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Abstract

First principles codes based on DFT are now sufficiently accurate and efficient that

they can be used in the design of novel materials with specifically selected properties.

Doing so requires checking whether a compound considered is chemically stable or

not, which in turn involves constructing an appropriate convex hull. While such an

approach is valid for identifying new, synthesizable materials, it demands numerous

DFT calculations to ensure reliability. This work aims at accelerating this task through

the use of machine learning interatomic potentials (MLIAPs) as screening agents. The

process is facilitated by using pre-existing data on large material repositories to form

the training sets of the models. Owing to the relative wealth in the number of binary

systems compared to the ternaries, the former provide an ideal and extensive database

for this training. In contrast, the space of ternaries, being only sparsely examined,

forms fertile ground for exploration.

In a first part of this work, an ensemble of spectral neighbour analysis potentials

(SNAPs) is trained on binary data of the Ag-Au-Cu system taken from the AFLOWlib

repository. The model is tested on different datasets composed entirely of ternary

intermetallics. It is shown that an accuracy below 30 meV/atom can be achieved for

alloys in their equilibrium structures, sufficient for an effective screening model. The

MLIAPs are however unable to perform relaxation due to their poor energy predictions

on out-of-equilibrium structures. Since suitable error metrics, capable of pinpointing

unrelaxed structures, are verified, the devised model can be used in a high-throughput

screening setting, in which candidates are physically sound compounds.

In the follow-up study, this surrogate to DFT is incorporated into a workflow aimed

at constructing reliable, DFT-level ternary convex hulls. This is achieved by two means.

Firstly, the prototypes used as candidate ternary compounds are built from the struc-

tures of the low-enthalpy alloys of the binary subsystems. These form reasonable

guesses for equilibrium structures, owing to the close similarity between binary and

ternary alloys for transition metals. Secondly, measures are taken in order to increase

the robustness of the screening process. These notably involve undertaking partial ionic
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relaxation, driven by SNAP, as well as an assessment of the reliability of the predic-

tions made, through the use of an error metric. The final workflow developed is tested

on Ag-Au-Cu and Mo-Ta-W, and is capable of identifying novel ternary compounds,

absent from AFLOWlib, and thus produces DFT-accurate ternary convex hulls. This

is achieved by probing a large number of candidates and focusing all the heavy ab

initio calculations on the most promising candidates. In a final section, the recently

introduced M3GNet universal force-field is inserted into the workflow. This enables

higher accuracy and throughput, as exemplified by the better convex hulls obtained

and the larger number of compounds tested. It is shown how this M3GNet workflow

can be used to identify promising regions of ternary convex hulls, even for magnetic

systems.

Keywords: Machine Learning, DFT, High-Throughput, Machine Learning Interatomic

Potentials, Convex Hull, Ternary Alloys
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1

Introduction

1.1 Materials in the Modern Era

In the digital age, it may seem like our lives have become less rooted in material needs,

as it is no longer necessary to buy a newspaper to hear about the latest events or write

a letter to a friend far away. Instead, a simple search on a web browser and a few taps

of a keyboard suffice, all through a screen that interfaces to an endless virtual world.

Yet behind such displays, each laptop and smartphone host a wealth of tailor-made

materials, intricately designed and intertwined to form devices with features down to

the nanoscale. Silicon lies at the core of modern electronic devices, highlighted by the

fact that in the manufacturing of computer chips, it is possible to grow single crystals

the size of 2 m of the semiconductor at more than 99.9999% purity. The highest-

performing chips require etching with machines worth in excess of $150 million [1].

Aside from silicon, other materials form the bedrock of our world. On the more

primitive side, steel and concrete are fundamental to all modern infrastructure, from

buildings and bridges to machines and ships. Synthetic plastics have made their way

into all industries, thanks to their fantastic tunability, and it is impossible not to en-

counter them in our everyday lives. All these materials are essential because they

combine excellent properties (e.g., tunable electronic conductivity in the case of sili-

con) with highly scalable and optimised manufacturing processes, such that they can

support pivotal industries at a global scale. On top of such fundamental materials,

others can be specifically chosen and designed to bring additional attributes. Modern

characterisation equipment has notably helped assist in the search and optimisation of

1



1. Introduction 2

materials design. As an illustration of such a process, the case of the development of

carbon fibre in the past 60 years is briefly described.

Carbon fibre is a composite material [2, 3], made of carbon filaments in a matrix

of another material, which is most commonly a plastic. The carbon strands form

turbostratic carbon cylinders [4], with a diameter of ∼ 1µm and can be several meters

in length. An SEM image of the composite is given in Figure 1.1a. They possess

a high Young’s modulus and tensile strength, as well as being low density, they are

generally unreactive and can have excellent electrical and heat transport properties.

Such properties are highly desirable for light-weight structures. However, their high

anisotropy and small width makes such filaments deformable in the transverse direction

and thus cannot withstand compression. The plastic resin that surrounds them in the

composites enables the assembly of many carbon strands to form a solid sheet. The

former supports and protects the fibres and spreads any load applied across them. In

a unidirectional sheet, all fibres are aligned and point in one direction, in which the

tensile strength and Young’ modulus is very high. In the transverse direction, however,

these are far lesser and the material may crack along interfaces between the resin and

the strands. To prevent this, the strands may be woven, or several unidirectional

sheets may be layered, with each sheet possessing a different direction of alignment, as

illustrated in Figure 1.1b. Due to the two-dimensional (2D) characteristic and small

thickness of the sheets, the strength in the transverse direction is low, implying low

resistance to loads but also higher flexibility in this direction. Carbon fibre can be

used to replace materials such as steel and aluminium in light-weight structures such

as planes, automobiles and bikes, provided the intended load is applied in the right

direction.

One remarkable feature of such a material is how it can be designed, at different

areas and in fact scales, to obtain certain intended properties. Indeed, the precursor

used to create the carbon filament impacts the microstructure of the carbon, the type

of resin used and the chemical interface between resin and fibres can be tuned, and

crucially, the lamellar ordering and in-sheet weaving of the material can be changed

to obtain desired properties [3]. As an example, sheets can be layered with different

filament orientations to cause an expansion-twisting coupling [7, 8], which, as the name

suggests, corresponds to a twisting of the sheet upon its expansion due to a load. The
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(a) (b) (c)

Figure 1.1: Images and illustrations of carbon fibre and its applications. Panel (a):
SEM image of carbon fibre composite showing the carbon filaments in an epoxy matrix
(image taken from Reference [5]). Panel (b): Illustration of the lamellar structure of
layered carbon fibre sheets with different strand orientations. Panel (c): Illustration of
the expansion-bending coupling of carbon fibre on a wind turbine blade (image taken
from Reference [6]).

direction and angle of such a distortion can be carefully controlled by the layering of the

material. This can be used for useful applications in devices, such as wind turbines [6,

9, 10, 11], where blades are carefully coated with carbon fibre to obtain twisting effects

upon bending. This is of significant interest, since in operation, high wind speeds can

cause severe shear on the blades and cause damage to the turbine [12]. By tilting with

larger blade deflections, the angle of incidence of the flowing wind is changed, such as

to decrease shearing imposed on the blade. The expansion-induced bending on a blade

is illustrated in Figure 1.1c. What is intended to be highlighted here is that from a

tailoring of the structure of the material, the behaviour is changed and adapted to the

precise applications it is used in. It is this concept that is at the heart of the inverse

materials design framework [13].

1.2 Inverse Materials Design

In this area, the length scale that serves as a playground for designing novel materials

is that of Å and nm. Rather than assembling a composite with different phases,

atoms are the building blocks, arranged in a microscopic structure that is most often

crystalline in nature. The nature of the atoms, the stoichiometric ratios, the atomic

neighbourhoods and the lattice parameters all serve as parameters that can be tuned

in order to devise novel compounds. The macroscopic properties are thus designed at

the most intrinsic level, giving full control over the most rudimentary properties, such
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as densities and elastic properties, to more sophisticated ones such as band gaps and

thermal conductivities. This is possible because of the fundamental character of the

design procedure, coupled with the immensity of the space of exploration, composed

of all possible combinations of atomic types in different geometric arrangements. The

grail is to be able to effectively map such a space to that space of material properties.

This is illustrated in Figure 1.2. This would provide the means to find compounds

with pre-determined attributes, thus designing materials. The flip side of having such

an expansive search space is the difficulty in probing it efficiently, such as to effectively

discover new materials with desired properties.

The design workflow required to produce this mapping would take the form of a

variety of computational studies that can be performed at large scales, systematically

and in theoretically-controlled settings. This of course relies on the fact that it is

possible to accurately predict material properties using such methods. Considering

the control is at the atomic level, the codes used are referred to as first principles,

since they rely on solving quantum mechanical equations that govern the behaviour of

matter at this scale. More specifically, it is the material’s electronic structure that must

be accurately modelled. For the majority of cases, codes based on density functional

theory (DFT) are employed, due to their ab-initio nature and hence high accuracy [14,

15], as well as their O (N3) scaling with system size, which is favourable with respect

to other first principle methods. While the calculations act as the guide to finding

novel materials, the overall design must rely on a collaboration between computational

and experimental scientists. The former identify potential compounds with properties

of interest while the latter attempt to synthesize and characterise them, while giving

feedback to help refine the computational exploration.

Returning to the example of carbon fibres, within the inverse materials design

paradigm, the aim would be to identify the carbon filaments, or even turbostratic car-

bon, as being a material with excellent tensile strength and a high Young’s modulus.

In reality, the carbon filaments used in the composites were discovered (for the sec-

ond time1) by accident. Roger Bacon was studying graphite at high temperatures and

pressures, when he observed solid filaments deposited on electrodes from the vapour

1Joseph Swan and Thomas Edison had in fact discovered them in the 19th century to use them as
filaments in light bulbs [16]



5 1.2. Inverse Materials Design

phase [17]. This has very much been the standard for the discovery of useful materials

throughout human history and is an unreliable methodology when searching for com-

pounds with targeted properties. Instead, the inverse materials design approach strives

for a direct exploration of chemical and structural space, with the aim of discovering

new materials.

Figure 1.2: Illustration of the mapping between material and property space. The
bottom plane represents materials space, in which atomic species and positions as
well as unit cell dimensions can vary. It is mapped onto a property space, illustrated
above by the variations of the property within that space. In the inverse materials
design scheme, the property function is probed to obtain desirable values of that target
property and the associate material is revealed.

The key idea behind inverse design is that of finding compounds with pre-determined,

desired properties. It is therefore not a “blind” set of calculations, as is the case for di-

rect design, for which brute force calculations of different properties are performed over

a large range of constituent atoms, compositions and structures. Zunger, the father of

the field, defines three modalities of the field [13]. In the first, the constituent elements

are fixed and the composition and configurations of these atoms can be changed. A
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target property is optimised by means of an algorithm, such as a genetic algorithm,

guiding the search. The second modality involves making use of databases of structures

and their properties and to develop a means of mapping the property to the compounds

by means of proxy calculations or data mining techniques. The tool created can thus

be used to discover existing novel materials but that unsuspectedly possess desired

properties. Note, this method is for a large range of constituent elements and struc-

tures. Finally, the third modality focuses on finding novel stable compounds for which

neither composition nor structure are known. By extension, their properties are also

unknown. It is this last modality that is the focus of this work. The approach typically

employed for such a task is to perform many DFT calculations in a high-throughput

approach, for many different compounds with varying structures, elements, and com-

positions. The total energies of these structures, as well as those of competing phases,

are calculated and the most stable ones (that lie on the convex hull [13]) are identified

as stable. This approach has already led to the discovery of novel materials [18]. Note

that the choice of systems studied in this approach could be guided by prior screening,

and the materials discovered could undergo further studies.

The design process therefore relies on making use of carefully chosen DFT calcu-

lations. These can either be computed in the course of a specific study or previously

computed results can be recycled. This former approach is made possible thanks to the

existence of online repositories that group many DFT-predicted properties of a wide va-

riety of materials [19, 20, 21]. Such databases also exist for experimental data [22, 23].

The exploration of these databases provides a direct means to perform inverse design

workflows for the second modality aforementioned. For example, M. Ashton et al. [24]

scanned the Materials Project [20] to search for bulk materials that may produce 2D

materials via exfoliation. A set of design principles based on structural features (low

packing numbers, large interlayer gaps, classifying atomic clusters), along with distance

from the convex hull, were used to identify such materials within the repository. This

is a common approach to help accelerate the mapping between structure and property.

Machine learning provides an alternative approach in performing such a task. It can

be used to identify trends in databases [25], automatically infer design features [26]

and make direct material predictions, in place or in conjunction with DFT [27] and

can thus be used to fast-track the design process. The work presented in this thesis is
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situated at the confluence of many of the concepts evoked. It presents a methodology

to discover new materials using state-of-the-art high-throughput methods. The novelty

in the approach comes from the use of machine learning to accelerate the process, as

well as the exploitation of large online repositories. This work inscribes itself in the

third modality of the inverse design framework, but uses tools that are typically used

in the other modalities.

1.3 Thesis Outline

This thesis shows how DFT-based high-throughput calculations, used to construct

ternary convex hull diagrams and hence identify novel compounds, can be accelerated

with the use of machine learning. Specifically, machine learning interatomic potentials

(MLIAPs) [28] are employed for direct energy predictions and act as inexpensive sur-

rogates to DFT. These potentials are specially trained, by making use of pre-existing

data on AFLOWlib [19] that are directly relevant to the construction of the convex

hull. This implies that no costly DFT calculations are wasted in the construction of the

potential. Due to the higher wealth of data available on binary compounds relative to

ternary ones, the former make up the training data for the model used to predict ener-

gies of the latter. This extrapolation from binaries to ternaries is not only exploited for

the potential, but also for the creation of prototypes used to construct ternary convex

hulls, as these are inspired from the structures of binaries.

The thesis is separated into four parts, including two methods chapters, as detailed

below. Some of the work completed in the course of the PhD is not presented here.

It is in relation to work done in collaboration with G. Krenzer, with the final results

published in Reference [29].

Chapter 2 : In the second chapter, the central concepts in DFT are presented.

This is the method of choice to model the electronic structure and properties of mate-

rials. Details on the core parts of the theory are described, leading to the formulation

of Kohn-Sham (KS) DFT. The connection to the central properties that are calcu-

lated, and the practical methods employed to solve the KS equations are given. This is

presented in line with the implementation in VASP [30], used to perform all ab-initio

calculations. Finally, emphasis is put on some of the relevant numerical parameters
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that need to be converged and optimised.

Chapter 3: In the third chapter, machine learning and MLIAPs are presented.

First, the main concepts in machine learning are elucidated, before shifting focus onto

practical algorithms that are used to make actual predictions. Building on top of

these ideas, MLIAPs are defined. This is broken down into the presentation of their

general features. Then, specific atomic fingerprints, used as features to represent the

material landscape, are introduced. These are the atom-centered symmetry functions

and the bispectrum components that are respectively used with neural networks, to

form neural network potentials, and with ridge regression, in the spectral neighbour

analysis potential. The latter is the central MLIAP of this work. Before moving to the

results, other MLIAPs and their most successful applications are mentioned.

Chapter 4: This chapter focuses on the first set of results. The introduction

presents references to related pieces of work, setting the position of the study within

the scientific literature. Important points of theory, related to the definition of ther-

modynamic stability, as well as relevant methods are also given before showcasing the

results. These focus on the work published in Reference [31]. An ensemble of SNAP

models are trained on binary data from AFLOWlib to predict the energies of associ-

ated ternary compounds. Ag-Au-Cu is selected as the test system. Full details are

given on the training process and on how the model can be used are given, alongside

its limitations. The result is an energy model surrogate to DFT, which can be used to

predict the energies of equilibrium ternary compounds and identify out of equilibrium

structures through adequate error metrics.

Chapter 5: In the second results chapter, the surrogate model is deployed in a

practical workflow to construct ternary convex hulls. Part of these results are in the pre-

print in Reference [32]. The relevant methods are given first. The workflow makes use

of binary compounds to train the SNAP ensemble and to create ternary compounds

that form a pool of candidates that may be stable phases. The screening of these

candidates is done with the MLIAPs, which are used to partially relax and detect the

lowest energy compounds. Note that this process has in-built steps that ensure the

robustness of the predictions. During the development of this workflow, M3GNet, a

universal force-field, was released. Separate results that integrate the potential in the

workflow are also presented and compared to those obtained with SNAP. Note that
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several ternary systems are studied, such as the Ag-Au-Cu, Mo-Ta-W, Al-Fe-Ni and

Bi-Fe-X (X=Ta, Zr) systems.

Chapter 6: In the final chapter, the main outcomes of the thesis are highlighted.

A summary of the main results is also provided. An outline of the future work that

could stem from the project is also presented.
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2

Electronic Structure and Density

Functional Theory

2.1 The Many-Body Wavefunction

When describing the physics of a material, such as a block of iron, one must model

the behaviour of the constituent nuclei and electrons. These interact via the Coulomb

interaction and the light electrons bind the heavy nuclei in a solid-state structure. The

former are essential in determining the physical and chemical properties of a material

and the description of their collective behaviour is termed the electronic structure of

a material. At the atomic scale, quantum mechanics provides the best framework to

model the electronic behaviour. This section follows Reference [33].

Given a system of N atoms and Ne electrons, the system is described by the many-

body wavefunction Ψ. It is from this quantity that the material properties are expressed

in terms of expectation values. Given that the nuclear positions are labelled R⃗N and

the electron positions r⃗Ne , the wavefunction crucially depends on the positions of all

nuclei and electrons. This dependence of Ψ on all coordinates can be shown explicitly

as

Ψ
(
R⃗N , r⃗Ne

)
= Ψ

(
R⃗1, R⃗2, ..., R⃗N , r⃗1, r⃗2, ..., r⃗Ne

)
, (2.1)

where R⃗1, R⃗2, .. (r⃗1, r⃗2, .. ) are the positions of the individual nuclei (electrons). This

dependence on all coordinates simultaneously results from the fact that all nuclei and

11
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electrons interact with each other and thus their positions are correlated. Assuming no

relativistic effects are at play and that one is not interested in time evolution, finding

this wavefunction for a given system requires solving the time-independent Schrödinger

equation

ĤΨ = EΨ, (2.2)

where E is the total energy of the system and Ĥ is the Hamiltonian. Going into more

detail, the latter is written explicitly as

Ĥ =− ℏ2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2∣∣∣r⃗i − R⃗I

∣∣∣ + 1

2

∑
i ̸=j

e2

|r⃗i − r⃗j|
(2.3)

−
∑
I

ℏ2

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJe
2∣∣∣R⃗I − R⃗J

∣∣∣ ,
where I, J (i, j) label individual nuclei (electrons) and, ZI (MI) are the individual

nuclear charges (masses). The sums over I (i) run over all nuclei (electrons) in the

system. The first term expresses the electron kinetic energy, the second the nucleus-

electron interactions, the third the electron-electron interactions, the fourth the nuclear

kinetic energy and the fifth the nucleus-nucleus interactions. Since the masses of the

nuclei are far larger than those of electrons, the latter move on a much shorter timescale

than the former. Within the Born-Oppenheimer (BO) approximation [34], the many-

body wavefunction is separated into the electron and the nucleus wavefunctions. For

electronic structure theory, the focus is on former. The kinetic energy term of the

nuclei may be neglected and the nucleus-nucleus interaction is a fixed energy EII . The

problem is therefore recast, such that the nuclei positions are fixed and treated as

parameters of the electronic Schrödinger equation, written as

(
T̂ + V̂ext + V̂e−e + EII

)
ψ = Eψ, (2.4)

where ψ is the electronic wavefunction and T̂ , V̂ext and V̂e−e are respectively the electron

kinetic energy, electron-nucleus and electron-electron interaction terms from Equation

(2.3). Note that the electron-nucleus term can now be viewed as the energy contribution
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from the interaction of the electrons with an external potential, Vext (r⃗), set up by the

fixed nuclei. This can be expressed as

V̂ext =
∑
i

Vext (r⃗i) , (2.5a)

Vext (r⃗) =
∑
I

VI

(∣∣∣r⃗ − R⃗I

∣∣∣) , (2.5b)

where VI is the Coulomb potential set up by nucleus I.

The external potential term, as well as EII , are parameterised by R⃗N . In the

BO approximation, EII is simply a classical additive term to the total energy. The

electronic structure problem now reduces to finding ψ by obtaining the eigenstates

the Hamiltonian of Equation (2.4), but ψ remains a many-body wavefunction depen-

dent upon r⃗Ne . As a result, the Hilbert space required to describe such a many-body

wavefunction scales exponentially with the total number of particles, making even the

storage of such an object intractable [33]. This is alleviated by expressing the problem

in terms of the electronic density, as will be discussed in the following section.

2.2 Density Functional Theory

The electron density n (r⃗) gives the number of electrons per unit volume in 3D space,

with coordinates r⃗. It is obtained from the expectation value of the density operator

n̂ (r⃗). Together, these are given by

n̂ (r⃗) =
Ne∑
i=1

δ (r⃗ − r⃗i) , (2.6a)

n (r⃗) = Ne

∫
dr⃗2dr⃗3...dr⃗Ne |ψ (r⃗, r⃗2, .., r⃗Ne)|

2∫
dr⃗1dr⃗2...dr⃗Ne |ψ (r⃗1, r⃗2, .., r⃗Ne)|

2 . (2.6b)

Following this definition, it is also of interest to express the energy contribution to

E resulting from the electron interaction with the external potential, the expectation

value Eext, in terms of the density,

Eext =

∫
dr⃗ Vext (r⃗)n (r⃗) . (2.7)
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Density Functional Theory (DFT) relies on a central proof that all properties of a

fully interacting many-body system can be expressed in terms of the ground-state

density n0 (r⃗) of the system. More precisely, properties can be written as functionals

of the latter. The ground-state density is the one for which E in Equation (2.4) is

minimised. In the following subsections, this is proved from the two Hohenberg and

Kohn (HK) proofs [35]. The two subsequent subsections are dedicated to showing how

the functional expressions can be used practically.

2.2.1 HK Theorems

In their seminal paper in 1964, Hohenberg and Kohn lay the foundations of DFT

through two proofs named the Hohenberg-Kohn theorems. The first theorem states

that for a system of interacting particles in an external potential Vext (r⃗), the external

potential is determined uniquely, up to a constant, by n0 (r⃗).

HK Theorem 1

The theorem is proved ab absurdum. Consider two different external potentials V
(1)
ext (r⃗)

and V
(2)
ext (r⃗) that differ by more than a constant and define two different electronic

Hamiltonians Ĥ(1) and Ĥ(2) [the Hamiltonians from Equation (2.4)]. It is assumed for

the proof that these lead to the same ground-state density, n0. The two Hamiltonians

have two different ground-state wavefunctions ψ(1) and ψ(2), respectively, (as well as

energy eigenvalues E(1) and E(2)) that both lead to the same ground-state density. ψ(2)

is not the ground-state of Ĥ(1) (assuming the ground-state is non-degenerate). Thus,

by definition,

E(1) =
〈
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

〉
<
〈
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

〉
. (2.8)

The right-hand term can be re-written as

〈
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

〉
=
〈
ψ(2)

∣∣∣Ĥ(2)
∣∣∣ψ(2)

〉
+
〈
ψ(2)

∣∣∣Ĥ(1) − Ĥ(2)
∣∣∣ψ(2)

〉
= E(2) +

∫
dr⃗
[
V

(1)
ext (r⃗)− V

(2)
ext (r⃗)

]
n0 (r⃗) .

(2.9)

This leads to,
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E(1) < E(2) +

∫
dr⃗
[
V

(1)
ext (r⃗)− V

(2)
ext (r⃗)

]
n0 (r⃗) . (2.10)

The same reasoning can be followed to obtain the same equation as (2.10) but with

the indices (1) and (2) swapped. Adding such an inequality with that above gives,

E(1) + E(2) < E(1) + E(2), (2.11)

which is a conflicting inequality. From the ad absurdum reasoning, this contradictory

statement proves that the initial postulate is false. Therefore, no two external po-

tentials that differ by more than a constant can give the two same (non-degenerate)

ground-state charge densities. In other words, the ground-state density uniquely de-

fines the external potential, up to a constant. Since in turn the electronic Hamiltonian

is uniquely defined by the external potential, all wavefunctions that are solutions of

the Schrödinger equation, ground and excited states, are uniquely determined by the

ground-state density. While this is a non-trivial statement, it does not provide any

practical way to avoid solving the many-body problem. The second theorem provides

a step forward in this direction.

HK Theorem 2

In the second proof, a functional relationship between the energy and the density is

established and the procedure for obtaining the ground-state energy and density is

given. Note that this proof is valid for “V -representable” densities, which correspond

to all densities that are ground-states of Equation (2.4) with some external potential.

From HK theorem 1, since n (r⃗) is a function and the total energy can be expressed as

a functional EHK of the density, the individual energy terms in Equation (2.4) can also

be expressed as a functional of the density, as,

EHK [n] = T [n] + Ee−e[n] +

∫
dr⃗ Vext (r⃗)n (r⃗) + EII , (2.12)

where T and Ee−e are the kinetic energy and electron-electron interaction energy func-

tionals, respectively. Together, they correspond to the internal energies and encompass

all energy terms related to the electrons and their interactions amongst themselves. As

such, these functionals are independent of the external potential and are universal for
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all electron systems. It follows from the variational principle, that for a given system

the density that minimises E in Equation (2.12) is the ground-state density n0 (r⃗). This

statement corresponds to the second HK theorem. It implies that the minimisation of

the energy functional with respect to the density yields the ground-state energy and

electron density. The functional is therefore enough to determine the ground-state of

the system.

Note that here the functional is not known, and the definition is unclear, as is the

space of densities that are generated by some external potential. Levy and Lieb [36,

37, 38] extended the range of applicable densities for which the theorem holds, giving a

more precise definition of the energy functional and on how to obtain it. This is enabled

by using “N -representable” densities, which correspond to the space of densities that

can be obtained from any wavefunction of the space of wavefunctions of Ne electrons.

Note that the minimum of the Levy-Lieb functional coincides with that of the HK

functional in the case of a system of Ne electrons in an external potential.

While it is now established that minimising EHK [n] with respect to the density

in Equation (2.12) provides a methodology for obtaining the ground-state energy of

a system, the exact form of the functional, notably for the kinetic energy and the

electron-electron interaction contributions, is unknown. Kohn and Sham published a

practical solution to this problem in the following year, by proposing a scheme to find

the ground-state density. Furthermore, they suggested some approximations to obtain

an analytical expression of the energy functionals.

2.2.2 Kohn-Sham Scheme

The Kohn-Sham approach [39] displaces the problem of solving an interacting many-

body system with Ne particles to solving that of a system of Ne independent (non-

interacting) particles. In order to do so, a specific ansatz is chosen that relies on

two assumptions. The first is that the exact ground-state density of the interacting

many-body system can be represented by the density of an auxiliary problem of non-

interacting particles. This leads to having an auxiliary single-particle Hamiltonian for

such a system. The second assumption is that this auxiliary Hamiltonian has the usual

kinetic energy operator and only one other term, a local effective potential Veff (r⃗).

In general, a spin index should be included, but it is excluded here for clarity. The
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auxiliary Hamiltonian is,

Ĥaux = − ℏ2

2me

∇2 + Veff (r⃗) . (2.13)

For an Ne independent electron system, the Hamiltonian Ĥaux has eigenvalues ϵi and

eigenstates φi. The Ne lowest energy eigenstates are occupied in the ground-state. The

density of such a system is then given by,

n (r⃗) =
Ne∑
i=1

|φi (r⃗)|2 . (2.14)

Two functionals of the density are then defined, the independent-particle kinetic energy

Ts

Ts =
−ℏ2

2me

Ne∑
i=1

dr⃗ |∇φi (r⃗)|2 , (2.15)

as well as the classical Coulomb interaction energy of the electron density with itself

(named the Hartree energy [33])

EHartree [n] =
1

2

e2

4πϵ0

∫
dr⃗

∫
dr⃗ ′n (r⃗)n (r⃗

′)

|r⃗ − r⃗ ′|
. (2.16)

The latter corresponds to the classical contribution to the interaction of the electron

density with itself. It is a part of the electron-electron interaction. In the Kohn-Sham

approach, the energy functional of the full interacting many-body system is re-written

as,

EKS [n] = Ts [n] +

∫
dr⃗ Vext (r⃗)n (r⃗) + EHartree[n] + EII + Exc [n] . (2.17)

While Ts is defined explicitly in terms of orbitals in Equation (2.15), it is a functional

of the density, through the application of HK theorem 1 to the Hamiltonian of the

auxiliary problem. In contrast, Exc [n] is the exchange-correlation functional, defined

as the difference between the kinetic and electron-electron interaction functionals and

the independent-particle functionals, Ts and EHartree. Thus, Exc [n] encompasses non-

classical many-body contributions to the energy. The analytical form of the functional
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is, however, unknown.

2.3 Kohn-Sham variational equations

In the Kohn-Sham approach, the ground-state is found by minimising the energy func-

tional EKS with respect to the density. Since Ts is expressed in terms of the orbitals

corresponding to the eigenstates of the auxiliary problem, and these define the energy

in the Kohn-Sham ansatz, EKS is minimised with respect to these. This is performed

by solving,

∂EKS

∂φi

=
∂Ts
∂φi

+

[
∂Eext

∂n
+
∂EHartree

∂n
+
∂Exc

∂n

]
∂n

∂φi

= 0. (2.18)

The expression above is obtained through the application of the chain rule. Eext [defined

in Equation (2.7) and the second term in Equation (2.17)] is the functional of the

density that gives the Coulomb interaction energy between the electron density and

the external potential Vext. The first and last terms give, respectively,

∂Ts
∂φi

= − ℏ2

2me

∇2φi, (2.19a)

∂n

∂φi

= φ∗
i . (2.19b)

Solving Equation (2.18) with the Lagrange multiplier, imposing the conservation of the

total number of particles, leads to the Kohn-Sham equations

ĤKS φi = ϵiφi. (2.20)

The effective Kohn-Sham Hamiltonian is,

ĤKS = − ℏ2

2me

∇2 + Veff (r⃗) , (2.21a)

Veff (r⃗) = Vext (r⃗) +
∂EHartree

∂n
+
∂Exc

∂n
. (2.21b)

The solutions to the Kohn-Sham equations give the ground-state energy and density of

the interacting many-body system with Equations (2.14) and (2.17). The eigenstates

φi are referred to as KS orbitals and do not represent real, individual electron states.
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Clearly, the Kohn-Sham effective potential Veff is dependent upon the density, thus the

Kohn-Sham equations are solved self-consistently with Equation (2.14). Note that at

the true ground-state density, the Kohn-Sham potential becomes the effective potential

in Equation (2.13). While the re-formulation of the many-body problem so far remains

exact, since the form of the exchange-correlation functional is unknown, approximations

must be introduced to solve the equations. The self-consistent procedure typically

followed to find the ground-state is illustrated in Figure 2.1. This is the central scheme

followed during DFT calculations and is called a self-consistent field (scf) scheme. Aside

from the ground state density n0 (r⃗), the outputs of the scheme that are of interest for

this thesis are the total ground-state energy of the system E0, the forces
{
F⃗I

}
acting

on each atom I and the stress tensor Σ. Note that all other ground-state quantities

(dipole, magnetic moments etc.) can also be derived. For the following sections, the

energy E (instead of E0) is taken to be the ground-state energy of a given system with

fixed nuclei positions. All systems considered now are crystalline and thus posses a unit

cell with an underlying lattice and atomic basis. Two commonly used, approximate

exchange-correlation functionals are now introduced.

2.4 LDA and GGA Functionals

The two most common functionals used in practice for DFT are the Local Density

Approximation (LDA) and the Generalised Gradient Approximation (GGA). The for-

mer, as indicated by its name, assumes a local picture of the exchange and correlation

effects. The exchange-correlation functional within the LDA is thus written as

Exc [n] =

∫
dr⃗ n (r⃗) εhomxc ([n] , r⃗) , (2.22)

where εhomxc is an exchange-correlation energy term that is a functional of the density

and of the position in space. In the LDA, it is assumed to be that of a homogeneous

electron gas [40]. The expression of the exchange energy for the homogeneous electron

gas is known analytically, while for the correlation term, an analytical expression taken

from a fit of numerical results is found to be very accurate [41]. It is a local description

as the exchange-correlation energy term at position r⃗ only depends on the density at

that very position. It does not depend on variations of the density nor on the values



2. Electronic Structure and Density Functional Theory 20

Figure 2.1: Diagram showing the procedure followed by the Kohn-Sham scheme. The
output quantities include the ground-state density n0 (r⃗), the ground-state energy E0,

the forces
{
F⃗I

}
and stress tensor Σ.
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of the density away from r⃗.

For the GGA functional, the exchange-correlation energy term, εxc, is also influ-

enced by the gradient of the density in space. It can be written in a general form

as

Exc [n] =

∫
dr⃗ n (r⃗) εxc

([
n, ∇⃗n, ...

]
, r⃗
)
, (2.23)

where the expansion is over different orders of the gradient. As the gradient of the

density is also taken into account here, the functional is said to be semi-local, as

the exchange-correlation term depends on density changes due to the surroundings of

each point. Several methods have been proposed for the expansion of the gradient in

Equation (2.23), such as in the Perdew, Burke and Enzerhof (PBE) functional [42].

2.5 Force and Stress Theorems and Bulk Modulus

As indicated in Figure 2.1, the forces acting on each nucleus
{
F⃗I

}
, as well as the stress

tensor Σ of a unit cell, are outputs of the Kohn-Sham scheme. The force theorem

[43, 44] provides an expression for the force F⃗I acting on a nucleus I. Considering the

nuclei positions R⃗I are parameters of the problem, they are subject to the force,

F⃗I = − ∂E

∂R⃗I

. (2.24)

This is the energy E in Equation (2.2). Variations of the ground-state wavefunction

with respect to atomic coordinates, R⃗I , are orthogonal to the ground-state wavefunc-

tion. Using this fact, in the derivative in Equation 2.24, the expectation values with

dependencies on the variations of the atomic positions vanish. Thus the force is defined

only with energy terms that have an explicit dependence on the nuclei positions,

F⃗I = −
∫ (

dr⃗ n (r⃗)
∂Vext (r⃗)

∂R⃗I

)
− ∂EII

∂R⃗I

. (2.25)

Here the density is the unperturbed one and only R⃗I is changed. A key finding from

this expression is that the force is only influenced by the electron charge density and

does not depend on other electron energy contributions (such as the kinetic, exchange,

and correlation energies). Note that the expression would have to be re-written, if there
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were a dependence of the ground-state wavefunction on the nuclei positions, notably

in the case of non-local potentials and if ψ is expressed with certain basis functions.

There is an equivalent expression for the stress tensorΣ, based on the stress theorem

[45, 46], a generalisation of the virial theorem for pressure. The stress tensor gives the

response of a material under strain ϵαβ (α and β are cartesian indices) and it is the

derivative of the energy with respect to this strain, per unit volume:

σαβ = − 1

V

∂E

∂ϵαβ
. (2.26)

In the equation above, σαβ is a stress tensor element and V is the volume. Since the

space is being scaled here, rather than just the ionic positions, the wavefunction and

the external potential change with strain as well. The expression for the stress tensor

elements, written as an expectation value, is,

σαβ = −

〈
ψ

∣∣∣∣∣∑
k

ℏ2

2mk

∇⃗kα∇⃗kβ −
1

2

∑
k ̸=k′

(x⃗kk′)α (x⃗kk′)β
xkk′

(
d

dxkk′
V̂

)∣∣∣∣∣ψ
〉
, (2.27)

where k and k′ are particle indices and x⃗kk′ is a vector joining particles k and k′ and

V̂ groups all potential energy terms.

Another quantity that can be derived from DFT is the bulk modulus B0 of a

material at T=0 K. Unlike the previous quantities presented, rather than being the

result of a single calculation, this is obtained from several energy calculations performed

at different cell volumes. The energy per cell as a function of the volume defines the

bulk modulus in the equation of state,

B0 = V0
∂2E

∂V 2

∣∣∣∣
V=V0

, (2.28)

where E, V and V0, are the cell total energy, volume and minimum volume (at 0

pressure), respectively. The Birch-Murnaghan equation [47, 48] given below provides

an analytical expression that can be fit to energy and volume data to extract the bulk

modulus, as well the minimum cell energy E0 and corresponding cell volume V0. Here

B′
0 is the pressure derivative of B0 at equilibrium.
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E (V ) = E0 +
B0V

B′
0

[(
V0

V

)B′
0

B′
0 − 1

+ 1

]
− V0B0

B′
0 − 1

. (2.29)

2.6 VASP and the PAW Method

Since all ab-initio calculations presented in this thesis are performed with the Vienna

Ab initio Simulation Package (VASP) [30, 49, 50, 51], in this section, the principle

elements of the theory underlying the code are presented. Solving the self-consistent

Kohn-Sham (KS) equations computationally requires expressing the problem, Hamil-

tonian and eigenstates, in terms of a basis. The choice of basis functions must be

carried out judiciously in order to ensure accuracy and computational efficiency.

2.6.1 Plane Waves

VASP makes use of plane waves as a basis set, which are the subject of this section.

Owing to the inherent translational symmetry of the underlying crystal structure, a

common choice for solids is to represent the KS orbitals, φi, as plane-waves. Note that

in VASP it is the pseudo-KS wavefunctions that are expanded as plane waves, as will

be explained below. For convenience, in this section it is the KS-orbitals that will be

expressed over a plane wave basis.

Consider a crystalline solid-state system with an underlying lattice and a volume

V . Let T⃗ denote a general lattice translation vector and G⃗ a reciprocal lattice vector of

the corresponding reciprocal lattice. The material is periodic and the KS Hamiltonian

is translationally invariant with respect to translations T⃗ . In general, the KS orbitals

could be expanded in terms of plane waves, as these form a complete basis. Here,

however, the KS-orbitals follow the Born-von-Kármán periodic boundary conditions

at the crystal boundaries. The wavefunctions obey Bloch’s theorem [52] and can be

expressed as a specific set of plane waves. Instead of the index i, each orbital is specified

by two indices, k⃗ and nb, the crystal momentum and the band index of the eigenstate

respectively. These can be treated as parameters of the eigenstates. Typically, k⃗

takes continuous values in the first Brillouin Zone (BZ). The KS-orbital thus becomes

φnb ,⃗k
, expressed as the product of a plane wave and a periodic function unb ,⃗k

with the

periodicity of the lattice
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φnb ,⃗k
(r⃗) = unb ,⃗k

(r⃗) eik⃗·r⃗, (2.30a)

unb ,⃗k
(r⃗) =

∑
G⃗

UG⃗,nb ,⃗k
eiG⃗·r⃗. (2.30b)

The second equation explicitly shows the expansion as a Fourier series (i.e., with plane

waves) with the periodicity of the lattice, where UG⃗,nb ,⃗k
are the expansions coefficients.

The expansion is not over all plane waves, but only those with the periodicity of the

crystal lattice, with wave vectors G⃗. Note that all quantities with the same period, such

as the KS effective potential and the electron density, can be expressed in the same

form as Equation (2.30b). Additionally, the KS equations are solved independently

for each k⃗ and the energy spectrum obtained for each k⃗ is associated with the band

index nb. The set of plane waves with wave vector G⃗ thus form the basis, which is

orthonormal. The sum in Equation (2.30b) is in practice cut-off at ℏ2
2me

∣∣∣G⃗+ k⃗
∣∣∣2 ≤ Ecut,

with Ecut being the plane wave cut-off energy. This is performed in order to have a

finite basis set. A large Ecut increases the accuracy of the representation and hence of

the calculations.

2.6.2 K-Mesh

The calculation of many quantities, such as the electron density and the total energy

of the system, require integrals over all values of k⃗ (in the first BZ). If the volume of

the first BZ is VBZ, the expression of the charge density in Equation (2.14) becomes an

integral over all occupied states in the first BZ,

n (r⃗) =
1

VBZ

occ.∑
nb

∫
BZ

∣∣∣φnb ,⃗k
(r⃗)
∣∣∣2 dk⃗. (2.31)

In practice, this integral is replaced by a finite weighted sum at certain k -points that

approximates the integral above. These points constitute a uniform mesh across the

first BZ. Most often, as is indeed the case for the calculations performed for this thesis,

a Monkhorst-Pack mesh [53] is used, where the points are placed at k⃗n1,n2,n3 given by

k⃗n1,n2,n3 =
3∑

i=1

2ni −Ni − 1

2Ni

G⃗i, (2.32)
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Here Ni is the number of points sampled along the direction of the first BZ reciprocal

lattice vector G⃗i, and ni takes values between 1 and Ni. The Monkhorst-Pack mesh

presents the advantage of removing the highest symmetry points in the sum for even

values of Ni, making the summation more efficient. Once the mesh is defined, the

irreducible BZ (IBZ) 1 is established. Weights wk⃗ are associated with each mesh point

within the IBZ, which gives the total number of equivalent points to each IBZ k -point

(including itself). It is divided by the total number of k -points considered Nk. The

integral in Equation (2.31) thus becomes,

n (r⃗) =
1

Nk

occ.∑
nb

IBZ∑
k⃗

wk⃗

∣∣∣φnb ,⃗k
(r⃗)
∣∣∣2 . (2.33)

Plane waves offer several advantages over other basis sets, notably their orthog-

onality, their independence with respect to nuclear positions, given a fixed unit cell,

their systematic improvability with higher values of Ecut, as well as their ability to

efficiently model the smooth behaviour of valence electrons in the interstitial regions

of solid materials, such as alloys. One of their main drawbacks is their inefficiency at

representing wavefunctions with rapid oscillations, such as those encountered for both

valence and core electrons in the atomic core, close to the nucleus. Many plane waves

are required to accurately represent the presence of many nodes in the wavefunctions

in this region. This makes plane waves as a sole choice of basis functions intractable

for efficient and accurate first principles calculations. Instead, VASP makes use of the

projector augmented wave (PAW) method, to still make use of plane waves.

2.6.3 PAW Method and Pseudopotentials

For the PAW method, the starting point is the frozen core approximation, in which

all core electrons are treated as being “frozen” for the calculations. This implies that

they are not explicitly considered and their state is pre-calculated. Their effect on the

valence electrons is introduced through the pseudo-potential, for which the external

potential of the nuclei are screened by the core electrons, as illustrated in Figure 2.2.

However unlike other pseudo-potential methods [54, 55], for which the description of

the core region is static, in the PAW method, the core region is dynamically updated

1from which the BZ can be re-created with the lattice’s symmetry operations
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Figure 2.2: Illustration of the concept of the pseudo-potential Ṽ , used instead of a typ-
ical Coulombic potential well V . The x-axis represents the distance from the nucleus.
An illustration of the wavefunction obtained with (without) the pseudo-potential is
also given as φ̃ (φ). The augmentation sphere radius ra is shown.

in a local basis set during the scf cycle. It is formally equivalent to an all-electron

computation (within the frozen core approximation) [56], as the core density is re-

constructed. Therefore, the full density is used to construct the Hamiltonian. How

exactly the pseudo-potential enters the KS equations and the scf cycle is explained

below. Note that, while the pseudo-potential is present in other methods, its exact

construction here is specific to the PAW method.

The PAWmethod will be presented in Dirac notation in accordance with the typical

notation. The aim is to construct a basis for the KS orbitals |φi⟩ (i now references the

indices k⃗ and nb), referred to as the all-electron wavefunction. A central concept is that

of the augmented sphere of radius ra. Outside the sphere, in the interstitial region,

the behaviour of the wavefunction is smooth and is represented exactly by a pseudo-

wavefunction |φ̃i⟩. The latter is a solution to the KS equations with the pseudopo-

tential Ṽ used in place of the effective potential Veff . This pseudo-wavefunction is ex-

panded in plane waves. It is the expansion coefficients of the pseudo-wavefunction that

are optimised during the KS self-consistent cycle. Within the augmentation sphere,

the all-electron wavefunction varies more, and it cannot be modelled by the pseudo-
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wavefunction. This is because |φi⟩ varies smoothly, inside the augmentation sphere.

Instead, the all-electron and pseudo-wavefunction are related by a linear transforma-

tion,

|φi⟩ = T̂ |φ̃i⟩ . (2.34)

This transformation operator is made of two parts. Firstly, of the identity operator T̂ ,

such that the all-electron and pseudo- wavefunctions are equal outside the augmenta-

tion sphere. Secondly, of an operator that transforms the pseudo-wavefunction inside

the sphere. Since φ̃i behaves smoothly in this region, it needs to be expressed in terms

of a more suitable atom-centered basis. T̂ is written as,

T̂ = Î +
∑
a

T̂a, (2.35)

where the T̂a operator acts at the atomic site a to perform the transformation. The

effect of T̂a vanishes outside the augmentation sphere surrounding each atom.

A second, atom-centered basis is thus required inside the augmentation sphere.

The basis chosen for the on-site part of the wavefunction is made up of the three

components: all-electron partial waves |ϕa
n⟩, the pseudo partial waves |ϕ̃a

n⟩ and the

projection operators |p̃an⟩. The operator T̂ is defined with respect to them as,

T̂ = Î +
∑
a

∑
n

(
− |ϕ̃a

n⟩+ |ϕa
n⟩
)
⟨p̃an| , (2.36)

which combined with Equation (2.34) gives,

|φi⟩ = |φ̃i⟩+
∑
a

∑
n

(
− |ϕ̃a

n⟩ ⟨p̃an|φ̃i⟩+ |ϕa
n⟩ ⟨p̃an|φ̃i⟩

)
. (2.37)

These new localised functions need to be defined. There are two important points to

note regarding them. The first, is that they are all pre-computed and are available with

the pseudo-potential for calculations. The second is that they are expanded in terms of

radial grids and thus are represented in real space. This is in contrast with the plane-

wave expansion of the pseudo wavefunctions. In VASP, the all-electron partial waves

are solutions of the radial scalar relativistic non-spin polarised the Schrödinger equation

of each isolated atom. Other choices can be made for these, but they must generally
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Figure 2.3: Illustration of the contributions to the all-electron wavefunction |φ⟩i in
the PAW method close to an ionic core. Note that the images show the contributions
as they are added to each other, rather than showing the individual contributions
independently. The orange region represents the augmentation sphere close to the
nucleus and the blue region is the interstitial region.

model the bound states of the valence electrons accurately. In a crystal, they highly

resemble the atomic ones, since they are localised and remain largely uninfluenced by

the presence of other neighbouring atoms in a crystal. The pseudo-partial waves are in

turn obtained by solving a pseudisation of the atomic Schrödinger equation for which

the atomic pseudo-potential is used in place of the Coulombic potential of the nucleus.

This yields a smooth function in the augmentation sphere, which vanishes outside of it.

Finally, the projector operators simply need to satisfy the biothorgonality relationship,

defined as,

⟨p̃an|ϕ̃a′

n′⟩ = δa,a′δn,n′ . (2.38)

They are crucial in determining the efficiency of the calculations. From Equation (2.37),

they must notably be efficient in performing the correspondence between the G-space

representation for the pseudo-wavefunctions and the real-space representation of the

partial waves. Bessel functions are used for this task in VASP [51].

Figure 2.3 illustrates the contribution of each term in Equation (2.37) to the all-

electron wavefunction, the KS orbital |φi⟩. The first term corresponds to the smooth

part of the wavefunction in the interstitial region. The second term, which is a pro-

jection onto the pseudo-partial waves, cancels out the contribution of this pseudo-

wavefunction inside the augmentation spheres. Finally, the last term expands the

pseudo-wavefunction in terms of the all-electron partial wavefunctions to obtain the

bound states. This separation of three terms is in fact carried through, when applying
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operators to obtain expectation values, as exemplified in the expression for the energy

of KS orbitals, that is expressed as,

ϵi = ϵ̃i − ϵ̃ 1
i + ϵ1i , (2.39)

where the terms respectively represent the energy contributions (Hamiltonian expec-

tation values from each part of the wavefunction) of the individual terms given above.

The first term is thus expressed in plane waves while the other terms are evaluated in

a localised basis set.

Since the transformation from the pseudo-wavefunction to the all-electron one only

requires a pre-computed linear transformation, as in Equation (2.34), for calculations

on a crystalline material, only the pseudo-wavefunction needs to be determined, along

with the potential. The KS equations are thus solved with the crystalline pseudo-

potential as an effective potential.

2.6.4 VASP Scheme

Following the discussion of the PAW method, VASP’s KS scf cycle is summarised here.

For the most part, the KS scheme presented in Figure 2.1 is followed. There are four

important changes/details:

• The KS equations and energy functionals are adapted to the PAW method.

Pseudo-KS orbitals are thus used in place of the all-electron KS orbitals.

• The KS pseudo-orbitals and the KS equations are expressed in terms of a matrix

equation following the expansion in plane waves.

• The new KS equations are solved through an iterative diagonlisation scheme to

refine the wavefunctions |φ̃i⟩.

• The density update step uses charge density mixing.

The first two steps follow from the expressions presented in the previous subsection.

Regarding the third point, an exact diagonalisation of the Hamiltonian expressed with

NPW plane waves is expensive (O (N3
PW)). Using iterative diagonalisation methods,

only the Nb lowest eigenstates are determined (with Nb << NPW). Two methodologies
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employed for this are the residual minimisation scheme – direct inversion in the iterative

subspace (RMM-DIIS) [57, 58] and the Blocked-Davidson methods [59, 60]. Finally,

for the fourth point, it is inefficient to use the output charge density as a new input

density during the KS scheme. Instead, the Broyden mixing scheme is used to update

the charge density at each iteration, in which elements of the newly computed density

and the previous input density are mixed together [61].

The main quantities that must be specified when running DFT calculations with

VASP are the choice of pseudo-potentials used, the plane wave cut-off energy, which

determines the size of the basis used, the energy stopping criterion for the KS scf

scheme, the number of eigenstates Nb (related to the number of bands) that need to be

computed in the diagonalisation step and the choice of k -mesh used for the calculations.

2.7 Spin

Magnetism is modelled by including spin in the calculations and is briefly described

here, following Ref. [62]. For collinear magnetism the electron spin is arbitrarily

considered only along the z-axis, and it is therefore assumed to either be up (↑) or

down (↓), indexed by a spin index σ. The density is thus separable into up and down

electron spin densities, defined with respect to the total spin density as,

n (r⃗) = n↑ (r⃗) + n↓ (r⃗) . (2.40)

All terms in the KS equations [Equation (2.20)] are attributed a spin index, such

that two separate sets of Kohn-Sham equations are obtained for each spin. The spin

densities are thus related to the spin-resolved eigenstates as,

nσ (r⃗) =

Nσ
e∑

i=1

|φσ
i (r⃗)|

2 . (2.41)

Here, Nσ
e and φσ

i are the spin-resolved total number of electrons and KS orbitals,

respectively. Crucially, the two densities can be different even in the absence of an

external magnetic field, since the exchange-correlation functional is dependent on both

densities, correlating them. The KS scheme is followed independently for each spin,

as each iteration uses the spin densities of the previous round. The spatially-resolved
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magnetisation m (r⃗) can thus be obtained as,

m (r⃗) = n↑ (r⃗)− n↓ (r⃗) , (2.42)

from which the total magnetisation follows from an integration over the unit cell.

2.8 Ionic and Structure Relaxation

A compound is considered to be in equilibrium when the forces on each atom and the

stress tensor elements vanish (in practice, within a certain threshold). In such a case,

the underlying structure is at some minimum of the potential energy surface (PES) of

the Hamiltonian. The PES is a function of the parameters of Equation (2.4), namely

the ionic core positions R⃗N and the lattice parameters. DFT can be used to drive a

non-equilibrium (or unrelaxed) structure to an equilibrium (or relaxed) one, a local

minimum in the PES, by optimising the structure. This requires the combination of

the forces and/or stress tensors with an appropriate optimisation algorithm. In this

section, the conjugate-gradient (CG) algorithm [63] for ionic relaxation will be outlined,

as it is the algorithm of choice for the work presented.

Consider a system with an initial configuration R⃗N
init, which sits in the vicinity of

a local minimum R⃗N
0 in the PES described by E

(
R⃗N
)
. In this region of the PES, E

can be approximated by,

E
(
R⃗N
)
≃ R⃗N

0 +
1

2

(
R⃗N − R⃗N

0

)
B
(
R⃗N − R⃗N

0

)
, (2.43)

where B is the Hessian matrix of E with respect to each atomic coordinate R⃗I . Since

this is at a minimum, B is positive definite and the gradient of E with respect to each

atomic coordinate, an atomic force component, vanishes. In practice, the Hessian is

expensive to calculate and instead, the gradients are used, since these correspond to

the forces and are available at the end of a scf cycle. Starting from R⃗N
0 , the positions

are updated in the first step of the CG algorithm along the direction of the gradient of

the PES, s⃗0. The atoms are moved in the direction the forces acting on them point in.

Their positions are determined with a line search algorithm [64], which uses a cubic

interpolation to estimate the position of the minimum along the direction s⃗0. Note that
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this step requires several energy and force calculations. Once the minimum is found in

direction s⃗0, this process is repeated following the same steps, aside from the fact that

the new directions s⃗i in which the atomic positions are moved is given by

s⃗i = g⃗i + γg⃗i−1, (2.44a)

γ =
(g⃗i − g⃗i−1) · g⃗i
g⃗i−1 · g⃗i−1

, (2.44b)

where g⃗i is the gradient calculated at step i. This is repeated until the forces reach a

convergence criterion, set by a threshold value, a parameter of the relaxation in VASP.

The direction of the search s⃗ requires to be updated K+1 times to find the minimum

of a PES with K degrees of freedom. For the optimisation of lattice parameters, the

same algorithm is followed but with respect to shears ϵαβ. The energy derivatives

with respect to ϵαβ are the stress tensor elements, used as the gradients for the CG

algorithm.

2.9 Conclusion

In this chapter, density functional theory was introduced as a means to practically

and accurately calculate the electronic structure of crystalline materials. Based on

the works of Hohenberg-Kohn and Kohn-Sham, it was shown how the problem of de-

scribing an interacting Ne-electron system can be reduced to solving a problem with

Ne-non-interacting particles with the same ground-state density and energy. A practi-

cal methodology employed by the VASP DFT package for solving the Kohn-Sham (KS)

equations was also presented. This is based on the use of a plane-wave basis set and

projector augmented wave pseudopotentials formalism. The algorithms employed in

the self-consistent cycles were also outlined. DFT can thus provide a means to calculate

the total energy, atomic forces, stress tensors and bulk moduli of a compound. It can

also perform a relaxation towards the equilibrium structure of a system. Despite such

capabilities, the computational time of such calculations are high and scale as O (N3)

with system size [33]. It is revealed how this computational burden can be alleviated

by using machine learning interatomic potentials in the next chapter.



3

Machine Learning and Interatomic

Potentials

The aim of this chapter is to introduce the concept of machine learning interatomic

potentials (MLIAPs), also referred to as machine learning force-fields (MLFFs). This

first requires an overview of machine learning methods (Section 3.1), along with two

common models, ridge regression (Section 3.2) and Neural Networks (Section 3.3).

This is followed by the definition of interatomic potentials (Subsection 3.4.1), before

introducing common MLIAPs. The notation for Section 3.1 is completely independent

to that in Chapter 2.

3.1 Machine Learning

A commonly used definition of the term machine learning (ML), attributed to Arthur

Samuel, a pioneer in the area, is the “field of study that gives computers the ability

to learn without being explicitly programmed”. It groups computer models that have

in-built flexibility, in the form of parameters, such that their outcome depends on the

data presented to them. It is a sub-field of artificial intelligence (AI). There are several

categories of ML models, notably unsupervised [65], and reinforcement learning [66]

among many others, but the most common type is supervised learning.

33
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Figure 3.1: Graphical summary of the important steps in training a machine learning
model.

3.1.1 Supervised Learning Overview

For models that fall under this branch of ML, the aim is to be able to make predictions

of a target quantity given an input. Mathematically, one wishes to construct a general

function f , capable of mapping a feature vector x⃗ onto a target quantity y⃗, and has

parameters θ⃗ that can be tuned to increase the accuracy of the mapping,

fθ⃗ : x⃗→ y⃗. (3.1)

In general, neither the inputs nor the outputs have to be vectors, and they could be

matrices or scalars. In fact for the discussion here, it will be assumed that the input

is a vector x⃗ and the output is a scalar y. For such methods to be applicable for a

given task, it is crucial that inputs can in some way be “featurised”, i.e., represented

as a vector (or a more generally as a tensor). The function f can take up many forms

with parameters θ⃗, which make them adaptable to different tasks. These parameters

are tuned by using training data, for which input and output are known. Following

the training of the model, it can be used to make predictions on new data, for which

only inputs exist.

As a brief example, one could imagine creating a model in which a physics professor

wishes to predict how each of the undergraduate students enrolled in their condensed

matter course will perform in the upcoming summer exam paper. The target y is their

mark on the exam. To do so, the professor has access to a database of student results

from the previous years. They also have a database of information on all students

(current and past) that they believe is enough to predict what the marks will be.
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This full database of past students composes the dataset used to train the model.

The characteristics used might for example be the number of lectures and tutorials

attended, grades in previous exams, numbers of hours studied for the exam, number

of questions asked to the lecturer, etc. These will populate the feature vectors, x⃗,

for each student. A suitable machine learning algorithm, represented by fθ⃗, is

trained by optimising the coefficients, or weights, θ⃗, of the model, to accurately map

x⃗ onto y for the training dataset (past students). Considering the simplicity of the

feature representation a simple model such as ridge regression or a decision tree would

be appropriate [67]. Once trained, the model can be used to predict the grades of the

current (and even future) students. A graphical summary of the pillars in machine

learning, in bold in this paragraph, is given in Figure 3.1.

The field has seen an incredible advent, most notably in the past decade, thanks to a

combination of an advancement in model architectures (convolutional neural networks

[68, 69], transformers [70], diffusion models [71]), specific hardware design (GPU, TPU)

[72], and perhaps most crucially, the explosion of available data that can be used to

train models [73]. The areas that have seen the most success recently are in the fields

of computer vision [74], natural language processing [75], recommender systems [76],

and so-called generative AI models that can be used to generate text [77, 78], as well as

images [79] and speech [80]. These advanced models are able to perform complicated

tasks, as they are trained on large databases and can have billions of parameters. The

model architecture enables to extract the most meaningful features from the training

data inputs during training. Due to this abstraction, these models are referred to as

deep learning models. However, such models are not used in this work, as they require

extensive training datasets, which are not typically available in many fields of physics.

3.1.2 Machine Learning Definitions

In this subsection, a number of terms employed in the field of machine learning are

defined. The first is that of hyperparameters. These constitute all parameters in-

volved in the construction of an ML model that are not explicitly optimised during

the training process, i.e. parameters outside the weights θ⃗. They can relate to the

construction of the feature vectors (number of features), to the model architecture, or

simply be parameters inherent to a model. They are kept fixed during any given train-
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ing iteration, but are typically optimised by training a range of models with different

hyperparameters and select the ones for the best-performing model.

Figure 3.2: Illustration of the partition between training, cross-validation (CV) and
test sets. The training and CV sets split k times according to a k-fold CV scheme.

In order to optimise these hyperparameters, the full training dataset (with feature

vectors x⃗ and associated targets y) is split into two subsets. A training set and a

cross-validation (CV) set. The former is used as described so far to train the model.

The second is set aside, and instead it is used to optimise hyperparameters. The

performance of models with different hyperparameter values is tested on the cross-

validation set. The hyperparameter values for which the model performs best on the

CV set are chosen as optimal ones. In practice, in order to avoid any bias in the model

construction, the training and CV sets are not fixed. Instead, several training/CV

splits are created following a given scheme. The process of training on the training

set and testing on the cross-validation set is thus repeated for each partition. A pop-

ular cross-validation scheme, k-fold cross-validation, partitions the full dataset into k
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training/cross-validation splits, using different subsets of the dataset for the CV set in

every split. Each split has the same ratio of training and CV data points. The cross-

validation methodology used in this work is the Monte Carlo CV, in which for each

split, the data points of CV set is always determined randomly. Note that the propor-

tion of data points used in the CV set, as well as the number of different training/CV

splits used for the cross-validation scheme, are both hyperparameters.

In all cases, the dataset is in fact partitioned into a third “test” set. This set is

set aside before model training and optimisation, and is never involved in the training

process. Instead, it is used after the model is trained to evaluate the final, unbiased

accuracy of the trained model. The partition between training, CV and test sets is

illustrated in Figure 3.2.

So far, no metric has been given to assess the accuracy of a model. For supervised

machine learning regressors, two common metrics, heavily employed here, are the mean-

absolute-error (MAE) and the root-mean-squared-error (RMSE). Consider a dataset

of m points, with target property yi, predicted by the ML model as ỹi for data point

i. The MAE and RMSE on the dataset are given by:

MAE =
1

m

m∑
i=1

|yi − ỹi| , (3.2a)

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ỹi)
2. (3.2b)

The MAE gives the direct average absolute error on each example in the dataset, while

the RMSE uses the square root of the mean squared error. Since the latter depends on

the square of the error of each dataset, it emphasises the error contribution of outliers,

for which the model performs poorly.

Another important concept in the field of ML is that of a loss function. It corre-

sponds to a function of the parameters θ⃗ of a model, and is to be minimised during

model training. It is therefore intended to evaluate how well a model performs on the

training set. Similarly to the errors defined above, the loss function typically involves

a measure of how different the target quantities yi of the training dataset are to the

predicted ones ỹi. A typical choice for the loss function is the residual sum of squares,

defined as,
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Figure 3.3: Plots illustrating the concepts of underfitting and overfitting. The output
data (y-axis) follows a quadratic relationship with respect to the input data (x-axis)
with Gaussian noise. In the left plot, a linear fitting is performed, illustrating the
concept of underfitting. In the middle plot, a polynomial of order 20 is fit, illustrating
the concept of overfitting. On the right, a quadratic fitting is shown, the right order
polynomial for fitting.

L
(
θ⃗
)
=

m∑
i=1

(yi − ỹi)
2 , (3.3)

where ỹi depends implicitly on θ⃗.

One final aspect worthy of mention for this work concerns the concepts of underfit-

ting and overfitting. Underfitting refers to an ML model not being able to adequately

fit the complexity of the mapping of inputs x⃗ to outputs y. For such a model, the

form of the function fθ⃗ is too simple or does not include enough parameters and thus

is not able to accurately model the subtler aspects of the relationship between inputs

and target. Such a model is said to have high bias and generally has poor perfor-

mance on training and test sets. An example of this could be fitting a linear model

to a dataset for which the target quantity has a quadratic dependence on the input,

as illustrated Figure 3.3. Overfitting is the opposite scenario, in which the model is

too sophisticated and assumes a functional form that fits the training data too closely,

by essentially fitting noise in the data. This is problematic, since the model then gen-

eralises poorly on unseen data. It thus performs very well of the training data but

poorly on the test data. Returning to the quadratic example, an overfitting model

may assume a functional form too complex for the quadratic relationship, such as a

higher order polynomial. This is illustrated in Figure 3.3.

Following this introduction to important concepts in ML, two classes of ML models
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are now presented. The first is ridge regression, one of the simplest regressors which

assumes a linear relationship between features and target. The second class concern

neural networks, which can, in general, be far more complex and map highly non-linear

relationships between x⃗ and y.

3.2 Ridge Regression

3.2.1 Model Definition

Let us consider a training dataset with m data points described by p features, and

assume that the feature vectors now include the number 1 as their first entry. This

is assumed for simplicity’s sake, as will be explained below. Individual input vectors

are denoted x⃗i and targets yi. The jth component of vector x⃗i is denoted xij. In

ridge regression, just like for linear regression, the target quantity is assumed to vary

linearly with respect to the components of the input vectors x⃗i. For a single example,

this relationship is given as

y = fRidge

θ⃗
(x⃗i) = θ⃗ · x⃗i, (3.4)

where θ⃗ are the model coefficients. The first such coefficient is the intercept of the

model, that multiplies the unity entry in each input vector. It acts as an additional

degree of freedom in the fitting, independent of any “real” feature.

What distinguishes ridge regression to linear regression is how the linear coefficients

are determined. Here, they are determined by minimising the loss function

LRidge
λ

(
θ⃗
)
=

m∑
i=1

(
yi −

p∑
j=1

xijθj

)2

+ λ

p∑
j=1

θ2j , (3.5)

where θj are individual coefficients. The first term in this equation is identical to that

of the loss function used for typical linear regression. The second term is additional

and specific to ridge regression. It is a regularisation term, and corresponds to L2

regularisation [67]. Note that the sum does not include the first fitting parameter, the

intercept. The aim of such a term is to counteract overfitting by imposing a constraint

on how large the fitting coefficients can be. Indeed, overfitting is enabled by having
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full flexibility in the values the weights can take. As is the aim of a loss function,

it is minimised with respect to fitting parameters and intercept, to provide optimal

mapping of the function fRidge

θ⃗
to the training set. The regularisation coefficient λ

weighs the importance of this second term with respect to the first, fitting term. It is

a hyperparameter of the model.

3.2.2 Matrix Notation

In order to show how the coefficients are determined, it is easier to adopt a matrix

notation. Here, the intercept and the unity term in the input vectors are not included

for the following equations. Following a transformation of the inputs, the intercept can

be retrieved following optimisation of the other parameters, as detailed in Reference

[67]. X is them×p matrix of input examples, where each row corresponds to a training

example with p features. The targets are grouped in a column vector y⃗ of length m.

The coefficients remain θ⃗, a column vector with length p. Equations (3.5) and (3.4)

can respectively be written as

y⃗ = Xθ⃗, (3.6a)

LRidge
λ

(
θ⃗
)
=
(
y⃗ −Xθ⃗

) T (
y⃗ −Xθ⃗

)
+ λθ⃗ T θ⃗. (3.6b)

The optimal coefficients, θ⃗Ridge, that minimise the loss function are given by

θ⃗ Ridge =
(
XTX+ λI

)−1
XT y⃗. (3.7)

In practice, inverting the matrix in Equation (3.7) is time-consuming for large datasets.

Another approach to finding θ⃗ Ridge is to use optimisation algorithms, just like those

presented in Chapter 2 for structural relaxation. In this case, however, the aim is not

to find a minimum on the PES but to find a minimum of the loss function in the space

of all parameters θ⃗. Many methodologies exist for this [81], but most make use of at

least the first derivative, and for some higher order derivatives, of the loss function.

The simplest and most common of these methods is the gradient descent algorithm,

introduced here.
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3.2.3 Gradient Descent

In gradient descent, the optimal weights are found through an iterative process. At

each iteration, they are updated to decrease the value of the loss function. This is

performed by following the negative gradient of LRidge
λ with respect to parameters θ⃗.

This corresponds to the derivative of the loss function with respect to each weight θj:

∂LRidge
λ

(
θ⃗
)

∂θj
= −2

m∑
i=1

xij

(
yi −

p∑
j=1

xijθj

)
+ 2 λ θj, (3.8)

or in matrix notation, the gradient vector, g⃗ Ridge, is given as,

g⃗ Ridge
λ = −2XT

(
y⃗ −Xθ⃗

)
+ 2λθ⃗. (3.9)

The new coefficients θ⃗′ can then be updated from the previous ones θ⃗ as,

θ⃗ ′ = θ⃗ + η g⃗ Ridge
λ . (3.10)

η is the learning rate, a hyperparameter that controls how fast the coefficients can

change upon each iteration. This iterative update is typically performed until the loss

function stops decreasing more than a certain threshold value after an iteration. The

parameters are assumed to be the optimal ones after reaching convergence. In the case

of ridge regression, solving Equation (3.7) or using gradient descent to find the optimal

weights is equivalent [82]. However, gradient descent scales better for larger datasets.

Since gradient descent drives the search of the best parameters to the closest min-

imum in the loss function, it is prone to find local minima rather than global minima

in the case of a non-convex search space. This can in part be address using mini-batch

and stochastic gradient descent. In general however, while such an optimisation algo-

rithm may be appropriate for simple linear models such as ridge regression, it is not

well suited for optimising non-linear models such as neural networks.

3.3 Neural Networks

The other class of machine learning algorithms described in this chapter is that of

artificial neural networks (NN). These can take several forms, such as convolutional
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neural networks, recurrent neural networks or graph neural networks, but here the

discussion will focus on one, most common type of NNs, feed-forward NNs. As such,

NNs will refer to feed-forward NNs from now on. In this section, the architecture,

mathematical formalism and optimisation methods of NNs will be discussed.

3.3.1 Model Definition

A Neural Network can be represented as a network of nodes, arranged in different layers,

and edges, connecting the different nodes. There are three different types of layers, the

input layer, the hidden layers and the output layer. Layers are labelled k, from 1 to

K (the total number of layers). The input layer corresponds to a layer with a number

of nodes equal to the number of input features, or p in our case. The output layer is

a single node which corresponds to the output (predicted target value) of the model.

Finally, the hidden layers are all other layers, pictured to be between the input and

output layers. Nodes of layer k are only connected to other nodes, present in different

layers, either preceding (layer k-1) or succeeding (layer k+1) that layer. Each node has

an associated number, the activation, a
(k)
l , of the node, obtained from the activations

of the nodes in the previous layer. For the input layers, the activations are just the

entries of the feature vectors, input into the model. The data is fed-forward from the

input layer to the other ones. The edges also have associated numbers, corresponding

to the weights of the model. A general representation of a feed-forward neural network

is given in Figure 3.4. The feed-forward element of the NN is highlighted by the fact

that the arrows only point from a preceding to a succeeding layer, and not the opposite.

Note that the NNs are fully connected, as all nodes of layer k have edges with all nodes

in layer k+1. The number of hidden layers, as well as the number of nodes in each

layer, are both hyperparameters of a NN.

Each value a
(k)
l , depends on the linear combination of the activations a

(k−1)
l′ , stored

on all nodes, labelled l′, of layer k − 1. The linear combination is called the logit z
(k)
l .

This relationship is in general, written as,

a
(k)
l =

Nodes
Layer k−1∑

l′

h(k)
(
θ
(k)
ll′ a

(k−1)
l′ + θ

(k)
l0

)
=

Nodes
Layer k−1∑

l′

h(k)
(
z
(k)
l

)
, (3.11)

where h(k) is an activation function, added to build in non-linearity. It is the same
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Figure 3.4: Graphical representation of a fully-connected feed-forward neural network.
There are three hidden layers, with 5, 4 and 3 nodes. The input layer has 3 nodes.

activation function for all nodes in a given layer. θ
(k)
ll′ are the single weights on the

edge between the node l′ of the layer k-1 and the node l of the layer k. θ
(k)
l0 are the

intercept values for node l on layer k. In matrix notation, the activations of all nodes

in a layer are grouped into a vector denoted a⃗ (k). The feed-forward from the values

a⃗ (k−1) in layer k − 1 to those in layer k, a⃗ (k), can be written as,

a⃗ (k) = h(k)
(
θ(k)a⃗ (k) + θ⃗

(k)
0

)
. (3.12)

The weights are now arranged in a matrix θ(k), with elements θ
(k)
ll′ . The intercepts θ

(k)
l0

form the so-called bias vector, θ⃗
(k)
0 . The activation function is applied element-wise to

all values in the vector argument.

These are the equations that govern the relationship between subsequent layers.

Hence, using them from layer to layer, the inputs can be fed-forward to the output,

such as to create the general mapping from x⃗ to y. Different non-linear functions

can be used as activation functions. They are typically zero or rapidly converge to

a constant value for negative arguments, and converge to the f (x) = x function for

positive arguments. Popular choices include the rectified linear units (ReLU) function

[83], exponential rectified units (ELU) function [84] and the Softplus function [85].

Their graphical representations are plotted in Figure 3.5. Note that neural networks

are universal approximators [86], so if large enough, can represent any function. For
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Figure 3.5: Graphical representation of the non-linear activation functions, ReLU,
Softplus and ELU.

this mapping to be accurate, the weights on all edges need to be optimised. This is

done with backpropagation.

3.3.2 Backpropagation

Backpropagation [87] is the methodology employed to update the weights of the NN

during the training process. In the case of ridge regression, the weights could be directly

optimised in terms of the error on the output, expressed in the loss function. This may

be possible for NNs in the case of the last hidden layer, as it is directly connected to the

output layer. But for all other hidden layers, knowing how to relate the error “back”

to the weights is non-trivial. Hence, the use of backpropagation. The derivation that

follows is for a single training example.

The aim is to find how each weight θ
(k)
ll′ should be updated. To use a method such

as gradient descent to drive the update steps, the gradient of a loss function L with

respect to each weight [such as the one given in Equation (3.3)], is required. One must

first define the error term for each node, which corresponds to the change of the loss
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function with respect to the logit z
(k)
l of each node, which is simply ∂L

∂z
(k)
l

. Since the

loss function explicitly depends on the activation of the output layer (the final output

of the model), it is of interest to express this derivative with respect to a
(k)
l , as,

∂L

∂z
(k)
l

=
∂L

∂a
(k)
l

∂a
(k)
l

∂z
(k)
l

. (3.13)

Let us first consider the error of the output layer. The first term above is the derivative

of the loss function with respect to the output, which is easily obtained (see Equation

(3.8) for an example). Similarly, the second term is simply the derivative with respect

to the activation function h(k) of the output layer, which can readily be computed,

since all such functions are analytically defined. Thus, the error on the hidden layer is

obtained. The task is then to propagate this back to the preceding layer, to obtain the

error ∂L

∂z
(k−1)

l′
, on node l′ of layer k − 1. This can be written as,

∂L

∂z
(k−1)
l′

=
∂L

∂z
(k)
l

∂z
(k)
l

∂z
(k−1)
l′

. (3.14)

The first term is known since it is the error on the output layer. Using the chain rule,

the second term can be written as,

∂z
(k)
l

∂z
(k−1)
l′

=
∂z

(k)
l

∂a
(k−1)
l′

∂a
(k−1)
l′

∂z
(k−1)
l′

. (3.15)

As for Equation (3.13), the second term is the derivative of the activation function h(k).

The first term is the derivative of the logit z
(k)
l with respect to the activation a

(k−1)
l′ of

a node on the k − 1 layer. Since the logit is just a linear combination of activations,

the derivative is just the weight of the edge joining node l′ of layer k− 1 and node l of

layer k, namely θ
(k)
ll′ . The final equation for the error in Equation (3.14) is, thus,

∂L

∂z
(k−1)
l′

=
∂L

∂z
(k)
l

θ
(k)
ll′ h

′
(
z
(k′)
l

)
. (3.16)

This corresponds to the error on node l′ of the final hidden layer. In fact, since in

Equations (3.14) - (3.16), layers were referenced as k−1 and k, these equations are valid

for any hidden layer. Starting from the output layer, the error can be backpropagated

to the first hidden layer, and the errors on these nodes can equally be propagated to

the penultimate hidden layer and so forth. Since the error ∂L

∂z
(k)
l

on each node is known,
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the derivative of the weights θ
(k)
ll′ with respect to the loss function can now be expressed

as

∂L

∂θ
(k)
ll′

=
∂L

∂z
(k)
l

∂z
(k)
l

∂θ
(k)
ll′

=
∂L

∂z
(k)
l

a
(k−1)
l′ . (3.17)

This is the equation required to update each weight. Note that the derivation presented

considered the initial loss function for a single training point. It can be generalised for

the partial or full training dataset.

From the expression of the gradient, any first-order optimisation scheme may be

used to find the optimal weights for a neural network [81], of which the Adam optimiser

[88] is a common choice [89, 90, 91]. Since neural networks, notably ones with many

hidden layers, are non-linear, the weight optimisation procedure is crucial for adequate

model performance and to prevent overfitting. Several methods could be used, such as

mini-batch and stochastic optimisation, regularisation of the loss function (as for ridge

regression), the use of drop out, max norm constraints, etc. [92].

3.4 Machine Learning Interatomic Potentials

Following the introduction of machine learning, common terms employed in when con-

structing ML models and presenting ridge regression and neural networks as examples

of ML algorithms, the focus of the rest of the chapter will shift back towards physics. In

the next sections, machine learning interatomic potentials will be presented, with a no-

table focus on atomic fingerprints, neural network potentials (NNPs) and the spectral

neighbour analysis potential (SNAP), the latter which is heavily used in this work. Be-

fore concluding, references to other common MLIAPs are given. To begin, a definition

of interatomic potentials is given.

3.4.1 Interatomic Potentials

Interatomic potentials are functions that map the energy of a system to the coordinates

of its constituent atoms [93]. They approximate the PES of a system and their deriva-

tives with respect to these positions correspond to the forces acting on the atoms, and

thus constitute a force-field. Such potentials can then be used to predict any property
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that depends on an accurate PES mapping. This could be to run structural relaxation,

molecular dynamics (MD) simulations or to predict many quantities directly or through

simulations, such as formation enthalpies, surface and interfacial energies, lattice pa-

rameters, thermal and elastic properties, compute phonon spectra and model inter-

and intra-molecular interactions, even including chemical reactions in certain cases.

The interatomic potential may depend on whether the chemical bonding relevant to

a system is metallic, ionic, covalent, or dispersive in nature. Separate interatomic po-

tentials may be used for each type, or a single one may be used to describe several

simultaneously. They can also be physically motivated or derived from empirical data.

In general, the potential energy U of a classical system, that depends on the positions

R⃗N of the constituent atoms, can formally be expanded in terms of N -body terms,

U
(
R⃗N
)
=
∑
I

U1

(
R⃗I

)
+
∑
I<J

U2

(
R⃗I , R⃗J

)
+
∑

I<J<K

U3

(
R⃗I , R⃗J , R⃗K

)
+ ... , (3.18)

where the sums are over all two-body (U2), three-body (U3), etc. potentials. Two-body

terms imply a dependence only on interatomic distances, three-body on distances and

angles between three atoms, etc. An expansion of this form is used explicitly in the

cluster expansion potentials [94, 95], truncated at a certain term. Many potentials take

the form of two-body potentials, such as the Morse [96], Buckingham [97], Lennard-

Jones [98] among many others. While these offer impressive insights onto real system

behaviours, despite their simple dependence on interatomic distances, higher-order

body terms are required to obtain more accurate descriptions, notably for covalent

bonding. Commonly employed many-body potentials (more than two-body) include

the Embedded Atom Method (EAM) [99, 100], second-moment tight-binding expansion

(TB2M) and Tersoff potentials [101, 102].

By having a relatively simple functional form and thus being very fast to compute,

these potentials are able to model large systems over long timescales, many of them

quite robustly and with good transferability. However, this comes at the price of a

decreased accuracy compared to first principles calculations such as DFT. Machine

learning interatomic potentials (MLIAPs) offer an approach to combine the benefits of

the speed of classical interatomic potentials and the accuracy of DFT. These are the



3. Machine Learning and Interatomic Potentials 48

Figure 3.6: Illustration of a chemical environment (left) and the PES (right) mapped
by DFT (black) and the MLIAP (red). The points on the PES represent training
points, and are therefore in regions well described by the MLIAP.

focus of the rest of the chapter.

3.4.2 Concepts in Machine Learning Interatomic Potentials

The central concept in MLIAP is that of nearsightedness [103], which states that the

most significant contributions to electronic properties arise from local interactions. The

effects of so-called long range interactions are not negligible, but are of limited effect

compared to local ones, as interatomic interactions tend to decay with distance. In

MLIAPs, smoothness of the PES is also assumed [104]. In essence, they resemble

empirical interatomic potentials, as they have free parameters that are found through

fitting of data [93]. A key difference with MLIAPs is the form they assume, which is

not restricted to any functional form and is made as general as possible. Instead, the

built-in physical behaviour present for empirical interatomic potentials must be learnt

by the MLIAP, through the relevant sampling of the PES.

As is the case for any ML model, there are three main ingredients for constructing

an MLIAP, those presented in Figure 3.1. Here, the data take the form of high-fidelity

energy and force values (typically computed with DFT) for different structures. Since

the aim is to accurately map the PES in regions that the MLIAP is intended to probe,

the choice of the structures sampled is vital. The latter must lie within and around

the PES region of interest. The choice of these structures was physically-motivated for

the first MLIAPs, taking not only ground-state structures of relevance, but also ones
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with displaced atoms to obtain out-of-equilibrium structures. These provide forces (and

stress tensor elements) that are important for fitting and mapping the PES around local

minima. In fact, other structures such as interstitials, surface slabs, structures from

MD runs, etc. are also commonly used in the training database and provide essential

changes in the local environments of the atoms [105]. More recently, automatic schemes

have also been employed to create training databases, that typically rely on metrics

that quantify the diversity of a database [106, 107, 108, 109, 110, 111].

The second component concerns the feature vector or descriptor. For the majority

of MLIAPs, such as those described in this chapter, these are associated with individual

atoms, rather than being global descriptors of a structure. They must represent the so-

called chemical environment of an atom, and therefore possess knowledge of its atomic

neighbourhood. Crucially, they must be able to effectively represent these chemical

environments, such that atoms in different structures have different descriptors. The

atomic neighbourhood is usually considered up to a cut-off radiusRcut from the center of

a given atom. Within the feature representation, N -body terms should be included, and

thus they must depend on interatomic distances, angles, torsional angles etc. Figure

3.6 shows an illustration of an atomic chemical environment. In many cases, up to 3-

body terms are represented, and they often encompass up to 4-body terms. There are

a number of constraints on the descriptors. Since they are vectors, they must possess a

fixed length, no matter the atom and environment, so that the single regressor can be

used. To highly reduce the number of training points required, the descriptors have in-

built symmetries. These include invariance with respect to translations and rotations

of the system and with permutations of atoms of the same type. The descriptors are

also differentiable with respect to atomic coordinates in order to compute forces, as for

analytical interatomic potentials [104].

The final component of an MLIAP is the regressor. Its purpose is exactly the same

as the ML algorithms presented previously, that is, to map the input descriptors to the

output PES. This implies that any model can be used for this task. Linear models,

neural networks and kernel methods are amongst the most commonly used regressors.

The sketch of a PES mapping by a MLIAP with its training points is illustrated in

Figure 3.6.

Mathematically, the general form that MLIAPs take follows the Behler-Parinello
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approach [112]. As indicated above, this assumes that the total energy E of an N -atom

system can be broken down into individual atomic energy contributions Eαi
i , written

as,

E =
N∑
i

Eαi
i , (3.19)

where αi labels the atomic type. A regressor is then used to map the atomic descriptors

B⃗αi
i to the atomic energies. The same ML model and architecture, represented by f , is

kept for each atomic species, but the parameters of the model change depending on the

atomic species. The relationship between model and descriptors can thus be written

as,

Eαi
i = fθ⃗αi

(
B⃗αi

i

)
. (3.20)

This formalism is general for descriptor-based MLIAPs. In the following sections,

two specific potentials will be introduced in detail, namely the neural network potential

(NNP) and the spectral neighour analysis potential (SNAP). Most importantly, their

descriptors will be presented, before giving an overview of their applications. NNPs are

introduced since they were the first of the modern (2nd generation) MLIAP developed

and provide a clear example of how descriptors are constructed [112]. SNAP is the

central model used in this work and is therefore also detailed. Note that many other,

arguably better performing MLIAPs exist, but are not directly relevant here, and they

are simply touched upon briefly in the final section.

3.5 Neural Network Potential

For NNPs, the features are based on so-called atom-centered symmetry functions (AS-

CFs) [112, 113, 114]. The first component, which is in fact common to many atomic

features, is the cut-off function fcut, which smoothly goes to zero at the cut-off radius

Rcut. It is centered around the central atom for which the descriptors are calculated,

and it is defined as
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fcut (Rij) =

0.5 ·
[
cos
(

πRij

Rcut

)
+ 1
]

for Rij > Rcut,

0.0 for Rij ≥ Rcut,

(3.21)

Rij is the interatomic distance between atoms i and j. This function monotonically

decreases with interatomic distance, and thus reduces the importance of an interaction

with increasing distance. All atoms within a given cut-off region are considered to

be in the neighbourhood of the central atom. The distances Rij and the angles ϕijk

the neighbours form with the central atoms are collected. The simplest ASCF, G1
i is

defined as

G1
i =

∑
j

fcut (Rij) , (3.22)

which corresponds to a coordination number for which atoms further from the central

atom are less weighted by fcut. The sum is over all neighbours within the cut-off

sphere. Additionally, two-body ASCFs G2
i and the three-body ASCFs G3

i are used to

respectively provide radial and angular distribution information. They are defined as

sums within the atomic neighbourhood, as

G2
i =

∑
j=1

e−η(Rij−Rs)
2

· fcut (Rij) , (3.23a)

G3
i = 21−ζ

∑
j=1

∑
k ̸=j

[
(1 + λ · cos (ϕijk))

ζ · e−η(R2
ij+R2

ik+R2
jk)

×fcut (Rij) · fcut (Rik) · fcut (Rjk)
]
.

(3.23b)

Each ASCF possesses what are considered to be hyperparameters, namely η and Rs for

G2
i and ζ, λ (different to the regularisation parameter in ridge regression) and η. The

two-body term can be viewed as a sum of Gaussians, each centred at Rs, with a width

η. The height of the Gaussian depends on how close Rs is to Rij. The sum in essence

counts how many atoms are within a spherical shell, a distance Rs from the central

atom, with width η. For the angular components G3
i , the cut-off function remains but
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must include the three interatomic distances. The Gaussian weighs the importance

of interatomic distance for each angle. The cosine term serves to probe the angular

distribution. λ takes values 1 and -1 to centre the cosines at θijk = 0 and π. ζ controls

the widths of the distribution. This symmetry function can therefore also be viewed

as shells of different widths over the angular distribution. Examples of the symmetry

functions are given in Figure 3.7.

(a) (b) (c)

Figure 3.7: Example symmetry functions for the red atom in panel (a). Panel (b)
shows how the value of G2 varies as a function of hyperparameter Rs, that sweeps the
radial neighbour distribution. The cut-off function fcut is shown in red for Rcut = 6.0Å.

Note η=4.0 Å
−1
. The blue points show how different values of Rs may be chosen to

construct a feature vector. The vertical blue lines mark the positions of the two grey
atoms. Panel (c) gives basis symmetry functions for the angular values G3 as a function

of θijk for different values of λ and ζ. Here, η=0.01 Å
−1
. The blue vertical line marks

2π/3, the angle in the example molecule. The blue points give the values that would
be used for G3 to construct the feature vector from each of the basis functions.

In order to construct a feature vector B⃗αi
i , symmetry functions centred on atom i

must be calculated: for G1
i , each different atomic type (α1, α2, ...); for G

2
i , each different

species pair including type the central atom (αi − α1, ..., αi − αi, ...); and for G3
i , each

species triplet including the central atom (αi − αi − α1, ..., αi − α1 − α1, ...). This

leads to a combinatorial explosion in the number of features and weights to fit with an

increasing number of species [115]. For each G1
i , G

2
i and G

3
i , different hyperparameters

are calculated. Details of how to effectively choose the hyperparameters is given in

Reference [113]. The cut-off radius Rcut is kept fixed. Note that since the regressors

are trained differently for each atomic type, the choice of hyperparameters (apart from

Rcut) is in fact species-dependent. They must even depend on the type of interaction

considered, so depend on the pair and triplet as well. Once the hyperparameters are

chosen, the resulting symmetry functions essentially serve as basis functions. They are
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then fixed to construct all descriptors (training and test).

In the NNP approach, the descriptors constructed with ASCFs are used in con-

junction with neural networks, which have been covered in Chapter 3. The initial

conception of NNPs only included the formalism presented here. However, since then,

they have been further developed, notably resulting in the addition of electrostatic

interactions [116], as well as other long-range interactions [117] and highly non-local

dependencies of electronic properties on structural features [118]. NNPs have success-

fully been applied as interatomic potentials for large-scale systems in a diversity of

contexts, such as for bulk systems [119], interfaces [120], nanomaterials [121] as well as

for thermal conductivity studies [122], to cite a few. Following the discussion of NNPs,

SNAP, a different class of MLIAPs, is introduced.

3.6 Spectral Neighbour Analysis Potential

In SNAP [28], rather than using simple descriptors combined with a highly non-linear

model, as is the case for NNPs, ridge regression is employed and uses a more compli-

cated feature representation. The starting point for the latter is the neighbour density

function for each atom i, ρi. As for the ASCFs, the same cut-off function is used to

define the nighbourhood of each atom. Within the radius Rcut, the neighbour density

is given by,

ρi (r⃗) = δ
(
r⃗ − R⃗i

)
+
∑
j

wαjδ
(
r⃗ − R⃗j

)
fcut (Rij) , (3.24)

where R⃗i is the real space vector pointing to atom i and wαj are real-valued atomic

weights that serve to distinguish different atomic types. They are treated as hyper-

parameters for the purpose of this work. In order to construct a feature vector, this

function is expanded in terms of appropriate basis functions. Considering the spherical

nature of the function, a natural choice for expanding the density are the spherical

harmonics for the angular components, along with a radial basis. This comes with

drawbacks, however. Having two different basis sets implies having to tune each one,

as well as having coupling channels within and across both basis sets, leading to a

large number of descriptors [123]. To alleviate this issue, Bartók et al. [124] showed
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that it is in fact advantageous to project the density function in Equation 3.24 onto

the higher dimensional 3-sphere. By projecting the 3-dimensional function on the unit

hypersphere in 4D, both 3-dimensional radial and angular components (r, θ, ϕ) are

encoded in 4-dimensional angular components (θ, ϕ, θ0). Since the function is repre-

sented on the 4D unit sphere, only an angular basis is required, removing the need for

a radial basis. The 3D polar radial coordinate r is projected onto an angle θ0 as

θ0 = π
r

r0
, (3.25)

where r0 > Rcut determines how points are projected on the 3-sphere. Large values

project many points to the north pole of the 3-sphere whereas at r0 = Rcut, points

would be projected onto the south pole, removing angular information. This value is

kept fixed at 4/3, consistent with how it is originally introduced. The other two angles

ϕ, θ are the same as the 3D polar angles (θ is not an ML weight). An illustration of

such a projection in the case of a 2D circle is given in Figure 3.8. Note this is an

illustration of a Riemann projection [124], defined slightly differently to the one used

here but similar in nature.

A function on the surface of a four-dimensional sphere can be represented in terms of

hyperspherical harmonics, which can be viewed as 4D versions of the regular spherical

harmonics. These are denoted UJ
m,m′ (ϕ, θ, θ0), where J takes half-integer values and

m,m′ = −J,−J +1, ..., J − 1, J . The expansion of the density in terms of this basis is

written as

ρi (ϕ, θ, θ0) =
∞∑
J=0

J∑
m=−J

J∑
m′=−J

uJi,m,m′UJ
m,m′ (ϕ, θ, θ0) , (3.26)

where uJi,m,m′ are the expansion coefficients for the neighbour density of atom i. These

are found by taking the inner product of the density with the basis function. Since

the latter is a sum of weighted delta functions, this leads to the expansion coefficients

being written as

uji,m,m′ = UJ
m,m′ (0, 0, 0) +

∑
j

fcut (Rij)w
αjUJ

m,m′ (ϕ, θ, θ0) . (3.27)

Creating a descriptor typically takes the form of using the expansion coefficients as
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features. At this stage, the expansion coefficients are invariant upon translations of the

system and permutations of identical atoms. Additionally, if the sum in Equation (3.26)

is truncated, there is a fixed, constant number of coefficients for each atom. However,

the coefficients are complex-valued and are not invariant upon rotations. This leads to

the construction of the bispectrum components, BJ,J1,J2 , which are real-valued and are

invariant upon rotations [124]. They are defined in terms of the following triple inner

product,

BJ,J1,J2 =

J1∑
m1,m′

1=−J1

J2∑
m2,m′

2=−J2

J∑
m,m′=−J

(
uJi,m,m′

)∗
H

J,m,m′

J1,m1m′
1

J2,m2,m′
2
uJ1i,m1,m′

1
uJ2i,m2,m′

2
. (3.28)

The indices J1 and J2 are restricted to ∥J1 − J2∥ ≤ J ≤ ∥J1 + J2∥. The coupling

coefficients, which correspond to the Clebsch-Gordan coefficients of SO(4), are related

to the commonly used Clebsch-Gordan coefficients of SO(3) by,

H

J,m,m′

J1,m1m′
1

J2,m2,m′
2
= CJ,J1,J2

m,m1,m2
CJ,J1,J2

m′,m′
1,m

′
2
. (3.29)

The bispectrum components can thus be used as features to describe atomic environ-

ments and respect the constraints and symmetries previously outlined. All components

up to a value J = Jmax are used to populate the feature vector, which corresponds to

a truncation in the expansion. They quantify the strength of the correlation between

three points on the 3-sphere, with lower order components describing coarser features

and higher order ones are associated with more intricate correlations. Note that these

descriptors account for up to 4-body interactions [125]. In practice, many of these

components are zero or equal. It has been shown [126] that the number of unique

bispectrum components in the feature vector B⃗αi is given by

(Jmax + 1) (Jmax + 2)
(
Jmax +

3
2

)
3

. (3.30)

Note this is the number per species. The number of different bispectrum components

for different values of 2Jmax is given in Table 3.1.

In the linear SNAP formalism, the local atomic energies are written directly as a

dot product between the descriptor vector and the model coefficients. Assuming a bias
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term is included, the energy (Equation (3.19) for SNAP) and forces (written as the

force on atom j) are written explicitly as

E =
N∑
i=1

θ⃗αi · B⃗αi
i , (3.31a)

F⃗j = −
N∑
i=1

θ⃗αi · ∂B⃗
αi
i

∂R⃗j

. (3.31b)

The forces are written in terms of the derivative of the bispectrum components with

respect to the atomic position of atom j. It is of interest to show what form the fitting

of the model takes. In general, the weights of the model are optimised using the energy,

forces, and stress tensor elements for the compounds in the training database. Here,

stress tensors are excluded as they are not used for this work. For each DFT calculation,

a single energy value and 3N forces are obtained. The full set of simultaneous equations

can be written as associated to the fitting of the training set, omitting the contribution

of the regularisation term, is written in matrix form as



.

.

.

.

.

.

.

.

.∑Nα1

i B⃗α1 ...
∑NαK

i B⃗αK

wF

∑Nα1

i
∂B⃗α1

∂R⃗1
... wF

∑NαK

i
∂B⃗αK

∂R⃗1

.

.

.

.

.

.

.

.

.

wF
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i
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.
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.
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E

F⃗1

.

.

.

F⃗N

.

.

.



. (3.32)

Here, wF is a general “force weight” that weighs the contribution of the forces with

respect to that of the energies. Nα1 is the number of atoms of type species α1. There

is a total of K different species. The weights are also divided according to species

type. The equations for a single system are shown, and there are 3N terms for forces

(dotted lines between the first and last atomic force), as opposed to the single energy

data point per system. Note as well that in practice during the fitting, the bispectrum

components of all atoms of the same species are summed together. There should be
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the same equations above and below the terms shown for all compounds in the dataset.

SNAP provides a simple linear model that requires few features per compound to

fit the PES, particularly if stress tensors and forces are not used for the fitting. SNAP

has successfully been applied to model bulk single-element [127, 28] and multi-element

alloys [128], liquids [28], ionic materials [129] and molecules [129]. Extensions have

been introduced to include quadratic terms [126] and to have a better description of

multi-element systems [130]. These have notably been used to simulate systems with

109 atoms [131], illustrating the computational efficiency of the model.

Figure 3.8: Example of a 2D Riemann pro-
jection.

Table 3.1: Number of bispectrum compo-
nent features per species for different val-
ues of 2Jmax.

2Jmax 2 4 6 8 10

# Bispectrum 5 14 30 55 91

3.7 Applications & Other MLIAPs

Considering their promise of high accuracy at a low computational cost, the past

decade has seen an explosion in the development of MLIAPs. Research has focused

both on finding novel, efficient representations and on new models. In this section, an

overview of these developments is offered. NNPs are considered to be the first MLIAPs

which combine local, invariant descriptors with a ML model. Using NNs has been a

common approach for several MLIAPs [132, 133, 134, 135, 136, 137, 138, 139]. Other

models following the same recipe soon after emerged, notably Gaussian approximation

potentials (GAP) [140], which initially combined a Gaussian kernel between bispectrum

component vectors as a representation with Gaussian Process Regression (GPR) [141].

Since, the Smooth Overlap of Atomic Positions (SOAP) descriptor was adopted to form

the current implementation of GAP [124, 142]. Kernel methods notably offer a way to

have non-linear mapping of the PES with respect to the representation for relatively

few training points. GPR offers the additional advantage of offering an uncertainty
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estimate on predictions. Other MLIAPs adopting GPR [108, 143] and kernel methods

[144, 145, 146, 147] were since developed. SNAP [28] and qSNAP [126] are members of

the same class of MLIAPs, but use sophisticated features with a linear model. Other

linear models have the same approach, the most notable of which are the moment tensor

potential (MTP) [148] and the atomic cluster expansion (ACE) [125]. The former uses

basis functions built on moment tensor descriptors that rely on radial functions and

outer products of atomic neighbour positions. The final descriptors are constructed

as contractions of these tensors that provide rotational invariance and higher-body

terms. For ACE, permutationally invariant descriptors are built from one-particle

basis functions to form two-body terms and these are multiplied together for higher

order basis functions. Crucially, such a description with a polynomial expansion of the

atomic basis allows to mathematically represent any N -body function [such as those in

Equation (3.18)] efficiently. These descriptors are shown to encompass the other ones

described above and due to their completeness, they can be used with a linear model.

Other efficient and flexible representations that can be used with a linear regressor

have also been developed [149].

Tailor made descriptors offer enough expressivity and flexibility to be used with a

large range of ML models. Another approach in constructing MLIAPs has revolved

around using a deep learning model (NNs), for which the complexity of the model

enables the determination of relevant features. This is in fact what is meant by deep

learning [150]. This removes the necessity to construct sophisticated features and to

ensure that enough many-body terms are included. The downfall is that large datasets

are required for the training process. For these deep learning models, compounds and

molecules are represented as graphs in which atoms are the nodes and bonds are rep-

resented by the graph edges. Such a representation is more natural than other ones

used with NNs (such as images in CNNs). The deep learning models are graph neural

networks, in the form of message-passing NNs, as was first introduced in 2017 [151].

Since then, similarly to the representation based methods, a plethora of models have

emerged. Some of the most established ones include SchNet [152] and the directional

message passing neural network (DimeNet) [153]. Other deep learning models that

integrate equivariance have also become prominent [154, 155]. The newly developed

MACE model combines the deep learning architecture with the ACE many-body ex-
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pansion [156]. All of these approaches have centred around models for specific systems,

but MLIAPs and especially graph neural networks have also been effective at perform-

ing screening in high-throughput searches [157, 158, 159, 160, 161, 162] and to be used

as universal force-fields [163, 164]. M3GNet, released in late 2022, is even capable of

performing energy screening and structure relaxation for materials containing atoms

of a library of 78 different atomic species. In fact it is used in in this work, as will be

presented in Chapter 5.

This work is, overall, largely focused on using the descriptor-based model SNAP. In

a comparison between the state-of-the-art models [165], including NNP, GAP, SNAP,

qSNAP and MTP (and not including ACE at that time), it was shown that all models

can achieve an accuracy below 10−2 eV/atom on a standardised dataset. SNAP notably

performed well with a low number of features. At their heart, these models are ideal

for performing simulations over large length scales and long timescales, making MD

simulations ideal. For such simulations, they have been used to model nucleation

processes [166], amorphous phases [167], ionic conductivity [29] and fracture formation

[168] to cite a few. As mentioned above, another area in which they have proved

invaluable is in the search for new materials. They have been used as screening tools for

high-throughput simulations [169], as a driving tool for finding new structures, either

in combination with established models [170, 171, 172] or with novel methods [173,

174], and they have been used to directly construct convex hulls [175]. All applications

which require lengthy DFT calculations for the predictions of energies, forces and stress

tensors can be accelerated by MLIAPs, as is the case for calculating phonon spectra

[176] and finite temperature and pressure phase diagram construction [177], as well as

free energy calculations [178].

One of the limitations of these models is the fact that they can, by construction, only

model local effects. Thus, long-range interactions and even more so non-local effects

cannot be well captured. New formalisms have been developed in order to incorporate

some of these effects, notably long-range interactions [116, 117]. The spin degree of

freedom is also ignored in the representation, and adaptations of either the descriptors

or the model to include some contribution of the spin-exchange interaction have been

developed [179, 180, 181, 182]. There remains some difficulty here in generating a

desired training dataset.
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3.8 Conclusion

Two principal topics were covered in this chapter. Firstly, definitions and important

concepts in machine learning were presented. Particular attention was brought to two

specific ML algorithms, ridge regression and neural networks. The focus was then

shifted to the new class of machine learning interatomic potentials. MLIAPs make use

of many-body descriptors that described the local chemical environments of the con-

stituent atoms of a system to map the PES. As for any ML model, they have parameters

that must be tuned during a training process in order to accurately performing such

mapping. The training data is provided by energies (as well as forces and stress ten-

sors) of high-fidelity DFT calculations. Their accuracy thus typically matches that of

DFT, coming at a fraction of the cost. However, they are only applicable for systems

that resemble those of the training set. Different classes of MLIAPs were given, and

there was a particular focus on descriptor-based models, most notably NNP and SNAP.

The latter is central in the next two chapters, as it is used as a screening tool for the

high-throughput search of novel ternary materials.
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SNAP as a Screening Tool for

Ternary Systems

4.1 Introduction

Two initial remarks are made before commencing the chapter. The first is that all the

work presented here was done in full collaboration with Michail Minotakis. Alessandro

Lunghi and Matteo Cobelli provided the code to train the machine learning interatomic

potentials and were involved in the project development. The second is that this

chapter is related to work described in a published article in Reference [31].

The search for novel materials is crucial to match the demand for ever-increasing

performance in fields such as aerospace, advanced electronic devices and energy tech-

nologies. Following advancements in hardware performance and the development of

user-friendly ab-initio algorithms for materials modelling [30, 183, 184], it has become

feasible to utilise these computational methods to expedite the discovery process. No-

table successes in theory-driven materials discovery include the advancements in Li-ion

cathodes [185], high entropy alloys [186], and magnetic materials [18]. The current

state-of-the-art workflow entails a high-throughput search (HT) [187], leveraging effi-

cient density functional theory (DFT) calculations to predict material properties for

a large virtual pool of compounds, with the hope of uncovering previously unknown

“hidden compounds” [188]. Material databases house collections of such prototypes

[19, 20]. The initial step in this workflow involves stability screening, ensuring that

selected compounds are chemically viable and thermodynamically stable [189]. This

61
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screening necessitates the calculation of a candidate system’s total energy. The work

presented in this chapter primarily focuses on demonstrating how machine learning

(ML) can assist in this initial screening process.

Two essential elements are required to identify new stable phases: a method for

generating candidate structures and a method for evaluating their energies. The former,

not the primary focus of this study, is typically achieved by constructing a library of

prototypes [18] or using dedicated methodologies for proposing novel structures [190,

191, 192]. Recently, ML has been used to accelerate this step [173, 193]. In contrast,

the evaluation of total energies generally involves local/semi-local DFT calculations,

which offer reasonably accurate results at a manageable computational cost. However,

even with light approximations, ab-initio calculations remain the rate-limiting step in

materials search workflows, constraining the number of candidate structures that can be

tested and the size of their unit cells. To expedite this process, ML has been employed

in various ways. For example, it has been used to predict improved starting charge

densities for the self-consistent loop required by Kohn-Sham DFT [194, 195, 196]. ML

has also been applied in active-learning frameworks to accelerate geometry optimization

[197] and in ab-initio molecular dynamics (AIMD) [198] by directly predicting energies

and forces. In these cases, ML models map local atomic configurations to energies

and forces by training on DFT-provided training data. Once trained, the models can

provide predictions significantly faster than DFT calculations. This work follows a

similar approach by developing a machine-learning model that acts as a surrogate

for energy predictions made by DFT, serving as a screening tool in high-throughput

searches.

Several approaches have been employed to construct energy surrogates for DFT in

the computational materials discovery process [189, 199]. One commonly used strategy

is cluster expansion, where the energy of a system is expressed as a sum of energy

contributions from various clusters formed by constituent atoms. The effective cluster

interactions’ strengths are determined by fitting the model to a set of DFT energies.

Thus, this surrogate model leverages DFT data to interpolate for new structures [200].

This is similar to the approach taken by many ML tools, which can equally be used to

predict energies based on interpolation of DFT data.

A multitude of studies have utilised ML in materials discovery, including compo-
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nent predictions [201], forecasting the most likely compositions for a given set of atomic

species, and structure predictions [202], determining the most probable crystal struc-

ture. These methods also extend to predicting a material’s energy distance from the

convex hull [203, 204]. Such techniques rely on databases containing diverse materials

composed of different species and employ various machine-learning algorithms, such

as Bayesian optimisers, random forests, and support vector machines. Feature vec-

tors typically encompass general information about the material structure and species

characteristics of the constituent atoms. However, they are not usually trained to differ-

entiate between compounds with similar structures. For such tasks, machine learning

interatomic potentials (MLIAPs) are relied upon. These have been extensively de-

scribed in Chapter 3. Similar to the cluster expansion method, MLIAPs employ a

DFT dataset to fit the model parameters and can predict energies and forces with

ab-initio accuracy, provided that the structures fall within the model’s interpolation

range [165]. MLIAPs combine locally defined atomic configuration fingerprints, which

are invariant under translation and atomic permutation, with ML algorithms to predict

energies, forces, and stress tensors. This makes them ideal for high-accuracy molecular

dynamics simulations involving large systems and long timescales [128, 167, 205, 206].

In the context of predicting material stability, MLIAPs are used to map the po-

tential energy surface of multiple phases and construct the T=0 K phase diagram to

determine the lowest energy structures, namely, constructing the convex hull. SNAP

and NNP have previously been employed for this task for metallic alloys [207, 208,

209, 210]. However, SNAP’s application was limited to a range of different struc-

tures and stoichiometries, and the potential was not used to discover new stable alloys.

Conversely, NNPs relied on an extensive training set (approximately 104 structures),

matching the number of DFT-computed structures needed to construct a fully ab-initio

convex hull. The same holds for GAP models trained as general potentials across the

phase diagrams of C [211] and Si [168]. The computational cost of kernel methods

increases as O (N3) with training set size (using direct inversion of the kernel matrix),

therefore limiting the application of typical kernel methods to a certain dataset size

(typically ∼ 105). Moreover, these methods plateau in performance beyond a given

training set size (dependent upon the model size), leading to only marginal accuracy

gains for increasing training set sizes [212]. To lower the cost of predictions for the
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case of kernel methods and most importantly to reduce the computational and human

effort of creating a training set, it is of interest to minimise the size of this data set.

Gubaev et al. [175] presented one of the few notable examples of utilising a MLIAP,

in the form of a moment tensor potential, trained on a limited number of structures

to predict materials stability at an accelerated pace. In their study, they conducted

ab-initio calculations on a range of 383 to 2,393 structures to train an MTP capable of

reproducing binary and ternary convex hulls. The selection of these structures was ac-

complished through an efficient active-learning process [106], involving the exploration

of approximately 104 to 105 configurations for each phase diagram. This research

demonstrated the ability of MLIAPs to accelerate the computational high-throughput

search for new alloys.

In this work, it is shown how to build an effective MLIAP, SNAP, in the view of

speeding up the search for new ternary intermetallic compounds. The aim is to build

a rapid screening tool, which is similar in philosophy to the specialised MLIAP pro-

posed by Artrith et al. to compute the binary convex hull of LixSi [213]. However, the

approach here differs in terms of the training database selection. Instead of dedicating

resources to curate a training set and conducting DFT calculations solely for MLIAP

training purposes, we leverage existing materials convex hull databases, particularly

the AFLOWlib repository [19]. This approach offers several advantages. Firstly, the

data is readily available, and the computational efforts invested in ab-initio calcula-

tions are also pertinent to the construction of the convex hull. Within AFLOWlib,

extensive exploration of binary phase diagrams has typically been conducted, resulting

in a substantial amount of available data and a lower likelihood of discovering new

stable binary alloys. In contrast, ternary hulls tend to be less explored, despite the

combinatorial explosion of possible derivative structures that can be generated from

prototype structures, providing greater room for exploration. Furthermore, for ternary

systems, the enthalpy term in the Gibbs free energy remains significant compared to

the entropic term at room temperature, as opposed to the case for quaternary or higher

multi-species compounds [214], emphasizing the continued relevance of free-energy cal-

culations. Consequently, the proposed method utilizes SNAP to guide the screening of

the ternary space.

The chapter is organised as follows. At first, an overview of the theory and method-
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ology regarding the construction of phase diagrams is presented, leading to the expla-

nation of the concept of convex hulls. Following this, the AFLOWlib repository is

introduced, along with the relevant software tools that are used for this study. In a

third subsection, the Ag-Au-Cu ternary phase diagram, along with the associated Ag-

Au, Ag-Cu and Au-Cu binary phase diagrams are described. These will serve as the

reference system for the bulk of the work. After outlining these methodological aspects

and reviewing the relevant literature, the results are presented. At first, the ensemble

SNAP model employed, and the training databases are described. This is followed by

the first benchmark tests performed for the training of SNAP on single binary systems.

The main results are then shown, as a SNAP model trained on the three binary systems

is used to make predictions on the ternary compounds. This is extended to different

sets of ternary structures, such as to assess the full range of applicability of the devised

screening tool. Further models for two other ternary systems, Mo-Pt-Ti and Cd-Hf-

Rh are then assessed. After presenting the methodology followed for hyperparameter

optimisation, a subsection is dedicated to the study of different error metrics, aimed

at detecting when the MLIAP used performs extrapolation. This is crucial to evaluate

the reliability of predictions and establish proactive measures for situations where they

prove unreliable. The results are finally summarised in the conclusions section.

4.2 Identifying Stable Compounds

To put this work into context with the broader field of materials science and engi-

neering, a brief recap of the physics underpinning phase diagrams is presented. This

requires notions from thermodynamics [215, 216, 217]. The systems studied are charac-

terised by their composition {xk}, where each xk represents the relative concentration

of species k, as well as their other state variables, most importantly pressure P , tem-

perature T and volume V . The system is closed, so there is no mass exchange with

its surroundings. The different substances present (different atoms or molecules) are

referred to as the components of the system. In the study of phase diagrams, the aim is

to identify what type of phase the system forms under certain conditions, i.e. for given

state-variable values. This is established when the system is in a stable equilibrium.

A phase is defined as a perfectly homogeneous region of space made up by a material.
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This includes phases such as solid, liquid and gas phases, as well as different micro-

scopic structures of solid phases. Note that under certain conditions, the system could

be a mixture of several phases (e.g. solid liquid mix). Phase diagrams include typical

temperature/pressure phase diagrams for single-component systems (unaries), as well

as temperature/composition phase diagrams used for alloy phase diagrams (binaries

for two-components, ternaries for three components, etc.). In all practical applications,

T , P and {xk} are held constant, since these can be controlled.

The shape of a phase diagram is underpinned by the thermodynamic competition

between different phases. It is therefore necessary to establish which thermodynamic

quantity determines the phase that a system will adopt. At constant T and P , it is

the Gibbs free energy G. Given a system with internal energy U , the sum of its total

potential and kinetic energy, and entropy S, in the absence of external fields, the Gibbs

free energy is defined as

G = U + PV − TS. (4.1)

The aim is to determine the direction of spontaneous change, which drives the adoption

of the most stable phase. From the first law of thermodynamics, under constant T and

P conditions, the change in internal energy is

dU = dQ− PdV, (4.2)

with dQ being the heat exchanged. The change in Gibbs free energy can be expressed

as

dG = dQ− TdS. (4.3)

From the second law of thermodynamics, in a spontaneous process

dQ ≤ TdS, (4.4)

which, expressed in terms of the Gibbs free energy, yields,

dG ≤ 0. (4.5)
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Thus, at constant T and P , a system will spontaneously change to minimise its

Gibbs free energy. This implies that, in phase diagrams in which temperature and

pressure are controlled, the stable phase(s) minimise the Gibbs free energy of the

system. Not only can this explain the shapes of experimental phase diagrams, but

it can also be used in the field of inverse materials design to search for novel stable

materials.

The theoretical approach to establishing a phase diagram of a multi-component

system would require a set of methodologies to calculate all relevant quantities in

Equation (4.1) for all possible phases, including the liquid phase and different solid state

phases. In theory, an infinite number of solid phases should be sampled [218]. However,

this is limited in practice and the choice of phases modelled is guided by the knowledge

of well-known phases of related phase diagrams. In the case of a three component

system, this must be performed for ternary phases as well as for the associated binary

and unary phases. From computed values of the Gibbs free energy for different phases,

a phase diagram can be constructed using the phenomenological CALPHAD technique

[219]. This, in fact, only relies on a database of thermodynamic properties, and thus

can be used with experimental, as well as computational results.

In computational studies, the difficulty lies in computing Equation (4.1) accurately,

in a way that reflects the physical reality of real materials, studied experimentally.

Typically, all compounds studied are assumed to be perfect crystals, with a well-defined

lattice, basis and composition, as well as infinite translational symmetry. Real materials

differ as they are not infinite nor perfectly homogeneous, have surfaces, impurities,

many types of defects, grain boundaries along with pores and cracks at larger length

scales.

Aside from this evident approximation, calculating G accurately for a single crystal

at finite T and P is still non-trivial and relies on approximations. The problem is

typically recast by calculating the Helmholtz free energy F of a given phase, from

which the Gibbs free energy is obtained using a Legendre transformation,

G = F + PV. (4.6)

The calculation of F must account for the total internal energy of the system,

as well as its entropy, which are influenced by several degrees of freedom, namely
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electronic, vibrational, configurational and magnetic ones [220, 221]. The coupling of

each degree of freedom also contributes to F . The calculation of the configurational

free energy (different atomic arrangements on a parent lattice) increases the number

of structures that needs to be sampled very significantly. Therefore, one common

approach to calculate F is to select a fixed atomic decoration to represent a phase for

the calculation of the other degrees of freedom and to calculate the configurational

contribution separately. The free energy is then decomposed into different terms by

means of the free energy Born-Oppenheimer approximation [222],

F = E0 − TSconf + F vib + F elec + Fmag. (4.7)

Where, E0 is the electronic energy at T=0 K of the representative structure, Sconf is the

configurational entropy, F vib, F elec and Fmag are the vibrational, electronic and mag-

netic contributions to the Helmholtz free energy respectively. F vib and F elec account

for finite temperature effects of the structure.

E0 is computed using ab-initio calculations, often DFT, from which contributions to

F elec and Fmag can also be obtained. However, these require further DFT calculations,

making the full calculation of F an intensive process. These are beyond the scope of

this work, and the reader is referred to Reference [223] for further details on these,

notably F elec and Fmag. Separate methodologies exist for the calculation of the other

terms, Sconf and F vib.

Computing G through Equations (4.6) and (4.7) involves high accuracy calcula-

tions that take into account finite temperature and pressure effects, thus matching

experimental conditions. However, this leads to a large compute time. For example,

the special quasi-random structures (SQS) [224] and coherent potential approximations

(CPA) [225, 226] methods can be used to estimate Sconf . They require several DFT cal-

culations, of several supercells of the parent structure for the former or many primitive

cells with embedded components for the latter. F vib is commonly calculated within

the quasi-harmonic approximation, which requires a knowledge of the system’s phonon

spectrum. This can be computed using the finite displacement supercell method [227,

228], requiring further ab-initio calculations, which are costly due to the number of

atoms in the supercell, as well as the tight convergence criteria required.

In the context of a high-throughput study, computational efficiency is of the essence
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and a balance between speed and accuracy is paramount. To increase the throughput of

this work, here we only compute E0, which is taken as the sole contributor to evaluate

G. This means that the all results are formerly at T=0 K and P=0 Pa. E0 is one of

the main contribution to G, notably at temperatures neighbouring room temperature,

particularly for binary and ternary systems. The approach of only using the total

energy at T=0 K is a common one for high-throughput searches, since a single DFT

calculation is required per phase [229, 230, 231, 232, 233]. Equations (4.6) and (4.7)

are simply given to frame the current work in the wider context of material phase

diagrams.

Since finite temperature effects are not considered, the superscript will be dropped

for E0. Note that G, U , E and the enthalpy H (= U + PV ) are all equal at T=0 K and

P=0 Pa. Determining which phase is stable is equivalent to minimising any of these

quantities. In what follows, only the enthalpy H and the energy E will be used as an

indicator of phase stability. Finally, the description given so far is based on thermody-

namics and assesses the energetic stability of a compound. An issue with computational

studies is that due to the virtual nature of the work, many (in fact most) compounds

studied do not exist in the physical world. Other than thermodynamic reasons for the

instability of a material, a phase studied may also be dynamically unstable, namely, its

phonon spectrum may present imaginary frequencies. This would imply that atomic

displacements about some positions of the equilibrium structure are favourable, and

hence the structure would deform [234]. As for F vib, this requires the calculation of

phonon frequencies, leading to further DFT calculations. This step is not included as

part of the assessment of stability here. It could be added as a final step after a high-

throughput search based on thermodynamic stability. The latter is performed through

the construction of convex hulls presented in the following subsection.

4.3 Convex Hull Construction

The focus is now turned towards the systems studied in this work, namely unary, binary

and ternary alloys. The terms phase, compound and material are used interchangeably

to designate systems of atoms with different compositions and/or underlying structure.

A given crystalline material of K species (K=1 for unary, etc.) will be represented by
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its underlying primitive unit cell with N atoms and total energy E. This is computed

using DFT. As argued above, the systems that are considered thermodynamically stable

will minimise Eatom = E/N . The division by the number of atoms is necessary as the

systems are no longer infinite in size, as assumed in Section 4.2. A unit cell with a

fixed number of atoms is used to represent each system. For different phases at a fixed

composition {xk}, it is easy to identify the most stable compound, corresponding to

the one with the lowest value of Eatom. This is the stability criterion for unary systems.

Binary and ternary systems first need to be lower in energy than the stoichiometric

linear combination of energies of their constituent elements. This corresponds to having

a negative enthalpy of formation Hf , defined as,

Hf = Eatom −
K∑
k=1

xkEatom,k, (4.8)

where Eatom,k is the energy per atom of the stable elementary phase of specie k. Thus,

Hf quantifies the energetic gain of forming a mixed phase with respect to the elemental

ones. The picture of stability is not as straightforward when considering the full range

of compositional space, since binary and ternary compounds can decompose into two

or three other phases of different compositions. This is the case if the appropriate

linear combination of the energies of these phases is lower than the energies of the

decomposing compound. The T=0 K phase diagram corresponds to the convex hull of

a plot of the formation enthalpy against composition. The former is made up of the line

segments of the smallest polygon that contains all the points in composition/enthalpy

space (with Hf ≤ 0). The points on these lines are considered stable, as the convex

hull defines the stability criterion at each composition. It is a set of simplices, so lines

(binary phases) or planes (ternary phases), delimited by points on the diagram. The

points of the plot correspond to different phases, have coordinates of [x1, .., xk−1, Hf ].

One composition coordinate out of K is not needed, since it is implicit from the other

coordinates, as they sum to 1.

The geometrical construction of a convex hull is now described for the example

of a binary system A-B. It follows the methodology used for AFLOW-CHULL [235],

presented in more detail in Section 4.4.2, which is based on the Qhull algorithm [236].

In this work, the Python wrapper pyhull [237] was used to construct convex hulls.
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Since the enthalpies of formation of the lowest energy phases of A and B are zero and

an arbitrary A-B compound must have a negative formation enthalpy to be stable, one

line of the binary convex hull joins the two elemental phases across the full composition

range at Hf=0. All points with Hf >0 are not considered for the analysis. Note that

this single line will constitute the full hull, if there are no binary compounds with

negative enthalpies of formation. If such binaries do exist, however, the following

step will consist in finding the outermost points in the Hf < 0 region of the phase

diagram. Only the lowest enthalpy points at each composition are considered for the

construction. A first construction is made using the elemental points and the lowest

enthalpy point. If points exist below these lines (lower Hf at a given composition),

for each facet, the points furthest away will be identified. They could be the same

point for several facets. These points are added to the hull construction and new lines

are formed between them and the end points of the facets they are closest to. All the

new lines, along with the ones that had no outside points, form the new construction.

Since again, points can lie outside, this process is performed iteratively until an actual

convex hull is formed. The steps described in one iteration are illustrated in Figure

4.1. The result is a set of lines that “wrap” all the points, which are either inside or on

the edge of the convex hull. Thus, the points of the convex hull (and their ordering)

are the defining features of the convex hull. These points are associated with the stable

phases of the binary system, and they do not decompose into other phases.

In the case of ternary convex hulls, three-dimensional plots are required, with the

vertical axis typically used for the Hf coordinate and the horizontal plane for the

compositional space. The latter is typically represented in the form of an equilateral

triangle, with pure elemental phases at the vertices, binary phases along the edges

and ternary phases in the centre. A schematic ternary diagram is show in Figure

4.2 to demonstrate how the composition is typically read from them. The associated

three binary convex hulls are constructed first, to identify which binary points are used

to build the ternary phase diagram. These points are then retained, along with the

minimum enthalpy points at each ternary composition. The construction of the ternary

convex hull is identical to that of the binaries, but the facets of the hull are no longer

lines bound by points, but planes delimited by three points. An example of ternary

convex hull is shown in Figure 4.2.
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A

E

B

C

D

Figure 4.1: Graphical illustration of the procedure followed to build a fictional A-B
binary convex hull. Hf is plotted against the proportion of B content, xB. Black lines
show the simplices of the hull, the blue points represent different binary phases. In step
A, the minimum elemental phases and the global minimum are added to the convex
hull, are highlighted in red and are joined. Steps B-D show the procedure of creating
new facets, (B) by first identifying the points outside the construction (in green), (C)
finding the furthest points from each facet (new red points), (D) and joining these with
the other hull points. This procedure is repeated until reaching the final convex hull
(E).

The convex hull now determines the stability criterion for materials. For a material

of composition xk to be stable, it needs to have an enthalpy of formation below the

convex hull. In other words, on the phase diagram, a point placed with a certain

enthalpy and composition must lie below (lower Hf ) the facet of the convex hull of

that composition. If it does, it will redefine the convex hull and be a stable phase, like

the other points that remain on it. If it is not, it will lie at a distance δ above the

hull. This is the difference Hf of the compound and the convex hull at xk (ignoring

the “top” facet delimited by the elemental points),

δ = Hf −Hhull, (4.9)

where Hhull is the enthalpy at the hull. The convex hull can be used to forecast the

decomposition reaction that determines which phases the compound would separate

into. Indeed, such a compound would decompose stoichiometrically into the compounds
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A B

Figure 4.2: Example of a ternary convex hull for the Ag-Au-Cu system. (A) shows how
an equilateral triangle is used to define the composition space of ternary compounds.
(B) shows an example of a 3D ternary convex hull viewed from the top, with black
crosses indicating the position of hull points and black lines delimiting the facets. The
colour map shows how the depth of the hull, denotedHhull, varies across the composition
range. The data taken is taken from this work, presented in the next chapter.

that delimit the facet or facet edge closest on the phase diagram.

4.4 AFLOWlib Repository and AFLOW Standards

The Automatic FLOW for Materials Discovery library (AFLOWlib) is a large online

repository containing computational properties of over 3.5 million compounds [238]

and serves as the reference database for much of the work presented here. At its core,

AFLOW is a software designed for the computational high-throughput search of novel

materials. It thus provides a consistent and robust workflow to generate structures

and handle the DFT calculations automatically. The online repository collects the

results of all the calculations, which are performed across a wide range of elements (H

to Bi excluding Ar) and for combinations of 2 to 7 different elements across different

stoichiometries.

4.4.1 High-Throughput Framework

The AFLOW package, therefore, enables the running of high-throughput calculations

in a standardised format. The starting point is the structure generation. Experimental

compounds present on the Pauling File [239], ICSD [23] and the Navy Lattice Crystal
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database are used both directly as candidates, but also to create structure prototypes,

that could be decorated to create virtual compounds. Initially, there were approxi-

mately 400 such prototypes. Most compounds are binary and ternary derivative struc-

tures from fcc, bcc and hcp structures. For the fcc and bcc derived structures, supercells

up to 20 atoms are used, and up to 24 atoms for the hcp structures. These make up the

bulk of the compounds on the repository, since many derivative structures are created

for different stoichiometries (approximately 20 for binaries and 10 for ternaries) of each

binary and ternary present in the database. Based on this large library of structures,

the AFLOW software follows a standardised procedure to perform HT calculations.

It has been performed across the whole library and the results are available on the

online repository. Note that it can be run locally as well for individual structures or

for a user-specified set of structures. The compounds selected in any HT search are

first relaxed, followed by a static and band structure calculations using a DFT code

(VASP). Crucially, errors that occur in such runs are handled automatically. As the

introductory paper outlines [238], these are typically related to the limited hardware

resources or errors that arise due to problematic input parameters. Another central

point of the framework is the use of robust, general and consistent input parameters

employed to run electronic structure calculations. This notably led to the development

of standardised Brillouin Zone integration paths [240].

All calculations on AFLOWlib are carried out with VASP [30, 49, 50, 51], with

PAW pseudopotentials and GGA exchange-correlation functionals, as parameterised

by Perdew-Burke-Erzenhof (PBE). Structures are fully relaxed (lattice parameters and

atomic positions) twice to reach their equilibrium (close to null forces acting all atoms),

using an energy convergence criterion of 1 meV/atom. The plane-wave kinetic energy

cut-off and the k -mesh density chosen for these calculations depends on the systems

studied. VASP provides recommendations for suitable species-dependent cut-off values

that provide accurate calculations within a defined range. AFLOW uses a default of

1.4 times the maximum recommended value of all species present. For the k -mesh

density, it is determined with respect to a central quantity, the number of k -points

per reciprocal atoms NKPPRA. The number Ni of k-points along each reciprocal lattice

vector b⃗i is determined from NKPPRA and N , the number of atoms in the unit cell, from

the inequality
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NKPPRA ≤

[
3∏

i=1

Ni

]
×N. (4.10)

Note that Ni also varies with the norm of the associated reciprocal lattice vector
∥∥∥⃗bi∥∥∥,

since there are fewer sampling points along the direction of reciprocal lattice vectors

with lower norms. Therefore, under the constraint of Equation (4.10), the sampling

density
∥∥∥⃗bi∥∥∥ /Ni, is kept as uniform as possible across each direction. This determines

the number of k -points along each direction. From these three numbers, the k -points

are generated following the Monkhorst-Pack scheme [241], apart from compounds with

a lattice possessing hexagonal symmetry, for which a uniform Γ-centred mesh is used.

For all binary and ternary compounds, the NKPPRA is fixed at 6,000 for geometric

and ionic relaxations and to 10,000 for a more dense mesh for static calculations [19].

Between the relaxation and static calculations, the structure is changed into standard

form for consistent categorisation of structures [240]. Occupancies of states at the Fermi

level are determined using the Methfessel-Paxton approach [242], with a smearing width

of 0.10 eV, for all relaxation calculations. For the static calculations, the occupancies

are determined using the tetrahedron method with Blöchl corrections [243]. Finally, all

relaxation calculations are initialised with non-zero magnetic moments for all species.

If these moments are below 0.025µb for certain atoms, the moments are set to zero for

further calculations. This concludes the standards used for the AFLOWHT framework.

For calculations carried out in this work, many of the standards presented above are

followed. The differences will be noted for all relevant sections.

The AFLOW ecosystem also includes many other tools that are of great practical

use in HT studies. The ones that are the most relevant for this project are briefly

presented.

4.4.2 AFLOW Tools

To access the data available on the repository, a useful Application Program Interface

(API) [244, 245], that follows the REST [246] principles, has been developed. The

data is stored in a SQL database, which is organised in three main layers, ordered

hierarchically. These can individually be queried via the API. Each layer has specific

keywords and entries that can be queried. The top layer is the Project-layer, for which
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the entries correspond to different projects. The three main different projects group

unary, binary and ternary system data. The second layer is the Sets-layer, where

individual entries correspond to different systems, e.g., Ag-Au-Cu. Several materials,

with different structures and compositions, but with the same atomic components, are

associated with the Sets-layer. Finally, the entries of the bottom Calculation-layer are

associated with a single compound. These have many more keywords than those of

other layers, since structural, thermodynamic, mechanical and electronic properties of

a given compound can be retrieved. The full list of keywords for each layer can be found

in reference [244]. This simple tool is key in enabling the availability of the wealth of

data available on AFLOWlib, which would otherwise be accessed via a web browser.

The API provides a systematic and reproducible mechanism for rapidly downloading

material databases locally.

A second tool directly relevant to this work is the AFLOW-CHULL convex hull

construction program, built into the AFLOW software, for which the methodology

followed has been outlined in section 4.3. Note that for this study, an in-house code

was made for this purpose, to have more flexibility for loading different databases

and plotting. The AFLOW convex hull program also takes a long time to run, since

it downloads all the relevant data from the repository via the API and performs a

structural comparison on all compounds before the convex hull construction.

Another very useful feature of the AFLOW ecosystem is the structure prototype

library [247, 248, 249]. By categorising the structures retrieved from experimental

material databases (notably the Navy Lattice Crystal database) according to Space

Groups, a library of structure prototypes was created. At the time of writing, there

are 1100 prototypes present in the database. Each one is represented by the crystal

structure of a real material. When creating a virtual material from a given prototype,

the atomic species of the prototype are exchanged for those of the desired material.

Each prototype is therefore characterised by its lattice parameters and positions of

constituent atoms. A space group possesses different classes of symmetrically equivalent

sites. These atomic positions are referred to as Wyckoff positions [250, 251, 252] and,

depending on their class, they have specific degrees of freedom, expressed as fractional

coordinates in each direction. The prototypes present in AFLOW conserve the Wyckoff

positions. When a compound is created, in order to conserve the space group of the
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Figure 4.3: Unit cell of CoU. Co atoms are pink and U atoms are blue.

underlying prototype, only certain degrees of freedom are allowed to be modified. This

could be a single lattice parameter to scale the volume (for cubic systems). For the

atomic positions, only the free parameters of the Wyckoff positions can be changed.

To clarify these points, an example is given here. The structure of CoU is shown in

Figure 4.3. It is the structure of a 50:50 binary compound with 8 atoms in the unit

cell. The underlying lattice is cubic, so that only the volume of the cell can be changed,

determined by the lattice parameter a. Here a=6.356 Å. For this cell, there are three

sets of Wyckoff positions, for which the fractional positions are given in Table 4.1. In

CoU, both Co and U occupy a sites (which have a multiplicity of 4). These sites have

one degree of freedom, the fractional coordinate x, which determines all the positions.

For Co, it is 0.294 while for U it is 0.0347.

Table 4.1: Table of Wyckoff positions for space group 199. Note that the origin can be
either (0,0,0) or (1/2,1/2,1/2) [252].

Multiplicity Wyckoff Letter Coordinates

12 c

(x,y,z), (-x+1/2,-y,z+1/2), (-x,y+1/2,-z+1/2),
(x+1/2,-y+1/2,-z), (z,x,y), (z+1/2,-x+1/2,-y),

(z+1/2,-x+1/2,-y), (-z+1/2,-x,y+1/2),
(-z,x+1/2,-y+1/2), (y,z,x), (-y,z+1/2,-x+1/2),

(y+1/2,-z+1/2,-x), (-y+1/2,-z,x+1/2)

6 b
(x,0,1/4),(-x+1/2,0,3/4),(1/4,x,0),

(3/4,-x+1/2,0),(0,1/4,x),(0,3/4,-x+1/2)

4 a
(x,x,x),(-x+1/2,-x,x+1/2),

(-x,x+1/2,-x+1/2),(x+1/2,-x+1/2,-x)
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The final feature in AFLOW that is used in this work is the XtalFinder [253] tool

that is used to compare different compounds’ structures and establish whether they

are the same or not. It can also be used to determine the space group of the structure

and Wyckoff positions occupied by the atoms. To achieve this, each structure is first

mapped onto its ideal prototype using the AFLOW-SYM [254] tool. This determines

the symmetry operations that a structure possesses, hence it finds the space group

of the structure, along with the occupied Wyckoff positions and allowed degree of

freedom values (lattice parameters and fractional coordinates). Note that, since this

is performed numerically, tolerance values are required with respect to lattice vectors

and atomic positions. The default tolerance is proportional to dmin/100, where dmin is

the minimum nearest neighbour distance in the compound. Such information is used

to define the prototype of the structure consistent with the International Tables for

Crystallography (ITC) [251]. From this representation, different structures can thus be

compared systematically. Three types of comparisons are then carried out: one based

on symmetry, one on the local atomic environment and a general crystal geometry. The

first one determines if the structures have commensurate space groups and Wyckoff

positions. The second is based on comparing the atomic neighbourhood of identical

atoms in each structure. Each neighbourhood is described by the least frequently

occurring atom (LFA) atomic geometry (AG), a set of vectors that connect a central

vector to neighbouring atoms of LFA type. Comparison is then only performed between

structures with the same atoms in their neighbourhoods. Note that this stage is useful,

since it is less sensitive to tolerance values than symmetry comparisons of structures,

given that the atomic arrangements are sparse. Finally, a full isoconfigurational test

is performed by attempting to map one structure (test) onto another (reference), by

scaling the volume, creating supercells and choosing an appropriate origin for the test

structure. The aim is to check whether the lattices match and the atoms are at the

same positions, all within a certain tolerance value for volumes, lattice parameters and

atomic distances. These steps are followed not only to determine if two materials are

identical (Material-type comparison), but also to compare the underlying structure

of two different materials made of different species (Structure-type) and determine

whether they have the same backbone structure (ignoring atomic types). The latter is

useful for finding unique prototype structures.
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Such comparisons are typically performed on a database of M structures, where

there are M×(M−1)
2

pairs to compare. To accelerate the process, structures are grouped

together based on the symmetry comparison and stoichiometry to decrease the number

of comparisons required. The groups are refined during the near isoconfigurational

comparison step. Within each group, a full geometric comparison is then performed,

in which all grouped structures are compared to a reference structure. Compounds

that do not match the reference are moved to a separate group. Within this group,

the comparison loop is repeated. The process is therefore iterative. The result is a

set of groups of identical structures, each represented by a single compound. This tool

is useful for eliminating identical structures, that create redundancies in databases for

training machine-learning models and creating prototypes.

This concludes Sections 4.2, 4.3 and 4.4, in which an overview of the relevant theory

and methods for the ab-initio-based determination of material stability was given. The

thermodynamics of compound formation was summarised and linked to established

ways to calculate the terms of Equation (4.7). In this work, it will be narrowed down to

the determination of the enthalpy of formation Hf of a compound and the construction

of convex hulls, the phase diagrams at T=0 K. Finally the AFLOW ecosystem was

presented, as it constitutes the reference repository for this work, notably for its rich

database of computationally determined convex hulls, and provides a number of tools

that are crucial in automating the study. In the following section, a presentation of

the ternary Ag-Au-Cu system is given, which is the test system for this work.

4.5 Ag-Au-Cu System

The aim of this first body of work is to create an efficient screening tool for the predic-

tion of the total energy and enthalpy of formation of ternary alloys. In order to design

such a tool, a test system is necessary to construct the model, tune it and assess its

effectiveness. The system selected here is Ag-Au-Cu, a ternary alloy system made up

of the three coinage metals. Alloys made of all three elements, rich in Au-Cu, in fact

have applications in the dental industry, where they are used in single units, implants

and retainers [255]. All three elements are also used in combination in wire bonding,

to link copper wires with metallic electronic components [256, 257]. Along with their
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high resistance to corrosion, they are also able to resist high forces, notably when the

alloys are age-hardened [255].

This choice of system is motivated by the idea of using a simple system for testing,

one that does not display specific bonding patterns and complex coordination, but

rather quite simple chemistry, since these elements form compounds with the common

fcc close-packed underlying structure. All three elemental phases are fcc (A1) and their

lattice parameters only differs by 11% [258] (Ag 4.086 Å, Au 4.072 Å and Cu 3.613

Å at 293K [259]). They are also group XI elements and all have filled d shells. In

this section, the common phases of this system and the phase diagrams of the three

binary systems (Ag-Au, Ag-Cu and Au-Cu) are described. The section is based on

the CALPHAD construction of the phase diagrams carried out in references [260, 261],

which make use of experimental work previously published.

Before beginning, some terms, relevant to solid-state phases and phase diagrams, are

defined. A solid-state solution is a compound with a crystalline structure whose sites

are randomly occupied by the constituent elements. The composition is fixed, however,

over the full scale of the crystal. In contrast, for an intermetallic compound, each site

has a single element associated with it. Finally, a eutectic point on a composition-

temperature phase diagram, corresponds to a point at which the melting point of the

mixture of components is lower than that of all of the individual components.

4.5.1 Ag-Au Binary

The Ag-Au binary system is miscible across the entire compositional range, and fcc

solid solutions (A1) are formed at all compositions and temperatures up until melting.

This can be seen in the phase diagram in Figure 4.4a. The melting temperature of

Ag is 1235 K and that of Au is 1337 K. There is a continuous liquidus-solidus line

between the solid solution and the liquid phase, which is narrow (2 K wide) [262,

263]. The formation of binary alloys is driven by mixing of the two elements (enthalpy

and entropy [264]) and there is little effective interaction between them [265]. In

the construction of the convex hull, this leads to having degeneracies for many similar

structures. It is suggested that at low temperatures (below 200K), stable intermetallics

may exist, but that the low rate of diffusion at such temperatures may have prevented

the experimental observation of them [266]. Ab-initio studies agree that phases with
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composition Ag3Au, AgAu and AgAu3 lie on the convex hull [265, 266, 267, 268], a

fact that agrees with the convex hull of AFLOWlib [235], although in all these studies,

the compounds are intermetallic.

4.5.2 Ag-Cu Binary

The Ag-Cu binary system is mostly immiscible across the majority of the compositional

range in the solid state (below 1052 K), as shown in Figure 4.4b. At temperatures

beyond 400 K, there is some solubility in each of the elemental phases, which goes up

to 14.1% of Cu in Ag and 4.9% of Ag in Cu. A miscibility gap therefore dominates the

phase diagram. A eutectic point exists at 1052 K. Note that the melting temperature of

Cu is 1358 K. [269]. The experimental and calculated enthalpies of mixing are positive

across the entire compositional range [270, 266]. As a result, only phase separated

alloys (with regions made only of Ag and others of Cu) exist. No low temperature

stable phases have been reported [266]. The DFT-calculated convex hulls are made of

a single tie line, joining the two elemental phases, as is the case on AFLOWlib.

4.5.3 Au-Cu Binary

The Au-Cu binary system forms three ordered phases (intermetallics). The CAL-

PHAD computed phase diagram is shown in Figure 4.4c. These phases are the Au3Cu,

equiatomic AuCu and the AuCu3 phases, which respectively form in the L12, L10,

and L12 structures, respectively. These correspond to different decorations of an fcc

lattice. At higher temperatures (dependent upon the composition), a fcc solid-state

solution, like that in Ag-Au is formed. The liquidus-solidus line is narrow and presents

a minimum close to composition with 40% Ag. This system has been very well studied

and serves as a test system for binary alloys investigations [271, 266, 272, 268, 273].

Ab-initio calculations have notably predicted that another phase is stable at low tem-

peratures, Au2Cu with the β2 structure of MoSi2 [266, 272]. Note, however, that this

was predicted with LDA and PBE functionals and a later study performed with the

hybrid HSE functional, including non-local interactions, found to better match exper-

imental measurements of Au-Cu phases, showed that the β2 phase is in fact not stable

[268]. Note that for the Au3Cu structure, LDA and PBE calculations have notably
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suggested that the stable phase is a L10 superlattice [266, 274]. This has not been

investigated using non-local hybrid functionals. The plethora of studies on the Au-rich

compositions shows that it is unclear which phases are stable at low temperatures, and

that many fcc superlattices lie close in energy [266, 272, 268, 273, 274, 275, 276]. On

AFLOWlib, the AuCu and AuCu3 phases are present on the convex hull, but Au3Cu

is undercut by Au2Cu.

(a) Phase diagram of Ag-Au. (b) Phase diagram of Ag-Cu. (c) Phase diagram of Au-Cu.

Figure 4.4: Binary phase diagrams of Ag-Au (left), Ag-Cu (centre) and Au-Cu (right).
The images are taken from the CALPHAD calculated phase diagram from reference
[261]. All solid lines are the result of the CALPHAD computed phase diagram of
that study. For Ag-Au, dots and crosses correspond to measurements from reference
[263]. For Ag-Cu, the experimental references of the legend are as follows: cross [277],
crossed-squares [278], squares [279] and triangles [280].

4.5.4 Ag-Au-Cu Ternary

The ternary phase diagram of the Ag-Au-Cu is strongly influenced by the associated

binary phase diagrams. It is shown in Figure 4.5. As described above, the Ag-Au and

Ag-Cu systems present stable phases, whereas the Ag-Cu system does not. Therefore,

Ag-Au alloyed with small concentrations of Cu as well as Au-Cu with small concentra-

tions of Ag can form. At low Au concentrations, due to the miscibility gap of Ag-Cu,

no single phase made of all three binaries exist, as compounds form with separate

mixes of pure Ag phases with Cu, AuCu or AuCu3. Only at high Au concentrations

can an A1 solid-state solution of all three elements be formed [281]. At higher temper-

atures, the miscibility gap becomes less influential and the ternary solid-state solution

is stabilised over a larger compositional range. There are no known thermodynamic

ab-initio studies of this ternary system at the time of writing (aside from those in HT

repositories), showing how understudied ternary systems are compared to the binary
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Figure 4.5: Isothermal section of the Ag-Au-Cu phase diagram at 573K. The image is
taken from the CALPHAD computed study of Reference [261]. Triangle and squares
correspond to measurements taken from [282] and circles from [283].

ones. In AFLOWlib there are no ternary intermetallics that lie on the convex hull,

with the Au-rich phase, AgAu2Cu, 3 meV/atom away from the hull, being the closest

phase.

Having introduced the main aspects of the binary and ternary phase diagrams for

Ag-Au-Cu, the rest of this chapter focuses on the work aimed at building a screening

tool, surrogate to DFT, in order to efficiently and accurately predict the total energy

and hence the enthalpy of formation of ternary compounds created virtually. Ag-Au-Cu

will serve as the test system for the development of this model.

4.6 Fitting SNAP to Binaries

There are two central ideas of this work. One is to be as efficient as possible in building

a screening tool for constructing DFT ternary alloy phase diagrams. As explained in

the introduction of this chapter, this means using readily available convex hull data

from AFLOWlib. This choice presents two main advantages. Firstly, such energy data

are already computed, so there is no the need to reperform the DFT calculations. Sec-

ondly, no calculations are “wasted” in the sole effort of training a MLIAP. By recycling

AFLOWlib data, that are by construction relevant for building a convex hull, the en-

ergies of ∼102 different compounds are accessible for training. All DFT calculations
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are thus of interest in a convex hull construction and the training of the MLIAP can

be seamlessly integrated into this process. Such a screening tool could subsequently

help accelerate the search for other low-lying energy compounds, by rapidly selecting

the most promising ones from a large pool (≥ 104) of candidates.

The second central idea for this work is to use data from binary phases only to

train the model. As explained, this stems from the fact that on online repositories,

like AFLOWlib, there are far more data points available for binary systems than for

their ternary counterparts. Moreover, there are three binary systems associated with

each ternary one. Ternary intermetallics play an important role in the technology sector

[284], providing motivation for further search in this space, which has thus far remained

rather unexplored. On the contrary, binary alloy phase diagrams have already been

thoroughly investigated. This implies that it is less likely to discover new phases there,

and that data on existing phases are abundant.

The SNAP MLIAP is used to develop a screening tool. Such a model is capable of

predicting the energy (as well as forces and stress tensor) of a compound, based solely on

the position of its atoms, including periodic boundary conditions in the case of alloys.

Note that the models presented are trained solely on energies. The principal reason

for this is that these are the only physical quantities relevant for training available

in AFLOWlib (forces and stress tensors not being present). This great restriction

reduces the number of data points provided by each structure, since a compound with

N atoms provides 3N force data points and 6 stress tensor elements, compared to only

one energy value. As it will be illustrated, even if forces were included, these would

not influence the results much, since structures in this study are close to equilibrium,

so the forces almost vanish.

Being a machine-learning model, SNAP requires training data to fit its parameters

θ⃗. A cross-validation procedure is also required to tune the relevant hyperparameters,

namely the cut-off value of the bispectrum components, Jmax, the cut-off radius, Rcut,

as well as the atomic weights that appear in the atomic density function in Equation

(3.24). Various tests must also be carried out to assess the utility and limitations of

the model. The aim is to train such a model on the data of binary compounds from

the Ag-Au, Ag-Cu and Au-Cu, in order to make predictions on ternary compounds.

At first, models are trained and tested on the individual binary systems.
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Table 4.2: Data available on the unary, binary and ternary systems associated with
Ag-Au-Cu.

Properties Ag Au Cu Ag-Au Ag-Cu Ag-Au Ag-Au-Cu

# AFLOWlib Compounds 26 39 40 188 275 281 88

# Unique Compounds 11 12 11 168 238 238 88

# Different Space Groups 8 10 9 38 44 43 21

In Table 4.2, data available from AFLOWlib on the compounds for the different

unary, binary and ternary systems are given. There are redundancies in the database,

which are identified and removed with the help of the AFLOW material-comparison

tool [254]. The number of remaining structures, as well as the number of different

space groups (SG) represented in each system, are also given in Table 4.2. There are

many duplicates in the elemental systems, since these are present in the database of

all three binary systems. There are 10 different prototypes used for these on top of

the ICSD structures, which are the fcc (SG #225), bcc (SG #229) and hcp (SG #194)

structures, along with the fcc diamond structure (SG #227), the α-As structure (also

Se and Bi) (SG #166), the γ-Se structure (also Te) (SG #152), the β-Sn structure (SG

# 141), the face-centered tetragonal structure of In (SG # 139), the α-Ga structure

(SG # 64) and the α-O structure (SG # 12).

The binary structures are obtained from different types of prototypes. Some of

these are based on the unary prototypes, with supercells constructed, if necessary, to

accommodate the correct number of atoms, depending upon the stoichiometry. Ad-

ditionally, certain structures are based on binary prototypes presented in AFLOWlib,

such as the Fe7W6 structure [285] or the MoPt2 one [286]. The last source of proto-

types are fcc, bcc or hcp supercells, which can include certain distortions that break

the symmetry or change the symmetry of the parent structure due to the supercell

construction. One example of each case is illustrated in Figure 4.6. For the ternary

structures, the original prototypes are similar to those of binaries, with the addition of

some Heusler structures. Further details are given in Section 4.7.

Before presenting the results, a comparison of this database to those more commonly

used for MLIAPs is presented. Two studies are chosen for this purpose, that illustrate

two schemes for constructing a database: one based on physical intuition and one
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(a) AFLOWlib compound AgCu 126a.

aauid: aflow:c7838ef6fba6e6c3.

(b) AFLOWlib compound AuCu 60a.

aauid: aflow:dc5e8311267c00ee.

Figure 4.6: Examples of binary compounds present in the Ag-Au-Cu AFLOWlib
database. Panel (a) shows an Ag-Cu binary compound with space group # 164. Its
underlying undecorated structure is hcp. Here the unit cell is a 1×1×2 supercell of the
conventional hcp cell, but the atomic positions are decorated with Ag and Cu atoms.
The space group number is hence # 164 rather than that of hcp (# 194). Panel (b)
shows an Au-Cu binary compound with space group # 164. Note that a 2×2×2 of
the conventional cell is shown for clarity. Here the structure has a body-centered or-
thorhombic cell, with Au and Cu atoms positioned on each of the two positions of
the conventional unit cell. It is similar to the bcc structure, but with altered lattice
constants a, b and c. The space group number is hence # 65 rather than that of bcc
(# 229).

that uses an automatic scheme. The first is from the work of Chen et al. [127],

in which a SNAP model was trained as a general purpose interatomic potential for

Mo. This illustrates the types of databases employed for a standard use of MLIAPs,

namely to run molecular dynamic simulations and predict material properties such as

lattice constants, vacancy formation, surface and grain boundary energies, the phonon

spectrum and even the melting temperature. The SNAP model produced was able

to run accurate MD simulations for large system over long time-scales (∼2000 atoms

for 500 ps). The training database was physically informed with ∼103 training points

(note that in this case only one element is present). These include ground-state phases

from the Materials Project repository [20] (8 structures), surface slabs, vacancy, and

grain boundary structures (respectively, 11, 24 and 13), along with large structures

(54 atoms) that are elastically deformed (67 structures) and used for different sets of
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AIMD simulations (169 structures). All of these data classes were necessary to expose

SNAP to a variety of atomic configurations, notably with missing atoms (surfaces and

vacancies) and unusual angular and radial distributions (grain boundaries). Such data

diversity enables the force-field to be robust during the MD simulations. Note that here

stress tensors and forces were used for training, enhancing the number of training data

points significantly compared to this study. To be more precise, 284 energies, 15,600

force components and 1,704 stress tensor elements were used in their study. The role of

the model in this work is not to achieve such type of accuracy, but rather to work as a

screening tool for the energy of different structures across a phase diagram. If this work

were to use the same training database as theirs, it would only include the Materials

Project part of the database [20], namely less than 1% of this data set (considering

forces and stress tensor elements).

The work of Gubaev et al. [175] provides another suitable example of a MLIAP,

in this case, trained to construct phase diagrams. The MTP framework was chosen to

accelerate the search for novel stable alloys, as exemplified for the Cu-Pd, Co-Nb-V and

Al-Ni-Ti systems. Their force-field is both an efficient screening tool and possesses the

ability to perform relaxation. The training database was constructed on-the-fly using

an active learning scheme, centred around the extrapolation grade (presented here in

Section 4.9). A set of structures (104-105) were created from hcp, bcc and fcc super-

cells and were decorated for different compositions using the methodology presented in

Reference [287]. The maximum number of atoms varied from 8-20 depending on the

system. The MTPs were then trained on-the-fly as the structures were being relaxed.

This led to having 523 and 383 training structures for Cu-Pd and Co-Nb-V respectively.

For Al-Ni-Ti, two different MTPs were necessary, one with 2,393 and the other with

976 training structures. Based on details provided, this would put an upper bound

of 3,369, 121,284 and 20,214 on the number of energy values, force components and

stress tensor elements, respectively, to train the model. It is interesting to note that

for this system, the AFLOW structures are also used in the training set, highlighting

the additional diversity that such structures bring. The key difference with this work is

that many of the structures used for the training of the MTPs are out-of-equilibrium,

as they appeared in the relaxation path and were judged by the active-learning scheme

as being the most relevant for training a robust force-field. In this case, all structures
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included are at equilibrium, do not need to be generated and are directly relevant for

the convex hull construction. Note that in both cases outlined above, forces and stress

tensors are used for training, as opposed to this study, as such quantities are not given

on AFLOWlib.

It should be reminded that the aim of the SNAPs model presented here is not to

act as a robust force-field suitable for accurate molecular dynamics simulations across

the phases of a ternary system, but rather to be used as a screening tool in the context

of the high-throughput search for stable materials. In high-throughput studies that

make use of a machine-learning energy screening tool instead of, or in combination

with, DFT, values for the stability criteria, δ, go up to 100 meV/atom [162, 203, 288,

289]. As such, a model with an upper-bound error of 100 meV/atom is sought. Note

that in AFLOWlib, the stability criterion is set to δ=0 meV/atom, as only compounds

on the convex hull are deemed to be stable. This comes as a consequence of the choice

of training database. In fact, the training structures are not generated using scientific

intuition or an automatic scheme, but are taken directly from a readily available online

repository, AFLOWlib in this case.

Finally, for the Ag-Au-Cu test system, since the initial aim is to explore the validity

of using SNAP as a screening tool, total energies are not taken directly from AFLOWlib.

The compound structures are, but the energies are recomputed with VASP [30]. The

reason for this is that, while AFLOWlib provides an excellent reference for convex hulls,

since the calculations providing material properties were carried out in a very high-

throughput fashion (millions of calculations performed across the repository), some of

the convergence criteria are slightly loose. This results in small inconsistencies within

the database, which leads to small number of energy errors of up to 10−2 meV/atom.

This motivated the use of tighter convergence for the DFT calculations, notably by

using a plane wave cut-off energy of 600 eV for all compounds (compared to 516 eV

for Ag-Au-Cu and 479, 479 and 324 eV used for Ag-Cu, Au-Cu and Ag-Au binary

compounds respectively). To illustrate the impact this has on the results, the convex

hull of Ag-Au based on the compounds from AFLOWlib and used in this study is shown

in Figure 4.7. Convex hulls constructed from AFLOW data and recomputed data are

shown. The hull is significantly altered, notably by the poor convergence of one point

at the 50:50 composition. Even other points show deviations between the recomputed
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Figure 4.7: Ag-Au convex hull constructed from AFLOWlib (red dashed lines) and re-
computed VASP data (black lines). The proportion of Ag, x, is given on the horizontal
composition axis. Blue points are data computed with VASP and yellow crosses are
from AFLOWlib data. Only the negative portion of the convex hull is shown here.

and AFLOWlib values. Note that this convex hull constitutes a worse case scenario,

notably because of the low plane-wave energy cut-off value used for this binary system

and the shallowness of the hull in question, and most AFLOWlib convex hulls show less

deviation to the recomputed ones. Nevertheless, to avoid convergence issues affecting

the outcome of this study and to enable the easier and consistent integration of new

data points for training and testing, the higher fidelity DFT-recomputed data were

used.

4.6.1 Fitting Binaries

The first test presented to SNAP was that provided by individual binary systems, along

with their associated unaries. The aim is to establish SNAP’s accuracy in fitting and

predicting the energies of binary compounds. Unlike in the case of ternary systems,

where the ternary compounds constitute the test set, for individual binaries there is no

obvious choice of test set to robustly assess the quality of the predictions. As a result,

only a cross-validation (CV) set is used, instead of a test set, to assess the ability of

the model to generalise to unseen data. This implies that data used for hyperparam-
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eter optimisation forms the set (see Section 4.8 for caveat). An important feature of

the dataset studied is the presence of high-enthalpy structures, which have unusual

structures. These are notably unaries and binaries that were made from prototypical

structures that have geometrical arrangements (radial and angular distributions) that

are very different to those typically found in alloys (close-packed structures). “Hollow”

structures, with cages of atoms around a large portion of vacuum are notable examples

of these, which have structures based on oxides such as ReO3 [290, 291]. In order to

avoid such structures strongly biasing the model error metrics, 10 sets of training /

cross-validation are created. These are created based on an 80/20 random split of the

full binary dataset. This leads to training 10 different SNAP models, trained on each

one of the training sets, each with its own parameters θ⃗. Thus, an ensemble of 10

SNAP models are used. This is, in fact, kept for the ternary system study as well. A

full discussion of the methodology followed to determine the hyperparameters and the

values used for all systems is given in Section 4.8. Predictions from this model in fur-

ther sections (when predicting the bulk modulus and ternary energies), are performed

by averaging the predictions of all the 10 models.

Table 4.3: Summary of the average errors over 10 SNAP models for the three binary
systems.

Error (meV/atom) Ag-Au Ag-Cu Au-Cu

Training MAE 2.63 2.82 4.30

Training RMSE 4.37 4.01 6.25

CV MAE 6.85 7.27 8.57

CV RMSE 13.83 15.15 15.73

The averaged results of the mean absolute errors (MAE) and of the root-mean-

square errors (RMSE) are given in Table 4.3 for the three different binary systems.

The errors are consistent in order of magnitude with typical MLIAPs trained on similar

dataset sizes [127]. Some errors may be slightly higher than values reported for current

state-of-the-art MLIAPs [292, 293, 294], however the dataset here is smaller and not

specifically curated. All binary systems are fitted to very similar accuracies. The cross-

validation RMSEs for all systems are higher than the training RMSEs by more than

a factor of two. This highlights the fact that high-error compounds, which correlates
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Figure 4.8: Parity plot of one set of training and cross-validation sets of each of the
three binary systems. There is one SNAP model of the ensembles associated with each
binary system. The dashed parity line is a guide to the eye. The vertical dashed lines
give the values of energy of the lowest energy unary compounds, as marked by EAg,
EAu and ECu.

with high-enthalpy ones, are more difficult to fit for this binary system. These are

typically outliers, and they highly influence the RMSE. A typical parity plot for one of

the ensemble SNAP models of each binary is shown for illustrative purposes in Figure

4.8 for the training and CV sets. In conclusion, the ensemble of SNAP models is

capable of accurately predicting the energies of binary compounds. Before testing the

predictions on ternary systems, tests on the prediction of bulk moduli are performed.

4.6.2 Ag-Au Bulk Moduli

As an extra study, the SNAP models were used to predict the bulk modulus of cer-

tain binary compounds, selected from the database. This can be obtained by fitting

the Birch-Murnaghan equation of state [48] [Equation (2.29)] to the energies obtained

following the compression and expansion of the cell of a compound. The test is per-

formed with the ASE package [295]. Here, this corresponds to isotropic compres-

sion/expansions, such that only the volume of the cell is changed. The trend of the

energy against volume (EV) curve is close to parabolic. The bulk modulus B0 is ob-

tained from the curvature of the plot. It is of interest to check whether SNAP is capable
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of reproducing qualitatively the trend and quantitatively the value of the bulk moduli,

and correctly predicting the minimum volume V0 and energy E0 of the cell.

In order to test this aspect, a selection of binary compounds are taken from the set

and their cells are compressed and expanded for changes in volume between -10% and

10% in 15 steps. The energies of these compounds are computed with DFT. SNAP

is then used to replicate the ab-initio energy/volume curves obtained. Note that this

test is biased, since the systems considered are present in the training/cross-validation

of the ensemble of SNAP models trained. However, the compounds chosen are low-

enthalpy ones and, hence, possess chemical environments resembling those of other

compounds. It is expected that the exclusion of these points in the training of the

ensemble would not change the results presented. Results are given for 7 binaries of

the Ag-Au system. As a reminder, the ensemble predicts energies by averaging the

predictions of all 10 models.

Table 4.4: Percentage differences of V0, E0 and B0 as fitted with the Birch-Murnaghan
equation between DFT and SNAP ensemble models trained on different datasets.

Model V0 E0 B0

SNAP 3.6 0.2 33.3

SNAP + EV 0.6 0.1 5.3

SNAP + EV Edge 1.2 0.1 14.6

The average percentage differences between the DFT and SNAP predictions for V0,

E0 and B0 are given in Table 4.4. There are three different training/cross-validation

datasets used to construct the SNAP ensemble models. The first (referred to as SNAP)

is the standard Ag-Au binary dataset. The second dataset (SNAP + EV) is enhanced

relative to the first, with data points from the energy against volume curve of fcc Ag and

fcc Au (15 from each, sampled uniformly between -10% and 10% volume change). The

final one (SNAP + EV Edge) is similar but only includes the points on the “edge” of

the elemental EV curves, i.e., only the ones with the most compression and expansion.

This corresponds to only four extra points being added to the dataset. Note that in

the cases where compressed/expanded compounds are present, such compounds are

forced into the training set and are therefore never present in the cross-validation step.

Two illustrative EV curves predicted by these models along with the DFT reference
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are shown in Figure 4.9.

Overall, all models show predictions consistent qualitatively with those of DFT.

Quantitatively, E0 is on the right scale with percentage errors ≤ 1% and is the quantity

best predicted by SNAP. This is expected since SNAP is trained to specifically predict

energies and thus, while the exact position (V0) of the minimum compound is predicted

incorrectly, the energy scale will still be accurately described. Since the position of the

minimum is better predicted with the SNAP models that make use of the unary EV

points, predictions for E0 are better for both of these. The predictions of V0 are

generally well reproduced by the two EV-enhanced models. Note that the estimation

of the minimum point is sometimes very accurate (≤ 1%), but this is not consistent

across all systems, with differences of up to 5.57% reached for the SNAP model for

one system. The SNAP model generally tends to underestimate the volume. The

bulk modulus, dependent upon on curvature and sensitive to small changes, is the

least well predicted of all properties. For the SNAP model, the maximum deviations

reach 72.19% for one system, while it reaches 9.17% and 31.88% for the SNAP EV and

SNAP EV+Edge models. This quantity is the one most influenced by the presence of

elemental compressions and expansions in the dataset. Indeed, their presence reduces

the error significantly. All models predict the energy of the true minimum energy

compound very well, since it is information present in the ensemble training.

This shows that adding only two data points per element from the unary EV curves

enhances predictions of equilibrium volumes and bulk moduli. The inclusion of such

points could be easily incorporated into the database, if elastic property screening is

required. Note that here the maximum difference in bulk modulus between the binaries

studied is only of 37.31 %. One last point to note is that here the SNAP predictions

(trained on binaries only), captures the parabolic behaviour of the curves very well,

notably at low volumes. For many choices of hyperparameters (notably for the atomic

weights), this behaviour is poorly reproduced by SNAP, typically for compressions.

When atoms are too close, the SNAP predictions are poor and the energy typically

decreases too much. Careful hyperparameter optimisation, as described in Section 4.8,

prevents this behaviour.
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Figure 4.9: Energy against volume curves for two Ag-Au binary compounds as pre-
dicted by DFT (black dots joined with black lines) and different SNAPmodels (coloured
markers). The lines are guides to the eye.

4.7 From Binaries to Ternaries

The study solely on binaries showed that SNAP could be used to fit the energies of

binary compounds in the training set and predict the energies of unseen compounds,

in the cross-validation set, to an accuracy of the order of 10−2 eV/atom. The aim

of this work is centred around using such a model to predict the energies of ternary

compounds. It is not evident at first that such an approach could work. This is due to

the lack of certain interactions in binaries compared to ternaries. While 1-body and all

the different 2-body interactions (Ag-Au pair, Au-Cu pair and Ag-Cu pair) are present

in binary systems, the 3-body interactions that involve the three different species (Ag-

Au-Cu) are of course never present for binaries, by definition. The hypothesis of this

work is that such interactions can be sufficiently well-described by SNAP from its

interpolation from other N -body interactions present in the training set. Note that

N -body interactions up to 4-body are included in SNAP. Validation of this hypothesis

would imply that a SNAP model trained on a fixed database of binaries could be used

as a screening tool for ternary compounds.

In order to test the working hypothesis, the energies of several sets of ternary

compounds were predicted. The first set was composed of the ternaries present in

the AFLOWlib’s convex hull database. These structures are similar in nature to the

binary ones presented in Section 4.6, since the majority of structures are decorations

of bcc and fcc structures / superstructures, with various distortions added to break

symmetry. In addition, a small number of less-common structures based on certain



95 4.7. From Binaries to Ternaries

prototypes are added, including Heusler alloys [296] (note that these only comprise

atomic neighbourhoods that are the same as those found in bcc compounds). These

compounds are therefore structurally similar to the binaries. In Section 4.7.1, their

energies are predicted with SNAP. The bulk moduli of a subset of these compounds

are also predicted in Section 4.7.2. The next set of compounds tested is made up of new

prototypes, not present in AFLOWlib’s convex hull database. These are constructed

based on AFLOWlib’s prototype library, but are from a range of different original

compounds, notably non-alloys. Their energies of these are tested pre- and post-DFT

relaxation. The results are presented in Section 4.7.3. Finally, in Section 4.7.4, SNAP

is tested on two different ternary systems (Mo-Pt-Ti and Cd-Hf-Rh).

4.7.1 Ternaries on the Convex Hull

The SNAP ensemble model is now trained on the full dataset of binaries and unaries

(rather than three separate models per binary). A full hyperparameter optimisation

is performed, as described in Section 4.8. The ensemble is constructed by training 10

SNAP models on 10 different, randomly segregated 80%/20% training/cross-validation

splits of the full binary/unary database. This amounted to a total of 678 compounds.

Predictions on the new compounds are made by averaging the predictions of all 10 mod-

els. The training MAE (RMSE) is 2.36 (3.72) meV/atom, while the cross-validation

MAE (RMSE) is 5.62 (12.21) meV/atom. This is consistent with the results in Table

4.3. The slight decreases in error observed notably for the RMSEs as compared to the

single binary models is a result of the increase of the number of features (bispectrum

components) used to train the model to account for the larger dataset. When using

this ensemble to predict the energy of all binaries (training and cross-validation sets),

the average RMSE across all models is of 6.46 meV/atom.

The energies of the ternary compounds are predicted with excellent accuracy, with

a MAE of 3.56 meV/atom and a RMSE of 4.92 meV/atom. Figure 4.10 shows a parity

plot of the predictions made by the ensemble model for all binaries (training and cross-

validation) and the ternaries. The parity plot shows SNAP’s good performance. Such

low errors indicate that the model trained is capable of very accurately predicting the

energies of ternaries, despite only being trained on a limited, fixed, dataset of binary

compounds. The fact that the error is so low on what is effectively a test set, and
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Figure 4.10: Parity plot of the predictions made by the ensemble SNAP model trained
on binary compounds and tested on ternary compounds for the Ag-Au-Cu system. The
dark dashed parity line is a guide to the eye.

is even lower than that of the cross-validation set, does indicate that the ternaries

in the CHULL database do not present much more structural diversity than what

is present in the binary database. This is also highlighted by only a small difference

between the MAE and RMSE for this set, a fact that indicates the absence of any large

outliers. Nevertheless, such structures are AFLOWlib’s candidates for their convex

hull construction of the Ag-Au-Cu system, and it is non-trivial that a model trained

on binaries could perform as well on ternary systems. Before testing the model on

other sets of ternary compounds, the model is used to predict the bulk moduli of the

ternaries presented in this section.

4.7.2 Ternary Bulk Moduli

As in Section 4.6.2, the SNAP models are used to make predictions of the energies of

the equation of state points corresponding to compressed and expanded compounds.

This time, the tested compounds are 10 randomly selected ternary compounds with a

range of compositions. The three same variant SNAP models as before are used for

predictions. The only difference here is that the SNAP + EV and SNAP + EV Edge

training sets include the compressed/expanded structures of all three unary compounds
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(Ag, Au and the additional Cu), which are always included in training. For the former

this corresponds to 45 extra points, while for the latter only the most compressed

and expanded structures are retained, leading to an additional 6 training points. An

example of the DFT and the three predicted EV curves are shown in Figure 4.11.

The quality of the predictions relative to DFT are assessed as in Section 4.6.2 and the

results are given in Table 4.5.
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Figure 4.11: Example of an equation of
state plot for one ternary compound of
AFLOWlib’s CHULL database. The dif-
ferent curves correspond to predictions
made by DFT (black dots joined with
black lines) and three SNAP models con-
structed differently (coloured markers).
The lines are guides to the eye.

Table 4.5: Percentage differences between
DFT and the three different SNAP mod-
els for V0, E0, and B0 for the 10 ternary
compounds. These are obtained following
fittings with the Birch-Murnaghan equa-
tion.

Model V0 E0 B0

SNAP 1.2 0.1 14.1

SNAP + EV 0.3 0.1 4.4

SNAP + EV Edge 0.3 0.1 6.8

The results are largely in line with those obtained for Ag-Au compounds, since

the errors are of the same order of magnitude for each quantity. For, V0 and B0

there is even a slight reduction in error, close to a factor of two. This is due to the

high structural similarity of these ternary compounds with the bulk of the binary

compounds, highlighted in the previous section by the low test error, as well as the

larger dataset used in the SNAP models. In this case, the SNAP + EV Edge results are

almost as accurate as the SNAP + EV ones. For E0 the results worsen for the SNAP

+ EV and SNAP + EV Edge models, a fact that can be attributed to the compounds

not being present in the training/cross-validation sets, as they were in the analysis in

Section 4.6.2. This is because the energy is the target property of SNAP. It is interesting

to note that in Figure 4.11, all models give the same energy prediction for the true

DFT ground state compound, even if they do not agree on which point is the lowest in

energy. In contrast, the disagreement between models for highly compressed/expanded
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compounds is much larger. This hints at how disagreement between models, a quantity

readily available for ensemble models, could be a good indicator of the reliability of

predictions. This idea is further explored in Section 4.9.

In conclusion, the SNAP ensemble models trained on binaries are highly suitable

for predicting the total energy and the equation of state points of the ground-state

ternary compounds, close to the convex hull. For the EV predictions, the addition of

only 6 unary EV points increases the accuracy of the predictions. The next section

describes the limitations of SNAP for predictions on a newly created set of ternary

compounds.

4.7.3 Prototype Ternaries

The ensemble SNAP has thus far been tested on equilibrium, low-enthalpy ternary

compounds. While this is very promising in the view of using it as a screening tool,

further tests are required to assess its limitations. To do so, a new ternary test set

is constructed. AFLOWlib is the starting point for these new structures, but rather

than using those present in the CHULL database, the compounds are generated using

AFLOWlib’s prototype library. This offers a more diverse set of structures, even more

than for the binary CHULL database, since prototype structures not only originate

from the structures of alloys but also from oxides, carbides and other compounds con-

taining main-group elements. The presence of such elements induces the presence of

strong valency in the bonding of a material, and hence geometries and atomic coordi-

nations that differ from those found in alloys that are typically close packed.

A selection of 42 different ternary compounds are generated from these prototypes.

There are two sources of prototypes. One is made up of “special” ternary prototypes

used to generate the convex hull compounds, which have no degrees of freedom aside

from the volume of the cell. A subset of these prototypes was used by AFLOW to

generate their CHULL database. The structures in this database are as described in

Section 4.7.1. Note that the difference to the CHULL database is that the structures

here are unrelaxed, and hence in principle are out-of-equilibrium. The second source

of prototypes is the AFLOWlib ANRL database, which is made up of structures based

on a large range of experimental compounds and is more diverse than the prototype

database. For these structures, more structural degrees of freedom can be tuned (lattice
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parameters and Wyckoff position parameters). Here, default values are selected, which

are those of the underlying compound of the prototype, aside from the volume. For

all the compounds generated from these prototypes, only the volume is chosen. It

corresponds to the average weighted ground-state unary volumes (similar to Vegard’s

law). Then the structures are all decorated with the three elements. The prototype

imposes a stoichiometry (e.g., A1B1C2), however the choice of species substitution is

free (e.g., Ag1Au1Cu2 or Ag1Au2Cu1 are both possible). This is chosen randomly for

each prototype. Figures 4.12 below show the distribution of stoichiometries within the

prototypes, as well as an example structure used as a prototype. Twenty-six different

space groups are represented, with the repeat ones coming from the “special” prototype

database, in which space group # 221 is notably present 7 times.
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Figure 4.12: Left: Number of prototype ternary compounds at different stoichiometries.
Right: Example of a compound used as a prototype for the ternary prototypes. This
is the Nb4CoSi [297] structure from AFLOWlib.

For all compounds, full ab-initio relaxations are performed. The relaxations are

terminated for forces below 10−3 eV/Å. Thus, for the initial non-relaxed (NR) ternary

compounds, the fully relaxed (R) compounds and all those met during the relaxation

path, the DFT energies are computed. While it may seem that this produces a vast

dataset for testing the model, only the end points are of particular interest. Most

compounds encountered during the relaxation are highly redundant and are very similar

to one another. Therefore, only the NR and R ternary compound sets are tested. The

same model as in Section 4.7 is used to predict the energies of these two sets. The

results are shown in Figure 4.13. The MAE (RMSE) on the NR ternary set is of 270.86

(621.22) meV/atom, while for the R ternary set it is of 18.28 (30.20) meV/atom.
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Figure 4.13: Parity plot of the predictions made by the ensemble SNAP model trained
on binary compounds and tested on ternary compounds for the Ag-Au-Cu system. The
dark dashed parity line is a guide to the eye.

Compared to the previous results, the errors are now larger, notably by two orders

of magnitude for the NR set. This is a key result, as it implies that the ensemble SNAP

model is not able to accurately predict the energies of unrelaxed compounds. However,

following ab-initio relaxation of these compounds, the error on the predictions made

by SNAP becomes suitable for a screening tool. While the error on the R set is higher

than that on the CHULL ternary set, the latter had uncommonly low errors for a test

set. The RMSE on the relaxed ternary prototypes is not out of line with the that

on the cross-validation of the binary compounds. This is a highly insightful result,

since it implies that the equilibrium status of a material is the most important feature

that determines whether it is well described by SNAP or not. In other words, if the

forces on individual atoms vanish, then SNAP can be used to screen its energy. This is

perhaps surprising, since one might think that the structure adopted by a compound

may severely influence SNAP’s predictive performance. This is only the case if such

a structure is unrelaxed. To illustrate this point, one can note that some ternary

prototypes may be poor guesses for stable compounds and lie at high energies. In the
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parity plot in Figure 4.13 these are the blue points with the highest energies. However,

the deviation of such points from the parity line is far lower than that of the green

points.

To further illustrate this aspect, a species-wise two-dimensional principal compo-

nent analysis (PCA) was carried out on the feature space of the training set. The

bispectrum components (features) of all compounds in the training set and of all the

structures encountered in the relaxation path of one of the ternary prototypes were

transformed following this PCA. Results for the Ag and Au feature spaces are shown

in Figure 4.14. The notable feature of these plots is that for the starting structures,

colour-labelled in dark, the points are in a sparse region of the plot. Therefore, the

chemical environments present are different to those commonly found in the training

set. On the contrary, for the compounds close to the relaxed state, marked in light

colours, the points are in a much denser region, which is expected to be well described

by SNAP. This further strengthens the argument that SNAP performs poorly on out-

of-equilibrium compounds, rather than on ones with uncommon structures.
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Figure 4.14: Principal component analysis (PCA) plots obtained from species-wise
transformations of the training binary compounds. Points are obtained following the
projection of the feature vectors of the binary alloys (blue points) and relaxation path
compounds (coloured points) of a ternary prototype. The plots for Ag (left) and Au
(right) are shown.

These findings beg the question of whether the SNAP ensemble model can be used

to perform relaxation. If this were successful, then SNAP could be used to first drive

a relaxation when presented with a new ternary compound and then, once relaxed,

predict its energy. By averaging the weights of all models of the ensemble (equivalent

to the prediction of all 10 models, since SNAP is linear), a SNAP-driven relaxation
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is carried out with LAMMPS. The energy and force convergence criteria were set to

10−3 eV and 10−4 eV/Å, respectively. First the atomic positions were relaxed, before

performing a full relaxation (positions + cell parameters). This is repeated five times to

ensure adequate convergence. The DFT total energies of the SNAP-relaxed (SR) cells

are then computed. For three systems, the SNAP-driven relaxations resulted in non-

physical systems, with highly overlapping atoms and their DFT energies could not be

computed. The results are shown in Figures 4.15 and 4.16. The former shows the total

DFT energies of the SR ternaries as compared to the R and NR sets. For most cases,

the SR compounds have the same or a (much) higher energy than the NR compound.

This is visible in panel (a) of Figure 4.16. In a handful of cases, the SR energy is

significantly lower than for the corresponding NR one, but remains ∼ 100 meV/atom

higher than the ab-initio-relaxed system. In one case, the SR compound has a lower

energy than the relaxed compound. For this case, the atoms are so rattled in the SNAP

relaxation that a new structure was reached. Note that it is not relaxed with DFT

(forces of the order of 10−1 eV/Å). However, this compound, even after being relaxed

with DFT, has an energy above the convex hull of nearly 197 meV/atom. Overall,

these structures remain out-of-equilibrium and their energies are poorly predicted by

SNAP, similarly to those of the NR case, as can be seen in panel (b) of Figure 4.16.

This shows that SNAP is not able to drive adequate relaxations, when trained on

the energies of the binary compounds. The reasons for this could be expected from the

PCA presented above, since the energy and hence force predictions made by SNAP,

notably at the start of the relaxation, are inaccurate due to a lack of knowledge of

the relevant feature space. This results in a poorly directed relaxation from the start

and inevitably to a poorly relaxed final structure. The main conclusion is that SNAP

cannot be used to drive relaxation.

One last attempt at improving the relaxing-ability of SNAP consists in training

SNAP on the forces on atoms of the binary compounds. These are only available

because the energies are recomputed for the Ag-Au-Cu system. In fact, they are

generally not available from AFLOWlib, unlike the energies, and hence could not be

readily integrated in the training of a screening tool based solely on AFLOWlib data.

However, for completeness, forces are used for fitting here. Results from the fitting of

the binary and unary compound forces are show in Figure 4.17. The results of two
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Figure 4.15: Plot showing the results from the SNAP driven relaxations. A histogram
of the DFT energies of the non-relaxed (NR), SNAP-relaxed (SR) and relaxed (R)
ternary prototypes is displayed. The missing bars are associated with prototypes for
which the DFT relaxation failed after the SNAP-driven relaxation.
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Figure 4.16: Plots showing the results from the SNAP driven relaxations. Panels (a)
and (b) [zoom of (a) up to 10 eV/atom] show the SNAP predictions for the three sets,
the non-relaxed (NR), SNAP-relaxed (SR) and relaxed (R) ternary prototypes. The
dashed black parity lines are a guide to the eye.

models are illustrated (one trained on energies and the other on forces only), and in

both cases, even when the forces are fit (i.e., the training set is solely comprised of

forces), the results are poor. This is due to the fact that the force components are

generally very small (10−2 eV/Å), since the compounds are at equilibrium. Adding the

convex hull binary compound forces to the training process would hence not improve

the force predictions and improve the relaxation process.



4. SNAP as a Screening Tool for Ternary Systems 104

(a) (b)

Figure 4.17: Parity plots of the fitting of forces for the binary compounds when fitted
on energies and forces (a) and only on forces (b). In (a), both energies and forces are
fitted with equal relative weighting, where the weights on energies and forces are 1 and
1
3N

, respectively. N is the mean number of atoms per system. This is to account for
the fact that there are 3N more force components than energies in the fitting, and is
standard procedure when fitting both energies and forces. In the (b), only forces are
fitted.

In conclusion, the SNAP ensemble model, trained on binary compounds from the

AFLOWlib database can be used as an effective screening tool, provided that the

compounds being screened are close to their equilibrium. If they are non-relaxed, the

predictions are not quantitatively accurate, but the energy scale and energy ordering

of compounds is reliable. The model is not able to drive relaxation due to an absence

of relevant out-of-equilibrium structures in the database. Before concluding and dis-

cussing how such a screening tool may be used in practice, the procedure followed to

build the screening tool is repeated for two new ternaries, Mo-Pt-Ti and Cd-Hf-Rh.

4.7.4 Extension to Mo-Pt-Ti and Cd-Hf-Rh

In order to validate the previous findings, two similarly constructed screening tools

are tested for Mo-Pt-Ti and Cd-Hf-Rh. The choice of these two ternary systems is

motivated by two main factors. The first is that more complex alloy systems, compared

to the noble metal trio Ag-Au-Cu, are sought after. In this regard, both ternaries are
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Table 4.6: Number of data points available on the unary, binary and ternary systems
associated with Mo-Pt-Ti and Cd-Hf-Rh.

X-Y -Z Ternary X Y Z X-Y X-Z Y -Z X-Y -Z

Mo-Pt-Ti 9 9 8 195 807 196 86

Cd-Hf-Rh 26 26 26 615 245 196 96

chosen such as to have an early transition metal (Ti/Hf), an intermediate one (Mo/Rh)

and a late one (Pt/Cd). It is expected that the wider diversity in the number of

valence electrons, as well as the larger size mismatches between species should lead to

more specific bonding between different atomic pairs and hence more specific structural

features than close packed geometries. The second important deciding factor is the

number of unary, binary and ternary compounds available on AFLOWlib for each

system. This determined the final choice. In fact, in AFLOWlib there are many

refractory metal (Mo/Hf) binaries, since certain of these systems were the object of a

more intensive high-throughput convex hull determination [298, 299] than most systems

on AFLOWlib. The Mo-Pt-Ti and Cd-Hf-Rh systems, respectively, have 1,224 and

1,179 binary+unary compounds in the AFLOWlib database. In each case, one binary

(Mo-Ti and Cd-Hf) is over-represented, with 3-4 times more compounds than the other

two binaries. The details on the number of different compounds in each database is

given in Table 4.6. For all binaries, there is at least one experimental compound

included in the database, whose structure is present in the ICSD.

Ensemble SNAP models are trained for each ternary system, following the same

procedure as previously. 10 models are trained on 80%/20% splits of the binary data,

following the standard hyperparameter optimisation to be presented in Section 4.8.

The ternary compounds make up the test data. The only important difference here,

aside from the ternaries chosen, is that the energies of the compounds are not computed

for the study and the AFLOWlib total energy values are directly taken. For Mo-Pt-Ti,

the MAE (RMSE) is 18.0 (27.9) meV/atom for the training set, 29.8 (58.7) meV/atom

for the CV set and 64.0 (76.4) meV/atom for the test set. For Cd-Hf-Rh, the MAE

(RMSE) is 27.4 (42.9) meV/atom for the training set, 44.4 (89.4) meV/atom for the

CV set and 87.2 (109.7) meV/atom for the test set. The parity plots of the ensemble

predictions are shown in Figure 4.18. Overall, the relaxed convex hull compound
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points follow the parity line well. The binaries’ RMSE corresponds to the error on

all binaries (training + cross-validation sets). The errors for these systems are one

order of magnitude higher than those of the Ag-Au-Cu system. This reflects the larger

energy range fitted, the increased complexity of the systems considered, as well as

the increased noise of the data from the looser DFT convergence criteria employed by

AFLOWlib. Note that, while the errors are higher, this is consistent across training,

cross-validation and test sets and is not just an increase in the test set error. In fact,

the test error is largely in line with the cross-validation error on binary systems. These

results suggest that it is still reasonable to use a model trained on binaries to screen

ternary compounds. The errors are of the order of 10−2 meV/atom, but the model can

be trained directly from AFLOWlib, without the need to re-generate any DFT data.

Note that, compared to Ag-Au-Cu, the total-energy percentage error is similar. In

fact, for Ag-Au-Cu, the percentage error relative to the average energy per atom was

of 0.19% for the training set and 0.15% for the test set. These must be compared to

0.40% and 0.86% for Mo-Pt-Ti and to 0.74% and 1.57% for Cd-Hf-Rh. It is important

to highlight that the ternary convex hull diagrams of Mo-Pt-Ti and Cd-Hf-Rh exhibit

a much greater depth compared to that of Ag-Au-Cu. The lowest points on these

diagrams have enthalpies of formation measuring 951 meV/atom and 921 meV/atom,

respectively, whereas for Ag-Au-Cu, the enthalpy of formation is merely 61 meV/atom.

As a result, the absolute error in SNAP becomes less significant in this context.
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Figure 4.18: Parity plots showing the predictions of the ensemble SNAP models
for Mo-Pt-Ti (left) and Cd-Hf-Rh (right). Predictions are shown for the binaries
(training+cross-validation) and for the ternaries (test). The dashed black parity line
is a guide to the eye.
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Before presenting the conclusions of this work, the process for hyperparameter

optimisation is presented. Finally, various error metrics that could be used to detect

the degree of extrapolation of a prediction are tested in Section 4.9.

4.8 Hyperparameter Optimisation

This section focuses on the methodology followed to optimise the model hyperparame-

ters. These correspond to model parameters that are not determined during the fitting

procedure of the training dataset, i.e., the training process. In that step, only the

linear θ⃗ parameters appearing in the definition of the ridge regressor are determined

from the least-mean-squares fit. All other parameters are tuned through the use of the

cross-validation (CV) set, not employed for training. In the context of the ensemble of

SNAP models, there are three categories of hyperparameters. The first concerns those

that impact the construction of the feature vectors, the bispectrum components. These

are the cut-off radius Rcut and the atomic weights {wα} (α denotes the atomic species)

that appear in the atomic density function in Equation (3.24), Jmax, that determines

the highest order of bispectrum used for the construction of the feature vectors and

hence influences the final number of components and that are used. Technically, r0,

from Equation (3.25), is also a hyperparameter but in this study it is not tuned, which

is common practice. The second class of hyperparameters are made up of those that

concern the machine-learning model. In the case of ridge regression, there is only one,

namely the regularisation term λ. Finally, the last category concerns the parameters

pertinent to the construction of the ensemble. These are Nmodels, the number of models

within the ensemble, and the proportion of the binary dataset used for training/cross-

validation.

The process for hyperparameter tuning is determined from tests on the individual

and combined binary Ag-Au-Cu datasets. Repeated k-fold cross-validation (Monte

Carlo CV) is used to split the dataset into training and cross-validation sets. It is

chosen since it is a robust cross-validation technique [300]. This split is performed

Nmodels=10 times, such that the hyperparameter optimisation did not include a bias

from one particular random split. Note that these splits are retained for the con-

struction of the ensemble. The choice of the value of Nmodels is from usual practice
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Figure 4.19: Learning curves of the SNAP ensemble models for Ag-Au-Cu (three bina-
ries) and the single Ag-Au binary system. Crosses represent errors on the training set,
while squares are for the cross-validation sets. The lines are guides to the eye. The
RMSE scale is logarithmic.

in machine learning operations [300], and is not specifically tuned here. The optimi-

sation process consists in selecting different hyperparameters, training Nmodels models

on Nmodels different training sets and calculating the error on each model’s associated

cross-validation set. The errors are averaged and the hyperparameters that generate

the lowest errors are selected as the optimal ones. Individual hyperparameters are

optimised in different steps.

At first, Jmax and the training/cross-validation proportions, quantified by ptr, the

proportion used for training, were tuned together through the use of learning curves,

shown in Figure 4.19. It is optimal to have a low cross-validation error without any

overfitting. This means having a lower and stagnant training error. The curves for Ag-

Au Jmax=4 clearly show this trend, since beyond ptr=0.4 the training error is stagnant.

Clearly for Ag-Au, Jmax=3 is optimal, which corresponds to 62 (31×2) components

in the feature vectors. For Ag-Au-Cu, both Jmax=3 and 4 seem suitable, with similar

cross-validation errors beyond ptr=0.4. In this case, Jmax=4 is chosen, since the learning

curves suggest that in the case additional data were available, further decreases in

training and cross-validation errors could be achieved, unlike the Jmax=3 case. This

corresponds to 168 (3×56) components. The optimal value for ptr is 0.8, since beyond
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this value, the number of compounds in the cross-validation set becomes too low for

reliable error quantification. Below these values, cross-validation errors are higher. The

results obtained for Ag-Au also apply for the other binaries. The values for Jmax are

consistent with those found in other studies with similar data set sizes [207, 301].

Figure 4.20: Contour plot generated by Optuna [302] showing the parameter rela-
tionships for one pair of hyperparameters, Rcut and wAu. The colour scale maps the
cross-validation RMSE, which is the objective value.

The last three hyperparameters tuned are Rcut, {wα} and λ. These can all be

floating point values, and the precise optimisation of all together can lead to large

decreases in the RMSE. Since the search space for the optimal values is large (5-

dimensional for three species), it is crucial to use efficient, guided search algorithms,

such as to only spend search time in optimal areas of the search space. The algorithm

of choice is the Tree-structured Parzen Estimator (TPE) [303, 304, 305]. It is used as

implemented inOptuna [302], a Python library. This is a type of Bayesian optimiser,

which is the state of the art for hyperparameter optimisation [165, 207]. Searches were

run to optimise Rcut in the range 3 Å to 7 Å, {wα} from 0 to 5 and λ from 10−6 to 100

using logarithmic sampling. It was discovered that λ had very little impact on model

performance (≤ 0.1%), and only slowed the search. Therefore, it was fixed at 10−2, a

typical optimal value observed across the first test runs. For Rcut and {wα}, 50 different

runs were performed with 400 search steps (different sets of hyperparameters), since
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some runs become stuck in local minima with unsuitable hyperparameters. Among all

the results, the hyperparameters that minimised the cross-validation set RMSE were

chosen. The RMSE to hyperparameter mapping is represented in the contour plot in

Figure 4.20, which is a result of the best optimisation for the Ag-Au-Cu model. The

large number of points in the regions where the objective value is low shows how much

of the compute effort is aimed at studying the region in which the CV RMSE is lowest.

Table 4.7: Summary of the optimal hyperparameters for the SNAP models trained for
the individual binary systems. Here wX and wY refer to the weights of the X and Y
species of the X-Y binary system.

Hyperparameter Ag-Au Ag-Cu Au-Cu

Jmax 3 3 3

Rcut (Å) 4.144006 4.358127 4.452703

wX 0.526867 0.225576 0.341620

wY 0.701251 0.174029 0.193797

All hyperparameters are optimised following the methodology presented in this

section. Nmodels, ptr and λ are always constant at 10, 0.8 and 10−2 respectively. For

all other hyperparameters, the final values for all the models trained are presented in

Tables 4.7 and 4.8. In the final subsection of this chapter, different error metrics are

presented, and their utility is assessed.

Table 4.8: Summary of the hyperparameters used for the ternary SNAP models. Here
wX , wY and wZ refer to the weights of the X, Y and Z species of the X-Y -Z ternary
system.

Hyperparameter Ag-Au-Cu Mo-Pt-Ti Cd-Hf-Rh

Jmax 4 4 4

Rc (Å) 4.647073 4.917926 6.436145

wX 0.305086 0.366659 3.107010

wY 0.245647 0.161844 4.293181

wZ 0.418890 0.35940283 3.193081
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4.9 Error Metrics

For this final section, the attention returns to the Ag-Au-Cu ternary system. In Sec-

tions 4.7.1 and 4.7.3, an ensemble SNAP model was presented and was used to predict

the energies of three classes of ternary compounds: those present in the AFLOWlib

database (CHULL ternaries), non-relaxed prototype ternary compounds (NR ternaries)

and the corresponding DFT-relaxed compounds (R ternaries). One major attribute of

the SNAP models is that it cannot accurately predict the energies of out-of-equilibrium

compounds. Therefore, to make use of it as a screening tool, it is necessary to only em-

ploy it for equilibrium compounds. The equilibrium status of a compound is not known

a priori, since it requires the knowledge of the DFT forces acting on the constituent

atoms. Such calculations are what the screening model aims to circumvent. Therefore,

it is necessary to identify such compounds without the use of DFT. One way to do so is

through the use of error metrics, which are able to quantify the error made by a SNAP

model when it makes a prediction. Crucially, these should not rely on DFT, so the real

SNAP error with respect to DFT is not an error metric. Instead, they should rely on

the SNAP model or the feature vectors that represent individual compounds. Three

such error metrics are studied here. They will first be presented before assessing how

well they correlate with the real SNAP error with respect to DFT, denoted as ϵ. This

is in the context of making a prediction on a new “unseen” compound, which is not in

the training database. The aim is to evaluate how accurate the model prediction will

be before any DFT.

The first of these error metrics is the minimum Euclidean distance dmin of a com-

pound’s feature vector to any in the training set Ωtr. The idea behind this metric is

that, if for a new material there is a compound in the training set that is similar (in

feature space), then the SNAP prediction will be good. It is assumed that SNAP has

“learnt” the relevant geometry to energy mapping from the structure in the training

set. For a compound labelled i, it is defined as

dmin = min
{
||B⃗j − B⃗i||

}
j∈Ωtr

, (4.11)

where B⃗ is the bispectrum component vector. Note that there are several ways to

define dmin, since the bispectrum components can be for the global structure one or
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for a single atom. For a system with N atoms and K species, there are N bispectrum

vectors. In the definition of SNAP, there are separate fitting coefficients for each

atomic species that are multiplied by the corresponding atomic bispectrum coefficients.

From this first standpoint, the relevant feature space is species specific. Alternatively,

for each compound, all bispectrum of the same species are summed together, and a

concatenation of all bispectrum is performed, yielding a single vector per compound. In

this case, the feature space becomes a global structural one that smears the individual

atomic contributions. If B⃗ is taken as being atom-specific, dmin has a more physics-

intuitive definition, since individual chemical environments are compared. In the case

the total B⃗ vector is used, individual atomic contributions are washed away in the

sum. However, the definition of dmin better reflects the mathematical grounding of the

problem. This is because ultimately, it is the total, concatenated vector that is used

in the fitting procedure, given by Equation (3.32).

In the case of the total vector, Equation (4.11) uniquely defined dmin directly. For

the species-specific features, if there is more than one atom per species, one value must

be selected. Since the aim is to quantify how much uncertainty there is in the SNAP

prediction, the maximum value is chosen, as even if one chemical environment is poorly

described (far from the training set), the overall prediction may be poor. Finally, since

dmin is species specific, so there are K different values.

The second error metric is based on the model built in this work, the ensemble

of SNAP models. The Nmodels different SNAP models, trained on different random

subsets of the training data, make a collective prediction by taking the average of each

of their individual inferences. Another quantity of interest is the standard deviation of

their predictions σ. This quantifies the degree of disagreement between the models. It

is postulated that this may be a good error metric. In the machine-learning field, it is

named query-by-committee [300]. It is different to dmin in that it is non-species-specific,

as there is only one value per compound (since only the total energy of a compound is

predicted). It also makes use of the energy-to-structure mapping, implicitly encoded in

the individual SNAP models, rather than just relying on the feature space description.

It also comes at essentially no extra computational cost, whereas dmin requires many

Euclidian distance calculations, as well as the use of a sorting algorithm to determine

the minimum distance. The σ metric has notably been used in the context of hyper-
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active learning for GAP models [306], as a proxy to the standard deviation of the

posterior-predictive distribution.

The final error metric tested is one that has been used quite extensively in the

training of MLIAPs [106, 171, 175, 307, 308]. It is the extrapolation grade γ, first in-

troduced by Podryabinkin et al. [106]. Its definition is more technical than that of the

other two metrics and comes from the statistical theory of linear-least-squares method.

It is explained in some detail here. The metric relies on the concept of D-optimality

design [309], extensively used in experimental design. In this field, one is interested

in estimating how p experimental parameters influence an analytical response in an

experiment. When a linear model relating this response to the parameters is assumed,

the concept of D-optimality is used to determine which candidate experiments, per-

formed at specific conditions for the p parameters, would be optimal to fit the model.

It is done to minimise the number of experiments performed, since these may be ex-

pensive. Let us consider the case where there are Nexp possible candidate experiments,

determined from a grid sampling of the all the possible combinations of values the p

parameters may take. The experiments with the values of the parameters used make

up the (Nexp × p) matrix of candidate points. Each row represents an experiment with

p values for each parameter. The selection of the best m candidates for the model

results in a (m× p) model matrix X. The D-criterion is used to select this matrix

and hence best candidates. This criterion was proposed by Smith et al. [310] and

postulates that the optimal model matrix, out of all those that may be chosen, is that

which maximises the determinant of the information matrix
(
XXT

)
. This corresponds

to minimising the influence of experimental error on the determination of the model

coefficients. In the case of MLIAPs, these errors correspond to noise arising from nu-

merical errors in the DFT calculations and from the fact that atomic descriptors are

local and hence the atomic neighbourhood used is truncated at Rcut. This implies that

non-local interactions are not accounted for.

The number m of experiments to be performed has no optimal value. It can be

chosen freely, and it typically depends on external constraints. The lower bound is the

number of parameters p, such that X is a (p× p) square matrix. This is chosen here.

We now bring the discussion of the D-optimality criterion to the case of training

databases for MLIAPs. Now, X is made of different configurations rather than candi-
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date experiments. These configurations may be feature vectors for the whole structures

or individual atoms, as will be discussed. Now, m represents the number of compounds

in the training database and p the number of components in the descriptors. Finding

the D-optimal matrix X requires the use of efficient algorithms, since a brute-force

calculation of the determinants of all possible information matrices is very costly. In

the procedure followed, the MAXVOL [311] algorithm is employed. It is designed to

find the optimal square submatrix of size (p× p) from a large (m× p) rectangular ma-

trix, where optimal means largest determinant. The authors of Reference [106] claim

that the problem of finding the optimal X matrix can be recast [171]. The aim is to

determine which p configurations, B⃗i, should make up X. The algorithm iteratively

updates which square matrix X′ is the optimal one. To know whether a row i of the

full dataset X should substitute a configuration (row) in X′, the extrapolation grade

γ is used, defined as

γ = max
1≤j≤p

|cj| , (4.12)

where cj are the components of c⃗, namely

c⃗ = B⃗T
i

(
XTX

)−1
XT = B⃗T

i X
−1. (4.13)

If the value γ is larger than 1, then a model based on X′ extrapolates on configuration

represented in row i, therefore B⃗i should be substituted into X′. It should, in fact, be

exchanged at the row j of X′, corresponding to the index of the maximum component

of Equation (4.12). In other words, the configuration represented by B⃗i is more suitable

than the configuration B⃗j for the model training.

The exchange of rows based on the value of γ implies that the problem becomes that

of optimising the determinant of X. MAXVOL, hence, is an algorithm for finding X by

using several trial matrices X′ and testing which configurations should be placed in it

based on calculations of γ for all configurations. This is repeated until all configurations

not present in X′ have values of γ < 1. In this case, the model trained on X′ will

interpolate when making predictions on all configurations not included in the training

set.

The algorithm is run to obtain the active-learning set, the matrix X and its in-
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verse along with the active set, which are the associated p configurations. These are

required in Equation (4.13). In the many studies of A. Shapeev and collaborators, the

extrapolation grade is used for the construction of the MLIAP in an active learning

scheme, as described in Section 4.6. Once an initial training set is constructed and the

MLIAP is used on new configurations, γ is computed to determine whether the model

is performing an interpolative prediction, as desired, or not. In practice, if γ is be-

yond a threshold value, the model is retrained by incorporating the new configuration

encountered.

In this study, very similar information is sought. The aim of an error metric is to

quantify the uncertainty of a prediction, and, if the SNAP model is highly extrapolat-

ing, the uncertainty will be expected to be high. It has been shown that γ correlates

with the MLIAP error with respect to DFT in the case of MTPs [106]. As for the mini-

mum distance metric, the γ extrapolation grade can be made global or species-specific.

The former is done if whole structures are considered, instead of single atomic environ-

ments, and hence the feature vectors used to populate X are the total ones, the sum of

all the bispectrum components of the constituent atoms. In the case of species-specific,

the computation of γ is performed separately for each species and the bispectrum of

each atom are used in X. Note that these correspond to the Query Strategies (QS) 1

and 3, respectively, from Reference [106]. For the species-specific case, QS 3 would be

only for energies.

Following these definitions, it is shown how well these metrics correlate with the

SNAP error, ϵ. This is performed for the three ternary sets CHULL, NR and R. In

order to quantify the correlation, a linear fit on ϵ and each error metric is performed on

all compounds of the three sets together. The value of the coefficient of determination

R2 is calculated and used to assess the quality of the correlation. The correlation plots

for the three metrics are shown in Figure 4.21. The plots, as well as the linear fits, are

performed on a logarithmic scale, since several orders of magnitude are spanned. The

values of R2 are given in the subplots. Note that for dmin and γ, the specie-specific

metric are computed in panel (b). The species are chosen based on the best fitting out

of all three. For dmin it is Au, while it is Ag for γ, with respective values for R2 of

0.49 and 0.69. For dmin the R2 values are 0.35 and 0.34 for Ag and Cu respectively,

while for γ the values are 0.66 and 0.63 for Au and Cu respectively. Finally, σ, is,
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by construction, non-species specific and is shown in panel (b), along with non-species

specific constructions of dmin and γ.
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Figure 4.21: Plots of the ensemble SNAP error compared to DFT against three different
error metrics dmin, σ and γ for three sets of ternary compounds. The left panel (a)
show two species-specific metrics. dmin (left) is computed for the Au feature space
and γ (right) is calculated for the Ag feature space. The plots in the right panel (b)
show results for total structure feature vectors. dmin (left), σ (centre) and γ (right)
are shown. The black lines are the linear fits performed on the whole dataset for each
error metric. Their corresponding R2 values are given.

Overall, all plots show correlation between ϵ and the error metrics, aside from dmin

when calculated for with global structure fingerprints. As a general feature for all plots,

there is a large group of points in the error range between 10−3–10−1 eV/atom. They

consist of compounds from the CHULL set, which have a total error range (maximum

minus minimum error) of 12.8 meV/atom and the R ternaries, which have an error

range of 72.2 meV/atom. Even a significant proportion of the NR compounds are in

this range, since some are close to their equilibrium structures. This implies that the

correlation is less pronounced for such compounds. The fit becomes better for the NR

structures that are far from equilibrium. The poorest-performing metric is dmin, which

shows low correlation for the species-specific descriptors, notably at low values of ϵ.

The metric performs best in the Ag feature space, but the fit still has a lower R2 than

those of γ for any of the three species. When using dmin with global feature vectors,

almost no correlation is observed (R2 of 0.003). The reason for such poor performance

can be rationalised by the choice of the training set. Indeed, since the latter is made

only of binary systems, by constructing a global feature vector, there are necessarily

56 bispectrum components equal to 0, due to the absence of one of the three ternary
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species. When the Euclidian distance is calculated for all test compounds, dmin is

dominated by a distance equal to the norm of the bispectrum of a single specie. This

is of the order of 10. Such a scale should be compared to the scale observed for dmin

for a single specie in Figure 4.21a, which is between 10−1 and 1 for most compounds

and only reaches 10 for the highest error compounds. The systematic shift induced

by the absence of ternaries in the training database therefore erases the finer details

arising from the relevant differences between training and test datasets. This could be

remedied in several ways by redefining the metric. The global feature vector could be

compared to the mean feature of the training database. Alternatively, the selection of

a global dmin could be computed from the species-specific values, by taking the average

of maximum values. The latter was notably performed for the publication associated

with this chapter [31], showing better correlation than even the species-specific metrics.

Nevertheless, dmin is not a suitable metric for the model trained, and the two other

metrics show better correlation with ϵ.

The extrapolation grade shows good correlation with ϵ for the species-specific met-

ric. The correlation is moderate in the low error region (≤ 10−2 eV/atom) for the

species-specific and the global feature spaces. This is in the range of the model error.

Interestingly, in this region, the extrapolation grade is below 1, showing that the model

is interpolating, as expected. It may, therefore, be expected that the correlation is less

pronounced. As one moves beyond 1, the correlation becomes sharper and it is in fact

better for the global structure feature space. Values of γ beyond 2 are reached by many

NR compounds, which in the active learning scheme of Reference [308] is sufficient for

re-training the model. The most poorly described compounds have values beyond 10,

which is cause for terminating predictions due to “dangerous extrapolation” according

to the same reference. This is in sharp contrast with dmin, which is perhaps surprising,

considering it should in principle suffer from the same shortcomings due to the common

lack of ternaries in the training database. This effect may be attributed to the fact

that the extrapolation grade makes use of the full active learning set, rather than a

single point of the training set. As a result, the boundary between interpolation and

extrapolation is better defined. This boundary is best defined for the global structure

feature vectors, which is the one used for fitting. This error metric is therefore suitable

for detecting compounds for which the model extrapolates.
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The standard deviation of the predictions made by the SNAP ensemble, σ, is the

best performing metric and is only defined globally. It is, in fact, even effective in the

low error region. The energy scale spanned by σ equally correlates well with ϵ. The

slightly increased performance of the standard deviation metric over the others may

be attributed to several factors. Firstly, it is inherently a global metric and, hence,

takes into account the full compound rather than single atoms. It equally relies on the

knowledge of the full range of training binary compounds, since it makes use of SNAP

models trained on such databases. The main difference with the other two metrics is

that there is also in-built knowledge of how well the model fits the energies. The other

two metrics rely solely on the feature representation of the compounds, but not how well

these are mapped to the energies. If the model were not able to perform this mapping

effectively, due to noise or the assumption that the energy and features are linearly

related, then dmin and γ would suffer, whereas σ would not. It should be emphasized

as well that the calculation of σ comes at very little extra cost to making predictions.

The most computationally demanding step in the construction of a SNAP model is

the calculation of the bispectrum components. Here, this is only required once, since

the construction of the ensemble of SNAP models is carried out by training different

models on different subsets of the same training database. Once the coefficients θ⃗ of the

SNAP models are computed, the prediction of the mean and standard deviation of the

ensemble is fast. It is therefore concluded that the most effective error metric of those

tested is σ, as it can be efficiently used to detect compounds that are problematic. The

work in this chapter is now summarised in the conclusion and put in the context of a

more global workflow aimed at searching novel materials.

4.10 Conclusions

Upon closing this chapter, the main outcomes of the study are summarised. The field

of inverse materials design aims to unravel novel materials with specifically targeted

key properties. A crucial step in this process is the determination of whether a can-

didate material is stable or not, which is not a given in ab-initio studies. This can

be established by first computing the Gibbs free energy of a compound, a calculation

which requires free energy contributions from enthalpy, as well as many entropic finite
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temperature terms, which are computationally expensive. This must then be com-

pared to that of all known competing phases, such as to build a full phase diagram. A

more sober approach only requires the calculation of the total DFT electronic energy

of each compound and the construction of the relevant T=0 K phase diagram, the

convex hull. For a ternary system, this nevertheless requires hundreds of expensive

DFT calculations to construct the three binary and single ternary convex hulls. In the

study presented in this chapter, it is shown how a screening tool, built on pre-trained

data can be used as a surrogate to DFT.

The ternary screening tool is an ensemble of SNAP MLIAPs, trained on readily

available unary and binary convex hull data from AFLOWlib. The choice of the train-

ing database is justified by the wealth of data present in binary phase diagrams (as

opposed to ternary ones), as well as using pre-existing data that is directly relevant for

the convex hull construction. A model is trained for the Ag-Au-Cu ternary system, a

simple system made of noble metals for which the three binary phase diagrams display

rather different features. It is shown that, upon attentive hyperparameter optimisation,

an accurate ternary screening ensemble SNAP model can be trained uniquely on bina-

ries, with training and test errors well within the acceptable range (10−2 meV/atom)

for an adequate screening tool. The bulk modulus of ternary compounds can also be

predicted upon addition of equation-of-state unary compounds to the training database.

The screening tool is, however, only effective if predictions are made for compounds

at equilibrium. Otherwise, due to the lack of out-of-equilibrium structures in the train-

ing database, the machine-learning model must extrapolate, leading to inaccurate pre-

dictions. It is emphasized that despite this shortcoming, such high enthalpy, unrelaxed

compounds are still estimated to be high in energy by SNAP, validating its use as a

screening tool. The models are not able to drive ionic relaxation towards equilibrium

for non-relaxed compounds, as the configurations encountered during the relaxation

path are also outside the scope of the training data.

The methodology for constructing the screening tool is also deployed to build two

other SNAP models, for the Mo-Pt-Ti and Cd-Hf-Rh ternary systems. A key difference

for these systems, with respect to the first case, is that the energy data used for the

training step is directly taken from AFLOWlib and is not recomputed. The models

developed are, therefore, made only on recycled data. While a decrease in performance
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is observed, it should be noted that the energy scales in question are much larger than

for Ag-Au-Cu and the ternaries modelled are inherently more complex. It is assessed

that sufficient accuracy is reached to validate the approach described to build ternary

screening tools.

In a final section, several error metrics are tested to identify compounds for which

the SNAP predictions are erroneous. It is established that the more intuitive minimum

distance to training database metric, dmin, is not suitable. The two other metrics tested,

the extrapolation grade, γ, and the ensemble standard deviation, σ, are however very

effective and display high correlation with the model error. Since the latter is readily

available upon construction of the model, it is chosen for the next study.

Two crucial insights are unravelled in this chapter. The first is that the chemi-

cal environments encountered in binary alloys are similar to those in ternaries, since a

MLIAP trained on binaries is effective at predicting the energies of ternaries. Secondly,

the screening tools devised can only perform well for compounds close to their equi-

librium. In the context of accelerating the search for stable materials, it is important

to combine a database of candidate compounds with an appropriate screening tool.

The two ideas highlighted above hint that using the structures of binary compounds,

close to the convex hull as prototypes for ternary compounds, may enable the use of

the ensemble SNAP model to surf the convex hull. In the next chapter, the model is

deployed to search for novel stable phases by scanning the convex hull.



5

Ternary Convex Hull Construction

with MLIAPs

5.1 Introduction

The work presented in this chapter was done in full collaboration with Michail Mino-

takis. Matteo Cobelli provided the code to train the machine learning interatomic

potentials and was involved in the project development. This chapter is related to

work described in an article soon to be published (pre-print [32]). As such, this in-

troduction is closely related to the corresponding section of the article. Since there

is significant overlap between the relevant literature for this chapter and the previous

chapter, a full overview is not given here. Instead, only the most pertinent concepts

are reminded before elaborating further on studies that are directly comparable to this

one.

The first step in high-throughput computational studies consists in identifying sta-

ble compounds by finding a stoichiometry and an associated structure that can be

formed. In order to assess the stability of a given structure, the appropriate convex

hull diagram needs to be calculated. The proximity, δ [Equation (4.9)] between a com-

pound’s enthalpy of formation, Hf , and the closest tie line on the convex hull serves

as a criterion for evaluating its stability. Lower values indicate a higher likelihood

of stability. Threshold values, typically up to ∼100 meV/atom, are used as stability

cut-offs [203]. One possibility is to predict this quantity directly by using ML models,

where compound compositional information is encoded and mapped onto Hf . This is

121
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otherwise known as composition prediction, as it is used to identify which stoichiome-

tries are stable, by fixing structural variations. Models where the feature vector is

only based on compositional information have been used to predict the stability of

compounds forming a set of prototype structures (elpasolites, perovskites, Heuslers,

etc.), which is fixed for the compounds in the training set [312, 25, 230, 203]. Includ-

ing structural information mainly improves the predictions, if large training datasets

(>105 data points) are used [313]. Graph convolutional neural networks [157, 158, 159,

162] have notably been used to predict convex hull distances accurately, and benefit

greatly from structural features [160, 161]. Note that these can also be constructed

with compositional information only [314, 315]. One downside to the inclusion of struc-

tural information in the models is that the optimised structure is not known prior to

the search, so that data for unrelaxed structures has to be used. This can notably be

corrected by using machine learning interatomic potentials (MLIAPs), that are capable

of performing relaxation.

Such potentials have been successfully applied to predict the energy and forces of

alloys [127], and have been used to accelerate and assist the construction or further

exploration of binary and ternary convex hulls. Workflows built on these potentials

use MLIAPs as surrogate models to first relax and then make energy predictions on a

large library of prototype structures. The lowest energy structures are then compared

to a reference convex hull obtained from DFT calculations. This process allows one

to improve the reference convex hull diagram by identifying structures lying below it.

The training of such potentials is crucial for adequate performance, and studies insist

on using high-energy structures for the relaxations to be reliable. Work in this area

has broadly been split into two categories. In the first, specific MLIAPs are trained for

a given system [175, 213, 316, 317, 318, 319, 320], typically using active learning. In

the other, MLIAPs are trained on large generic databases, and are used to scan over

many phases [163, 321]. The former is more accurate than the latter, but it is not

transferable to other phases. Due to their higher accuracy, phase-specific MLIAPs can

also be regarded as global structure optimisers, in that they can be used to identify

specific stable compositions, and can accurately predict their structure as well. Many

other ML global structure optimisers, exist, either in the form of novel workflows [171,

173, 322, 323] or by inserting MLIAPs into the pre-existing state-of-the-art global



123 5.1. Introduction

structure optimisers [172, 170, 324].

This chapter describes two bodies of work within this area. In a first part, it is

demonstrated how the MLIAP model presented in Chapter 4, trained on data available

on AFLOWlib [19], is used to screen a library of ternary alloy prototypes constructed

from their associated binary systems. The ensemble of SNAP [28] models trained on

energy data for the three binary systems associated with a ternary one was able to

predict the energies of ternary compounds with a mean absolute error (MAE) of ∼

10−2 eV/atom, as long as the structures are fully relaxed. This, not only does provide

a fast energy-screening tool for ternary compounds, which only requires ab-initio data

on binary structures, but it also gives the valuable insight that chemical environments

within binary and ternary transition-metal alloys are similar. This is the idea at the

heart of the workflow introduced here. A selection of binary structures, those close

to their respective convex hulls, are selected as prototypes for ternary alloys. In a

high-throughput setup, these are screened using an ensemble of SNAP models, trained

on binaries. The lowest-enthalpy compounds are then selected as the most promising

candidates, and their energies are calculated using high-fidelity DFT. The ternary

convex hull is thus updated.

What makes this workflow different from tailor-made MLIAPs used for convex hull

construction is that all the data, both for the prototype generation and for training

the SNAPs, are taken from the relevant binary phases of the AFLOWlib database

[235]. In other words, there is no need to generate any new data. Despite the training

database not being specifically made, either by including important configurations

through physical intuition or through active learning, it still has a low enough error

on energy predictions to enable a high-throughput search of novel alloys. This is

because stable binary and ternary phases share similar local atomic environments.

In some sense, the workflow enables an interpolation of the data already available

in AFLOWlib, to scan ternary convex hulls and identify stable compositions. Since

only a few high-energy structures and no out-of-equilibrium configurations are included

in the SNAP training dataset, additional features are introduced in the workflow to

increase the robustness of the predictions. These include constraints on the SNAP-

driven relaxations (constant volume and the inclusion of a maximum number of steps)

as well as using an ensemble of models.
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In a second part of this chapter, a similar workflow is built, but with a change in

the screening tool. Instead of using the SNAP ensemble model and making specific

adjustments to use SNAP as a relaxation driver, the recently developed universal force-

field M3GNet [163], a crystal graph neural network, is inserted into the workflow. This

state-of-the art universal graph deep-learning interatomic potential was pre-trained

on the data from the Materials Project [20], which most notably includes in excess of

185,000 structures resulting from the ab-initio relaxation of roughly 62,000 compounds.

Across all compounds in the dataset, 89 different elements are represented. Energies,

forces, and stresses were included in the training. The model MAE was only of 35

meV/atom on the test set (5% split of the full dataset), which is of the right order of

magnitude to serve as a screening tool. The use of the model is in line with the spirit

of the workflow. While it is trained on a far wider range of compounds than the SNAP

ensemble model, it is pre-trained on a readily available dataset and requires no extra

DFT calculations. One major advantage of M3GNet is that it is capable of performing

ionic relaxation without any intervention. It can therefore be readily integrated into

the workflow developed to screen novel ternary materials.

This chapter is organised in three main parts. The methods and relevant phase

diagrams are first presented. In Section 5.2, attention is given to the method used to

generate derivative structures for the creation of ternary prototypes. The details of

the M3GNet model are also introduced. In Section 5.3, three ternary phase diagrams

are described, those of Mo-Ta-W, Al-Fe-Ni and Bi-Fe-X (X being a refractory metal).

These systems serve as tests for the workflow developed. In a second part, in Sections

5.4 and 5.5, the workflow development is explained, and the SNAP ensemble model

is used as a screening tool. Finally, in a third part, the workflow constructed around

M3GNet is described, and the associated results are shown.

5.2 Methods

Since the work revolves around the identification of new ternary intermetallics, the

methods presented in the previous chapters are also relevant here. The SNAP inter-

atomic potential and the construction of convex hulls are notable examples. Neverthe-

less, two new computational tools are central for the development of the workflow and
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deserve some attention. The first is a methodology for efficiently enumerating “deriva-

tive structures” of a parent structure, presented in Reference [325]. This method

provides an algorithm for identifying all unique atomic decorations and corresponding

supercells that can be generated from a prototype structure. Since the workflow pre-

sented makes use of an initially small library of prototypes, the algorithm provides an

approach to efficiently extend the number of candidate structures to be screened. In

the second subsection, a presentation of the crystal graph neural network with 3-body

interactions (M3GNet) [163] is given. This recently developed universal interatomic

potential leverages the massive database of the Materials Project [20] to be an effective

screening tool and to perform relaxation on materials containing up to 89 different

species. The capacity of the deep learning model to do the latter motivates its use as

a substitute for SNAP in the workflow, as presented in Section 5.6.

5.2.1 Enumerating Derivative Structures

In this subsection, the algorithm in Reference [325] is presented. Some relevant elements

of group theory are first presented to aid the core discussion. The following subsections

break down the steps followed by the algorithm. Since this algorithm is completely

independent of the other methods so far presented, the mathematical notation used for

this specific subsection bears no relation to any other sections.

Elements of Group Theory

There are first some elements and definitions from group theory that need to be ex-

plained; firstly, a formal definition of a group. A group is a set G together with a

binary operation (operation on two elements), also called a multiplication, such that

∗ : G ∗G→ G (5.1)

In other words, when the operation is performed on two elements of G, the result is

also an element of G. The following conditions must also be satisfied:

• The group multiplication must be associative.

• The set of the group must have an identity element.
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• Each element of the group must have an inverse.

An example of this is (Z,+), the group is the set of all integers under the addition

operation. If one takes any two elements of the set and adds them together, the result

will also be part of the set. Associativity is respected for the addition of integers. The

identity element is 0. Each element has an inverse, for an integer i it is just -i.

An important notion for the discussion to come is that of equivalent labellings. This

concept is valid for finite groups. As an example, the cyclic group Z4 will be used. This

is the set of integers {0, 1, 2, 3} under the addition operation modulo 4. The Cayley

table for this group is given in Table 5.1. This is a square table with all elements of the

group as headers of each column and row, with the inside of the table populated by

the group multiplication of each element, in the same form as a multiplication table.

Table 5.1: Cayley table of the cyclic group Z4.

Z4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

In each row and column, all elements of the group are present once but each time

in a different order. These correspond to different permutations of the group, which

are equivalent to each other and correspond to a change in the order of the group

members. Each one is an equivalent labelling of the same group. In other words,

writing the different elements of the group in the order of the first, second, third or

fourth row is equivalent. Writing Z4 as (0,1,3,2) however would not be.

Algorithm

Reference [325] describes an algorithm for generating “derivative structures” from a

parent structure. This is exactly what is required for the work in this thesis, since

there is a pool of prototype structures that provide parent lattices, from which one

wants to generate all possible supercells up to a certain size (in number of atoms),

with various lattice decorations with three species. Note that in this first piece of
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work published by Hart et al., the algorithm described is used to generate all possible

and unique superstructures of a parent structure for a given set of k species up to

order n (i.e. with n atoms). This implies that the structures generated will have

different stoichiometries, and include all possible k-nary structures (binary, ternary,

quaternary), bar unaries. Additionally, in the original paper, the parent structure is

a lattice (crystal structure with one atom per unit cell). In further work, the authors

extend their algorithm to include parent multilattices (crystal structures with cells

containing more than one atom) [326], as well as a method for generating structures

at a fixed concentration of the k species [287]. These are not presented here, only the

first seminal work that describes the initial method is given.

An example of a derivative superstructure is shown in Figure 5.1. The fcc lattice is

the parent lattice, depicted by two consecutive conventional unit cells. The structure on

the right is a binary superstructure and an example of a derivative structure obtained

from the fcc lattice. It can be seen that different sites from the fcc lattice are decorated

with two different types of atoms. Decorations (the different ways to place atoms on

the various superlattice positions) will also be referred to as colourings or labellings.

The algorithm can be broken down into two main steps. The first involves gen-

erating all the unique superlattices (without decorations) of a parent lattice. In this

context, a superlattice has the same unit cell as a sublattice of the original lattice, in

the mathematical sense. However, the points of the parent lattice “inside” this su-

percell are also part of the superlattice and can be decorated. The second concerns

the generation of all the unique decorations of these superlattices. This is performed

for all lattices with sizes from 1 to n, where n indexes the size of the superlattices

and, for the case of single-site lattices, also corresponds to the number of atoms of the

derivative structure. The method is fast as it scales as O(N), rather than the O(N2)

that one would obtain by first generating all possible derivative structures in a brute

force approach and then comparing them to each other to find the unique ones.

Generating Unique Superlattices

Consider a parent lattice whose lattice vectors are arranged in the columns of a 3×3

matrix A. In order, to construct a superlattice or to perform a change in basis and

obtain a new basis B, the transformation B=HA is performed, where H is a matrix
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Figure 5.1: Illustration of a binary superlattice (right) of a parent fcc lattice (left).
Image taken from Reference [325]

with integer entries. The determinant of this transformation matrix corresponds to

the index n of the superlattice. All such transformation matrices can be written in

Hermite Normal Form (HNF), as

H =


a 0 0

b c 0

d e f


, 0 ≤ b < c, 0 ≤ d, e < f. (5.2)

Note that |H|=n=a× c× f . Transformation matrices written in this form are unique,

so they each yield a different superlattice. Indeed, for the case of transformations of

order n=1, all H written in HNF become the identity matrix (H=I), since all such

transformations just correspond to a basis transformation and therefore still produce

the same lattices. The fact that transformation matrices written in HNF represent

distinct superlattices and have a well-defined form, implies that superlattices of all

orders can be easily and systematically created through the use of a few nested loops.

Importantly, this step does not require any knowledge of the parent lattice, so there is

the same number of HNFs at each order for all lattices, as given in Table 5.2.

Table 5.2: Number of distinct HNFs and SNFs for different index numbers n.

n 1 2 3 4 5 6 7

# HNFs 7 13 35 31 91 57 155

# SNFs 1 1 2 1 1 1 3

The set of HNFs constitute the set of unique and distinct undecorated superlattices
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provided the parent lattice has no rotational symmetries. If the latter does not hold,

then some HNFs will produce equivalent superlattices. In the process of enumerating

the HNFs, a symmetry check is therefore performed each time a new HNF is created.

The symmetry of the lattice is determined, and the associated rotation matrices are

listed as R. If Bi is a superlattice in the set of already enumerated superlattices and

Bj is a new one, then B−1
i RBj must be a unimodular matrix of integers for the new

superlattice to be added to the list, for all rotations R and all superlattices Bi. The

result of this process is a set of unique superlattices up to a defined order n that need

to be decorated.

Generating Unique Decorations

For each superlattice (HNF) created, there are n interior sites (the ones of the parent

lattice within the unit cell of the superlattice) to be decorated with the possibility of

k different types of decorations (different atoms), which will be labelled with letters

(a,b,c,...). This means there are up to kn possible decorations, which could be equivalent

because of the symmetry of the underlying lattice, as well as the translational symmetry

of each superlattice. These decorations can be represented by all the n-digit, base-k

numbers. The representation of the 16 such decorations are given in Table 5.3 for n=4

sites and k=2 species a and b. Note that this list of decorations is valid for all HNFs of

index n. The rest of the algorithm then deals with eliminating the duplicate decorations

from this list by making use of group theory, rather than comparing all structures one

to one directly. Each of the steps in the elimination process are described below and

after each one, duplicates are removed from the list before proceeding to the next one.

Table 5.3: Hash table for the different decorations of a superlattice with n=4 sites and
k=2 possible different species, a and b, that can be used as decorations. Some of them
may be equivalent.

aaaa abaa baaa bbaa

aaab abab baab bbab

aaba abba baba bbba

aabb abbb babb bbbb
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Figure 5.2: Illustration of translational duplicacy. A 2D structure is shown above with
a cubic parent lattice and decorated with two atom types a (black) and b (white). Two
unit cells of superstructures are outlined by dashed lines. The first one corresponds
to a aabb decoration, while the second one to a bbaa decoration. Both yield the same
structure and only differ by a translation of the parent lattice.

Eliminating Translational Duplicates

Translational duplicates correspond to derivative structures generated from different

atomic decorations of a superlattice, but that result in the same structures under

a translation of the parent lattice. This is illustrated for a two-dimensional lattice

in Figure 5.2. In order to identify these duplicates, a group theoretical approach is

followed. An example is presented to help give some intuition on the approach. A 2D

simple cubic lattice and an associated 2×2 superlattice, as shown in Figure 5.3, will be

used for this purpose. The parent lattice L is a group composed of the infinite set of

points spanning R2 under the operation of translations between these points. A given

sublattice (the mathematical sublattice) of the parent lattice corresponds to a subgroup

S of L. By translating the sublattice by lattice translations, without reconstructing the

starting sublattice, equivalent sublattices can be constructed. This idea is illustrated

in Figure 5.3. Note that the size of the set of such sublattices is finite and is equal

to the index n of the superstructure associated with the sublattice. In group theory

nomenclature, these sublattices are cosets of S. Together, they form a group called the

quotient group G = L/S (different to the general notation used for a group above),

which is a finite group with n elements. In the example in Figure 5.3, there are four
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Figure 5.3: Illustration of the concept of the cosets of a subgroup S. The white dots rep-
resent the parent lattice. Four equivalent sublattices of order n=4 are shown (labelled
0,1,2,3), and are decorated with different colours. They differ only by a translation of
the parent lattice, so correspond to a different choice of the origin. Their union is the
parent lattice, decorated with the respective colours.

elements, which could each be labelled, such that the group G is labelled as (0,1,2,3).

Note that this could also be viewed as decorating the different 4 sites of the superlattice

with different atomic species, as illustrated by the different colours.

Table 5.4: Multiplication table of Z2 ⊕ Z2.

Z2 (0,0) (1,0) (0,1) (1,1)

(0,0) (0,0) (1,0) (0,1) (1,1)

(1,0) (1,0) (0,0) (1,1) (0,1)

(0,1) (0,1) (1,1) (0,0) (1,0)

(1,1) (1,1) (0,1) (1,0) (0,0)

If one were to shift all the sublattices by one “right translation of the parent lattice”,

the corresponding superlattice would still be the same, however, the labelling of the

group G would change. In the illustration from Figure 5.3, sublattice 1↔2 and 3↔4,

G would then be labelled as (1,0,3,2). However, this still corresponds to the same

superlattice, there has just been a shift in origin. This equivalence between labellings

[here (0,1,2,3) and (1,0,3,2)] can be rationalised through group theory. For this, the

Smith Normal Form (SNF) matrix of the HNF of the lattice considered must be used.
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Note, however, that many HNFs share the same SNF, leading to a low number of SNFs

for each index n, as shown for the first values of n in Table 5.2. The SNF is a diagonal

matrix. In the case it is a 3×3 matrix, as for a 3D lattice, the entries on the diagonal

are denoted si, sj and sk. It turns out that the quotient group G described thus far

corresponds to the direct sum of the cyclic groups Zsi ⊕Zsj ⊕Zsk , where ⊕ is a direct

sum. As a result, equivalent labellings correspond to the different rows or columns

of a multiplication table of this group. In our example, G would be Z2 ⊕ Z2. The

multiplication table of this group is given in Table 5.4. In comparison to our example,

by changing the labels such that 0 → (0, 0), 1 → (1, 0), 2 → (0, 1), 3 → (1, 1), then the

first two rows show that (0,1,2,3) and (1,0,3,2) are equivalent and therefore correspond

to the same superlattices. This approach allows us to identify equivalent labellings and

hence eliminate translation duplicates.

To illustrate this process, consider all the different possible decorations for our

binary system, given in Table 5.3. If these were used to decorate the 2D simple cubic

lattice used as an example in this section, it can be seen how many of these are in

fact translational duplicates of one another. This is illustrated in Table 5.5. Of the

14 possible decorations (excluding pure a or b), this shows there are in fact only 5

translationally distinct superlattices.

Table 5.5: Different decorations of the superlattice related to equivalent labellings.

(0,1,2,3) (1,0,3,2) (2,3,1,0) (3,2,0,1)

aaab aaba abaa baaa

aabb aabb bbaa bbaa

abab baba abab baba

abba baab baab abba

abbb babb bbab bbba

Since the number of SNFs is low for each n, compared to the number of HNFs,

this implies that many redundant superlattices can be sorted through simultaneously.

Overall, this step reduces by a factor of ∼ n the number of superlattices. This group

theory approach alleviates the need to perform one-to-one comparisons of all such

superlattices through lattice translations.
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“Label-exchange” Duplicates

In the first piece of work published, G. Hart et al. [325] indicate that since the aim of

the algorithm is to create unique structural prototypes, rather than unique materials,

“label-exchange” superlattices are considered to be duplicates and are hence removed.

In the binary case discussed previously, the labellings abbb and baaa would be con-

sidered to be such duplicates, since the underlying structures and decoration of sites

is the same for each material, but the type of labellings are different (a exchanged

for b). These are not relevant to this study, as the algorithm is applied at a fixed

stoichiometry.

Superperiodic Labellings

The next set of equivalent labellings that are removed concern the superperiodic ones.

These are labellings of a sublattice that make the period of the repeating unit shorter

because of the specific ordering of decorations. Figure 5.2, in fact, depicts a superperi-

odic structure, as a smaller unit cell could be chosen to describe this superlattice (one

consisting of only two sites rather than four). Such labellings correspond to ones that

do not change upon certain permutations (parent lattice translation). This is the case

for the ones on lines 2, 3 and 4 in Table 5.5, including the one from Figure 5.2 (the

exact one would depend on the choice of site indexing).

“Label-Rotation” Duplicates

The last type of duplicates to consider are the equivalent superlattices that differ by

a lattice rotation of the parent lattice. This depends on the symmetry of the parent

lattice, so its associated rotation matrices are used. The left transformation matrix

L, used to construct the SNF from the HNF (S = LHR) is also required, as are the

parent lattice vectors A. The n members of the quotient group are represented with

three components and together form the 3×n matrix G. These are transformed under

a rotation to give new labellings G′ as,

G′ = LA−1R
(
LA−1

)−1
G. (5.3)
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As these checks are performed within the quotient group, duplicates labellings are

eliminated in a time proportional to the number of labellings in the list.

Summary

The algorithm presented in this section is based on a group theoretical approach to

generate all unique generative structures of a parent structure. Unique unit cells up to

a pre-defined size are identified and generated through the HNF notation. All possible

decorations of the superlattices are carefully labelled and group theory provides tools to

eliminate the different duplicates mentioned, namely translational, “label-exchange”,

superperiodic and “label-rotation” ones.

From an initial structure, a maximum cell size and a number of species, a list of

unique derivative structures is provided. An open-source Fortran code, enumlib, is

available from the authors of the work and is used here. Note that extensions of the

methodology that allow the use of multi-site prototypes [326] and a fixed stoichiometry

[287] generation are implemented in the computer program and are used for this work.

5.2.2 M3GNet

In the second phase of this work, the screening tool M3GNet (from graph neural net-

works with 3-body interactions) [163] is inserted into the workflow. This is a pre-trained

machine-learning model that relies on pre-existing DFT data contained in the Mate-

rials Project [20] to be trained. It is a universal interatomic potential, since it can

be used on combinations of 89 different atomic species. It was introduced to improve

both on typical message-passing and graph neural networks [152, 157, 153, 327, 158]

and conventional MLIAPs [28, 126, 112, 140, 148, 125] for high-throughput materi-

als screening. The former can be used to make accurate property predictions [328]

but can not perform atomic relaxations, while the latter is limited to the number of

different chemical species present in a material, due to the explosion of the number

of N -body interactions with increasing number of species and, hence, the number of

basis functions required. M3GNet is capable of performing accurate relaxation and,

due to the nature of crystal graph neural networks, is not limited by any number of

species. It is also freely available and ready to use, as it interfaces with the Python

Materials Genomics (pymatgen) library [329]. In this subsection, a description of the
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architecture of the M3GNet model is given.

MEGNet

The model relies on the MatErials Graph Network (MEGNet), introduced by the same

authors in 2019 [328]. This machine-learning model differs significantly from the MLI-

APs described previously. The latter rely on local atomic fingerprints combined with

a machine-learning model and are used to predict energies, forces, and stress tensors.

The representation of MEGNet is more global and encodes information of the full sys-

tem, rather than taking the Behler-Parinello [112] approach of describing the system

by a combination of local atomic descriptors.

MEGNet is a type of graph network [330], a deep-learning architecture. A system

(molecule or crystal) ofN atoms is described in terms of a mathematical graph, in which

atoms are represented by nodes in the graph and bonds between neighbouring atoms

are represented by edges. Each node i and edge k have an associated attribute vector,

denoted v⃗i, the atomic attribute, and e⃗k, the bond attribute. V = {v⃗i} constitutes the

set of all N atomic attributes, while E = {(e⃗k, rk, sk)} is the set of all edge attributes

e⃗k with rk and sk the indices of the atoms delimiting each bond k. There is one last

attribute u⃗ that makes up the graph. This is a global attribute of the full system that

contains state attributes, such as temperature. The graph, defined as G = (E, V, u⃗),

represents the system. Crucially, it is this representation that is updated during the

“learning” process of the ML model. A visual aid to illustrate the graph is given in

Figure 5.4.

A graph network (GN) framework makes use of “update” functions for relational

reasoning over graphs [330]. The central unit in such a framework is the GN block,

which maps a graph G to another graph G′. This is done by performing successive

updates of the bond attributes, then of the atom attributes, and finally of the global

state vector. These are respectively performed with the update functions ϕe, ϕv and ϕu.

The bond attribute vectors e⃗k are updated from themselves, their connecting atoms

with indices sk and rk and the global state vector u⃗, as,

e⃗k
′ = ϕe (v⃗sk ⊕ v⃗rk ⊕ e⃗k ⊕ u⃗) , (5.4)
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Figure 5.4: Illustration of the crystal graph and update steps in the MEGNet model.
The top image shows a molecule as a graph, with atoms represented by circular nodes
and edges by cylinders. v⃗i is the atom attribute for node i, e⃗k the bond attribute for
edge k, and u⃗ is the global attribute. Below, the successive update steps are illustrated.
First, for each edge, the new edge attribute e⃗k

′ is computed (left). The atom attribute
v⃗i

′ is then calculated for each atom (centre). Finally, the new global feature u⃗′ is
calculated (right) from all bond and atom attributes.

where ⊕ is the concatenation operator and ϕe is the update function for edges. The

node attributes v⃗i are updated from themselves and their connecting bonds, along with

the global state vector u⃗, as follows

⃗̄v e
i =

1

N e
i

Ne
i∑

k=1

{e⃗k ′}rk=i , (5.5a)

v⃗i
′ = ϕv

(
⃗̄v e
i ⊕ v⃗i ⊕ u⃗

)
. (5.5b)

Here, ϕv is the update function for atoms and N e
i is the number of bonds connected to i.

The first sum is over all bonds surrounding atom i. Thus, ⃗̄v e
i is the average edge vector

from all neighbouring bonds of i. These first two steps enable the communication of
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edge and atom attributes locally. Finally, the global state attribute vector u⃗ is updated

according to the following equations

⃗̄u e =
1

N e

Ne∑
k=1

{e⃗k ′} , (5.6a)

⃗̄u v =
1

N

N∑
k=1

{v⃗i′} , (5.6b)

u⃗′ = ϕu

(
⃗̄u e ⊕ ⃗̄u v ⊕ u⃗

)
. (5.6c)

ϕu is the update function for the global state vector and N e is the total number of

bonds in the system. The global state attribute can thus be used to communicate

information on the scale of the whole system. The equations underlie one update of

the graph and are associated with the MEGNet layer. Several such update rounds

are incorporated in the full model. The model is a deep-learning one since the three

update functions are neural networks with two hidden layers. For each one, there are

three sets of weights and biases that are learned. The modified Softplus function is

used as a nonlinear activation function [85, 331]. Two fully connected layers are added

before the GN unit described to increase model accuracy. Note that a skip connection

is also included to avoid over-fitting. These steps make up one MEGNet Block. The

MEGNet block is illustrated in Figure 5.5.

Such a block is repeated Nblocks times to increase the expressiveness of the model

and the connectivity between bonds and edges. For the full crystal MEGNet model, 3

blocks are used. Several other blocks are added to the full architecture. At the start,

an embedding layer is added for V , as will be described. Following the MEGNet blocks,

set2set models [332] are used to embed the set of all attribute vectors in E and V into

one vector each. The two resulting vectors of this readout set are concatenated along

with u⃗ into one vector, that is fed into a final neural network with two hidden layers.

The output is a single floating number. The overall architecture is illustrated in Figure

5.5.
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Figure 5.5: Architecture of the MEGNet model. The green block is the MEGNet layer.
The yellow blocks are MEGNet blocks, repeated Nblocks times. The blue blocks are for
embedding or concatenating, and the red ones are fully connected neural network layers.
Input blocks are in white. The add arrows are skip connections. The square brackets
indicate the number of nodes in each neural network layer. The schematic is based on
that in Reference [328].

Vector Attributes

Some attention is now given to the content of the three vector attributes that make

up the graph sets E, V and the global state vector u⃗. The initial atomic attribute

for each atom, in the case where the system is a crystal structure, is a single number,

the atomic number of the chemical species. This is embedded in a 16-feature vector in

the first step before the MEGNet block. The process of embedding consists of turning

a discrete variable (integer, word, etc.) into a vector of continuous numbers. The

weights used to perform the elemental embeddings are learned. The bond attribute

vector e⃗k of bond k, sample 100 points of a Gaussian distribution between 0 and

6 Å, centred on the edge’s bond length dk and with fixed width (0.5 Å), provided

the bond length is less than a cut-off value Rcut. In the first MEGNet model, the

global state vector u⃗ is used as a placeholder for global information exchange and



139 5.2. Methods

is a vector with two zero entries. This model has proved to beat state-of-the art

algorithms such as SchNet [152], message-passing neural network enn-s2s [151], crystal

graph convolutional neural networks [157], automatminer based on matminer [333] and

random-forest-based models for the predictions on both molecular and crystal structure

properties [328, 334]. The elemental embedding equally proved to be transferable for

different properties, indicating that chemical identity had been learned through the

embeddings. Through the exploitation of the global state, it has equally been used

effectively to incorporate multi-fidelity data, which notably increased the predictions

of high-fidelity data [335].

While MEGNet provides an ML architecture for training a model capable of making

predictions of system properties, it is not an MLIAP. When making predictions on

novel materials, the structures of the candidate compounds must be estimated, and

they are unlikely to be in their equilibrium configuration. To drive them there, ab-

initio relaxation is required. If such calculations were to be performed on all candidate

structures, the gain from the ML model used to make the final property predictions

would be dwarfed by the time taken to perform the DFT relaxation. To circumvent

this bottleneck and increase the applicability of MEGNet-type models, M3GNet was

developed.

M3GNet: Architecture

M3GNet builds upon MEGNet but includes additional features such that it can be used

as an MLIAP, not just an ML property predictor. Here, the architecture of M3GNet

is summarised and the differences with MEGNet are highlighted. The training and

applications of M3GNet are presented in the following section.

The graph representing the system now includes two new features. A set X that

includes the coordinates of all atoms is added, along with a 3×3 lattice matrix M.

The graph G is thus the set (E, V,X, u⃗,M). In practice, the two additions are used

to compute the forces and stress tensors at the final stage via auto-differentiation,

and they are not used in the main deep-learning architecture. Figure 5.6 shows an

illustration of the M3GNet architecture. A first difference with the previous model is

that two pre-processing units, the graph featuriser, and the many-body computation

unit, are present. The former creates an embedding for both the atomic and bond
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attributes. The atomic embedding is identical to that in MEGNet, bar the fact that

the final feature length is 64. The bond attributes are now required to be invariant

upon translation and rotation of the system, as well as upon permutation of identical

atoms for the model to be used as a MLIAP. The bond attributes are now denoted e⃗ij,

where, i and j label the atoms surrounding the bond. The initial bond attributes, e⃗ 0ij

are expanded in terms of the first three radial basis functions defined in Reference [336]

for the bond length Rij. The embedded attributes are then fed into the main message-

passing block. In parallel, many-body terms, up to 3-body in the case of M3GNet, are

computed. These correspond to the angles between bonds e⃗ij and e⃗ik, denoted θjik.

Graph FeaturiserMany-body computation

Many-body to bond

gMLP

Figure 5.6: Architecture of the M3GNet model. The schematic is based on that in
Reference [163].

In the main block, there are two main steps. The first is the many-bond to bond

unit, which enriches E with 3-body terms. The second is the message-passing step,

which plays the same role as the MEGNet unit in this architecture. This main block is

repeated 3 times, as for MEGNet, to increase the expressivity of the model. A first new,

important aspect of this model is the inclusion of gated neural networks instead of con-
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ventional ones [337]. Gated neural networks, also called gated multi-layer perceptrons

(gMLP), have a different structure than conventional neural networks. Their aim is

to emulate the increased complexity of Transformer models [70] over neural networks,

which are heavily used in the fields of natural language processing and computer vision

[338]. A crucial innovation for these models is the use of the attention mechanism

[70], which cannot be replicated if model parameters are fixed. Instead, gMLPs were

suggested as an alternative to replicate the attention mechanism in a neural network

with fixed weights. In practice, this takes the form of including a learnable spatial pro-

jection step, which aims to identify important interactions between the features. For

M3GNet, this enables further model complexity. Most neural networks are replaced by

gMLPs.

The other significant difference between M3GNet and its predecessor is the inclusion

of invariant three-body terms. These are incorporated within the bond attributes E

during the many-body to bond unit, shown explicitly in Figure 5.6. The mathematical

grounding of this block is as follows. For a bond e⃗ij, all neighbours k of atom i are

considered by calculating their interatomic distance Rik with i and the angle between

atoms i, j, and k, θjik. This leads to a first bond update in the many-body to bond

module, defined as,

⃗̃ei,j =
∑
k

jl

(
zln
Rik

rc

)
Y 0
l (θjik)⊙ σ

(
W v v⃗k + b⃗v

)
fc (rij) fc (Rik) , (5.7a)

e⃗i,j
′ = e⃗i,j + g

(
W 2

⃗̃ei,j + b⃗2

)
⊙ σ

(
W 1

⃗̃ei,j + b⃗1

)
. (5.7b)

Here ⊙ is the element-wise product, Wand b⃗ are weights, jl are the spherical Bessel

functions with roots zln, and Y
0
l are the spherical harmonics. ⃗̃ei,j are vectors with each

component corresponding to expansions on different basis functions (with parameters

l and n). They go up to cut-off values lmax and Nmax, respectively. fc is a specifically

defined cut-off function defined in Reference [339], σ is the sigmoid activation function

and g is the non-linear activation function [340]. The two latter are the activation

functions used for the gMLPs. These are then used along with the atom attributes

and global state attribute in the message-passing block of the model. As before, these
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require new update functions ϕe, ϕv and ϕu. The notation is kept from the previous

section for simplicity, but the functions are now different. ϕe and ϕv are gMLPs while

ϕu is a neural network with two hidden layers using the non-linear activation function

[340]. The update steps follow the order of the equations below.

e⃗ij
′′ = e⃗ij

′ + ϕe (v⃗i ⊕ v⃗j ⊕ e⃗ij
′ ⊕ u⃗)W0

ee⃗
0
ij, (5.8a)

v⃗i
′ = v⃗i +

∑
j

ϕv (v⃗i ⊕ v⃗j ⊕ e⃗ij
′′ ⊕ u⃗)W0′

e e⃗
0
ij, (5.8b)

u⃗ ′ = ϕu

(
⃗̄u v ⊕ u⃗

)
. (5.8c)

Here, W0
e and W0′

e are the weights of the model.

M3GNet: Training and Applications

From this model architecture, the universal MLIAP was trained on 187,687 structures,

taken from the relaxation steps of 62,783 compounds present in the Materials Project

[20]. The dataset included 187,687 energies, 16,875,138 force components and 1,689,183

stress components. In the full database, 89 different species are present, although some

elements are more represented (oxygen) than others (noble gas species). An important

aspect of the database was the inclusion of structures with a low interatomic distance,

notably for compounds containing H, since this enabled the model to learn repulsive

behaviour at such distances. The final MAE of the model was of 35 meV/atom on

energies and 7.2×10−2 eV/Å for forces. The model was tested for its intended purpose

of performing accurate relaxations. This was initially performed on the test set of

more than 3,000 structures and proved to be very successful. Before relaxation, the

M3GNet predicted energy error of the 80th percentile of the error distribution was of

71 meV/atom, whereas this decreased to 28 meV/atom for full MEGNet relaxation.

This error was of 26 meV/atom when the relaxation was performed with DFT, proving

the relaxation ability of MEGNet at a fraction of the ab-initio cost. The model was

further applied for materials discovery on over 31 million novel structures. Of the top

1000 of these (predicted to be closest to the convex hull), 999 were found to have a

DFT hull distance of less than 1 meV/atom. The DFT relaxations performed were
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also accelerated by an order of magnitude in energy after the M3GNet relaxation. It is

concluded that M3GNet can be used as an effective tool to perform accurate relaxation

through machine learning, without resorting to DFT.

In the next section, the phase diagrams of the ternary systems studied in this

chapter are presented.

5.3 Ternary Phase Diagrams

Four ternary systems are studied in this chapter. The first is the Ag-Au-Cu system,

which is again used as a benchmark for the workflow development. Once developed,

the workflow is applied to the Mo-Ta-W system. The magnetic systems Al-Fe-Ni and

Bi-Fe-X (X = Zr,Ta) are further studied with the M3GNet workflow. Since the Ag-

Au-Cu system has already been presented, the experimental phase diagrams of the

other three systems are described here.

5.3.1 Mo-Ta-W

The Mo-Ta-W is descriptively the simplest system, since it displays full mixing across

the whole compositional space for all three binaries and the ternaries [341, 342, 343,

344]. At lower temperatures, ordered phases are expected to form [342, 345]. All

three metals possess the bcc structure in their elemental phase. The three elements

are refractory metals with melting points of 2896 K for Mo, 3290 K for Ta and 3695 K

for W [215]. They form bcc solid-state solutions across the full compositional range for

binaries and ternaries. These refractory metals can notably form high entropy alloys

[186].

This system was chosen as a test system, since four ternary compounds were present

on AFLOWlib’s database, more than for any other ternary transition metal alloy. These

are MoTaW, Mo2TaW, MoTa2W and MoTaW2. The convex hull computed from the

AFLOWlib DFT data is presented in Figure 5.7, to also highlight the stable binary

phases. Note that the Mo-W edge of the convex hull is very shallow, with a minimum

of only -6.1 meV/atom at the MoW stoichiometry. The Mo-Ta edge is lowest, at -194.0

meV/atom at the MoTa stoichiometry, and the Ta-W edge has a minimum of -115.0

meV/atom at the TaW2 stoichiometry.
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Figure 5.7: The AFLOWlib convex hull for the ternary Mo-Ta-W system. The crosses
mark the convex hull points, the black lines are the convex hull tie lines, and the colour
bar indicates the depth of the hull ∆Hhull.

A recent study of this system by Sotskov et al. [316] used a newly developed

MLIAP aimed at predicting configurational energy and to be used in a crystal structure

prediction scheme. In this computational work, they identified three new stable binary

compounds (TaW8, TaMo5 and TaMo6) and two new stable ternary intermetallics

at MoTa2W2 and Mo3Ta3W. They also identified a near stable compound (within 1

meV/atom from the hull) at the MoTaW5 stoichiometry. Since their work was directly

compared to the convex hull from AFLOWlib, it can be compared to the results in this

study. The work dislodged a number of AFLOWlib compounds from the convex hull,

most notably the ternary MoTa2W compound. Note that the new ternary compounds

they found were closer to the Ta-W edge.

5.3.2 Al-Fe-Ni

While the previous ternary system was chosen due to the richness of AFLOWlib’s

convex hull, the Al-Fe-Ni ternary convex hull is chosen because of the presence of
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magnetic elements. The experimental phase diagram for this system is also very rich,

for all three binary subsystems, as well as for the ternary region. Along with NiTi,

these ternary alloys are notably used in industry as prominent shape-memory alloys

[346]. Regarding the constituent elements, Al and Ni form an fcc phase, while Fe

adopts the bcc lattice as a ground state at low temperatures, although its structural

and magnetic ground states vary at higher temperatures [347]. Fe and Ni have a

ferromagnetic ground state, while Al is paramagnetic. The melting points are 993 K,

1811 K and 1728 K for Al, Fe and Ni, respectively [215]. The experimental phase

diagrams of the three binaries Al-Fe, Al-Ni and Fe-Ni are described in the following

subsection and the corresponding AFLOWlib convex hulls are summarised.

Binary subsystems

The experimental phase diagrams of the three binaries are shown in Figure 5.8. For

the Al-Fe binary system, there are five stable phases, which are the Al13Fe4, Al5Fe2,

Al2Fe, AlFe and AlFe3 intermetallics [348]. The Al-rich phases display a very small

range of stability, while AlFe (ordered B2 phase) and AlFe3 have larger stability ranges.

There is a very large alloying ferromagnetic A2 phase on the Fe-rich side of the phase

diagram, whereas no such alloying phase is close to the pure Al phase. Note that a

high temperature intermetallic phase exists, with stoichiometry Al8Fe5.

A recent DFT study of this system [351] revealed that the Al5Fe2 phase and the

D03 Al2Fe one were not on the convex hull, while two Al-rich intermetallics, Al6Fe and

Al9Fe2 (mechanically unstable), were very close to the convex hull. Table 5.6 gives

a summary of which phases are present on the AFLOWlib and the Materials Project

(MP) convex hulls. Note that the Al13Fe4 phase is modelled with a stoichiometry of

Al3Fe. In the reference AFLOWlib database, only the Al5Fe2 phase is not present. Note

that the Al13Fe4, Al5Fe2 and Al2Fe phases form ternary alloys with Ni substitutions.

For the Al-Ni system, the phase diagram is similar, in that it presents Al-rich

intermetallics with narrow stability ranges with respect to composition, the Al3Ni and

Al3Ni2 phases and an ordered B2 phase for AlNi with an extended stability range

[349, 352, 353]. There are two Ni-rich intermetallics at Al3Ni5 and AlNi3 and there

is a significant alloying range with pure Ni, but not with Al. Note that the Al4Ni3

intermetallic phase (which is within the stability range of the ordered AlNi phase) has
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(a) Phase diagram of Al-Fe. (b) Phase diagram of Al-Ni.

(c) Phase diagram of Fe-Ni.

Figure 5.8: Binary phase diagrams of Al-Fe (left), Al-Ni (centre), and Fe-Ni (right).
These phase diagrams were taken from references [348], [349], and [350], respectively.

also been synthesized, but is not always present in computed phase diagrams [354]. A

first-principles study of this phase diagram shows good agreement with experiments,

with a notable exception for the extended stability of the AlFe B2 phase [355]. On the

computational databases, the convex hulls present all experimentally identified stable

phases. The Al3Ni and Al3Ni2 phases alloy with Fe to form ternary phases. The Ni

alloy and AlNi3 phases are known to be magnetic.

The FeNi system displays a rather different phase diagram to that of the other two

systems [350, 356]. At high temperatures, it is entirely dominated by an A1 solid-state

solution across the full compositional range. At lower temperatures, relevant for this

study and for convex hulls, there is only one stable intermetallic phase, FeNi3, which

has an extended range of stability. The main portion of the phase diagram at low

temperatures is dominated by a region in which there is coexistence of two phases,

namely the FeNi3 and Fe A2 alloy phases. Experimentally, ordered compounds for
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Table 5.6: Table presenting the phases available present in different computational
databases, AFLOWlib and Materials Project (MP), and ones in the experimentally
computed phase diagrams (Exp.).

Database Al13Fe4 Al5Fe2 Al2Fe AlFe AlFe2 AlFe3

AFLOWlib ✓(Al3Fe) ✗ ✓ ✓ ✓ ✓

MP ✓ ✗ ✗ ✓ ✗ ✓

Exp. ✓ ✓ ✓ ✓ ✗ ✓

FeNi and Fe3Ni have been observed, although it is suspected that these are metastable

or unstable. First principles studies have shown that FeNi and FeNi3 phases lie on

the convex hull [357]. The FeNi8 phase is also present on the AFLOWlib convex hull,

but has not been reported experimentally. All other relevant phases are present on

AFLOWlib.

Ternary Phase Diagram

Phase diagrams for the Al-Fe-Ni system are only available in the literature for tem-

peratures above 900K. The most up-to-date study of this phase diagram [358] is used

as the reference for the present discussion. It is a CALPHAD study mostly based

on experimental data. However, some first principles data for ternary compounds,

notably “virtual” ones, is included to enrich the modeling. The computed phase di-

agrams at 1123K, as well as at the Al-rich corner at 900K, are shown in Figure 5.9.

The latter corresponds to the most diverse out of all the phase diagrams and is hence

highlighted here. The different ternary phases present can essentially be placed into

three categories: ternary solid-state solutions, binary-based alloys and pure ternary

intermetallics. The region of the phase diagram close to equimolarity is dominated by

the β phase (notation from Figure 5.9), a solid-state solution with a bcc B2 structure,

based on the B2 AlFe and AlNi phases. At low Al concentrations, the γ phase from

the FeNi system is present and alloys with small concentrations of Al with the fcc A1

structure. At high Ni concentrations, there is a L12 phase, based on an alloying of

AlNi3 and FeNi3. In the Fe-rich corner, at high temperatures, there is alloying with

the pure Fe phase with the bcc A2 structure. Substitutional alloys based on binaries

are present for many Al-rich binaries, which have narrow ranges of stability. These are
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the Al13Fe4, Al5Fe2, Al2Fe, Al3Ni and Al3Ni2, as indicated in the previous subsection.

There are three known Al-Fe-Ni intermetallics, which occur in the region where

there is no widespread presence of a solid-state solution, the Al-rich corner. This is no-

tably due to the lack of solubility of Fe and Ni in Al. The three phases are labelled τ1,

τ2 and τ3. The most well-studied τ2 phase is Al10Fe3−xNi1+x (x between 0 and 2), typ-

ically in the Al10Fe3Ni stoichiometry, but that extends to Al10FeNi3 [359] and includes

the Al5FeNi stoichiometry. The τ1 phase has a stoichiometry Al9Fe2−xNix (x between

1 and 1.6) [360], typically referred to as Al9FeNi, and has the Al9Co2 monoclinic crys-

tal structure. Finally, the τ3 intermetallic is at a very narrow compositional range at

the specific stoichiometry of Al71Fe5Ni24 and is only stable between 874K and 1203K

[361]. The τ1 and τ2 phases are expected to affect the ternary phase diagram, and they

are not present on AFLOWlib, which contains one ternary, the Al2FeNi compound,

on the convex hull. The ab-initio calculations provided by Reference [358] performed

with VASP serve as a useful reference for the intermetallic ternaries, as well as the

additional Al2FeNi, AlFe2Ni and AlFeNi2 compounds that were studied.

5.3.3 Bi-Fe-X

The two final phase diagrams investigated are that of the Bi-Fe-X systems, where X

is one of the two refractory elements Ta or Zr. These systems were chosen as a space

to deploy the workflows developed for magnetic material discovery. The inclusion of

Fe is to provide a large exchange interaction and hence a high Tc, while Bi is selected

for its high atomic number and hence provides strong spin-orbit interactions, which

may give rise to a high magnetic anisotropy. It is also chosen as it is rarely used in

ferromagnetic materials. Finally, Ta and Zr are chosen based on the fact that the Bi-

Fe-(Ta,Zr) systems have not been extensively studied. Regarding the unaries that have

not yet been presented, Bi forms a rhombohedral structure with a characteristically low

melting temperature of 544K and Zr is another refractory metal with a hcp structure

and a high melting temperature of 2125K.

There are two ternary convex hulls and five binary convex hulls related to these

systems. For the two ternaries as well as the Bi-Fe and Bi-Ta subsystems, no com-

pounds are present on the convex hull or the high-temperature phase diagrams. For

the binaries, this implies that the two species do not mix [362]. Therefore, the three
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(a) (b)

Figure 5.9: Phase diagram of Al-Fe-Ni at 1123K (left) and the Al-rich region of the
phase diagram of Al-Fe-Ni at 900K (right) taken from Ref. [358]. The high-temperature
phase diagram is computed with ab-initio data only, while the right one is with the
full data, including experimental data.

binary subsystems with stable phases, Fe-Ta, Fe-Zr and Bi-Zr are presented briefly.

Their phase diagrams are shown in Fig. 5.10.

For the Fe-Ta system, there are two experimentally observed stable phases that

have an extended stability range [363]. These are Fe2Ta and Fe7Ta6. A metastable

Fe2Ta3 has also been reported. Ab-initio studies are consistent with the experimental

phase diagram [364]. The Fe-Ta AFLOWlib convex hull presents three stable phases for

Fe2Ta, Fe7Ta6 and FeTa2. The presence of the latter is inconsistent with experimental

observations and it is in disagreement with the convex hull from MP.

The Fe-Zr system and its intermetallics are of notable interest for the disposal of

nuclear waste [365]. As a result, there has been a very extensive investigation of its

phase diagram, both experimentally and theoretically. There have notably been con-

troversies on the stability and temperature ranges of various stable structures. There

is an extensive literature review in Reference [365] and the phase diagram is taken from

the same reference. Two phases have been accepted to be stable even at low temper-

atures, namely Fe2Zr (cF24) and FeZr3 (oC16). Another phase, FeZr2 (tI12) has been

stabilised at low temperatures, but it has been concluded that it is metastable at such

temperatures and is only stable between 1053-1224K [366]. At high temperatures, a

hexagonal Fe2Zr (hP24) phase and the Fe23Zr6 phases have also been observed. The
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former has been accepted to be a high-temperature phase, while for the latter, it has

not been established whether this is a stable phase of the binary system or not. It is

possible that the phase is stabilised by oxygen, rather than being a pure binary [366].

The most recent study suggests it is stable even at low temperatures [365], which differs

with conclusions drawn from ab-initio studies [367, 368, 369]. The Fe-Zr AFLOWlib

convex hull presents three stable phases for Fe5Zr, Fe2Zr and FeZr3. The presence of

Fe5Zr is not in line with other studies and the MP. However, it lies only just “on” the

convex hull (3 meV/atom below if it were removed), and the other two phases are the

more important ones. The absence of Fe23Zr6 is in line with other DFT studies.

(a) Phase diagram of Fe-Ta. (b) Phase diagram of Fe-Zr. (c) Phase diagram of Bi-Zr.

Figure 5.10: Binary phase diagrams of Fe-Ta (left), Fe-Zr (centre), and Bi-Zr (right).
These phase diagrams were taken from references [363], [365] and [370], respectively.

Finally, the Bi-Zr system possesses four intermetallics with no stability range at

Bi2Zr, BiZr, Bi2Zr3 and BiZr2 [371, 370]. At high temperatures, the Bi1.62Zr phase

has also been synthesized [372]. The Bi-Zr AFLOWlib convex hull presents four stable

phases for Bi2Zr, BiZr, BiZr2 and FeZr8. The latter is inconsistent with experiment,

while there is a missing point for Bi2Zr3. The relevant points are present on the MP.

Following the presentation of the novel methods employed in this study and the

phases that will be investigated, the workflow constructed is now presented. The first

version of the workflow is centered around SNAP as a screening tool, and it is used to

make predictions regarding the stability of ternary compounds of the Ag-Au-Cu and

Mo-Ta-W systems.
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5.4 SNAP Workflow Development

In this section, the main workflow is presented. The aim is to make use of the SNAP

screening model developed in the previous chapter to accelerate the construction of

DFT ternary convex hulls. As explained in the introduction, this is typically done in

two steps, the construction of the database of candidate compounds that could lie on

the hull, and the evaluation of their energy with DFT. An additional efficient screening

step is inserted between these two in the workflow, which filters only the lowest energy

compounds to be passed to the more costly but higher fidelity ab-initio energy evalua-

tion. A key component of the workflow is the choice of candidate compounds used to

construct the hull. The pool of screened intermetallics must be near equilibrium alloys,

since this is a requirement for optimal performance of the SNAP model. In an attempt

to achieve this, the structures of the binary compounds that lie close to the convex

hull are chosen as prototypes. These are then decorated with three species following

the enumlib algorithm to form the database of candidate compounds. It is postulated

that, since similar chemical environments are encountered in ternary and binary com-

pounds, and that the structures of the binary compounds are already relaxed, these

could provide close to equilibrium structures for ternary phases. SNAP is then used to

drive a screening process with additional steps than just a straight energy prediction

to improve the robustness and reliability of the screening outcome. In Figure 5.11, a

diagram illustrating the overall architecture of the workflow is given.

The philosophy of this section is to give a description of the investigation followed

during the workflow development. To a great extent, the order of the results shown

here are in line with the chronological timeline of the progress made. As a result, the

results presented may not follow one another logically or smoothly, as is the nature

of the investigative process. The Ag-Au-Cu system is again used as a test system.

Comparisons are made to the AFLOWlib convex hulls. The methodology used for

AFLOW’s hull constructions is termed the dictionary method [235].

5.4.1 Binaries as Prototypes

The construction of the library of candidate compounds (ternary prototypes in Figure

5.11) remained unchanged during the development phase of the workflow, notably due
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Figure 5.11: Schematic diagram of the workflow for the construction of ternary convex
hulls.

to the early success with the databases generated, as well as the relatively low number

of parameters to tune in the process. Firstly, the relevant binaries are selected, namely

their structures are chosen as parent prototypes to be decorated. However, not all

compounds from the database of binary subsystems are chosen. Instead, only those

with enthalpies of formation lying on, or close to, the convex hull are taken. For

this, a fixed energy window above the hull at all stoichiometries is created, and any

compounds lying within this bracket are added to the database. This is performed for

the three binary subsystems. The choice of the size of the enthalpy interval was initially

set to kBT , with T set to 273 K. However, this led to a different number of selected

compounds for each binary and too high a number of total structures. The Ag-Au-Cu

system serves as a good example to see this effect. For Ag-Au, there are many low-lying

structures relative to the hull, whereas for Ag-Cu, notably in the region of equimolarity,

the lowest enthalpy systems lie more than 50 meV/atom above the hull. A fixed energy

window would thus lead to the selection of more structures originating from the Ag-

Au subsystem. Instead, the energy window is system-dependent and adapted such

that the number of selected compounds per binary is constant and fixed at 25. These

energy windows are shown in Figure 5.12 for the Ag-Au and Au-Cu systems. Note

that for the latter, since the convex hull is a tie line joining the two elemental points,
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the energy window is constant across the full compositional range and is represented

as a rectangle.

Figure 5.12: Binary convex hulls of Ag-Au (left) and Ag-Cu (right). The blue points
represent different compounds from the AFLOWlib repository, while the black crosses
indicate the position of the hull points. The bottom black lines are the tie lines of
the convex hulls, and the top ones delimit the upper end of the energy window. The
green-shaded area is the energy window.

The energy windows for the three binary subsystems are 1.7, 65.4 and 6.2 meV/atom

for Ag-Au, Ag-Cu and Au-Cu, respectively. Following this selection, the bare structures

are obtained following the removal of the chemical information from all compounds, and

these are compared using the AFLOW symmetry tool to obtain the unique structures.

Only the structures are of interest since they are later decorated with three species.

This leads to a reduction of the size of the database, which for Ag-Au-Cu system is

45 compounds, down from the initial 75. This library of prototypes is fixed and is the

starting point for the rest of the workflow.

The workflow is run for each stoichiometry independently. The first step consists

in generating, from the full set of undecorated parent prototypes, the ternary proto-

types used as candidates for the construction of the ternary convex hull. A maximum

size of the unit cells generated (in terms of a maximum number of atoms, Nmax) is

first chosen. Note that this is stoichiometry-dependent. Following this choice, the

compatible prototypes are chosen. Only certain prototypes can be used for each com-

position, since the number of atoms of the prototype unit cell, or of a correspond-

ing supercell with N ≤ Nmax, must be a multiple of the sum of the stoichiometry.

For example, for the 1-2-1 (AgAu2Cu) stoichiometry and an Nmax of 12, only proto-

types which have cells/supercells with 4, 8 or 12 atoms are compatible. Thus, Nmax
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is composition-dependent, since depending on the stoichiometry, a different number

of parent prototypes are compatible. Moreover, as Nmax is increased, the number of

candidate structures increases drastically. For a parent fcc prototype (one atom per

unit cell and hence compatible with all stoichiometries up to Nmax), the number of

unique derivative structures increase from 1299 at Nmax=10 to 867,893 at Nmax=20

[325]. In an attempt to homogenise the number of generated candidates for each stoi-

chiometry, Nmax is adjusted manually for each stoichiometry. Following this selection

of compatible prototypes, the ternary structures are generated with enumlib at a fixed

composition. For the Ag-Au-Cu system, the number of compatible parent prototypes,

as well as the total number of ternary prototypes, are given in Table 5.7 for the different

stoichiometries studied. In this case, a fixed value of Nmax=10 is chosen.

Table 5.7: Number of compatible parent prototypes and total number of ternary proto-
types for each stoichiometry tested for the Ag-Au-Cu system. Note that the numbers
are identical for permutable stoichiometries (e.g., 2-1-1 and 1-2-1).

Stoichiometry 1-1-1 2-1-1 3-1-1 2-2-1

# Parent Prototypes 18 19 7 7

# Ternary Prototypes 13,288 6,162 9,506 22,890

5.4.2 First Attempt at Screening

A first test run is performed to assess the credentials of binary structures for ternary

prototypes. This is done for the AgAuCu stoichiometry, by computing the SNAP ener-

gies of all the novel compounds generated, as described in the previous subsection. The

DFT energies are then computed for a subset of these and the results are compared.

There are some important notes regarding the SNAP model employed here. Firstly,

a single SNAP model, rather than an ensemble, is used for simplicity. Secondly, the

hyperparameters of the model are different to those used in the previous chapter. This

is for chronological reasons, as the Bayesian hyperparameter optimisation methodology

followed formerly was only adopted prior to the workflow development. Instead, a sim-

pler grid search is used here. The hyperparameters used here are Rcut=3.5Å, Jmax=4,

λ=10−3, ptr=0.8 and Nmodels=1. The training/CV sets are the same as previously. A

10-fold Monte Carlo cross-validation scheme was followed for the optimisation process,
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and the parameters were optimised independently following a grid search.

Finally, some consideration must be given regarding the choice of atomic weights.

In the grid search, integer values between -5 and 5 (excluding 0) are considered for all

3 species. This leads to 1,000 different possible permutations of all weights. Crucially,

some sets of weights are unsuitable for this application. Indeed, because of the high

symmetry of some of the parent structures (fcc, bcc, etc.) the chemical environments of

atoms in the ternary prototypes, which are simply derivative structures of the parent

ones, will be structurally identical. In other words, if all chemical identities were

removed, they would be identical chemical environments. Only the chemical identity

breaks this symmetry and it is required since all the derivative structures are unique.

This is illustrated in Figure 5.13, which shows that depending on the choice of atomic

weights, two different compounds may have the same SNAP predicted energies. In the

example shown, this happens when the weights of Ag and Cu are the same. This could

occur with the other pairs of weights for equivalently decorated compounds. Given this

constraint, the best-performing set of weights on the cross-validation error was given

by wAg=1, wAu=-2 and wCu=-1.

This model is deployed for the prediction of the energies of the ternary prototypes.

Ultimately, the aim is to identify the ones lying closest to the convex hull, so that the

energy ordering of the compounds is of particular interest. This is used as the main

test of the workflow’s performance. The ternaries generated are ordered according

to their SNAP energies, which are used to filter the compounds passed on to DFT.

Since the aim at this stage is to assess the workflow, not only are the top 10 lowest

enthalpy compounds selected, but so are the 9 compounds ranked 20th, 30th, etc. and

the 9 compounds ranked 200th, 300th, 400th, etc., along with the 3 highest ranked

compounds, which are outliers. These are relaxed with VASP, following the same

conventions presented in Chapter 4.

Figure 5.14 shows two plots that are typical of those used as tests. Firstly, the

relaxed energy or enthalpy of formation (equivalent at a fixed stoichiometry) is plotted

as a function of the SNAP-predicted energy ordering. Note that the relaxed DFT

energy is chosen here, as opposed to the unrelaxed one, despite the fact that the SNAP

predictions are made on the unrelaxed compounds by construction. This is because of

the fact that the former remains the quantity of interest when constructing a convex
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wAg,wAu,wCu EA
SNAP (eV) EB

SNAP (eV)

1, 1, 1 -25.640 -25.640

1, 2, 1 -25.879 -25.879

2, 1, 1 -25.717 -25.676

1, 1, 2 -26.162 -26.047

1, 2, 3 -25.640 -25.742

Figure 5.13: Performance of SNAP for two structurally identical prototypes. The upper
two panels show two different possible site occupations for a 3 × 1 × 1 bcc derivative
structure with AgAu2Cu stoichiometry (the top compound is A and the bottom one is
B). Here we show the z-axis view, with gray, yellow, and brown spheres representing,
respectively, Ag, Au and Cu. The table shows the SNAP-predicted energies for the two
prototypes, when the SNAP is trained with different atomic weights, wα, as indicated
in the first column. Note that when the Cu and Ag weights are identical, the two
energies coincide.

hull. Therefore, it is ultimately desirable that SNAP is able to accurately predict

what this energy will be. Adding a relaxation step, or at least driving the structures

closer to equilibrium before the SNAP predictions, would increase the accuracy of

this prediction, both because the structure would be closer to the ab-initio relaxed

configuration and because SNAP performs better in such cases. Regardless of what

may be added, the relaxed energy remains the most important quantity to predict. The

second plot in Figure 5.14 shows the enthalpies of formation of the ternary prototypes

selected in the workflow, alongside the AFLOWlib ones. This serves to compare how

the initial workflow performs against the dictionary method.

There are two main outcomes to be taken from these results. The first is that

the choice of binary compounds as prototypes is a judicious one, since many of the

novel ternaries have enthalpies of formation close to the ones chosen by AFLOWlib
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(a) (b)

Figure 5.14: Panel (a) displays the relaxed enthalpy of formation as a function of the
SNAP predicted energy ordering for the initial AgAuCu compounds. The full blue line
indicates the enthalpy of formation of the lowest energy AFLOWlib compound. Panel
(b) shows a bar plot of the enthalpies of formation of the ternary prototypes (Protos),
the top ten prototypes (Protos 10) and the AFLOWlib compounds (AFLOW).

and, in fact, lie lower in energy than them. The second is that SNAP can serve to

filter some of the compounds generated, as the lowest energy compounds figure in the

SNAP top ten predictions. Nevertheless, the ordering is far from perfect, and it is

difficult to draw definite conclusions on the small subset of compounds studied. On

average, the change in DFT energy upon relaxation is of the order of 100 meV/atom,

indicating that the compounds are still far from equilibrium. The SNAP-predicted

energy ordering is significantly better if the DFT unrelaxed enthalpy of formation is

plotted as a function of SNAP ordering (what is actually predicted). These encouraging

first results stimulated further development of the workflow and notably to drive the

candidates close to equilibrium before the screening step.

5.4.3 Volume Scaling

The first step taken towards improving the initial structure of the candidates focuses

on an adequate guess of the cell volume. In the previous section, the volume of the

parent structure is maintained, despite the difference in the atomic basis decoration.

Subfigure 5.15a shows how the volume of the ternary candidates for the 2-1-1 sto-

ichiometry changes upon DFT relaxation. The mean relaxed volume V relax is also

indicated. The plot has several notable features. The first is that for most prototypes,

there is a significant change in the equilibrium volume upon relaxation. This could
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be expected, considering the difference in chemical nature and atomic volumes of the

constituent atoms in the binaries and ternaries. The second is that many of the ternary

compounds have similar initial volumes. This comes from the fact that they are from

prototype structures belonging to the same binary subsystem. Finally, the most im-

portant finding is that these candidates all have a similar relaxed volume and that

there is little deviation from the mean value. This value is almost identical to Vpred,

indicated by the full line in Subfigure 5.15a. This predicted volume is the suggested

starting volume for the ternary compounds and corresponds to the stoichiometrically

weighted sum of the atomic volumes of the constituent elements. In Figure 5.15b, the

energies of the unrelaxed (without any volume adjustment), pseudo-relaxed (volume

scaled), and relaxed compounds are displayed for the same ternary candidates. In all

cases, the energies of the pseudo-relaxed compounds are lower or equal to that of the

associated unrelaxed ones and, in many cases, are more than 0.5 eV/atom lower. It is

also always less than 100 meV/atom away from the relaxed configuration. Based on

these findings, a volume scaling step is added at the beginning of the workflow when

the prototypes are generated.

(a) (b)

Figure 5.15: Diagnosis plots for 2-1-1 ternary candidates. Each bar is associated with
a different candidate structure. Subplot (a) shows the initial and final volumes of the
compounds (initially unscaled) following DFT-driven relaxation. The dashed (full)
black line corresponds to the mean (weighted sum) sum volume denoted V relax (Vpred).
Subplot (b) shows a bar plot of the DFT energies of the unrelaxed, pseudo-relaxed
(scaled volume), and the ab-initio relaxed ternaries.
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5.4.4 SNAP Ensemble

Another improvement implemented relates to the screening model employed. In the

previous chapter, an ensemble SNAP model was introduced, which had fixed hyper-

parameters and different subsets of the training set used to distinguish the individual

models. This notably led to the use of the standard deviation as a performant er-

ror metric. For this work, this concept is deployed again to increase the reliability

of the predictions. In this case, however, 5 models are used in the ensemble and

these are trained on the same subset of data but each with different atomic weights.

This is enforced in order to distinguish similar derivative structures of high symmetry

compounds, as already detailed in Section 5.4.2. This strategy has the unfortunate

disadvantage of decreasing the computational speed of the predictions made by the

ensemble by a factor proportional to the number of models. Indeed, the difference in

hyperparameters between models enforces a re-computation of the bispectrum compo-

nents for each one, unlike the previous ensemble model, where the hyperparameters

were fixed. This justifies the decrease in the number of models of the ensemble.

Table 5.8: Training and cross-validation (CV) mean absolute errors (MAE) for the
5 models with differing sets of weights, wα, of the ensemble. All values are given in
meV/atom.

wAg,wAu,wCu Training MAE CV MAE

1, 2, 1 8.0 27.1

2, 2, 1 8.7 24.8

-2, -1, -1 9.7 30.6

-2, -2, -1 8.5 23.5

-1, -2, -1 7.7 25.6

The weights used for each model and their associated training/cross-validation

MAEs are given in Table 5.8. All other hyperparameters are unchanged from the pre-

vious subsection. The average CV MAE of the ensemble model is of 22.1 meV/atom.

This increase in error as compared to the previous model is attributed to two main

factors. The first is the restriction of the weights, which implies that the models em-

ployed are not the most accurate ones, as the sets of weights used must distinguish
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all pairs of weights at least once. Secondly, the optimisation process is based on a

grid-space search, an optimisation methodology that is not as effective as the Bayesian

optimisation algorithm previously used. Nevertheless, the ensemble model developed

improves in performance relative to the single model and is used as the screening tool

for the SNAP-based workflow. This can be seen in Figure 5.16. The same analysis

as that carried out in Section 5.4.2 to assess the workflow for the 1-1-1 stoichiometry

is carried out for the 2-1-1 stoichiometry, with the single model (left) and with the

ensemble model (right) as screening tools. Note that the compounds were selected

among the full dataset by the single SNAP model. It is only the ranking of this subset

of compounds that is shown for both models. This energy ordering of ternaries at the

2-1-1 stoichiometry was initially very poorly predicted by the single model, whereas

the ensemble model performs much better, notably for the lowest energy compounds,

which it identifies. The lowest enthalpy compound is ranked first (ranked 700th by the

single model), while the other two that are close in energy to the AFLOWlib minimum-

energy compound rank in the top ten. Note that what is important is to sample all

low-energy structures at the lowest ranking. Similar results are observed for other

stoichiometries, so the ensemble is adopted as a screening tool.

Figure 5.16: Plots of the DFT relaxed energy of a selection of 2-1-1 candidate ternary
compounds against SNAP ordering. In the left plot, the single SNAP model is used
for the ordering, while in the right plot the ensemble is used for ordering. Note that
the full blue line displays the AFLOWlib minimum energy at that stoichiometry.

5.4.5 Relaxation

The improvements presented thus far aid the reliability of the workflow predictions,

but are not enough to bring the ternary structures closer to equilibrium. For this,
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ionic relaxation is required. In the last chapter, it was demonstrated that SNAP

could not be used to drive reliable relaxation, as many structures collapsed or ended

up in very high-energy configurations. This is, however, for structures that are from

equilibrium. The candidate binaries used possess more appropriate structures with

respect to compound stability, i.e., are closer to equilibrium, as the positions are pre-

optimised from the binary compound relaxation, and the volumes are judiciously scaled.

As a result, it is postulated that SNAP-driven relaxations may be more reliable, since

the starting chemical environments, as well as those encountered during the relaxation

path, may be a lot closer to the training set. It was quickly established that cell

parameter optimisation was not possible with SNAP, notably due to a bias toward

high compression of cells. As such, the tests concern ionic relaxation, where only the

atomic positions are updated. As will be described, while SNAP can drive relaxation

to a certain extent, it is not always reliable. Several steps are therefore introduced

to increase the robustness of the relaxations. These are explained in the following

subsections.

SNAP-driven relaxation

The need to include ionic relaxation was motivated following the running of the work-

flow for the 1-3-1 stoichiometry. The 16 lowest energy compounds selected were relaxed

with DFT. Figure 5.17 shows the plot of the prototype order as predicted by SNAP

against the unrelaxed energy. The configuration ranked 9th had an energy significantly

higher than the other compounds, notably in the top 10. However, upon DFT relax-

ation, despite almost no change in volume and cell parameters, the energy decreases

by 191 meV/atom. This makes the SNAP predictions poor since they are on the out-

of-equilibrium configurations, which have a much higher energy. The energy prediction

is repeated following a SNAP relaxation, driven by a single model of the ensemble.

This induces a large drop in the DFT unrelaxed energy, as SNAP successfully drives

the structure close to equilibrium. The DFT relaxation only reduced the energy by a

further 12.5 meV/atom. The SNAP-driven relaxation, therefore, enables better screen-

ing, as the compound is close to equilibrium, and leads to a reduction in the number

of ab-initio ionic relaxation steps.

A larger benchmark test is performed for the 1-2-2 stoichiometry and the results
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Figure 5.17: Unrelaxed energy of the top 16, 1-3-1 ternary candidates as a function
of the SNAP predicted order. The blue points are for compounds that are not pre-
relaxed with SNAP. The orange point shows the result for one point (ranked 9th) that
is pre-relaxed.

can be seen in Figure 5.18. Note that these tests are performed after the implemen-

tation of two steps in the workflow described in the next two subsections. This shows

different DFT energies for the top 30 compounds selected by the workflow. These

energies correspond to different structures per compound. These structures are: the

“completely” unrelaxed structure, the fully DFT-relaxed structure, the structure pre-

relaxed by SNAP (Full SNAP), but not DFT, and the equivalent structure, but for a

5-step SNAP ionic relaxation (5 Step SNAP). For the latter, the SNAP relaxation is

cut short at 5 steps. The results show the significant benefit brought by pre-relaxing

the compounds with SNAP. There is a large energy gain between the unrelaxed and

the 5-step SNAP relaxed compounds, which on average have energies 45.1 meV/atom

lower. Crucially, the difference to the DFT relaxed structure is only 14.0 meV/atom,

as opposed to 59.1 meV/atom, when not pre-relaxed. The difference is also sustained

across the full range of prototypes, as even those that are further from equilibrium are

well relaxed with SNAP. There is only a very marginal gain from doing the full SNAP

relaxation prior to DFT since the difference between the full SNAP-relaxed and the

DFT-relaxed systems is of 11.8 meV/atom.

These results reveal two important insights. The first is that, in this case, SNAP

can in fact be used to relax compounds toward their equilibrium. The second, is that
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(a) (b)

Figure 5.18: Bar plots, full (left) and zoom (right), of the DFT energies of different
structures associated with candidates of the 1-2-2 ternary compounds. These are the
Unrelaxed (no SNAP relaxation), Full SNAP (fully SNAP relaxed), 5 Step SNAP re-
laxed (relaxed by SNAP with 5 ionic steps) and Relaxed (fully DFT relaxed) structures.

the relaxation only needs to be carried out for a limited number of steps (5 shown

here), since it is in these steps that the largest change in energy occurs. This can be

seen in Figure 5.19, which shows that in the first 5 steps the SNAP energy difference

between unrelaxed and relaxed compounds changes from >10−2 to 10−3 eV/atom and

to 10−4 eV/atom in the subsequent 5 steps. Another important point is that while

the results shown are from successful SNAP relaxations, some fail if fully driven by

SNAP (i.e., not stopped at 5 steps). There is therefore some filtering performed before

moving to DFT to ensure the predictions are reliable. In this effort to increase the

workflow robustness, it is important to keep the number of ionic relaxation steps fixed

and set to 5. This number strikes a good balance between achieving enough relaxation

for many compounds and not driving others, poorly described by SNAP, too far from

equilibrium.

Cross-Validated Relaxation

In the last part of the previous section, it is not described how the relaxation was

performed with an ensemble of SNAP models. From the 5 models trained, each is used

to drive a 5 step ionic relaxation. Since the parameters and hyperparameters of each

MLIAP are different, the 5 structures obtained differ. While all compounds could be

retained for screening, many are very similar to one another, and only one is selected.

In order to decide which one to retain, a “cross-validated” approach is taken. For
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Figure 5.19: Average change in the SNAP energy with respect to the energy of the
relaxed configuration as a function of step index for a subset of the 1-2-2 candidates.

each structure, the energy prediction is performed by the 4 models of the ensemble not

used for the relaxation of the associated structure. Hence the name “cross-validated”.

The standard deviation, σ, of these predictions is retained and the structure with the

lowest cross-validated standard deviation is kept. This sets the deciding criterion for

structure selection. Of the 5 structures generated, the one with the lowest value of σ is

chosen as the representative SNAP-relaxed structure for that prototype. The concept

of cross-validated relaxation is illustrated in Figure 5.20.

The rationale for this approach is underpinned by a drive towards increased robust-

ness of the workflow predictions. The relaxations are cross-validated by other models

because of the bias of individual SNAP models. In the case of a failure during the

relaxation process that leads to an unphysical or high-energy structure, the model

driving the relaxation will predict a low energy for that compound, since it drove the

energy minimisation process. This bias is removed for the structure selection process by

preventing the SNAP-driving model from making an energy prediction. Furthermore,

other SNAP models of the ensemble may also have a similar bias and predict a low en-

ergy for the poor structure generated. To circumvent the effect of this further bias, the

standard deviation is used as a selection criterion rather than the mean energy. Indeed,

the latter will be dragged down by very negative and poorly biased predictions. The

standard deviation on the other hand will be large for such compounds as the different

models will highly disagree on the energy predictions (even if they are all “too low”).



165 5.4. SNAP Workflow Development

Relaxation Cross-validated
standard deviation

SNAP 1

SNAP 2

SNAP 3

SNAP 4

SNAP 5

(a)

1 2 3 4 5
SNAP Model Index

E S
NA

P

(b)

Figure 5.20: Illustrative figures of the cross-validated standard deviation selection
methodology. Panel (a) shows a diagram illustrating the definition of the cross-
validated standard deviation. The five SNAP models of the ensemble are labelled
by integers and one relaxation out of five (performed by each model) is illustrated for
one prototype. Panel (b) is a plot illustrating the selection process of the 5 relaxed
structures for each prototype. The y-axis corresponds to the relaxing mean cross-
validated SNAP energy and the error bars to the corresponding standard deviation.
The structures resulting from the relaxation of the third model is selected since it has
the lowest value of σ.

The standard deviation of the predictions has also been shown to correlate with DFT

error very well.

Filtering with σ

Each prototype now has a SNAP-relaxed structure. As a last step, before completing

the final selection of candidates, passed on to DFT, a filter on the cross-validated

standard deviation is imposed. In practice, all compounds with σ ≥ σcut are removed

from the selection process, where σcut is a cut-off value and a tunable parameter of

the workflow. This implies that there is a removal of all compounds for which the

disagreement between models is judged to be too large (large standard deviation).

This step was found to be important in eliminating structures that SNAP predicted to

have energies far below the convex hull, which turned out to contrast with the DFT

results.

Subfigure 5.21a shows a plot of the standard deviation against the mean energy of

the cross-validated predictions made by SNAP for the 1-2-2 candidates. The convex

hull and AFLOWlib minimum energy at that stoichiometry are also displayed as a

reference. Note that these are DFT values, whereas the data points are not. It can
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(a) (b)

Figure 5.21: Panel (a) shows the SNAP cross-validated standard deviations against
the mean energy energy for all candidates of 1-2-2 stoichiometry. The full (dashed)
vertical red line is the convex hull (AFLOWlib minimum) energy as calculated by DFT.
The horizontal dashed (dash-dotted) black line marks the 75 (10) meV/atom value of
σ. Panel (b) shows the distribution of standard deviations of the compounds with
the mean energy used as a colour scale. The cut-off value of σcut=10 meV/atom is
indicated by the vertical dashed line.

be seen that for SNAP energies below that of the convex hull, the standard deviation

is above 10 meV/atom and increases with increasing distance below the hull. There

is a large cluster of points below 10 meV/atom that sits between the hull and the

AFLOWlib minimum energies, which are the ideal candidates for the workflow. These

are low-energy compounds for which predictions are made reliably. A higher line at 75

meV/atom is also displayed, which includes most compounds. Figure 5.21 shows how

the mean energy varies as a function of standard deviation in the candidate standard

deviation distribution, highlighting that on average, the lower energy compounds are

more accurately described by SNAP. Finally, Figure 5.22 shows the selection of the

top 15 candidates from the workflow at the 1-2-2 stoichiometry, when σcut is set to 75

meV/atom and 10 meV/atom. This shows that using a more conservative value for

σcut gives better results.

5.4.6 Final Workflow

In the previous subsections, the finer details of the workflow were presented. Here, a

more global summary of the workflow is given. It is supported by the illustration of

the workflow given by the diagram in Figure 5.23. From the database of AFLOWlib
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Figure 5.22: Distribution of the DFT enthalpies of formation of the top 15 selected
prototypes for the 1-2-2 candidates with two different values of σcut. Protos is for 10
meV/atom while Old Protos is for 75 meV/atom. The full black line corresponds to
the convex hull enthalpy, while the dashed line is the AFLOWlib minimum energy.

binaries, the ensemble SNAP model is trained and the binary prototypes are generated.

The workflow is then run one stoichiometry at a time. Derivative ternary compounds

of the parent prototypes form the pool of candidates. These undergo a cross-validated

relaxation and screening with the SNAP ensemble model. For this step, each candi-

date is relaxed by the five different models and the structure, which yields the lowest

cross-validated standard deviation, is selected. If this value is below σcut, the struc-

ture will move to the next stage. Following this filtering, the ternary compounds are

ranked according to the SNAP energies and the top ones (typically 15) are selected for

DFT relaxation. The lowest energy compound (as per DFT) is retained as the best

attempt at reaching the convex hull for that stoichiometry. After this is repeated for

all compositions of interest, the final convex hull is constructed.

There are several parameters that can be tuned in the workflow. Besides the ob-

vious ones related to the SNAP models, the standard deviation cut-off value σcut, the

number of steps performed in the SNAP-driven ionic relaxations and the number of

ternary compounds retained for the DFT relaxations can all be changed. Here they

are, respectively, set to 10 meV/atom, 5 steps and 15 compounds.

This concludes the section on the workflow development. The architecture remains
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the same for the construction of the convex hulls of Ag-Au-Cu and Mo-Ta-W present

below. Only the training of the SNAP models and the free parameters mentioned

above differ.

5.5 SNAP Workflow Results

The results yielded by the SNAP workflow are now presented for the ternary convex

hulls of Ag-Au-Cu and Mo-Ta-W systems. The workflow is run for the 1-1-1, 2-1-1,

3-1-1 and 2-2-1 stoichiometries and all associated permutations. Figure 5.24 shows the

distance δ from the convex hull of the lowest enthalpy compounds discovered at each

stoichiometry. Note that all results at this level are ab-initio ones, since the last step in

the workflow involves a DFT relaxation. The convex hull is the recomputed one based

on these results. These can be directly compared to the results from AFLOWlib. All

best-performing compounds here are lower in energy than their AFLOWlib counter-

parts. Two points, at the AgAu2Cu and AgAu3Cu stoichiometries, are found to be

below the convex hull. These are both in the Au-rich region of the phase diagram,

which is consistent with the experimental phase diagram that presents stable ternary

solid-state solutions only in the Au-rich region. The AFLOWlib convex hull presented

no stable ternaries, although the AgAu2Cu composition presents a compound lying

close to the convex hull, 3.13 meV/atom higher than the one revealed here. The family

of 3-1-1 stoichiometries is not sampled in AFLOWlib. For the other part of the phase

diagram, most points lie between 20 and 30 meV/atom away from the hull, aside from

the 1-1-1 and 1-1-3 stoichiometries, for which the lowest enthalpy compounds are at

45.08 meV/atom and 47.12 meV/atom from the hull, respectively. The distance from

the hull generally increases as the hull becomes shallower upon the approach of the

immiscible binary Ag-Cu subsystem. In this respect, the 1-1-3 is not inconsistent with

the trend. The 1-1-1 stoichiometry is, however, more of an outlier. The AFLOWlib

lowest enthalpy compound lies at 57.09 meV/atom from the hull. It is unclear whether

this result is an inherent feature of compounds at this stoichiometry (none are close

to the convex hull) or if it is due to poor sampling by the workflow. The fact that

this composition was the most studied during the development phase of the workflow

suggests that it may be related to the composition.
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Figure 5.23: Diagram illustrating the structure of the workflow for the construction of
ternary convex hulls. The left-hand panel shows the details of the SNAP relaxation
and screening procedure, repeated 5 times, one for each model. The workflow is run
for all desired stoichiometries from the Stoichiometry Selection step to the Single Best
Ternary step (lowest DFT relaxed compound). The convex hull is constructed from
these results. Here, E and σ are the cross-validated mean and standard deviations of
the energy predictions.



5. Ternary Convex Hull Construction with MLIAPs 170

Figure 5.24: Plot of the ternary phase diagram of Ag-Au-Cu with the distance to
the convex hull of the compounds given by the workflow. The position of the points
indicates the compositions, and the colour scale gives the distance to the convex hull
of the lowest energy compound of that stoichiometry.

The new convex hull is presented and compared to AFLOWlib’s convex hull in the

subfigures of Figure 5.25. The two new stable compounds identified at 1-2-1 and 1-3-1

are now present on the convex hull, and it is this region that is changed relative to

AFLOWlib’s convex hull. The compounds identified present the common structural

feature of separating the Ag and Cu atoms by Au atoms in stacked structures. The

1-2-1 compound is a derivative structure (two cells) of a tetragonally distorted bcc cell,

the cell being expanded along the direction with the largest elongation. The space

group is 123, and it is from the Ag-Cu prototype 15 from AFLOWlib1. The 1-3-1

compound has a titled unit cell with space group 139, and its binary prototype is the

Au-Cu f33 AFLOWlib binary2.

Following the successful deployment of the workflow for scanning the Ag-Au-Cu

system, the Mo-Ta-W one is chosen as a more challenging test. This system is the

one with the most stable ternaries on AFLOWlib (4), with stable ternaries at the 1-

1auid: aflow:69a8361cc1cb1112
2auid: aflow:2c082f6dca0164b2
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(a) (b)

Figure 5.25: Panel (a) shows the reconstructed Ag-Au-Cu convex hull from the
AFLOWlib data and the aded ternary points given by the workflow. The colour bar
gives the enthalpy of formation of the convex hull, the hull points are indicated by
black crosses and the tie lines by black lines. Panel (b) shows the difference between
the new convex hull and that computed from AFLOWlib data.

1-1 and all permutations of the 2-1-1 compositions. The aim is to determine whether

the workflow can succeed in identifying stable compounds at these stoichiometries and

even test other compositions. For this study, the same stoichiometries as well as the

permutations of 4-1-1 are run with the workflow. Note that for the present phase

diagram, the SNAP model is only trained on AFLOWlib data, so that the ∼1,600

DFT energies of the binary compounds are not performed. Only the energies of a small

subset (around 10) are calculated, and used to construct the binary convex hulls, such

that the energies of the novel ternaries suggested are consistent. This is an important

point, since the model is deployed entirely on recycled data from AFLOWlib, from

structures to energies.

The recalculated convex hull following the workflow run is presented in Figure 5.26a.

Figure 5.26b shows its difference with respect to the AFLOWlib one. Note that, upon

recalculating the convex hull from the energies of AFLOWlib’s ternary compounds,

two of the four ternaries are removed from the convex hull. Only the 1-1-1 and the

2-1-1 compounds remain. The former is removed from the hull when integrated with

the new data provided by the workflow findings, as it is undercut by other points. The

2-1-1 would remain on the convex hull, and the minimum energy compound uncovered

in this investigation did not beat AFLOWlib’s one. In fact, AFLOWlib beats this

point by 14.91 meV/atom and is 3.29 meV/atom below the workflow derived convex

hull.
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(a) (b)

Figure 5.26: Panel (a) shows the reconstructed Mo-Ta-W convex hull from the
AFLOWlib binary data and the add added ternary points given by the workflow.
The colour bar gives the enthalpy of formation of the convex hull, the hull points are
indicated by black crosses and the tie lines by black lines. Panel (b) shows the dif-
ference between the new convex hull and that computed from AFLOWlib data. Note
that the only AFLOWlib ternary still on the convex hull is marked in red.

Overall, the workflow outperforms AFLOWlib over most stoichiometries. Aside

from the aforementioned 2-1-1 composition, AFLOWlib only has better-performing

compounds at the 1-1-2 composition, where it is 2.23 meV/atom lower than the work-

flow results. For the 1-1-1 stoichiometry, the same energy is achieved in both cases.

Nevertheless, for both these compositions, the compounds do not lie on the newly

computed convex hull. For all other stoichiometries, the workflow outperforms the

AFLOW dictionary method used to build AFLOWlib. At the 1-2-1 stoichiometry, it

allows the discovery of a compound on the convex hull, 10.96 meV/atom lower than the

one present on AFLOWlib. Note that on the initial AFLOW convex hull, this point is

present. The distances from the hull for the other points are summarised in Table 5.9.

Note that for all permutations of the 3-1-1 stoichiometry, no compounds are available

on AFLOWlib. For the other compositions, the AFLOWlib compounds are beyond

300 meV/atom away from the hull, whereas they are all within 10 meV/atom for the

workflow, aside from the 4-1-1 stoichiometry, which is still an order of magnitude closer

to the convex hull than AFLOW’s lowest energy compound at that stoichiometry. Im-

portantly, these include four new hull points at 1-3-1, 1-1-4, 2-2-1 and 1-2-2. The sixth

ternary hull point seen in Figure 5.25a is at the 1-2-3 composition. Note that this

specific stoichiometry is probed, since it lay in a region that seemed prone to material

stability. The workflow is thus tested here, resulting in the discovery of another convex
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hull ternary.

Table 5.9: Table comparing the distance to the convex hull of compounds at all stoi-
chiometries associated with the permutations of 2-2-1, 3-1-1 and 4-1-1 for the workflow
(δw) and AFLOWlib (δAFLOWlib) compounds. The three integers give the relative con-
centration of Mo, Ta and W, respectively.

Stoichiometry δw (meV/atom) δAFLOWlib (meV/atom)

3-1-1 9.63 N/A

1-3-1 Hull N/A

1-1-3 1.17 N/A

4-1-1 46.56 320.95

1-4-1 3.25 516.30

1-1-4 Hull 334.16

2-2-1 Hull 880.90

2-1-2 8.50 1032.50

1-2-2 Hull 962.84

These results show that the workflow is successful at increasing the throughput,

speed and coverage of the convex hull construction. Many new ternaries are unrav-

eled by the workflow and the lowest energy compounds are almost always lower in

energy than those available on AFLOWlib. The only composition for which AFLOW

outperforms the workflow is at Mo2TaW. This compound is, in fact, an important

feature of the final convex hull (hull point highlighted in Figure 5.26b). Investigating

further, the AFLOWlib candidate is a Heusler compound, displayed in Figure 5.27,

next to the minimum energy compound found with the workflow. There are notable

structure differences, as there is closer proximity of the Mo atoms in the case of the

workflow structure, whereas there are separate layers of each element in AFLOWlib’s

case. Crucially, the AFLOWlib compound is a fcc derivative structure and it is found

that such a parent prototype is not obtained from the workflow. This is due to the fact

that such a structure is unfavourable to form for all elemental and binary subsystems,

which prefer the bcc structure. Two limitations are thus revealed. Firstly, that the

screening model may be incorrectly biased towards certain configurations. This could

be improved by using a better force field. The other is that the ternary candidates

suggested are limited by the initial database of parent prototypes. If the latter does

not include structures that stabilise ternary compounds, then certain structures are
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missed. These two points are addressed in the construction of the M3GNet workflow.

(a) (b)

Figure 5.27: Subfigure (a) a 2×2×2 supercell of the primitive cell of the AFLOWlib
minimum energy compound for Mo2TaW. Subfigure (b) a 2×2×2 supercell of the prim-
itive cell of the workflow minimum energy compound for Mo2TaW. For both figures,
Mo is green, Ta is light blue, and W dark blue.

The constructed convex hull suggests that at low temperatures, and the region with

lowMo concentrations is particularly prone to forming stable compounds. At higher Mo

concentrations, the 2-1-1 compound heavily impacts the convex hull and it is the only

stable compound. A recent study by Sotskov et al. [316], investigating the same ternary

phase diagram, used a novel crystal structure prediction algorithm, named CSP-on-

lattice, that takes advantage of an MLIAP. Within the full ternary system and binary

subsystems, three binaries and two novel ternaries were discovered, along with a third

ternary close to stability (1 meV/atom away from the convex hull). The novel ternaries

were found at 1-1-5 (near stable), 3-3-1 and 1-2-2. Note that the former matches the

finding of this study and that the other two stoichiometries were not investigated

here, although the 1-1-4 and 2-2-1 phases (closest compositions to the other two) were

found to be stable. Interestingly, in the Mo-rich region, no novel ternaries were found,

reinforcing the idea that the AFLOWlib 2-1-1 compound is a strong candidate for

stability, as it is on the aforementioned authors’ convex hull as well. In their study, it

is suggested that the equimolar Mo-Ta compounds are good candidates for stability.

This is notably supported by the presence of the AFLOWlib 1-1-1 compound on their

hull, which is inconsistent with these results. Moreover, it is indicated that the 1-1-2

AFLOWlib compound would be on the hull had their compounds not been added, which

contrasts with the initial findings here. Upon comparing enthalpies of formation, for
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several AFLOWlib hull points, there are inconsistencies of the order of 2-3 meV/atom.

This makes direct additions of the novel ternaries to the convex hull here impossible. It

is likely, however, that the 3-3-1 compound is stable with respect to the SNAP convex

hull since it lies more than 5.5 meV/atom below it. Overall, there is good agreement

in the Mo-rich region and for the points lying close to the Ta-W binary subsystem.

In this section, the results obtained from the SNAP workflow were presented and

were shown to be better than those obtained with AFLOW’s dictionary method. This

is particularly notable for the case of Mo-Ta-W system, which has the most stable

ternaries on AFLOWlib. The SNAP model for that workflow was trained entirely on

AFLOWlib data and predicted as many as six novel ternaries. It is apparent that this

workflow is useful in identifying areas of the ternary phase diagram that are prone to

form stable materials. The workflow is run for a total number of candidate compounds

across all compositions, on the order of 105 in total, and the final convex hull is fully

obtained from DFT. There are nevertheless some drawbacks in this methodology. Most

notably, the workflow may yield poor predictions at certain compositions. This could

be related to the poor modeling of certain compounds or to the lack of diversity in the

database of parent prototypes. Such issues are addressed in the next section, where

the M3GNet universal force-field is used in place of SNAP.

5.6 M3GNet Workflow: M3GW

5.6.1 Development

Following the publication and data availability of the M3GNet universal MLIAP [163],

the workflow is adapted to incorporate the crystal graph neural network as the central

screening tool. This is done to increase the accuracy and the reliability of the model.

Indeed, M3GNet boasts a 35 meV/atom test MAE on the Materials Project compounds

across the full periodic table. From its wide range of training data, including high

energy, out-of-equilibrium compounds encountered throughout the relaxation paths

that it was trained on, M3GNet is notably designed to perform robust ionic relaxation.

It is then ideal to be employed in a high-throughput materials design framework. In

this workflow, it is potentially a significant upgrade with respect to a SNAP ensemble,

since it is more accurate and can already perform robust relaxation, without requiring
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some of the steps used in the original workflow (e.g., cross-validated relaxation and

standard deviation filtering). While it is a heavier model with respect to SNAP in

terms of number of parameters and model architecture, the featurisation is faster and

the fact that it does not rely on an ensemble makes the relaxation process faster than

that employed for the SNAP workflow. It is equally a pre-trained model that can be

used “out of the box”. It therefore potentially offers a more accurate, efficient and

robust screening tool.

The new workflow developed is coined M3GW (M3GNet Workflow). It is very

similar to the previous one, where instead of the SNAP ensemble, M3GNet is sub-

stituted in as the relaxation and screening MLIAP. This results in two main sets of

changes, one related to the relaxation and screening process, which becomes simpler.

The other change relates to the parent prototype selection, which becomes broader

as the force-field is now more robust. Regarding the first set of changes, the training

step is removed as the model is pre-trained. The ionic relaxation is performed by the

single model used and it is not stopped after 5 steps but 50. A stop on the number

of steps is still implemented, since it serves to limit the time spent on less important

parts of the relaxation process and still drives the structures close to equilibrium. No

standard deviation is generated by the model and, hence, the filter based on σcut is

removed. Only the initial prototype volume re-scaling step takes place. The process

simply becomes a fixed cell relaxation of each structure followed by an energy ranking

of all candidate compounds. This allows for higher throughput since fewer compounds

are removed from the screening process by the standard deviation filtering.

Regarding the prototype creation, a more diverse set of compounds is now consid-

ered. It is reminded that initially, the binary compounds close to the convex hull were

considered as prototypes for the ternaries as these were assumed to possess structures

resembling equilibrium ternary structures. This was required for SNAP to be effective

as a screening model. This is no longer a requirement with M3GNet. The starting

point remains the AFLOWlib binary subsystems database for each ternary. However,

rather than only selecting compounds close to the convex hull, the selection is first per-

formed across all different space groups within the binary database. The compounds

are first “undecorated”, namely, the backbone structures, with no chemical species as-

sociated with the constituent atoms, are considered. These are filtered to select only



177 5.6. M3GNet Workflow: M3GW

the unique ones. They are then categorised in space groups. One compound from each

space group is then selected. The specific choice is based on the distance from the

convex hull, δ, of that structure’s associated binary. The structure with the minimum

δ is selected. If the number of prototype structures thus generated is above a desired

number, the prototype database is considered complete. Otherwise, for each space

group, if possible, the second closest structure to the convex hull at each space group is

added. This process is repeated until the required number of prototypes is met. This

number is set to 50. The final database is, therefore, structurally more diverse than

the ones created with the previous workflow.

The M3GW architecture is illustrated in Figure 5.28. It reflects the changes men-

tioned above. It is also run separately for each individual stoichiometry. The method-

ology for generating derivative structures from the parent prototypes is the same and

the volume scaling is retained. The results using this workflow are presented in the

next sections.

5.6.2 Results for Mo-Ta-W

Before testing the workflow on more complex systems, it is deployed to construct the

Mo-Ta-W ternary phase diagram. In order to compare directly to the previous results

with the SNAP workflow, the same prototype database is used. The prototype gen-

eration step described previously is saved for future convex hull constructions. The

results for the convex hull obtained is shown in Figure 5.29a, along with the difference

between the M3GW deduced convex hull and the one obtained with SNAP (Figure

5.29b). In order to have a closer look at the differences between the two workflows,

Figure 5.30 compares the hull values and minimum enthalpies obtained for each work-

flow. The M3GW-derived hull equally has 6 points at 1-1-1, 2-2-1, 1-2-2, 2-1-2 and

the W-heavy 1-1-2 and 1-1-3 compositions. The 2-1-1 (that beats AFLOWlib’s point)

and the 1-1-4 stoichiometry are very close to hull at 0.64 and 0.14 meV/atom from the

convex hull respectively. M3GW finds points closer to equimolarity that are more than

10 meV/atom lower than the SNAP-generated convex hull, bringing the hull down in

the central region as well as the W-heavy region. For the two compositions AFLOWlib

had lower enthalpy compounds compared to SNAP at 1-1-1 and 2-1-1, M3GW is able

to identify novel lower-lying compounds. However, the 2-1-2 compound just undercuts
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Figure 5.28: Diagram illustrating the structure of M3GW for the construction of
ternary convex hulls. The left-hand panel shows the details of the parent prototype
generation protocol. The workflow is run for all desired stoichiometries from the Sto-
ichiometry Selection step to the Single Best Ternary step (lowest DFT relaxed com-
pound). The convex hull is constructed from these results.
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(a) (b)

Figure 5.29: Panel (a) shows the reconstructed Mo-Ta-W convex hull from the
AFLOWlib binary data and the added ternary points given by M3GW. The colour
bar gives the enthalpy of formation of the convex hull, the hull points are indicated
by black crosses and the tie lines by black lines. Panel (b) shows the difference ∆Hdiff

between the new convex hull and that computed with the result of the previous work-
flow. Note that the underlying ternary convex hull was calculated by combining the
results of both workflows.

the 2-1-1 composition. Nevertheless, like AFLOWlib, M3GW predicts the latter to

be close to stability. The only part of the convex hull in which M3GW shows poorer

performance and in fact misses two convex hull points is in the Ta-rich corner. At the

1-2-1 and 1-3-1 compositions, M3GW has no hull points and the hull is 3.52 meV/atom

and 1.89 meV/atom above the enthalpies of the SNAP discovered compounds. While

this energy difference is low, the lacking of any points in this region is problematic

and M3GW predicts none of the Ta-rich compounds (1-2-1, 1-3-1 and 1-4-1) to be

within less than 5 meV/atom of the hull. However, this still remains well below the

25 meV/atom of potential entropic contributions at room temperature, so that the

compounds are still in contention for stability.

The diversity convex hulls uncovered by AFLOWlib, the two workflows imple-

mented in this study, as well as that by Sotskov et al. [316], is a consequence of

the ability of the Mo, Ta and W to mix across the full compositional range. It is there-

fore perhaps not surprising that large differences are observed between hulls and that

even in regions where no points are on the convex hull (Ta-rich region in Figure 5.29a),

the lowest enthalpy compounds are well within kBT of the convex hull. Based on all the

results collected, no specific composition of the phase diagram appears more prone to

forming stable phases at low temperatures. Only the Mo-rich corner beyond the 2-1-1
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composition appears to have fewer convex hull points across studies. M3GW remains

the best methodology out of those tested here, as quantitatively, it drives the biggest

changes. In the region where SNAP performs better, the lowest enthalpy compounds

are within 9 meV/atom of the SNAP convex hull, while the M3GW hull is never more

than 4 meV/atom away. This increased performance, along with the other advantages

presented in Subsection 5.6, makes M3GW the superior methodology and is, hence,

used for further investigations.

Figure 5.30: Bar plot showing the convex hull and compound minimum enthalpies of
formation for different methods with respect to the M3GW convex hull level ∆HM3GW

hull .
This is shown for a range of different stoichiometries. The full dashed line is ∆HM3GW

hull ,
set to 0 meV/atom, while the hull levels for AFLOWlib (SNAP workflow) is shown
as a dotted (full) line. The minimum enthalpies of formation of compounds at each
stoichiometries are shown in blue (orange) for the M3GW (SNAP workflow). Crosses
indicate M3GW-found convex hull points and stars indicate points very close to the
convex hull (δ ≤ 1 meV/atom).

5.7 M3GW Results

5.7.1 Al-Fe-Ni

For the final two sections, ternary systems with potential magnetic properties are

investigated. The first one, used as a benchmark, is the Al-Fe-Ni ternary, already

presented in Section 5.3.2. The DFT results are first briefly presented here. Regarding

the binary subsystems, the experimentally stable Al5Fe2 phase should, in principle,
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be added to the database retrieved from AFLOWlib, since it is missing. However, it

has an unusual structure and it has previously been reported not to be on the DFT

convex hull [373]. As a result, it is discarded here. The ternaries, the τ1 and τ2 phases,

with respective compositions Al10Fe3−xNi1+x (x between 0 and 2) and Al9Fe2−xNix (x

between 1 and 1.6), are not present on AFLOWlib and are added to the database.

AFLOWlib possesses one stable ternary in the Al-rich region, Al2FeNi. The τ3 phase

is not considered as it is a high-temperature phase with a large unit cell.

Regarding the DFT calculations the same standards as before are used. A plane-

wave energy cut-off of 400eV is kept for relaxations, performed for the experimental

compounds added and the workflow compounds, and a 600eV cut-off is used for static

calculations performed on AFLOWlib compounds and after relaxations. Values for

NKPPRA of 6,000 and 12,000 are used for relaxation and static calculations respectively.

All calculations performed for this system are spin-polarised, with initial magnetic

moments set to 5, 1 and 1 µB for Fe, Al, and Ni, respectively.

For the experimental compounds, the structures are taken from Reference [358].

Two backbone structures are used for the τ1 and τ2 phases. For the former, calculations

are performed for the Al9FeNi (9-1-1) composition in a 22-atom cell. In this, 4 positions

are available for the Fe and Ni atoms. Four structures, associated with the unique

permutations of Fe and Ni on those sites, are used for calculations. For the τ2 phase,

the structure is decorated to obtain the Al10Fe3Ni (10-3-1) and Al10FeNi3 (10-1-3)

compositions. The Fe and Ni atoms are swapped in each structure. The cell had a

total of 28 atoms. Neither of these are found to be magnetic. The DFT convex hull

obtained with AFLOWlib, including the ternary experimental data, is shown in Figure

5.31. The 10-3-1 and 9-1-1 compounds are present on the convex hull, while the 10-1-3

is not.

The workflow is then run for a wider range of compositions than previously. Table

5.10 gives the different stoichiometries sampled, the number of stoichiometries associ-

ated by permutation, the maximum cell size per stoichiometry and the total number of

candidates obtained for each composition. There is a total of 34 different compositions.

In total, 51 parent prototypes are used and 30 structures are sent for DFT relaxation

per stoichiometry. This last increase is a reflection of the increase in parent prototypes.

The total number of candidate compounds considered is 11,371,718.
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Figure 5.31: DFT Al-Fe-Ni convex hull from the AFLOWlib data and the added ternary
points given by the experimental phases τ1 and τ2. The colour bar gives the enthalpy
of formation of the convex hull, the hull points are indicated by black crosses and the
tie lines by black lines.

The convex hull uncovered for Al-Fe-Ni is shown in Figure 5.32. Figure 5.33a shows

the difference between the M3GW and the AFLOWlib/experimental hull, along with

a plot displaying δ for the lowest energy compounds found at different compositions in

Figure 5.33b. Note that for the latter, the 5-1-1 stoichiometry result is removed since

it is more than 117.47 meV/atom away from the hull, and its inclusion diminishes the

clarity of the plot. M3GW appears to enrich the convex hull through the inclusion of

four stoichiometries at 2-1-1, 4-2-1, 3-2-1 and 2-4-1. The first match the AFLOWlib

data, but the compound obtained is 8.28 meV/atom above AFLOWlib’s. The 4-2-1

and 2-4-1 compounds are undercut by the AFLOWlib convex hull. As a result, the

sole finding from the workflow is the compound at 3-2-1, which lowers the hull by

4.91 meV/atom (highlighted by the blue region in Figure 5.33a). The experimental

compounds are below the M3GW convex hull by 21.19 meV/atom at 10-3-1 and 6.53

meV/atom at 9-1-1. These points are associated with the most pronounced features of

the difference in convex hulls. It is important to point out that the workflow is carried

out for magnetic materials, despite the spins not being explicitly taken into account in
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Table 5.10: Number of permutations, maximum atoms and ternary prototypes for each
stoichiometry.

Stoichiometry 1-1-1 2-1-1 3-1-1 2-2-1 2-2-3

# Permutations 1 3 3 3 3

# Maximum Atoms 9 12 10 10 14

# Ternary Prototypes 13,358 530,064 14,258 33,782 534,890

Stoichiometry 3-2-1 3-3-1 4-1-1 4-2-1 5-1-1

# Permutations 6 3 3 6 3

# Maximum Atoms 12 14 12 14 14

# Ternary Prototypes 1,009 935,620 119,736 505,567 71,746

the M3GNet.

Regarding the performance of M3GW, fewer points are found compared to the

previous phase diagram. At 2-1-1, the minimum enthalpy compound is missed. Nev-

ertheless, it is present on the convex hull, but enables other points to be on it as well.

It also does not find any low enthalpy compounds for the very richest Al compounds,

at 3-1-1, 4-1-1, and 5-1-1. The last stoichiometry is notably very far away. This area

is closest to the experimentally known ternary intermetallic compounds and it would

be desired that such stoichiometries be highlighted by the workflow. It would not have

been possible to find the exact ternaries considering the choice of prototype compounds

and the sizes of the cells used compared to the experimental structures. The method

is affected by the high dependence of the number of candidates on the composition.

There is a large disparity (order of 103) between stoichiometries, such as the 3-2-1 and

2-1-1 ones, as indicated in Table 5.10. This is due to the number of available par-

ent prototypes and their symmetries. This sheds light on an important feature of the

workflow. It appears that this method is not suitable for finding specific intermetallic

compounds, since these may have exotic structures, different to those of the binaries.

A global structure search method may then be more suitable. Instead, the workflow

seems better at highlighting areas of fertility: regions of compositional space, where

compounds are found to lie at or close to the convex hull.

The hull points discovered in Figure 5.32, as well as the areas for which compounds

lie close to the convex hull in Figure 5.33, indicate regions of stability. These correspond

to the areas in the elemental-rich corners, most notably the Al-rich one, which possess
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Figure 5.32: DFT Al-Fe-Ni convex hull obtained from M3GW. The colour bar gives
the enthalpy of formation of the convex hull, the hull points are indicated by black
crosses and the tie lines by black lines.

a range of stability across the 3-2-1, 2-1-1 and 3-1-2 compositions. In the central

region, as well as the area with low Al concentrations and high Ni concentrations, δ is

higher than 25 meV/atom across all stoichiometries. This is broadly in line with the

experimental phase diagram that displays an immiscibility region at the same area,

between the β and γ phases. Aside from the intermetallics, the Al-rich region shows

no solid-state solution behaviour. In conclusion, M3GW appears to highlight regions

in which solid-state solutions may form.

5.7.2 Bi-Fe-X

The final systems for which M3GW was tested are Bi-Fe-X, with X = Ta, Zr. Note

that the Bi-Fe-Ta results were entirely run by myself and the Bi-Fe-Zr ones by Michail

Minotakis. These systems are chosen since they have previously known little inves-

tigation. They are also composed of Fe and Bi, which can provide potential stable

compounds with high magnetisation, TC, and magnetic crystalline anisotropy. The

experimental phase diagrams and convex hulls from online repositories presented no

stable ternary phases. The Bi-Ta and the Bi-Fe binary subsystem, common to both

ternary systems, form no known stable phases. The other three binary subsystems



185 5.7. M3GW Results

(a) (b)

Figure 5.33: The left plot displays the difference between the
AFLOWlib+experimentally determined convex hull and that obtained with M3GW
for Al-Fe-Ni. ∆Hdiff is the difference between the hulls. Positive red regions indicate
that the AFLOWlib+experimental convex hull regions are lower, whereas the negative
blue regions show the regions lower for M3GW. The right plot shows δ, the distance
from the M3GW-determined convex hull of the lowest enthalpy compounds found
with M3GW at different ternary compositions.

form stable binary phases.

The M3GW workflow is run for both systems. The final number of structures

screened for ab-initio calculations is capped at 30 per stoichiometry. However, to

increase the diversity of compounds passed to DFT, the lowest M3GNet-energy com-

pounds for every parent prototype are forced to be selected. Thus, all the parent

prototypes3 (binary structures) are represented by at least one candidate in the final

pool of ternary compounds. If this pool contained less than 30 structures, the second

lowest energy compounds for each prototype are added. This is repeated one last time

if the number of candidates does not reach 30. The DFT calculations are spin polarised

and were initialised with magnetisations of 1.0, 5.0 and 1.0 µB for Bi, Fe and Ta/Zr

respectively. The same 34 stoichiometries as for Al-Fe-Ni are probed. The number of

candidate structures in M3GW is of the order of 107 and of the order of 103 (∼ 30×34)

for the DFT calculations.

After running the workflow, no stable ternaries are discovered for either ternary

system. The distance from the convex hull δ of the lowest enthalpy compounds for each

stoichiometry are shown in Figure 5.34. All values are positive, the lowest distance is

69.05 meV/atom for BiFeTa5 (1-1-5) for Bi-Fe-Ta and 38.56 meV/atom for BiFeZr4

3All the ones that are compatible with a given stoichiometry.
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Figure 5.34: Distance from the convex hull δ of the lowest enthalpy compounds found at
the different compositions sampled by M3GW for Bi-Fe-Ta (left) and Bi-Fe-Zr (right).
The colour scale marks the distance from the hull, with dark blue being closest and
yellow being furthest.

(1-1-4) for Bi-Fe-Zr. For the former, the average distance from the convex hull of the

minimum energy compound, over all compositions probed, is of 150.80 meV/atom. For

three Ta-rich compositions, 1-1-5, 1-1-4 and 1-2-4, values of δ below 100 meV/atom

are found. These lie close to or above 3kBT (kBT ∼ 25 meV/atom) from the convex

hull and are very unlikely to form stable phases. The compositions closest to the

Fe-Ta subsystem are also lower than other regions, consistent with this binary being

the only miscible system. For Bi-Fe-Zr, a similar trend is observed, with the average

distance to the hull being 141.32 meV/atom, but the Zr-rich corner presents several

compounds closer to the hull. Indeed, the 1-1-2, 1-1-3, 1-1-4 and 1-1-5 have values of δ

of -60.09, -58.45, -38.56 and -44.42 meV/atom respectively. The latter two are therefore

within 2kBT . It is perhaps not surprising that this region presents compounds closer

to the convex hull, since Zr forms binaries with both other elements. Only one other

compound at 2-1-2 is less than 100 meV/atom away from the hull, at 87.98 meV/atom.

The results here are consistent with previous findings of no stable ternary phases.

Some DFT relaxations are notably difficult and costly to perform, indicating that

certain structures are, in fact, far from equilibrium. This can be in part attributed

to the large discrepancy in ionic radius between Bi and the other elements. The

results are consistent with M3GW identifying areas of the phase diagram susceptible

to phase formation and none have been found here. Final remarks are presented in the

conclusions of the chapter.
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5.8 Conclusions

In this chapter, it was explained how two MLIAPs, SNAP and M3GNet, were deployed

in a high-throughput workflow aimed at screening stable materials. The process of

enumerating all unique derivative structures from a parent prototype was reviewed

and was employed to generate candidate ternary compounds. The crystal graph neural

network M3GNet was also presented as a universal MLIAP. The phase diagrams of

four relevant systems, Mo-Ta-W, Al-Fe-Ni, Bi-Fe-X (X=Ta,Zr) were also presented.

The workflow developed revolved around using available data on binaries to con-

struct ternary convex hulls. Binaries were used first as a pool of prototypes, whose

structures were decorated to form derivative structures with three elements. The binary

compounds, along with their energies, also form the training database of the ensemble

SNAP model, presented in the previous chapter. This was used as a screening tool for

the binary prototypes. The so-constructed workflow only makes use of binary data to

build ternaries.

Several steps were added to the workflow in order to increase its robustness. These

included scaling the volume, performing a SNAP-driven relaxation, cross-validating the

energy predictions, and screening the standard deviation of the ensemble predictions

to select only high-fidelity compounds. The workflow was then run on Ag-Au-Cu to

identify the lowest energy compounds at several ternary stoichiometries. It was demon-

strated that the workflow can adequately rank the compounds with respect to energy

and identify the low enthalpy compounds. A set of the most promising compounds

were then relaxed with DFT to construct a ternary convex hull. The workflow was run

on Ag-Au-Cu and two stable compounds, AgAu2Cu and AgAu3Cu, were identified.

The process was repeated for Mo-Ta-W. In this case, the SNAP ensemble model was

entirely trained on AFLOWlib data. The workflow identified 6 stable phases and only

missed the Mo2TaW stable phase present on AFLOWlib. The convex hull was consis-

tent with the finite temperature experimental phase diagrams. Overall, the workflow

was successful at discovering novel compounds and enhancing the ternary convex hull.

The workflow is enhanced in robustness, accuracy, and throughput by integrating

M3GNet as a screening tool instead of SNAP. The new workflow, M3GW, was able to

deal with a more diverse set of structures and performed reliable relaxations, without
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the requirement of any additional steps. M3GW is first tested on Mo-Ta-W and found

further stable phases, beating all the AFLOWlib compounds. Only, the Ta-rich cor-

ner is better described with the previous workflow. The potentially magnetic ternary

phases of Al-Fe-Ni and Bi-Fe-X (X = Ta,Zr) were then studied. For the former, simi-

lar results to AFLOWlib were found, with the Al-rich corner providing several stable

phases. It is established that the workflow is able to determine regions of the convex

hull fertile for the formation of stable compounds, rather than reliably identifying novel

intermetallics with a specific structure. Finally, for the other two phase diagrams, no

new discoveries were made. This is in agreement with the experimental phase diagrams

that contain no ternary phases.
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Conclusions and Future Work

This work inscribes itself in the field of inverse materials design, in which novel com-

pounds are conceived virtually, with the aim of obtaining tailored properties. More

specifically, the goal is to use high-throughput, first principles calculations to generate

novel stable materials. In this traditional approach, it is necessary to calculate the

DFT energies of many candidate compounds in order to construct the convex hull and

identify which contestants lie on the T=0K phase diagram and are thus stable. The

work presented in this thesis establishes to what extent the process may be accelerated

using machine learning, specifically in the form of MLIAPs, for ternary systems. The

two potentials tested, SNAP and M3GNet, are in fact all trained on pre-existing data,

present on large online materials repositories.

In Chapter 2, DFT was presented as the high-fidelity model to accurately describe

the electronic structure of materials and compute their energies (along with atomic

forces and stress tensor elements), which are the central quantities required to obtain

enthalpies of formation and hence predict compound stability. The work of Hohenberg,

Kohn and Sham was summarised to show how the many-body interacting electron sys-

tem problem could be recast in terms of the electron density. This resulted in the

formulation of the self-consistent field Kohn-Sham scheme. Since the VASP package

is used for this work, the associated methodology used to solve the KS equations was

presented, with particular focus on the projector augmented wave pseudopotential for-

malism. Afterward, the conjugate-gradient algorithm, used to perform structural and

ionic relaxation, was described, as it is pivotal in finding the equilibrium configuration

of a compound.

189
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In Chapter 3, machine learning and MLIAPs were extensively introduced. The

latter was defined as the set of methods employed to automatically (without explicit

human intervention) unravel and learn patterns from data. The emphasis of the section

was on supervised learning and involved the description of the importance of a judicious

selection of data, feature vectors, and algorithms in machine learning pipelines. Ridge

regression and neural networks were presented as relevant examples of two models

that can be used to map the feature vectors to the target property. This led to the

presentation of the recently developed class of interatomic potentials called MLIAPs.

These models aim to represent the PES of a system at the level of DFT, based on local,

symmetry-invariant atomic fingerprints and a machine learning algorithm. It is stressed

that these potentials have parameters that are tuned through a learning process using a

database of compounds and corresponding energies (forces, stress tensors), which must

effectively sample the region of the PES on which the MLIAP is intended to be used.

Two specific models, namely NNP and SNAP, are described in further detail, with

a particular focus on the descriptors used. Finally, the main successful applications

of MLIAPs are presented, and are centered around performing simulations over large

lengthscales and timescales (MD) or on a large number of structures (high-throughput

materials screening).

Chapter 4 presented the first set of results related to this work. The goal was to train

a SNAP model on binary compounds in order to make energy predictions and hence

screen ternary intermetallics. The relevant theory on thermodynamic stability was

first expounded, followed by the AFLOW environment and standards for DFT high-

throughput calculations. The Ag-Au-Cu system served as a test alloy for the study and

the subsystem binary and full ternary experimental phase diagrams were given. The

first set of results focused on the training methodology of the SNAP ensemble, for which

the training data points were all binary compounds of the Ag-Au, Ag-Cu, and Ag-Cu

systems present on AFLOWlib (the DFT energies were re-computed), amounting to

more than 600 structures. It was shown that the so-trained interatomic potentials

could be used to predict the energies of fully relaxed ternary compounds with errors

below 30 meV/atom. Predictions of the bulk moduli could also be made with relative

errors of no more than 15%. The two main limitations of the devised model were

its inability to accurately predict the energies of out-of-equilibrium compounds (albeit
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with an adequate energy ranking), and to fail to perform full relaxations. This restricts

the use of the model to equilibrium structures. It was argued that the reason for

this is the lack of configurations with large forces and hence the absence of chemical

environments associated with the high-energy regions of the PES. The results were

shown to hold when switching ternary systems, as exemplified by the Mo-Pt-Ti and Cd-

Hf-Rh systems, for which AFLOWlib energy data were used for the MLIAP training. In

a final part, several error metrics were tested. These were dmin, the Euclidian distance

of a chemical environment of the test set to the training set ones, γ, the extrapolation

grade, and σ the ensemble standard deviation on predictions. The first was shown to be

inadequate for identifying high-error test compounds, whereas the other two, especially

when being species-independent, performed well. σ was shown to be the most reliable

one. In conclusion, it was shown how an ensemble of SNAP models trained on pre-

computed binary data could be used to screen equilibrium ternary compounds and

identify non-equilibrium ones.

In Chapter 5, workflows were devised to make use of MLIAPs to accelerate the

construction of ternary convex hulls. Aside from a screening model, this required

candidate compounds, susceptible of lying close to the hull. The structures of binary

compounds were chosen to fill this role. The enumlib algorithm was introduced as

the algorithm of choice to generate the ternary derivative structures from the binary

prototypes. Two screening tools were tested, the ensemble SNAP model previously

developed and the M3GNet universal force-field. The mathematical and algorithmic

architectures of the latter were presented. While Ag-Au-Cu was used as a test system

for development, the ternary systems Mo-Ta-W, Al-Fe-Ni, and Bi-Fe-X (X = Ta, Zr)

were used as a playground in an attempt to identify novel stable phases. The associated

phase diagrams and available convex hulls for these and their binary systems were given.

The initial workflow developed used the ensemble SNAP model as a screening tool

and the steps in the development process were detailed. Since the candidate compounds

were based on the structures of binary alloys, the latter tended to be close to the

equilibrium structures. The energy predictions of the MLIAPs were therefore adequate

for screening the candidates most likely to be stable. Nevertheless, several steps were

incorporated to increase the robustness of the predictions. These included volume

scaling of the structures according to a Vegard’s-like law, prematurely aborted ionic
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relaxations driven by SNAP, cross-validated predictions from the SNAP ensemble, and

a cut-off on the permitted standard deviation of the predictions. Following this pipeline,

the compounds were ranked with increasing energies, and the first ones were selected

as the most promising. Full DFT relaxation was performed on them. This workflow

was run for fixed stoichiometries. Thus the construction of the final convex hull relied

on runs at a range of different compositions. The final T=0K phase diagram is of

first principles level and all the heavy DFT computational effort is focused on the best

candidates. This was run for Ag-Au-Cu and Mo-Ta-W and each case revealed novel

phases, not present on the AFLOWlib repository. For the latter, a single point was

missed, whereas one was undercut as 6 new stable compounds were identified. This

shows that a SNAP-centered workflow is capable of improving the completeness of

ternary convex hulls.

The focus was then shifted to a different, recently published MLIAP, M3GNet. This

crystal graph neural network was also trained on pre-existing data, this time on the

Materials Project, but included data across all phases and systems available, including

the relaxation path data. The inclusion of high-energy structures enables the model to

perform accurate structural and ionic relaxations across a huge range of compounds and

compositions. Using this model changed the workflow, as steps to increase robustness

were no longer required and a larger range of parent binary prototypes could be used.

The stoichiometry-dependent predictions therefore only required an ionic relaxation

and an energy prediction on the relaxed structure for each candidate. The final convex

hull is again constructed from the DFT energies of the best candidates selected by

M3GNet. The first results on Mo-Ta-W showed better performance than AFLOW

over the full compositional range. With respect to the SNAP workflow, a deeper

convex hull is found in all regions aside from the Ta-heavy one, in which the lowest

energy compounds discovered are systematically worse. This points to a potential

systematic bias in the M3GNet model. However, overall the predictions are better and

the workflow is more efficient. M3GW was deployed for three other systems, which

included magnetic elements. In the case of Al-Fe-Ni, the convex hull obtained agreed

with the AFLOWlib one and the experimental, finite temperature phase diagram,

identifying the Al-rich corner as being fertile for material stability. Regarding the Bi-

Fe-X systems, no novel compounds or areas likely to contain stable compounds were
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indentified, in agreement with experiment. In conclusion, the workflows devised help

identify novel compounds on the ternary phase diagrams by screening a number of

candidates on the order of 106-107. They seem efficient at identifying regions in which

material stability is the most likely and produce DFT-quality convex hulls.

Overall, work in this thesis displayed how it is possible to use machine learning to

increase the throughput in the search for novel ternary compounds, fitting within the

third modality of inverse materials design. This is possible by using recycled, already

available data, and pre-trained models. The future direction of this work can be broken

down into different time horizons. In the short term, M3GW can be deployed in its

present form to probe the convex hulls of more ternary systems, with a more judicious

choice of the three constituent elements. This would be for a system where there

are known binaries and therefore for miscible species. It would also be for a poorly

explored system, ideally made of three transition metals, with one magnetic and one

heavy element, if magnetic properties are desired. The selection of such elements could

even be done using data mining techniques, in full inverse design fashion.

Over a longer time horizon, the workflow would be adapted for higher robustness,

such that a higher diversity of prototypes could be used and for increased accuracy, to

provide better screening. To address the first matter, methods to evaluate uncertainty

in the predictions could be incorporated, to first identify when predictions are likely

to be less reliable. This could serve to find compounds that could help train a more

accurate model, in an active learning scheme. The issue would be that M3GNet is

too large a model to be trained or fine-tuned on the fly (several times during a single

workflow). This could only be feasible once a large enough database was calculated

(at least 104 compounds), after runs of M3GW across many ternary convex hulls. The

problematic compounds could however be used as a training dataset for a specialised

MLIAP, such as SNAP, that could work in conjunction with M3GNet. The latter

would be a general relaxation and rough screening model, while the other could screen

the finer details. Alternatively, M3GNet could be fine-tuned before a M3GW run for

a given system, with specific data available for that system. What risks to limit the

accuracy of universal screening models remains the lack of extensive, relevant, and

good-quality data. M3GNet is already trained on one of the largest materials repos-

itories (Materials Project with 105 compounds including relaxation path structures),
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and it is unlikely enough data could be generated for orders of magnitude much higher

than 106 (AFLOWlib is of this size currently). It seems difficult to envisage a single,

general, DFT-accurate model being enough because of the lack of data.

Unrelated models that have been trained on much larger databases are Large Lan-

guage Models (LLMs). Their predictive power has already been proved to be immense

and it is still unknown to what extent they can be applied. A recent investigation has

notably shown them to be useful in mathematical optimisation problems (e.g. linear

regression) with the right prompting, despite not being trained specifically for this

[374]. Following these lines, perhaps these models, likely to be the largest ML models

in the coming decade, and that dwarf the size of any material-specific models, may be

used in certain inverse materials design pipelines.
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43. Hellman, H. Einführung in die quantenchemie. Franz Deuticke, Leipzig 285

(1937).

44. Feynman, R. P. Forces in molecules. Physical Review 56, 340–343 (1939).

45. Nielsen, O. H. & Martin, R. M. First-principles calculation of stress. Physical

Review Letters 50, 697–700 (1983).



201 Bibliography

46. Nielsen, O. H. & Martin, R. M. Quantum-mechanical theory of stress and force.

Physical Review B 32, 3780–3791 (1985).

47. Birch, F. Finite elastic strain of cubic crystals. Physical Review 71, 809 (1947).

48. Murnaghan, F. D. The compressibility of media under extreme pressures. Pro-

ceedings of the National Academy of Sciences 30, 244–247 (1944).

49. Kresse, G. & Hafner, J. Ab initio Molecular dynamics for liquid metals. Physical

Review B 47, 558 (1993).

50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy

calculations using a plane-wave basis set. Physical Review B 54, 11169 (1996).

51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector aug-

mented-wave method. Physical Review B 59, 1758 (1999).

52. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Thomson Learning Inc.,

London, 1976).

53. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations.

Physical Review B 13, 5188–5192 (1976).
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104. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic poten-

tials as emerging tools for materials science. Advanced Materials 31, 1902765

(2019).

105. Morrow, J. D., Gardner, J. L. & Deringer, V. L. How to validate machine-learned

interatomic potentials. The Journal of Chemical Physics 158, 121501 (2023).

106. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized

interatomic potentials. Computational Materials Science 140, 171–180 (2017).

107. Zhang, L., Lin, D.-Y., Wang, H., Car, R. & Weinan, E. Active learning of uni-

formly accurate interatomic potentials for materials simulation. Physical Review

Materials 3, 023804 (2019).

108. Vandermause, J. et al. On-the-fly active learning of interpretable Bayesian force

fields for atomistic rare events. npj Computational Materials 6, 20 (2020).

109. Karabin, M. & Perez, D. An entropy-maximization approach to automated train-

ing set generation for interatomic potentials. The Journal of Chemical Physics

153, 094110 (2020).

110. Montes de Oca Zapiain, D. et al. Training data selection for accuracy and trans-

ferability of interatomic potentials. npj Computational Materials 8, 189 (2022).



Bibliography 206

111. Briganti, V. & Lunghi, A. Efficient generation of stable linear machine-learning

force fields with uncertainty-aware active learning. Machine Learning: Science

and Technology 4, 035005 (2023).

112. Behler, J. & Parrinello, M. Generalized neural-network representation of high-

dimensional potential-energy surfaces. Physical Review Letters 98, 146401 (2007).

113. Behler, J. Constructing high-dimensional neural network potentials: a tutorial

review. International Journal of Quantum Chemistry 115, 1032–1050 (2015).

114. Behler, J. Four generations of high-dimensional neural network potentials. Chem-

ical Reviews 121, 10037–10072 (2021).

115. Gastegger, M., Schwiedrzik, L., Bittermann, M., Berzsenyi, F. & Marquetand,

P. wACSF — weighted atom-centered symmetry functions as descriptors in ma-

chine learning potentials. The Journal of Chemical Physics 148, 241709 (2018).

116. Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network poten-

tials for multicomponent systems: applications to zinc oxide. Physical Review B

83, 153101 (2011).

117. Anstine, D. M. & Isayev, O. Machine learning interatomic potentials and long-

range physics. The Journal of Physical Chemistry A 127, 2417–2431 (2023).

118. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-

dimensional neural network potential with accurate electrostatics including non-

local charge transfer. Nature Communications 12, 398 (2021).

119. Eckhoff, M. et al. Closing the gap between theory and experiment for lithium

manganese oxide spinels using a high-dimensional neural network potential.

Physical Review B 102, 174102 (2020).

120. Eckhoff, M. & Behler, J. Insights into lithium manganese oxide–water interfaces

using machine learning potentials. The Journal of Chemical Physics 155, 244703

(2021).

121. Weinreich, J., Paleico, M. L. & Behler, J. Properties of α-brass nanoparticles II:

structure and composition. The Journal of Physical Chemistry C 125, 14897–

14909 (2021).



207 Bibliography

122. Mangold, C. et al. Transferability of neural network potentials for varying sto-

ichiometry: phonons and thermal conductivity of MnxGey compounds. Journal

of Applied Physics 127, 244901 (2020).
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