offers a means of rapidly generating phonon dispersions for a large variety

of materials, offering a massive increase in the efficiency of generating such analyses

and furthering the ability to filter out candidate materials from the workflow that may

not be dynamically stable.

1.3 First-Principles Analysis

Once the prior steps have been implemented in order to identify the optimal candidate

materials for the desired application, a final test of viability is performed on the result-

ing, vastly reduced subspace of the materials space using ab initio methods. Such a

step is necessary in order to validate the results of the prior steps and perform a more
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in-depth analysis to ensure that the predicted values and predicted stability of the

material are consistent with the true theoretical predictions for the same quantities.

This negates the potential for the workflow to output non-viable materials due to

any potential noise or effects that surrogate ML models might not feasibly take into

account. Such an analysis would generally be performed using well-established com-

putational techniques such as density functional theory (DFT) where it is reasonable

to apply such methods. This final verification, however, cannot necessarily be im-

plemented for screenings of every possible material property that this workflow could

screen for as certain properties remain very difficult to calculate from theory, such as

the melting point or the Curie temperature. This step can still be used to verify the

synthesizability of any outputted compound and is, therefore, still a valuable step, even

for difficult-to-calculate property screening.

1.4 Thesis Outline

In this thesis, I will present a range of results and workflows, which have the potential

to enhance the aforementioned inverse-design pipeline. These results fall into two main

branches, those that work to model the potential energy surfaces of classes of materials

in order to bypass ab initio techniques, and those involving the use of natural language

techniques in order to enhance the inverse-design workflow.

Every chapter in this thesis will involve the use of ML for these various applications

and, therefore, I will describe ML in detail in Chapter 2. Also within this chapter, I

will describe DFT, which constitutes the main method that would be used for the final

step of the computational workflow outlined in Fig. 1.1. I will also employ DFT to

generate the training data and benchmarks for the work in Chapter 3 and Chapter 4.

In the first of these two chapters, I will discuss phonons and various methods that

can be used for their calculation, both with DFT and with ML methods in the case of

finite displacement. I will also outline the theoretical background of phonons and give

an example of a two-dimensional, monolayer system, NbS2, which exhibits a variety

of complex behaviours. This system is useful for highlighting the abilities and general

weaknesses of ML approximations of potential energy surfaces.

In Chapter 4, I will describe the process of building potential energy surfaces using
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ML. This approach aims to bypass the need for first-principles techniques, enabling

the rapid generation of computationally intensive properties and facilitating the con-

struction of property predictor models. I will demonstrate this for the cases of thermal

conductivity and interfacial thermal conductance of layered two-dimensional materi-

als. Alternatively, such models can be used to perform rapid analyses of the dynamical

properties of such systems, through calculations of phonon properties of systems more

efficiently. I will also demonstrate the execution of these calculations for system sizes

that previously would have been infeasible using first-principles techniques.

Subsequently, in Chapter 5 I will introduce transformer networks and highlight

their improved ability as next-generation language models. Furthermore, I explore

their potential in isolating properties of interest for the automated construction of

databases, through the creation of two databases of Curie temperatures and electronic

band gaps of unique compounds from corpora of scientific papers. I will perform tests

to examine the viability of constructing ML models from these databases to execute

the first step of the workflow in Fig. 1.1. These tests will highlight the ability of the

resulting models to rapidly narrow down the compositional space to compositions likely

to exhibit the desired properties.

I will explore the potential of transformer networks to construct representations

that can further enhance the rapid prediction of materials properties in Chapter 6.

I will do this by constructing elemental representations using transformers with two

separate approaches. The first approach will involve obtaining representations from

pre-trained language models by inputting the elements themselves without context.

The second strategy will involve pooling representations of elemental entities as they

appeared in sentences. I will use these representations to perform materials property

predictions for a variety of available property databases.

In the final chapter, I will draw several conclusions about the potential value of

these various techniques to the overall aims of the workflow. As a final discussion, I

will outline potential future directions in which these investigations could be taken.
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Chapter 2

Methods

“I ndiaidh a chéile a thógtar na caisleáin.”

With the overall aim of this work now established, I will outline some of the methods

that feature prominently throughout this thesis. In particular, I will first focus on

machine learning, a key topic in every part of this thesis. As a part of this discussion,

I will give an overview of all of the general algorithms within the field that feature

across several of the subsequent chapters along with a focus on the key considerations

that are necessary in order to use it effectively as a predictive tool.

After this, I will describe density functional theory, the first-principles computa-

tional method that much of the foundations of Chapters 3 and 4 are based upon. I

will outline the key concepts of this field, which has been a mainstay of the domain of

computational physics for decades.

2.1 Machine Learning

Machine learning (ML) is generally described as being the ability of a computer to

‘learn’ how to solve a problem by iteratively discovering its own algorithm with which

to solve it. More precisely, as defined in Ref. [3]:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P , if its performance at tasks in T , as measured

by P , improves with experience E.”

ML has found a large array of applications from its conception, ranging from speech

11
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recognition [4] and medicine [5] to self-driving vehicles [6] and computer vision [7],

along with too many more to be included. In this section, I will give an overview

of the different classes of ML algorithms. I will also describe some of the main ML

algorithms, that feature prominently in this work, in detail. Further to this, I will give

an overview of the main considerations of these models and their training procedures.

2.1.1 Supervised Learning

The overall aim of supervised ML is to determine some function f , which can map a

set of inputs x to a set of outputs, y

f : x 7→ y. (2.1)

The set of inputs x to a ML model is a collection of quantities, known as the set of

features, which can be any of vectors, matrices or tensors. These features contain

information that allows the prediction of the set of target quantities y, or as they are

commonly known in the field of ML, targets. The nature of targets will similarly change

depending on the task, which is broadly broken up into two branches in supervised

learning. The difference between these two branches can be understood by looking at

Fig. 2.1.

x

y

Regression

x1

y1

Classification

y2

x2

Figure 2.1: Regression is the task corresponding to predicting a numerical target vari-
able y, given an input feature x. In contrast, a classification model will associate a
class with a given input feature x by predicting the class label y as a target variable.
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The first of these two branches is known as regression. In this case, the values

contained in the targets y are quantitative in nature and will mostly be scalar or vector

quantities. The second is classification, which is the case where the target variables

are qualitative in nature. This generally means that the ML model will attempt to

associate some class label to a given input feature. While this class label is a qualitative

label, it is still represented numerically, often as a vector quantity, where each term in

the vector corresponds to one of a number of classes that the feature can be categorised

into. The feature is predicted as belonging to a class if the corresponding term in the

target vector is predicted to be 1 by the ML model and 0 for the alternative case. In

practice, however, the terms in the vector are likely to range between 0 and 1, with the

value of each term of the target vector being the probability that the feature belongs

to each class.

This type of learning is known as supervised in that there is some human inter-

vention in the choice of training data that the model is exposed to. The training data

should be as representative as possible of the data that the model is likely to encounter

in its use case. Thus, the data should be free from any bias towards one outcome

over another, unless the practitioner desires that bias to be inherent in the ML model

conceived. This may mean the inclusion of equal numbers of training data points for

different classes or reweighting the model to account for a lack of a certain class of data

points.

The training data aggregated should also be partitioned into three distinct sets,

which are commonly known as the training, validation and test sets. This split is

needed in order to account for the risk of overfitting or underfitting the training data

(see Fig. 2.2). The first of these issues, overfitting, results from the risk of finding a

function that, while the model error on the training data is at a minimum, is unable

to generalise as it has simply learned the training data distribution as opposed to the

trend correlating the training data points. Underfitting is the case where the model

has learned too simple a function to fully capture the trend relating the training data

points.

There will always be a tradeoff between overfitting and underfitting when training

a ML model. This tradeoff can be further understood by examining the breakdown of

the error of an ML model. If we are attempting to model the true function f(x) relating
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y

x

True Fit
Overfit
Underfit

Figure 2.2: The true function (solid line) is improperly approximated when the model is
either overfit (green dashed line) or underfit (red dashed line). Overfitting occurs when
the model learns each of the data points in the data set without capturing the simplest
relationship describing them. In contrast, underfitting occurs when the function a
model has learned is too simple to capture the relationship between data points.

our features x with our targets y, we create the approximation of this relationship with

our ML model denoted as f̂(x). The expected square error of the model at x is

Err(x) = E
[
(y − f̂(x))2

]
. (2.2)

Here E[f(x)] is the expected value of a function f(x). This error can further be

decomposed [8]

Err(x) =
(
E[f̂(x)]− f(x)

)2
+ E

[(
E[f̂(x)]− f̂(x)

)2]
+ σ2

=
(
Bias

[
f̂(x)

])2
+Var

[
f̂(x)

]
+ σ2

(2.3)

where σ2 is the irreducible error, which is intrinsic noise contained within the dataset
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provided. The other two terms in this expression are known as the bias and variance of

the model. The bias is the error which is associated with some erroneous assumptions

made in the process of constructing the estimator. In contrast, the variance of a model

is the error relating to small fluctuations in the training data of the model. In the

case of underfitting, the model is likely to be consistently erroneous as a result of the

assumption of too simple a model linking the features to the targets, meaning it will

have a high bias. The model will also not have the capacity to learn more with the

inclusion of more data and therefore, the variance of the model is likely to be low. In

the case of overfitting, this will be reversed and the model will have a low bias but a

high variance. An optimal model will exhibit low bias and low variance.

There are a number of steps one can take to limit the impact of underfitting, one is

increasing the complexity of the ML model with the addition of more parameters or a

more complex model structure. Another is to increase the number of training points.

Overfitting is a more difficult issue to deal with and is dealt with by the aforementioned

training, validation and test splits of the available data.

The training data is used to adjust the parameters θ of the model such that some

measurement of error of the model, known as a loss function, is minimised. Overfitting

is prevented by introducing some model hyperparameters, here denoted by λ, which

restrict the ability of the model to overfit the training data. These λ values are adjusted

by making predictions on the validation set, which the model has not seen during

the training, and taking the values for λ that yield the optimal performance on this

validation set. Finally, the model’s ability to generalize to further unseen data is tested

by performing predictions on the test set and analysing the error in these results. The

validation set may not act as a test set because there may be information leakage

from the validation set that results from the tuning of λ. In a limited-data regime,

k-fold cross-validation is generally employed, where the training and validation data

are combined and this combined dataset is split up into k subsets. The model reserves

one of these subsets and performs the training on the other (k − 1) subsets. This step

is performed until all subsets have acted as the validation set and the average of all of

the validation errors is taken instead of the fixed set for performing the optimisation

of λ.
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Loss Functions

As was previously indicated, the loss function is essentially a score that indicates how

optimal the parameters θ of a model are at predicting the values of the set of targets y,

given a set of input features x. These loss functions must be minimised with respect to

the model parameters in order to obtain the best model performance on the training

data. This converts the problem of ML into an optimization problem for which there

are a large variety of methods to solve, as optimization algorithms have been a staple

domain of computer science for decades.

Loss functions are very closely related to the concept of error functions, however,

loss functions do come in different flavours depending on the task at hand. By far and

away the most common loss function used in regression problems is that of the mean

square error (MSE)

MSE =

∑n
i=1 (y − f̂(x))2

n
. (2.4)

The value of this particular metric is that predicted values that are far from the real

values are penalised proportionally more heavily than those that are close to being

correct as a result of squaring the variance. This is in contrast with another common

loss function in regression tasks, mean absolute error (MAE)

MAE =

∑n
i=1

∣∣∣y − f̂(x)
∣∣∣

n
, (2.5)

which penalises outliers far less severely than in the case of MSE.

In the case of classification problems, the most common loss function is known as

the cross-entropy loss, which in the binary classification case can be expressed as

CrossEntropyLoss = −y log (f̂(x)) + (1− y) log (1− f̂(x)), (2.6)

which will increase as the predicted probability of a feature belonging to a particular

class diverges from the real class label. When the number of classes is greater than

two, a separate cross-entropy loss can be calculated for each class label and the results

can be summed to form a loss function accounting for every class in the data.
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Evaluation Metrics

Establishing metrics to evaluate the overall performance of a given ML model is of

immense importance to the usefulness of the resulting models. These metrics give a

recognisable indication of how trustworthy the predictions that are outputted by a

model are. They are primarily calculated for the results obtained on the test data.

This is done in order to ensure that the model generalises well to unseen data.

For regression tasks, several common metrics can be used to evaluate the quality

of the regressor. The first is the one encountered for use as a loss function, the MAE,

Eq. (2.5). This essentially indicates the expected absolute deviation from the true

result by the regressor. The second metric that is useful for regression is a variant

of another loss function that we have previously encountered. The root-mean-square

error (RMSE) is very simply calculated by taking the square root of the MSE

RMSE =
√
MSE. (2.7)

A result of the MSE scaling with the square of the deviation from the true value of

the regressor is that outliers will disproportionately affect this particular error metric.

Therefore, the RMSE will also more strongly indicate the presence of outliers in the

model predictions, which is useful information for indicating the quality of the predicted

data.

The final, common metric that is used when assessing the quality of a regressor

is the R2 coefficient or the coefficient of determination. This serves to represent the

proportion of variance in the target variables of the test data that the model is capable

of predicting with its test features i.e.

R2 = 1−

∑(
y − f̂(x)

)2
∑

(y − ȳ)2
, (2.8)

where ȳ is the mean of the target variables

ȳ =
1

N

∑
y, (2.9)

and N is the number of samples in the test data.
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Due to the different nature of classification tasks in associating an absolute label

to a data point as opposed to attempting to approximate it as closely as possible in

geometric space, a different set of evaluation metrics is required. These metrics should

gauge the efficacy of a classification model associating the class label to a given data

point. When performing classification tasks, there are four possible outcomes to any

prediction:

• True Positive (TP): A data point is predicted to belong to a class that it truly

belongs to.

• True Negative (TN): A data point is predicted not to belong to a class that it

truly does not belong to.

• False Positive (FP): A data point is predicted to belong to a class that it truly

does not belong to.

• False Negative (FN): A data point is predicted not to belong to a class that it

truly belongs to.

The predicted class labels of the test set can be compared to the true values and a

construction known as a confusion matrix (see Fig. 2.3) can be constructed as a result,

by counting the number of examples which fall into each case.

The first and most intuitive of the classification metrics that can be conceived is

that of the accuracy of the classifier. This metric will yield the percentage of correct

predictions for the test data. It can be calculated as

accuracy =
TP + TN

N
. (2.10)

This is a very valuable metric but it is not sufficient on its own to adequately evaluate

the model performance. For example, if there is a class label that only rarely occurs,

a model can achieve a very high accuracy score if it simply classifies everything as

being negative. Thus, a metric that specifically takes into account the labels that are

predicted to be positive is required. This is the logic behind the use of the precision

P , which is defined as being the ratio of true positive predictions against all of the
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Figure 2.3: The confusion matrix is a tool for assessing the efficacy of a model at
performing a classification task. A separate confusion matrix must be computed for
each class label.

positive predictions the model made, i.e.

P =
TP

TP + FP
. (2.11)

The precision is essentially an indication of the proportion of the data points predicted

to belong to a class that is correct. The second metric constructed using this logic is

the ratio of the true positive examples, compared with every data point in the data set

which are truly positive. This is known as the recall R and can be computed as

R =
TP

TP + FN
. (2.12)

The recall is a metric that captures the proportion of true members of a class in a

dataset, which a model is able to correctly predict. Both of these metrics convey

important information about the ability of the system to correctly classify data points,

however, it is desirable to combine both of these metrics to most effectively indicate

the effectiveness of the model. Thus, it is reasonable to take the harmonic mean of
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these two metrics to obtain the F1 score

F1 =
2PR

P +R
(2.13)

which is a metric for the overall model performance. Just as both the precision and

recall are values which range between 0 and 1, with 1 indicating optimal performance,

so too is this the case for the F1 score. This is generally the main metric for use in

evaluating ML classifiers.

Ridge Regression

An example of a supervised ML model, which is used extensively in this work is that of

ridge regression [9]. As the name suggests, this is a regression method that is primarily

used in this work as a part of the SNAP method (see Section 4.1.1) to predict the total

energy of a given compound. Ridge regression is an elaboration on the most simple

regression model, that of linear regression, which aims to model a sequence of data

points with their targets by assuming a linear relationship between the two. In the

case of linear regression, given a set of n feature vectors x of rank p, forming a (n× p)

matrix X, the relationship between the set of target variables y and X is approximated

as

y = Xβ + ε, (2.14)

where β is a set of linear coefficients, which must be determined and ε is the errors of

the N data points in the data set. The loss function J , using the mean squared error

can thus be expressed as [8]

J(β) = (y −Xβ)⊺(y −Xβ), (2.15)

which gives an estimate of the linear coefficients as

β̂ = (X⊺X)−1X⊺y. (2.16)
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This system of determining an estimate of the optimal linear coefficients for a predictor

is known as ordinary least squares. There is the potential, however, that this setup

can lead to the issue of overfitting as described previously and a way of coping with

this is through the introduction of another term in the loss function that prevents the

components of β from growing too large.

J(β, λ) = (y −Xβ)⊺(y −Xβ) + λβ⊺β, (2.17)

where λ is the regularization strength. This construction is known as L2 regularization

and it enables the approximation for the regularized β coefficients of

β̂
ridge

= (X⊺X+ λI)−1X⊺y, (2.18)

thereby mitigating the risk of overfitting the linear model.

Random Forest Regression

Random forest (RF) regression [10] is employed as the regressor of choice in Chapters

5 and 6, a choice based on the work from Ref. [11], which identified it as being the best

method tested for property prediction based on compositional features. Random forest

models are based on the output of an ensemble of regression trees. A regression tree

is a type of decision tree that outputs a continuous variable instead of a class label. A

regression tree T will partition the feature space intoM partitions R1, R2, ..., RM , each

of which attempts to model the target of a given feature by associating some constant

cm in each partition, i.e.

T (x) =
M∑

m=1

cmI(x ∈ Rm), (2.19)

where I is the indicator function, which maps the feature to the partitioned region of

the feature space. It is simple to see that the value of cm that will best approximate

the target related to feature x that occurs in partition Rm is going to be the mean

value of the targets that relate to features within that partition, i.e. for N data points
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where i = 1, 2, ..., N ,

ĉm = mean(yi|xi ∈ Rm). (2.20)

The difficulty now is in determining how the feature space should be partitioned in

order to best approximate the relationship between x and y. This can be achieved

using a greedy algorithm as a replacement for determining a computationally infeasible

globally optimal solution using an algorithm akin to minimizing the sum of squares.

First taking all of the data available, a splitting variable j and a split point s are

conceived such that

R1(j, s) = {x|xj ≤ s} and R2(j, s) = {x|xj > s}. (2.21)

Once this partitioning is performed, the following function is minimized with respect

to the choice of j and s

J(j, s) =
∑

xi∈R1(j,s)

(yi − c1)
2 +

∑
xi∈R2(j,s)

(yi − c2)
2, (2.22)

where, once again, the inner constants can be given by

ĉ1 = mean(yi|xi ∈ R1(j, s)) and ĉ2 = mean(yi|xi ∈ R2(j, s)). (2.23)

Once this procedure has been executed for the first region, this same procedure can be

executed iteratively on each of the subregions.

Eventually, the larger the tree grows, the more overfit the regression tree will be-

come. There are a number of ways that this can be dealt with, through techniques like

cost-complexity pruning and weakest-link pruning. Random forest regression solves

the issue of overfitting by building an ensemble of identically distributed, de-correlated

regression trees and averaging over them. It performs this step using a technique known

as bagging or bootstrap aggregation.

Bagging is the process of averaging a large number of high-variance models, which

are trained by randomly sampling the training data set with replacement (different

training data sets may be constructed with a proportion of the same data point re-



23 2.1. Machine Learning

peated). This step is what de-correlates the resulting trees. Given an ensemble of B

different regression trees, a random forest model can be computed using each of the

resulting trees as

f̂B
rf =

1

B

B∑
b=1

Tb(x). (2.24)

The bias of the averaged trees will be the same as any individual one as a result of an

identical distribution of regression trees generated. The reduction in variance of the

aggregated model can be understood by considering the averaging process of B trees.

If each tree exhibits a variance of σ2 and has a pairwise correlation factor of ρ. The

expected variance for a prediction of the aggregated model is

σ2
rf = ρσ2 +

1− ρ

B
σ2. (2.25)

Thus, the expected variance of the aggregated trees is reduced for large B as (1−ρ)/B

will go to zero, provided the models are de-correlated, meaning ρ < 1.

2.1.2 Unsupervised Learning

Beyond supervised learning, in which there is an available set of labelled training data

that the model is provided with for learning, there is another suite of techniques in

ML in which patterns or hidden structures are learned from unlabelled data. This

paradigm is known as unsupervised learning.

Unsupervised learning is primarily used for two applications, dimensionality reduc-

tion and the clustering of similar data points. In their essence, these two seemingly

different tasks are quite similar in nature. As mentioned, clustering is the process of

associating data points into subsets based on their proximity in the feature space. A

space that represents information about the feature vector, i.e. two clustered data

points will be determined to convey similar information. This can be achieved by as-

sociating data points with their nearest neighbours, or based on their proximity to an

average of the other data points in the cluster.

In comparison, dimensionality reduction is a useful method of reducing the amount

of redundancy contained in a feature representation by determining the similarity of
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information conveyed between different components in the feature representation it-

self. This is generally achieved by projecting a high-dimensional representation onto

a lower-dimensional one such that the covariance between data points is maximized,

thus preserving the maximal amount of information, while reducing redundancy and

ensuring that the feature representation is more lightweight. This technique is known

as principal component analysis or PCA.

Unsupervised learning is not a focus of this work and therefore will not be described

in detail, however, many static term representations such as GloVe or Word2Vec, which

are outlined in Chapter 6, may benefit from the reduction in redundancies in the

representation that have been processed through dimensionality reduction techniques.

2.1.3 Neural Networks

Artificial neural networks (NN) are designed to approximate the mechanism through

which the human brain works, using a simple model of nodes and connections between

these nodes, called edges. These nodes are approximations of the units of the biological

thinking process, neurons, hence the name neural network. In the field of ML, however,

it is not actually of concern how well the model actually approximates the biological

process of thought, as long as the predictions outputted by these models are of sufficient

quality.

Fig. 2.4 gives an example of a very simple form of a NN, a feed-forward NN. This

method is described as feed-forward based on the direction of information flow, which

only ever goes forward through the NN (left to right in Fig. 2.4). As can be seen from

the figure, the general architecture can be summarized as an input layer, an output

layer and a number of hidden layers. The number of hidden layers is variable and is a

hyperparameter of the model. Another model hyperparameter is the number of nodes

per layer, which can vary from layer to layer.

For regression tasks, the output layer will normally be comprised of a single node,

whereas for classification tasks, for K total classes, there will be a total of K different

nodes in the output (regression means K = 1). By convention, the input layer is known

as the zeroth layer giving h(0) = x. For each of the hidden layers, the output of the
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Figure 2.4: An example of a simple feed-forward neural network with two hidden layers,
as well as the input and output layers. The bias term in each layer is omitted from
this diagram. This neural network would generally act as a regressor due to the single
output node.

layer will be given by

h(i) = g(w
(i−1)
0 +w(i−1)⊺h(i−1)), (2.26)

where w denotes the weights of the edges between the nodes and w0 is the bias term

of the layer, which is an additional weight variable to tune in the training. Further to

this, g is some activation function, which corresponds to the strength of activation of

a given neuron in the NN.

There are numerous choices for the model activation. Originally, the sigmoid func-

tion g(v) = 1/(1 + exp(−v)) was the default activation function for the nodes in a

network. This is still commonly used, however, there are some difficulties with this

particular activation. One is that the strength of activation does not scale with an

increase in v, meaning the sigmoid will saturate, losing any information that would

otherwise be propagated. The second is that it is more difficult to compute a sigmoid

function for every node in a large NN than a simpler choice of activation. Thus, the

ReLu or rectified linear units activation [12] became the activation function of choice
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with the advent of larger NNs. This activation function can be written as

ReLu(v) = max(0, v). (2.27)

Therefore, not only does the output scale with increasing input indefinitely, it is also

quick to compute, requiring only a single if statement, and it saturates at 0 with

diminishing input, which indicates no node activation. These features allowed it to

replace the sigmoid as the activation function of choice. There is, however, a whole

toolkit of other activation functions, which may be useful for different tasks, such as

the hyperbolic tangent or a modified version of ReLu that doesn’t saturate at 0, known

as leaky ReLu [13].

Once the data has been processed through each of the L hidden layers, the output

is obtained as

ŷ = q(w
(L)
0 +w(L)⊺h(L)), (2.28)

where q is some function that captures the nature of the desired output. For regression

tasks, where K = 1, this is generally chosen to be the identity function, q(h) = h, such

that the output of the NN is just the value obtained when propagating the final hidden

layer forward into the single output node. For an output classifying a data point into

one of the K classes, the preferred output function is the softmax function,

qk(h) =
ehk∑K
ℓ=1 e

hℓ

. (2.29)

This function will produce positive estimates that sum to one, indicating the probability

that the output belongs to class k.

Back-Propagation

With the NN architecture now established, we must conceive of a way of adapting the

weights of the NN such that the output is as close to the targets as possible. We have

already considered the forward propagation of information through the system, now we

must consider the information propagating back through the system in order to retroac-

tively update the model weights. This is, intuitively, known as back-propagation.
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Back-propagation aims to minimize a loss function J with an adjustment of the

weights and biases of the NN model. This requires the computation of the gradient of

the loss function with respect to the model parameters θ. Taking the square error loss

function from before,

J(x, θ) =
1

2

N∑
n=1

(yn − ŷn)
2, (2.30)

the gradient of the loss function with respect to each of the individual model weights

wl
ij, for weight corresponding to node j in layer l going into node i can be computed

as

∂J(x, θ)

∂wl
ij

=
N∑

n=1

∂Jn
∂wl

ij

. (2.31)

Thus, there is only a need to consider single training points at a time to obtain the full

loss gradient, which can be computed with a simple summation once the individual

contributions have been calculated. The n will be omitted for simplicity in future steps.

The derivatives of the loss function with respect to an individual weight can be

obtained using the chain rule

∂J

∂wl
ij

=
∂J

∂ali

∂ali
∂wl

ij

, (2.32)

where ali = wl
0i+

∑M
j=1w

l
ijh

l−1
j is the output of node i in layer l before activation where

l contains M nodes. The first term in the product of Eq. (2.32) is normally called the

error and is written as

δlj ≡
∂J

∂ali
. (2.33)

Then the second term can be calculated as

∂ali
∂wl

ij

=
∂

∂wl
ij

(
M∑

m=0

wl
mjh

l−1
m

)
= hl−1

i . (2.34)

Thus, the gradient of the loss with respect to a given model weight can be computed
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as

∂J

∂wl
ij

= δljh
l−1
i . (2.35)

Thus, the weights of the model can be iteratively updated in such a way that the

model loss is minimized by updating the model weights at each iteration by calculating

δlj for every node, working backwards from the output. The model weights can then be

adjusted by calculating the total loss function with respect to each weight and updating

the weight in the direction of negative gradient, using an optimization hyperparameter,

known as the learning rate α as

∆wl
ij = −α∂J(x, θ)

∂wl
ij

. (2.36)

Here the learning rate is a value, which controls how quickly the model will converge

to a minimum. However, too large a learning rate will mean the model will struggle to

converge to a solution, which minimizes the loss function adequately.

Regularization can also be applied to this minimization procedure to avoid overfit-

ting, which is once again achieved by performing these steps, with the addition of a

regularization term in the loss function, similar to the case of ridge regression. There

are several other methods to avoid overfitting such as early stopping, which stops the

training procedure once the validation error begins to rise, which is an indication of

the model beginning to overfit. The other common example is the introduction of

dropout [14], which will randomly set node outputs to 0, based on some probability

that the user defines. This forces the model to learn different functions which map the

inputs to outputs, thus improving the generalisability of the model.

Other Types of Neural Network

There is an entire zoo of different NN architectures that have been shown to be useful

for a variety of different use-case scenarios. Some of the most prevalent of these other

flavours of NN are the convolutional neural network (CNN) [15] and the recurrent

neural network (RNN).

The CNN introduces a sequence of convolutional layers or filter layers through which

the model can learn its own representation of the features. It couples these layers with
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conventional, fully connected feed-forward layers, through which the convolutions are

passed. A major benefit of CNNs is that they are capable of dealing with a variable

input size, meaning the input is more flexible than in the case of other NN flavours.

RNNs are a type of NN in which the information flow is not restricted to the forward

direction alone. In this type of network, the output of a node can impact the future

inputs to the same node. This bidirectionality means that these NNs can be useful for

processing sequences in which the inputs are connected in some way, such as speech

recognition [16] or other linguistic applications, such as named entity recognition [17].

2.2 Density Functional Theory

Density functional theory (DFT) [18] is a powerful computational technique in the field

of computational physics and chemistry, which allows for the calculation of material

and chemical properties from first principles of quantum mechanics. These techniques

are used extensively in Chapters 3 and 4 of this thesis as a basis for benchmarking the

performance of and training the ML models produced.

The fundamental assumption of DFT is that any property of a system of interacting

particles can be viewed as a functional of its ground state density n0(r). This means

that in order to calculate the quantum-mechanical properties of a system, it is not

necessary to obtain the full wavefunction of a many-body system, for which there is no

means of obtaining an analytical solution.

In order to understand the problem of calculating the properties of many-body

systems using quantum mechanics, we must first consider the Schrödinger equation

Ĥψ = Eψ, (2.37)

where ψ is the many-body wavefunction, E is the system energy and Ĥ is the full

Hamiltonian operator for a system of interacting electrons. This operator can be ex-
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pressed as

Ĥ = − ℏ
2me

∑
i

∂2

∂r2i
− ℏ

2

∑
I

1

MI

∂2

∂R2
I

+
e2

2

∑
i ̸=j

1

|ri − rj|

−
∑
iI

ZIe
2

|ri −RI |
+
e2

2

∑
I ̸=J

ZIZJ

|RI −RJ |
,

(2.38)

where ℏ is the Planck constant, ri is the position of the i-th electron, RI is the position

of the I-th nucleus, e is the electronic charge, ZI is the charge of the I-th nucleus, me

is the electronic mass and MI is the mass of the I-th nucleus. The initial two terms in

this expression capture the kinetic energy of the system and the rest attempt to capture

the electron-electron, electron-nucleus and nucleus-nucleus Coulombic contributions to

the overall potential energy, respectively.

The Born-Oppenheimer approximation is useful here, which allows the wavefunc-

tions for the electrons and nuclei to be decoupled due to the relative difference in

velocity between the two, allowing the nuclei to be treated as fixed. This means that

the contribution of the nuclei to the kinetic energy can be dropped, meaning that Ĥ

may be rewritten as

Ĥ = − ℏ
2me

∑
i

∂2

∂r2i
+
e2

2

∑
i ̸=j

1

|ri − rj|

−
∑
iI

ZIe
2

|ri −RI |
+
e2

2

∑
I ̸=J

ZIZJ

|RI −RJ |
,

(2.39)

which, on inspection, involves a term capturing the contribution to the kinetic energy

of the individual electrons, a term for the electron-electron contribution to the potential

energy, a term for the Coulombic interaction of the electron in a fixed field of nuclei

and a constant potential energy contribution from the nucleus-nucleus interaction, i.e.

Ĥ = T̂ + V̂ee +
∑
i

vext(ri), (2.40)

where T̂ is the kinetic energy, Vee is the electron-electron contribution to the potential

and
∑

i vext(ri) is the contribution of the external potential including the result of the

electronic interactions with the nuclei.

This formulation of the Schrödinger equation is the basis for the solution to the
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many-particle equation proposed by Hohenberg and Kohn in 1964 [19], which represents

the foundations of DFT.

2.2.1 Hohenberg-Kohn Theorems

In this work, Hohenberg and Kohn proposed a formulation of an exact solution to the

Schrödinger equation, with the Hamiltonian as written in Eq. (2.39). The theory was

based on two foundational theorems.

The first of these was that for every system of interacting particles in an external

potential, there exists an external potential, which is determined uniquely, with the

exception of a constant, by the ground state particle density n0(r). Thus, every system

property can be determined only through the ground state charge density.

The second theorem that they outlined states that a universal functional for the

energy E[n], in terms of the density n(r) can be defined, which is valid for any external

potential Vext(r). For any Vext(r), the exact ground-state energy of this system is the

global minimum of this functional, and the density n(r) that defines this minimum is

the ground-state density n0(r).

By combining these two theorems, it follows that when the Hohenberg-Kohn func-

tional is available, the system properties calculable through the Schrödinger equation

can be acquired by minimizing this universal functional while considering variations in

the charge density. This process leads to the determination of the ground-state charge

density.

2.2.2 Kohn-Sham Theory

In order to simplify the difficult problem of the fully interacting system of electrons,

which is governed by Eq. (2.39), Kohn and Sham [20] proposed to replace this fully

interacting system with a different, more tractable one. To that end, the Kohn-

Sham (KS) approach replaces the original, fully-interacting system with that of a

non-interacting system, existing in an effective potential. This effective potential in-

corporates all of the many-body effects through an approximated exchange-correlation

functional.

The KS construction is founded on two assumptions. The first of these is that the
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exact ground-state density can be obtained by mapping the interacting system onto a

non-interacting one. The second one is that there is an effective local potential Veff (r)

acting on an electron at point r. These assumptions allow for the construction of a

new, auxiliary Hamiltonian, using Hartree atomic units where the constants are set to

one

Ĥ = −1

2
∇2 + Veff(r). (2.41)

For a system of N independent electrons that obey Eq. (2.41), each electron will occupy

one of the N resulting KS orbitals ψi(r), which have the lowest energy eigenvalues εi.

The density of the auxiliary system is then given by the summation of the absolute

squares of the KS orbitals for the N lowest energy orbitals

n(r) =
N∑
i=1

|ψi(r)|2. (2.42)

The Hohenberg-Kohn (HK) functional can, therefore, be constructed using this

density. The independent particle kinetic energy functional Ts can be written as

Ts = −1

2

N∑
i=1

∫
d3r|∇ψi(r)|2. (2.43)

The Coulombic interaction of the electron density n(r) with itself can be obtained as

EHartree[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
. (2.44)

This is term is called the Hartree energy. The HK functional is therefore expressed as

EKS[n] = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n], (2.45)

where EII is the nucleus-nucleus interaction and Vext(r) is the external potential, which

is caused by the nuclei and any other external fields.

As mentioned previously, all of the many-body effects of exchange and correlation

are baked into the exchange-correlation energy functional Exc[n]. If the true form

of this functional was known, then the exact energy and ground-state density of the
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many-body system of electrons could be obtained. This, however, is intractable and,

therefore, we must make do with approximations for this functional, some of which will

be discussed in Section 2.2.3.

With a valid approximation for Exc[n] and considering the non-interacting kinetic

energy term is expressed in terms of the KS orbitals, while the other terms are func-

tionals of the density, the chain rule can be employed to write the variational equation

of the full functional as

δEKS

δψ∗
i (r)

=
δTs

δψ∗
i (r)

+

[
δEext

δn(r)
+
δEHartree

δn(r)
+
δExc

δn(r)

]
δn(r)

δψ∗
i (r)

= 0. (2.46)

Using equations Eq. (2.42) and Eq. (2.43) for n(r) and Ts, respectively, yields

δn(r)

δψ∗
i (r)

= ψi(r);
δTs

δψ∗
i (r)

= −1

2
∇2ψi(r), (2.47)

and the Lagrange multiplier method for handling the orthonormalization constraints

⟨ψi|ψj⟩ = δij, gives the KS equations

(ĤKS − εi)ψi(r) = 0, (2.48)

where εi are the energy eigenvalues and ĤKS is the effective KS Hamiltonian

ĤKS = −1

2
∇2 + VKS(r), (2.49)

where

VKS(r) =Vext(r) +
δEHartree

δn(r)
+
δExc

δn(r)

= Vext(r) + VHartree(r) + Vxc(r).

(2.50)

Thus, the ground-state density can be obtained iteratively by first making a guess for

the initial charge density. This guess is then used to calculate the effective potential

and, thereby, solve the KS equation. The resultant KS orbitals are used to construct

the charge density and a check is performed to see if the resulting density is self-

consistent with the initial density, to within a pre-defined tolerance. If this is not the

case, the cycle is repeated with the new density until self-consistency has been achieved.
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Once the ground-state density has been obtained, all dependent quantities can also be

obtained such as energy, forces, stresses etc.

2.2.3 Exchange-Correlation Energy

The single loose end remaining is how best to approximate the exchange-correlation

(XC) functional, which accounts for the many-body effects of a group of N electrons,

all interacting with each other. The exchange energy is a result of the antisymmetry of

the electronic wavefunctions. The Pauli exclusion principle means that two electrons

near each other must be antisymmetric with respect to an exchange in their positions

and, therefore, contribute an exchange interaction energy to the overall system. The

correlation energy is the term which accounts for any other electron-electron inter-

action. Correlation effects occur from the wide array of electronic interactions that

involve the relative motions, distances and angles. There are entire families of approx-

imations of the XC functional, which can ascend ‘Jacob’s Ladder’ of density functional

approximations [21], which increase in complexity and accuracy the higher the ladder

is climbed as referenced in Fig. 2.5.

The first construction to consider when conceiving the best approximation for the

XC functional is that of the local density approximation (LDA). The local density

approximation models the XC energy as an integral over all space, where the energy

density at each point is equivalent to that of a homogeneous electron gas with that

density. This takes the energy density of a system which has an analytic form and

assumes that the solid being modelled will be close to the homogeneous electron gas

case. This assumption was first outlined in the original Kohn and Sham paper [20].

The second rung of the ladder is that of the generalized gradient approximation

(GGA). This paradigm extends the idea of the LDA to incorporate the gradient of the

density, as well as the value of the density at each point. The inclusion of the density

gradient contributes to the GGA approximation being more accurate for large classes

of compounds. The most commonly used functional in the community, as well as in

this thesis, is that of the Perdew-Burke-Ernzerhof (PBE) functional [22].

The final rung of Jacob’s Ladder which is pertinent to this thesis is that of the hybrid

functionals. The hybrid functional used in this thesis is the HSE06 functional [23,24],

which is used in order to determine the ground-state phase of NbS2 in Chapter 3.
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Figure 2.5: The ‘Jacob’s Ladder’ of exchange-correlation functionals with increasingly
complex but higher accuracy functionals as the ladder is ascended.

Hybrid functionals generally mix the contributions of Hartree-Fock theory [25,26] and

Kohn-Sham functionals to the exchange energy such that the functional is a mix of the

two contributions according to some mixing parameter. The correlation term is taken

from the GGA approximation. HSE06 is a form of hybrid functional, which employs

the GGA-PBE functional for the GGA part of the functional and for the long-range

exchange interaction, as the long-range and short-range interactions are separated.

Thus, the hybrid nature of the functional is only present for the short-range exchange

interaction. This hybrid functional introduces a screened Coulombic interaction, which

is controlled by a screening parameter. The different HSE functionals differ only by

this screening parameter.

The other two rungs on the ladder in Fig. 2.5 are meta-GGA [27] and random phase

approximation [28] or RPA-type functionals. Neither of these functionals are used

anywhere in this thesis so I will not go into any detail on these particular functional

types. However, in brief, meta-GGA includes a consideration of the second derivative

of the density, or of the KS kinetic energy density, as well as the gradient of the
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density and the density itself. RPA, in contrast, involves the estimation of the electron

correlation effects based on the amplitude of fluctuations of the electron density.

2.2.4 Pseudopotentials

The properties of solids are generally dependent only on the interactions involving

the outermost, valence electrons. The core electrons have little to no part to play in

any interactions and, therefore, calculating their contributions to the overall system is

unnecessary. A pseudopotential is a means of reducing the computational complexity

resulting from the inclusion of these core electrons in the DFT calculation, which causes

the wavefunction of the valence electrons to oscillate rapidly as it approaches the core.

These oscillations require increased computational cost to model, with little contri-

bution to the physics of the system. Replacing the combined strong Coulomb potential

and the screening effect of the tightly bound core electrons with a single effective po-

tential will smooth out this wavefunction as it approaches the core. A process which

creates a pseudo-wavefunction, which models the valence electrons well after some pre-

defined cut-off distance from the ionic core. The valence electrons are, thereby, the

only consideration necessary for the full DFT calculation, reducing cost by eliminating

the rapid oscillations near the ion.

Similarly, in the case of the projector augmented wave (PAW) [29] approach, the

wavefunctions of valence electrons, as they approach the cores, are transformed from

the rapidly oscillating case, resulting from the core electrons to a smooth wavefunction.

In contrast to the previous method, however, the all-electron properties can be obtained

by a linear transformation of the resulting pseudo-wavefunction, using projectors, which

map the pseudo-orbitals within some cutoff, onto the KS orbitals.

VASP [30–33] is the DFT library that is primarily used in this thesis and the cal-

culations that are performed use the VASP library of potentials that employ the PAW

method for their construction. The other library that is used is that of FHI-AIMS,

which employs all-electron DFT and, therefore, does not use pseudopotentials.
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2.2.5 Basis Sets

There are two main methods for solving the KS equation, corresponding to two types of

basis sets that can be used to describe the KS orbitals. The first is the use of a basis set

where the KS orbitals are approximated using some linear combination of functions,

which are localized in space. These localized basis sets are generally comprised of

Gaussian-type orbitals or Slater-type orbitals. These basis sets are not periodic and

are, therefore, generally not used for periodic systems. However, they are useful for

molecules and non-periodic systems as the vacuum surrounding these systems does not

have to be modelled by the basis set in this case.

The one that is used throughout this thesis is the basis set that results from a linear

combination of plane waves

ψi(r) =
∑
k

Ai(k) exp(ik · r). (2.51)

Plane-wave basis sets are very useful for modelling extended periodic systems, due

to the periodicity naturally being built into the basis. Furthermore, the use of these

basis sets means it is relatively simple to improve the overall accuracy of the calculation,

as all that is required to do so is an increase in the number of plane waves representing

the wavefunction. This is achieved by increasing the cut-off energy of the calculation.

All plane waves with a kinetic energy less than the cut-off energy are included in the

calculation. The more plane waves which are included improves the quality of the

calculation, however, the increase in computational cost can be quite severe. Non-

periodic systems, which require a large number of plane-wave basis functions to model

the vacuum tend to be very expensive for the same reason and will generally require a

very large cut-off energy.

2.3 Summary

This chapter first gave a description of machine learning (ML), including the overall

inspiration for, and aims of the field. Further to this, a comprehensive description

of supervised learning was outlined, including a discussion on the two main tasks

involved in supervised learning, regression and classification. The concepts of over-
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and underfitting were outlined, as well as a variety of strategies of accounting for

these effects to improve the performance of ML models. In particular, the optimal

composition and splitting of the training datasets into a train, validation and test split

was outlined to account effectively for overfitting.

This led naturally to a discussion on various loss functions that can be employed for

different supervised tasks, which must be minimized to optimize the performance of the

ML model. Followed by a discussion on the various evaluation metrics that commonly

appear in discussions on ML performance, which are obtained using the test dataset.

The section on supervised ML was concluded by introducing both ridge regression and

random forest, which are used throughout this thesis.

Once the discussion on supervised ML was complete, a brief discussion on unsu-

pervised ML ensued that outlined the two main tasks it is suited for. Namely, those

of clustering and dimensionality reduction. A description of neural networks (NNs)

was subsequently given, giving an overview of both forward and back-propagation of

information through NNs such that the whole network can be optimized for a given

task.

Finally, the key concepts in density functional theory (DFT) were presented, includ-

ing the Hohenberg-Kohn theorems, as well as the Kohn-Sham theory, both of which

are foundational to the field. The relevance of the exchange-correlation term in the

Kohn-Sham Hamiltonian was discussed and various methods of approximating it were

given. Finally, a brief discussion of both pseudopotentials and basis sets for describing

the Kohn-Sham orbitals was delivered.

This chapter has given an overview of the key concepts necessary to understand

and execute the work that follows in this thesis, encompassing the foundations of two

methodologies that consistently appear throughout. In the following chapters, these

methods will be utilized both together and separately. This will be done along with

a variety of other techniques, which will be outlined in the individual chapters, such

that pipelines can be constructed to further the aims of inverse-materials design.



Chapter 3

First-Principles Phonon

Calculations

“Breithnigh an abhainn sara dtéir ina cuilithe.”

Before we are able to fully understand the capabilities of machine learning (ML) for

bypassing first-principles calculations, we must formulate benchmarks or ground truths

with which to compare the ML results. As Chapter 4 focuses mainly on using ML to

bypass ab initio techniques for calculating vibrational and thermal properties of quasi-

two-dimensional (2D) materials, methods to gain a ground-truth or benchmark of the

vibrational behaviours of 2D materials must be considered. Thus, it is of great impor-

tance to fully understand the means of obtaining these benchmarks in this context.

Our focus is on a specific 2D material, NbS2, known for its propensity to exhibit

a diverse array of intricate and interlinked phenomena in its ground state. Remark-

ably, capturing these behaviours using traditional first-principles methods has proven

challenging, let alone with the aid of ML techniques.

The calculations performed as part of this chapter introduce the methods that will

be used subsequently to gauge the efficacy of any ML model to adequately replicate

the first-principles dynamics and behaviour of complex 2D systems and their compos-

ites. Further to this, a full characterization of the complex interplays of behaviours

of monolayer 2H-NbS2 will be outlined. These results will prove in the next chapter

to be useful for the discussion of the limitations of ML potentials. Thus, will form

39
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a large part of the understanding of such a model’s capabilities and the intuition of

their employment for valid use in ML pipelines for materials discovery, with a focus on

pipelines for thermal property prediction.

In the first part of this chapter, I will outline in full the techniques for modelling

phonons from first principles, laying the groundwork for subsequent analyses. In the

latter part, I will present results outlining their use for the calculations of vibrational

properties of NbS2. This represents a holistic view of the phenomena underpinning the

ground-state behaviour of the system, much of which is unique to 2D system dynamics.

3.1 Phonons

Much of the theory in this section has been adapted from a few diverse sources. Namely,

the main body of the theory is adapted from a combination of Ref. [34] and Ref. [35],

and some clarifications were taken from Ref. [36].

The first concept to introduce when establishing methods to capture the dynamics

of materials and, thereby obtaining an understanding of their related quantities is that

of phonons. While phonons play a vital role in our understanding of various thermal

phenomena, mathematically interpreting heat transfer through a lattice as a result of

individual atoms vibrating with excess energy presents a significant challenge. In this

scenario, neighbouring atoms also vibrate, making it challenging to predict macroscopic

properties like thermal conductivity. Thus, it is imperative that such an understanding

be replaced with a theory that, instead of considering such individual behaviours of

atoms at lattice sites, investigates the behaviour of a collective model.

This change in perspective directly follows the reasoning of the Einstein model for

the specific heat, which considers all atoms in a lattice as being independent oscillators.

This compares with the Debye model, which considers the specific heat of a solid as

being derived from collective vibrations of lattice sites being considered as a gas of

phonons in a box, where the box is the solid in question. In this model, the thermal

energy of the system is distributed along the normal modes of the total crystal vibration

as opposed to the individual contributions from individual lattice sites.

These collective lattice waves have the ability to transport thermal energy. However,

a mechanism must be considered by which the resistance encountered by transporting
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such energy through the lattice can be effectively described. Phonon-phonon colli-

sions, which are the scattering of phonons mediating the transport of this energy, are

a valuable means of describing this diffusion of thermal energy as it travels through

a medium. This does apparently contradict the definition of normal modes as being

incapable of interacting with each other. However, this apparent contradiction is com-

pensated for by eliminating an original assumption that the derivation of the model

makes. This assumption is that the lattice sites oscillate in a purely quadratic potential.

In reality, there are anharmonic terms also included in the potential, disrupting the

initial assumptions. A discussion on the impacts of anharmonicity in phonon-phonon

interactions is generally beyond the scope of this Chapter, but it will be touched upon

in Chapter 4.

In order to model the properties of a solid-state body, some conventions must

be established. The first of these is the definition of the crystal lattice, which is a

regular array of sites in three-dimensional space, representing the positions of atoms in

a crystal in its ground state. Formally, it is a set of translations with vectors satisfying

the relationship

l = l1a1 + l2a2 + l3a3, (3.1)

where a1, a2 and a3 are the primitive lattice vectors, and l1, l2 and l3 are all integers,

whose values lie inside a range defined by the size of the crystal as a whole.

From this fixed set of points in a grid, we can conceive our unit cell, which surrounds

each grid point. This unit cell captures the fundamental unit from which the periodicity

of our system is constructed. It is desirable to select the simplest possible choice for this

unit cell, containing the minimum possible number of atoms. If there is a single atom

in each cell, we have a Bravais lattice. If this is not the case, we require a basis, which

is a set of vectors b1, b2, ..., bn for n particles in the unit cell, defining the positions of

the atoms in the unit cell, relative to an atom that we choose to be at the origin.

In order to discuss the motion of the lattice, it is necessary to establish the dynam-

ical equations of the system in question. To obtain these equations, we must consider

a Hamiltonian for the entire system. To aid in the formulation of our Hamiltonian, the

adiabatic or Born-Oppenheimer approximation must be made such that the contribu-
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tion to the potential energy from the dynamics of the electrons can be separated from

that of the nuclear dynamics. This approximation operates on the assumption that

the electrons move so much more rapidly than the atomic nuclei, that the potential

energy, V , can be approximated purely as a function of atomic position xl, allowing

the electronic contribution to be captured by an effective potential. The kinetic en-

ergy of the system, is also, simply, the sum of their individual momenta pl. Thus the

Hamiltonian corresponding to the nuclear dynamics, with ml being the mass of the lth

atom, becomes

Ĥ =
1

2

∑
l

p2
l

ml

+ V (x1,x2...xl...). (3.2)

Considering the most general case of a lattice with a basis, each atom in the system

is labelled using two symbols, l and b, where l is defined as in Eq. (3.1) and b is the

basis vector to the atom in the cell. Any configuration of the system in question may

be given, therefore, using the coordinate vectors xlb of all the atoms. A more natural

choice of coordinate system, however, would be one in which the atomic positions are

given relative to the equilibrium state, i.e.

ulb = xlb − (l + b), (3.3)

resulting in a significant simplification of our calculations as we now allow the equilib-

rium state to be a minimum in the potential energy of the system.

This convention allows us to expand the potential energy out into a Taylor series

in the various vector displacements,

V (ulbα) = V0 +
1

2

∑
lbα;l′b′α′

ulbα · ∂2V

∂ulbα∂ul′b′α′

∣∣∣∣
u=0

· ul′b′α′

= V0 +
1

2

∑
lbα;l′b′α′

ulbα ·Φlbα;l′b′α′ · ul′b′α′ ,

(3.4)

where α, α′ = (1, 2, 3), corresponding to the Cartesian direction of the vector compo-

nent. The constant quantity V0 is arbitrary and can be set to zero for simplicity. The

significance of the construction Φlb;l′b′ ·ul′b′ is the force acting on atom (l, b), when the

atom occupying (l′, b′) is displaced by ul′b′ . Given that we have truncated the Taylor
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series expansion at the second order term, as part of the harmonic approximation of

the potential energy, Φlb;l′b′ is the matrix of second order force constants. If we had

continued the expansion and included anharmonicity, we would have had to consider

the force constants of the third-order, fourth-order etc.

Taking these conventions into account, the system is described by the Hamiltonian

operator

Ĥ =
1

2

∑
lbα

(
1

mb

)
plbα · plbα +

1

2

∑
lbα;l′b′α′

ulbα ·Φlbα;l′b′α′ · ul′b′α′ , (3.5)

whose eigenvalues and eigenfunctions we wish to obtain to ascertain the permitted

vibrational modes of the system and their corresponding vibrational energy. To simplify

this derivation further, we can rewrite Eq. (3.5) as

Ĥ =
1

2

∑
l,b,α

1

mb

(
∂ul,b,α

∂t

)2

+
1

2

∑
lbα;l′b′α′

ulbα ·Φlbα;l′b′α′ · ul′b′α′ , (3.6)

This can be further simplified by taking the mass-normalized displacement by scaling

the atomic displacement based on the mass of the atom in question, i.e. ũlbα =
√
mbulbα. With this definition, Eq. (3.6) can be rewritten as

Ĥ =
1

2

∑
l,b,α

(
∂ũl,b,α

∂t

)2

+
1

2

∑
lbα;l′b′α′

ũlbα

(
1

√
mb

Φlbα;l′b′α′
1

√
mb′

)
ũl′b′α′ . (3.7)

The reduced force constants Φ̃lbα;l′b′α′ = 1√
mb

Φlbα;l′b′α′
1√
m

b′
are a square, symmetric

matrix, and can therefore be diagonalised using eigenvalue decomposition as

Φ̃ = UΩ2U⊤, (3.8)

where Ω2 = diag(..., ω2
ξ , ...), the diagonal matrix of eigenvalues, corresponding to the

squared frequencies of each normal mode and U is an orthogonal matrix where each col-

umn is the eigenvector wlbα(ξ). Here, ξ is the index of each normal mode of the system.

The Hamiltonian in Eq. (3.7) is written in a matrix notation with the introduction of
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the column matrix ũ = (
√
mbulbα...)

⊤ as

Ĥ =
1

2
˙̃u
⊤ ˙̃u+

1

2
ũ⊤Φ̃ũ

=
1

2
(U⊤ ˙̃u)⊤(U⊤ ˙̃u) +

1

2
(U⊤ũ)⊤Ω2(U⊤ũ)

=
1

2
Q̇⊤Q̇+

1

2
Q⊤Ω2Q,

(3.9)

where Q gives the normal coordinates of the system, defined as ũ = UQ. This gives

a construction that relates the mass-normalised displacements ũ with the eigenvectors

wlbα(ξ). The normal mode coordinates are a derived coordinate system, representing

the contribution of a given phonon mode to the mass-normalized displacement of an

atom. The dots above ũ and Q imply that these quantities are time derivatives. The

eigenvalue problem shown in Eq. (3.8) can be rewritten explicitly as

∑
l′b′α′

Φ̃lbα;l′b′α′wl′b′α′(ξ) = ω2
ξwlbα(ξ). (3.10)

Taking our analysis from real space into reciprocal space greatly simplifies the calcu-

lation of the vibrational frequencies of the different normal modes. Taking advantage

of the periodicity of our system, this is achieved by use of the Bloch theorem, allowing

us to rewrite the eigenvector for the wave vector q as

wlbα,q(ξ) =
1√
N
Wbα(ξ)e

iq·(l+b), (3.11)

where Wbα(ξ) is a function capturing the periodicity of the crystal lattice and 1√
N

is

a normalizing factor, where N corresponds to the total number of unit cells in the

solid. By combining Eq. (3.10) and Eq. (3.11), multiplying both sides by the factor

e−iq·(l+b)/
√
N and summing over l on both sides, we obtain

∑
b′α′

Dbα;b′α′(q)Wb′α′(qν) = ω2
qν(q)Wbα(qν), (3.12)

where now the index ξ is replaced with the index qν, combining the wave vector q

with the index of the phonon band, ν. This new eigenvalue equation introduces the
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dynamical matrix,

Dbα;b′α′(q) =
∑
ll′

e−iq·(l+b)

√
N

Φ̃lbα;l′b′α′
eiq·(l

′+b′)

√
N

=
1

N
√
mbmb′

∑
ll′

Φlbα;l′b′α′eiq·(l
′+b′−l−b)

=
1

√
mbmb′

∑
l′

Φ0bα;l′b′α′eiq·(l
′+b′−b),

(3.13)

where the final definition of Dbα;b′α′(q) in Eq. (3.13) is achieved by considering the

lattice translational symmetry of the force constant matrix. From this definition of

the dynamical matrix, it can be understood to be the mass-reduced Fourier transform

of the matrix of second-order force constants Φlbα;l′b′α′ . Thus, in order to obtain the

dynamical matrix, all that is required to compute is Φlbα;l′b′α′ .

The construction ũ = UQ from Eq. (3.9) can be reformulated in explicit notation

and combined with Eq. (3.11) to give a relationship between the displacement of an

atom ulbα and the phonon coordinates or the normal-mode coordinate in reciprocal

space Q(qν),

ulbα(qν) =
1√
Nmb

∑
qν

Q(qν)Wbα(qν)e
iq·(l+b). (3.14)

Through the use of the definition of phonon creation a†qν and annihilation aqν operators,

the solution to the quantum harmonic oscillator problem implies that Q(qν) can be

written as [36]

Q(qν) =

√
ℏ

2ωqν

(aqν + a†−qν), (3.15)

where ℏ is the Planck constant. This allows us to reconstruct the Hamiltonian for a

harmonic system, using these creation and annihilation operators as a sum over all

phonon modes

Ĥ =
∑
qν

ℏωqν

(
a†qνaqν +

1

2

)
=
∑
qν

ℏωqν

(
nqν +

1

2

)
,

(3.16)
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where nqν = a†qνaqν is the occupation number operator of the qν phonon mode. The

occupation number is temperature dependent and its expectation value is given by the

Bose-Einstein distribution, as phonons are bosonic quasiparticles

⟨nqν⟩ =
1

e
ℏωqν
kBT − 1

, (3.17)

where kB is the Boltzmann constant and T is the temperature of the system. This

derivation highlights the analogous relationship between phonons and photons as being

a means of mediating energy. The phonons quantize the vibrational energy into discrete

amounts, each with an energy of ℏωqν , much like the case of photons for electromagnetic

radiation. Furthermore, when the temperature increases, the implication is that the

thermal energy is distributed between a larger quantity of phonon modes in a greater

and greater number of excited states.

3.1.1 Frozen-Phonon/Finite Displacement Calculations

Looking at the problem in a practical sense, the key to understanding which phonon

modes are important to the contribution of this vibrational energy transfer is, therefore,

the dynamical matrix, defined in Eq. (3.13). Diagonalizing this operator gives rise to

each phonon frequency and eigenvector, which can then be used to surmise the phonon

coordinates corresponding to the largest degree of energy transfer. The discussion must

then turn to methods with which to obtain this dynamical matrix.

The first of these methods is arguably the most common and intuitive means of

obtaining the dynamical matrix, known as the frozen-phonon or finite displacement

method. This process is executed simply by obtaining the restoring forces an atom

experiences with a series of different atomic displacements

−flbα =
∑
l′b′α′

Φlbα;l′b′α′ · ul′b′α′ . (3.18)

This sequence of simultaneous linear equations is solved for each atom by constructing

a supercell model of the system. This supercell is comprised of a linear combination

of unit-cell basis vectors. In this new, expanded system, an atom is displaced and

the supercell periodicity is broken by this displacement as is represented in Fig. 3.1



47 3.1. Phonons

l1

l3

l2

l4 l3

l1 l2

l4 l3

l1 l2

l4 l3

l1 l2

l4

l3

l1 l2

l4 l3

l1 l2

l4 l3

l1 l2

l4

l3

l1 l2

l4 l3

l1 l2

l4 l3

l1 l2

l4

(a) (b)

Figure 3.1: A schematic diagram of the procedure for calculating the matrix of force
constants for a given system using the finite displacement method. (a) Depicts the
expansion of the unit cell into a 2 × 2 supercell, where l1, l2, l3 and l4 are the indices
of the constituent unit cells. The finite displacement of an atom in the supercell
is depicted in red, breaking the symmetry within the supercell. (b) The periodic
boundary conditions means the atom marked with the blue X will feel a resultant
force due to the displacement of atoms in every mirror image of the supercell from the
periodic boundary conditions. This diagram was adapted from Ref. [35].

(a). This leads to the supercell itself being the new unit of periodicity. Thus, this

displacement is mirrored by all perceived mirror images of the supercell surrounding

the one of interest as a result of the periodic boundary conditions of the system. The

force acting on each atom in the supercell is calculated as a response of all of the

displacements from every mirror image of the supercell Fig. 3.1 (b).

The number of unit cells in a given supercell is a parameter of the calculation

that must be determined by converging the results of the calculations. If the forces

calculated vary for a given atom in the supercell with increasing supercell size, the

calculation is not yet converged. This is due to the fact that atomic interactions will

decay with increasing distance. Therefore, if a supercell of sufficient magnitude is

used, the dynamical matrix becomes a good approximation. Displacements must be

applied on different atoms in the configuration in order to correctly model the forces

acting between every atom and thereby identify the interatomic force constants directly.

Various symmetries can be used for a given configuration that stands to reduce the

computational complexity of the calculation by performing a single calculation for
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equivalent atomic sites.

The value of the finite-displacement method over other ways to obtain the dy-

namical matrix is that it is only dependent on the ability of a model to obtain the

forces exerted on atoms by a less computationally intensive force calculator, instead of

exclusively relying on first-principles methods, such as DFT. However, it is certainly

reasonable to use such methods too. With this in mind, any quantum-accurate method

for calculating interatomic forces should produce an extremely accurate picture of the

quantized vibrational dynamics of a given system. The use of non-DFT force calcula-

tors is beneficial when there exists a system that would be very costly to model with

ab initio methods due to the system size, or the amount of vacuum that would need

to be considered.

3.1.2 Density Functional Perturbation Theory

The finite-displacement method is an intuitive and useful choice for obtaining the force

constant matrix in a simple way. This method does suffer from some drawbacks when

being used in conjunction with first-principles methods. This is particularly true when

the method is employed for complex systems or unusual geometries. For large sys-

tem sizes, for example, having a greater number of atoms in the primitive cell means

that more calculations must be performed for the supercell. A fact that means finite-

difference scales quite poorly with system size. Furthermore, if a system lacks symme-

tries, the reduction in the number of calculations due to the system symmetry can no

longer be performed, further compounding this scaling issue. This is particularly true

for few-layer, two-dimensional systems when employing DFT-based force calculators

with a plane-wave basis set. As this basis set is intrinsically periodic in nature, there is

a necessity to increase the distance between layers such that any inter-layer interactions

effectively vanish. This requires a very large plane-wave cut-off in order to mimic the

region devoid of charge density in the vacuum by the summation of a large number of

plane-waves. The problem is avoided by using a local, or a hybrid basis, but here VASP

was exclusively employed so that the resultant values are comparable to the standard

calculations in the AFLOW repository [37,38], which also employ VASP.

Coupling this concern with the likely large supercell that is necessary to capture

the sometimes complex dynamics of quasi-2D monolayer means that such calculations
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may become prohibitively expensive for a sufficiently accurate picture of the system

dynamics to be accessible. Thus, it is necessary that a method for obtaining the

dynamical matrix of a given system is conceived, avoiding the need for this potentially

expensive calculation, which involves the construction of a large number of large-scale

supercells. Such a method is density functional perturbation theory (DFPT). This

derivation will follow much of the logic of Ref. [39].

In order to understand DFPT, we must revisit the electronic Hamiltonian, moving

in the field of fixed nuclei,

Ĥ(R) = − ℏ
2me

∑
i

∂2

∂r2i
+
e2

2

∑
i ̸=j

1

|ri − rj|
−
∑
iI

ZIe
2

|ri −RI |
+ EN(R), (3.19)

where R = l + b, me is the mass of the electron, ZI is the charge of the I-th nucleus,

ri is the position of the i-th electron and EN is the electrostatic interaction between

different nuclei,

EN(R) =
e2

2

∑
I ̸=J

ZIZJ

|RI −RJ |
. (3.20)

We can take a look at the Hellman-Feynman (HF) theorem [40] to determine a new

means of calculating our force constants straight from our DFT functional. The HF

theorem states that the first derivative of the eigenvalues of a Hamiltonian, dependent

on a given parameter λ, Ĥλ can be given by the expectation value of the derivative of

the Hamiltonian with respect to that parameter, namely,

∂Eλ

∂λ
=

〈
Ψλ

∣∣∣∣∣ ∂Ĥλ

∂λ

∣∣∣∣∣Ψλ

〉
, (3.21)

where Ψλ is the eigenfunction of Ĥλ corresponding to the Eλ eigenvalue, given by the

eigenvalue equation ĤλΨλ = EλΨλ. The Born-Oppenheimer approximation allows us

to give the electronic Hamiltonian as a function of atomic coordinates, Eq. (3.19).

According to the HF theorem, the force acting on the I-th atom can therefore be given

by

FI = −∂E(R)

∂RI

= −

〈
Ψ(R)

∣∣∣∣∣ ∂Ĥ(R)

∂RI

∣∣∣∣∣Ψ(R)

〉
, (3.22)
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where Ψ(r,R) is the wave function of the ground state obtained from the electronic

Hamiltonian Eq. (3.19). Within the Born-Oppenheimer approximation, the depen-

dency of the Hamiltonian on R is only determined by the electron-ion interaction.

Thus, the force acting on the nucleus is dependent only on the electron charge density.

The HF theorem, therefore, states that

FI = −
∫
nR(r)

∂VR(r)

∂RI

dr− ∂EN(R)

∂RI

, (3.23)

where nR(r) is the ground-state electron charge density given by atomic configuration

R, and VR(r) is the electron-nucleus interaction,

VR(r) = −
∑
I

ZIe
2

|r−RI |
. (3.24)

The Hessian matrix, which is the matrix of second-order partial derivatives of a scalar

function, of the system energies can be obtained by taking the partial derivative of

Eq. (3.23) with respect to nuclear coordinates, i.e.

∂2E(R)

∂RI∂RJ

≡− ∂FI

∂RJ

=

∫
∂nR(r)

∂RJ

∂VR(r)

∂RI

dr

+

∫
nR(r)

∂2VR(r)

∂RIRJ

dr+
∂2EN(R)

∂RI∂RJ

.

(3.25)

The Hessian matrix of the system energies with respect to a change in atomic configu-

ration is the matrix of interatomic force constants ΦIJ = ∂2E(R)/∂RI∂RJ necessary

to construct the dynamical matrix as in Eq. (3.13). Thus, ΦIJ can be obtained by cal-

culating the ground state of the electron charge density nR(r) and its linear response

to a change of nuclear geometry, ∂nR(r)/∂RI . An expression for this response can

be obtained by relating the density, n(r), to the Kohn-Sham wavefunctions Eq. (2.42)

from Section 2.2, n(r) =
∑

i |ψi(r)|2, and by taking this derivative with respect to the

perturbation of atomic position RI

∂n(r)

∂RI

=
∑
i

∂ψ∗
i (r)

∂RI

ψi + ψ∗
i

∂ψi(r)

∂RI

. (3.26)
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These wavefunctions obey the equation

[
− ℏ2

2m

∂2

∂r2
+ VKS(r)

]
ψi(r) = ϵiψi(r) (3.27)

where VKS is the same potential energy as defined in Eq. (2.50) and ϵi is the energy

eigenvalue for Kohn-Sham orbital, ψi. These quantities can be expanded in a Taylor

series for a small deviation of atomic configuration ∆RI ,

VKS(r,∆RI) = VKS(r, 0) + ∆RI
∂VKS(r)

∂RI

+ ...

ψi(r,∆RI) = ψi(r, 0) + ∆RI
∂ψi(r)

∂RI

+ ...

ϵi(∆RI) = ϵi(0) + ∆RI
∂ϵi
∂RI

+ ...

(3.28)

Taking the first-order approximation in the expansions above and inserting them into

Eq. (3.27), allows us to express this relationship as

[
− ℏ2

2m

∂2

∂r2
+ VKS(r)− ϵi

]
∂ψi(r)

∂RI

= −∂VKS(r)

∂RI

ψi(r) +
∂ϵi
∂RI

ψi(r), (3.29)

where

∂VKS(r)

∂RI

=
∂V (r)

∂RI

+

∫
1

|r− r′|
∂n(r′)

∂RI

dr′ +
dVxc(n)

dn

∣∣∣∣
n=n(r)

∂n(r)

∂RI

(3.30)

depends self-consistently on the charge density, induced after the introduction of the

perturbation. An explicit evaluation of this equation would require a full knowledge

of both the occupied and unoccupied states. However, only knowledge of the occupied

states is required to evaluate the right-hand side of Eq. (3.29) [39]. Furthermore, the

response of the charge density to a perturbation will only be dependent on components

of the perturbation that couple occupied states to unoccupied ones. Thus, the intro-

duction of a projector onto these empty states PC allows Eq. (3.29) to be rewritten

as [39]

[
− ℏ2

2m

∂2

∂r2
+ VKS(r)− ϵi

]
PC

∂ψi(r)

∂RI

= −PC
∂VKS(r)

∂RI

ψi(r). (3.31)

This gives us a means of calculating the linear response of the charge density with
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a change in atomic position, and therefore the matrix of interatomic force constants,

ΦIJ . This is due to the fact that Eq. (3.30) and Eq. (3.31) form a set of self-consistent

equations, which can be solved analogously to the unperturbed case from Section 2.2.

3.2 Niobium Disulphide (NbS2)

(a) (b)

Figure 3.2: The atomic structure of monolayer 2H-NbS2 (a) viewed along the x-axis
(b) viewed along the z-axis. The larger niobium (Nb) atoms are depicted in green and
the smaller sulphur (S) atoms are depicted in yellow.

Two-dimensional materials have been known to exhibit a large array of novel and

potentially ground-breaking behaviours since the first isolation of monolayer graphene

by Novoselov et al. [41] almost two decades ago. For instance, graphene exhibits a

diverse range of fascinating behaviours, such as remarkable tensile strength [42], elec-

trical conductivity [41] and thermal conductivity [43]. The group of layered materials

from the family of transition metal dichalcogenides (TMDs), which is comprised of both

metals and semiconductors, have also been shown to exhibit a wide variety of compet-

ing electronic phases such as charge-density waves [44], Mott-insulating phases [45] and

superconducting phases [46], demonstrating a rich variety of potentially useful phenom-

ena. If we are to use methods to predict the array of properties of these materials, we

must begin by understanding the abilities of these models to capture such a diversity

in behaviour, as well as their limitations in doing so.

An initial compound with which to identify strengths and weaknesses of various ML-

based techniques for rapidly obtaining properties that result from vibrational properties

could be niobium disulphide, NbS2, a material that should prove to effectively demon-

strate the bounds of performance of ML-based modelling techniques. NbS2 exists in
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two main polytypes, which are rhombohedral (3R) and hexagonal (2H), each exhibiting

unique electronic properties. 3R-NbS2 is a metallic compound [47], whereas 2H-NbS2

also exhibits metallicity, up until the onset of a superconducting phase below a critical

temperature of 6 K [48]. Both polytypes are layered compounds and can be grown in

bulk form by tuning the sulphur pressure to favour one polytype over the other [49].

In the few-layer limit, only 3R-NbS2 has been grown, with mechanical exfoliation from

bulk being the only way of isolating the more interesting, 2H few-layer phase of the

compound [50].

NbS2 is believed to be on the verge of a variety of different instabilities, with a

variety of Coulombic and electron-phonon interactions leading to a unique combination

of different charge-, spin- and superconducting phases, meaning that this material

presents an immensely rich phase diagram [51]. The following study I will outline

these competing phases and discuss how they may impact the vibrational dynamics of

this system. In later chapters, I will further discuss these behaviours in the context of

the capabilities of machine learning modelss in replicating the determined phenomena

and the accuracy of these systems in adjusting their predictions in order to account for

these complex dynamics.

3.2.1 Band Structure Calculations

An attempt was made to establish the lowest energy phase of monolayer 2H-NbS2,

and therefore the true system ground-state, upon which to perform the bulk of the

subsequent analyses. All calculations in this section were performed using the VASP

library [30–33] for DFT with a plane wave basis set. A high cut-off energy of 600 eV was

necessary for this system in order to converge the calculations due to the 20 Å vacuum

layer that needed to be included in order to accurately approximate the monolayer

system, in spite of the inherent periodicity of the plane-wave basis set. The initial

calculations on the system were performed using a GGA-PBE functional, with a Γ-

centered k-mesh of 20× 20× 1. The first step in this process is to relax the monolayer

cell, with the initial spin configuration set to one of three possible magnetic phases;

non-spin polarized, ferromagnetic and antiferromagnetic. The relaxation of the system

forces were set to the very strict convergence criterion of 10−9 eV/Å, such that there was

a sufficiently relaxed structure for the phonon calculations further down the pipeline,
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since this requires a strict convergence.

After this relaxation had been completed for each case, self-consistent field (SCF)

calculations were performed in order to establish the lowest energy spin configuration

of NbS2 by comparing the resulting total system energies of the compound for each of

the non-spin polarized, ferromagnetic and antiferromagnetic cases. Using the GGA-

PBE functional, however, led to the total energies of each of these three systems being

essentially identical, with a total of 1 meV separating the total energies of each of the

three cases. Thus, it was decided that a hybrid functional may perform slightly better in

the attempt at differentiating the ground state of the system. This suspicion was due to

the stronger correlation effects in the functional potentially giving a stronger indication

of the lower-energy spin state. Therefore, another SCF calculation was performed,

this time using the HSE06 functional. As a result of the use of this functional, the

antiferromagnetic phase was eliminated as a potential ground-state phase of the NbS2

system, as this state was higher in energy by approximately 40 meV than that of the

other two phases when the HSE06 hybrid functional was employed. The two remaining

phases, however, were still degenerate in energy, providing evidence for competing

magnetic and non-magnetic phases in the ground-state of NbS2.

An understanding of the reasons for these competing phases can be obtained by

studying the results of the band-structure calculations of Fig. 3.3, which demonstrates

the difference in electronic band structure between the non-spin polarized state and

the ferromagnetic state, as well as the corresponding difference in the density of states

(DOS). In the non-spin polarized case, as seen in Fig. 3.3 (a), there is a peak in DOS

present at the Fermi energy, which is evidence of the metallic nature of the material.

The total energy of quasi-2D systems, however, can be reduced by the appearance of

various types of long-range orderings that reduce the density of occupied states at the

Fermi level. One such ordering is known as a charge-density wave (CDW) in which the

total distribution of electron density across a low-dimensional system is periodically,

spatially modulated. This periodic modulation of charge density, in turn, induces a

periodic distortion in the atomic lattice itself. The increase in potential energy that it

costs to have atoms in non-equilibrium positions is compensated for by the reduction

in occupied states above the Fermi energy and, therefore, the system undergoes a

phase transition. The transition from the metallic state to the insulating CDW state
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Figure 3.3: A comparison between the energy band structure diagram and density of
states for monolayer 2H-NbS2 in the (a) non-spin-polarized case and (b) ferromagnetic
case. In the ferromagnetic case, the energy band splitting and the reduction of the
density of states at the Fermi energy, which is represented by the dashed line, is evi-
dent upon transition from a non-spin-polarized to spin-polarized system. Both band
structure diagrams were obtained using a GGA-PBE functional, with an energy cut-off
of 600 eV and a Γ-centered k-mesh of 20× 20× 1.

is known as a Peierls transition. NbS2 is known not to exhibit a charge density wave,

which makes it unusual among 2D TMD materials [52]. Studies have shown, however,



Chapter 3. First-Principles Phonon Calculations 56

that the material is in fact on the cusp of a CDW transition, which is mitigated by

strong anharmonic effects affecting the electron-phonon coupling of the system [53].

Another way in which systems can lower their total energy is evident from the plot

of the band structure visible in Fig. 3.3 (b). Considering spin-polarization can lead

to a splitting in energies between the spin-up and spin-down electron energy levels,

resulting in an overall reduction of total system energy due to the reduction in the

occupied energy bands close to the Fermi energy.

Indeed, there is prior theoretical evidence for a tendency towards long-range mag-

netic ordering in monolayer NbS2 [54], as well as the aforementioned tendency towards

long-range electronic ordering, despite the fact that such electronic ordering has not

been observed. In line with this, Ref. [53] suggests that the system is poised between

two competing ordered phases. One of these phases is characterized by a charge density

wave instability, while the other exhibits a modulation in the spin density, referred to

as a spin density wave. This mirrors the findings of my study, which also indicates the

presence of two competing ground-states: one featuring long-range magnetic ordering

and the other devoid of such ordering, with long-range charge ordering instead.

3.2.2 Vibrational Dynamics

There are several notable phenomena that accompany these variances in electronic

phase in 2D materials, be that a transition from a metallic to an insulating phase or

a phase transition to superconductivity. As stated previously, another result of these

complex phenomena in 2D materials is that the aforementioned modulation of charge

density in CDWs, will cause a distortion in the unit cell of the compound which is

periodic over a supercell of constituent unit cells. This will create the appearance of a

dynamical instability in the structure, which manifests as negative phonon frequencies

resulting from solving Eq. (3.12), corresponding to imaginary phonon modes.

In reality, the CDW instability in monolayer 2H-NbS2 is, as stated, mitigated by

the inclusion of anharmonic effects. However, the non-mitigated instability should ap-

pear when operating in the harmonic regime, a fact that enables us to explore the

hypothetical boundary between these interesting states, even if in truth such a bound-

ary is not a physical one. With this in mind, the phonon dispersion was obtained for

monolayer 2H-NbS2 in both the ferromagnetic and non-magnetic phases. Initially, the
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finite displacement method was employed, however, this led to a requirement for a very

large supercell in order to converge the calculation, by causing an infeasible number of

required force calculations.

To address this difficulty, DFPT was employed on the relaxed unit cell in order

to directly calculate the matrix of first-order force constants, and thereby diagonalize

the dynamical matrix of the system as described above in section 3.1.2, while avoiding

the need for a great number of computationally demanding calculations on a wide

number of supercell displacements for large supercells. Once again, a plane-wave basis

set was used in conjunction with the implementation of DFPT as is available in the

VASP library. A GGA-PBE functional, with a Γ-centered k-mesh of 20× 20× 1 and an

energy cutoff of 600 eV was, once again, employed in this study.
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Figure 3.4: The phonon dispersion and phonon density of states for monolayer 2H-
NbS2, calculated using DFPT. The phonon dispersion for the system obtained in a non-
spin polarized state is represented in blue and the ferromagnetic state is represented
in red. The dynamical instability in the primitive cell for the non-spin polarized case
can be clearly seen in the imaginary phonon modes at q ≈ 2/3ΓM . In the case of the
ferromagnetic state, this apparent dynamical instability is not present, eliminating the
imaginary phonon modes. Softening of the optical phonon modes can also be seen in
the non-magnetic phase at the same point relative to the ferromagnetic phase.
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The results of this analysis can be seen in Fig. 3.4, presenting a very stark com-

parison between the apparent unit cell distortion, resulting from the CDW formation

in the harmonic approximation and the relaxed structure as it exists in the magnetic

phase. This vastly differing dynamical behaviour of the system is a direct result of

the electronic structure of the compound. It presents an ideal example of the vital

importance of understanding the degree to which such factors can impact the resulting

dynamics of the system. It also underscores the ability of novel methods of modelling

these dynamics to replicate that behaviour.

The expected dynamical instability of the non-magnetic state is clearly visible in

the phonon dispersion of Fig. 3.4 and appears at the phonon wavevector q ≈ 2/3ΓM ,

which agrees with the value reported for the harmonic approximation in Ref. [55].

This result implies that the system would undergo a 3× 3 reconstruction. Further to

the evident dynamical instability in the acoustic phonon modes, it should be noted

that there is a softening of the optical phonon modes at the same wavevector as the

instability in the non-magnetic case. This softening is not nearly as dramatic as the

incipient instability. However, it is significant enough to warrant note in any future

comparisons.

In the harmonic regime, this dynamical instability is completely eradicated by the

phase transition to a ferromagnetic state. The tendency towards a CDW phase is offset

in this case by the system energy reduction that the transition to a ferromagnetic phase

yields. The fact that this magnetic phase and the non-magnetic phase are so similar in

energy means that it is difficult to make a call on the exact nature of the ground state of

the system. In fact, it is abundantly clear that there is a range of system dynamics that

are directly in competition with each other, each presenting vastly different behaviour.

Indeed, there has been some discussion on utilising this tendency towards multiple

electronic phases in NbS2 as a switch between conducting and insulating states, tuning

the state with strain, which has been shown to mitigate the dampening of the CDW

state resulting from anharmonicity [55].

The diversity of behaviours in NbS2 and the presentation of multiple, competing

ground-states that exhibit different dynamical behaviour means that NbS2 is an ideal

material with which to highlight the interplay between these states and also demon-

strate the capabilities of less computationally expensive models than DFT to poten-



59 3.3. Summary & Conclusions

tially capture this behaviour, or indeed, the limitations of such models in their ability

to replicate this behaviour.

3.3 Summary & Conclusions

In this chapter, the methods for understanding the dynamical behaviour of systems at

the quantum-level were first outlined. This began with a discussion of the nature of

phonons as being a valid and useful means of translating the issue of thermal transport

and vibrational dynamics of a system from an understanding based on individual atom

dynamics to a model describing the collective behaviour of all the atoms in a system.

After gaining this understanding of the nature of phonons and their relationship to

such macroscopic behaviours, methods with which the phononic properties of systems

can be obtained were discussed. To that end, two methods were discussed: finite

displacement, which aims to construct the dynamical matrix of the system by obtaining

the force constants through the direct calculation of forces from atomic displacements

in a supercell; and density functional perturbation theory, which attempts to calculate

the same force constants through direct calculation of the Hessian matrix, using first-

order perturbation theory.

A case study of calculating the behaviour of a two-dimensional system was presented

after outlining the methods of calculating the desired dynamical behaviour. The system

in question was chosen to be NbS2 due to the wide array of diverse and complex

behaviours that the monolayer, 2H polytype exhibits. Two ground-state phases were

shown to be degenerate in energy, one of which was a ferromagnetic phase exhibiting

long-range magnetic ordering and the other was a non-magnetic phase, on the cusp of

entering into a CDW state. Both of these states exhibited vastly different dynamical

behaviours on the calculation of the phonon dispersions for each state, with the non-

magnetic phase presenting an instability in the harmonic regime, resulting from the

incipient CDW state and the ferromagnetic state eliminating this instability entirely.

In order for the thermal behaviour of 2D materials and their heterostructures to

be modelled effectively using ML techniques, an understanding of such model’s ability

to capture the dynamics resulting from the exotic behaviours of monolayers must be

established. As is evident from the results of this chapter, NbS2 offers us the ability to
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probe a large number of those behaviours and gain an insight into the potential, and

the limitations of these ML models as we move beyond first-principles techniques and

begin to attempt to bypass them.



Chapter 4

Machine-Learned Thermal

Properties

“An rud a ch́ıonn an leanbh is é an rud a ńıonn an

leanbh.”

In the previous chapter, methods for obtaining the dynamical properties of materials

from first-principles calculations were discussed in the context of two-dimensional (2D)

materials. Such methods are extremely valuable for our understanding of exotic phe-

nomena in these materials and for expanding the theoretical horizons of our knowledge

about those phenomena. Their practical use for the purpose of inverse materials de-

sign and, by extension, materials discovery, however, is extremely limited by the high

computational cost of their use, particularly for low-dimensional materials requiring

high energy cut-offs and large vacuum regions in the simulation cells.

Thus, a means of reducing the computational cost of energy and force calculations is

required, such that there is little to no sacrifice in the fidelity or accuracy, relative to ab

initio techniques. At first glance, this seems like an impossible task, due to the plethora

of factors that influences the total energy/forces of a quantum mechanical system.

However, this issue is greatly simplified by the progress in recent years in the capabilities

of machine-learning (ML) methods, which are designed for and optimised for their

ability to approximate high-dimensional, non-linear functions with relatively simple

and computationally inexpensive algorithms. A fact that means that ML methods are

an ideal candidate for approximating the potential energy surface (PES) of a complex

61
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molecular system. All one needs for such a task is an adequate means of representing

the system and enough data for the model to be trained. With these criteria met, the

total energy and forces of a system can easily be computed and with that, a range of

system properties.

In this chapter, I will focus on the construction of a library of machine-learned

interatomic potentials (MLIPs) for 2D materials, which can be arbitrarily extended to

composite systems to facilitate the rapid computation of materials properties for such

systems. The reason that this work targets 2D heterocomposite systems, in particular,

is related to the fact that there exists a large family of 2D layered systems, with

approximately 1,800 unique systems [56]. Due to the nature of the interlayer van der

Waal’s (VdW) binding in these layered systems, they can be arbitrarily stacked to

form an infinite number of composite structures. The computational intensity of first-

principles methods previously described in this thesis, would not be efficient enough

to adequately sample the property space of this large family of potential materials.

Consequently, a library of ML potentials is ideally suited for constructing a picture of

this property space, which is helpful for targeting specific materials properties. This

approach enables the rapid property screening step in an inverse-design workflow.

The main properties I targeted in this chapter are related to the thermal transport

behaviours of 2D systems. 2D compounds are known to exhibit a wide range of ther-

mal properties, with numerous examples exhibiting anomalously high- and low-thermal

conductivities [57–59], and with certain compounds displaying highly efficient thermo-

electric conversion [60]. This wide variance in the thermal properties of these materials

implies that the 2D material class of compound represents an ideal playground for

the synthesis of composite compounds with desired properties for any given thermal

application.

In the first part of this chapter, I will discuss different methods for representing

materials composition and structure such that they can be processed efficiently by

ML algorithms to create MLIPs. I will then describe how the resulting potentials can

be extended, to further enhance the capabilities of these MLIPs, by the inclusion of

a consideration of the interlayer VdW interaction. The inclusion of this interaction

facilitates the computation of energies and forces for composite heterostructures. Sub-

sequently, our attention will be turned to the vibrational properties of these systems
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and to an in-depth analysis of the MLIPs’ potential to replicate the phononic properties

of monolayer and heterostructure materials. I will compare these analyses with some

of the results from the previous section and other first-principles DFPT calculations.

Finally, I will turn the focus towards modelling the thermal properties of these

systems, given their adequate performance on modelling the necessary phononic prop-

erties. Within this context, I will conduct an exploration of the methods that give rise

to the determination of both the interlayer and the intralayer thermal conductivity of

the studied materials. This presentation of a novel library of MLIPs for 2D materials

should prove to be invaluable to the materials science community and in this chapter, I

will give a full overview of the capabilities of these methods in replicating the thermal

behaviour of such materials.

The work contained in this chapter was conducted in close collaboration with my

colleague Rui Dong, with Rui broadly focused on the construction of the MLIPs, with

several having been constructed by myself. However, my focus was primarily centred

on the prediction of properties by utilising the resulting hybrid potentials.

4.1 Machine-Learned Interatomic Potentials

Database of atomic 
configurations
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Total Energy 
DFT
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Atomic Environment 
Representation

Regression of 
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Figure 4.1: Diagram depicting the general workflow for the construction of machine-
learned interatomic potentials. The descriptors q in the diagram are dependent on
material properties and crystal structure, while x represents a generic geometry vari-
able. This diagram was adapted from Ref. [61].

A general workflow for the construction of MLIPs is presented in Fig. 4.1. As
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stated, a regression task in ML is an ideal means of approximating a complex, high-

dimensional, non-linear function with minimal computational expense, depending on

the ML model chosen, the choice of feature representation and the size of the available

data set. There are numerous choices for the construction of these interatomic poten-

tials, some more suited to certain tasks than others. As with any model, there will

always be some trade-offs between models in terms of how data-hungry or computa-

tionally efficient they are, or how well they are able to capture the complexity of the

PES.

The first and arguably the most important choice when considering the model with

which to construct an approximation of the PES is how much data is available for

the training. Some models will converge with relatively little data available, whereas

others require a vast amount of data collection before convergence becomes feasible.

Generally speaking, the data required to train a model scales with the number of free

parameters that are required to tune during the fitting procedure. There are two main

philosophies involved when considering the encapsulation of the non-linear PES in a

ML approximation. This non-linearity can be built in as part of your model, such

as random forest models or neural networks, or the choice of feature representation

through a non-linear kernel can translate the problem from a non-linear problem to

a linear one, which facilitates the use of the far less computationally-demanding and

more efficiently-trained ridge regression models. For this work, the latter option was

chosen due to the relatively small number of data points required to train a satisfactory

model. This means that fewer computationally intensive DFT calculations would be

required to obtain a similar level of accuracy when compared with more complex, non-

linear models. Thus, a valid choice of feature representation must be used to translate

this problem to the linear space.

4.1.1 Feature Representation

There is a whole zoo of potential representations that have been conceived for the

construction of PESs, from ab-initio training data. Due to the fact that away from

select critical points, the behaviour of atoms is localized, meaning that the total energy
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for a given system can be obtained from a sum of atomic energies, namely

E =
Natoms∑

i

ϵ({rii′}), (4.1)

where rij = rj − ri is the relative distance between atoms i and j. Most of these

descriptors involve a construction representing each local environment of the system,

centred on each atom and encoding information about neighbours within the configu-

ration. They can incorporate information about two- or three-body contributions or

can alternatively extend to more involved many-body formalisms. There are some de-

sirable properties that a valid representation must fulfil in order to vastly reduce the

computational complexity of constructing a quantum-accurate PES with ML. Most

of these criteria are based on the desired symmetry of the representation, such that

equivalent systems will output the same value. Namely, the descriptor should exhibit

permutational symmetry, in that the outcome should not change if two atoms of the

same species are swapped; translational symmetry, in that the representation should

yield the same result for any given translation of the lattice, which is already satis-

fied by the approximation in Eq. (4.1); and finally, rotational invariance, where the

representation should give the same result regardless of any rotation of the system.

Several techniques have been proposed to fulfil these requirements for a good

atomic environment descriptor. The initial approach, introduced in 2007 by Behler

and Parinello [62], employed functions to represent these symmetries. This method

entailed utilizing the difference between atomic positions instead of absolute positions

for preserving translational symmetry. It also employed a radial symmetry function

composed of the summation of Gaussian functions and a summation of angular sym-

metry functions to maintain rotational invariance. This representation also introduced

the concept of a cutoff radius, such that the influence of a local environment vanishes

at a pre-specified radius around the central atom, in order to reduce the computational

intensity of the construction of these descriptors for little additional information. This

work employed a neural network to perform the regression of the PES, requiring a rel-

atively large number of first-principles DFT total-energy calculations to converge the

model for a given system. The scaling of the symmetry function-based representation

was also not particularly efficient, with the number of parameters of the descriptor
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exploding with an increase in system size.

This subsequently led to the conception of the Gaussian approximation potential

(GAP) [63], which was designed in order to further reduce the computational cost of the

regression of the PES by reducing the number of descriptor parameters and making the

resulting descriptors amenable to regression by less computationally-demanding fitting

algorithms. This work introduced the concept of the use of the signal correlation

function between three points, the bispectrum, as an efficient means of representing an

environment, that naturally encodes the desired invariants.

The relationship between the local environment and the bispectrum can be un-

derstood by first representing the local atomic density of the neighbours of atom i

as

ρi(r) = δ(r) +
∑
i′

δ(r− rii′)fcut(|rii′|), (4.2)

where fcut(r) = 1/2 + cos (πr/rcut)/2 is the aforementioned cutoff function, that

smoothly goes to zero at the cutoff radius rcut, and δ is the usual Dirac delta function.

This local density can then be projected onto the surface of a four-dimensional unit

sphere, using the transformation

(ϕ, θ, θ0) =

[
tan−1

(y
x

)
, cos−1

(
z

|r|

)
,
|r|
r0

]
, (4.3)

where r0 > rcut/π. Thus, the resulting 4D surface naturally contains all the informa-

tion of the 3D spherical region surrounding the central atom within the cutoff radius,

including the radial dimension. This radial dimension is incorporated by the transfor-

mation outlined in Eq. (4.3). Thus, 4D hyperspherical harmonics, U j
m′m, defined for

j = 0, 1
2
, 1, ... and m,m′ = −j,−j + 1, ...j − 1, j [64], form a natural complete basis

for the interior of the 3D sphere within the cutoff, entirely eliminating the need for a

radial basis function, as was introduced in Ref. [62]. This fact allows the projection of

the atomic density onto the surface of the 4D sphere to be expanded in terms of the

4D spherical harmonics, using the coefficients

cjm′m =
〈
U j
m′m

∣∣ ρ〉 , (4.4)
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where the index i is dropped for the sake of clarity. These coefficients allow the con-

struction of the bispectrum, given by,

Bj1,j2,j =

j1∑
m1,m′

1=−j1

j2∑
m2,m′

2=−j2

j∑
m,m′=−j

(cjm,m′)
∗Cj1m1j2m2

jm

× Cjm′

j1m′
1j2m

′
2
· cj1m1,m′

1
cj2m2,m′

2
,

(4.5)

where Cj1m1j2m2 are the standard Clebsch-Gordan coefficients. In practice, in all MLIPs

where the bispectrum is used, a truncated version of this construction is used, with

j, j1, j2 ≤ Jmax. This simply limits the spatial resolution of the descriptors used to

describe a given atomic environment. This function is then used to fit for the energy

of the system by employing Gaussian process regression, in which a Gaussian kernel

between bispectra of atomic environments is linearly fit. Thus, the coefficients of the

regression are obtained by inverting the covariance, constructed from the Gaussian

kernel, and multiplying the inversion by the expected energy values.

The ideas presented for the construction of GAP were later extended to account for

some difficulties in representing systems with a large number of atoms contained in the

local environments. This expansion led to the development of a method for directly

creating a representation of similarity between atomic neighbourhoods, eliminating the

need to calculate a similarity kernel based on two local atomic environment descriptors

[65]. This new construction was called the smooth overlap of atomic potentials or

SOAP. When implemented by replacing the Gaussian kernel in the GAP method with

the new SOAP kernel (called the SOAP-GAP method), it led to superior performance

on systems with arbitrary numbers of atoms within the cutoff sphere.

Thompson et al. [66] subsequently recognized that there was no necessity to com-

pute the similarity kernel when effectively and accurately modelling a system’s energy.

This revelation meant that the local energy of a specific atomic environment could be

accurately reproduced by creating a linear combination of the lowest-order bispectrum

components, with linear coefficients that only depended on the chemical identity of the

central atom

Ei
SNAP

(
Bi
)
= βαi

0 +
K∑
k=1

βαi
k B

i
k = βαi

0 + βαi ·Bi, (4.6)
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where Bi = {Bi
1, ..., B

i
K} is the set of K bispectrum components representing the local

environment of atom i, αi is the chemical identity of the same atom and βα
k are linear

coefficients for atoms of type α. This linear form of the SNAP atomic contributions

to the local energy is immensely useful for calculating properties that can be obtained

directly from ab-initio DFT calculations. These formulae are specific to atoms of a

single type for clarity, but can easily be extended to multiple chemical species. The

contribution arising from the local environments to the total energy of a system with

ionic positions rN can be written in terms of the bispectrum components as

ESNAP

(
rN
)
= Nβ0 + β ·

Natoms∑
i=1

Bi, (4.7)

where β is the K-vector of SNAP coefficients, β0 is the constant energy contribution for

each atom and Bi is the K-vector of bispectrum components for atom i. Similarly, the

forces acting on atom j can be computed by taking the derivative of the bispectrum

components with respect to rj, which is the position vector of atom j

Fj
SNAP = −∇jESNAP = −β ·

Natoms∑
i=1

∂Bi

∂rj
, (4.8)

where Fj
SNAP is the force acting on atom j due to the SNAP energy. Finally, an

expression for the contribution of this energy to the stress tensor can similarly be

obtained as

WSNAP = −
Natoms∑
j=1

rj ⊗∇jESNAP = −β ·
Natoms∑
j=1

rj ⊗
Natoms∑
i=1

∂Bi

∂rj
, (4.9)

where ⊗ is the Cartesian outer product operator and WSNAP is the contribution of the

SNAP energy to the stress tensor.

All these expressions involve the vector of the SNAP coefficients β multiplying a

vector of quantities calculating using the bispectrum components of the atoms in a

given configuration. Thus, the structure of these resulting sets of equations facilitates

the easy construction of a system of linear equations for each configuration in any given

dataset, for the energy, forces or for the stress tensor. This fact allows us to optimise

the values for β, the vector of linear coefficients, using any of these three quantities.
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4.1.2 Fitting Procedure

Given this SNAP representation, the question arises as to the optimal meethod of

obtaining values for β that most accurately predict the desired quantity. Generally,

this is achieved for SNAP potentials by solving a system of linear equations, for Ns

atomic configurations in a given training dataset of DFT properties,



...
...

Ns

∑Ns

i=1 Bi

...
...

0 −
∑Ns

i=1
∂Bi

∂rαj
...

...

0 −
∑Ns

j=1 r
α
j

∑Ns

i=1
∂Bi

∂rαj
...

...


·

β0
β

 =



...

EDFT
s

...

FDFT
jα

...

WDFT
αβs

...


, (4.10)

which is of type A ·β = y, meaning it can be easily solved for the vector of coefficients

β. The best approximation of values for β can be obtained using the linear least

squares method

β = argmin
β

∥ (A · β − y) ∥2 = A−1 · y. (4.11)

In practice, a full inversion of the A matrix is not performed, rather QR factorization1

is used to solve the matrix equation for β, leading to a very efficient and accurate

means of obtaining the desired SNAP coefficients.

4.1.3 Training Dataset

In order to reduce the complexity of stacking heterostructures in computational sim-

ulations and have an intuitive understanding of the strain being induced by lattice

mismatches and other complications, the focus of the construction of these MLIPs for

monolayer compounds was on 2D materials with hexagonal lattices of the 1T and 2H

polytype. In order to further reduce the complexity of the energy prediction from

the model, this work was generally focused on non-magnetic materials. This will be

1QR factorization involves the decomposition of matrix A into a product A = QR, where Q is an
orthonormal matrix and R is an upper triangular matrix.
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discussed further in the context of NbS2 in Section 4.1.4.

There were a total of 70 hexagonal, non-magnetic layered materials present in the

Materials Cloud database [67] with a chemical composition of XY2, where X and Y

were different elements, of which 39 were non-metallic and 31 were metallic. All of

these monolayers were either one of the 2H or 1T polytypes. Several materials from

those remaining were excluded, mainly due to the inability to converge them in first-

principles structural relaxation, prior to calculating the data for the training set, leaving

a total of 69 hexagonal, non-magnetic monolayers for the library of MLIPs. Separate

MLIPs were also trained for graphene and hBN due to their interest to the general

community.

(a) (b)

Figure 4.2: (a) Quadratic fit of the change in energy of three representative monolayer
systems (2H-MoS2, SnS2 and 1T-GeI2, respectively) against a series of atomic displace-
ments. (b) Plot of the resulting coefficient for each of the quadratic fits vs. the elastic
modulus of the monolayers. This relationship is subsequently linearly approximated
(dashed line), yielding the optimal amplitude of displacement for the dataset.

In order to generate a valid training dataset for the construction of the MLIPs, the

optimal displacement amplitude for the generation of the randomised displacements

should be obtained. This is necessary to ensure that the training dataset will incorpo-

rate configurations that are representative of the real physical configurations that the

system will likely be in for the desired molecular dynamics simulations or phonon cal-

culations. Establishing this optimal value would be far too labour-intensive to perform

for each monolayer in the dataset. Therefore, a small sample set of three monolayers,

2H-MoS2, SnS2 and 1T-GeI2, were taken to establish some relationship between some

readily available system property of the monolayers and the optimal displacement.

This goal was fulfilled by calculating the average change in potential energy per

atom for 20 randomised configurations for a variety of values of small maximum dis-
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placements for each of these three monolayers. This is computed using VASP with a

GGA-PBE potential, an energy cutoff of 500 eV and a Γ-centered k-mesh of 15×15×1.

The average change in the energy per atom was taken as being the mean value over all

20 configurations for each of these amplitudes. The change in resulting potential energy

was fit quadratically with respect to the displacement amplitude, yielding a quadratic

fit coefficient k. This quadratic fit is visible in Fig 4.2 (a). There is quadratic scaling of

the change in the average potential energy per atom with an increase in average atomic

displacement due to the assumption of a harmonic potential for each atom, implying

the relationship

∆Epot = k · dx2, (4.12)

where dx is the maximal displacement. For a uniform distribution of randomized dis-

placements, dx is double the mean displacement. Then there is a factor 4 between the

mean displacement squared and the maximal squared displacement, which is absorbed

by k, the coefficient of the quadratic fit. Assuming that the average change in potential

energy per atom is fully converted into kinetic energy per atom at the temperature of

interest allows for the following association

∆Epot = Ek =
3

2
kBT, (4.13)

where T is the temperature and kB is the Boltzmann constant. This formula arises

from the equipartition theorem. Combining Eq. (4.12) and Eq. (4.13) and solving for

dx gives

dx =

(
3kBT

2k

) 1
2

. (4.14)

Plotting the coefficient resulting from the quadratic fit against the elastic modulus α

of each of the monolayers in question, a fit visible in Fig. 4.2 (b), allows us to linearly

approximate the relationship between α and k. This gives a result of k = 0.8134 · α,

giving us a simple means of associating the optimal maximum displacement for the

SNAP training to the elasticity of the monolayer, which is an intrinsic property, for any

temperature of interest. For example, using the established relationship, the optimal
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displacement to train a SNAP model for 2H-MoS2 at 300 K, is 0.6 Å.

Once this relationship has been established, a strategy for constructing a distribu-

tion of data points for the training set must be established. These data points must

incorporate a variety of strained lattices as well as the aforementioned displacements

to ensure that strain is adequately represented in the training data. With this in mind,

a variety of different configurations of training data sets were tested before an optimal

distribution of lattice strains and sheared lattices was settled upon. The optimal distri-

bution first involved 400 images with an unstrained unit cell, comprising configurations

with randomized displacements up to a max of dx, the optimal maximum displacement

derived for each monolayer above. This was initially done for 300 K. Taking the usual

definition for the Cauchy strain tensor

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


∂ux

∂x
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
1
2

(
∂ux

∂z
+ ∂uz

∂x

)
1
2

(
∂uy

∂x
+ ∂ux

∂y

)
∂uy

∂y
1
2

(
∂uy

∂z
+ ∂uz

∂y

)
1
2

(
∂uz

∂x
+ ∂ux

∂z

)
1
2

(
∂uz

∂y
+ ∂uy

∂z

)
∂uz

∂z

 , (4.15)

where uα is the change in lattice vector in Cartesian direction α, the training set of nor-

mal lattice strains was obtained by taking every combination of ε11 = {±0.03, ±0.05}

and ε22 = {±0.03, ±0.05} and obtaining 20 randomized configurations for each case,

with an amplitude of dx with T = 300 K. Here, ε33 can be ignored for the 2D case.

This yields a total of 240 strained configurations.

The final step necessary for a data set that adequately samples the possible configu-

ration space is to adjust the shear components of the stress tensor ε. This was sampled

by, once again, taking a sample of 20 randomized configurations for each of the shear

components ε12 = {±0.005, ±0.01}, with an amplitude dx taken for T = 300 K. Once

again, any shear component dependent on the z-direction can be neglected due to the

2D nature of the system. The final number of configurations in the fully representative

training set for each of the monolayers was 720 configurations.

After having obtained a representative training data set, ridge regression is per-

formed on the bispectrum components of the atomic environments of the system in

question. Once this step has been executed, the usual mean absolute error (MAE) of

the fit is consistently on the order of 1 meV/atom, indicating results that are within

the error of DFT itself. Fig. 4.3 is an example of a parity plot of the test data against
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Figure 4.3: An example of a standard parity plot of the predicted values of energy
against the DFT values for 2H-NbS2 after the ridge regression was performed on the
bispectrum components to obtain the total energy. This example had a MAE on the
test data of 2.4 meV/atom and an RMS of 2.5 meV/atom. The training data is depicted
in blue and the test data is depicted in red.

the predicted results for 2H-NbS2, which had a MAE of 2.4 meV/atom on the test

data after fitting. This test data for this system was obtained by running a molecu-

lar dynamics simulation, using the trained SNAP-MLIP and taking a snapshot of the

system at 500 K every 1,000 time steps of 0.5 fs until 100 representative images of the

system were obtained. The DFT energies of the resulting configurations were obtained

by performing SCF calculations on the resulting configurations and the metrics men-

tioned above were obtained by comparing the SNAP energies outputted as part of the

MD simulation, with the resulting DFT values.

The training MAE and RMSE for each of the rest of the non-magnetic, monolayer

SNAP potentials in the full library of 71 SNAP potentials are presented in Table

4.1. As is evident from the presented results, the training error is consistently low

for every case. The training errors are displayed as opposed to the test errors due
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Table 4.1: The MAE and RMSE were calculated for the training of each of the 71
systems within the SNAP potentials library for non-magnetic, hexagonal 2D mono-
layers The magnitude of these errors in both cases are consistently on the order of
1 meV/atom, which is around the expected error of DFT calculations.

Monolayer MAE
(meV/atom)

RMSE
(meV/atom)

Monolayer MAE
(meV/atom)

RMSE
(meV/atom)

1T-AuTe2 2.942 4.335 1T-SnS2 0.346 0.440
1T-BiTe2 1.918 2.925 1T-SnSe2 0.338 0.429
1T-CaI2 0.313 0.401 1T-TaS2 0.376 0.480
1T-CdBr2 0.279 0.366 1T-TaSe2 0.352 0.455
1T-CdCl2 0.343 0.427 1T-TiBr2 0.384 0.490
1T-CdI2 0.249 0.319 1T-TiCl2 0.331 0.426
1T-CoTe2 0.477 0.598 1T-TiS2 2.571 3.772
1T-FeBr2 0.253 0.328 1T-TiSe2 0.366 0.459
1T-GeBr2 0.567 0.722 1T-TiTe2 0.296 0.382
1T-GeI2 0.430 0.533 1T-TmI2 2.362 3.474
1T-HfS2 0.364 0.476 1T-YbI2 0.300 0.382
1T-HfSe2 0.343 0.453 1T-YbSe2 1.683 2.477
1T-HfTe2 0.352 0.461 1T-ZnBr2 0.235 0.302
1T-HgBr2 2.361 3.246 1T-ZnCl2 0.250 0.319
1T-IrTe2 0.651 0.827 1T-ZnI2 0.226 0.288
1T-MgBr2 0.246 0.317 1T-ZrS2 0.403 0.510
1T-MgCl2 0.280 0.355 1T-ZrSe2 0.369 0.470
1T-MgI2 0.220 0.282 1T-ZrTe2 0.381 0.494
1T-MoS2 2.654 3.780 2H-CrSe2 0.225 0.292
1T-Ba2N 0.286 0.363 2H-GeI2 0.369 0.474
1T-Ca2N 0.204 0.256 2H-LaBr2 2.121 3.130
1T-NbS2 0.376 0.485 2H-MoS2 0.231 0.305
1T-NbSe2 0.346 0.441 2H-MoSe2 0.233 0.302
1T-NbTe2 0.512 0.641 2H-MoTe2 0.255 0.328
1T-NiO2 0.199 0.257 2H-NbS2 0.591 0.756
1T-Tl2O 0.433 0.548 2H-NbSe2 0.545 0.683
1T-PSn2 0.350 0.449 2H-ReSe2 2.846 4.193
1T-PbI2 0.696 0.879 2H-TaS2 0.501 0.644
1T-PdTe2 0.258 0.338 2H-TaSe2 0.484 0.625
1T-PtO2 0.264 0.343 2H-WS2 0.234 0.307
1T-PtS2 0.203 0.264 2H-WSe2 0.247 0.312
1T-PtSe2 0.201 0.260 2H-WTe2 0.254 0.328
1T-PtTe2 0.224 0.292 2H-ZrCl2 0.201 0.257
1T-RhTe2 3.264 4.683 Graphene 0.763 0.945
1T-Tl2S 0.593 0.746 hBN 0.084 0.111
1T-SiTe2 0.346 0.444

to the infeasibility of constructing a representative test set for every system in the

library due to the thousands of DFT calculations that would be required for such an
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endeavour. The training set error is, however, a reasonable indication of the quality

of the resulting 71 potentials, which should prove to be of great value to the materials

science community.

4.1.4 Comparison with DFPT

Taking the results from the first-principles calculation in Chapter 3, and comparing

them with the results that are obtained using the ‘quantum-accurate’ SNAP MLIP, can

offer valuable insight into the capabilities of these ML potentials, while also elucidating

the reason for the exclusion of the magnetic materials from the library of MLIPs for

2D materials.

The workflow outlined in the previous sections was executed for the case of NbS2,

training the SNAP on total energy calculations in the non-magnetic case, the derivative

of which was used to calculate the forces on each atom, as implemented in the LAMMPS

molecular dynamics library [68]. The finite-displacement method described in section

3.1.1 was employed using the SNAP potential with a 3×3 supercell in order to calculate

the phonon dispersion of the system. The parameter Jmax was set to 4 and a cutoff

radius of 5.1 Å was used for NbS2 after having determined this as being the optimal

cutoff. Studies performed on other materials were performed using a cutoff radius of

4.1 Å as that generally performed slightly better for the other cases tested.

This comparison between the SNAP-obtained phonon dispersion for the system

and the one obtained using ab initio DFPT can be seen in Fig. 4.4. The expected

dynamical instability, resulting from the apparent existence of the charge density wave

(CDW) in the harmonic potential, disappears in the case of SNAP for NbS2, as well as

the softening of the optical phonon modes also being absent in the phonon dispersion

obtained with the MLIP. This fact highlights the inability of the SNAP-based MLIP to

capture the fundamental dynamics arising from the inclusion of spin dynamics or long-

range electrostatic interactions, such as those which cause CDWs. This fact is related

to the short-range nature of the descriptor and the assumption of SNAP that there only

exists local contributions to the total energy. There have been some attempts to include

spin dynamics into this family of computationally-efficient MLIPs [69], however, the

inclusion of these additional features is currently beyond the scope of this work.

Even beyond the expected dynamical instability near the M-point, the overall qual-
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Figure 4.4: Comparison of the phonon dispersion for monolayer 2H-NbS2 calculated
using first-principles DFPT (dashed line) and finite-difference using the SNAP-MLIP
(blue line). The apparent CDW from first principles calculation in the harmonic ap-
proximation does not appear near the M-point for the dispersion obtained by using the
locally-resolved SNAP-MLIP.

ity of the fit of the dispersion to the DFPT example is relatively poor for the SNAP

potential. This is likely due to the model attempting to fit the long-range contributions

to the energy resulting from the CDW state into the energy contributions from the lo-

cal environments, further evidencing the issues arising from the inclusion of systems

with complex dynamics into the library of MLIPs, without first resolving interactions

of this nature in the workflow.

The inclusion of long-range electronic interactions can be achieved with the addition

of another term in the energy, beyond the locally-resolved SNAP potential [66]. These

long-range electrostatic contributions are generally tuned to each individual monolayer

or represent coarse approximations of this long-range potential, and therefore, it was

not deemed prudent to include such long-range interactions for the initial construction

of our library of potentials. This is particularly valid considering that these long-

range interactions are not present in every system, thus increasing the specificity of

the requirement to certain systems. However, this may be explored in future work in
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order to adequately capture all of the rich dynamics of 2D materials emerging from

their exotic phenomena. This currently, however, is a potential limiting factor in the

ability to accurately portray the dynamics of the systems.

M K
0

10

20

30

40

50

Fr
eq

ue
nc

y 
(T

Hz
)

(a) DFPT
SNAP

D.O.S.

M K
0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(T

Hz
)

(b) DFPT
SNAP

D.O.S.

Figure 4.5: Comparison of the phonon dispersion calculated using first-principles DFPT
(dashed line) and finite-difference using the SNAP-MLIP (blue line) for a (a) graphene
monolayer and (b) MoS2 monolayer.

The lack of ability to model the spin state is very simply dealt with by excluding
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monolayers that have already been established as being magnetic according to Materials

Cloud [67] and assessing the quality of the resulting potentials without the concern of

non-accounted-for phenomena impacting the faithfulness of the system dynamics. This

is evident from the relative improvement in the overall fit of the phonon dispersions,

examples of which can be seen for the sample cases of graphene in Fig. 4.5 (a) and

MoS2 in Fig. 4.5 (b). These were fit with a cutoff radius of 4.1 Å and a Jmax = 4.

These phonon dispersions generally show excellent agreement with DFPT data,

particularly in the case of graphene, which only presents some slight deviations from

the dynamical behaviour exhibited in the optical branches near the Γ-point. These

deviations are very minor, however, and do not impact the remarkable accuracy of the

reproduction of the phonon dispersion, using a relatively simple linear model. The

case of MoS2 also presents generally excellent agreement with DFPT, despite a slight

softening of the longitudinal acoustic mode at the M-point, a fact that is not physical.

This is likely due to the enhanced complexity of modelling the dynamics between multi-

ple atomic species and could potentially be resolved by introducing different weighting

between species as part of the fitting procedure. This is a relatively minor effect, how-

ever, and would add unnecessary complexity to the workflow of MLIP construction by

requiring an additional tuning step for every MLIP produced.

Overall, the phonon dispersions obtained for non-magnetic monolayers exhibit ex-

cellent agreement with the results expected according to ab initio DFPT calculations.

This fact implies that these MLIPs have the potential to be a useful tool for obtaining

valid estimates of material properties that are dependent on phonon transport and

vibrational dynamics.

4.1.5 Van der Waal’s Interaction

In order to extend these potentials to arbitrary heterostructure stacks of 2D materials,

such that the materials-property space can be fully explored, it is necessary to conceive

of a means of adequately representing the interlayer coupling. This can simply be

facilitated by parametrically fitting the Lennard-Jones (LJ) potential [70],

ELJ = 4ϵ

[(σ
r

)12
− 2

(σ
r

)6]
, r < rcutoff (4.16)
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where r0 = 2
1
6σ is the distance at which the energy is a minimum and ϵ is the depth

of the potential well. Both parameters need to be fit for each atom type in each of

the different systems. The LJ potential is immensely valuable for use in molecular

dynamics due to the ability to implement this potential in conjunction with others

(like SNAP) through the LAMMPS library [68]. The difficulty, however, is in the optimal

means of obtaining adequate data with which to obtain the parameters for the fitting

of this interlayer potential.

There are three main adjustments to the charge density in DFT that can be ap-

plied in order to mimic the VdW interaction using first-principles calculations, which

are the DFT-D2 [71], DFT-D3 [72] and the Tkatchenko-Scheffler [73] (TS) methods.

The TS method is implemented alongside iterative Hirshfeld partitioning to determine

the interaction between atoms in a solid and modify the TS parameters accordingly.

This iterative procedure does not work well with plane-wave basis sets and, therefore,

FHI-AIMS [74] was employed in the place of VASP to obtain the VdW parameters for

this comparison. In order to obtain the best of these algorithms for use in fitting the

VdW parameters for the LJ potential, different flavours of VdW corrections were used

for different interlayer distances in bilayer MoS2. The interlayer binding energy was

calculated by taking the difference between the total energy of the individual layers

and the interacting layers, with varying interlayer distances. The binding energy is,

as a result, taken to be the depth of the resulting potential well. The approximated

binding energy resulting from these calculations was compared with the experimental

result for MoS2, which was 34.3 meV/Å
2
[75], as seen in Table 4.2.

Table 4.2: Binding energy of MoS2 as calculated with a variety of different flavours of
VdW corrections. These values were calculated using FHI-AIMS with varying interlayer
distance and taking the difference between the individual layers and the interacting
ones. The comparable value of binding energy determined from experiment [75] is
presented in grey.

D2 D3 TS Exp.

Eb (meV/Å
2
) 17.2 27.2 29.6 34.3

This same test was performed with variable cutoff distances for the potential. How-

ever, this variable was not shown to improve the results much after tuning, exhibiting

very similar performance on the fit. Thus, it was determined that using the TS method,

with a cutoff of 12 Å was the optimal and most efficient choice for parameterising the
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VdW interaction, capturing the most realistic interlayer binding behaviour in compar-

ison with experimental results.
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Figure 4.6: A comparison of the phonon dispersion and density of states for bilayer
graphene obtained using SNAP (solid blue line) and DFPT (dashed line). The in-
terlayer interaction has introduced breathing and shear vibrational modes near the
Γ-point of the dispersion.

This fact is evidenced by the comparison of dispersions obtained for bilayer graphene

using this hybrid SNAP/LJ method with a 5× 5 supercell, and the one obtained using

DFPT in VASP with an equivalent supercell, as seen in Fig. 4.6. The SNAP/LJ manages

to capture the dynamics of the bilayer system very well, with the emergence of the

interlayer breathing and shear vibrational modes in the acoustic branches of the phonon

dispersion near the Γ-point. The breathing mode frequency is slightly overestimated,

implying a tighter interlayer binding than would be expected with DFPT. However, the

system dynamics are still very well represented. With this replication of the expected

results and having obtained results comparable to those ab-initio calculations, the door

is open for these methods to be extended to systems of arbitrary size.

Evidence of this benefit can be seen in Fig. 4.7, which presents the phonon dispersion

of a graphene system, which has been encapsulated by hBN monolayers, calculated

using SNAP-MLIPs with a 5 × 5 supercell. This took a time of the order of several
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(a) (b)

Figure 4.7: (a) The side and top view of the structure of a 6×6 supercell of a graphene
monolayer (brown), encapsulated between two monolayers of hBN (green and silver for
B and N, respectively). (b) An example of a phonon dispersion and density of states
for the same system, calculated with a combination of SNAP-MLIPs and interlayer LJ
potentials.

minutes, using the CPU of a laptop, as opposed to an ab-initio calculation for an

equivalent system, which would either be completely inaccessible to first-principles

calculations or take time on the order of hours or days depending on the method

of calculation and the hardware accessible to a user. This fact indicates the massive

potential of such MLIPs in simplifying the complex issue of scanning materials space for

desirable composite materials for a given application, with minimal computational cost.

This example also provides evidence that the strategy of extending the potential for

multilayer systems beyond the bilayer, homogeneous example given above in Fig. 4.6, is

sound. It also evidences that the potential can be employed for arbitrary combinations

of heterogeneous layers.

4.2 Calculation of Thermal Properties

Once it was clear that the MLIPs, extended using parameterized interlayer interac-

tions were sufficient to model the microscopic properties of composite, heterogeneous

materials, all of the ingredients required to consider their performance on the task of

computing macroscopic properties of interest were available. Thus, means of efficiently

calculating properties of interest must be considered.
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A feature of these methods that could also be of further interest is analysing the

types of insight one can gain from these macroscopic properties using MLIPs that

are able to effectively model quantum-accurate interactions between atoms. Such a

fact means that these methods could give a means of achieving insights into how to

best optimise a material for a given application by analysing by-products of these

calculations, produced at no additional computational cost, and tuning the resulting

material based on the insights offered.

This next section will discuss various ways of performing thermal transport cal-

culations, using SNAP-based MLIPs and will demonstrate their use in a variety of

circumstances. Comparisons will be done with experimental tests for the same prop-

erties and the potential of the use of these methods for massive systems will also be

demonstrated. This comprehensive, but non-exhaustive discussion will evidence the

use of this library of potentials for diverse physical and technological applications.

4.2.1 Thermal Conductivity

One of the most fundamental thermal properties of a solid-state system is the thermal

conductivity κ, which corresponds to the amount of heat energy per unit time flowing

through a given system. The origin of this quantity can clearly be understood through

the classical view of thermal transport, Fourier’s law as defined by Joseph Fourier in

1822

J(t) = −κ∇T (t), (4.17)

where J corresponds to the heat flux density and ∇T is the temperature gradient of

the system. It is evident from Eq. (4.17), thermal conductivity is the key quantity

describing the efficiency of the displacement of heat energy, when a thermal gradient

is applied to a material. This quantity is obviously of vital importance for a huge

variety of applications, be they displacing waste heat to ensure the efficiency of com-

putational processes or transferring thermal energy from one point to another. The

thermal conductivity is also of key importance for determining the efficiency of conver-

sion from thermal energy into electrical energy in thermoelectric materials, with the
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thermoelectric figure of merit zT , being defined as

zT =
S2σ

κ
T, (4.18)

where S is the Seebeck coefficient, σ is the electrical conductivity and T is the ab-

solute temperature. Thus, it is clear that, in order to have a pipeline that screens

materials for their potential thermal applications, having a method of obtaining κ is

of utmost importance. With a highly efficient means of calculating phonon dynamics

for 2D materials and their heterostructure, the door is opened to calculate the macro-

scopic thermal conductivity by rapidly calculating interactions between phonons and,

thereby, measuring the efficiency of thermal energy transfer in 2D materials and their

heterostructures.

The thermal conductivity of a system is mediated by two main contributions, the

electronic part κe and the lattice thermal conductivity, κL, such that κ = κe + κL.

Generally speaking, in non-metallic systems, κL is the main contribution to κ. It

metallic systems, κe increases in importance. However, κL remains an important con-

tribution. This quantity can be described entirely in terms of phonons. Thus, here

we focus on calculating κL and, hereafter, the term ‘thermal conductivity’ refers ex-

clusively to the lattice contribution. Methods for calculating the thermal conductivity

from phonon interactions fall into two main categories, those that are solved using

the Green-Kubo theory of linear response [76–79], and those that are solved using the

Boltzmann transport equation (BTE) for phonons. The former method tends to per-

form better for non-crystalline systems, whereas for extended, periodic systems, the

latter BTE method tends to be perfectly adequate and, therefore, will be the focus

of our attention. All calculations performed to obtain the thermal conductivity were

performed by adapting the phono3py [35, 80] pipeline to be used with SNAP-MLIPs.

This is achieved by using the LAMMPS calculator from the Atomic Simulation Environ-

ment (ASE) [81] library to calculate the forces for the atomic displacements provided

by phono3py. The BTE can be written as [34]

∂n
(1)
qν

∂t
+
∂n

(0)
qν

∂T

∂T

∂r
· vqν = C(qν;n(1)

qν ) +
1

2
D(qν;n(1)

qν ). (4.19)

The phonon scattering contribution to the transport appears on the right-hand side of
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the equation through the collision processes term, C(qν), and the decay processes term,

D(qν), where qν holds the same meaning as in Chapter 3 for the phonon wavevector

q and phonon branch number ν. The term nqν is the occupation function for the

qν-phonon mode. At equilibrium, the occupation function would follow Bose-Einstein

statistics as in Eq. (3.17). This equilibrium occupation function is depicted as n
(0)
qν ,

and n
(1)
qν is the first-order deviation from the equilibrium such that nqν ≈ n

(0)
qν + n

(1)
qν .

Finally, vqν is the velocity of a phonon occupying the qν state .

This expression for the phonon BTE can be rearranged [82] in order to make the

relationship between the collision and the decay processes and the phonon-phonon

interactions more explicit

C(qν;n(1)
qν ) +

1

2
D(qν;n(1)

qν ) = −
∑
q′ν′

Ωqν;q′ν′n
(1)
q′ν′

sinh
(

ℏωq′ν′

2kBT

)
sinh

(
ℏωqν

2kBT

) , (4.20)

which introduces the collision matrix Ωqν;q′ν′

Ωqν;q′ν′ =δqν;q′ν′
1

τqν
+

36π

ℏ2
∑
q′′ν′′

|Φqν;q′ν′;q′′ν′′|2
1

sinh
(

ℏωq′′ν′′

2kBT

)
× [δ(ωqν − ωq′ν′ − ωq′′ν′′)

+ δ(ωqν + ωq′ν′ − ωq′′ν′′) + δ(ωqν − ωq′ν′ + ωq′′ν′′)],

(4.21)

where τqν is the phonon lifetime of a phonon occupying the qν state. The expression

Φqν;q′ν′;q′′ν′′ is the matrix of the third-order force constants, which represents our first

foray into anharmonic lattice dynamics. This term is calculated by extending the Taylor

series expansion in Eq. (3.4), by another term in order to consider three-phonon pro-

cesses beyond the harmonic regime. Given that the SNAP-MLIP is a highly accurate

approximation of the potential energy surface, and has no assumptions of harmonicity,

the anharmonic lattice dynamics should be accessible to calculation via SNAP-MLIPs.

The calculation for the third-order force constants can be performed using the finite

displacement method as described in Section 3.1.1, extended for the third-order anhar-

monic term as implemented in phono3py. This matrix can also be used to obtain the

phonon lifetimes τqν .

The collision matrix Ωqν;q′ν′ is a quantity that can become very large very fast,
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with increasing q-point sampling density in reciprocal space. Thus, in order to reduce

the size of this matrix, the crystal symmetries can be exploited and the velocity field

can be restricted to the irreducible part of the Brillouin zone (BZ). Thus, the collision

matrix can be transformed into a more compact, memory-efficient form,

Ω̃qν;q′ν′ =
1

√
gq̃gq̃′

∑
R∈P

Rαα′Ωq̃ν;Rq̃′ν′
, (4.22)

where q̃ is the phonon wavevector in the irreducible part of the BZ, R is the rotational

operation in the point group P , α is the Cartesian coordinate index and gq̃ is the order

of the point group at wavevector q̃.

Ref. [82] demonstrated that the thermal conductivity tensor could be written as

καα′ =
1

4kBT 2NVc

∑
qν;q′ν′

ℏωqνvqνα

sinh
(

ℏωqν

2kBT

)(Ω∼1)qν;q′ν′
ℏωq′ν′vq′ν′α′

sinh
(

ℏωq′ν′

2kBT

) , (4.23)

where Ω∼1 is the Moore-Penrose pseudoinversion of the collision matrix, Vc is the unit

cell volume and N is the number of atoms. Rewriting this in terms of the compact

collision matrix given in Eq. (4.22) gives

κββ′ =
1

4kBT 2NVc

∑
qν;q′ν′

ℏωqνvqνα

sinh
(

ℏωqν

2kBT

) [Ω∼1I(β, β′)]q̃να;q̃′ν′α′
√
gq̃gq̃′

ℏωq′ν′vq′ν′α′

sinh
(

ℏωq′ν′

2kBT

) , (4.24)

here I(β, β′) is a matrix that allows the vectors in the irreducible BZ to map to the

ones in the full BZ as

Iq̃να;q̃′ν′α′(β, β′) = δq,q′δν,ν′
∑
R∈P

RβαRβ′α′ +Rβ′αRβα′

2
. (4.25)

Combining all of these elements means that there is a means of obtaining the

lattice thermal conductivity of a system by solving the linearized Boltzmann transport

equation directly, from the direct computation of the third-order force constant matrix

alone. This is a calculation, which is achievable at a vastly reduced computational

cost as a result of the construction of the SNAP-MLIP potentials. Thus, SNAP-

MLIPs could prove to be an invaluable tool for rapidly calculating the lattice thermal

conductivity and its related quantities for arbitrary heterostructures.
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Table 4.3: Thermal conductivities of materials that were estimated using SNAP at
300 K with a sampling mesh in the irreducible Brillouin zone of 71×71×11, compared
with those calculated from DFT-based studies and results taken from experiment. The
materials in this representative sample of the 69 systems in the SNAP library were
chosen due to the research focus the community has placed on them and the access to
relevant information.

κSNAP (W/mK) κDFT (W/mK) κExp. (W/mK)
MoS2

1-layer 87.5 104 [83] 84± 17 [84]
MoSe2
1-layer 32 54 [83] 59± 18 [84]
WS2

1-layer 155 142 [83] 32-63 [85–87]
WS2/MoS2

Heterostructure 99.5 70 [88] -
Graphene
1-layer 3182 2000-5000 [89] 3000-5000 [90–92]
2-layer 1934 2200 [93] 1896± 410 [94]
3-layer 1837 - 1495± 150 [95]
hBN
1-layer 456 650 [96] 751± 350 [57]
2-layer 296 - 484 +141/-24 [97]
3-layer 296 - -

It is quite difficult to obtain data for thermal conductivity measurements from

theory or experiment due to anomalous effects that may skew the theoretical result

away from the experimental result, or the deviation due to equipment details on these

generally very sensitive measurements. Despite this, Table 4.3 presents a select example

of results from the calculations of thermal conductivity at 300 K resulting from the

SNAP-MLIPs with irreducible BZ sampling of 71 × 71 × 11, coupled with the direct

solution of the linearized BTE. Broadly speaking, the results from the SNAP-MLIP

do capture the trend of results expected from either experiment or obtained by using

DFT-based methods.

For the case of the transition metal dichalcogenides (TMDs), the expected results

are very well replicated for the case of MoS2 and reasonably well replicated for MoSe2.

Both the SNAP-MLIP and DFT-based methods overestimate the thermal conductiv-

ity of single-layer WS2. This, apparently, is due to the difficulty that the ab initio

1Both trilayer systems for hBN and graphene were sampled with a 41 × 41 × 1 sampling mesh
because a grid this large was prohibitively expensive for such large systems.
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effects have on capturing a range of competing effects relating to a large acoustic op-

tical frequency gap due to the large mass difference between W and S [83]. It makes

very intuitive sense that the SNAP-based method would lead to the same divergence

in results of thermal conductivity as the DFT-based methods, considering that the

SNAP-MLIP is purely trained using DFT data and, therefore, does not contain any

additional information. Despite this, the SNAP-based approach exhibits only minor

deviations from first-principles results when applied to TMDs. It consistently provides

predictions for thermal conductivity that are within the same order of magnitude as

those obtained through DFT. Further to this, a prediction of thermal conductivity

for a composite heterostructure, WS2/MoS2, was achieved using the hybrid-SNAP/LJ

method of constructing the potential energy surface. There are, unfortunately, no

prior experimental results for this heterostructure for comparison, however, the MLIP-

calculated value of 99.5 W/mK compares quite favourably with the DFT-based result

of 70 W/mK [88], implying that the MLIP-based system gives reasonable thermal con-

ductivity predictions for hetero-composite materials, and can give a reasonably good

estimation of the impact of boundary scattering of phonons as a result of interlayer

interactions between different monolayers.

Moving beyond the TMD systems and their heterostructures, similar calculations

were performed for the thermal conductivities of materials known for their anoma-

lously high thermal conductivities, namely graphene [90–92] and hBN [57]. Further

study was also performed on the few-layer form of these layered structures as there

is an abundance of experimental and DFT studies for comparison for these particular

materials due to the focus of the materials science community on them. Once again,

the results for the monolayer cases of both graphene and hBN in Table 4.3 show very

good agreement with both DFT-based data and experiments, with both results falling

within the error margin of the experimental measurements. This agreement continues

for the multilayer graphene structures, with the expected trend of a reduction of ther-

mal conductivity with an increase in layer number. While there is no explicit DFT

measurement for the trilayer case of graphene, it is expected that the thermal conduc-

tivity converges to a value in the vicinity of 2000 W/mK on transition from monolayer

to bulk [98]. Therefore, this result is fairly consistent with the DFT expectation, imply-

ing that the deleterious impact of increased scattering due to phonons on the thermal
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conductivity is well represented by the LJ estimation of the interlayer coupling.

While the predicted value for the thermal conductivity of monolayer hBN obtained

with the SNAP-MLIP is within the experimental error, it does somewhat underesti-

mate the thermal conductivity for the monolayer and bilayer case. While there are no

available results for DFT or experiment describing the trilayer case, it is likely safe to

assume that this value is also underestimated. This divergence is possibly related to

a region of the irreducible BZ, contributing to the thermal conductivity, being slightly

undersampled due to the distribution of the sampling points. This can sometimes oc-

cur even if a large grid is chosen in the irreducible BZ and it is difficult to achieve

convergence. However, this underestimation is not severe for the two cases for which

there is data and is still, therefore, useful as a reasonable prediction of the order of

magnitude of the thermal conductivity of the multilayer system. Further to this, the

expected trend on transition from monolayer to multilayer system is observed with the

interlayer interaction inducing phonon boundary scattering, leading to a reduction in

thermal conductivity.

Upon demonstrating that these MLIPs are capable of giving a good estimation of the

thermal conductivity of multilayer systems, further use can be demonstrated through

the analysis of the results obtained during the thermal conductivity calculations for

these systems. A variety of analyses can be performed on the results that give key

insights into why κ scales as it does for a variety of systems and the contributions to

thermal conductivity measurements can be broken down by a variety of means such that

the phonon modes that are most important to the thermal transport can be identified.

The phonon lifetimes are a valuable source of information about the relative con-

tribution of phonons of a given frequency to thermal transport. Phonons with longer

lifetimes generally have the ability to transfer energy over a longer distance due to

the enhanced distance that they can travel before a scattering event. Fig. 4.8 is one

such example of insights that can be drawn from this quantity. It depicts the phonon

lifetimes of monolayer, bilayer and trilayer hBN. This phononic property emerges nat-

urally from an inversion of the phonon scattering matrix defined in Eq. (4.22). As the

number of layers increases, increased boundary scattering leads to a general reduction

in the phonon lifetimes in the low-frequency region. This effect is significant in the

transition from monolayer system to bilayer. However, this effect is reduced in the
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Figure 4.8: Phonon lifetimes, calculated using SNAP-MLIPs for monolayer (green),
bilayer (red), and trilayer (blue) hBN. A reduction in lifetimes as a resut of increases in
boundary scattering can be seen for the multilayer system in the low frequency region
of the plot.

transition from bilayers to trilayers. Such a suppression of phonon lifetimes is still

somewhat present on transitioning from bilayer to trilayer, while less pronounced. The

result of this is that there is a more severe deterioration of the thermal conductivity

on the transition from monolayer to bilayer than bilayer to trilayer, as evidenced by

the values of κ for hBN presented in Table 4.3.

This can be further understood by analysing the cumulative contribution from each

phonon mode to the total thermal conductivity of monolayer hBN, as seen in Fig. 4.9.

The low-frequency, acoustic phonons below 10 THz are by far the most dominant in

contributing to the overall thermal conductivity of the system. Thus, the suppression

of phonons in that frequency range is going to have a detrimental effect on the overall

thermal conductivity of the system, as was observed.

Thus, the combination of SNAP-MLIPs and LJ potentials to form a hybrid potential

is capable of giving a consistently reasonable prediction for the thermal conductivity
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Figure 4.9: The cumulative thermal conductivity of monolayer hBN with the contri-
butions of phonon modes of increasing frequencies. The dominant contribution to the
overall thermal conductivity is in the low-frequency, acoustic phonon region, below
10 THz.

of layered materials and heterostructures, on par with the predictions resulting from

DFT. This fact unlocks a massive amount of potential for performing calculations of

these properties on systems that previously would have been very difficult to model

or, indeed, impossible to model. Furthermore, these potentials demonstrate their use,

not only in the prediction of the thermal conductivity but also to further enhance our

understanding of the behaviour of thermal transport phenomena through the insights

gained from auxiliary properties such as phonon lifetimes or the decomposition of the

thermal conductivity into its contributions from different phonon modes.

4.2.2 Interfacial Thermal Conductance

In the former section, the SNAP-MLIP was used to perform a computationally effi-

cient estimation of the in-plane thermal conductivity. The potential of these MLIPs,

however, is not confined to analysing how interlayer phenomena impact in-plane prop-

erties. In fact, these potentials can be applied to study interlayer phenomena and
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properties. Monolayers have been shown to have potential applications in thermal

management systems of electronics, and can potentially be used as a way to dissipate

heat directly from electronic components. This behaviour would be mediated through

the out-of-plane interlayer interaction between the monolayer and the component or

active material in question.

In order to directly compare the ability of the hybrid MLIP to capture these effects,

a system for which there is an experimental measurement of the interfacial thermal

conductance must be identified. One such system is that of a monolayer of MoS2,

sandwiched between two monolayers of hBN. This is a structure of potential inter-

est due to the direct semiconducting nature of the MoS2 monolayer, meaning it is an

ideal candidate for a number of potential electronic and optoelectronic applications.

The thermal conductivity of MoS2, however, is not extremely high and, therefore, this

particular system may not be optimal for the dissipation of heat to improve the perfor-

mance of devices, which are based on this semiconducting behaviour. Encapsulating

the MoS2 in the higher-κ hBN monolayers could be a valuable means of more effec-

tively dissipating the thermal energy, thereby improving device performance. In order

to gauge the efficacy of this transfer of thermal energy, the hybrid SNAP/LJ potential

can be employed as a part of a molecular dynamics (MD) simulation, performed using

LAMMPS to determine the interfacial thermal conductance between hBN and MoS2, for

which there is an experimental measurement [99].

In order to execute this step, a large system must be constructed to adequately

capture the energetics of the system, while minimising the potential noise in the simu-

lation. Therefore, a hBN/MoS2/hBN heterostructure was constructed (see Fig. 4.10),

with a total of 11,200 atoms, with 3,800 atoms in each of the hBN layers and 3,600

atoms in the MoS2 layer. The estimation of the thermal conductance was executed by

equilibrating the system such that a temperature difference is established between the

hBN layers and the encapsulated MoS2 layer. A separate temperature difference was

maintained, ranging between 50 K and 100 K across the layers for a total of 10 MD

simulations. This was achieved by allowing the system to equilibrate using a separate

Nosé-Hoover thermostat, a constant temperature, constant volume ensemble acting

essentially as a heat bath, for each layer in the system for a total of 1 ns with a time

step of 1 fs. Once this step had been executed and each layer had equilibrated to
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(a)

(b)

Figure 4.10: A MoS2 monolayer encapsulated with two monolayers of hBN as seen
from the (a) x-axis and (b) z-axis. This system is composed of a total of 11,200 atoms
and would be inaccessible to calculations from most ab initio techniques.

their respective temperatures, each layer was simultaneously disconnected from their

respective thermostats and, was instead allowed to evolve according to the plain-time

integration from a standard microcanonical, constant energy ensemble, a plot of the

temperature evolution of the system after this step is presented in Fig. 4.11. As the

system is isolated, the only pathway for the system to equilibrate is for the excess ther-

mal energy in the MoS2 layer to be transferred to both of the hBN monolayers. Thus

the interfacial thermal conductance can be estimated by tracking the time evolution of

the energy of the MoS2 layer as a function of the temperature difference between the

layers, expressed as

dE

dt
= AG∆T, (4.26)

where ∆T is the difference in temperature between the hBN layers and the MoS2, A is
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Figure 4.11: An example of the time-dependent temperature of a MD simulation to
calculate the interfacial thermal conductance of the hBN/MoS2/hBN heterostructure.
The hBN temperature is represented in red and the MoS2 is represented in blue. In
this example, prior to this time evolution of the temperature with an NVE ensemble,
the monolayers had been held at a temperature differential of 100 K, using an NVT
thermostat.

the total interfacial area between the layers, and G is the coefficient of interfacial ther-

mal conductance. In order to somewhat mitigate the impact of noise on any estimate

of the time derivative of the energy, a running average of the change in energy for every

100 time steps was taken. Thus, by obtaining the best estimate of a linear fit between

the averaged time-derivative of the energy, and the difference in temperature between

the monolayers, the slope of the resulting linear fit will allow for an estimation of the

interfacial thermal conductance between MoS2 and hBN.

A linear fit of the model was obtained (see Fig. 4.12), giving an R2 coefficient

of 0.67. The resulting fit leads to an estimated interfacial thermal conductance of

(11.2 ± 0.3) MW/m2K between MoS2 and hBN. Contrasting this result with that of

the experimental value of (17.0± 0.4) MW/m2K [99], implies that this method has the

capability of giving a very reasonable prediction for the interfacial thermal conductivity

of composite heterojunctions.
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Figure 4.12: The linear fit (red) of the temperature gradient between the hBN layers
and the higher-temperature MoS2 layer, against the time derivative of the energy, taken
as a running average over every 100 time steps in the MD simulation. The fit gave an
R2 coefficient of 0.67 and resulted in a standard error of the prediction of 0.3 MW/m2K.

Thus, the use of this hybrid strategy for the construction of SNAP-MLIPs coupled

with parameterized LJ interactions has been shown to be useful for the estimation

of energy transfer between layers as well as for performing in-plane estimations. This

result for the interfacial thermal conductance can be obtained with relatively little com-

putational cost while showing reasonable agreement with experimental results. Any

calculation of this scale would generally be entirely prohibitive for first-principles meth-

ods due to the computational costs incurred, highlighting a key advantage of the use

of these potentials as a surrogate for ab-initio calculations, with comparable levels of

accuracy, at a fraction of the computational cost.

4.3 Summary & Conclusions

It is evident after this analysis that machine-learned potentials exhibit strong promise

for the acceleration of material property predictions. The genesis of machine-learned

potentials was described at the start of this chapter, followed by an outline of the
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key developments, which improved the efficiency and accuracy of these methods. This

culminated in a description of the SNAP method for constructing an interatomic poten-

tial energy surface, which can achieve near-DFT-level accuracy on energy predictions

of compounds with minimal computational cost.

A library of 71 SNAP potentials was constructed for the case of non-magnetic,

hexagonal 2D materials and these potentials were extended to account for interlayer

interactions by including a parameterized Lennard-Jones interaction, describing the

interlayer van der Waal’s binding. Methods for calculating the lattice thermal conduc-

tivity of systems using these potentials were described, specifically the direct solution of

the linearized phonon Boltzmann transport equation, which can be solved for the sys-

tem through the construction of the third-order force constant matrix. This calculation

is easily and efficiently achievable through the use of the hybrid SNAP/Lennard-Jones

potential with the finite displacement method for constructing the force constant ma-

trix for both the monolayer and multilayer cases. The resulting calculations for thermal

conductivity demonstrated good agreement with those expected based on both experi-

ments and other theoretical methods. Further to this, very useful insights for analysing

the trends were obtained through the study of the distribution of phonon lifetimes and

cumulative thermal conductivity with increasing phonon frequencies.

The value of the SNAP-MLIPs with the interlayer interaction was further demon-

strated by calculating the interfacial thermal conductance between hBN and MoS2.

This calculation required a massive system of 11,200 atoms to converge, a number

which is easily within reach for the lightweight MLIP but entirely prohibitive to first-

principles methods. The resulting value for the thermal conductance was in good

agreement with the value obtained through experimental measurement.

This chapter detailed a significant but non-exhaustive overview of the potential of

the library of machine-learned interatomic potentials generated for 2D materials, as well

as some use-case scenarios for the rapid prediction of thermal properties using them.

Thereby paving another step on the way to mapping out the materials’ property space

to eventually achieve the goal of inverse-materials design via rapid property prediction.
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Chapter 5

Databases from Language Models

“Baiĺıonn brobh beart.”

Natural language processing (NLP) is an immensely rapidly developing field within the

domain of artificial intelligence (AI). The state-of-the-art techniques within the field

are evolving quickly, with much of the focus of AI research being placed squarely on

this domain. Indeed, even since this work was started, there has been several paradigm

shifts within this subdomain of AI, all worthy of attention.

The first section of this chapter will outline the progress that has been made in

applying these NLP techniques to the domain of materials science. It will delve into

some of the historical developments of NLP methods and the challenges they were used

to address in materials science, first in the pre-transformer era and, later, will discuss

how the advent of transformers has impacted the field.

In the subsequent sections, the chapter will explore the efficacy of more modern

techniques in rapidly constructing large-scale materials science databases of materials

properties. It will highlight automated approaches that leverage contextual language

models to extract and organize relevant information from diverse sources. These ad-

vancements have changed the landscape of the way materials databases are created

entirely, enabling researchers to access comprehensive datasets efficiently, while elimi-

nating the need for researchers to possess extensive knowledge of ultra-specific rules-

based techniques in natural language processing.

The chapter will also discuss novel ways of evaluating the quality of these resultant

97
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databases alongside their ability to predict materials properties. It will explore metrics

and methodologies used to assess the reliability and accuracy of predictions generated

by NLP-driven materials databases. This section will shed light on the challenges and

advancements in ensuring the robustness of these databases.

Following this discussion, the chapter will shift its focus to the use of large language

models that have gained significant attention in recent years. It will examine how these

models, such as GPT-3 and its successors, have the potential to revolutionize materials

science research. Much of this chapter draws from a publication derived from this work,

which can be found in Ref. [100]. It was also performed in close collaboration with my

colleague Matteo Cobelli.

5.1 Early Use of Language Models In Materials Sci-

ence

The automated construction of databases in physics and chemistry has long been a

desired goal of the field of NLP for materials science. Early attempts at doing this

were mainly based on grammar rules or dictionary approaches. Such approaches relied

quite heavily upon the assumption that scientific information in journals, reports and

patents was generally highly procedural and rarely deviated from very rigid grammat-

ical and syntactic structures. These tools, such as ChemicalTagger [101], OPSIN [102]

and early versions of OSCAR [103], were applied specifically to chemical synthesis

procedures. These methods utilized regular expressions, a string-searching algorithm.

Their purpose was to discover patterns within a text, which would then be compared to

strings adhering to user-defined rules. These rules were composed in a representative

language specifically designed for standardized rule representation. There was some

use of simple classifier models for chemical named entity recognition (NER) at the

time [104, 105], however, the main extraction procedures relied mainly on dictionary

methods.

These methods were powerful in the field of synthetic chemistry due to the preva-

lence of International Union of Pure and Applied Chemistry (IUPAC) standards in the

field, which meant that chemicals within synthesis procedures are intentionally writ-

ten in an international standard to facilitate their reproduction and synthesis. This, in



99 5.1. Early Use of Language Models In Materials Science

turn, means that such rules are far more difficult to apply beyond scientific regimes that

do not employ such rigid standards in naming conventions, such as in the fields of inor-

ganic chemistry and materials science, for example. A change in strategy was needed

in order to account for the increased variance in the reporting of such compounds.

Various ML algorithms were explored to this end and success was found in utilising

hidden Markov models (HMMs) [106], maximum entropy Markov models (MEMMs)

[107] and conditional random fields (CRFs) [108,109] in a hybrid approach with rules-

based methods in order to maximise the ability of chemical-literature-extraction models

to extract chemical entities reliably with a higher fidelity than before [103, 110]. Both

the HMM and MEMM algorithms work on the assumption that the labels associated to

a word or token in a sentence are a Markov chain, meaning that the label assigned to a

token depends on the previous token. HMMs learn the transition probability between

each label in the sequence, learned from previous tokens in a given training data set. In

contrast, the MEMM algorithm is based on a multinomial logistic regression classifier

that attempts to assign a label to each token in a sentence. This simple model is

extended in the case of MEMMs by discarding the assumption that the labels for the

tokens are conditionally independent of each other, but rather, making the assumption

that they constitute a Markov chain.

CRFs also take this idea of associations between labels obeying a Markovian rela-

tionship i.e. the probability of a certain label being associated with a word is dependent

only on its neighbours. However, in this case, the semantic structure is represented as

an undirected graph. Usually, when applying this method to natural language process-

ing, linear-chain CRF is used in which the graph of labels is structured into a chain,

with each label representing a single, associated token.

These hybrid methods became state-of-the-art and databases that were constructed

using chemical NER became more widespread, with ChemDataExtractor becoming the

most dominant tool in this space [111]. Automated databases were constructed using

CRFs and dictionary-based methods that spanned the topics of synthetic chemistry

[112, 113], magnetic materials [114] and battery materials [115]. The extraction of

properties associated with these extracted chemical entities, however, involved the

tedious definition of dictionaries and rules that attempted to encapsulate every possible

combination of grammatical and syntactic structures in which a reported value could
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appear in a text. Furthermore, this step had to be repeated for each individual property

under examination. As a result, these methods did not become widely utilised and their

use was focused to a select few research groups.

Further to this, the databases resulting from these works were seldom used outside

of the work they were published in. This could be related to the difficulty in evaluating

the quality of the resulting databases. Even with established metrics for evaluating

machine learning performance, such as F1 score, precision and recall, it remains very

difficult to directly evaluate the databases resulting from automated curation using

machine learning. Most of these works focused on evaluating the efficacy of the model

using a small, handpicked, sample of the texts from which values had been extracted.

The evaluation was performed by verifying the information extracted from this small

sample of texts. Such an analysis clearly is insufficient to draw any robust conclusions

for the totality of the extracted values with any statistical significance.

Despite these shortcomings, there was a clear indication from the few works that

involved the automated construction of databases from hybrid language models that

they had valuable use for materials discovery applications, once a critical mass of values

had been collected.

Given the immense potential of these methods, this chapter focuses on attempts

at addressing the main concerns with the established methods of automatically con-

structing large-scale materials science databases for machine-learning applications in

materials informatics.

5.2 Transformers

Transformer architectures were initially proposed by Vaswani et al. in 2017 [116]. This

architecture represented a development over recurrent and convolutional neural net-

works for natural language applications. The best performing of these generally incor-

porates what is known as an attention function [117–119]. The transformer architecture

advanced on these methods by entirely dropping recurrence and convolutions (described

in Section 2.1.3) and simply applying attention on its own to these applications.



101 5.2. Transformers

5.2.1 Self-Attention

Self-attention is the key concept of transformer architectures and is a means of associ-

ating the relative importance a word has with other words in a sentence when applied

to natural language applications. It was originally conceived as an attempt to mirror

the cognitive function of attention to certain terms in an expression over others, a

natural way in which to identify the importance of certain terms to the interpretation

of a sentence.

In a more general sense, the attention function will take three vector quantities, a

query and a key-value pair. These vectors are computed for each token according to

a weight matrix, which is obtained during the training of the full transformer network

for these three vectors. Each input token to a transformer will produce all of these

three vectors, by multiplying the input embedding by the universal query, key and

value weight matrices. The attention function will then map these quantities to an

output, which is a weighted sum of the value, where each term of the value vector is

weighted according to a compatibility function comparing the query with the key. For

practical purposes, to aid efficiency in the computation of the outputs, these vectors are

aggregated into matrices of queries Q, keys K and values V such that the outputs for

each combination can be computed simultaneously. In the original paper, the authors

applied an attention function known as the scaled dot-product attention,

Attention(Q,K,V) = softmax

(
QK⊺

√
dk

)
V, (5.1)

where dk is the dimensionality of the key and query vectors. The reciprocal of its

squared root is used as a scaling factor in Eq. (5.1) in order to avoid potentially

negative impacts for the model convergence that would result from using the dot-

product attention without such scaling. The softmax function is the same as was

defined in Eq. (2.29).

This attention function is computed in parallel with different dimensionalities for

each of the query, key and value vectors, the outputs of which are concatenated and fed

through a single, fully connected, feed-forward, neural network layer. Such a system

allows the model to learn information from different representations in parallel, which

can all be incorporated into the model simultaneously. This construction is known as
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a multi-head attention.

The potential of systems based entirely on self-attention, as opposed to ones that

involved recurrence or convolutions, was realised by comparing several aspects of purely

attention-based architectures to the existing alternatives. The first of the criteria of

comparison is the computational efficiency of the operations and the ability for such

methods to be parallelised. The computation of attention is based entirely on matrix

operations and different attention heads can be computed independently from each

other. This means they can be trained and deployed using parallelised GPUs, vastly

improving their computational efficiency.

Another potential advantage of the use of self-attention in a transformer architec-

ture is the interpretability of the resulting representation. Similar to a convolutional-

style construction, different attention heads learn to perform different tasks and, simi-

larly the attention weights of sentences inputted into a transformer model often capture

and reflect the semantic structure of the sentences. This is a key advantage in systems

that require a nuanced knowledge of the syntactic structure of a sentence in order to

execute their task.

5.2.2 Transformer Architecture

The architecture for the original transformer network can be found in Fig. 5.1. Trans-

formers expand upon this idea of multi-head self-attention by stacking multi-head at-

tention layers on top of each other. These layers combine a multi-head self-attention

layer with a fully connected feed-forwards network layer. Both constituent sublayers

within the layer employ a residual connection in which the input to each sublayer is

added to the output and the resulting vector is normalised. This step ensures that the

positional encoding is preserved throughout the network.

For the original architecture, this structure is used as a component of two separate

stacks, as seen in Fig. 5.1, constituting an encoder-decoder architecture. This is an ideal

choice for a large variety of NLP applications, such as sequence-to-sequence modelling

or classification. Each of these stacks is composed ofN repeated attention/feed-forward

layers (N = 6 in the original paper). The left-hand stack in Fig. 5.1 is the encoder and

on the right-hand side is the decoder.

The encoder functions as a means of creating a representation of the input sequence
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Figure 5.1: A flowchart of a typical transformer network architecture. On the left is
the encoder stack and on the right is the decoder stack. The decoder takes as input
the output from the previous pass to generate the output probabilities. Adapted from
Ref. [116].

based on the stacking of the aforementioned attention/feed-forward sublayers. This

creates a latent representation of the input that the decoder receives in combination

with the decoder output of the previous pass in order to generate the output sequence.

The decoder employs a further elaboration on the concept of self-attention, namely,

masked multi-head attention.

Masked multi-head attention involves the modification of the self-attention mecha-

nism in the sublayer to only attend to the preceding terms in the sequence as opposed

to the totality of words that the encoder will attend to simultaneously. It does this

by the introduction of a step called masking, in which all values after the specified

position in the sequence are set to −∞ before being input into the softmax function

of Eq. (2.29) when computing the self-attention as in Eq. (5.1). Such a step enables

the decoder layer to only consider the preceding words when making a prediction for a

token. This is in order to ensure that the decoder is autoregressive, which means that
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the model output is dependent on its previous outputs.

5.2.3 BERT

For certain cases, the autoregressive feature of the decoder of transformer networks

might not be optimal. In 2019, Devlin et al. [120] proposed a new language represen-

tation model known as BERT, standing for bidirectional encoder representations from

transformers. This enabled the creation of natural language representations that were

dependent on both left and right contexts throughout the architecture. BERT was

proven to exhibit state-of-the-art performance on a wide range of tasks and quickly

became the dominant model in the field upon its conception.

It considers both left and right contexts in this representation by changing the

original masking paradigm described in section 5.2.2 by instead employing a masked

language model pre-training objective. This strategy involves discarding the masking

objective that enforces unidirectionality in the decoder proposed by Vaswani et al. [116]

by masking all subsequent tokens in the calculation of the self-attention and, instead,

randomly masks a selection of tokens from the input, which the model then tries

to predict. This is the only deviation from the training of the original transformer

architecture as shown in Fig. 5.1.

youthank[SEP] BERT##fula model[CLS] useisBERT [SEP]

E[CLS] E##fulEuseEaEisEBERT Emodel E[SEP]EBERTEyouEthankE[SEP]
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EA EAEAEAEAEA EA EBEBEBEBEA

Input

Token Embeddings

Segment Embeddings

Positional Embeddings

Figure 5.2: A diagram of the input representations of BERT models, which are com-
posed of a summation of the token embedding, segment embeddings and positional
embeddings. Adapted from Ref. [120].

The input representations for the BERT architecture (see Fig. 5.2) include some

interesting innovations over the original transformer representations. Namely, the ad-

dition of two special tokens for the input embedding, the [CLS] and [SEP] tokens. The

[CLS] token is always the first token in every sequence and corresponds to a classifica-

tion token. The final hidden state of this token after being processed by the network is

the aggregate representation of the whole sequence for sequence classification tasks. In
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contrast to this, the [SEP] token corresponds to a separator that delineates the point

at which one sentence ends and the next begins. This is used extensively for tasks

involving sequences of sentences such as next-sentence prediction and natural language

inference.

5.2.4 GPT

Generative pre-trained transformer (GPT) models are the main alternative form of

language models and are currently the main focus of development in the domain of

general NLP techniques. They are commonly seen as being the key to general and

conversational AI.

The original GPT model or GPT-1 [121], employed only the decoder stack of the

transformer architecture (Fig. 5.1), using N = 12 for the number of stacked sublayers.

The research behind this model revealed that training an autoregressive model to pre-

dict the next sentence based on a vast text database resulted in a pre-trained model

that enhances predictive capabilities in discriminative tasks such as question answering

and sentiment analysis.

Soon after this work, GPT-2 [122] was trained as a larger version of the original

architecture, now with 1.5 billion tunable parameters, in contrast with the 117 million

parameters of GPT-1 and the 340 million parameters of the largest BERT model [120],

some small modifications to the sublayer structure and an increase in the size of the

model vocabulary. This larger GPT model was proven to be proficient at zero-shot task

transfer. Zero-shot task transfer concerns the ability of a model with sufficient capacity

to learn and infer how to perform tasks in natural language, by learning how to predict

the most likely next sentence in a vast corpus of natural text. This work by Radford et

al. [122] demonstrated that the higher-capacity GPT model could learn how to perform

a large variety of tasks that it was not trained for in an unsupervised manner simply

from training the large model autoregressively on next sentence prediction, a key step

on the road to general AI.

The next GPT version, GPT-3 [123] scaled this effort up to 175 billion tunable

parameters and, again, made some minor adjustments to the architecture by refining

the self-attention mechanism. This model performed very well across the board at

adapting to generalised tasks using the few-shot learning paradigm. Few-shot learning,
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in contrast to zero-shot, involves prompting the model with few samples of the cases

similar to the desired task as the model input, thus allowing the model to learn the

desired output from the select samples in a carefully chosen input, as opposed to a full

model fine-tuning or pre-training. There were tasks for which this system matched the

performance of the state-of-the-art of fine-tuned systems when employing this few-shot

technique for training.

There are further developments in this field with the advent of GPT-3.5 and GPT-4

[124], however, these models are proprietary in nature and therefore their architectures

and robustly benchmarked performances are not available.

One crucial aspect to note regarding the utilization of GPT-based, autoregressive,

large language models (LLMs) is that their primary limitation stems from their focus

on optimizing predictions for the most probable token following a sequence of tokens.

Consequently, these models exhibit a significant and concerning tendency to generate

hallucinations in their output. For LLMs, hallucination is the tendency of these models

to make up information based on the likeliest syntactic structure of the continuation

of the given prompt. While these models do demonstrate a remarkable performance in

many more specialised domains, such as science and medicine, outside of the general

data that they are trained on, the information produced by them is often inaccurate

[125,126].

5.2.5 Transformer Models in Materials Science

With the growth of interest in transformer models, there has been an accompanied

focus on utilising their superior natural-language performance for every domain. Ma-

terials science was no exception to this trend. Various attempts have been made since

Ref. [116] to incorporate transformer-based systems into the toolkit of materials science.

The first of these attempts came in the form of BatteryBERT [115], a pipeline,

which facilitates the automated extraction of compound-property relationships from

unstructured battery-specific scientific texts. A total of six BERT models were pre-

trained on a corpus of approximately 400,000 papers relating to battery research. These

models were employed to enhance an existing rule-based pipeline for property extrac-

tion based on ChemDataExtractor by fine-tuning them for paper classification and

question-answering. The paper classification step was used to improve on a filtering
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step to isolate relevant documents, that previously was performed with a combination

of a term frequency-inverse document frequency (TF-IDF) document representation

and logistic regression. The model was also fine-tuned to perform extractive question

answering through the addition of a span classification layer on top of the Battery-

BERT model. This effectively allows the model to supplement the records extracted

using the rules-based technique, with the device function of each extracted material,

namely the cathode material, the anode material and the electrolyte.

Another of the first explorations of the use of transformer models in the materi-

als science domain is the work of Trewartha et al. [127] in which the advantage of

domain-specific pre-training for transformer models was quantified for the first time.

Interestingly, this paper found that the general BERTmodel was outperformed by every

domain-specific, fine-tuned model on domain-specific tasks. Furthermore, it was found

that a simpler system using a bidirectional long-short-term-model (BiLSTM) also out-

performed the original BERTmodel on domain-specific tasks, clearly demonstrating the

importance of using domain-specific pre-trained models for high-fidelity performance

in non-conventional domains. This boost in performance was also demonstrated by

using progressively more refined models in the materials science domain, with a model

pre-trained for general science applications (SciBERT [128]) outperforming the BERT-

base model and a model pre-trained for materials science (MatBERT [127]) further

improving on this leap in performance.

Further to this work, another BERT model was constructed for materials science

by taking the pre-trained weights of SciBERT and continuing this training, using a

materials science-specific corpus of 150,000 documents, which were chosen from a va-

riety of sub-domains of the field of materials science [129]. It also utilised the training

strategy of RoBERTa [130], which applied a 15% dynamic whole word masking during

the training. This new model was called MatSciBERT and demonstrated, once again,

a superior ability to both SciBERT and BERT-base on downstream tasks specific to

materials science.

A separate model was fine-tuned for the NER of polymer information by continu-

ation of the pre-training of the weights of PubMedBERT, a BERT model pre-trained

from scratch from literature taken from the PubMed database [131]. This model,

named MaterialsBERT was then used to extract a database of approximately 300,000
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polymer property records from a corpus of 650,000 abstracts. An attempt at bench-

marking the quality of the extracted database was performed by analysing co-relation

trends between key properties, which generally followed the expected trends.

The final attempt at integrating transformer models into a materials design or

property extraction pipeline as of writing is the first attempt at exploring the use of fine-

tuning a GPT-based LLM for materials property extraction [132]. The model produced

was trained on three tasks, namely, linking dopants with their associated host materials,

cataloguing metal-organic frameworks and general chemistry information extraction.

There was an attempt at evaluating the produced output, however, generative models

generally struggle to produce a systematic, consistent output and therefore, the authors

of this paper defaulted to evaluating the results using the oversight of domain experts.

5.3 Transformer Models for Database Construction

There is a wide array of potential applications for databases of materials properties,

some of which have already been demonstrated. Indeed, such databases have been used

already to construct models, which are able to identify regions of materials composition

space favourable to superconductivity [133], to design high-entropy alloys [134], to

predict the existence of novel magnets [135] and to predict the zT thermoelectric figure

of merit in inorganic materials [136], to name a few examples.

The vast majority of experimental data for materials science remains entirely locked

away in literature. Most databases in this field are limited to calculated materials prop-

erties [37, 67, 137, 138], either introducing a systematic error in data in many cases

or limiting the potential quantities contained within these databases to quantities

amenable to rapid calculations. There is also the possibility that such calculations

may also not reflect reality. This is, therefore, clearly sub-optimal. Most attempts

at constructing experimental databases are proprietary in nature due to the involved

labour costs [139,140], despite some attempts at database construction by some open-

access initiatives [141, 142]. This leaves an opportunity to delve into the development

of workflows aimed at enhancing the accessibility and performance of models for the

automated construction of materials databases from literature, making it a fertile area

for exploration.



109 5.3. Transformer Models for Database Construction

Previous attempts at utilising natural language models and transformers to extract

information from unstructured literature, which are described in sections 5.1 and 5.2,

highlight the strengths and weaknesses of such models. These must be addressed in

order to construct a robust, high-fidelity and efficient information extraction system.

It is clear that transformers represent the current state-of-the-art with regard to

general performance in natural language tasks, largely deprecating previous architec-

tures. They also largely bypass the need for intricate syntactic and grammar rules

that reduce the accessibility of such NLP systems to a large community. Domain-

specific pre-training and fine-tuning is clearly demonstrated to enhance performance in

domain-specific tasks [127] and, therefore, any pipeline constructed using transformers

should rely on models optimised for the relevant domain. Furthermore, GPT-based

systems have a tendency to generate inaccurate information, making output consis-

tency a challenge. The proprietary nature of the most powerful systems also leads to

a lack of transparency regarding privacy and model architecture. Additionally, per-

forming domain-specific fine-tuning can be difficult. All these factors imply that there

is much work to be done in order to establish a high-fidelity workflow for implement-

ing these models. In Section 5.5, we will delve into the efforts aimed at addressing

these challenges. This leaves a workflow based on fine-tuned BERT models the clear

choice for executing a rule-definition-free workflow for precise information extraction

from scientific literature. The remaining part of this chapter will focus on the work

conducted as part of this thesis to implement such a workflow, which we call BERT for

Precise Scientific Information Extraction (BERT-PSIE), along with a full evaluation

of the resulting databases.

5.3.1 BERT-PSIE: Precise Scientific Information Extraction

Fig. 5.3 displays the workflow of our BERT pipeline for precise information extraction

from scientific literature. This workflow aims to systematically construct databases of

materials-properties relationships in an automated fashion from unstructured scientific

literature, using a sequence of BERT models fine-tuned on downstream tasks. All

BERT models used in the pipeline are derived from the weights of the MatSciBERT

pre-trained model.

This workflow is shown to work for binary relationships and, in theory, there is no
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Figure 5.3: A diagram of the BERT-PSIE workflow for the automated extraction
of scientific information from unstructured literature, developed in this thesis. The
workflow relies on a combination of BERT models trained on downstream tasks such
as sentence classification, named entity recognition and relationship classification.

limit to the number of inter-related properties that it can be extended to.

Gathering a corpus of scientific papers for the training step is a necessary first

step in the extraction pipeline. For the case of the construction of a database of

Curie temperature values, the Crossref REST API is employed to execute a keyword

search for the term ‘Curie temperature’ over all open-access literature published by

Elsevier. This returns the metadata for these papers with the full text available,

yielding approximately 180,000 papers. Elsevier is chosen to extract from for the

abundance of literature available in an HTML format as opposed to other publishers,

which offer access principally to PDF documents. PDF documents are generally less

efficient and less consistent after parsing, whereas the consistency of the format of

standard HTML documents makes them ideal candidates for data scraping. Of the

returned metadata, 800 abstracts are manually annotated by employing the sentence

tokenizer of the natural language toolkit (NLTK) [143], which separates these abstracts

into their constituent sentences. The resulting, separated sentences are split into two

categories, sentences that contain a Curie temperature and those that do not. This

step yields a database of approximately 4,000 sentences, of which 189 are deemed

relevant. All positions of compound and Curie temperature mentions in this collection
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of sentences are also labelled. This dataset is subsequently employed to fine-tune a

BERT classifier model to find relevant sentences in a full corpus of papers extracted

using the full-text links from the metadata from the CrossRef API.

A similar workflow is employed for the extraction of relevant sentences to the elec-

tronic band gap, with the difference being the source of the abstracts for training.

In the case of the band gap, the metadata for the Cornell University arXiv pre-print

repository is downloaded in its entirety from the Kaggle dataset [144]. A selection

of 1,000 abstracts is taken from this dataset by searching the abstracts for the terms

‘band gap,’ ‘band-gap,’ or ‘bandgap.’ Abstracts containing a band-gap reference are

tokenized into their constituent sentences, facilitating a database of 672 sentences, with

171 sentences within this database considered to be relevant.

The positions of all mentions of compounds and properties are labelled in a selection

of 200 sentences deemed relevant by the classifier, as above. The new sentences are

combined with the annotated abstracts, and this collection of annotated examples is

used to train a BERT model fine-tuned to be a token-level named entity recognition

(NER) system. Such a system is essentially a token level classifier, which classifies each

input token as being either a CHEM, TEMP, or neither, with the CHEM token corresponding

to a chemical entity mention and the TEMP token corresponding to a Curie temperature

mention.

The CrossRef API is once again employed to download a corpus of papers for extrac-

tion based on a keyword search for the terms ‘magnetic’ and ‘electronic’ to construct a

corpus of papers likely to contain a Curie temperature and electronic band gap, respec-

tively. These corpora are comprised of approximately 180,000 papers for the magnetic

database and approximately 77,000 papers for the electronic corpus. After the sentence

classifier is run on these sets, a database of sentences is yielded for each quantity being

extracted. These relevant sentence databases contain 55,000 and 126,000 sentences for

the Curie temperature and electronic band gap, respectively.

The final task in the sequence of BERT models in the BERT-PSIE architecture is

that of relationship classification. Firstly, the databases of sentences are run through

the NER model to identify mentions of compounds and their associated properties.

If a singular property and a singular compound are mentioned in a sentence, these

are assumed to be related quantities and are added to the final database (step 5 of
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MatSciBERT

[CLS] [E1] Entity 1 [/E1] ... ... [E2] Entity 2 [/E2] [SEP]

Figure 5.4: A diagram of the variant of the relationship classification strategy used
in this work, derived from the work of Soares et al. [145]. Compound and property
entities in a sentence are marked with [E1] and [E2] tags before being converted
into MatSciBERT representations for the binary classification, which determines if the
tagged entities are the related ones or not, a classification depicted here with the check
mark or the X.

Fig. 5.3). For the more complex cases where multiple compounds and/or properties

appear in the same sentence, there is an ambiguity due to any one of all of the possible

compound/property associations. This ambiguity is certainly simple to deal with for a

human reader; however, it is not a trivial problem to solve in an NLP pipeline. Here,

the resolution of these cases is dealt with by adopting a simple classification scheme

developed by Soares et al. [145]. More specifically, a BERT architecture is trained to

classify whether sentences have a property relationship or not, after the addition of

entity marker tags.

This scheme is visualised in Fig. 5.4. To take the example seen in step 4 of Fig. 5.3,

the sentence: ‘The Curie temperature of Ga0.5Fe2.5O4 and Ga0.7Fe2.3O4 have been found

to be equal to 413◦C and 347◦C, respectively.’ contains the pre-described ambiguity.

From this sentence, four associations are made as follows: 1) Ga0.5Fe2.5O4 and 413◦C,

2) Ga0.5Fe2.5O4 and 347◦C, 3) Ga0.7Fe2.3O4 and 413◦C, 4) Ga0.7Fe2.3O4 and 347◦C. Each

of these combinations is marked within the sentence using the tags [E1start], [E1end] to

identify the compound with [E2start] and [E2end] delineating the start and end point of

the property mentions. After this step, the marked sentences are classified as positive

or negative depending on whether the [E1] and [E2] tags are correctly associating the

compound/property relationships.
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Model Evaluations

Table 5.1: Performance of the three modules developed for the Curie temperature
extraction: the sentence-level relevancy classifier, the NER and the relation classifier.
Results are presented for the test sets. Here we report: precision, P , recall, R, and
F1 score. The size of the test (TeS) and training (TrS) sets are also given (number
of sentences used). For the case of NER, we report results for both chemical entities
(Chem) and TC, as well as the support.

Model Entity P R F1 Support TrS TeS
Classifier 0.77 0.82 0.79 3941 801
NER Chem 0.92 0.86 0.89 754 1,769 168

TC 0.97 0.81 0.88 42
Relation 0.72 0.64 0.68 200 50

In this section, the results for the constituent models of the BERT-PSIE pipeline

are presented. Considering first the Curie temperature pipeline, the results for each of

the constituent models are visible in Table 5.1.

The first row in Table 5.1 presents the standard classification evaluation metrics

for the sentence relevancy classification, the precision P , recall R and the F1 score, as

defined in Section 2.1.1. Each of these metrics is approximately 0.8, indicating a high-

level model performance on the test data. Such high values are compounded by the

model accuracy of 98.83%. This would potentially be higher, but unfortunately, there

is a certain amount of ambiguity in the classification of Curie temperature sentences.

In fact, there are a large number of critical phase transition descriptions that use very

similar syntactic structures to report the temperature at which they occur. This is,

unfortunately, impossible to address meaningfully when operating at a sentence level.

An example of such a sentence structure that may present this difficulty could be ‘The

critical temperature of Nb is 9.2 K.’ In this instance, the Curie temperature is unlikely

to be the value that the ‘critical temperature’ refers to. The sentence-level classifier,

however, is quite likely to select such a sentence as being likely to be referencing a Curie

temperature and, therefore, introduce noise into the resulting database. An attempt

at mitigating the effect of this issue is obtained by selectively scraping data from texts

exclusively relevant to the subdomain of magnetism.

The second row of Table 5.1 concerns the performance of the NER system on the

test set, constituting step 3 of the pipeline described in Fig. 5.3. The precision, recall

and F1 score are all consistently high for both token-level labelled entities, namely,
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the Curie temperature (TEMP) and the chemical compound (CHEM). The high perfor-

mance of both classifiers implies that these two entities can be recognised and extracted

from plain text in one step, using this model. It does, however, suffer from the same

drawback mentioned above. Specifically, the NER system will also struggle slightly

at differentiating different types of critical temperatures due to the similar syntac-

tic and grammatical contexts in which they appear. Despite this, the NER system

can, in fact, differentiate between critical temperature mentions and mentions of other

temperatures that do not involve a critical phase transition temperature. These fac-

tors demonstrate its excellent performance in identifying and extracting the desired

quantity from relevant sentences in relevant literature.

The final row in Table 5.1 indicates the evaluation metrics for the case of the

relationship extraction step in the workflow (step 4 in Fig. 5.3). As is clear from the

evaluation metrics, relationship classification presented itself as the most challenging

task of the workflow. This issue, however, is not unique to the case of relationship

resolution based entirely on ML methods. The ambiguity in relationship resolution

for the equivalent rule-based methods is equally, if not more, challenging. The total

syntactic variance of every construction that includes multiple compound/property

mentions must be captured by the rules defined by your rules-based method and,

therefore, performance is highly dependent on the user’s ability to define the rules.

This is contrasted with purely ML-based methods, which allow for some syntactic

variance in such relationships naturally due to their superior contextual awareness

from the self-attention mechanism.

Indeed, the relationship classifier exhibits the lowest scores of the workflow, however,

this is not entirely unexpected. A fact which is the result of the potential ambiguity of

compound/property relationships, with some relationships being misleading, e.g. ‘The

compound exhibits a Curie temperature of 1000 K, similar to that of iron.’ In this

example, the Curie temperature does not actually refer to the compound which appears

in the sentence, introducing a source of ambiguity. This issue is compounded with that

of dopant and other material mentions unrelated to the binary relationship between

the compound and the property. In spite of the complexity of this task, however, the

classifier performance is still very good and adequate for enhancing an information

extraction pipeline, thereby improving the final database.
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Given that all constituent models in the workflow are very high-performing, a

pipeline was constructed in order to automate the extraction of a database of materials

properties and their associated compounds. Approximately 180,000 unstructured sci-

entific texts were downloaded. After running the full-text papers through the sentence

relevancy classification step, a database of 55,000 relevant sentences was obtained.

This list of sentences was run through the NER model. Single mentions of Curie tem-

perature and compounds were associated together when they appeared in sentences

together. When the sentence contains multiple entities, a list of sentences with all

possible constructions of pairs of compound and property entities is created. These

resulting lists of sentences, with the tagged combinations of entities, are processed by

the relationship classification model. The resulting, associated entities, predicted as

being correct are added to the database. After post-processing, involving converting

temperature units to Kelvin and scaling the chemical compositions to have reduced

integer coefficients, e.g. Ga0.5Fe2.5O4 became GaFe5O8, the database contained 3,518

distinct compound-property entries with their digital object identifiers (DOI).

Table 5.2: Performance of the three modules developed for the band-gap extraction:
the sentence-level relevancy classifier, the NER and the relation classifier. Results are
presented for the test sets. Here we report: precision, P , recall, R, and F1 score. The
size of the test (TeS) and training (TrS) sets are also given (number of sentences used).
For the case of NER we report results for both chemical entities (Chem) and band gap,
as well as the support.

Model Entity P R F1 Support TrS TeS
Classifier 0.95 1.00 0.97 404 134
NER Chem 0.80 0.96 0.87 1166 4000 1000

band gap 0.78 0.97 0.87 119
Relation 0.88 0.88 0.88 300 80

This same pipeline was executed once again for the case of the electronic band gap.

Firstly, the performance metrics of the sentence-level relevancy classifier are presented

in the first row of Table 5.2. This classifier significantly outperforms the classifier for

the Curie temperature, with a perfect recall and a slightly lower precision of 0.95.

These metrics indicate almost perfect performance on the test set in the ability to

differentiate between sentences, which contain and do not contain information about

the electronic band gap. This is most likely attributed to the reduction in ambiguity

between sentences that contain band gaps and those that do not. In the case of the
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Curie temperature, the model appears to have learned the concept of critical tempera-

ture in its differentiation of sentences, however, in the case of the band gap, there are

far fewer constructions that share the same sort of syntactic similarity. Similarly, the

NER model remains very performant on the test set data with only minor deviations

from the range of values presented in Table 5.1.

In the case of the relationship classification task, it was found that the model

outperformed the Curie temperature relationship model. This is believed to be related,

once again to the relatively more consistent nature of reporting band-gap values when

compared to the variability of descriptions of ferromagnetic phase transitions. This

is also probably related to the aforementioned ambiguity in syntactic structure that

accompanies Curie temperatures and other critical transition temperatures, which is

not a feature of descriptions of electronic band-gap values. Such descriptions may have

a tendency to be more formulaic and this feature may explain the improvement in

model performance between different quantities.

Approximately 77,000 papers were downloaded for the band-gap extraction and

tokenized into lists of sentences. Using the high-performing sentence-level relevancy

classifier, a database of approximately 126,000 sentences deemed likely to contain a

band-gap value was constructed. After the NER and post-processing steps were per-

formed, once again normalizing the compound formulae and scaling all units to eV, a

database of 2,090 unique compound/property relationships was obtained.

5.4 Evaluation of Resulting Databases

Evaluation metrics in machine learning such as precision, recall and F1 score are often

a very effective way of indicating how performant ML models are. However, there are

some weaknesses of such methods that inhibit them from being useful when evaluating

the efficacy of a full workflow of concatenated models. Thus, the conventional metrics

on model performance only give a limited indication of workflow performance and,

therefore, database quality. Furthermore, they only reveal the performance of individ-

ual, constituent processes in a data-mining workflow, without giving information about

the efficacy of the entire sequence.

A better test would be a direct comparison of the resulting database quality with
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some form of an expected result, thereby confirming that the data in the automated

database is of a similar quality to that of a database that could be considered a ground

truth. With this in mind, in this section, the databases extracted using the workflow de-

scribed in section 5.3.1 are compared with databases for the same compound/property

relationships that have been curated manually. As previously discussed, the BERT-

PSIE pipeline can, in theory, be extended to dependencies that stretch beyond the

binary relationships, such as ternary or quaternary relationships between materials

properties. However, there is a relative dearth of available manual databases contain-

ing such dependencies and, therefore, this evaluation is limited to binary relationships.

As a result, the two properties that will be the focus of this comparison and evaluation

are the Curie temperature (Section 5.4.1) and the electronic band gap (Section 5.4.2).

An analysis will also be performed by comparing and contrasting BERT-PSIE with

the state-of-the-art, rules-based methods for information extraction, namely, Chem-

DataExtractor.

5.4.1 Curie Temperature

For the evaluation of the Curie temperature database that resulted from the use of the

BERT-PSIE pipeline, a combination of data from various sources was utilised. One of

the primary sources of manually curated data was from the work of Nelson et al. [11],

which was created by aggregating the AtomWork database [146], Springer Materi-

als [147], the Handbook of Magnetic Materials [148], as well as the book, Magnetism

and Magnetic Materials [149]. This database was subsequently combined with the

database aggregated as a result of the work of Byland et al. [150], a dataset primarily

focused on Co-containing compounds. The combined database amounted to a total of

3,638 unique ferromagnetic compounds and their associated Curie temperatures. This

is taken as our ground truth for a Curie temperature database.

The results of the BERT-PSIE pipeline are also compared with those obtained using

the semi-supervised Snowball algorithm coupled with a rules-based scheme [114]. The

BERT-PSIE database and the ChemDataExtractor database both extract data from

very similar sources in that they both employ the CrossRef metadata search and both

were extracted quite recently relative to each other. In contrast, the aggregated man-

ual dataset is largely based on data extracted from dense tables and contains relatively
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older data, with some results having gone back as far as the 1950s. While the two auto-

matically extracted datasets arise mostly from similar sources, and they both contain

several thousand data points each, there is a remarkably limited overlap between the

two of them of merely 694 compounds. Both automatically extracted datasets have a

similar magnitude of overlap with the manually curated cases, i.e. 687 for BERT-PSIE

vs. manually curated and 595 for ChemDataExtractor vs. manually curated. Between

all three datasets, there is only an overlap of 262 compounds. All comparisons done

in this section are performed by exclusively taking the median value of the Curie tem-

perature for compounds that have multiple associated Curie temperatures.

It should be noted that a significant source of error could arise in this analysis from

the NER model of the workflow due to the difficulty that it may have in differentiating

between elemental compounds and the same element when used as a dopant (e.g. bulk

Mn vs. Mn-doped GaAs). Indeed, for the case of assigning a Curie temperature to

an elemental compound using the BERT-PSIE workflow, it was observed that the

error increased significantly. This is because dopants can appear in a multitude of

concentrations and in a wide array of hosts, meaning these can be assigned to a vast

multitude of different Curie temperature values. Despite this, as can be seen in the

top panel of Fig. 5.5, there is generally an excellent agreement between the expected

distribution of Curie temperatures, with the most significant peak in every distribution

being expectedly close to absolute zero as a result of most being non-magnetic in nature.

Notably, there is a particularly strong agreement in the structure of the Curie

temperature distribution between the two automatically extracted databases resulting

from BERT-PSIE and ChemDataExtractor, with both exhibiting a strong peak in the

distribution around room temperature, a feature which is not present in the manually

curated dataset. There are two potential reasons for this artefact: 1) there is either a

bias in the most recent literature in favour of critical temperatures close to the room

temperature value of 300 K or 2) model errors aggregate TC values close to ambient

temperature. The latter hypothesis makes sense as references to ambient temperatures

may feature heavily in sentences that contain the targeted property. For example, the

sentence ‘The magnetization curve at 300 K was obtained and the Curie temperature

was determined by TGA under a magnetic field, yielding a Curie temperature of 1043 K

for Fe.’ mentions an experimental measurement at ambient temperature as well as the
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Figure 5.5: Comparison between the content of the different databases: (red box)
BERT-PSIE, (blue box) ChemDataExtractor and (green box) the manually extracted
database of Ref. [11] and Ref. [150]. Top panel: Normalized distribution of the Curie
temperatures extracted. A peak is visible in the distribution around 300 K in both
the autonomously extracted databases, which is not seen in the manually extracted
one. Bottom panel: Relative elemental abundance across the compounds present in a
database. Although there is general agreement among the three databases, additional
peaks are observed for various elements in the case of automatically extracted data,
which are not present in the manually curated dataset. The most severe of these
discrepancies is in the relative abundance of Mn- and O-containing compounds. Note
that the automatically extracted datasets and the manually curated one are based on
different literature libraries, with the manually curated case arising from older reference
books, Ref. [146–149], whereas the BERT-PSIE-extracted case came from scraping the
Elsevier API.

desired Curie temperature. While the high performance of the relationship resolution

and NER steps of BERT-PSIE may mitigate much of the influence of such noise in the

database, it is almost impossible to entirely negate the effect of such cases.

Despite the aforementioned drawbacks, it is clear from the top panel of Fig. 5.5 that

the automatically extracted database from BERT-PSIE adequately captures the rela-

tive abundance of high- and low-temperature ferromagnetic materials when compared
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to the expected distribution from the manually curated dataset.

A further understanding of the structure of the resulting database can be obtained

by looking at the bottom panel of Fig. 5.5. This plot displays the relative elemental

abundance of each unique compound in our database, i.e. the frequency at which a

certain element in a compound appears in the database. As I expected, the largest

abundances within all databases are found for the magnetic transition metals (Fe, Ni

etc.), certain rare earths and oxygen. Interestingly, the automated databases have a

tendency to overestimate the abundance of Mn and O, beyond the expected amount

from the manually curated dataset, as well as that of di- and tri-valent alkali metals

(Ca, Ba, Sr and La). This overestimation with respect to the manually extracted

dataset is significantly more pronounced in the ChemDataExtractor dataset than for

the data obtained using BERT-PSIE. This overestimation is likely due to the primary

data sources used for the extraction. The data sources used for both BERT-PSIE and

ChemDataExtractor are significantly more recent than the sources used for the manual

curation and therefore this change in abundance is likely attributable to the shift in

research focus over the years to novel structures and exotic magnetism. In particular,

the overabundance of Ca-, Ba-, Sr- and La-containing compounds may be due to the

significant focus being placed on perovskites, such as manganites, currently within the

field.
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Figure 5.6: Violin plots comparing the TC distribution of the compounds containing
specific elements in the dataset automatically generated with BERT-PSIE (red) and
ChemDataExtractor (blue), and in the manually curated ground-truth (green). Only
the most common elements appearing in the datasets are displayed here. The dots
show the median of each distribution.

The influence of primary data source on the distribution of data in the final dataset
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is further confirmed by looking at the TC distributions of compounds containing the 25

most common elements in each of the three datasets, which are presented in Fig. 5.6.

There is generally a very good agreement between the distributions and, in particular,

between the two automatically extracted distributions, containing entries that were

extracted from similar sources. BERT-PSIE does generally capture a similar distri-

bution to the expected one from the manually extracted values. However, there are

some discrepancies for certain elements. This is likely indicative of the aforementioned

historical variance in research focus between the sources that were used for the ground

truth when compared with the more modern, automatically extracted cases.

Table 5.3: Performance comparison between the different datasets against the manually
curated one from Ref. [11] and Ref. [150]. The left-hand side of the table refers to the
query test, while the right-hand side refers to the RF TC predictor. Together with
the BERT-PSIE and ChemDataExtractor databases we also consider different BERT-
assembled datasets obtained by using different relation-classification strategies (see
details in the text). The query benchmark is done over the 262 compounds that are
shared by all the datasets, while the RF obtained is done over 2,623 compounds that
are not present in any of the automatically collated datasets. Values for the best-
performing datasets are in bold.

Entries Query RF Predictions
R2 MAE

(K)
RMSE
(K)

R2 MAE
(K)

RMSE
(K)

ChemDataExtractor 4,289 0.78 48 137 0.65 123 176

This work
Single Mentions 1,858 0.77 51 139 0.66 128 174
Order of Appear-
ance

2,682 0.77 51 141 0.65 126 176

All Combinations 4,308 0.81 52 127 0.61 134 184
BERT-PSIE 3,518 0.81 50 126 0.65 126 174

BERT-PSIE +
ChemDataExtrac-
tor

7,052 0.86 38 109 0.69 118 165

After confirming the capability of capturing the data distribution of a manually

curated database with automated methods, using methods that do not rely on the

labour-intensive definition of grammar rules, it is useful to measure the performance

of using an automated database on downstream tasks to aid in the materials-design

pipeline. Ultimately, the quality of a materials database can only be measured by its

predictive power and its capability to return an adequate estimate of the correct value
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Figure 5.7: Comparison between the TC queried in the dataset automatically gener-
ated by BERT-PSIE and the values contained in the manually curated dataset (top
panel). The comparison is performed over the 262 compounds that are shared by all
datasets examined in this work. The median value is returned whenever multiple TC
values are collected for a given compound. The same comparison is performed on the
dataset resulting from the combination of the one generated by BERT-PSIE and the
one generated by ChemDataExtractor (bottom panel).

of the Curie temperature when the database is queried. Firstly, in order to quantify

the ability of the database to adequately return the correct value, a test was devised
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by simply directly comparing the automatically extracted Curie temperatures with the

ones that were present in the manually curated dataset. There were also several simple

rules-based strategies that were tested against the relationship classification strategy

depicted in Fig. 5.4. The metrics were all calculated using the overlap shared by all

of the datasets being compared, with the manually curated dataset, which constituted

262 compounds. The comparison between BERT-PSIE and the aggregated overlap

from the manually curated dataset can be seen in the top panel of Fig. 5.7 and the

evaluation metrics for all strategies in the query test are presented on the left-hand

side of Table 5.3.

As was previously discussed (Section 5.3.1), the most challenging aspect of the

extraction workflow is the relationship classification step. In order to ensure that

there is value in adopting the unique model instead of a simpler, rule-based method,

these methods were adopted as a part of the workflow and compared with the use of

the relationship classifier and the performance of each was tested on the overlap of

all datasets with the manually curated dataset. The first of these strategies involved

only taking the values for which there was a single mention of a compound and a

property in a sentence. This entirely voided the need for a relationship classification

step as it was assumed that every solo mention of a property and compound that

appeared in a sentence was related to each other (‘Single Mentions’ in Table 5.3).

The second strategy worked under the assumption that it was generally true that

when there are multiple mentions of compounds and properties, they can generally be

associated based on the order that they appear in the sentence in question (‘Order

of Appearance’ in Table 5.3). Finally, this was compared with the case where every

possible combination of compounds and properties was added to the database. This

step was taken as a way to map the improvement of the database with the inclusion

of the relationship classification against randomised associations (‘All Combinations’

in Table 5.3). This comparison is identical to the situation in which the relationship

classification model always outputs a positive classification for every relationship. Table

5.3 also presents the results obtained with the full BERT-PSIE workflow (‘BERT-

PSIE’), the data contained in the ChemDataExtractor database and by a combination

of those two automated databases (‘BERT-PSIE + ChemDataExtractor’). The query

test parity plot for the aggregated dataset can also be seen in the bottom panel of
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Fig. 5.7.

The results presented in Table 5.3 quite clearly indicate that every database com-

piled with the rule-free pipeline demonstrates an ability to query the manually curated

database with a comparable ability to those of the rule-based ChemDataExtractor

method. Further to this, BERT-PSIE appears to perform best in almost every query-

test evaluation metric. In particular, the BERT-PSIE pipeline returns the best R2 coef-

ficient of 0.81 and RMSE of 126 K. Interestingly, BERT-PSIE does give a very slightly

larger MAE than the one obtained from the ChemDataExtractor system. These met-

rics indicate that both manually curated databases extract databases of comparable

quality, however, BERT-PSIE is less likely to display outliers as significant as Chem-

DataExtractor. The conventional notion of an outlier does not necessarily apply in the

case of gauging the efficacy of a workflow in generating a database capable of querying

an accurate temperature, however. As is evident from Fig. 5.7, the workflow will ei-

ther extract the correct value, where entries appear on the parity line, or they will be

incorrect and will appear as an outlier in the parity plot. There is no real correlation

between the degree to which an outlier is incorrect and the accuracy of the workflow.

This can more precisely be considered as a binary classification for each data point of

either exact extraction or erroneous extraction.

Beyond this point, it is also evident from Table 5.3 that BERT-PSIE as a complete

workflow outperforms every other BERT-based model that relies on alternative ways

of associating the compounds and their properties. Such an increase in performance

relative to these less complex strategies for relationship resolution between multiple

potential compound-property pairs indicates the advantageous nature of the use of

relationship classification as part of the BERT-PSIE pipeline. Admittedly, the per-

formance of the relationship classification step does not yield a massively significant

boost in performance over the inclusion of every possible combination of compound-

value pairs, however, it still aids the workflow in producing a better-quality automated

dataset.

The second test to evaluate the extraction workflow performance probes the abil-

ity of any of the data-extraction strategies to create databases of adequate quality

to construct a predictive ML model. Determining whether the data aggregated from

automated extraction can be a platform for the construction of models that have the
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Figure 5.8: Parity plot (predicted TC vs. manually extracted TC) for the best RF
compositional model constructed on the BERT-PSIE dataset (top panel) and on the
combined BERT-PSIE and ChemDataExtractor dataset (bottom panel). The test
set consists of the 2,623 compounds that are not present in any of the automatically
generated datasets considered in this work, but for which we have a TC manually
extracted from the scientific literature.

ability to screen for the TC of unseen compounds is a key step in gauging automated

workflows’ potential to be useful to the general field of materials science. Models that
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are constructed using representations based entirely on the fractional composition of el-

ements contained within the compound have previously been demonstrated to produce

reasonably good results when trained on manually curated data [11] with the caveat

that the model produced by Ref. [11] does not describe non-ferromagnetic phases, e.g.

antiferromagnetic structures. Further to this, such compositional representations can

be constructed from information directly accessible from the extracted data, without

the need for any additional extraction steps. In order to test the ability of a dataset

to function as a reliable source with which to train useful ML models for property

screening, a random forest (RF) model is trained on each automatically generated

dataset. This takes compositional features as model input, as described in Ref. [11]

and Ref. [151]. Each of the RF models trained employs the same input features as

there has not been any observed improvement in model performance with the addition

of more features. Once the training of the model was completed, the model predictions

were subsequently compared with the manually extracted values that were not present

in the training set of the model. For the Curie temperature dataset, the test set consti-

tuted 2,623 compounds for which there is a manually extracted TC but do not appear

in any of the automatically generated datasets. The use of this test set ensures that

all tests are performed on the same compounds for every model considered. For com-

pounds with multiple associated, extracted values, the median of the results is taken

as being the associated Curie temperature of the compound, as in Ref. [11]. The mean

and the mode were also tested, however, this did not contribute to any meaningful

change in the results of the test set evaluation.

The results of this predictive-power test can be seen on the right-hand side of Table

5.3. The BERT-based extraction workflow, once again performs to a similar quality as

the established, rule-based method. In particular, the full workflow, BERT-PSIE has

an identical R2 value, with a better RMSE and a slightly worse MAE once again, very

similar to the query test results. Most interestingly, it was found that the inclusion of

data extracted using the full BERT-PSIE workflow, including the relationship classifi-

cation step does not improve the quality of the database for prediction. Single mentions

only appear to be a better strategy for constructing a predictor with a better R2 value

of 0.66 and a RMSE of 174 K, while BERT-PSIE gives a slightly degraded R2 of 0.65

and an identical RMSE, although it does improve the MAE by about 2 K. This is likely
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due to the inclusion of entries with multiple mentions and the error of the relationship

classifier model will inherently add noise to the database, which will not facilitate an

improvement in predictor performance. Therefore, no significant model improvement

was detected, despite the fact that the full BERT-PSIE pipeline facilitates a much

larger dataset.

The parity plot of the optimal RF model trained on the full BERT-PSIE workflow

database is visible in the top panel of Fig. 5.8. The trend for the TC is generally cap-

tured by the model. However, the model significantly underperforms relative to the

one constructed on a manually curated dataset presented in Ref. [11], which reports an

MAE of 57 K. This is approximately a factor of two smaller than the 126 K obtained

for the RF model trained on data extracted with the full BERT-PSIE workflow. Such

a result may partially be attributable to noise inherent in manually extracted datasets.

It is likely, for example, that there are antiferromagnetic critical temperatures in the

BERT-PSIE database. In contrast, the data used for the model in Ref. [11] was highly

curated, even after the collection was complete. As a concrete example of this, ad-

ditional data on paramagnets was included in order to improve the low-temperature

part of the data distribution, while other data manipulation was employed to redis-

tribute concentrations of metallic alloys, to better balance the chemical distribution

of the dataset. Naturally, such steps were not taken as an aspect of the training of

RF models based on the automated curation of data, since the task is to gauge the

quality of the workflow in creating automatic databases without such manipulation.

The expectation for these systems is that they should aggregate sufficient data so that

such manipulation becomes redundant.

Further study was done in order to assess the impact of additional data on the

quality of the database. It should be expected that the statistical significance of the

choice of associating compounds with a Curie temperature, based on the median value,

would increase significantly with a significant increase in available data. As the data

extracted in the ChemDataExtractor pipeline and the BERT-PSIE one is of similar

quality, and the overlap between the two datasets is so limited, an additional dataset

was constructed by combining the entries for each of the two. This combined database

contains 7,052 distinct entries and performs significantly better on every metric eval-

uated in each test devised (bottom row of Table 5.3 and the bottom plots in Fig. 5.7
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Figure 5.9: Violin plots showing the TC distributions of the compounds screened using a
RF model trained on the BERT-PSIE data and compared with the manually extracted
values (top panel). The dashed line is the parity line highlighting how the median of
the screened distribution increases as the screening threshold increases. Despite a low
recall, the precision is high enough to select compounds likely to have a TC higher than
a given threshold. The screening is done on compounds not present in the training set
of the RF. The same test is performed by training a RF model on the combination of
the BERT-PSIE and ChemDataExtractor datasets (bottom panel).

and Fig. 5.8). This leap in performance is likely attributable to the far larger size of

the combined database relative to the other two automatically constructed constituent

ones. Indeed, the combined dataset is roughly double the size of either of the original

ones. As expected, this larger size seems to have reduced the noise present in the

median values. For the RF model, the larger number of entries means that the chem-



129 5.4. Evaluation of Resulting Databases

ical space is far better sampled. The combined database represents the best database

available for ferromagnetic TC, which has been automatically extracted from scientific

literature. The implication of this result is that the quality of automatically extracted

databases improves markedly with increasing the number of disparate sources used in

the extraction and in the quantity of the data extracted. Thus, selecting a wide range

of sources is desirable.

As a final evaluation of the usefulness of the database extracted with BERT-PSIE,

the RF model trained on the BERT-PSIE dataset was tested to evaluate its efficacy

in screening unseen compounds with respect to a certain TC threshold. This test

simulates a common goal of applications of ML for materials science, namely that of

the high-throughput screening of compounds to target specific properties. For this

particular screening test, it is useful to bear in mind that typical magnets employed

as part of some ambient technology (e.g. data storage, electrical motors) require a TC

of the order of 600 K. Therefore the ability to filter out materials likely to exceed this

and other thresholds is of significant technological relevance. The RF models trained

on both the BERT-PSIE and the combined BERT-PSIE/ChemDataExtractor datasets

were utilised to predict whether materials have a critical temperature exceeding 300 K,

600 K and 900 K, respectively. The test set for this predictor was constructed from

compounds that were present in the manually curated database, but not present in the

manually constructed ones. The results of this screening for both models can be seen in

Fig. 5.9, with the results for the screening done with the BERT-PSIE database in the

top panel and the results for the combined dataset in the bottom panel. The shaded

blue area of Fig. 5.9 represents the distribution of values of TC that are predicted

to be above the dashed line, depicting the screening temperatures of 300 K, 600 K

and 900 K, respectively. The recall of this step does remain quite low, indicating

that the model will frequently miss compounds that exceed the screening temperature.

However, this is not a catastrophic issue as what is more important in screening is

that the returned compounds are likely to match the screening criteria with a high

precision. Thus, the high precision of the screening biasing the initial distribution

set towards distributions only containing compounds exhibiting higher and higher TC

values, clearly demonstrates the utility of manually constructed databases in screening

for TC with very high fidelity.
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5.4.2 Electronic band gap

In order to further validate the BERT-PSIE workflow, a second database was created,

this time focusing on the aggregation of compounds and their associated electronic band

gaps. In this section, an evaluation of the dataset is once again performed, comparing

a separate, manually curated dataset, a dataset obtained with the ChemDataExtractor

rule-based model constructed for band-gap extraction and the database obtained using

BERT-PSIE. In this instance, the manually curated dataset is taken from the work of

Zhuo et al. [152], which in turn was constructed using a range of sources [153–156]. The

rule-based model arose from the work of Dong et al. [157]. The database associated

with this work, however, contained data that had been obtained with a combination

of the parsing of natural language, combined with data scraped from tables, which is

beyond the scope of BERT-PSIE and, therefore, does not constitute a fair comparison.

In order to address this, the ChemDataExtractor model from Ref. [157] was run on the

same corpus analysed by BERT-PSIE, a step that was not accessible for the case of

Curie temperature due to the relative size of the extraction corpora. In this analysis,

BERT-PSIE and the rule-based model work on an identical set of publications.

The relative distributions of band gaps can be appreciated in the top panel of

Fig. 5.10. In this case, there is a striking similarity between the distributions of the

band-gap values that were extracted with automated methods and with the manually

curated dataset. The one exception to this strong agreement is the over-representation

of values at approximately 2.5 eV in the manually curated dataset when compared

with both of the automatically extracted datasets. This discrepancy can potentially be

explained by focusing on the bottom panel of Fig. 5.10. There are a series of significant

peaks that are present within the manually curated database that are not present in

the automatically extracted datasets, namely for sulfur, selenium and a series of metals

(Cd, In, Sb, Te, Hg and Pb). These peaks may bias the distribution slightly towards

cases that lead to the peak in band-gap values around 2.5 eV. This variance is, again,

likely attributable to the difference in data sources used for the manually curated

database, with much of the values of the database in Ref. [152] having been obtained

from historical literature. This difference in distribution is once again evidence of the

bias of curated databases towards the selected sources from which the constituent data

is derived.
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Figure 5.10: Comparison between the content of the different band-gap databases:
(red box) BERT-PSIE, (blue box) ChemDataExtractor and (green box) the manually
extracted database of Ref. [152]. Top panel: Normalized distribution of the band gaps
extracted. Bottom panel: Relative elemental abundance across the compounds present
in a database. Note that the automatically extracted datasets and the manually curated
one are based on different literature libraries.

For both the database of extracted Curie temperatures (section 5.4.1) and the band

gap, there is some level of noise and disagreement present when comparing these with

the manually extracted cases. Fig. 5.11, the distribution of band gaps extracted for

each of the 5 most common compounds in the BERT-PSIE database (ZnO, TiO2, C,

MoS2 and Si), may present some clue as to why this disagreement may take place.

While there is a wide range of values that are presented for all five compounds, they

are not uniformly distributed, implying that this cannot be attributed to random noise,

but rather to more systematic features of the underlying data structure. In fact, the

distribution of the band-gap values for each of these compounds presents a series of

defined peaks, with multiple values reappearing with a high frequency. This data

structure can be attributed to different means of obtaining the band gap of a material
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Figure 5.11: The distribution of band-gap values for the five most common chemical
formulas found in the BERT-PSIE band-gap database. The histograms report the
relative abundance, while dashed lines indicate gap energies corresponding to specific
experimental measurements or theoretical calculations.

(experimental optical, experimental transport, theory etc.), and to different polytypes,

structures or dopant-varied compounds.

To elaborate more specifically, first consider the left-most panel of Fig. 5.11, which

displays the data distribution for ZnO. Within this distribution, there are a total of

three clearly defined peaks, which can easily be associated with the experimental bulk

band gap (3.37 eV [158]), the value obtained using density functional theory (DFT)

for the bulk system (0.73 eV [158] using GGA-PBE) and the DFT-calculated case

for monolayer ZnO (1.69 eV [159] again using GGA-PBE). Similarly, the discrepancy

between the experimental values and those calculated using DFT can be seen in the

right-most panel of Fig. 5.11, which depicts the distribution of values for Si. The

most dominant peak is attributable to the indirect experimental gap for bulk silicon

(1.1 eV [160]) and the smaller peak is associated with the calculated value of the band

gap for bulk silicon using DFT (0.61 eV [37] once again using GGA-PBE). These results

are contrasted with the case presented for the second panel of Fig. 5.11, which shows

the distribution of band-gap values for TiO2. These two peaks are in fact attributable

to the two most abundant polymorphs of TiO2, namely anatase (3.2 eV) and rutile

(3.0 eV) [161].

Finally, there is slightly more complexity in the distributions for the remaining two
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cases, namely, MoS2 (fourth panel of Fig. 5.11) and C (fifth panel of Fig. 5.11). In the

case of MoS2, there are three dominant peaks in the data distribution. Two of these

peaks are related to the experimental band gaps of the material. Specifically, one peak

is the experimental direct band gap of the monolayer, 2H polytype of MoS2 which is

1.8 eV [162] and the second experimental peak is that of the experimental, indirect,

bulk band gap at 1.29 eV [163]. The third peak is slightly harder to resolve from the

direct monolayer gap, however, there is also a peak at 1.67 eV, corresponding to the

DFT-calculated band gap of the monolayer system, for the GGA-PBE functional [164].

The distribution for carbon requires slightly more effort to understand than the

other cases. Carbon offers a huge number of polymorphs and therefore it is not trivial

to parse the significance of the range of peaks seen in this distribution. There is a

clear peak at 0 eV for semimetal graphene [41] and a peak at 5.47 eV, which correlates

to the band gap of bulk diamond [165]. In contrast to the other distributions, there

is a range of uniformly distributed values. This range is characterised by band-gap

values associated with carbon buckminsterfullerenes, C60. These values stretch over

the range of 1.5-2.7 eV and there is also a clear peak at the calculated DFT value of

1.09 eV (GGA-PBE) [166].

Table 5.4: Performance comparison between the different datasets against the manu-
ally curated one from Ref. [152]. The left-hand side of the table refers to the query
test, while the right-hand side refers to the RF band-gap predictor. Together with the
databases constructed using BERT-PSIE and ChemDataExtractor, we also consider
different BERT-assembled datasets obtained by using different relation-classification
strategies (see details in the text). The query benchmark is done over the 231 com-
pounds that are shared by all the datasets, while the RF obtained is done over 2046
compounds that are not present in any of the automatically collated datasets. Values
for the best-performing datasets are in bold.

Entries Query RF predictions
R2 MAE

(eV)
RMSE
(eV)

R2 MAE
(eV)

RMSE
(eV)

ChemDataExtractor 2185 0.54 0.78 1.34 0.59 0.62 0.87

This work
Single mentions 1,246 0.65 0.67 1.17 0.61 0.62 0.85
Order of appear-
ance

1819 0.67 0.64 1.13 0.62 0.63 0.84

All combinations 2581 0.63 0.71 1.21 0.60 0.63 0.86
BERT-PSIE 2090 0.64 0.67 1.19 0.61 0.62 0.85

The results for the comparison between datasets obtained with different strategies
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for the execution of downstream tasks are presented in Table 5.4. When both BERT-

PSIE and the ChemDataExtractor model are deployed on an equivalent dataset, the

situation changes somewhat. For both the pre-defined query test and for the predictor

RF model trained on each dataset, the BERT-PSIE-extracted dataset outperforms the

ChemDataExtractor dataset by nearly every metric, while extracting a very similar

number of compound/property pairs, at 2,021 relationships for the full BERT-PSIE

pipeline against 2,185 for ChemDataExtractor.

Interestingly, for sentences containing multiple mentions of band gaps and/or com-

pounds, the best strategy for the association of such pairs seems to be by associating

them in order of their occurrence in their respective sentences. This contrasts with

the Curie temperature case seen in Table 5.3, for which such a rule implementation

degrades the performance. These results indicate an intrinsic difference in the way

in which these two quantities are reported in natural language. It appears as if the

reporting of the band gap in literature is far more procedural than is the case for the

Curie temperature. Thus, the use of a more sophisticated method of establishing the

correct associations between compounds and properties introduces a source of noise

which would not be present in a simpler system that still captures the relatively more

simple associations present in band-gap reporting than Curie temperatures. However,

this result is clearly property dependent, and while we can establish that the rela-

tionship classification step for the band gap may exhibit a marginally negative impact

on our workflow performance, it remains useful to use the relationship resolution for

general cases as this relationship cannot possibly be known prior to the extraction and

the difference in performance is extremely marginal.

The results for the query test and the RF predictor test are visible in Fig. 5.12.

For the query test in the top panel, the results are very similar to those found for the

Curie temperature, although we found a more diffuse distribution of band-gap values.

This diffuse distribution can be associated with the more ambiguous nature of band-

gap definitions (e.g. carbon in Fig. 5.11) when contrasted with the Curie temperature,

which tends to be reported for a smaller range of materials. The RF model has a

slightly inferior R2 value to the one constructed for TC but benchmarks similarly to

models constructed on manually curated data. Indeed, the MAE is 0.62 eV, against

the value reported on MatBench of 0.33 eV [167]. Interestingly, once again, the MAE
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Figure 5.12: Comparison between the band gaps queried in the dataset automatically
generated by BERT-PSIE and the values contained in the manually curated dataset
(top panel). Parity plot for the best RF compositional model constructed on the
BERT-PSIE dataset. The test set consists of the 2046 compounds that are not present
in the dataset but for which we have a band gap extracted from the corpus (bottom
panel).

of the RF model trained on automatically extracted data is, once again, double the

value of a model trained exclusively on manually curated data.
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5.5 GPT-Based Systems

It is clear, given the results from this automated extraction using transformer networks,

that language models have the potential to completely revolutionize the domain of

materials science and beyond. The rapid developments of large-scale autoregressive

models further open the door to a wide array of refinements and expansions of existing

techniques that have the potential to vastly improve the performance of the models

and workflows described thus far in the chapter.
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Figure 5.13: Comparison between the TC queried directly from ChatGPT and the
values contained in the manually curated dataset. The comparison is performed over
the 262 shared compounds between all three datasets, evaluated in section 5.4.1.

With that said, LLMs cannot be treated as a silver bullet for every problem, partic-

ularly in fields where the precision and trustworthiness of data are vital commodities.

Large-scale GPT models have indeed been shown to be reasonably performant time

and time again on general tasks. However, when these large-scale GPT systems were

conceived, there was no claim that they were more performant on specific tasks than

systems that were pre-trained or fine-tuned for those domain-specific tasks [122, 123].

Thus, such systems are most likely sub-optimal compared to fine-tuned or pre-trained
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systems for specific domains. In addition, their immense scale makes them very diffi-

cult to adapt to specific tasks, compared to smaller models, like BERT. To verify this

for the domain of materials science, a test was set up for ChatGPT, which employs

GPT-3.5 [124] in the ‘LLM for everything’ setting. In this test, the assumption is that

the LLM has learned all the necessary information for a particular topic in its model

weights. This is not a claimed use of the model, however, it is a valuable test as to

whether or not there is any knowledge about general trends in magnetic properties for

materials.

This test was executed by giving the model the prompt: ‘I am going to provide you

with a list of chemical compounds and you will generate a list containing the Curie

temperature associated with each compound in a JSON file. From now on, you will

answer by providing just the requested JSON file and no further information.’

The results of this test can be seen in Fig. 5.13. It should be noted at this point

that the initial indications were that the model had a reasonably accurate knowledge

of the most common ferromagnetic compounds such as iron and cobalt, returning the

correct values for each. As is clear from the plot, however, the model contains little

to no information about trends in magnetism for materials, with the zero-shot task

producing a R2 value of -0.098, which indicates absolutely no correlation between the

actual material property according to the manually curated database and the value

produced by ChatGPT. This implies that the model simply hallucinates with Curie

temperature values that appear to be randomised.

This is not at all to say, however, that GPT-based LLMs do not exhibit potential

for materials science applications or high-precision data extraction, even without any

domain-specific pre-training or fine-tuning. They have already been shown to have

uses in certain, limited capacities [132]. Indeed these methods certainly exhibit the

potential to enhance aspects of the workflow presented in this chapter, facilitating the

extraction of compound/property relationships beyond the sentence level and resolving

interdependent properties with an unprecedented precision.

In order to integrate an autoregressive LLM into the information extraction pipeline,

there needs to be a mechanism to address the propensity of the model to hallucinate,

producing incorrect or inaccurate information and, thereby, increasing the density of

noise in the resulting database. A potential mechanism designed to address this can
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Figure 5.14: Flowchart of the proposed workflow for parsing compound/property men-
tions from a corpus of scientific literature, incorporating the power of autoregressive
LLMs. This proposed workflow would involve the training of a single NER system for
recognising compounds and properties.

be seen in Fig. 5.14. In this workflow, there is still a reliance on the BERT-NER model

described in section 5.3.1, however, in this instance, the model provides its own sanity

check to ensure a high probability of the correct information being extracted from the

corpus. This process also is not dependent on a sentence-level extraction and can,

therefore, resolve more distant interdependencies between compounds and property

relationships.

There remain several drawbacks to employing such a workflow, which are mainly

attributable to the most powerful of these autoregressive LLMs being proprietary and

carrying significant costs associated with API usage. In order to employ such a work-

flow in-house, there is a need for a variety of specialist hardware prior to workflow
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execution. Work is ongoing in executing these efforts in order to improve the informa-

tion extraction workflow.

Further potential of employing LLMs into the existing workflow is in the post-

processing of data distributions post-extraction. For example, if we consider the man-

ually annotated data distributions visible in Fig. 5.11. The process of attributing the

peak positions could potentially be automated by simply prompting a LLM with the

sentences that the data extraction was performed on for the respective peaks and asking

that the model finds the similarities between the constituent sentences.

5.6 Summary & Conclusions

This chapter has provided a comprehensive overview of the automated extraction of

databases from a vast collection of scientific literature, with a specific focus on materials

science. It began by discussing the historical significance of natural language techniques

in information extraction within this field. Subsequently, the transformer architecture

was introduced, along with an exploration of its main applications in materials research.

The chapter presented the BERT-PSIE workflow, which offers a self-contained series

of transformer-based models capable of being trained and deployed without the need

for complex grammar and syntactic rules. These models have achieved comparable

performance to rule-based techniques in extracting databases for materials properties.

Although the resulting databases were found to be of lower quality and predictive power

compared to manually extracted databases, they still exhibited impressive accuracy in

querying the property values of compounds. Moreover, these databases proved valuable

in training predictor models that can precisely screen for high-TC materials.

Furthermore, the chapter discussed the potential of utilizing massive GPT models

to enhance the information extraction paradigm in materials science. Several potential

applications of these GPT models were explored, highlighting their ability to extend

and improve the automated construction of databases for materials science.

Overall, this chapter has shed light on the advancements in automated database

extraction, the transformative potential of transformer architectures, and the possible

valuable role of GPT models in the field of materials science. These insights pave the

way for further progress and innovation in the automated construction of materials
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science databases.



Chapter 6

Contextual Representations for

Materials

“Tuigeann Tadhg Taidhǵın.”

Previously in this thesis, the prediction of materials properties and the use of natural

language techniques have been treated as entirely separate and unrelated concepts,

that constitute two entirely separate pillars of this research work. This chapter is ded-

icated to bridging the gap between these disparate concepts and endeavours to create

embeddings that could potentially enhance machine learning (ML) performance in pre-

dicting materials properties. Such a representation could enhance the rapid property

prediction step of the inverse-design workflow by creating more robust representations

for ML, encoding more information for the model. These embeddings are designed

to encode text-based information extracted from literature into contextual representa-

tions that exhibit an understanding of a compound’s chemical, structural, and property

characteristics, all based on the context of their appearance in literature.

The chapter commences with an exploration of techniques for constructing em-

beddings that effectively capture information and concepts in Euclidean space. These

foundational embeddings lay the groundwork for subsequent developments. The latter

portion shifts the focus towards previous efforts that have aimed to embed the materi-

als space into context-aware representations using available literature, addressing the

limitations and challenges encountered in these endeavours.

The latter part of the chapter is dedicated to reviewing the limited existing pro-
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posals to encode the materials space into context-aware embeddings, drawing from

the wealth of existing literature. Finally, I will explore the potential of transformer

architectures in creating next-generation contextual embeddings. By harnessing the

demonstrated superior contextual understanding of transformers, the goal is to unlock

new avenues for enhancing the accuracy and effectiveness of models used for predicting

materials properties.

6.1 Word Embeddings

A word embedding is a representation of text in a vector space, in which text with

similar meanings have similar representations. The term ‘similarity’ in a vector space

may correspond to a number of metrics and manipulations that can be performed

between two term vectors that give an indication of their relative distance in the vector

space. There are many such metrics. However, a simple example that can easily and

efficiently be applied to vectors in a given vector space is the Euclidean distance. For

vectors u and v of dimension n can be written as,

(u,v)euc =

√√√√ n∑
i=1

|ui − vi|2. (6.1)

Another simple and, arguably, the most common example of a similarity metric between

two vector space embeddings is the cosine similarity,

(u,v)cos = 1−
∑n

i=1 uivi
||u||2||v||2

, (6.2)

where ||u||2 and ||v||2 are the L2-lengths of vectors u and v, respectively. The L2-length

of a vector, u, is given by the formula,

||u||2 =

√√√√ n∑
i=1

u2i . (6.3)

The simplest and most intuitive way of constructing a vector-based representation

of text that conforms to this requirement is by forming a matrix known as the co-

occurrence matrix. The fundamental idea behind this representation is captured by
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the quote from the eminent linguist, J. R. Firth in 1957, “You shall know a word by

the company it keeps.” [168]. With this in mind, the co-occurrence matrix counts the

co-occurrence of two terms as they appear in a context, as a means of capturing that

contextual information. These embeddings are a square, n × n matrix where n is the

number of words in the vocabulary. The vocabulary can be the total number of words in

the corpus from which the co-occurrence is derived. Alternatively, pre-processing steps

can be applied to filter out a number of pre-defined stop-words that do not contribute

any contextual meaning to the co-occurrence and would likely bias the representation,

e.g. ‘the’, ‘and’, ‘a’, etc.

Such a process is likely to yield a very high-dimensional representation with a large

amount of redundancy, through synonyms, different verb tenses and words sharing

semantic similarities, likely to co-occur with similar word distributions. In order to

overcome this redundancy, a more condensed version of the same representation can

be obtained by funnelling the co-occurrence matrix into a dimensionality reduction

algorithm after its construction, such as principal component analysis (PCA) or latent

semantic analysis (LSA) [169]. The lighter-weight, resulting representation is more

efficient for predicting text associations and relationships, and the reduced redundancy

means algorithms can be trained more efficiently, thereby improving the representation

and reducing the computational cost of working with these representations.

Co-occurrence matrices and other frequency-based methods serve as valuable initial

steps for constructing vector space embeddings. However, they often tend to exces-

sively emphasize the significance of potentially trivial information. Therefore, it is

important to explore alternative representations that move beyond mere frequency-

based weighting. Although co-occurrence term frequency offers contextual insight and

contributes to a good representation, it is crucial to consider methods that reweight

the co-occurrence matrix.

When reweighting the co-occurrence matrix, two key factors warrant consideration.

Firstly, it is essential to compare the reweighted matrix against the raw count values

to assess the impact of the reweighting. Secondly, the resulting distribution of vector

objects achieved through the reweighting scheme should reflect the real-world contex-

tual associations among terms in the given vocabulary. By addressing these factors,

we can better account for the limitations of frequency-based approaches and enhance
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the quality of vector space embeddings.

One example of reweighting is normalization, which involves either dividing each

vector component by the L2-length of the vector represented in Eq. (6.3), or dividing

each vector component by the sum of all components. Another powerful reweighting

scheme is known as observed/expected. For a matrix, X, the expected value of element

Xij can be represented as,

expected (X, i, j) =

∑
j′ Xij′ ·

∑
i′ Xi′j∑

i′j′ Xi′j′
. (6.4)

The observed/expected reweighting is then obtained from the co-occurrence matrix

by taking the ratio of the observed value Xij with the expected value obtained from

Eq. (6.4),

oe (X, i, j) =
Xij

expected (X, i, j)
. (6.5)

The pointwise mutual information (PMI) [170] scheme takes this idea of observed/expected

reweighting of the co-occurrence matrix and places it in log space,

PMI (X, i, j) = ln

(
Xij

expected (X, i, j)

)
, (6.6)

with the imposition that any values of 0 for Xij are set to 0 for the PMI in order

to ensure that the quantity is defined. The absolute values of all elements in the

resulting matrix are taken in order to avoid a situation in which all elements of the co-

occurrence matrix with 0 for the term co-occurrence frequency are the smallest values

in the distribution as opposed to being intermingled between positive and negative

PMI values. This, improved, co-occurrence frequency-based representation is called

the positive PMI or PPMI. The PMI is a powerful means of creating an embedding

from a simple co-occurrence matrix as with some simple manipulations, the PMI can

be shown to be the log probability of a term co-occurring with another one, when

compared to the likelihood of the same terms being independent, thus capturing the

semantic similarity between the two terms. For instance, given a word, wi, and a word,

wj, that have probabilities P (wi) and P (wj) of occurring, the mutual information
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I (wi, wj) is defined as

I (wi, wj) = ln

(
P (wi, wj)

P (wi)P (wj)

)
, (6.7)

and I (wi, wj) can be shown to be equivalent to the PMI (X, i, j) in Eq. (6.6) [170].

Other examples of weighting or normalization regimes are term-frequency inverse-

document-frequency (TF-IDF) [171] or enforcing a Student t-test distribution over

your representations.

6.1.1 Word2Vec

Man

Woman

King

Queen

Uncle

Aunt

King

Queen

Kings

Queens

Figure 6.1: (left panel) Diagram demonstrating how the same word representation
offset vector depicts the relationships between gendered terms. (right panel) A similar
diagram demonstrating how word representation offset vectors capture the relationship
between a term and its pluralised form. This diagram was adapted from Ref. [172].

In 2013, it was discovered that applying more sophisticated techniques to the con-

struction of word representations could lead a vector space model to capture, not

only word similarities as before but rather, semantic information about the relation-

ship between words, which could then be used to predict or estimate the nature of

resulting term-representation vectors [172]. Some examples of this are in the rela-

tionship between gender, family relations and monarchs, depicted in the first panel of

Fig. 6.1, with the same offset vector describing the difference between gendered words

i.e. xking − xman + xwoman ≈ xqueen, where x is a word embedding. Similarly, the
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same offset vector describing the difference between a word and its plural form (i.e.

xking − xkings ≈ xqueen − xqueens ≈ xapple − xapples) is depicted in the second panel of

Fig. 6.1.

This work was performed using a recurrent neural network with a single hidden layer

to construct the representations, which had been shown to significantly outperform the

older, more traditional n-gram models that constructed a probability distribution based

on previous words in a training corpus. This idea was further elaborated on with the

development of the Word2Vec architecture [173].

The proposed goal of Word2Vec was to scale up the amount of training data and

create a system, which could be trained on data sets comprised of billions of words,

rather than the datasets of a few hundreds of millions of words that previously were

accessible. The dimensionalities of these previous word vectors were also limited to

between 50 and 100 terms. In this work, two architectures were proposed in order to

construct this new generation of representations. These models were constructed in

order to minimize the computational complexity of the training step of the represen-

tations, this is achieved by discarding the non-linear hidden layer and instead focusing

on the data efficiency of the representation.

Continuous Bag-of-Words (CBOW)

The continuous bag-of-words (CBOW) architecture, depicted in Fig. 6.2, is based on

one of the early attempts at constructing a neural network language model (NNLM)

[174], where the non-linear activation is simply removed, thus, all words are projected

into the same position and their vectors are averaged. Thus, the resulting vector for

a given word is constructed by taking the average of the word representation that it

appears with. The representation is then optimised based on the criterion of correctly

predicting the vector of the output word based on the input representations from a

log-linear classifier.

Continuous Skip-Gram

The second architecture, the continuous skip-gram architecture (see Fig. 6.3) is essen-

tially the reverse of the CBOW architecture. The current word is used as an input to a

log-linear classifier with a similar projection layer as that of the CBOW method, which
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INPUT PROJECTION OUTPUT

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

Figure 6.2: A diagram of the CBOW architecture in which the current word is predicted
based on the context in which it appears.

is trained to predict words within a certain range before and after the current word. As

is evident from the simplicity of the algorithm, both architectures are very computa-

tionally lightweight. However, the computational cost of the skip-gram depends on the

number of contextual words being predicted. Across a range of tests of the semantic

capabilities of the words, the 640-dimensional skip-gram architecture outperformed all

prior architectures on every test but one, on which the CBOW architecture slightly

outperformed the skip-gram. The Word2Vec architecture was used to construct a total

of 1.4 million word-representation vectors, which were trained on more than 100 billion

words, representing an early attempt at using large-scale reference databases of word

embeddings for general-purpose applications.

6.1.2 GloVe

While Word2Vec exhibits a superior ability to probe the context of words based on the

surrounding words with which they appeared, its major drawback is the focus on the

local context of the corpus, meaning that it utilises the statistics of the corpus poorly,
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Figure 6.3: A diagram of the skip-gram architecture in which the surrounding context
is predicted based on the current word.

with no information whatsoever about the global co-occurrence count. In contrast,

methods based on the co-occurrence matrix, such as PPMI, coupled with LSA are

shown to leverage statistical information very efficiently. Despite this, however, they

generally perform very poorly on word analogy tasks i.e. xking−xman+xwoman ≈ xqueen.

In order to address these shortcomings, and balance the use of contextual information

with global, statistical information, a new algorithm called Global Vectors or GloVe

was conceived [175].

GloVe accomplishes this unification of local contextual information with global

statistical information by weighting the resulting vectors according to their ability to

model the ratio of co-occurrence probabilities between the two words, as a function of

the offset between the two vectors. This is taken as a dot product with the word vectors

for the context in which those words appear. It does this, in practice, by implementing

a matrix factorization technique in which a loss function is minimized in order to find

the optimal, lower-dimensional representation of the high-dimensional co-occurrence

matrix.

Upon training this new model on a corpus of 42 billion tokens, compared to the
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100 billion tokens used for the Word2Vec architecture, GloVe outperformed Word2Vec

on every semantic, syntactic and word analogy test, significantly in most cases, using

a training corpus less than half the size of that for Word2Vec. This represented a

brand-new state-of-the-art for word representations across a wide range of potential

applications.

6.1.3 Contexualized Representations

As has previously been described in this thesis (see Section 5.2), transformer architec-

tures, such as BERT (see Section 5.2.3), represent the current state-of-the-art of what

is achievable in NLP. This success is mostly reliant on the ability of the representations,

resulting from such architectures, to effectively capture the context and latent structure

of natural language by leveraging the self-attention mechanism. This representation,

however, is entirely contextual and, as a result, the same words or phrases can be rep-

resented entirely differently based on the context in which they appear. Thus, in order

to construct static embeddings from contextualized embeddings, a number of strate-

gies were proposed. Their goal is to leverage these superior, pre-trained contextualized

embeddings, to construct high-quality static embeddings [176], given a word, w, in a

context, c. These methods are entirely general and only rely on the assumption that

the contextual model maps word sequences to vector sequences.

There are two concepts to consider in order to construct such representations. The

first is known as subword pooling, which is the application of a pooling mechanism such

as min-, max- or mean-pooling over k subword representations, which are generated for

word, w, in context, c, using transformers i.e. {w1
c , ...,w

k
c} 7→ wc. The nature of the

tokenization step when constructing a BERT representation means that often words

will be deconstructed into a number of subwords (see Fig. 5.2). Subsequently, the layers

of the transformer will compute representations of each subword, w1
c , ...,w

k
c . Given

these equidimensional vectors, a number of pooling mechanisms can be considered in

order to construct our singular word representation, wc:

wc = f
(
w1

c , ...,w
k
c

)
f ∈ {min,max,mean, last}
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where min(·) and max(·) are the element-wise min/max pooling, mean(·) is the arith-

metic mean of the vector representations and last(·) simply takes wk
c as the word

representation. The mean-pooling strategy was shown to perform best in Ref. [176],

and therefore this is the main strategy considered.

We must also consider context combination, which is defined as the mapping be-

tween representations, w1
c , ...,w

k
c , of w in differing contexts, c1, ..., cn, to a single static

embedding, w, which is context-agnostic. The first of these context combination meth-

ods is extremely simple in concept. Known as the decontextualized approach, for a

word w a single context is taken c1 = w. The pre-trained transformer is fed with a sin-

gle word and the outputted vector representation is taken as the word representation,

w, for w.

The second of these context combination strategies involves the construction of

aggregated representations of w as it appears in numerous contexts. In practice, n

sentences are sampled across a corpus of documents, each of which contains the word

w and the vector for each of these instances of w are computed in different contexts,

wc1 , ...,wcn . As above, a pooling strategy is applied to the aggregated contextual

representations, which is used to construct a single representation, w, for w

w = g (wc1 , ...,wcn) : g ∈ {min,max,mean}, (6.8)

where min(·), max(·) and mean(·) have the same meaning as above.

After Word2Vec and GloVe had been the most dominant static word representations

for almost 6 years, the new aggregated BERT embeddings constructed in Ref. [176] sig-

nificantly and consistently outperformed both of the previous state-of-the-art methods

when considering the best-performing, aggregated strategy with mean pooling. This,

however, happens once a critical threshold of training data over 100,000 contexts has

been used to construct the aggregated representation.

6.2 Word Embeddings in Materials Science

The use of static word embeddings and their potential use in materials science remains

a critically under-researched field within the domain. There remains a huge amount of
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unexplored potential in the domain for leveraging the clear power of natural language

techniques to enhance our ability to understand relationships between materials and

their properties and, furthermore, to use such techniques to potentially improve the

predictive power of ML models for materials science.

6.2.1 Mat2Vec

The seminal example of a word-embedding captured from materials science literature is

the work of Tshitoyan et al. [177], in which a Word2Vec, skip-gram, architecture, called

mat2vec, is obtained by selectively taking materials-science-relevant abstracts from a

corpus of a total of 3.3 million abstracts, obtained from a combination of the Elsevier

API, the Springer Nature API and web scraping. This work gave the first indication

that chemical intuition could, in fact, be captured by the unsupervised construction of

word embedding representations without any explicit encoding of chemical information.

mat2vec was realised by first taking the cosine similarities of representation vectors of

various chemical formulae, a strategy that gave a strong indication as to the similarity

of chemical composition and chemical properties of the two compounds. For example,

by taking the cosine similarity of the vector representation in the embedding space of

LiCoO2, a well-known lithium-ion cathode compound, the five compositions deemed to

have the highest cosine similarity with this compound are LiMn2O4, LiNi0.5Mn1.5O4,

LiNi0.8Co0.2O2, LiNi0.8Co0.15Al0.05O2 and LiNiO2, which are all also lithium-ion cathode

materials.

Further to this, the potential of static word embeddings to form chemistry-aware

analogy resolution was probed for the first time. Constructions such as,

xferromagnetic − xNiFe + xIrMn ≈ xantiferromagnetic,

were used to explore the capabilities of static-embedding space to understand relation-

ships between compounds and the properties that they exhibit. In order to visualise

these embedded relationships more clearly, PCA dimensionality reduction was em-

ployed to reduce the 200-dimensional vectors down into two dimensions in order to see

the similarity between certain offset vectors. As is evident from Fig. 6.4, there are clear

indications that the relationships between these embeddings and their structures can



Chapter 6. Contextual Representations for Materials 152

Figure 6.4: Word embeddings for Zr, Cr and Ni, their principal oxides and their stan-
dard crystal symmetries, projected onto two dimensions using principal component
analysis and represented as points in the embedding space. The offset vectors between
these compounds, their oxides and their structures are also visible in the plot. This
plot is adapted from Ref. [177].

be encoded by the offset vector, which, in turn, can be associated with the relationship

‘structure of’. In the same way, the offset vector between these elements and their

oxides are similar enough that it is clear that this offset vector represents the ‘oxide

of’ relationship.

An advantage of such an embedding method in the case of materials science was

highlighted as being an equivalence in representations of both compound mentions

and properties within the embeddings space, meaning that a cosine similarity measure

of a compound embedding and the embedding of a property name, could indicate a

materials likelihood of being related in some way to the property in question. In the

case of Ref. [177], this property was used in order to rank materials embeddings based

on their cosine similarity with ‘thermoelectric’. In order to test this hypothesis, com-

pounds that were mentioned in the corpus more than three times, that also appeared

in a dataset of thermoelectric power factors [178], were compared with the embedding
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for the term ‘thermoelectric’, using the cosine similarity.

These compounds were ranked in order of the degree of cosine similarity. It was

determined that the top 10 predictions of thermoelectric materials according to this

ranking, which do not appear in any literature with thermoelectric keywords at any

point, vastly outperform the average material’s thermoelectric performance. For these

top 10 compounds based on the embedding similarity rank, the average power factor

was 2.4 times larger than the average of known thermoelectric materials and 3.6 times

larger than the average taken over all materials present in their database.

The final usage of these embeddings that was demonstrated as being potentially

useful was in the ability of the embeddings to predict a material as thermoelectric

prior to the time that it was recorded as being thermoelectric in the literature. As

such, the algorithm was trained on data that was only available before that point in

time. Approximately 40% of the top 50 candidate materials had been determined to be

thermoelectric 18 years after the embedding would have predicted it. This test was also

performed for terms such as ‘photovoltaics’, ‘topological insulators’ and ‘ferroelectric’

with similar results for each.

6.2.2 Word Embeddings for Materials Property Predictions

There are few pieces of existing literature that explicitly attempt to predict materials

properties by employing word embeddings in the prediction pipeline. The original

mat2vec paper [177], did some limited predictions of materials properties. The work

employed a shallow neural network, with a single hidden layer, in order to predict the

formation energies of elpasolites, with a composition of ABC2D6. The input features

of this network were the concatenated embeddings of the elements corresponding to A,

B, C and D of the ABC2D6 configuration. The mat2vec encodings outperformed an

input to the network of one-hot encodings. However, embeddings trained according to

the GloVe method outperformed all other methods on the prediction. This represents

the first indication, in the case of the shallow neural network employed by the work,

that the use of literature-based embeddings can potentially enhance the ability of a

model to predict physical properties, beyond the use of simple compositional features.

Beyond the original work, the mat2vec embeddings were also employed in the ar-

chitecture of CrabNet [179], which stands for the compositionally restricted attention-
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based network for materials property prediction. This work used the self-attention

mechanism of transformers to train ML models to predict a range of materials proper-

ties while relying on a fractional composition-based scaling of the mat2vec embeddings

for the input features as an efficient means to encode chemical information, beyond sim-

ple one-hot encoding methods. It was determined that the transformer self-attention

representation employed within CrabNet allowed for insights into the degree to which

different elements contributed to the model’s predictions of various properties. This

highlights the potential value of transformer-based representations in improving the

interpretability of ML models for materials science. Additionally, the incorporation

of mat2vec embeddings facilitated the encoding of some latent materials information

within the input representation, thereby improving compound representations.

6.3 Contextual Embeddings in Materials Science

Historically, materials-embedded representations depended on one-hot encoding or in-

corporating compositional element fraction details [11, 150]. Such representations are

limited in the amount of information they are capable of representing. Although there

have been initial signs that unsupervised embeddings trained on materials science lit-

erature could offer value by encapsulating latent information in compound representa-

tions there is still a notable absence of dedicated research attention in this field. This

gap persists despite the promising advantages of having a streamlined vector represen-

tation capable of encoding a broad spectrum of materials information for applications

related to predicting materials properties. Further to this, since the state-of-the-art

mat2vec embeddings emerged in 2019, a colossal amount of progress has been occur-

ring in the space of general natural language techniques. This section aims to discuss

the potential of transformer-based representations in capturing latent materials infor-

mation, given that the pre-trained contextualized representations of Bommasani et

al. [176] significantly outperformed both the previous state-of-the-art models for static

word representations for general applications.

This will involve studying the performance of pre-trained, contextualized, static em-

beddings, generated from a variety of algorithms, spanning from BERT architectures,

to GPT-3, in predicting the properties of materials. This will also involve a particular
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focus on the impact of domain-specific pre-training, used for the construction of the

static embedding on the overall quality of the prediction, as a means of benchmarking

the amount of useful latent information within the model parameters, which could be

useful for materials property applications.

Table 6.1: Sizes of the different databases for the evaluation of the static embeddings
reduced from contextual representations and their relative split in train, validation and
test set.

Database All Train Validation Test
Formation Enthalpy of Elpasolites 10000 8000 500 1500
Ferromagnetic Curie Temperatures 3638 2318 410 910

Ab-Initio Calculations of Bulk Modulus 5578 3555 628 1395

The assessment of a set of embeddings’ performance on materials property pre-

dictions over another was evaluated by testing the embeddings against a number of

different regression tasks. Different shallow neural networks were trained within a su-

pervised training framework to predict the formation energy of elpasolites, the Curie

temperature of ferromagnetic compounds and the bulk modulus. The database used

for the formation energy of elpasolites was the same one that was used to benchmark

the property prediction capabilities of the mat2vec embeddings, arising from the work

of Faber et al. [180]. The database of ferromagnetic Curie temperatures is the same as

the one utilised in section 5.4.1, combining the databases of Nelson et al. [11] and By-

land et al. [150]. Finally, the database used for the training of the model predicting the

bulk modulus came from the AFLOW repository [37]. The respective training, validation

and test set sizes of each of the three databases are summarised in Table 6.1.

For each set of embeddings considered, a different shallow neural network architec-

ture was trained to predict the target quantity for each of the tasks considered. The

performance of the validation set was employed to implement an early-stopping pro-

tocol. Models were trained with varying numbers of nodes and 10 different ones were

trained for each embedding system, starting from different random initialised weights

in order to account for some of the variability associated with the optimization proce-

dure of the networks. For each of these trained architectures, three metrics were used

to evaluate the predictive power, the MAE, the RMSE and the R2 value. All neural

networks were implemented using PyTorch and set to run on GPUs, using instances of

Google Colab to run the calculations.
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Different strategies were considered to obtain an embedding vector vel for each

element of the periodic table. Given a set of embeddings for each element of the

periodic table, a set of input features is generated associated with a given compound

vcomp by computing the sum of the elemental embedding, weighted with respect to the

atomic fraction wel of that element in the compound,

vcomp =
∑

el ∈ comp

welvel. (6.9)

For example, the feature vector for water (vH2O) would be computed as:

vH2O = 0.66̄vH + 0.33̄vO,

where vH and vO are the embeddings obtained from a language model for hydrogen

and oxygen, respectively.

6.3.1 Impact of Domain-Specific Pre-Training

As described in Section 6.1.3, there are two strategies for the construction of static em-

beddings from contextual representations. The first involved taking a decontextualized

output from a contextual model, by feeding single words into the transformer without

context, and the other involved pooling the outputs for tokens of interest as they ap-

peared in context, in sentences. In order to assess the relative impact of domain-specific

pre-training on the construction of static embeddings, various contextual models were

considered. In order of perceived relevance to the domain of materials science, these

pre-trained systems were BERT-base [120], PubMedBERT [181], SciBERT [128] and

MatSciBERT [129]. The elemental embeddings were obtained for each of these cases

in the decontextualized strategy by feeding the elemental symbol through the BERT

model in question and extracting a hidden layer embedding. In the original work, out-

lining the means of construction of such embeddings [176], it was demonstrated that

the embeddings extracted from the first quarter of the transformer’s layers performed

significantly better on tasks than the later layers. A similar trend was observed for

this work and the embeddings were extracted from the third layer for all models as a

result, based on the BERT architecture considered.
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Figure 6.5: Evaluation metrics for the prediction of the formation energies of elpaso-
lite compounds from various decontextualized BERT models, BERT with random ini-
tialized weights (black), BERT-base (red), PubMedBERT (yellow), SciBERT (green),
MatSciBERT (purple) and context-pooled MatSciBERT (blue). The top panel displays
the mean average error (MAE), the middle panel displays the root mean squared error
(RMSE) and the bottom panel displays the R2 value of the task against the number of
nodes in the neural network. The dashed line represents the best-performing case. The
error bars show the standard deviation of the evaluation metrics over multiple restarts
with different initial weights.

The best-performing of these decontextualized embeddings, MatSciBERT, was cho-

sen as the best option with which to construct the aggregated, mean-pooled embed-
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dings, which is the second strategy for constructing these static embeddings. A total

of 2.2 million cross-domain abstracts were obtained from the arXiv e-print reposi-

tory [144]. These abstracts were then processed according to the same processing

as was implemented when the mat2vec embeddings were created, in order to extract

sentences from the corpus that contain a chemical entity. From this, embeddings

were constructed by mean-pooling the token embeddings from the third hidden layer

of MatSciBERT as the chemical compound appeared in each sentence. It should be

noted at this point that the efficacy of this method of construction of the embeddings

has not reached the critical number of training points for the embedding that would

allow it to outperform the Word2Vec method. This is about 100,000 training data

points per representation according to Ref. [176]. For example, in the arXiv dataset,

the most common element, hydrogen, appears in the database of 2.2 million abstracts

only ∼39, 000 times in contrast with the 100,000 quantity needed. The rarest of heavy-

earth elements only appear in the corpus a handful of times. The performance of this

embedding strategy is highly likely to improve further with access to a greater magni-

tude of literature. Indeed, in the original paper, contextual representations that were

aggregated from 10,000 contexts, which is closer to the magnitude of contexts available

from the dataset, were outperformed by Word2Vec embeddings on all tasks. In order

to obtain a baseline with which to compare the performance of BERT models, a BERT

system was initialised with randomised initial weights. This is referred to as ‘random’

throughout this section.

The evaluation metrics of the neural networks trained for each of the extracted em-

beddings for the different BERT models are reported in Fig. 6.5 for the case of the pre-

diction of the formation enthalpy of elpasolite compounds. Since the best-performing

case according to every metric is the context-pooled MatSciBERT representation, it is

clear that the context-pooling of the representation enhances the embedding’s ability to

capture information pertinent to the neural network’s prediction of the formation en-

thalpy of the compounds. This is made particularly stark when one considers that the

decontextualized MatSciBERT embedding is, in fact, the worst-performing embedding

aside from the randommodel, which essentially only learns the fractional composition of

the elements in the compound, given the lack of relevant information contained within

the model weights. Furthermore, this implies that in pre-training the weights such that
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it has a better contextual understanding of materials science, it negatively impacts the

capability of the model to produce good decontextualized representations. In other

words, the MatSciBERT pre-training has made the decontextualized representation

worse than the out-of-the-box BERT-base transformer. This is particularly surprising

given that other models, pre-trained in other scientific domains, actually outperform

the materials-science-specific one and BERT-base, with SciBERT and PubMedBERT

performing almost as well as the context-pooled MatSciBERT embeddings.

The improvement in the performance of the context-pooled, aggregated approach,

in particular when considering the negative impact of the domain-specific pre-training

for the decontextualized representations is likely down to the compensation for this

decontextualization that occurs when the contextual representations are pooled. The

model’s weakness in representing a decontextualized element could well be related to

the prevalence of individual elements mainly appearing as dopants in material specif-

ically related to materials science as opposed to in more general texts where they are

more likely to appear in general descriptions of the properties of the element in ques-

tion when they are referenced. This bias may well appear in the model’s weights after

fine-tuning leading to an increase in noise when attempting to extract meaning from

what essentially amounts to querying the model’s weights as it attempts to ascribe

contextual meaning to a lone token.

This hypothesis can be further developed when observing the results for the pre-

diction of the TC of the compounds, which can be seen in Fig. 6.6. Interestingly, in

this case, according to two out of three metrics, the decontextualized embeddings out-

perform the aggregated embeddings, with both sets of embeddings representing the

best-performing sets. There is a good likelihood that this stark change in the perfor-

mance of the embedding is once again related to the context in which these tokens

would have appeared in the pre-training corpus of MatSciBERT, with the dopant be-

ing far more correlated to the Curie temperature and magnetic properties of a system

than it would the formation enthalpy of an elpasolite compound. In fact, with the

decontextualized embeddings improving over the context-pooled embeddings (accord-

ing to RMSE and R2 coefficient), it implies that the decontextualized embedding has

a stronger correlation with the embeddings’s understanding of magnetism and pro-

duces fewer outliers than the context-pooled example. However, the context-pooled
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Figure 6.6: Evaluation metrics for the prediction of the Curie temperature of ferromag-
netic compounds from various decontextualized BERT transformed representations,
BERT with randomly initialized weights (black), BERT-base (red), PubMedBERT
(yellow), SciBERT (green), MatSciBERT (purple) and context-pooled MatSciBERT
(blue). The top panel displays the mean average error (MAE), the middle panel dis-
plays the root mean squared error (RMSE) and the bottom panel displays the R2 value
of the task against the number of nodes in the neural network. The dashed line rep-
resents the best-performing case for each. The error bars show the standard deviation
of the evaluation metrics over multiple restarts with different initial weights.

embedding still manages to outperform the decontextualized representation according

to the model’s MAE. Generally speaking, the domain-specific pre-training does enhance
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the ability of the system to predict the Curie temperature of the compounds in the

database, with both of the embeddings obtained from the domain-specific models out-

performing all other embeddings obtained from models focused on different domains.

In this case, pre-training in the biomedical domain detrimentally impacted the trans-

former’s ability to obtain embeddings containing latent information about elemental

relevance to magnetism, with the embeddings obtained from PubMedBERT perform-

ing better than random but worse than the general BERT-base. The general scientific

BERT, SciBERT also outperformed BERT-base, indicating that a more general sys-

tem, that is still pre-trained in a relevant domain can perform better than a completely

general one at predicting the Curie temperature.

In order to account for the different behaviour of the embeddings when being used

to describe the different property predictions, the nature of the pre-training data is

clearly the primary consideration. In the former case, the transformers that were

pre-trained on more chemistry-focused texts, SciBERT and PubMedBERT were only

outperformed by a model that had used aggregated representations from literature from

the arXiv, which is likely to contain ample information to aid the formation enthalpy.

This makes sense given the importance of formation enthalpy to synthetic chemistry.

In contrast, the magnetic properties of materials were more precisely predicted by

including representations that were likely trained on more data pertinent to magnetism,

the transformer with the least relevance to magnetism, PubMedBERT, predictably

performed the worst of the domain-specific cases.

The evaluation metrics for the prediction of the bulk modulus of compounds using

the various, contextual embeddings can be seen in Fig. 6.7, which presents some very

stark results in comparison with the previous examples. Once again, the embeddings

resulting from systems, which have been pre-trained on literature relevant to materials

science, outperforms all others. The aggregated strategy, once again, appears to be the

optimal strategy for the creation of such embeddings for smaller neural network sizes.

This is not the case when scaling up to larger network sizes, however, with the de-

contextualized strategy performing better with larger networks. Notably, for the case

of the bulk modulus, every model that was not trained on literature in the domain of

materials science produced embeddings that detrimentally impacted the model’s abil-

ity to predict the bulk modulus accurately, with every such model performing worse



Chapter 6. Contextual Representations for Materials 162

9.9

10.0

10.1

10.2

10.3

10.4

10.5

10.6

10.7

M
AE

 (G
Pa

)
random
BERT-base (decontext.)

PubMedBERT (decontext.)
SciBERT (decontext.)

MatSciBERT (decontext.)
MatSciBERT (subword-pooling)

18.6

18.7

18.8

18.9

19.0

19.1

19.2

19.3

19.4

RM
SE

 (G
Pa

)

0 1000 2000 3000 4000
N nodes

0.9300

0.9305

0.9310

0.9315

0.9320

0.9325

0.9330

0.9335

0.9340

0.9345

R2

Figure 6.7: Evaluation metrics for the prediction of the bulk modulus of compounds
from various decontextualized BERT representations, BERT with random initialized
weights (black), BERT-base (red), PubMedBERT (yellow), SciBERT (green), MatSciB-
ERT (purple) and context-pooled MatSciBERT (blue). The top panel displays the
mean average error (MAE), the middle panel displays the root mean squared error
(RMSE) and the bottom panel displays the R2 value of the task against the number
of nodes in the neural network. The dashed line represents the best-performing case
for each. The error bars show the standard deviation of the evaluation metrics over
multiple restarts with different initial weights.

than even the randomly initialised weights. This suggests that the use of such em-

beddings actively misleads the predictive model when attempting to predict structural
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information about a given compound.

The impact of choosing a transformer representation based on the relevancy of

the pre-training corpus on constructing is evident based on the trends observed from

this analysis. The choice of optimal model for obtaining embeddings is very property-

dependent and can be seen to be dependent on the relevancy of different properties to

the domain on which the model was trained. The MatSciBERT aggregated embeddings

performed consistently well, even with the lack of sentences available in the embedding

construction corpus, performing the best out of all BERT cases according to nearly

every metric.

6.3.2 Comparison of Contextual Embeddings

Once the value of domain-specific pre-training of the language models used for the

construction of the embeddings had been established, the best-performing embeddings

were compared with a variety of other models. First, decontextualized embeddings

were obtained for the LLM architecture, GPT-3 [123], using the openAI API from the

only model capable of producing embeddings, ‘text-embeddings-ada-002’. This test was

deemed interesting to compare the capacity of a generative AI with a massive number of

parameters to capture elemental information, despite the lack of specific training such a

system has in materials science, physics or chemistry. The contextualized embeddings

were also compared with the mat2vec embeddings, which had previously been shown

to have good performance as chemical compound descriptors.

Fig. 6.8 shows all the comparisons of evaluation metrics for the best performing

MatSciBERT-based embeddings, those constructed using GPT-3 and those resulting

from mat2vec. It is evident that the massive LLM, GPT-3 contains sufficient infor-

mation within the model weights to outperform the domain-specific BERT examples

in constructing contextual embeddings effectively. This captures sufficient information

on the elemental contributions from the model weights for it to yield a meaningful im-

provement over the MatSciBERT aggregated and decontextualized models. The only

exception to this trend can be observed in the bottom two panels of Fig. 6.8 (b), which

displays the RMSE and R2 coefficient for the Curie temperature prediction. In this

case, the decontextualized BERT was able to perform surprisingly well according to

these metrics.
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Figure 6.8: Evaluation metrics for the prediction of (a) the formation energies of el-
pasolite compounds, (b) the Curie temperature of ferromagnetic compounds, and (c)
the bulk modulus of compounds with a shallow neural network using descriptors de-
signed from the embeddings of mat2vec as input features (red), the context-pooled
MatSciBERT representation (blue) and GPT-3 (green). The top panel displays the
mean average error (MAE), the middle panel displays the root mean squared error
(RMSE) and the bottom panel displays the R2 value of the task against the number
of nodes in the neural network. The dashed line represents the best-performing case
for each. The error bars show the standard deviation of the evaluation metrics over
multiple restarts with different initial weights.
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Most importantly, the mat2vec-based embeddings perform best according to all

metrics across the board and continue as of now to represent the optimal representa-

tion for capturing chemical information, constructed from literature. It is important

to note that this status may evolve when a new corpus of training data becomes avail-

able, enabling the construction of an aggregated representation with ample contextual

sentences for a critical number of elements. Such a development could pave the way for

a next-generation literature-based representation, further enhancing predictive models

for materials property analysis.

6.4 Summary & Conclusions

In this chapter, the potential of literature-based representations in distilling a large

amount of complex materials information in a lightweight and efficient representation

was investigated. Much of the earlier part of the chapter was focused on the funda-

mentals of representing concepts and entities in a geometric space such that meaning

can be ascribed to the relative positions of these entities in the embedding space.

The balance required between preserving local and global statistical information was

emphasised and methods through which to achieve such a balance were demonstrated

and discussed. The state-of-the-art static embedding representations were brought

from first principles, right up to the most recent strategies of pooling representations

based on contextual representations in order to construct static embeddings.

The limited number of previous applications of this subject area of materials science

was described and the methods used to construct static embeddings capturing latent

information about materials science was discussed. An assessment of the capabilities

of domain-specific pre-training to improve performance for the construction of static

embeddings from contextual representations in materials science was performed for

the first time, proving the value of such pre-training for materials science applications.

Further to this, an analysis of the relative value of the use of latent information from the

pre-trained weights of LLMs for forming similar contextual embeddings was performed.

This led to an improvement in model performance over BERT-based methods.

Although existing mat2vec embeddings currently outperform static embeddings

based on contextual representations in materials property prediction, this could be due
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to the lack of sufficient contextual data to construct the most powerful aggregated em-

beddings. Future research could reveal the potential of such strategies as more data be-

comes available, opening doors to powerful embeddings yet to be explored in the limited

data regime. Such embeddings could be the key to incorporating difficult-to-represent

physical information about compounds or chemical behaviours into lightweight rep-

resentations that are useful for rapid property prediction. Such a tool would further

enhance our ability to execute the first screening step of an inverse-design workflow.



Chapter 7

Conclusions and Future Work

“Is fearr súil romhat ná dhá shúil i do dhiaidh.”

This thesis has explored and developed a wide range of techniques that have direct

applications to each stage of the inverse materials design workflow. Of the three main

stages of a computational screening for materials targeting specific properties, the

techniques outlined in this work can both enhance and act as the foundations for the

first two of these three stages. These stages are the rapid property screening step

and the screening for materials stability. This is a desirable outcome of this work

considering that the final stage in the computational workflow, the ab initio analysis

is a field of research, which has entered into maturity and has already demonstrated

its use for accurate property calculations from first-principles.

Chapter 2 gave an overview of the key concepts that have allowed density functional

theory to be a fundamental component in materials understanding for decades. Further

to this, these methods were elaborated upon exclusively for the case of phonon and

vibrational properties of materials in Chapter 3. To that end, a theoretical background

for phonons was outlined and different methods of obtaining the phononic properties

of materials were presented. Certain cases of the methodologies outlined could be used

in conjunction with other methods for obtaining the energy and forces of materials,

namely that of the finite-displacement method, provided sufficient accuracy. Density

functional perturbation theory (DFPT) was also outlined, which could not be used with

other total-energy or force calculations, however, this theory was employed extensively

for the case of monolayer 2H-NbS2, which was demonstrated to exhibit a dynamical

167
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instability as a result of long-range effects when the phonon dispersion was calculated

in the harmonic approximation regime. DFPT was also used to calculate benchmarks

for a variety of other layered 2D materials, which would be used for comparisons in

Chapter 4.

Chapter 2 also gave an outline and a description of the foundations of the field

of machine learning (ML), a central theme of this thesis. ML was used extensively

throughout this work as the key for bypassing computationally intensive steps that

would otherwise be necessary for the creation of a robust inverse-design workflow. The

concept of supervised learning was expounded in detail along with key evaluation met-

rics that are used to verify the efficacy of any supervised ML process. A brief description

of unsupervised ML was presented, followed by a discussion of neural networks, which

were valuable to understand to clarify the underlying concept of similar networks, such

as transformers, another key concept in the later chapters of this thesis.

Once the common theoretical background for the chapters had been established in

Chapter 2, and benchmarks had been calculated using the work in Chapter 3, Chapter

4 was the first that concerned the development of tools to aid in the first two stages

of the inverse-design workflow. A massive playground of materials for the construction

of composite heterostructures, which exhibit different properties to their constituent

materials was identified in the family of 2D materials. A library of SNAP potentials was

created for 61 non-magnetic 2D materials, encompassing graphene and hBN, along with

59 hexagonal monolayers with a XY2 composition. These potentials were extended to

account for interlayer van der Waal’s interactions using a parameterised Lennard-Jones

potential. The efficacy of using the resulting potentials for rapidly generating phonon

dispersions was demonstrated for both the monolayer and multilayer case. This result

constituted the first example of a stage of the inverse-design workflow being enhanced

through the use of ML, as this offers a means of rapidly assessing the dynamical stability

of a system, with a massive reduction in the computational intensity relative to ab initio

methods.

The secondary value of these potentials was also demonstrated through the calcu-

lation of the thermal conductivity of monolayer and multilayer systems, along with the

interfacial thermal conductance of a massive multilayer system, a calculation which

would have been infeasible with ab initio methods. For the case of thermal conduc-
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tivity, the ML potential was used to calculate both the second and third-order force-

constant matrices, which were subsequently used to determine the direct solution of the

linearized phonon Boltzmann equation. The calculated values for the thermal conduc-

tivity of the monolayer and heterostructure systems agreed well with both experiment

and DFT, with the associated drastic increase in efficiency from the use of the ML

potentials as a surrogate for DFT-based methods. Similarly, the interfacial thermal

conductance agrees well with that which was obtained in experiment.

This result constitutes a scratching of the surface of the resulting potential of these

methods for the rapid prediction of the thermal properties of heterostructure systems.

There is an increase in efficiency with the use of these methods. This improvement,

however, is not conducive to executing a massive search of the property space for an

ideal candidate for a given thermal application. The value of this method is not in its

ability to rapidly predict the thermal conductivity or conductance, rather, it is in the

ability of these potentials to generate a large-scale database of properties such that the

property space for the thermal properties of the composite systems can be reasonably

sampled.

Thus, the next direction in which I would take this particular aspect of the project

is in the construction of such a database through the systematic construction of het-

erostructure compounds with the SNAP potentials and the parameterised Lennard-

Jones interactions, thus sampling this property space. This space would be rich in the

potential to identify candidates for a targeted quantity. In order to construct an ML

model to search this space, there are three main considerations, which will have to be

taken into account. The first of these is the number of layers of the composite material.

The second consideration is that of the order in which the monolayers appear in the

heterostructure. The final consideration is that of the composition of each of the layers

for the predicted compound. In this instance, the structure is not a consideration as

the structures of these particular monolayers are all hexagonal. Therefore, there is no

reason to include the structure in the model features. In the longer term, the number

of monolayer potentials in the library could be expanded to include monolayers with

different structures or, indeed, to include a consideration of magnetic effects, poten-

tially necessitating a change to the feature space described. This work would represent

the optimal means of executing the first stage of the inverse-design workflow outlined
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and the work to that end in this thesis constitutes a valuable first step on that road.

The secondary branch of the research that I performed over the course of this Ph. D

is that which involves an application of natural language processing (NLP) to the do-

main of materials science. Chapter 5 represents an attempt at entirely bypassing the

sorts of calculations of properties that I outlined in Chapter 4 to construct a property

space for a given class of materials and, instead, isolating the databases directly from

scientific literature. This was achieved by leveraging the power of pre-trained trans-

former networks, a next-generation tool for language modelling, for the purposes of the

isolation of arbitrary combinations of compound-property relations, with an attempt

at minimizing the amount of human intervention that was necessary in the concep-

tion of such models. Two databases were constructed with this transformer-based

pipeline, one containing compound-Curie temperature relations, and the other com-

posed of compound-electronic band gap relations. The quality of these databases was

compared to those obtained with the previous state-of-the-art in automated database

construction, ChemDataExtractor, a grammar rules-based method. The databases

were shown to be of almost exactly equivalent quality and the automated transformer

databases were used in order to construct a predictor for rapid Curie temperature pre-

diction, which was shown to be able to screen for high-Curie temperature compounds

with a remarkably high precision. This fact indicates the clear value of literature-

extracted databases for the execution of the rapid property screening stage in the

inverse-design workflow to narrow down compositions likely to exhibit the targeted

property.

In the future, I would like to expand on the progress that this work represents

by including newer-generation, pre-trained transformers, such as a massive pre-trained

GPT-based model. The inclusion of such models could ensure the leveraging of their

immense power of natural language understanding to improve the efficacy of database

extraction. A different workflow for the construction of such a pipeline must be con-

ceived and, therefore, significant work would need to be done to overcome limitations,

which are inherent in generative models. Addressing these limitations would be the

first step on the road to a more robust workflow. Further along the line, once these

limitations have been dealt with, I would like to construct expansive, unified databases

of materials properties that have resolved interdependencies between various material
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phases and their respective properties. Such a database would be an immensely power-

ful tool for the domain of materials science and would represent a massive step forward

in the ability to construct simple, but efficient models for the rapid screening of ma-

terials properties for desired applications. Thus, the ability to execute the first stage

of the inverse-materials design workflow would, in essence, be unlocked for arbitrary

materials properties. Much work, however, is left to do to achieve this aim. Not least

of which is gathering more high-quality sources in order to generate these large-scale

databases. The open-access movement is, therefore, a valuable ally in this plight.

The final chapter of the results achieved as part of this research is an attempt at

unifying these seemingly disparate methodologies, such that the construction of a ML

representation for physical compounds, directly using literature can be achieved. This

is discussed in detail in Chapter 6. These representations, in essence, embed latent

property information into the representation, such that similar compounds, within the

literature representation space, are assigned similar vector representations. Such rep-

resentations could potentially have the ability to, once again, improve the quality of

predictions that are made in the rapid property screening step of the inverse-design

workflow. These new representations, once again, leverage the superior contextual rep-

resentative ability of transformer networks. Two strategies were used for the construc-

tion of these contextual representations. The first involved extracting the hidden layer

representation for elements directly as a result of their input into the model without

context. The second was pooling the contextual representations such that the resulting

representation aggregated contextual understandings of the term from the sentences

it appeared in. Domain-specific pre-training of the transformer networks was shown

to improve the representative ability of the decontextualized representations and the

pooled representations were generally shown to improve performance again. A critical

lack of sufficient data with which to train the pooled representations meant that the

ability to generate optimal context-pooled representations was limited. They, there-

fore, are still not able to outperform similar models for constructing representations

from literature. They do, however, show a large degree of promise.

Thus, the future of this particular research area is clear. More data must be gath-

ered with which to pool the context of the elemental embeddings. The contextual

representations, beyond the domain of materials science, were shown to improve in
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their representative ability after several hundred thousand contextual examples, which,

therefore, must be the aim to create superior literature-based representations from

transformers. Beyond this, using the same representation construction strategy using

larger-scale GPT-based models could also prove to be powerful once such models be-

come more generally available. Such a direction could be a promising one to take in

the future.

In conclusion, a suite of new techniques and new applications of old techniques have

been conceived, all of which have shown to be of value to an inverse-materials design

pipeline. These methodologies could prove to be the foundations of future innovation in

technological domains, which are of immense value to the development of a sustainable

and resilient future for the collective good. It is clear that machine learning and its

future directions will prove to play a pivotal role in accelerating the discovery of new

materials.
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