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Summary

In this thesis, heavy hadron spectroscopy was studied through the formalism of lattice

quantum chromodynamics. A summary of relevant theory is provided, followed by an

overview of the current state-of-the-art spectroscopy methods that were employed in

this work. Finite volume spectra were computed using the variational method with dis-

tillation. The finite-volume spectra computed were used to constrain infinite-volume

scattering amplitudes using Lüscher’s method. The scattering amplitude of the isospin-

1/2 Dπ S-wave was computed. By analytically continuing this amplitude to complex

energies, a resonance pole was found. This pole was identified as the D∗0 meson. Ex-

trapolating to physical pion mass suggests that the current reported experimental mass

of the D∗0 is too high.

Also covered in this thesis is a calculation of the excited and exotic spectra of the

B , Bs and Bc mesons. An extensive spectrum was determined in each meson sector,

with robust spin identification. The presence of hybrid mesons was investigated, with

candidate states for a hybrid supermultiplet proposed in each meson sector. The mixing

of states occurring due to symmetry breaking on the lattice was also studied. The B

and Bs mesons were found to be strongly mixed, while the mixing in Bc was much

weaker. The analysis of the B meson was extended further, with an exploratory study

of isospin-3/2 Bπ scattering performed. The scattering amplitude for the S-wave was

computed, and was found to be the form of a weakly repulsive interaction. This thesis

concludes with an overview of its findings.
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1 Introduction

Quantum chromodynamics (QCD) is the theory of the strong interaction between quarks

and gluons. It is a key component of the Standard Model of particle physics, which is

an incredibly successful theory at predicting the behaviour of fundamental particles and

forces. QCD is comprised of SU(3) Yang-Mills theory, coupled to Dirac fermions which

represent the quarks and antiquarks of the theory. Gluons are represented by the gauge

fields in the theory. The gauge charge of the quarks and gluons is referred to as colors,

specifically red, blue, and green. Quarks come in six flavours, namely up, down, strange,

charm, top and bottom. Although it has yet to be proven, it is strongly believed that

QCD is a confining theory, and experimental evidence to date supports this belief, as

do lattice results. This means that no quark is observed on its own, all allowed states

are color-neutral. Thus quarks and gluons group themselves into color-neutral states.

These color neutral states are known as hadrons. More details on the properties and

symmetries of QCD are discussed in the next chapter.

Until a few decades ago, only two types of hadrons had been observed experimentally,

mesons and baryons. Mesons consist of a quark-antiquark pair while baryons are com-

binations of three quarks. This experimental observation, combined with the difficulty

of analytically computing energy states from QCD, lead to the formulation of the quark

model in the 1960s [5,6]. This has proved a successful theory that explained the prop-

erties and interactions of hadrons, as well as predicting the presence of hadrons that

were later found experimentally, such as the Ω baryon, which consists of three strange

quarks. However, in recent times, states that do not agree with the quark model have

been observed. There have been states with masses that are at odds with the quark

model prediction, as well as states with quantum numbers that are not allowed by the

quark model. These states are known as exotic states. There are many proposals for

the nature of these exotic states, ranging from tetraquarks and pentaquarks (four and

five-quark states respectively) to glueballs (quark-less states containing only gluons)

and hybrid mesons (mesonic states containing excited gluons). Exotic hadron states are

thus states which either have quantum numbers not allowed by the quark model, or

1



are comprised of combinations of quarks and/or gluons which the quark model doesn’t

allow.

With puzzling experimental observations being made, an upgrade in the theoretical

methods was called for. There has been some success calculating with the quark model

[7], as well as through the use of effective field theories such as chiral perturbation

theory [8] and heavy quark effective field theory [9]. However, ideally one would be

able to predict energy states directly from the QCD Lagrangian. This became possible

through Lattice QCD, a formulation that restricts QCD to a discrete lattice of finite

space-time volume and numerically evaluates the path integral. Lattice QCD is a non-

perturbative theory which provides the means for ab initio predictions of nuclear physics,

even at low energies. Lattice QCD allows for the calculation of energy states in a finite

volume through the numerical evaluation of correlators. Through a formalism introduced

by Lüscher [10], these energies can be related to infinite volume scattering amplitudes,

the resonances of which correspond to hadrons.

The work in this thesis was performed through the formalism of lattice QCD. In Chapter

2 the formalism of lattice QCD will be introduced, and some of its properties will be

discussed. Chapter 3 will provide the details of how a finite volume energy spectrum is

determined through Lattice QCD, and how these energies can be used to gain access

to infinite volume scattering amplitudes. A particularly puzzling experimental result

dealing with charm-light mesons is discussed in Chapter 4 with a possible resolution

being provided through the results of a scattering analysis of isospin-1/2 Dπ scattering.

Note that this chapter is based on published work [1]. While many puzzling results

have been observed experimentally in the charm-sector, few experimental results exist

in the bottom-sector. However, with more runs being performed by LHCb [11] and

Belle II [12], this may soon change. Many puzzles similar to those found in the charm-

sector are predicted to be present in the bottom-sector. Motivated by this Chapter 5

presents the results of the determination of the finite volume energy spectra of the B

(bottom-light), Bs (bottom-strange) and Bc (bottom-charm) mesons, which includes

hybrid mesons. Note that this chapter is based on work to be published. Finally Chapter

6 discusses the results of an exploratory study into isospin-3/2 Bπ scattering.
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2 Lattice QCD

The QCD Lagrangian is given by

LQCD =
6∑

f =1

3∑
a,b=1

3∑
α,β,µ=0

ψ̄
(f )
α
a

(
iγµαβDµ;ab −mf δαβδab

)
ψ

(f )
β
b

+
8∑

i=1

3∑
µ,ν=0

−1

4
G i
µν G

µν
i .

(2.1)

This is commonly split into two terms, LQCD = LF + LG .To obtain the action, one

integrates over Minkowski space time,

SQCD(ψ, ψ̄,A) =

∫
d4x LQCD(ψ(x), ψ̄(x),A(x))

=

∫
d4x LF (ψ(x), ψ̄(x),A(x)) +

∫
d4x LG (ψ(x), ψ̄(x),A(x))

= SF + SG

(2.2)

In LF , ψ
(f )
a are the Dirac fermions that correspond to quarks. The sum in LF is over

the six flavours of quark, labelled f , and the three colors a, b. The indices α, β are the

Dirac indices. In QCD, gluons are described by gauge fields Aµ, with µ being a Lorentz

index that labels the direction in space-time. The gauge fields Aµ ∈ SU(3), the group of

special unitary 3× 3 matrices with det = 1. Gauge symmetry is a central part of QCD,

it accounts for many of the phenomenona observed in particles (more details later in the

chapter). To build gauge symmetry into the theory, one must define what the gauge

transformation is. Using Ω(x) ∈ SU(3), at location x in space-time, one can define the

gauge transformation of the fermion fields as

ψΩ(x)→ Ω(x)ψ(x),

ψ̄Ω(x)→ ψ̄(x)Ω−1(x).
(2.3)

By demanding that the fermionic action is gauge invariant, SF (ψΩ, ψ̄Ω,AΩ) = SF (ψ, ψ̄,A),

one obtains the gauge transformation condition of Aµ,

AΩ
µ (x)→ Ω(x)Aµ(x)Ω−1(x) + i(δµΩ(x))Ω(x)−1. (2.4)

3



The gauge-covariant derivative, Dµ;ab, can then be defined as

Dµ;ab(x) = δab∂µ + igs

8∑
i=1

λi
abA

i
µ(x), (2.5)

with λi
ab being the Gell-Mann matrices which are the generators of the SU(3) color

group and gs being the strong coupling constant. In LG , G i
µν is the gauge invariant

gluon field strength tensor, and is given by

G i
µν(x) = ∂µA

i
ν(x)− ∂νAi

µ(x)− gs f
ijkAj

µ(x)Ak
ν(x), (2.6)

with f ijk being the structure constants of the SU(3) color group. This is analogous to

the electric field tensor, F µν in quantum electrodynamics. Both the covariant derivative

and gluon field strength tensor transform covariantly,

DΩ
µ;ab(x) = Ω(x)Dµ;ab(x)Ω(x)−1

GΩ
µν(x) = Ω(x)Gµν(x)Ω(x)−1

(2.7)

2.1 Discretising QCD

Lattice QCD is a discretised version of Quantum Chromodynamics, where instead of

working in the continuum space time, calculations are performed on a finite (3+1)-

dimensional space time grid, Λ. This grid is called a lattice and is a set of discrete

points with finite spacing between them, with the spacing between points labelled a.

The lattice has a finite volume V = L3 × T , with L being the spatial length and T the

temporal length of the lattice. There are (L/a)3×(T/a) = N3×nt points on the lattice.

The lattice is usually periodic, with the boundaries at nt and ns being identified with the

boundaries at 0. Following the notation of [13], the fermion fields ψ(f )(n) are placed only

at lattice sites n ∈ Λ. Instead of the gauge fields Aµ, link variables are introduced which

are related to lattice gauge fields by Uµ(n) = exp(iagAµ(n)). Here, space-time has been

discretised, and as such all length scales are quantised with the spacing a. These gauge

fields are introduced to ensure the gauge invariance of the discretised fermionic action,

specifically the term containing a derivative, with the gauge transformation of Uµ(n)

defined as

Uµ(n)Ω → Ω(n)Uµ(n)Ω−1(n + µ̂). (2.8)

These link variables connect lattice site n to n+aµ̂, a single lattice step in the direction

µ, as shown in Figure 2.1. In the continuum, these are known as parallel transporters.
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Figure 2.1: The link variables Uµ(n) and U−µ(n)

They are directed, with U−µ(n) ≡ Uµ(n − µ̂)†. Using these link variables, a gauge

covariant partial derivative can be defined by

∂µψ(n) =
Uµ(n)ψ(n + µ̂)− U−µ(n)ψ(n − µ̂)

2a
, (2.9)

where the central difference is used as it has O(a2) discretisation effects. Note in this

definition, the color indices have been suppressed.

2.2 A note on Symmetries

It is worth noting the symmetries of QCD, especially those that are preserved on the

lattice, and having a brief discussion on them, as they motivate some choices made in

the discretisation of QCD, as well as playing a big part in how one constructs operators

that represent states on the lattice.

2.2.1 Gauge Symmetry

The gauge symmetry of QCD was a necessity to accurately explain the interactions of the

strong force, and is built into the theory. It is an SU(3) symmetry, with the charge being

the color carried by the quarks and gluons. The allowed colors are labelled as red, green

and blue, as well as their anti-colors. The strong interactions are mediated by gauge

bosons known as gluons. All hadrons in QCD must be color neutral, a property known

as color confinement. On the lattice, this gauge invariance is held by construction,

as it is a central piece of the theory. Observables are gauge-invariant as long as the

operators involved transform gauge-covariantly. These are very important, as by Elitzur’s

theorem [14] only gauge-invariant operators have a non-vanishing expectation value in

a gauge theory, such as QCD.
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2.2.2 Flavour Symmetry

In QCD, there are six flavours of quarks, namely up, down, strange, charm, bottom,

top. In this study the top quark is irrelevant due to its much larger mass, as this

provides both a computational challenge in terms of the fine lattice spacing required to

control systematic errors, as well as the technical challenge of tracking the large energy

scale of the top quark in tandem with the much smaller energy scales of the lighter

quarks. Flavour symmetry refers to the fact that in the framework of QCD, quarks are

treated the same regardless of flavour. However, this symmetry is broken by the unequal

quark masses. Up and down quarks have significantly smaller masses than the other

flavours of quarks. For this reason, they are typically implemented as two degenerate

flavours on the lattice, denoted light quarks. This gives an SU(2) flavour symmetry

to the QCD Lagrangian, which is actually a good approximation at physical masses.

The strange quark meanwhile, is not as light as the up and down quarks, but is still

significantly lighter than the other three flavours. If the strange were to be added to the

symmetry with the light quarks, it would create an SU(3) flavour symmetry in the QCD

Lagrangian. While this is badly broken at physical quark masses, it is not the worst

approximation on the lattice. This is because, quite often on the lattice, calculations

are performed with light quarks being at a heavier than physical mass, as simulating at

physical light quark mass would require fine lattice spacing, which is computationally

expensive. Thus the light quark mass on the lattice is closer to the strange quark which

is typically close to its physical mass on the lattice. The assumption of SU(3) flavour

symmetry provides a nice way of classifying states into multiplets, which is known as

the eightfold way [5].

2.2.3 Rotational Symmetry

In the continuum, QCD has a rotational symmetry, which leads to the conservation of

angular momentum. There is also an invariance to inversions in space. As a result of

these symmetries, states can be labelled by their angular momentum and parity, JP .

Parity takes a value of P = ±1 representing odd and even parity states. These label

the irreducible representations of the improper rotation group O(3). Projecting the

angular momentum onto an axis Jz , gives the rows of the representation. On the lattice

however, the continuous rotational symmetry is broken, due to both the finite spacing

of the lattice as well as its finite volume. This is replaced by rotations that leave the

cube invariant. The corresponding symmetry group is Oh, the cubic point group. States

are labelled by their lattice irrep instead of angular momentum, as ΛP , with the parity

label maintained. Again, parity P = ±1, now corresponding to the spatial inversions
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J Λ
0 A1

1 T1

2 T2 ⊕ E
3 T1 ⊕ T2 ⊕ A2

4 A1 ⊕ T1 ⊕ T2 ⊕ E

Table 2.1: The subduction of continuum spin J into each at-rest lattice irrep

on the octahedral group O. O has five irreducible representations, labelled A1, A2, E ,

T1 and T2. The inclusion of parity gives ten lattice irreps. Due to the breaking of the

continuous rotational symmetry, states with the same angular momentum and parity

JP can subduce into different lattice irreps, due to differing Jz values. This makes

the designing of appropriate operators to represent states very important, as they must

project into Oh. Table 2.1 shows how the continuum spin J subduces into each irrep of

Oh.

2.3 Lattice Actions

On the lattice, the action is typically computed in Euclidean space-time. To gain access

to this, a Wick rotation is performed by t → −it. The change in metric ensures

a positive definite probability density for field configurations. This is not the case in

Minkowski space-time, the so-called sign problem arises. This Wick rotation enables

the use of the Monte Carlo methods discussed later in this chapter. To compute the

action, it is discretised and the integral is replaced by a sum. The fermion action can

be written as a bilinear of the form

SF [ψ, ψ̄,U] =
∑

f

a4
∑

n,m∈Λ

∑
a,b,α,β

ψ̄(f )(n)α
a
D(f )(n|m)αβ

ab
ψ(f )(m)β

b
, (2.10)

with D(n|m) being the discretised Dirac operator. One must be very careful with the

Dirac operator on the lattice, if the only adjustment one makes from the continuum

is to treat the derivatives as finite differences, a problem known as fermion doubling

will arise. This is the creation of additional solutions to the Dirac equation, typically at

higher momentum nodes, due to inherent symmetries on the lattice. To help grasp this

issue, consider free fermions in 1-dimension (trivial gauge fields Uµ(n) = 1). Examining

the Dirac operator in momentum-space by computing its Fourier transform applied at
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sites n and m gives

D̃(p|q) =
1

|Λ|
∑

n,m∈Λ

e−ipnaD(n|m)e iqma,

=
1

|Λ|
∑
n∈Λ

e−i(p−q)na

(
e iqa − e−iqa

2a
+ m

)
,

= δ(p − q)D̃(p),

(2.11)

where |Λ| is the total number of lattice points, and p, q are the momenta associated

with the Fourier transform of n,m respectively. The phase signs differ to ensure the

unitary similarity transformation. The Fourier transform of the lattice Dirac operator in

one-dimension with trivial gauge fields is then given by

D̃(p) = m +
i

a
sin(pa). (2.12)

The Dirac operator is diagonal in the momenta p, q. Thus to compute the inverse of

the Dirac operator in real space, it is sufficient to compute the inverse of D̃(p), and

then invert the Fourier transform. The inverse D̃(p)−1 is given by

D̃(p)−1 =
m − ia−1 sin(pa)

m2 + a−2 sin(pa)2
. (2.13)

The so-called quark propagator can then be obtained by inverting the Fourier transform,

D−1(n|m) =
1

|Λ|
∑
p∈Λ̃

D̃(p)−1e ip(n−m)a. (2.14)

The quark propagator represents the probability of a quark travelling from point n to

point m. It is important to examine its properties. Considering the massless case, in

momentum space the quark propagator still has the correct continuum limit,

D̃(p)−1 =
−ia−1 sin(pa)

a−2 sin(pa)2
a→0
−→
−ip
p2

. (2.15)

The continuum expression has a pole at p = 0, representing the single fermion described

by the Dirac operator. However, one will notice that on the lattice, there is an extra

pole, given at p = π/a. This unphysical pole is known as a fermion doubler, and 2D −1

fermion doublers arise on the lattice for a theory of fermions in dimension D. The

first Brillouin zone in momentum space contains all allowed distinct momentum values

p ∈ (−π/a, π/a]. It is periodic, identifying −π/a with π/a. One can not simply exclude

the boundary π/a. To fix the unwanted presence of these doublers, one must do more
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with the lattice Dirac operator. A popular solution is to add an extra term to the naive

discretisation, known as the Wilson term. This is given by,

− r

2a

±4∑
µ=±1

Uµ(n)abδn+µ̂,m − δabδn,m. (2.16)

The factor r is a free parameter which has no effect on the continuum limit of observ-

ables. As such, it is typically set to r = 1, giving the form of Eq. 2.17. The Wilson

term acts like an additional mass term, causing the mass of doublers to get infinitely

large in the continuum limit, decoupling them from the theory and solving the problem.

This leads to the use of the so-called Wilson Dirac operator [15], given by,

D(f )(n|m)αβ
ab

=

(
m(f ) +

4

a

)
δαβδabδnm −

1

2a

±4∑
µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m, (2.17)

with γ−µ = −γµ and the nearest neighbour terms are made gauge invariant by the

insertion of link variables. The Wilson action can then be defined as,

SWilson =
∑

f

a4
∑

n,m∈Λ

∑
a,b,α,β

ψ̄(f )(n)α
a
D(f )(n|m)αβ

ab
ψ(f )(m)β

b
, (2.18)

with the Wilson Dirac operator inserted. For more details on the Wilson action, see

Ref [13]. Wilson fermions are one method used to represent fermions on the lattice, and

while it is the one employed in this study other methods exist. Staggered fermions [16],

domain-wall fermions [17] and twisted mass fermions [18] are all alternative approaches

to representing fermions on the lattice.

The gauge action, or gluon action, can be written as

SG [U] =
2

g 2

∑
n∈Λ

∑
µ<ν

Re tr[1− Uµν(n)], (2.19)

with Uµν being the so-called plaquette, which is the shortest closed loop on the lattice,

and is defined as a product of link variables, Uµν(n) = Uµ(n)Uν(n+µ̂)Uµ(n+ ν̂)†Uν(n)†.

It is of the form shown in Figure 2.2.

In discretising the fermion and gluon actions, effects are of course introduced. In the

formalism above, the discretisation effects for the Wilson fermion action are O(a), due

to the addition of the Wilson term. For the gauge fields the discretisation effects are

O(a2). These effects only disappear in the continuum limit, meaning that on the lattice,

they can be quite significant. One way to address this issue is through the Symanzik
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Figure 2.2: The link variables that make up the plaquette Uµν(n).

improvement program [19]. This is a method of improving the order of discretisation

effects by adding extra irrelevant counter-terms to the action, to counteract the leading

order contribution. In the case of the Wilson fermion action, O(a) improvement is

obtained by employing Symanzik improvement. This leads to the so-called Wilson clover

action, which is given by

SF = SWilson + cSW a5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνĜµνψ(n), (2.20)

with Ĝµν being a discretised version of the gluonic field strength tensor, and σµν ≡
[γµ, γν ]/2i . The real coefficient cSW , is known as the Sheikholeslami-Wohlert coefficient

[20]. This extra term is quite often referred to as the clover term, due to the clover-like

shape of the plaquettes it introduces. By tuning the coeffiecients of the action, O(a)

improvement is realised. A similar procedure can be performed on the gluonic action,

removing the O(a2) discretisation effects. This is known as the Lüscher-Weisz gauge

action. For details on this, see Ref [21].

Other methods for improving actions include stout-smearing gauge links and tadpole

improvement. Stout-smearing is a type of smoothing procedure applied to space links

to help suppress excited gluon modes. The new link after smearing is given by Ũµ(n) =

e iQµ(n)Uµ(n), where Qµ(n) is a traceless Hermitian matrix. For more details see Ref

[22]. Tadpole improvement is a method of normalising the gauge links to eliminate UV
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divergences caused by self-interactions of gauge fields. The link variables are divided by

a tadpole factor, determined through perturbative or non-perturbative tuning. In this

work, a tree-level tadpole term is used. For more details see Ref [23].

2.4 The Path Integral

Using the Euclidean discretised actions discussed above, one can define a partition

function, Z , by

Z =

∫
D[ψ, ψ̄]D[U]e−SF [ψ,ψ̄,U]−SG [U], (2.21)

with the fermion product measure

D[ψ, ψ̄] =
∏
n∈Λ

∏
f ,α,a

dψ(f )(n)α
a
d ψ̄(f )(n)α

a
, (2.22)

and the gauge field product measure

D[U] =
∏
n∈Λ

4∏
µ=1

dUµ(n), (2.23)

where dU is the Haar measure on the group manifold of SU(3). The expectation value

of an observable O can then be obtained by

〈O〉 =
1

Z

∫
D[ψ, ψ̄]D[U]s−SF [ψ,ψ̄,U]−SG [U]O[ψ, ψ̄,U] (2.24)

where O may be the product of multiple terms. For the fermionic part of the integral,

ψ and ψ̄ must be anticommuting to include Pauli’s principle, which means they are

now Grassmann numbers and Grassmann integration must be performed to compute

the fermionic integral. Performing Gaussian integration with Grassmann variables gives

the result ∫
D[ψ, ψ̄]e−SF [ψ,ψ̄,U] = detD, (2.25)

with D being the Dirac matrix. Note the determinant is calculated over all indices

(flavour, color and spin) as well as all sites. This result allows for the fermionic part of

the partition function to be integrated out, giving

Z =

∫
D[U]e−SG [U] detD. (2.26)

Integrals with the fermionic action over operators with products of the same numbers

of quarks and anti-quarks can be solved analytically. The simplest example of this is
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over the operator ψ(n)α
a
ψ̄(m)β

b
;

∫
Dψ(n)α

a
ψ̄(m)β

b
e−SF [ψ,ψ̄,U] = detD D−1(n,m)αβ

ab
. (2.27)

If there is not an equal number of quarks and anti-quarks in the product, the expectation

value vanishes. Thus the expectation value of a general operator O becomes

〈O〉 =
1

Z

∫
D[U]s−SG [U] detD O[U ,D−1]. (2.28)

D−1 is the quark propagator, and only depends on the gauge link U . Thus the depen-

dence on the quark fields has been integrated out. Unfortunately, the remaining gauge

integral cannot be solved analytically, and must instead be done numerically.

2.5 Numerical Methods

Instead of integrating, one generates a set of N configurations and samples from each

of them, with the expectation value of O becoming

〈O〉 = lim
N→∞

1

N

N∑
n=1

O[Un,D−1[Un]]. (2.29)

Each Un is sampled according to a probability distribution

dP(U) =
1

Z
D[U]e−SG [U]| detD|. (2.30)

This is known as importance sampling Monte Carlo integration. Of course, one cannot

make infinite gauge configurations. So instead the expectation value is approximated

by the mean of a finite set. Define On = O[Un,D−1[Un]] as the estimate of the value

of the operator based on a single configuration Un. One can then define the mean Ō

and variance σ2 of the ensemble as

Ō =
1

N

N∑
n=1

On, (2.31)

and

σ2 =
1

N(N − 1)

N∑
n=1

(On − Ō)2. (2.32)

The mean is taken as an estimate of the expectation value of O, with uncertainty of the

order O(1/
√
N). The generation of these configurations is done with a so-called Markov
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chain. The gauge configurations are generated subsequently, with each configuration Un

being the input for the next Un+1. A number of changes are proposed to the input Un,

with changes being accepted with a probability that is proportional to the change they

cause to the action. One begins measuring when the system reaches equilibrium.

Generating configurations in this way leads to a problem known as autocorrelation.

This is where each calculation of an observable is correlated to the previous calculations

performed. This problem arises in Markov chains as each configuration is generated

from the previous one. There are many ways to attempt to combat this, such as only

sampling from every n configurations, or grouping configurations into bins of size n

and taking the average measurement in each bin as an independent measurement. The

choice of n in these instances is very important, as for too small an n, measurements will

still be correlated, but for too large an n, one may not have enough configurations for

a suitable number of independent measurements to be made, restricting the ability to

perform meaningful statistical analysis. Thus, calculating the so-called autocorrelation

length, is quite important, allowing for a suitable choice of n. For an example of the

investigation of autocorrelation on lattice ensembles in a spectroscopy study, and the

calculation of autocorrelation length, see Ref [24].

One can determine the statistical errors of these numerical calculations, which includes

these autocorrelation effects, using resampling techniques, examples of which are boot-

strap and jackknife resampling. In this work, jackknife resampling was used, which is

only valid on independent data. The procedure is as follows; Take a set of N measure-

ments. Perform whatever analysis is required to gain the desired result, e.g. applying

a fitting function to the obtained measurements. Obtain a result x . Now remove the

first measurement, leaving N-1 measurements. Repeat the analysis on this new set,

giving x1. Repeat this process, removing one measurement at a time and calculating xi ,

i = 1, ...,N . The statistical error is then estimated by

σ2 =
(N − 1)

N

N∑
i=1

(xi − x)2. (2.33)

Ensembles used in Chapters 4, 5 and 6 were generated using a Hybrid Monte Carlo

method [25] following the standard procedure employed by the Hadron Spectrum col-

laboration. In generating these ensembles the determinant of the Dirac operator must

be calculated repeatedly. Typically only the light and strange quarks are considered in

this calculation of the determinant, the ensembles are said to have (2+1) flavours of

dynamical quarks. The heavier quarks are omitted as their contributions are assumed to

be negligible compared to the light quark contributions. This is further motivated when

13



comparing to works that included the charm quark as a dynamical quark [26, 27] and

noting little difference in spectroscopy results to lattices with (2+1) flavours of dynam-

ical quarks. A final note about these numerical calculations is that they were performed

on anisotropic lattices. These are lattices where the spatial spacing as does not equal

the temporal spacing at . The temporal spacing is finer than the spatial one, at < as .

The finer temporal spacing is advantageous in lattice spectroscopy, it reduces cutoff

effects related to the temporal lattice spacing and allows for more precise determination

of correlations over a small time-scale. To use these lattices, the action must be split

into a spatial action and a temporal action. Details of the anisotropic action used, and

its tuning, can be found in Ref [28].
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3 Spectroscopy

In this chapter, the theory and methods for the calculation of hadron spectra will be cov-

ered. In addition, scattering theory will be reviewed, and the method used in this thesis

to relate finite-volume spectra calculated on a lattice to the infinite volume scattering

amplitudes will be discussed. In the determination of a mass spectrum, the correlation

function of an operator O is studied. As long as operators which transform irreducibly

according to the relevant symmetries are used, only states which transform similarly will

be produced, no additional eigenstates of the QCD Hamiltonian will be created. The

Euclidean 2 point correlator is given by

C (t) = 〈O(0, t)O†(0, 0)〉

=
∞∑

k=1

〈0|eHtOe−Ht |k〉〈k |O†|0〉

=
∑

k

〈0|O|k〉〈k |O†|0〉e−tEk ,

(3.1)

where in the second line, a sum over a complete basis of eigenstates has been inserted.

The final expression is the form of a spectral sum. The operator O†(0, 0) creates the

state of interest at euclidean time t = 0. This state is annihilated at time t by O(0, t).

Note that the above expression holds for infinite time extent. In the infinite time limit,

the correlator becomes dominated by the term 〈0|O|0〉〈0|O†|0〉e−tE0 . Here E0 is the

energy of the lowest state in the spectrum, known as the ground state energy. Extracting

the ground state energy from the correlator is thus quite straightforward in the infinite

time limit. On the lattice however, there is a finite time extent, meaning that terms

proportional to the energies of other states still contribute. There are also extra terms

added to the correlator, of the form e−(T−t)Ek , to account for the lattice boundary

conditions, which are also relevant. The methods used to disentangle the energies of

different states from correlators on the lattice will be outlined in this chapter, starting

with a discussion on the operators, O.

15



3.1 Hadron Operators

Constructing good operators, O, to represent states of interest on the lattice is impor-

tant. One wants to maximise the overlap an operator has on the state it represents,

and reduce noise where possible. Good operators have a definite momentum, ~P , and

transform according to the symmetries discussed in the previous chapter. Note on the

lattice, momentum is typically labelled [~d ], where P = 2π~d/L. Operators are con-

structed following the prescription described in Ref [29]. For this work, the main focus

is on mesons.

3.1.1 Meson Operators

Mesons are states consisting of a quark, anti-quark pair qQ̄, where the quark and anti-

quark are not necessarily the same flavour. Mesons are color neutral. The simplest form

of a meson operator on the lattice is given by

OM(n) = ψ̄(f1)(n)Γψ(f2)(n), (3.2)

for flavours f1, f2. Here, Γ represents a monomial of gamma matrices, the choice of which

helps determine the continuum JPC of the meson the operator represents. However,

these operators are quite limited, only giving access to spin J = 0, 1, 2, and offering

little redundancy in each JPC combination. For this reason, so-called forward-backward

gauge covariant derivatives are also included in Γ. These allow access to states with

higher angular momentum. They are given by

←→
D (n) =

←−
D (n)−

−→
D (n). (3.3)

These derivatives are normally applied to the second quark, ψ(f2). To use these on the

lattice, one must form a circular basis of cartesian-vector-like derivatives and gamma

matrices, of the form

Om=±1 = ∓ i√
2

(O1 ± iO2) ,

Om=0 = iO3,

(3.4)

which transforms like spin 1. With this basis established, operators of definite spin

can be constructed using SO(3) Clebsch-Gordan coefficients. An example of such an

operator, with one forward-backward derivative, looks like

ΓJ,M =
∑

m1,m2

〈J1,m1; J2,m2|J ,M〉ΓJ1,m1
←→
D J2,m2 . (3.5)
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This can have continuum spin J = 0, 1, 2. To gain access to higher angular momentum,

more derivatives are added. When this is done, the gauge covariant derivatives are

coupled together to a definite spin JD , before they are coupled to ΓJ,M . In this work, up

to three of these derivatives are used in a given operator, giving access up to continuum

spin J = 4. Finally, it is desirable that these operators create states at a definite

momentum. Adding this final piece, the operator for a meson with definite momentum,
~P , and spin, J , can be written as

(O†)J,M(~P ,~t) =
∑
~x

e i~P~̇x ψ̄(f1)(~x ,~t)ΓJ,Mψ(f2)(~x ,~t). (3.6)

Note, to use these operators on the lattice, one must go from the rotational symmetry

in Euclidean space-time to the lattice, reducing the symmetry of the system to that

of a cube. The labelling of states by JP is replaced by the irreducible representations

(irreps) of the cubic group Oh, as discussed in the previous section. Thus the continuum

operators must be subduced into the lattice irreps. A subduced operator into the lattice

irrep Λ is given by the equation

(O†)
[J]
Λ,λ =

∑
M

SJ,M
Λ,λ (O†)J,M , (3.7)

with λ being the row within the irrep. SJ,M
Λ,λ is known as a subduction coefficient, for

more details see [29]. Note that the subduced operator carries the label [J]. Although

it transforms within Λ, it has been shown to carry the “memory” of the continuum spin

J from which it was subduced. This becomes a very useful property when attempting

to identify lattice states with their continuum ones.

3.1.2 Meson-Meson Operators

When investigating meson-meson scattering, it is important to have operators that can

represent the resulting states. This motivates the necessity for meson-meson opera-

tors. These are formed by combining two single-meson operators, using the appropriate

Clebsch-Gordon coefficients, and summing over all allowed momenta that add to give

the desired total momentum ~P . These operators take the form

(O†)Λ,λ(~P)
∑

~ki∈(~ki )
∗

~k1+~k2=~P

∑
λ1,λ2

C (~PΛλ; ~k1Λ1λ1; ~k2Λ2λ2)O†Λ1,λ1
(~k1,~t)O†Λ2,λ2

(~k2,~t), (3.8)

where (~ki )
∗ means all momenta related to ~ki by allowed lattice rotations R . Enforcing

that ~k1 + ~k2 = ~P is the equivalent of requiring R ∈ LG (~P), where LG (~0) = Oh For
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more details on meson-meson operator construction, see Ref [30].

3.1.3 Hybrid Meson Operators

Operators can be constructed for many hadron states, from baryons to the exotic glueball

and tetraquark states. None of these are relevant for this study. However the exotic

state known as a hybrid meson is relevant. This is a state composed of the usual mesonic

quark-antiquark pair but combined with excited gluons in their structure. These excited

gluons provide extra internal degrees of freedom, allowing the hybrid mesons to exist

with exotic quantum numbers, which are quantum numbers not allowed in the quark

model for ordinary mesons. Hybrid mesons provide an insight into the strong force, and

the gluons that carry it. The simplest operators to represent hybrid mesons are those

consisting of the commutator of 2 covariant derivatives, proportional to the field-strength

tensor, O ≈ ψ̄Gµνψ. The simplest forms of these operators look like
(
π × D

[2]
J=1

)J

and(
ρ× D

[2]
J=1

)J

, where π and ρ are given by γ5 and γi respectively. Operators of this

type are used in Chapter 5. For more details on hybrid meson operators, see Refs

[31,32]

3.2 Quark Sources, Smearing and Distillation

A complete quark propagator matrix is quite large. While the Dirac operator D may

be sparse depending on the action, its inverse D−1 is not. It contains O(1012) complex

entries, being a large memory cost to store and often quite wasteful to fully compute.

Each entry of the propagator D−1 connects a so-called source point to a sink point,

referring to both the site on the lattice and the Dirac and color indices. Following the

notation used in Ref [13], the propagator takes the form

D−1(n|m0)βα0
ba0

=
∑
m,α,a

D−1(n|m)βα
ba
Sm0,α0,a0

0 (m)α
a
, (3.9)

for a given source point (m0,α0, a0). Here the so-called point sources have been intro-

duced, and are given by

Sm0,α0,a0
0 (m)α

a
= δ(m −m0)δαα0δaa0 . (3.10)

The point sources are placed at the source interpolator ŌH(m0) at position m0. The

column D−1(n|m0) then propagates to the sink operator OH(n) at position n. Now, due

to the presence of an antiquark in mesons, one might expect that a propagator in the
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opposite direction would be required. However, no such computation is necessary, thanks

to the γ5-hermicity of the Dirac operator, and therefore its inverse
(
(D−1)† = γ5D

−1γ5

)
.

This allows the backward propagator to be obtained simply by

D−1(n|m0)βα
ba

= (γ5)αα′D
−1(m0|n)α′β′

ab

(γ5)β′β. (3.11)

When performing these types of calculations, clear and strong correlator signals are

greatly desired. It has been found that the overlap of operators onto states can be

greatly improved by providing more realistic spatial wave functions, that describe the

quantum state of the system and govern the probabilities of various outcomes. So far,

only point sources have been considered. A more general meson operator located at a

spatial lattice site n0 for a fixed time slice can be written as

O(n0) =
∑
n1,n2

F (n0; n1, n2)ψ̄1(n1)ψ2(n2), (3.12)

with quark fields ψ̄1,ψ2 and a distribution function F , which combines the field values

at site n1 and n2 which are in the vicinity of n0. The sum is over all lattice sites for the

fixed time slice. Typically, a form of F using factorizable functions is used, which is of

the form

F (n0; n1, n2) = S1(n0, n1)ΓS2(n0, n2), (3.13)

where Γ is a monomial of Dirac gamma matrices and forward backward derivatives, as

discussed in the previous chapter, and Si (n0, ni ) are the quark source functions. By

defining so-called smeared fermions in terms of these smeared quark sources, given by

ψ̃2(n0) ≡
∑

n2

S2(n0, n2)ψ2(n2),

˜̄ψ1(n0) ≡
∑

n1

S2(n0, n1)ψ̄1(n1),
(3.14)

the operator simplifies down to a familiar form

O(n0) = ˜̄ψ1(n0)Γψ̃2(n0). (3.15)

The problem becomes a linear system of equations of the form DG = S , with S the

smeared source and G the propagator desired. The smearing operator is only applied in

space. If one were to use a smearing function that is not gauge-covariant, the gauge

would need to be fixed on each time slice. For this reason, gauge-covariant smeared

sources are used. A process that works well in creating these sources is Jacobi smearing,

which gives the source a shape similar to a Gaussian function. A particularly effective
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smearing operator for this process is the gaussian-smearing operator, as explained in the

literature [33]. This operator is given by

�(nα;α) =

(
1 +

α∇2

nα

)nα

, (3.16)

with α and nα being free tunable parameters and ∇2 being the three-dimensional gauge-

covariant Laplace operator. For large n, the smearing operator is eα∇
2 . The smeared

source is obtained by applying this operator to the point source S0,

S(n0) = �(n;α)S0(n0). (3.17)

The parameter α controls the width of the smearing. For the choices of α used, higher

eigenmodes of the lattice Laplace operator are strongly suppressed, with only the first

Nd contributing significantly. This leads to a technique known as distillation [34]. The

distillation operator is defined as

�(n1, n0; t) = V (n1; t)V †(n0; t), (3.18)

where V (t) is a matrix of dimension Nd × NS ×Nc . For an extended creation operator

at source and sink A(n1, n0), a correlator can be projected into Nd × Nd dimensions

giving

C (t, t ′) = Tr [ΦA(t)τ(t, t ′)ΦA(t ′)τ(t ′, t)], (3.19)

where

ΦA(t) = V †(n1; t)A(n1, n0, t)V (n0; t) (3.20)

and

τ(t, t ′) = V †(n1; t)D−1(n1, t; n0, t ′)V (n0; t ′). (3.21)

τ(t, t ′) is known as a perambulator. It connects distillation spaces on two time slices.

Using distillation, only Nd , 0 < Nd < N , solutions of the original problem are required.

The choice of how many distillation vectors one uses, Nd , affects the smearing. The

higher it is, the less smeared the sources are. The choice of Nd also affects computing

cost, and as such should be tuned appropriately for the volume being worked in. The

cost of distillation grows with spatial volume. To maintain a constant resolution in

the distillation space, the computing cost of inverting the Dirac matrix scales with the

square of the volume of the lattice, V 2.
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3.3 Computing the Spectrum

Using Eqn 3.1, one can define an effective mass as meff (t + 1/2) = ln( C(t)
C(t+1)

). Using

this, one can figure out the range of t for which C (t) is dominated by the lowest energy

state, known as the ground state. It is only at large t that the correlator is dominated

by the ground state. Using this fact, one can extract the ground state energy from the

correlator by fitting to a single exponential at large t, with the appropriate range of t

determined from an effective mass curve. However, this only holds up to t = T/2, due

to back-propogating contributions. At smaller t, many more states provide significant

contributions. In theory, one could simply fit a function in the form of a sum of K

exponentials,

C (t) =
K∑

k=1

cke
−tEk (3.22)

to the correlator to determine the first K states. However, while this method would

work in theory, as well as needing more data points than free parameters being fitted,

in practice one would require exact values of the correlator C (t), which one doesn’t

have when performing a Monte Carlo simulation, the data has statistical errors. Some

methods have been proposed to try and get past this, there has been success with

Bayesian techniques such as in Ref [35]. Typically, in spectroscopy studies, one is aiming

to determine a number of excited states, some of which can be nearly degenerate in

energy. A reliable method to determine the masses of excited states on the lattice, is

knows as the variational method, Refs [10,36,37].

3.3.1 The variational method

The central idea is to construct a matrix of correlators of the form

Cij (t, 0) = 〈Oi (0, t)O†j (0, 0)〉 =
∑

k

〈0|Oi |k〉〈k |O†j |0〉e
−Ek t , (3.23)

for a basis of N interpolating operators, all with the quantum numbers of the states

to be studied and a definite momentum. The indices i , j run from i , j = 1, ...,N , and

the parameter t0 is a free parameter, that must take a value between 0 and t. The

correlation function has a spectral decomposition,

Cij (t) =
∑
n

Z n∗
i Z n

j

2En

e−Ent (3.24)
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with operator overlaps defined as

Z n
i ≡ 〈n|O

†
i |0〉

Z n∗
i ≡ 〈0|Oi |n〉

(3.25)

Diagonalising this matrix allows one to disentangle the physical states to some degree,

finding eigenvalue behaviour to be

λn(t, t0) ∝ e−En(t−t0)(1 +O(e−∆En(t−t0))), (3.26)

where ∆En is the distance of En to nearby levels, and t0 is a free parameter known as

the metric timeslice. A better method however, starts by defining a vector v n such that

N∑
i=1

Zm
i√

2En

v n = δmn. (3.27)

This implies
N∑

j=1

Cij (t)v n
j =

N∑
m=1

N∑
j=1

Zm∗
i Zm

j

2En

v n
j e
−Ent

=
Z n∗

i√
2En

e−Ent .

(3.28)

By introducing the time t0 < t, the problem is recast as a generalised eigenvalue problem

(GEVP),

Cij (t)v n
j = λn(t, t0)Cij (t0)v n

j , (3.29)

where v n is an eigenvector of C−1(t0)C (t) with eigenvalue λn. λn is called the principal

correlator of the nth state. To actually extract the energies of the spectrum, the principal

correlator is fitted to a sum of exponentials of the form

λn(t) = (1− An)e−En(t−t0) + Ane
−E ′n(t−t0), (3.30)

with free parameters En, E ′n and An. Here mn is the energy of the state of interest,

and the other free parameters help account for contamination by excited states. The

second exponential term is not always included. In practice, a range of t0’s are fitted

and compared to ensure robustness in the extracted energies with respect to the free

parameter. The eigenvector, v n, associated with the principal correlator λn, contains the

coefficients of the linear combination of operators that best interpolates the nth state.

The overlap factor depends on this eigenvector [29], and is given by

Z n
i =

√
2EnC (t0)v n∗

i eEnt0/2 (3.31)
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Figure 3.1: Principal correlator fits for the first 4 states, n = 0, ..3, in T−1 for the B
meson. Shown is eEn(t−t0)λn(t) plotted against t/at . Darker points are included in the
fits while the lighter ones are not. More details on results discussed in Chapter 5

This overlap factor is very useful for differentiating between nearby states and for classi-

fying the state in the continuum. An example of such a principal correlator fit is shown

in Figure 3.1. This shows the fits, and corresponding energies calculated, of the first

4 states in the T−1 irrep for the B meson. The darker points were included in the fit

while the lighter ones were not, and the correlator is normalised such that it approaches

1 asymptotically.

3.3.2 Continuum state classification

First, it is important to note here how the lattice eigenstates are labelled. Rotational

symmetry is broken on the lattice due to the finite spatial cubic volume and lattice

spacing. Thus the lattice eigenstates are labelled by the irreducible representations

(irreps) of the little group LG (~P) when at non-zero momentum ~P and the cubic group

Oh when at zero momentum. Focusing on at rest states, for each parity and charge-

conjugation, there are five lattice irreps. Continuum spin J subduces into these irreps

as shown in Chapter 2, in Table 2.1.

As discussed previously, operators are constructed to have a definite continuum spin

J . Correlation functions are created using a basis of operators for each irrep. Once
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energies are calculated from the principal correlator fits, the operator overlaps, related

to the associated eigenvector, allow for the identification of the continuum spin of the

state. By examining the relative strength of the overlaps in the basis of operators for

a given state, the continuum spin of the dominant operator(s) is assigned to the state.

Notably, as shown in Table 2.1, continuum spins J ≥ 2 subduce into multiple lattice

irreps. This leads to multiple lattice irrep states corresponding to the same continuum

J state, yielding, for example, two continuum spin J = 2 states, one from the T2 lattice

irrep, and from the the E lattice irrep. Again, examining the operator overlaps allows

for clarity. If a state in T2 is of a similar mass to a state in E and they are both

dominated by operators corresponding to continuum spin J = 2, one must look closer

to determine whether they are in fact the same continuum J state. If the two lattice

states are both representing the same continuum state, one would typically find that

the dominant operators of each lattice state have a similar construction and operator

overlap. This is particularly important when comparing two nearby excited states of the

same spin, and trying to distinguish between them. Some examples of continuum spin

classification can be found in Chapter 5.

Due to the construction of the operators, as discussed at the start of this chapter, one

can determine whether a state is part of a spin multiplet. By comparing overlap of

an operator constructed to represent a spin multiplet across multiple states, one can

identify candidates for such a multiplet. These operators will typically have a similar

overlap value in each of the states that are a part of the multiplet, even though those

states span multiple lattice irreps.

Identifying hybrid mesons is also possible through the examination operator overlaps.

Hybrid meson states should be created best by operators containing gluon fields, as

discussed previously in this chapter. As such they can be identified in a given irrep,

provided hybrid meson operators have been included in the basis of that irrep. One can

even propose candidate states for hybrid supermultiplets, by comparing the hybrid op-

erator overlap on different spins, in a similar way to the identification of spin multiplets.

Examples of hybrid meson state and supermultiplet classification can be seen in Chapter

5.

This discussion has focused on single meson states at rest, but operator overlaps can

be examined in a similar way for non-zero momentum states and even multi-meson

states. In this case the dominant operator will tell you the constituent particle(s) of the

lattice state obtained. This is particularly interesting when quark annihilation is allowed,

leading to a basis of single and multi meson operators in each lattice irrep.
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There is one more thing to note about classifying states on the lattice, and that is charge-

conjugation. As discussed previously, the operator for a single meson takes the form of

a quark bilinear, ψ̄Γψ. Γ is constructed such that ΓT = ±Γ. The eigenvalue of Γ under

this transformation is denoted CΓ. If the quark and antiquark of the meson being studied

have the same flavour, then this CΓ corresponds to charge conjugation C . If the quark

and antiquark are not the same flavour but are degenerate in mass, then CΓ corresponds

to a generalisation of C , known as G -parity. However if the constituent quark and

antiquark of the meson being studied are neither the same flavour or mass degenerate,

then states created by operators with opposite CΓ can mix to form an eigenstate of the

QCD Hamiltonian. This means that, for such a case, charge-conjugation is not a good

quantum number. As the work covered in this thesis is studies of D, B , Bs and Bc ,

charge-conjugation is not a good quantum number in any of the following work and

states can only be labelled by continuum spin and parity JP .

3.4 Scattering Theory

So far, all particles in the spectra have been assumed to be stable. However many excited

hadrons are not stable, they decay to lower energy more stable hadrons quite quickly.

These hadrons are typically observed as intermediary states in a scattering process, and

as such scattering amplitudes are of great interest. These unstable intermediary states

appear as resonances in the amplitude, and identifying their masses and widths is highly

desirable. While resonances may appear as an enhancement in the scattering amplitude,

a more complete definition is that resonances are poles in the scattering amplitude that

appear when it is analytically continued to complex values of energy. To discuss how

scattering amplitudes are related to the energies determined on the lattice , first an

overview of relevant continuum scattering theory will be provided. The S-matrix encodes

an entire scattering process. The S-matrix is unitary, to ensure probability conservation,

and maps a set of in-states to out-states. In QCD, the S-matrix is symmetric, due to

time-reversal invariance. This allows for the S-matrix to be split into two parts, the

non-interacting part and interacting part, which defines the t-matrix,

S = 1 + 2i
√
ρ · t · √ρ, (3.32)

with ρ a phase space factor. It is a diagonal matrix. In this work, only 2 → 2 meson

scattering is considered, with inbound momentum pi and outbound momentum ki , as

shown in Figure 3.2.

In this case, the elements of t are functions of the Mandelstam variables [38], which are
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a1 a2

b1 b2

~p1 ~p2

~k1
~k2

Figure 3.2: A diagram of a 2-2 scattering channel, with in states ai and out states bi ,
which have momenta pi and ki respectively.

defined as
s = (p1 + p2)2,

t = (p1 − k1)2,

u = (p1 − k2)2,

(3.33)

with s + t + u =
∑4

i=1 m
2
i . Note s,t, and u are not independent. With this basis,

the entries of the phase space factor ρ can be defined ρ(s) = 2k/
√
s The energy and

momentum in the centre of momentum frame are given by

Ecm =
√
s,

k(s) =
1√
4s

√
(s − (m1 + m2)2)(s − (m1 −m2)2).

(3.34)

Each scattering channel defines a threshold energy, given by Ethr =
√
sthr = m1 + m2.

The scattering amplitude is given by elements of the t-matrix, tab(s, t), but only at

real values of s > max(s
(a)
thr , s

(b)
thr ), with (a) and (b) being the in and out states of the

scattering process. It is convenient to expand t in a basis of partial waves

tab(s, t) =
∑

l

(2l + 1)Pl (cos θ(s, t))t l
ab(s, t), (3.35)

where θ(s, t) is the scattering angle and t l
ab(s) is the partial wave amplitude of the
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channel, given by

t l
ab(s) =

1

2i

1

k

∫ 1

−1

Pl (cos θ)tab(s, t)d(cos θ). (3.36)

This expansion is useful as for spinless scattering state, intermediate states with spin J

contribute to only a single partial wave. For states with spin, partial waves and spins can

mix, leaving only the overall angular momentum of the state conserved. The presence

of a composite particle with angular momentum ` is indicated by a pole singularity in

the partial-wave amplitude, of the form rab

m2
r−s

. In the energy region of the mass of the

particle s ≈ mr , the amplitude is dominated by this term. The residue can be factorized

as rab = gagb giving couplings ga, gb to scattering channels, as shown in Ref [39]. More

discussion on poles in scattering amplitudes will be given in Chapter 4.

3.4.1 Parameterising the t-matrix

When parameterising the t-matrix, it is important to consider any constraints on its

properties. An important constraint is enforced by the unitarity of the S-matrix, giving

the condition

t− t† = 2itρt†. (3.37)

For pseudoscalar-pseudoscalar scattering the t-matrix is block diagonal, due to the ab-

sence of coupling between partial waves in the continuum. In the following work, only

elastic scattering is considered, which means the t-matrix is in fact diagonal. The

parameterisation

t`(s) = e iδ` sin(δ`)/ρ, (3.38)

is suitable for partial wave ` with phase shift δ` and phase space factor ρ = 2k/
√
s.

This fixes the imaginary part of the scattering amplitude to Im[t l ] = −1/ρ and the real

part to Re[t l = 1/(ρ cot δ`).

Effective Range

One common parameterisation of the scattering amplitude is obtained by Taylor ex-

panding the expression k` cot δ` for the partial wave ` = 0, giving

k cot δ =
1

a
+

1

2
r0k

2 + P2k
4 +O(k6), (3.39)

which characterizes the scattering by a series of constants with a and r0 being the

scattering length and effective range. Truncating this expression to the first two terms

is the effective range parameterisation. To treat higher partial waves, it is important to
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build the correct threshold behaviour into the expression. In scattering, as momentum

p → 0, the wave function behaves ≈ p2`+1 [40]. It follows that near-threshold, (t`)2 ≈
(k`)2. Thus the general expression for the effective range parameterisation is given by

k2`+1 cot δ` =
1

a`
+

1

2
r`k

2 +O(k4). (3.40)

Note, the threshold behaviour (t`)2 ≈ (k`)2 is incorporated into all parameterisations

of the t-matrix used in this work.

Breit-Wigner

For amplitudes with isolated resonances, the relativistic Breit-Wigner is often used. It

is obtained by parameterising the phase shift as

δl = arctan

(√
sΓ`(s)

m2
r − s

)
(3.41)

withmR being the so-called "Breit-Wigner mass" identified as the mass of the resonance,

and Γ` being the width. With this phase shift, the scattering amplitude becomes

t(`)(s) =
1

ρ(s)

√
sΓ`(s)

m2
R − s − i

√
sΓ`(s)

, (3.42)

where the width is given by

Γ`(s) =
g 2

R

6π

k2`+1

s m
2(`−1)
R

, (3.43)

with gR a coupling constant. This form for the width ensures the correct near-threshold

behaviour.

K -matrix formalism

The parameterisation used most often in this work is the K -matrix formalism. This

arises from rewriting the unitarity condition as

(
t†
)−1 − t−1 = 2iρ. (3.44)

A parameterisation that fulfils this condition is

t−1 = K−1 − iρ,

t = K (1− iρK )−1.
(3.45)
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K is a matrix comprised of functions of s that are real for real values of s. A variety of

K -matrix parameterisation forms can be used, any polynomials in s satisfy the unitarity

condition, as long as any poles included are of the form r
m2

r−s
. To include the correct

near-threshold behaviour in this formalism, the parameterisation is written as

(t(`))−1(s) =
1

(2k)`
K−1(s)

1

(2k)`
+ I (s) , (3.46)

for a partial wave ` with phase factor I (s). The factors (2k)−` ensure the expected

threshold behaviour. Unitarity of the S-matrix is guaranteed if Im I (s) = −ρ(s) above

threshold and zero below. This places no constraint on Re I (s). One choice is to

set Re I (s) to zero, giving I (s) = −iρ(s). Another option is the Chew-Mandelstam

prescription [41], which uses the known ImI (s) to determine ReI (s) through a dispersion

relation. This has a better analytic structure, and the dispersion relation, which is an

integral, is made finite by a subtraction at an arbitrary point. A general form of K -matrix

parameterisations is,

K (s) =

(
g (0) + g (1)s

)2

m2 − s
+ γ(0) + γ(1)s , (3.47)

where g (n), γ(n) and m are real free parameters that are fitted as described previously.

Various parameters can be set to zero for different fits. When a pole parameter is

used, the Chew-Mandelstam phase is subtracted at the pole, s = m2. Another form of

K-matrix parameterisation used is a ratio of polynomials

K−1(s) =

∑N
n=0 cns

n

1 +
∑M

m=1 dmsm
, (3.48)

where cn and dn are real free parameters. Although several low-order truncations of Eqn

3.48 are similar to the previous form of K-matrix in Eq 3.47, the parameter correlations

can differ quite significantly and as such it is important to fit samples of both forms.

When using this form of parameterisation, the Chew-Mandelstam phase is subtracted

at threshold, s = (m1 + m2)2.

3.4.2 From finite volume spectra to infinite volume scattering

amplitudes

The spectrum calculated in a finite volume is discrete. Meanwhile, in reality, the spec-

tra of particles is continuous in an infinite volume, due to the continuous momentum

that particles have. To map between the finite-volume spectra obtained and the infi-
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nite volume scattering amplitudes, the Lüscher quantisation condition [42–44] and its

extensions [45–53] are used. The form used in this work is given by

det [1 + iρ(s) · t(s) · (1 + iM(s, L))] = 0, (3.49)

where t(s) is the infinite volume t-matrix which was defined above in equation 3.32.

M(s, L) is a volume-dependent matrix of known energy functions. Its indices are the

angular momenta J ,M , J ′,M ′. As such, a cutoff must be made at some maximal orbital

angular momentum. It should be noted that Eqn 3.49 holds up to exponential finite-

volume corrections. The solutions of the Lüscher quantisation condition for a given t(s)

is the specific finite-volume spectrum for that parameterisation. It should be noted that

while this approach uses finite-volume symmetry breaking, it assumes that the symmetry

breaking due to finite lattice spacing is negligible. With Eqn 3.49, the procedure for a

lattice scattering calculation can finally be established. One first follows the previous

sections to compute the finite-volume spectrum using suitable operators to represent

the states interested in. Then, one must suitably parameterise the t-matrix (discussed in

section 3.4.1). With this, for a given set of input parameters, the solution of the Lüscher

quantisation condition is a specific-finite volume spectrum. Through a fitting procedure,

these input parameters can be tuned until the output matches the previously calculated

finite-volume spectrum, thus obtaining the parameters of the t-matrix representing the

scattering amplitude. The application of this method, and results obtained from this

procedure will be discussed in more detail in Chapters 4 and 6.
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4 Isospin 1/2 Dπ scattering

In this chapter, the determination of isospin-1/2 Dπ scattering amplitudes is described.

The calculation is relevant due to the long-standing puzzle that emerged with the ex-

perimental observation of the charm-light D∗0 and the charm-strange D∗s0 mesons. In

the quark model, both meson are states with JP = 0+, with P-wave qq̄ construction.

A mass difference arises due to the different quark content of the two mesons. Sur-

prisingly, the two hadrons were found experimentally to be of similar mass with very

different widths, the D∗0 being very broad compared to the narrow D∗s0 [54–56]. This

work, following the methodology outlined in Chapter 3, made a robust determination of

the isospin-1/2 Dπ scattering and offers a possible resolution to the puzzle.

This work was carried out on a single lattice of dimensions (L/as)3×(T/at) = 323×256

with a periodic boundary condition in space and an antiperiodic boundary condition in

time for the quark fields. An anisotropic lattice is used with at � as . The anisotropy

is given by ξ ≡ as/at ≈ 3.5. An unphysical pion mass of 239 MeV is used in this study.

The D∗0 was studied previously with HadSpec formalism at mπ = 391 MeV [2]. Studies

of the D∗s0 exist for both pion masses, which included coupled-channel analysis [3]. Thus

this work completes a series of studies, allowing for an investigation of the dependence

of the results on the light quark mass. The energy scale was determined by demanding

that the calculated Ω baryon mass obtained on the lattice corresponds to the physical

value, giving a−1
t = 6.079 GeV. This corresponds to as = 0.11 fm, giving a physical

spatial lattice volume of (3.6 fm)3 [57]. The strange quark in this study was tuned to

approximate its physical value while the light quark mass is heavier than physical, such

that mπ = 239 MeV. The charm-quark is calculated with the same tadpole-improved

Wilson clover action as the strange and light quarks. The charm quark was tuned to

reproduce the ηc mass and pion anisotropy in the pseudoscalar dispersion relation, which

were previously determined in Refs [32, 58]. These parameters are used in this study.

In Table 4.1 the relevant masses and thresholds for this calculation are listed.
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atm
π 0.03928(18) [59]
K 0.08344(7) [59]
η 0.09299(56) [59]
D 0.30923(11) [58]
Ds 0.32356(12) [3]
D∗ 0.33058(24) [3]
Ω 0.2751(6) [57]

atEthreshold

Dπ 0.34851(21)
Dππ 0.38779(27)
Dη 0.40222(57)
DsK̄ 0.40700(14)
D∗ππ 0.40914(35)

Table 4.1: A summary of the stable meson masses and kinematic thresholds relevant
for this calculation. Masses were determined previously through dispersion relations.

4.1 Finite Volume Spectra

To calculate the finite volume spectra, the variational method is employed, as detailed

in Chapter 3. The operators used include quark bilinears of the form ψ̄ΓD...ψ, where as

discussed in Chapter 2, Γ represents a monomial of γ-matrices, D is a gauge-covariant

derivative and the ”...” indicates that up to 3 derivatives are used. Including derivatives

allows for the construction of operators with higher angular momenta than can be

obtained using only γ-matrices. The operator bases also include meson-meson-like

operators of the form
∑

~p1+ ~p2=~P C(~p1, ~p2)Ω†M1
(~p1)Ω†M2

(~p2), where Ω†Mi
(~pi ) interpolates

mesonMi with lattice momenta ~pi . These operators are constructed for each momentum

from eigenvectors vn that were determined in variational analyses of π, K , η, D, Ds and

D? mesons [30,60].

Several constructions representing a ”single-meson” were used in each irrep, and the non-

interacting energies were used to decide which ”meson-meson”-like operators were used.

The non-interacting energy of a meson-meson state is given by E =
√
m2

1 + |p1|2 +√
m2

2 + |p2|2, for mesons 1 and 2. All meson-meson operators expected to produce

a level in the energy region below the Dππ threshold were used in this study. Extra

operators that should only produce levels above Dππ threshold were also included, to

ensure an accurate spectrum was obtained.

These operators were projected into the irreps of the cubic group Oh when at rest, and

into the little group LG (~P) when at non-zero momentum ~P . In this sector, mesons

are not a eigenstates of charge conjugation, as discussed in Chapter 3. Thus states are

labelled by their continuum JP . The subduction of continuum JP into relevant lattice

irreps, and which partial waves of Dπ and D∗π these correspond to, are shown in Table

4.2.
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~P
Irrep JP (~P = ~0) Dπ 2S+1`J D∗π 2S+1`J

Λ |λ|(η̃) (~P 6= ~0)

[000]
A+

1 0+, 4+ 1S0 ...
T−1 1−, 3− 1P1 ...
E+ 2+, 4+ 1D2 ...

[n00]
A1 0(+), 1(−), 2(+), 4 1S0, 1P1, 1D2 ...
E2 1, 2, 3 1P1, 1D2

3S1

[nn0]
A1 0(+), 1(−), 2, 4 1S0, 1P1, 1D2 ...

B2, B2 1, 3 1P1, 1D2
3S1

[nnn] A1 0(+), 1(−), 2(+), 3 1S0, 1P1, 1D2 ...

Table 4.2: The lowest Dπ (and similarly Dη and DsK̄ ) and D∗π continuum JP and
helicity λ that subduce in each of the irreps with η̃ = P(−1)J . ~P corresponds to the
momentum with n ∈ N, while ` represents the partial wave. Only the partial wave
contributions listed are considered in the study.

Using this operator basis, principal correlators were computed in each irrep, and were

fitted, as described in Chapter 3. For each irrep, a range of t0 was considered. The

correlators were compared across t0 to ensure consistency, and a suitable choice of t0

was made for each irrep. Shown in Figure 4.1 is the principal correlator fits of the first

4 states obtained in the [110]A1 irrep are shown. eEn(t−t0)λn(t) is plotted against t/at ,

such that the correlators converge to 1. Darker points are included in the fits while the

lighter points are not. In general a good signal is observed, that is stable with respect

to variation of t0 and with reasonable χ2/Nd .o.f .

Using the relevant states, dispersion relations were computed. Here the fitted anisotropy

is not just a consistency test, it is quite important both in the conversion of our

spectra to rest frame energy, Ecm, and in the scattering analysis performed. The

anisotropy obtained from the pion dispersion relation is ξπ = 3.453(6) and from the

D is ξD = 3.443(7). ξ = ξπ was used to obtain scattering amplitudes but the system-

atic uncertainty takes both into account.
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Figure 4.1: Principal correlator fits for the first 4 states, n = 0, ..3, in [110]A1. Shown
is eEn(t−t0)λn(t) plotted against t/at . Darker points are included in the fits while the
lighter ones are not.

The finite volume spectra obtained from the principal correlator fits for the at-rest irreps

is shown in Figure 4.2 and the spectra of the moving frame irreps is shown in Figure

4.3. Energy levels used in the scattering amplitude analyses are shown in black, while

other energy levels obtained but not used are shown in grey. Various energy cutoffs

were trialed before the Dππ threshold was chosen to be the cutoff for the rest of the

analysis.

The Dπ S-wave (` = 0) only subduces into [000]A+
1 in the at-rest irreps. The Dπ

P-wave (` = 1) subduces into [000]T−1 , while the lowest contribution for [000]E+ is

the Dπ D-wave (` = 2), as summarised in Table 4.2. [000]E+ will not be used in any

of the fits as the effects of all partial waves with ` ≥ 2 were found to be negligible.

The moving-frame irreps are shown in Figure 4.3. The Dπ S-wave subduces into the

top four of these, which are [100]A1, [110]A1, [111]A1 and [200]A1. The lower three,

[100]E2, [110]B1 and [110]B2 predominantly contain the Dπ P-wave close to threshold

and the D∗π S-wave at slightly higher energies.
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Figure 4.2: Finite-volume spectra obtained in the at-rest [000]A+
1 , [000]E+ and

[000]T−1 irreps. Dotted lines correspond to channel thresholds. Solid lines indicate non-
interacting energy levels corresponding to operators included in the simulation. Points
with error bars represent the energy levels obtained from the variational analysis. Black
points will be included in the subsequent scattering analysis while grey points will be
excluded.

All irreps that have an ` = 1 contribution have a level far below threshold which may be

associated with a deeply bound vector state. In all irreps with an ` = 0 contribution a

level around Dπ threshold is present, that is shifted downward with respect to the nearby

non-interacting level. A possible extra level also appears at around atEcm = 0.37 and

an upward shift of higher-up energy levels with respect to their non-interacting energies

is observed. This indicates non-trivial S-wave interactions. In comparison, irreps having

` = 1 as the lowest partial wave contribution show levels which are only marginally

shifted away from the nearby non-interacting energies.
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Figure 4.3: As in Figure 4.2, but for the moving-frame [100]A1, [110]A1, [111]A1,
[200]A1 irreps (top) and [100]E2, [110]B1 and [110]B2 irreps (bottom). The dash-
dotted curves indicate an operator corresponding to a non-interacting level that was not
included in the basis.
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4.1.1 Operator Basis Variation

Figure 4.4 shows how the spectrum obtained for [000]A+
1 varies when different operators

are included in its basis. The grey blocks show the 1σ uncertainties of the energies

obtained from the principal correlator fits. The histograms plotted next to each energy

represent the components of the eigenvector, normalised to their maximum contribution

seen in any state. The solid curves indicate the non-interacting energies. It is clear

from the plot, that neither the Dπ-like or the qq̄-like operators alone are enough to

fully compute the spectrum up to the cutoff (Dππ threshold). Using only the Dπ-like

operator gives three levels of the spectrum, whereas using only the qq̄-like operator gives

a single level. Clearly these two operators are necessary to get an accurate description

of the spectrum up to the Dπ threshold. Adding the Dη-like and the DsK̄ -like operators

does not affect the spectrum below the Dπ threshold, but more levels are found above

it, specifically near the non-interacting levels for D[000]η[000] and Ds [000]K̄ [000].

0.35

0.36

0.37

0.38

0.39

0.40

0.41

Figure 4.4: The spectra obtained in [000]A+
1 when varying the operator basis. The

operators included are marked below each column. The grey blocks show the 1σ un-
certainties of the energies obtained from variational method. The histograms plotted
next to each energy represent the operator overlaps, normalised to their maximum con-
tribution seen in any state. The solid curves indicate the non-interacting energies. The
lowest two energies from the column marked “all” corresponds to the levels used in the
scattering analyses.
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4.2 Scattering Analysis

The finite volume spectra calculated above are used to constrain the infinite volume

scattering amplitudes through the Lüscher determinant condition as described in Chapter

3. The Dπ S-wave contribution (` = 0) is the most interesting as non-trivial S-wave

interactions are suspected from the finite volume spectra shown above. The Dπ P-wave

and the D∗π S- wave contributions are also investigated.

At rest, the only irrep with S-wave contributions is [000]A+
1 . Below cutoff, there are only

two states found in this irrep. Thus to constrain a scattering amplitude with more than

two parameters, it is necessary to include moving-frame irreps, and therefore one must

also consider P-wave contributions. For non-zero momentum, the A1 irreps contain

JP = 0+, 1−, 2+ Dπ contributions, thus these partial waves must be considered. Across

the moving-frame A1 irreps, the lowest D∗π contribution is P-wave, while the lowest

non-interacting D∗π level is in [110]A1 and lies well above the Dππ threshold. Thus

one scattering analysis will be of the Dπ S- wave and P-wave, using the [000]A+
1 ,

[000]T−1 and moving frame A1 irreps. For the other moving frames, namely [100]E2 and

[110]B1,B2, the leading partial wave is the Dπ P − wave. However these irreps also

include a D∗π contribution with JP = 1+, and the lowest non-interacting level above Dπ

threshold is D∗[100]π[000], meaning that D∗π must be included in the t-matrix when using

these irreps. Therefore a second scattering analysis is performed, using the [000]T−1 ,

[100]E2, and [110]B1,B2 irreps, to constrain the Dπ P-wave, and assess the significance

of the D∗π S-wave. To show that contributions with ` ≥ 2 are negligible, the [000]E+

irrep was considered, which has Dπ D-wave (` = 2) as its lowest contribution. Only

one state is found below the Dππ threshold. This state is found to be consistent

with the lowest non-interacting level, D[100]π[100], at atEcm = 0.38333 ± 0.00049.

Using the Lüscher method, this is found to correspond to a D-wave phase shift of

δ2 = (0.49 ± 1.29)◦, which is consistent with zero. This allows the conclusion that

the Dπ D-wave contribution is negligible, and due to the k2l+1 suppression factor at

threshold, this allows the same conclusion for higher ` contributions.

4.2.1 Dπ with JP = 0+ and JP = 1−

The S and P-wave amplitudes were determined simultaneously using energy levels below

atE = atmD + 2atmπ from the [000]A+
1 , [000]T−1 , and the four moving-frame A1 irreps.

As discussed in Chapter 3, a choice of parameterisation of the t-matrix is required.

To avoid bias and explore the sensitivity of the amplitude, a range of parameterisation

choices are fitted. First, a “reference” amplitude was fitted, which consisted of the form
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K0 =
g 2

m2 − s
+ γ,

K1 =
g 2

1

m2
1 − s

.

(4.1)

The S-wave is a K -matrix with a pole term and a constant γ, while a P-wave with just

a pole term was chosen. Both have a Chew-Mandelstam phase subtracted at the pole

parameter in each partial wave. The following parameters were obtained

m = (0.401± 0.010± 0.007) · a−1
t

g = (0.419± 0.083± 0.066) · a−1
t

γ = (−2.0± 1.3± 0.9)

m1 = (0.33018± 0.00016± 0.00002) · a−1
t

g1 = (0.63± 0.51± 0.30)



1.00 0.93 −0.62 0.23 −0.10

1.00 −0.85 0.17 0.05

1.00 −0.08 −0.30

1.00 −0.10

1.00



χ2/Ndof = 13.49
20−5

= 0.90 (4.2)

where the parameters with a subscript “1” describe the P-wave, and those without

describe the S-wave. The first uncertainty on each parameter is from the χ2 minimum.

The second uncertainty is obtained by performing many minimisations, after varying the

π, D, and D∗ masses and anisotropies. The masses were each varied to their maximum

and minimum values within their 1σ uncertainties. The anisotropy was varied between

ξπ + δξπ and ξD − δξD . The maximum deviation obtained from the result obtained by

these variations is the figure quoted as the second uncertainty. This is the procedure

used for all minima that have multiple errors quoted. Other systematic errors due to

the use of a single volume and single lattice spacing were beyond the scope of this

study. The matrix beside the parameters is a measure of the correlation between free

parameters in the χ2 minimisation fit. It is a symmetric matrix with the lower triangular

block not written. All results of t-matrix parameterisation fits will have a matrix of this

kind presented.

The spectra obtained from this reference parameterisation are plotted in Figures 4.5 and

4.6, with the solutions of the Lüscher condition, Eq. 3.49. The levels below atE ≈ 0.39

are in good agreement with the solutions of the Lüscher condition.

The phase shift of both the Dπ S-wave and P-wave is plotted in Figure 4.7. The S-wave

amplitude starts rising monotonically at threshold until the edge of the elastic region.

This causes significant energy shifts in the finite volume.
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Figure 4.5: Finite-volume spectra obtained in the at-rest A+
1 and T−1 irreps, as in

Fig. 4.2. This is plotted with the solutions of the Lüscher determinant condition using
the reference parametrisation with the parameters resulting from the χ2-minimisation,
represented by orange points.
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Figure 4.6: As Fig. 4.5, but for the moving frame A1 irreps.
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Figure 4.7: Phase shifts of the S-wave (red) and P-wave (blue) amplitudes. The
inner line corresponds to the reference parameterisation. The inner dark error band
represents the statistical error from the χ2-minimisation while the outer light error band
additionally includes uncertainties from varying the input hadron masses and anisotropy
within 1σ.

A full list of parameterisations and values obtained can be found in the appendix, in

Tables A1.3 and A1.4. The fits given in Table A1.3 exclude the deeply bound level which

can be seen in the moving frame irreps and only a constant K -matrix in P-wave is used.

The fits listed in Table A1.4 use the same spectra as used for the reference amplitude.

In the region above threshold, all of the P-wave amplitudes produced phase shifts that

are approximately zero. The amplitudes in Tables A1.3 and A1.4 are very similar at real

energies. However, when continued to complex energies, there is a difference which will

be discussed in the next section. But first, a selection of parameterisation variations will

be further examined.

As discussed in Chapter 3, two common choices of parameterisation for single-channel

elastic scattering are the effective range parametrisation and the relativistic Breit-

Wigner. The Breit-Wigner fit gave the following parameter values

mR = (0.3913± 0.0041± 0.0014) · a−1
t

gR = (5.39± 0.45± 0.11)

m1 = (0.33014± 0.00016± 0.00003) · a−1
t

g1 = (0.3± 1.3± 0)


1.00 0.92 0.26 −0.03

1.00 0.17 −0.04

1.00 −0.01

1.00



χ2/Ndof = 14.63/(20− 4) = 0.91 (4.3)
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where the subscript “1” indicates the P-wave parameters, and the others are S-wave.

The fit of the effective range parametrisation yielded

a0 = (21.9± 1.9± 0.5) · at

r0 = (−22.1± 4.3± 1.6) · at

m1 = (0.33013± 0.00016± 0.00003) · a−1
t

g1 = (0.2± 1.1± 0.5)


1.00 0.90 0.09 −0.25

1.00 0.21 −0.23

1.00 −0.08

1.00



χ2/Ndof = 14.81/(20− 4) = 0.93 . (4.4)

It is worth mentioning that as well as the various t-matrix parameterisations discussed in

Section 3.4.1, one other type was utilised in this study. The final type of parameterisation

used is a unitarised chiral amplitude. A simple K -matrix form was used that can be

written as

K−1(s) =

(
− 1

16π
VJ=0

)−1

+
α(µ)

π
+

1

π

(
2m2

m1 + m2
log

m2

m1
+ log

m2
1

µ2

)
. (4.5)

where

VJ=0 =
C0

8sF 2

(
3s2 − 2s(m2

D + m2
π)− (m2

D −m2
π)2
)

(4.6)

is the leading-order elastic Dπ scattering amplitude projected onto the S-wave. F and

α(µ) are free parameters that are determined in the fit. The renormalisation scale µmust

be fixed. For this study, this was fixed to atµ = 0.1645 corresponding to µ ≈ 1000MeV.

For the uχPT amplitude the parameters obtained were

F = (0.0191± 0.0016± 0.0002) · a−1
t

α(µ) = (−1.92± 0.25± 0.14)

m1 = (0.33020± 0.00016± 0.00003) · a−1
t

g1 = (0.76± 0.39± 0.11)


1.00 −0.99 −0.18 0.30

1.00 0.21 −0.28

1.00 −0.12

1.00



χ2/Ndof = 13.78/(20− 4) = 0.86 . (4.7)

4.2.2 Dπ with JP = 1− and D?π with JP = 1+

A fit of the Dπ P-wave and D?π S-wave was also computed in this study. This fit

used the [000]T−1 , [100]E2, [110]B1 and [110]B2 irreps. These irreps do not have a

Dπ S-wave contribution. However the moving frame irreps do contain a D∗π S-wave
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contribution (JP = 1+). A K -matrix parametrisation was used with a pole term in

` = 1 Dπ and a constant in ` = 0 D∗π. The following parameters were obtained

γD∗π = (1.35± 0.83± 0.45)

gDπ
1 = (0.72± 0.31± 0.13)

m1 = (0.33028± 0.00052± 0.00005) · a−1
t


1.00 −0.72 −0.41

1.00 0.34

1.00



χ2/Ndof = 8.59
11−3

= 1.07 , (4.8)

with the uncertainties obtained as described previously for the Dπ with JP = 0+ and

JP = 1− fits.

A phase shift for Dπ P-wave and D?π S-wave was determined using the above param-

eterisation. A plot of these phase shifts is shown in Figure 4.8. The elastic Dπ P-wave

is small, but the parameters are non zero within uncertainties. The D?π contribution

rises at threshold, perhaps indicating the tail of a higher D1 resonance.
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Figure 4.8: The phase shift for the Dπ P-wave (blue) and D∗π S-wave (orange)
amplitude. The inner band corresponds to the statistical uncertainties from the χ2-
minimum in Eq. 4.8. The outer band shows the maximum possible deviation when
varying the scattering particle masses and anisotropy within their uncertainties.
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4.3 Pole Analysis

By analytically continuing amplitudes to complex s = E 2
cm, one can find differences

between amplitudes that seem very similar at real energies. However, although they can

differ, if a pole is present in the channel, it is often found in all parameterisations. This

gives a way to compare the different parameterisations with each other and even with

experiment.

The presence and position of poles allow for the determination of bound states and

resonances in the amplitude. Near the pole, the t-matrix becomes dominated by a term

of the form r
s0−s

, where r is the residue of the pole and s0 is the pole position. c =
√
r

is used as a measure of the coupling of the pole to the scattering channel.

The amplitudes used are analytic in s, except for cuts that appear due to the momentum

k(s) being a square root, and poles. The s-channel cut leads to a multi-sheeted complex

s plane, where each contributing channel doubles the number of sheets. In this analysis

we only consider a single channel, as Dπ is the only relevant meson-meson threshold in

JP = 0+. This leads to two Riemann sheets, known as the physical (Im[k] > 0) and

unphysical (Im[k] < 0) sheets. Any complex pole on the physical sheet would violate

causality and as such all complex poles only appear on the unphysical sheet. These

correspond to resonances and appear as complex conjugate pairs. The complex energies

at which resonances are found are given by,
√
s0 = m− iΓ/2 where m is the resonance

mass and Γ is the width. Bound states correspond to poles on the physical sheet that

appear below threshold on the real axis. Typically the further away a bound state is

from threshold, the less effect it has on the amplitude above threshold. A bound state

near threshold can significantly affect the behaviour just above threshold.

4.3.1 S-wave pole

The reference amplitude, Eq. 4.2, has an S-wave pole on the unphysical sheet at at
√
s0 =

(0.3592 ± 0.0036) − i
2
(0.0512 ± 0.0095). A pole was found in all parameterisations,

shown in Figure 4.9, where the notable parameterisations have been marked with black

shapes.

Two clusters of poles were found for the S-wave, one with at Im
√
s0 ≈ −0.03, and

one slightly deeper in the complex plane with at Im
√
s0 ≈ −0.04. Where the pole

is found depends on the number of free parameters that are in the choice of S-wave

paramaterisation. The nearer cluster corresponds to three-parameter S-wave amplitudes,

and the deeper cluster arises from amplitudes with only two free parameters. Thus the
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pole appears to shift upwards with extra free parameters. A four-parameter fit with

a linear term γ(1)ŝ was also tried (amplitude (f)). It resulted in a slighter shift than

observed going from two to three free parameters,with a pole found near the two clusters

previously found. However the four parameter fit resulted in an amplitude with two poles,

an additional one appearing around atm ≈ 0.29, far below threshold. The χ2/Ndof is

higher for this parameterisation, possibly suggesting that there is too much freedom.

Two, three and four-parameter S-wave fits are compared in Table 4.3.

amp atm atg γ(0) γ(1) χ2

Ndof
Re(at

√
s0) -2Im(at

√
s0) at |c |

(a) 0.3916(42) 0.313(22) - - 0.90 0.3590(80) 0.0797(83) 0.381(33)
ref. 0.4011(98) 0.419(83) -2.0(13) - 0.90 0.3592(35) 0.0512(95) 0.257(33)
(f) 0.4222(92) 0.789(57) -8.6(16) -14.7(87) 0.94 0.3638(35) 0.0465(74) 0.218(27)

Table 4.3: The result of varying the number of free parameters in the S-wave amplitude
with a two-parameter P-wave as used in Eq. 4.2. “ref.” indicates the reference amplitude,
Eq. 4.2. The final amplitude (f) results in a parameterisation that produces two poles,
one of them around atm ≈ 0.29, far below threshold.
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Figure 4.9: Poles on the complex energy plane (left) and couplings (right). The
black filled circle corresponds to the reference amplitude. Other amplitudes discussed
in the text are shown with different markers (see key). The coloured data points in
both panels show the spread of poles (couplings) produced by the complete set of
parameterisation variations (see tables A1.3 and A1.4). Orange crosshairs correspond
to three-parameter S-wave amplitudes, blue crosshairs to two-parameter ones. The
dotted rectangle encompasses the entire spread of the parameterisations including their
statistical uncertainties but excluding variations of mass or anisotropy for amplitudes
other than the reference parameterisation.
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Looking at Figure 4.9, it is clear that only using one paramaterisation, or even one type

of paramaterisation can not give a reliable estimate of the pole and its uncertainties. A

final value that corresponds to the box around all the poles in Figure 4.9 is,

at

√
s0 = (0.361± 0.011)− i

2
(0.070± 0.037)

atc = (0.32± 0.13) exp iπ(−0.59± 0.41)
(4.9)

In physical units fixed by the Ω baryon mass this corresponds to

√
s0/MeV = (2196± 64)− i

2
(425± 224)

c/MeV = (1916± 776) exp iπ(−0.59± 0.41) .
(4.10)

No additional poles were found consistently in the S-wave.

4.3.2 P-wave pole

For all parameterisations that include a pole term for the P-wave and include the lowest

JP = 1− states, a very deeply-bound pole was found, with

at

√
s0 = 0.3301± 0.0012 (4.11)

which in physical units this corresponds to

√
s0 = 2006.9± 7.4 /MeV. (4.12)

While a coupling can be extracted for this pole, the uncertainties are very large. The Dπ

P-wave is largely unaffected by the presence of this pole, and can be approximated well

by a constant K-matrix parameterisation. The mass found is consistent with the deeply

bound state seen in irreps where JP = 1− appears. The deeply bound finite-volume level

can be found at a consistent energy when only qq̄ operators are used, suggesting very

little dependence on the Dπ operators. If the pion mass was close to physical, this would

become a shallow bound state due to the lowering of the Dπ threshold, resembling the

experimental D∗.
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4.4 Outlook

To gain an understanding of the significance of the results presented above, it is useful

to compare to the previous study of Dπ scattering at the heavier pion mass of mπ =

391 MeV [2]. Context for this will then be provided by comparing the experimentally

found D∗0 and D∗s0 to those found on the lattice, in this study and others.

4.4.1 Dependence on mπ

In Ref [2], Dπ scattering was studied at a pion mass of mπ = 391 MeV, on three different

volumes. In Figure 4.10, the reference scattering amplitude found at each pion mass is

plotted in the left panel, with mπ = 239 MeV in red and mπ = 391 MeV in blue. The

right panel shows the pole positions found for each study, with the error taking into

account parameterisation variations, as well as the magnitude of the pole coupling to

the Dπ channel. For mπ = 391 MeV, a near-threshold bound state was found, with

the amplitude turning on rapidly at threshold. With a resonance found for a closer to

physical pion mass, this suggests that the dependence of the D∗0 on the pion mass is

less than that of the Dπ threshold.

It is also informative to examine the k cot δ0 of each scattering amplitude, plotted

against k2. This is shown in Figure 4.11. Again, mπ = 239 MeV is plotted in red

and mπ = 391 MeV in blue. For a bound state, the mass can be extracted at the

intersection the amplitude and a −|k | curve, as the mass of a bound state is given by

mb =
√
sthr − |k |2 for |k | such that k cot δ0 = −|k |. This is seen in Figure 4.11, as the

blue curve corresponding to mπ = 239 MeV intersects the dotted −|k | curve, while the

red curve does not.

Interestingly, a similar phenomenon was found in a study of ππ scattering in Ref [61].

Here, a σ-like pole was found at the same masses, with a near-threshold bound state

at the higher mass that evolves into a resonance pole at the lower mass. A very similar

k cot δ0 plot is produced in Figure 4 of Ref [61] to Figure 4.11 in this study.
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Figure 4.10: The left panel shows the reference scattering amplitude at mπ = 239 MeV
(red) and 391 MeV (blue) plotted as ρ2|t|2 with the energies that were used to con-
strain them shown below. The upper right panel shows the pole positions including the
additional uncertainty found from the variation over parameterisation. The pole at the
lower pion mass is a resonance found on the unphysical sheet, and at the higher pion
mass is a bound state found on the physical sheet. The lower right panel shows the
magnitudes of pole couplings to the Dπ channel.
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Figure 4.11: The scattering amplitudes at mπ = 239 and 391 MeV plotted as k cot δ
as a function of k2. Red shows the mπ = 239 MeV amplitude and the mπ = 391
MeV amplitude is shown in blue. The points shown come from using the finite volume
energies individually in the Lüscher determinant condition. The bound state mass at
mπ = 391 MeV can be read off from the intersection of the blue curve with the dotted
−|k | curve at negative k2.
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4.4.2 The D∗0 in experiment

Experimentally, the D∗0 cannot be created in isolation. Because of this, it is typically

studied as part of a decay chain. Various experiments have identified the D∗0 as an

intermediary state of B meson decays. The first observation of the D∗0 was by Belle,

in a Dalitz plot analysis of the B− → D+π−π− decay [54]. The amplitude they fitted

contained a Breit-Wigner parameterisation for the D∗0 . They found the mass of the

D∗0 to be mD∗0
= 2308± 17± 15± 28 MeV. The same decay process was analysed by

BaBar [55], who found mD∗0
= (2297 ± 8 ± 5 ± 19) MeV. A more recent study that

included the D∗0 was by LHCb of the B0 → D̄0π
+π− decay [56], using methods including

partial waves up to ` = 4, and using the K -matrix formalism to model π+π−. They

found mD∗0
= (2354 ± 7 ± 11 ± 2) MeV. The experimental average mass reported by

the Particle Data Group (PDG) is mD∗0
= (2343 ± 10) MeV with a width of ΓD∗0

=

(229± 16) MeV [7].

All of the studies above use a relativistic Breit-Wigner to model the D∗0 decay. Thus it is

reasonable to compare these experimental results to the Breit-Wigner parameterisation

used in this study. In the left pane of Figure 4.12, the Breit-Wigner parameterisation

of the Dπ scattering amplitude is plotted for both pion masses, with mπ = 239 MeV

plotted in red and mπ = 391 MeV in blue. The table in the right pane of Figure 4.12

shows the parameters obtained from the fits for each of these parameterisations.

The shape of this amplitude is similar to that found in the referenced experiments above.

The mass parameter of the Breit-Wigner parameterisation for the lighter pion mass of

mπ = 239 MeV is 2380 ± 36 MeV, where the error includes both the systematic and

mπ / MeV 239 391
mD / MeV 1880 1887
mBW / MeV 2380(36) 2206(32)
gBW 5.39(56) 7.62(75)
χ2/Ndof

14.6
20−4

36.0
29−5

Figure 4.12: The plot on the left shows the Breit-Wigner parameterisations at both
pion masses, with the lighter bands representing the statistical uncertainty. mπ = 239
MeV is plotted in red and mπ = 391 MeV in blue. The parameters obtained and the
χ2/Ndof for each are listed in the right table.
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mass, anisotropy variations. This is within error of the quoted PDG value.

As mentioned at the start of this chapter, the D∗0 and D∗s0 were found experimentally

to be of similar mass but with very different widths, the D∗0 being very broad compared

to the narrow D∗s0. In the lattice studies at two pion masses, described in this chapter,

the D∗0 was consistently found at a mass below that of the D∗s0, as expected from the

quark model. This is apparent in Figure 4.13, which is a summary of the real parts of

the pole positions for the D∗0 and D∗s0 at pion masses of mπ = 239 MeV and mπ = 391

MeV.

At mπ = 391 MeV, both states were found as bound states, but at mπ = 239 MeV,

while the real part of the pole remains close to Dπ threshold, the complex part is deeper

in the complex plane. However, it is still found to preserve the expected mass ordering.

Both studies of the D∗0 found its mass below the experimentally reported one. If one

was to extrapolate to physical pion mass from the two points in Figure 4.13, then the

current estimate of the D∗0 mass from experimental data would appear a little too high.

However, given the large width it is possible that the experimental amplitudes are also

compatible with a lower pole mass.

239 391

2100

2200

2300

2400

Figure 4.13: A summary of the real parts of the pole positions found in this analysis
and Ref. [2] in S-wave Dπ scattering, and Ref. [3] in S-wave DK scattering. The D?

0

resonance pole found in this study lies on the unphysical sheet with a large width. The
other 3 poles are bound states.
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5 Heavy-Light Meson Spectroscopy

In this chapter, the calculation of the excited and exotic spectra of the B , Bs and Bc

mesons is described. Inspired by the success of studies in the charm-(light,strange,charm)

meson sector spectra, detailed in Refs [4, 32], and of scattering calculations involving

the D and Ds mesons, as described in Refs [1,2] , this study is a first-look at the spectra

of bottom-(light,strange,charm) mesons. Relatively little has been observed experimen-

tally in these meson sectors, with 4 low-lying states observed in the bottom-light and

bottom-strange meson sector and only the 2S , 1S states observed in bottom-charm.

However, significant accelerator upgrades at the SuperKEKB accelerator means that the

probing of bottom physics at Belle II, and the search for exotic bottom states, may soon

improve the experiment knowledge of mesons containing bottom quarks [12]. LHCb has

recently finished Upgrade I, and has plans to perform another improvement, Upgrade II

in the 2030’s [11]. It is currently performing Run III, which will include investigations

into bottom-light, bottom-strange and bottom-charm states. This all motivates a lat-

tice study into B , Bs and Bc meson spectra, attempting to predict states that may be

found.

Various predictions of the B , Bs and Bc mesons have been made using the quark model

[62–71]. From the perspective of lattice QCD, earlier work has studied bottom-(light,

strange, charm) spectroscopy using static quarks with Heavy Quark Effective Theory

in Refs [72–79], Non-Relativistic QCD in Refs [80–85], the Highly Improved Staggered

Quark action in Refs [86,87], and the Fermilab method, with the bottom quark treated

as a valence quark in Ref [88], while Ref [89] did the same but included a scattering

analysis of Bsπ
+ using Luscher’s method. Bs was studied using heavy meson chiral

perturbation theory in Ref [90]. In a recent study of tetraquarks, positive parity Bs

states were calculated using lattice NRQCD [91]. As in the previous studies of D, Ds ,

charmonium, and bottomonium, this study also investigated the presence of exotic states

in the B , Bs and Bc spectra, specifically identifying the lightest hybrid supermultiplet

in each of the sectors. The Bc hybrids have been studied previously using sum rules in

Ref [92] and pNRQCD in Ref [93], while the B and Bs hybrids were studied using sum
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rules in Ref [94].

In this study, 2+1 flavours of dynamical quarks were used on an anisotropic lattice

where the temporal lattice spacing at is finer than the spatial lattice spacing as and the

anisotropy ξ = as/at ≈ 3.44. In the gauge sector a tree-level Symnazik-improved action

is used, with larger-than physical light quark masses yielding a pion mass of ∼ 391

MeV. Fermions are calculated with a tadpole-improved Sheikholeslami-Wohlert (Wilson

clover) action including stout-smeared spatial links [20,22], as discussed in Chapter 2.

In the work presented in both this chapter and the next, the bottom quark is treated

relativistically. It is calculated with the same tadpole-improved clover action as the

other fermions in the calculations. The tuning of the bottom quark mass was done to

recover the experimental ηb mass from the pseudoscalar dispersion relation. Details of

this tuning can be found in Ref [95]. The anisotropy parameters determined in that

tuning are used here, with two time-sources on a volume (L/as)3 × T/at = 203 × 128

and with distillation for quark propagation.

5.1 Obtaining the spectra

To obtain the finite volume spectra of the B , Bs and Bc mesons, the variational method

was employed, as discussed in Chapter 3. The operator basis for each lattice irrep

consisted of single meson operators of the form ψ̄Γψ, with Γ representing a monomial

of gamma-matrices and forward-backward derivatives as discussed in Chapter 2. In

addition, operators proportional to the field strength tensor were included, to allow for

the investigation of hybrid mesons. The number of operators included in each lattice

irrep is shown in the right side of Table 5.1, while the left side of this shows a breakdown

of continuum spin into each lattice irrep. As described in Chapter 3, the energies of the

spectrum are obtained through the variational method, by solving the GEVP and fitting

J Λ
0 A1

1 T1

2 T2 ⊕ E
3 T1 ⊕ T2 ⊕ A2

4 A1 ⊕ T1 ⊕ T2 ⊕ E

Λ A1 A2 E T2 T1

Λ+ 18 10 26 36 44
Λ− 18 10 26 36 44

Table 5.1: The left table shows the distribution of continuum spin up to J = 4 into
the irreducible representations of Oh, labelled Λ. The right table shows the number of
operators used in each lattice irrep in this study. The operators are fermion bilinears
of the form ψ̄ΓDiDj ...ψ which are constructed using gamma matrices, Γ, and forward-
backward derivatives, Di , as described in text.
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the principal correlators to exponentials. An example of such fits is shown in Figure 5.1.

This shows the principal correlator fits of the first 11 states of the T−1 irrep in the Bc

sector. The value plotted is eEn(t−t0)λ(t) so that the curve tails off to 1. In general,

a good signal was observed. It did not vary significantly against change of t0 and the

χ2/Ndof obtained are reasonable. Similar quality was obtained for all other irreps in B ,

Bs and Bc .

Figure 5.1: Principal correlator fits for the first 11 states, n = 0, ..10, in T−1 in Bc .
Shown is eEn(t−t0)λn(t) plotted against t/at . Darker points are included in the fits while
the lighter ones are not.

The operator overlaps of the first 11 states in the T−1 irrep in Bc is shown in 5.2. The

overlaps are presented as histograms, and have been normalised such that the largest

overlap corresponds to 1. The operators are color coded according to their continuum

spin J , with black for J = 0, red for J = 1, green for J = 2, blue for J = 3 and

gold for J = 4. Lighter shades in each colour represent hybrid-like operators of the

corresponding continuum spin. As is evident from the plots, examining these operator
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overlaps allows one to determine the continuum spin J of each lattice state calculated,

as discussed in Chapter 3.

Figure 5.2: The normalised operator overlaps |Z̃ | of the first 11 states, n = 0, ..10,
found in the T−1 irrep of Bc sector. Operator overlaps are normalised relative to the
largest operator overlap amongst the states shown. The operators are coloured according
to their continuum spin, with lighter shades of colours representing hybrid-like operators.
The energy in lattice units, atE , of each state is shown on the horizontal-axis.

5.1.1 Dispersion Relations

The relativistic anisotropic dispersion relation for a meson A can be written

(atEA)2 = (atmA)2 +

(
1

ξA

)2

(asp)2, (5.1)

where the lattice momenta are quantised so that as~p = 2π
L

(nx , ny , nz) for ni ∈ Z and

are labelled by [nxnynz ] by convention. From Eqn 5.1 the measured anisotropy for a

given meson can be determined from the slope of its dispersion relation.

Using the relevant states, both the pseudoscalar and vector dispersion relations were

computed for B , Bs and Bc , for a range of momenta up to [200]. The plots of these

dispersion relations are shown below in Figure 5.3. The energies at each momentum

were again determined from a large basis of interpolating operators using a variational

analysis. These fitted energies are represented by points with errorbars contained in
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the symbols. The dashed lines are the fits to Equation 5.1. The extracted anisotropies,

compared with that extracted in bottomonium [95], is shown in Table 5.2. The obtained

anisotropies were within 2 − 5% of the target value, 3.444. These fits were repeated

with states up to momentum [211], and similar results were obtained.

Figure 5.3: Pseudoscalar (shown in red) and vector (shown in green) dispersion rela-
tions for B , Bs and Bc using momenta up to [200]. States are represented by points
with errorbars contained in the symbols. The solid lines are the best fits to Equation
5.1

.

atm ξ χ2/Ndof

B 0.93666(21) 3.365(14) 4/3
B∗ 0.94335(24) 3.357(21) 20/3
Bs 0.94693(16) 3.371(11) 9/3
B∗s 0.95329(19) 3.352(14) 30/3
Bc 1.10667(6) 3.447(5) 24/3
B∗c 1.11260(8) 3.478(13) 6/3
ηb 1.66302(5) 3.590(15) 0.81
Υ 1.66650(7) 3.574(26) 1.11

Table 5.2: The mass and anisotropy determined from the intercept and slope respec-
tively of dispersion relation fits for each of B , Bs and Bc . The bottomonium results
from Ref [95] are shown in italics as comparison, as this is the sector the mass and
valence anisotropy of the bottom quark was tuned in. All fits in this study were done
using momenta up to and including [200]
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It is worth noting that these dispersion relation fits have a rather large χ2/Ndof . This

arises from the small statistical errors in the determined energy levels inputted into the

fit, and highlights the undetermined systematic errors in these calculations. The scale

of the difference between the pion anisotropy and the anisotropies of the heavy-light

meaons is small but is noteworthy. The difference is largest in bottom-light and bottom-

strange mesons. The scale of this difference may give an idea of the discretisation effects

present in the bottom meson sector.

5.1.2 Spin Identification

As discussed in Chapter 3, the operator overlaps are very useful in identifying the con-

tinuum spin of lattice states and especially when the same continuum state is subduced

into multiple lattice states (J ≥ 2). An example of this procedure is detailed here. In

Figure 5.4, the overlaps of the continuum spin 4 operator (a1 × DJ13=2,J=3)J=4 into four

candidate continuum spin 4 states, in irreps A−1 , T
−
1 , T−2 and E−, in the Bc meson

sector is shown. This operator was dominant in each of the four candidate states. As

can be seen from the plot, the operator overlap is of a similar magnitude across all four

states. The energy of each state is also consistent within errors. Thus it is concluded

that these four states are part of the same continuum spin 4 state, and the average of

their masses is taken to be the mass of the continuum state. This process was used to

identify and calculate the mass of all states with continuum spin J ≥ 2.

Figure 5.4: Operator overlaps for an operator with continuum JP = 4− subduced into
A−1 , T

−
1 , T−2 and E− states in Bc . For details on the operators used in this work and

their naming convention, see Ref [29]. The energy and overlaps are consistent across
the four irreps. These four lattice states are therefore identified as the same continuum
4− state.
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5.2 Finite Volume Spectra by Lattice Irrep

The spectra of excited and exotic B , Bs and Bc mesons arranged by lattice irrep is shown

in Figures 5.5 and 5.6. Results are presented as mass splittings, with half the mass of

the ηB meson subtracted. This is done to mitigate uncertainties arising from the tuning

of the bottom quark mass. The energy levels shown are coloured according to their

continuum spin, with black for J = 0, red for J = 1, green for J = 2, blue for J = 3 and

gold for J = 4, identified as described above. Lighter colors represent hybrid-like states

with the corresponding continuum spin. The vertical height of the boxes represents the

one sigma statistical uncertainty about the mean. The orange dashed lines show the

lowest OZI (Okubo–Zweig–Iizuka) connected and OZI disconnected lattice thresholds

determined in this work. An extensive spectrum of states, with both positive and

negative parity, were determined in each meson sector. The pattern of states observed

is similar across the three sectors. Similar patterns were also found in bottomonium [95],

charmonium [4], and D and Ds [32].

5.2.1 Volume Dependence: a study of the B spectrum

To investigate the volume dependence of the heavy-light meson spectrum, the B spec-

trum was recalculated for lattices with volume (L/as)3×T/at = 163×128 and 243×128.

A comparison of these spectra to the 203× 128 spectrum, is plotted in Figure 5.7. The

irreps plotted are those with states below the lattice BsK̄ threshold. The pattern of

states observed is consistent across the 3 volumes. The lightest states in A−1 , T
−
1 , E+

and T+
2 are in agreement, but there is a slight shift observed in the lightest A+

1 and

T+
1 states, corresponding to the lightest JP = 0+, 1+ states. The error on the 243 A+

1

state is too large to draw any meaningful conclusions but the lowest JP = 0+ state

found on the 163 volume is ≈ 3σ away from the same state on the larger 203 volume.

For JP = 1+, the lightest state found in the 243 volume is 2σ away from the lowest in

the 203, as is the lightest 1+ state found on the 163. This is very similar to what was

found in the D meson sector [32], where finite volume effects were apparent in 0+ and

1+. A scattering analysis of the Dπ channel offered clarity on the situation [1, 2], as

mixing with two meson states was occurring. This was discussed in detail in Chapter 4.

There is some shifting down of masses occurring in the (L/as)3 = (16)3 lattice for states

above threshold, most significantly in A+
1 . This investigation highlights some interesting

channels where near-threshold effects could be fruitfully studied. One of these is covered

in the next chapter. The remaining sources of systematic error, namely the unphysical

pion mass and finite lattice spacing, were not investigated in this work.
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Figure 5.5: Spectra grouped by lattice irrep for B and Bs . States are colour coded
according to their spin. The vertical height of the boxes represents the one sigma
statistical uncertainty. The orange dashed lines represent lattice thresholds from this
work. Ellipses indicate that more states may be present but were not robustly determined
in this study.
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Figure 5.6: Same as Figure 5.5 but for Bc

Figure 5.7: A comparison of a selection of irreps in the B meson spectrum across three
different volumes. States are colour coded according to their spin. The vertical height
of the boxes represents the one sigma statistical uncertainty. The orange dashed lines
represent lattice thresholds from this work for the (L/as)3 = 203.
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5.3 Finite Volume Spectra by Continuum Spin

The spin-identified spectra labelled by continuum JP is shown in Figures 5.9 and 5.8. To

identify the different components for each state with spin J = 2, 3, 4 across the lattice

irreps, the operator-state overlaps were used as described previously. The vertical height

represents the one sigma statistical uncertainty about the mean. States in red are those

calculated in this work which are dominated by operators with a hybrid construction.

States in green are conventional states calculated in this work, while states in black are

experimental states taken from the PDG [7]. Again, the thresholds shown are the lowest

OZI connected and OZI disconnected thresholds in each of the meson sectors, with

green showing the lattice thresholds from this work and black indicating experimental

thresholds. Masses are presented with half the mass of the ηB meson subtracted. The

pattern of states observed is similar to previous patterns seen in bottomonium [95],

charmonium [4], and charmed mesons [32]. As in these previous studies, by using the

same methods, an extensive spectrum of states was determined in each of B , Bs and

Figure 5.8: Spin-identified spectra labelled by continuum quantum numbers for B .
States are labelled by JP . The vertical height of the boxes represents the one sigma
statistical uncertainty. States in red and green are those calculated in this study, while
states in black are experimental. States in red are dominated by operators with a hybrid
construction. Thresholds marked in green are from this work while black represents
experimental thresholds. Ellipses indicate that more states may be present but were not
robustly determined in this study.
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Bc , with robust continuum spin identification and the ability to identify and differentiate

which spin-multiplet nearby states belong to. Errors presented are statistical only. An

assessment of the systematic errors, other than the finite size effects discussed previously,

are beyond the scope of this study.

Figure 5.9: Same as Figure 5.8 but for Bs and Bc .
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5.4 Outlook

To gain an understanding of the B , Bs and Bc spectra presented above, various aspects

of the spectra will be examined, namely hybrid states and state mixing. The results above

will also be compared to a selection of theoretical predictions, lattice calculations and

experimental findings. This will give a broader view of the current state of bottom-(light,

strange, charm) physics, and provide some context to the spectra shown above.

5.4.1 Hybrid States

As mentioned previously, operators proportional to the field strength tensor were included

in the operator basis of each lattice irrep. This allows for the investigation into hybrid

states in the bottom-(light,strange,charm) sectors. In Figures 5.5 and 5.6, the candidate

hybrid states identified are marked by a lighter color than the other states of the same

continuum spin J , and are found scattered across the lattice irreps. Perhaps more clearly,

they are colored red in Figures 5.9 and 5.8. The continuum spin 2 state shown is the

average of the candidates found in the T−2 and E− lattice irreps. The groups of four

states in each meson sector, with continuum spin J = (0, 1, 2)−, are proposed to be the

lightest hybrid supermultiplet of B , Bs and Bc respectively.

The process for identifying this hybrid supermultiplet is very similar to how lattice states

with the same continuum-spin are identified as the same continuum state, as was dis-

cussed in Chapter 3. By investigating the magnitude of the operator overlaps of hybrid-

like operators in each of the candidate states, and comparing the values across the five

irreps, it was found that they were of a similar value. The operator overlaps of the sim-

plest hybrid-like operator in each of the candidate lattice states for each of the meson

sectors is shown in the right-hand plots of Figure 5.10. These operators are the domi-

nant operators in each of the candidate energy levels. The left-hand plots of Figure 5.10

shows a closer look at the continuum spins which were identified as containing hybrid

candidates states. As is clear from these plots, the candidate states are of a similar mass

and have similar overlap values for hybrid-like operators. These states are thus proposed

to be a hybrid supermultiplet, the lightest one in each of the meson sectors.

The pattern of these candidate states, and the energy scale they were found at above

the respective lightest state in each spectrum, is very similar to what was observed

previously in bottomonium [95], charmonium [4], and D and Ds [32].
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Figure 5.10: The left-sided plots show the continuum spins which were identified
to contain hybrid candidates (0−, 1−,2−) in each of B , Bs and Bc . Hybrid candidate
states identified are shown in red. The right-hand plots show the overlaps of the simplest

operator proportional to the field-strength tensor,
(

(π, ρ)× D
[2]
J=1

)J

, for the candidate
hybrid states in B , Bs , and Bc . As these are of a similar magnitude across each state,
and each state is of a similar mass, these states are identified as a hybrid supermultiplet.

In Ref [93], quarkonium hybrids were calculated using effective field theory methods,

including Bc hybrids. The Bc hybrid candidate states determined here are within 1σ of

the hybrid mass proposed in that calculation, while they are at a slightly higher energy

than those calculated using sum rules in Ref [92].
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5.4.2 Comparing to Quark Model Predictions

Comparing to early quark model predictions of B , Bs , and Bc states [62], the predicted

pattern of states and splittings between them is observed in the work above. The only

difference of note is present in the Bc spectrum, where the splitting between the first

JP = 3− state and the first excited 0− and 1− states calculated in this study is larger

than was predicted. A later study of the Bc in the relativistic quark model [63] solved

this problem, and the results of this work have a very similar pattern of states to the

predictions. This more recently predicted spectrum included higher energy states than

the previous, and it is noteworthy that for states significantly above threshold, this

study calculates them at a higher energy than predicted. This is also true in other quark

model predictions that went to such energies, in B , Bs and Bc [64–69]. This is not very

surprising as direct comparisons with quark models to a lattice study at finite lattice

spacing with an unphysical pion mass will differ. Notably, the states identified as hybrid

candidates above are not present in the quark model predicted spectra, which is to be

expected, as exotic states are not contained in the quark model.

Comparing to much more recent predictions of Bc states [70, 71], which used a con-

stituent non-relativistic quark model, a similar pattern of states predicted is present in

the Bc spectrum presented previously in this chapter. In these newer predictions, two

S-wave multiplets, two P-wave multiplets, and a D-wave multiplet are predicted to be

below the BD threshold. However, while all of these multiplets are present in the Bc

spectrum calculated above, the second P-wave multiplet, consisting of states with JP

= (0+, 1+, 2+), is found above BD threshold. This discrepancy may be resolved by the

inclusion of meson-meson operators.

5.4.3 B, Bs and Bc in Experiment

As mentioned at the start of this chapter, not many states have been observed in the

bottom-(light, strange, charm) meson sectors, particularly in the bottom-charm meson

sector, where only Bc (2S) and (1S) have been observed. In the spectra plots grouped

by continuum spin J above (Figures 5.9 and 5.8), the observed states are shown as

black boxes, with the energy values having been obtained from the Particle Data Group

(PDG) [7]. It is clear from these plots, that each of the currently observed experimental

states have corresponding lattice states in the spectra computed earlier in this chapter.

However, when comparing to experimental results, it is more appropriate to compare

mass splittings rather than just the calculated energies of states. Doing this helps

mitigate some discretisation effects from the tuning of the quark masses. Table 5.3

shows a selection of mass splittings obtained from the PDG and the corresponding
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B / MeV this work PDG
B∗ − B 39.07± 1.59 45.21± 0.21
B1 − B∗ 413.1± 6.1 401.4± 1.2
B1 − B 452.2± 6.1 446.7± 1.3
B∗2 − B 494.1± 5.7 457.5± 0.7
B∗2 − B1 41.9± 8.2 13.4± 1.4

Bs / MeV this work PDG
B∗s − Bs 38.03± 0.83 48.5 +1.8

−1.5

B∗s2 − B 553.72± 4.23 560.52± 0.14

Bc / MeV this work PDG
B∗c − Bc 33.74± 0.28

Bc(2s)− Bc 602.01± 3.40 597.73± 1.27
Bc − Bs 905.79± 0.71 907.75± 0.37± 0.27

Table 5.3: A selection of splittings in B(top left), Bs(top right) and Bc(bottom mid-
dle). This work refers to results obtained in this study, and PDG values were obtained
from the Particle Data Group [7].

splittings from this work. All quoted values are in MeV.

The first thing to note is the S-wave hyperfine splittings, which are underestimated in

this study. This underestimation arises due to the sensitivity of the hyperfine splitting to

the light quark mass and discretisation effects. Part of this issue can also be attributed to

the choice of the spatial clover coefficient in the quark field action. This study used the

tree level tadpole improved value, but increasing this typically improves the value of the

hyperfine splitting, as was investigated in charmonium [4] and bottomonium [95]. This

would also improve the relative positions of the spin-singlet and spin-triplet states with

JP = (0, 1, 2)+. Other splittings calculated are close to those measured experimentally,

even though this was not the goal of this study.

5.4.4 The mixing of spin-singlet and spin-triplet states

As discussed in Chapter 3, charge is not a good quantum number in the heavy-light

meson sector. As a result of this, states with J = L (3LJ+L and 1LJ+L) can mix on

the lattice. These correspond to spin-triplet and spin-singlet states respectively. For

flavourless mesons, the states correspond to JPC = J±± and J∓± respectively.

One can attempt to quantify the level of mixing between a spin-singlet and spin-triplet

state in the same lattice irrep through the calculation of mixing angles. To do this, one

uses a two-state hypothesis, and assumes that energy independent mixing can occur

(that the energy difference between the spin-singlet and spin-triplet states is negligible).

This allows for the expansion of states A and B in terms of spin-singlet and spin-triplet

basis states,
|A〉 = + cos θ |1LJ=L〉+ sin θ |3LJ+L〉,

|B〉 = − sin θ |1LJ=L〉+ cos θ |3LJ+L〉,
(5.2)
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with the choice mB > mA. In the non-relativistic limit, certain operators only overlap

onto spin-triplet and spin singlet states. These are given by
[

(ρ− ρ2)× D
[L]
L

]
J=L

,

and
[
{π, π2} × D

[L]
L

]
J=L

respectively. For 1− hybrid, operators for spin-triplet and spin-

singlet states are given by
[

(ρ− ρ2)× D
[2]
1

]
J=1

and
[
{π, π2} × D

[2]
1

]
J=1

. Taking a ratio

of the operator overlaps in states A and B allows for the determination of the mixing

angle θ, with the ratio corresponding to either tan θ or cot θ. The determined angle

gives an estimate to the amount of mixing, with θ = 45◦ corresponding to maximal

mixing, and θ = 0◦ or 90◦ corresponding to zero mixing (where the spin-triplet and

spin-singlet states can be differentiated).

Tables 5.4 and 5.5 show the calculated mixing angles between the lightest pairs of

P-wave (1+), D-wave (2−) and hybrid (1−) states. Also shown in table 5.4, are the

previously determined mixing angles in the study of the D and Ds mesons [4]. The

heavy-quark limit for the mixing of the lightest pair of P-wave and D-wave states, as

predicted in Ref [96] is also shown. The overall sign of the mixing angle is not observable

in the calculation, so the absolute value is presented. Note the variation in the results

based on choice of operator. This gives an insight into systematic uncertainties present

in this calculation.

|θ|/◦
Q-q ∼ (ρ− ρ2) ∼ π ∼ π2

1+ c-s 60.9(0.6) 64.9(0.2) 66.4(0.4)
c-l 60.1(0.4) 62.6(0.2) 65.4(0.2)
b-s 59.3(0.6) 62.9(0.4) 63.5(0.4)
b-l 58.7(0.6) 61.1(0.6) 62.0(0.6)

H.Q.L. 54.7 or 35.3
2− c-s 64.9(1.9) 68.7(2.0) 70.9(1.8)

c-l 63.3(2.2)∗ 67.8(3.7)∗ 71.1(3.9)∗

b-s 55.6(1.1) 61.5(0.9) 62.2(0.9)
b-l 52.4(0.5) 57.7(0.5) 58.7(0.5)

H.Q.L. 50.8 or 39.2
1− (hybrid) c-s 59.9(1.7) 67.9(0.9) 67.3(0.9)

c-l 59.7(1.1) 68.4(0.8) 67.4(0.9)
b-s 60.3(1.1) 61.6(1.2) 61.3(1.2)
b-l 57.3(1.4) 65.1(1.1) 64.7(1.2)

H.Q.L. −

Table 5.4: The absolute value of the mixing angles calculated for the lightest pairs of
P-wave (1+), D-wave (2−) and hybrid (1−) states in the b-l and b-s meson sectors, as
well as c-l and c-s results calculated in Ref [4]. Angles extracted using different operators
are presented. H.Q.L. stands for the heavy-quark limit, as predicted in Ref [96]. The
results marked with ∗ correspond to (90−|θ|), as there was a difference in mass ordering
in the previously calculated results in Ref [4].
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|θ|/◦
JP ∼ (ρ− ρ2) ∼ π ∼ π2

b-c 1+ 78.6(0.5) 79.1(0.5) 79.1(0.5)
2− 88.0(0.9) 89.4(0.4) 89.5(0.4)

1− (hybrid) 69.4(1.4) 71.3(1.2) 71.2(1.2)

Table 5.5: The absolute value of the mixing angles calculated for the lightest pairs of
P-wave (1+), D-wave (2−) and hybrid (1−) spin-singlet and spin-triplet states in the
b-c meson sector. Angles extracted using different operators are presented.

The heavy-quark limit is the limit where the mass of the heavy quark Q in a meson

Qq̄, is taken to be much larger than the light quark q, mc,b � mu,d ,s . In this limit,

the heavy-quark spin decouples, and states appear in doublets jP , where j is the total

angular momentum of the light degrees of freedom. For more details, see Ref [4].

The results for the mixing angles in the b-l and b-s meson sectors is presented in Table

5.4. Similar mixing angles are found in the two meson sectors. This is not surprising,

as in this study heavier than physical light quarks were used while the strange quarks

used had near-physical mass, meaning that SU(3) flavour symmetry is not badly broken.

Due to the unphysical light quark mass, one might expect the b-s meson results to be

closer to physical value than the b-l . As can be seen, the values of |θ| for the P-wave

and D-wave states are between the heavy-quark limit predictions, and the previously

determined mixing angles for the c-l and c-s meson sectors, as was predicted to be the

case in Ref [4]. A plot of the absolute values of the mixing angles for the lightest P-

wave and D-wave spin-singlet and spin-triple state pairs, for each meson sector, ordered

by relative quark mass difference, is plotted in Figure 5.11. This illustrates the trend

towards the heavy-quark limit, but also highlights the systematic uncertainty introduced

by the choice of operator.

Table 5.5 shows the absolute value of the mixing angles determined for the lightest

pairs of P-wave (1+), D-wave (2−) and hybrid (1−) states in Bc . As is evident from the

table, these mixing angles are significantly larger than those determined for the heavy-

(light,strange) meson sectors. These results are further away from the heavy-quark limit

than the others. However, in this case, the separation of scale between the bottom and

charm quarks may not be large enough for the heavy-quark limit to apply. Instead,

bottom-charm mesons seem to be approaching the results of quarkonium, where charge

is a good quantum number, meaning zero mixing occurs and the spin-singlet and spin-

triplet states can be differentiated. The mixing angles calculated agree with this, being

closer to zero mixing (which corresponds to 0◦ or 90◦) than any of the other meson

sectors, especially the D-wave (JP = 2−) spin-singlet and spin-triplet state mixing.
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(a) P-wave

(b) D-wave

Figure 5.11: A plot of the absolute value of the mixing angles calculated for the
lightest (a)P-wave and (b)D-wave spin-singlet and spin-triplet state pairs, for each
meson sector, ordered by relative quark mass difference. Each choice of operator has
been coloured differently with red for ∼ (ρ− ρ2), blue for ∼ π and green for ∼ π2. The
heavy-quark limits are marked as dashed lines
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A plot of the absolute value of the mixing angles calculated for the lightest hybrid

(1−) spin-singlet and spin-triplet state pairs, for each meson sector, ordered by relative

quark mass difference, is shown in Figure 5.12. This plot suggests that the mixing

angle for the hybrid spin-singlet and spin-triplet states does not depend as strongly on

constituent quark masses. The systematic uncertainties from the choice of operators

are quite significant for some of the mesons, while mixing angles for the bottom-charm

and bottom-strange have less difference between choice of operator used to determine

the mixing angle.

Figure 5.12: A plot of the absolute value of the mixing angles calculated for the lightest
hybrid (1−) spin-singlet and spin-triplet state pairs, for each meson sector, ordered by
relative quark mass difference. Each choice of operator has been coloured differently
with red for ∼ (ρ− ρ2), blue for ∼ π and green for ∼ π2.
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5.5 Next Steps

As mentioned in the previous sections, the pattern of states observed in B and Bs is

very similar to that observed in the D and Ds mesons [32]. A particularly interesting

set of states in B and Bs are the low-lying positive parity states that sit near Bπ

and BK thresholds respectively. A plot of the ηb/2 mass splittings of these states is

shown in Figure 5.13, with experimental states and thresholds marked in black and those

calculated in this study marked in green, as before.

The previous Chapter 4 discussed how a study of Dπ scattering provided clarity on the

shifts away from non-interacting levels observed in the D meson spectrum as well as the

finite volume effects observed. Inspired by this, the next chapter describes an exploratory

study of Isospin 3/2 Bπ scattering, which examines how the scattering methods, detailed

in Chapter 3, can be applied in the heavy-light sector.
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Figure 5.13: A zoom in of the low lying positive parity states in B and Bs . States and
thresholds from this work are shown in green, while experimental states and thresholds
are marked in black. These are of note due to the proximity to threshold of these states.
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6 Isospin 3/2 Bπ scattering

As mentioned in the previous chapter, significant accelerator development at the Su-

perKEKB accelerator means that the probing of bottom physics at Belle II, and the

search for exotic bottom states, may soon improve the experimental knowledge of

mesons containing bottom quarks [12]. In particular, B meson spectroscopy and de-

cays are to be investigated at Belle, as well as BB scattering. LHCb has also recently

finished Upgrade I, and has plans to perform another improvement, Upgrade II in the

2030’s [11]. It is currently performing Run III, which includes further investigation of

B meson states and their decays. Motivated by this, a further lattice study of the B

spectrum is performed. As discussed in Chapter 3, many of the excited states deter-

mined through principal correlator fits are not actually stable, despite the assumption

that they are. This is true for the spectra calculated in the previous chapter. Thus to

further examine the B meson spectra, a scattering analysis must be performed.

In this chapter, the results of an exploratory investigation of isospin-3/2 Bπ scattering

will be presented. Following the calculation of the B spectrum in the last chapter,

performing a scattering analysis is the next sensible step in investigating heavy-light

mesons on the lattice. Based on the previous results, the positive parity near-threshold

states are of particular interest. For this exploratory study, a scattering analysis of Bπ

was performed at isospin-3/2. The main difference between this study, and the isospin-

1/2 Dπ scattering study presented in Chapter 4, (besides the use of the B meson versus

the D meson), is that at isospin-3/2, no single meson out-states are allowed, all out-

states are meson-meson. Isospin-3/2 Dπ scattering was investigated previously in [2].

Those results will be compared to the Bπ results, in the outlook of this chapter.

This study was performed on three lattices, with volumes of (L/as)3 × (T/at) =

(16, 20, 24)3 × 128. The details of each ensemble can be found in Table 6.1. In

this study, 2+1 flavours of dynamical quarks were used on three anisotropic lattices

where the temporal lattice spacing at is finer than the spatial lattice spacing as and the

anisotropy ξ = as/at ≈ 3.44. In the gauge sector a tree-level Symnazik-improved action

is used, with larger-than physical light quark masses yielding a pion mass of ∼ 391
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(L/as)3 × (T/at) Ncfgs Ntsrcs Nvecs

163 × 128 479 4 64
203 × 128 603 4 128
243 × 128 553 2 160

Table 6.1: The gauge field ensembles used in this study. Ncfgs is the number of
gauge field configurations used while Ntsrcs is the number of time sources used per
configuration. Nvecs is the number of eigenvectors used in the distillation framework.

atm
π 0.06906(13)
B 0.93666(21)
B∗ 0.94335(24)

atEthreshold

Bπ 1.00572(24)
B∗ππ 1.08147(30)
Bπππ 1.14384(33)

Table 6.2: A summary of the stable meson masses and relevant kinematic thresholds
for this calculation. The masses were determined through dispersion relations, with the
B and the B∗ dispersion relations shown in the previous chapter in Figure 5.3.

MeV. Fermions are calculated with a tadpole-improved Sheikholeslami-Wohlert (Wilson

clover) action including stout-smeared spatial links [20, 22], as discussed in Chapter

2.

The anisotropy obtained from the pion dispersion relation is ξπ = 3.444(6) [30], while the

anisotropy obtained from the B meson dispersion relation is ξB = 3.365(14) (Chapter

5). For this calculation, the pion anisotropy will be used, but the systematic uncer-

tainty resulting from the choice of anisotropy will be examined. The relevant meson

masses calculated from dispersion relations, as well as the kinematic thresholds for this

calculation are listed in Table 6.2.

6.1 Finite Volume Spectra

To calculate the finite volume spectra, the variational method is employed, as detailed

in Chapter 3. The operator bases used only included meson-meson-like operators which

are of the form
∑

~p1+ ~p2=~P C(~p1, ~p2)Ω†M1
(~p1)Ω†M2

(~p2), where Ω†Mi
(~pi ) interpolates meson

Mi with lattice momenta ~pi . These operators were constructed for each momentum

from eigenvectors vn that were determined in variational analyses of π, ρ, D, and D?

mesons. No "qq̄"-like operators are included, as no states like this exist as an output for

isospin-3/2 Bπ scattering. Only at-rest irreps were considered in this study, such that

the overall momentum of each state determined is zero. Tables listing the operators

included in each irrep can be found in Appendix A2.

To obtain the energy levels, principal correlator fits were performed, as discussed in

Chapter 3. Figure 6.1 shows the principal correlator fits of the first four energy levels
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Figure 6.1: Principal correlator fits for the first 4 states, n = 0, ..3, in A+
1 for Bπ with

(L/as) = 20. Shown is eEn(t−t0)λn(t) plotted against t/at . Darker points are included
in the fits while the lighter ones are not.

calculated in the A+
1 irrep, at (L/as) = 20. As in previous chapters, the dark points were

included in the fit, while the lighter points were excluded. The masses and χ2/Ndof for

each energy level are shown. A similar quality of fit was obtained across the different

irreps and volumes.

Figure 6.2 shows the finite volume energy levels of the [000]A+
1 on each of the three

volumes, obtained from principal correlator fits. The states are marked as black/grey

points, with the errorbars contained within the points. Red curves indicate relevant

Bπ non-interacting levels. The B∗ρ non-interacting level is marked as a grey dashed

line. Only states below this level were included in the subsequent scattering analysis,

corresponding to the states coloured black. Other states determined in this analysis

are coloured grey. Note that the effect of including B∗ρ operators in the basis was

investigated for states below the B∗ρ non-interacting level. The effect was found to be

negligible.

Figure 6.3 shows the finite volume spectra of the [000]T−1 and [000]E+ irreps on the

two volumes with (L/as) = 16, 20. Again, relevant non-interacting Bπ levels are marked

by the red curves. As can be seen, the states determined are consistent with the non-

interacting levels. Similar to Dπ, as discussed in Chapter 4, this suggests that the
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contributions of Bπ partial waves with ` ≥ 1 are negligible, although no scattering

analysis was performed for ` ≥ 1 in this study to verify this.

Figure 6.2: The finite volume spectrum determined for isospin-3/2 Bπ scattering
in the [000]A+

1 irrep. Energy levels included in the subsequent scattering analysis are
represented as black points. Grey points represent energy levels determined that were not
included in the subsequent analysis, as discussed in the text. The red curves correspond
to the non-interacting Bπ energies. The grey-dashed line represents the B∗ρ threshold,
only levels below this threshold were used in the scattering analysis
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Figure 6.3: The finite volume spectrum determined for Isospin-3/2 Bπ scattering in
the [000]T−1 (left plot) and [000]E+ (right plot) irreps. The red curves correspond to
the non-interacting Bπ energies.

6.2 Scattering Analysis

The S-wave isospin-3/2 Bπ scattering amplitude was determined using Lüscher’s de-

terminant condition, as discussed in Chapter 3. The only at-rest irrep with ` = 0

contributions is the [000]A+
1 irrep. Below the B∗ρ non-interacting level, there are seven

energy levels across the three volumes. These were used to constrain the t-matrix

parameterisations.

Using these energies, the phase shift δ was determined, calculating a value of δ for each

energy level, while neglecting higher partial waves. The resulting phase shift is shown in

Figure 6.4. The form of the phase shift is that of a weakly repulsive interaction.

As a reference parameterisation, a K -matrix parameterisation of the form

K = γ0, (6.1)

was used, with no pole term and with a Chew-Mandelstam phase space. A fit with this
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Figure 6.4: The S-wave phase shift δ for isospin-3/2 Bπ scattering. The points were
determined using the [000]A+

1 energy levels shown in Figure 6.2.

parameterisation resulted in the parameter

γ0 =− 1.57± 0.10,

χ2/Ndof =1.02.
(6.2)

Using this reference amplitude parameterisation, the energy solutions to Lüscher’s de-

terminant condition were found. These are plotted as orange points in Figure 6.5. The

previously determined states are plotted in black, and the non-interacting levels are the

red curves, as before. One can see that the Lüscher solutions from the reference param-

eterisation are in agreement with the previously determined Bπ energy levels, suggesting

that the parameterisation is an adequate description of the data.

6.2.1 Parameterisation Variation

To determine the robustness of the results with respect to choice of parameterisation,

a number of different parameterisations were fitted. Table 6.3 shows the parameterisa-

tions for which a fit succeeded. It is worth noting that any K -matrix parameterisation

consisting of 2 free parameters failed to converge, suggesting that there are not enough

energy levels are present to constrain the amplitude to multiple free parameters. How-

ever, a fit using a 2-parameter effective range expansion succeeded, and yielded the

results
a0 = (−3.79± 0.61) · at

r0 = (−11.71± 8.70) · at

[
1.00 0.89

1.00

]

χ2/Ndof = 1.17 . (6.3)
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Figure 6.5: Same as Figure 6.2 but with the solutions to the Lüscher condition from
the reference parameterisation (of the form shown in Eq 6.1) plotted as orange points

Using the parameterisations listed in Table 6.3, a phase shift δ can be determined. This

is shown in Figure 6.6, where the phase shift determined from the reference amplitude

is plotted as a solid red curve. The inner error band arises from the variation of pa-

rameterisation. The outer band represents the systematic error, which arises from the

variation of the input hadron masses to their maximum and minimum values within their

statistical errors. The previously determined phase shift from Figure 6.4 are also shown

as points, demonstrating the consistency between the two approaches.
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Parameterisation Npars χ2/Ndof

K-matrix with a Chew-Mandelstam I (s)
K = γ(0) 1 1.02
K = γ(1) 1 1.69

K-matrix with I (s) = −iρ(s)
K = γ(0) 1 0.99
K = γ(1)s 1 1.64

Effective range expansion
k cot δ0 = 1/a0 1 1.29
k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 2 1.17

Table 6.3: The parametrisations used in the study of elastic isospin-3/2 Bπ scattering
for ξ = ξπ = 3.444. Npars indicates the number of free paramaters in each parametrisa-
tion.

Figure 6.6: The S-wave phase shift δ0 for isospin-3/2 Bπ scattering with anisotropy
ξ = ξπ = 3.444. The reference parameterisation of the form Eq 6.1 is shown as a solid
line. The inner band encompasses all parameterisations determined with acceptable
χ2/Ndof , while the outer band accounts for uncertainties arising from the variation of
input masses within their statistical error. The points from Figure 6.4 are also shown.

6.2.2 Anisotropy Variation

The variation of systematics was discussed above, but the systematic uncertainty due

to the choice of anisotropy has not been included in the analysis so far. As mentioned

in the Chapter 5, the anisotropy determined from the B meson dispersion relation, on

a lattice of volume (20)3 × 128, is ξB = 3.365(14) (see Table 5.2). This difference

from ξpi = 3.444(6) was taken into account and the anisotropy was varied between ξ ∈
[ξB , ξπ], as an investigation into the dependence of the results on the anisotropy.

Figure 6.7 shows the effect of varying the anisotropy on the reference parameterisa-

tion given in Eqn 6.1. The left plot shows the effect on the free parameter γ0 (from
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Figure 6.7: The effect of varying the anisotropy ξ on the reference parameterisation.
The change in the parameter γ0 is shown in the left plot, while the corresponding χ2/Ndof

are shown in the right plot.

the reference parameterisation in Eq 6.1) while the right plot shows the corresponding

χ2/Ndof for each fit. As a dependence on the anisotropy was found, this investigation

was extended to include the anisotropy determined from the ηb dispersion relation in

Ref [95], ξηb
= 3.590(15).

Varying to an anisotropy greater than ξπ does not make sense physically, as the inter-

action is between the B meson and the π meson. However, the systematic uncertainty

rising from the choice of anisotropy must also be taken into account. For this reason, a

second set of fits were performed for ξ = 3.424, as it was the only anisotropy tested in

the range ξ = [ξB , ξπ], with a χ2/Ndof < 2, other than the already fitted pion anisotropy.

The corresponding reference parameterisation for ξ = 3.424 is

γ0 =− 1.29± 0.09,

χ2/Ndof =1.62,
(6.4)

which is within 3σ of the previously determined fit in Eqn 6.2.

The list of parameterisations successfully fitted at this second anisotropy ξ = 3.424 is

shown in Table 6.4, with the number of free parameters and χ2/Ndof noted. Once again,

the only 2-parameter fit to successfully converge was the effective range expansion,

yielding
a0 = (−3.71± 0.71) · at

r0 = (−21.88± 11.53) · at

[
1.00 0.88

1.00

]

χ2/Ndof = 1.58 . (6.5)

The parameters are within 1σ of those obtained from the effective range expansion fitted

at the pion anisotropy (Eqn 6.3), although it must be noted that the r0 parameter is
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Parameterisation Npars χ2/Ndof

K-matrix with a Chew-Mandelstam I (s)
K = γ(0) 1 1.63
K = γ(1) 1 2.27

K-matrix with I (s) = −iρ(s)
K = γ(0) 1 1.60
K = γ(1)s 1 2.24

Effective range expansion
k cot δ0 = 1/a0 1 1.91
k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 2 1.58

Table 6.4: The parametrisations used in the study of elastic isospin-3/2 Bπ scattering
for ξ = 3.424. Npars indicates the number of free paramaters in each parametrisation.

significantly larger with a sizeable error at this second anisotropy. It is worth noting that

at this second anisotropy, the linear K -matrix parameterisation fit had a χ2/Ndof > 2,

for both choices of phase I (s). Thus both these fits were excluded from the final

results.

Shown in Figure 6.8 is the comparison between the phase shifts at the two different

anisotropies. The phase shift calculated from the reference parameterisation is plotted

as a solid curve, with red corresponding to ξ = 3.444 and blue corresponding to ξ =

3.424. The errorbands around each of the curves correspond to the variation rising from

changing the parameterisation, only considering parameterisations with a χ2/Ndof < 2.

The points from Figure 6.4 are shown in red, while the blue points correspond to

the phase shift determined using the energy levels coloured black in Figure 6.2 with

ξ = 3.424

82



Figure 6.8: The S-wave phase shift δ0 for isospin-3/2 Bπ scattering. The param-
eterisation shown is the reference parameterisation, as detailed in Eq 6.1, with red
corresponding to ξ = 3.444 and blue corresponding to ξ = 3.424. The band covers all
parameterisations determined with acceptable χ2/Ndof . The points from Figure 6.4 are
shown in red. The blue points are the phase shift determined using the black points in
Figure 6.2 with ξ = 3.424.

6.3 Outlook

As mentioned at the start of this chapter, isospin-3/2 Dπ scattering was investigated

previously in Ref [2]. A similar shape was found for the phase shift, resembling a weakly

repulsive interaction. In that study, two-parameter parameterisations of the t-matrix

were determined to be the best description of the energy levels calculated, in contrast

to this study. However, this study contained no irreps with non-zero momentum, a key

difference between the two studies.

A final plot of the isospin-3/2 Bπ S-wave phase shift is shown in Figure 6.9. This corre-

sponds to the phase shift determined from the reference parameterisation at ξ = 3.444,

with the first errorband representing the effect of varying the t-matrix parameterisation,

as in Figure 6.6. The outerband now contains systematic errors arising from the varia-

tion of input hadron masses within their statistical error and anisotropy values over the

range ξ ∈ [3.424, 3.444].

A conservative estimate of the scattering length, taking the average over the four fits

which were the form of the effective range expansion yields

a0 = (−3.2± 1.0) · at = −0.11± 0.03 fm. (6.6)
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Figure 6.9: The S-wave phase shift δ0 for isospin-3/2 Bπ scattering. The reference
parameterisation is shown, of the form shown in Eq 6.1. The inner band covers all
parameterisations determined with acceptable χ2/Ndof , while the outer band accounts
for uncertainties arising from the variation of input masses and anisotropy. The points
from Figure 6.4 are also shown.

It is clear that the scattering methods that were successfully used in the light and charm

sectors are working in the heavy-light sector. The next steps in the study of isospin-

3/2 Bπ scatteing would be to first include states above the B?ρ threshold, and do a

coupled channel analysis, treating the ρ as a stable particle. Investigating the effect on

the amplitude of including moving frame irreps would also be important. Confirming

that contributions of partial waves with ` ≥ 1 are negligible would be desirable. Finally,

moving on from this, studying the isospin-1/2 Bπ scattering process would be very

interesting. The study of Qq̄ states such as the B∗0 should be fascinating, especially

considering the results of the study of Dπ, detailed in Chapter 4. The scattering of Bπ

still has much left to explore.
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7 Conclusion

In this thesis, heavy hadron spectroscopy was studied using the formalism of lattice quan-

tum chromodynamics. This involved the determination of finite-volume spectra through

the evaluation of correlators in the distillation framework from a basis of appropriate

operators. These spectra were related to infinite-volume scattering amplitudes using

Lüscher’s method. In Chapter 4, isospin-1/2 Dπ scattering amplitudes were computed.

The elastic S-wave amplitude was analytically continued to complex energies in search

of poles. A resonance pole was found, which was identified to be the D∗0 meson. The

amplitude is of a similar shape to experimental observations but the mass calculated

in this study is below the value currently reported. This is in agreement with a similar

study performed at a higher pion mass. Extrapolating to physical pion mass suggests

that the current reported mass of the D∗0 is too high.

In Chapter 5, a calculation of the excited and exotic spectra of the B , Bs and Bc

mesons is described. An extensive spectra was calculated in each of the three meson

sectors using a relativistic b quark, with robust spin identification. The pattern of states

observed is similar to those previously observed in the charmed meson sector. The

presence of exotic hybrid mesons was investigated, with hybrid mesons identified in each

of the three meson sectors. These states were proposed to be candidate states of a

hybrid supermultiplet in each sector. An investigation into the mixing of spin-singlet

and spin-triplet states was performed, a phenomenon occurring due to heavy-light meson

states not being eigenstates of charge conjugation on the lattice. The dependence of the

mixing angle between pairs of spin-singlet and spin-triplet states, on the mass difference

of the constituent quarks of the meson was examined. As previously predicted, there is

more mixing in B and Bs than there is in D and Ds . Mixing in Bc on the other hand,

was found to be much weaker than in the heavy-light mesons, and is much closer to

zero mixing, as is observed in quarkonium.

Finally, Chapter 6 detailed an exploratory study of isospin-3/2 Bπ scattering. The

S-wave scattering amplitude was computed, and was found to be a similar shape to

previously calculated isospin-3/2 Dπ S-wave scattering amplitude, both being the form
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of a weakly repulsive interaction. The systematic errors were investigated through the

variation of input hadron masses and anisotropy, as well as of t-matrix parameterisations.

A noteworthy dependence was found on the anisotropy, although that may be solved

through the inclusion of more energy levels in a coupled channel analysis or through the

addition of energy levels from moving-frame irreps.

It should be noted that all of the results presented in this thesis were calculated using a

single lattice spacing, and at unphysical pion masses. Finite volume effects were explored

through the variation of the spatial volume of the lattice. All of these contribute to

systematic errors that were beyond the remit of this thesis. Nevertheless, the results

obtained from the methods outlined in this work are promising, and there are clearly

many prospects in the investigation of hadrons containing a bottom quark, with hopefully

many more developments to come.
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A1 Isospin-1/2 Dπ Scattering

A1.1 Operator Lists

A+
1 [000] A1[100] A1[110] A1[111] A1[200]

D[000] π[000] D[000] π[100] D[000] π[110] D[000] π[111] D[100] π[100]

D[100] π[100] D[100] π[000] D[100] π[100] D[100] π[110] D[110] π[110]

D[110] π[110] D[100] π[110] D[110] π[000] D[110] π[100] D[200] π[000]

D[111] π[111] D[100] π[200] D[110] π[110] D[111] π[000] D[210] π[100]

D[000] η[000] D[110] π[100] D[111] π[100] D[211] π[100] D[200] η[000]

D[100] η[100] D[110] π[111] D[210] π[100] D∗[110] π[100]

Ds [000] K̄[000] D[111] π[110] D∗[100] π[100] D[111] η[000]

D[200] π[100] D∗[111] π[100] Ds [111] K̄[000]

D[210] π[110] D[110] η[000]

D[000] η[100] Ds [110] K̄[000]

D[100] η[000]

Ds [000] K̄[100]

Ds [100] K̄[000]

8× ψ̄Γψ 18× ψ̄Γψ 18× ψ̄Γψ 9× ψ̄Γψ 16× ψ̄Γψ

Table A1.1: Operators used in the S-wave Dπ fits. Subscripts indicate momentum
types. Γ represents a monomial of γ matrices and derivatives. For more details, see
Chapter 4.

T−1 [000] E2[100] B1[110] B2[110]
D[100] π[100] D[100] π[110] D[100] π[100] D[100] π[111]

D[110] π[110] D[110] π[100] D[110] π[110] D[110] π[110]

D∗[100] π[100] D∗[000] π[100] D[210] π[100] D[111] π[100]

D∗[100] π[000] D∗[100] π[100] D∗[000] π[110]

D∗[110] π[000] D∗[100] π[100] {2}
D∗[110] π[000]

D∗[111] π[100]

6× ψ̄Γψ 18× ψ̄Γψ 18× ψ̄Γψ 20× ψ̄Γψ

Table A1.2: As for table A1.1, but for operators used in the P-wave Dπ fits. The
number in curly brackets indicates the number of operators of this kind that were
used.For more details, see Chapter 4.
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A1.2 Parameterisation Variations

` = 0 Parametrisation ` = 1 Parametrisation Npars χ2/Ndof

K-matrix with a Chew-Mandelstam I (s) in both partial waves
(ax) K = g2

m2−s
K = γ1 3 1.07

(bx) K = g2

m2−s
+ γ(0) K = γ1 4 1.13

(cx) K = g2

m2−s
+ γ(1)s K = γ1 4 1.13

(dx) K = (g+g (1)s)2

m2−s
K = γ1 4 1.13

(ex) K−1 = c (0) + c (1)s K = γ1 3 1.07
(fx) K−1 = c(0)+c(1)s

c(2)s
K = γ1 4 1.13

K-matrix with I (s) = −iρ(s) in both partial waves
(gx) K = g2

m2−s
K = γ1 3 1.08

(hx) K = g2

m2−s
+ γ(0) K = γ1 4 1.13

(ix) K = g2

m2−s
+ γ(1)s K = γ1 4 1.16

(jx) K = (g+g (0)s)2

m2−s
K = γ1 4 1 .37 †

(kx) K−1 = c0 + c1s K = γ1 3 1.08
(lx) K−1 = c(0)+c(1)s

c(2)s
K = γ1 4 1.13

Effective range
(mx) k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 K = γ1 3 1.10
(nx) k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 + P2,0k
4 K = γ1 4 1 .11 †

Breit-Wigner
(ox) t = 1

ρ0

m0Γ0

m2
0−s−im0Γ0

K = γ1 3 1.08

Unitarised χPT

(px) t−1 =
(
− 1

16π
VJ=0

)−1
+ 16πGDR K = γ1 3 1.09

† - physical sheet poles

Table A1.3: The parametrisations used that excluded any levels below threshold. Npars

indicates the number of free parameters in each parameterisation. An italicised χ2/Ndof

value indicates this fit was not included in the amplitude figure and pole values. For
analysis of the results of these parameterisations, see Chapter 4.
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` = 0 Parametrisation ` = 1 Parametrisation Npars χ2/Ndof

K-matrix with Chew-Mandelstam I (s) in both partial waves
(a) K = g2

m2−s
K =

g2
1

m2
1−s

4 0.85

(b) K = g2

m2−s
+ γ(1)s K =

g2
1

m2
1−s

5 0.84

(c) K = (g+g (1)s)2

m2−s
K =

g2
1

m2
1−s

5 0.84

(d) K−1 = c (0) + c (1)s K =
g2

1

m2
1−s

4 0.85

(e) K−1 = c(0)+c(1)s
c(2)s

K =
g2

1

m2
1−s

5 0.84

(f) K = g2

m2−s
+ γ(0) + γ(1)s K =

g2
1

m2
1−s

6 0 .88 ∗

K-matrix with I (s) = −iρ(s) in both partial waves
(g) K = g2

m2−s
+ γ(0) K =

g2
1

m2
1−s

5 1.12

(h) K = g2

m2−s
K =

g2
1

m2
1−s

4 0.86

(i) K = (g+g (1)s)2

m2−s
K =

g2
1

m2
1−s

5 0.84

(j) K−1 = c (0) + c (1)s K =
g2

1

m2
1−s

4 0.86

(k) K−1 = c(0)+c(1)s
c(2)s

K =
g2

1

m2
1−s

5 0.85

K-matrix with Chew-Mandelstam I (s) in S-wave, Effective range in P-wave
(l) K = g2

m2−s
+ γ(0) k cot δ1 = 1/a1 + 1

2
r 2
1 k

2 5 0.87

Effective range in S wave, K-matrix with Chew-Mandelstam I (s) in P-wave
(m) k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 K =
g2

1

m2
1−s

4 0.88

(n) k cot δ0 = 1/a0 + 1
2
r 2
0 k

2 + P2,0k
4 K =

g2
1

m2
1−s

5 0 .82 †

Effective range in both partial waves
(o) k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 k cot δ1 = 1/a1 + 1
2
r 2
1 k

2 4 0.87
(p) k cot δ0 = 1/a0 + 1

2
r 2
0 k

2 + P2,0k
4 k cot δ1 = 1/a1 + 1

2
r 2
1 k

2 5 0 .85 †

Breit-Wigner in S-wave, K-matrix with I (s) = L(s) in P-wave
(q) t = 1

ρ0

m0Γ0

m2
0−s−im0Γ0

K =
g2

1

m2
1−s

4 0.86

First-order unitarised χPT

(s) t−1 =
(
− 1

16π
VJ=0

)−1
+ 16πGDR K =

g2
1

m2
1−s

4 0.81

† - physical sheet poles
∗ - additional resonance poles

Table A1.4: The parameterisations used that included the P-wave bound state in the
data. Npars indicates the number of free parameters in each parameterisation. Here L(s)
refers to the Chew-Mandelstam prescription. An italicised χ2/Ndof value indicates this
fit was not included in the amplitude figure and pole values. For analysis of the results
of these parameterisations, see Chapter 4.
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A2 Isospin-3/2 Bπ Scattering

A2.1 Operator Lists

A+
1 (L/as = 16) A+

1 (L/as = 20) A+
1 (L/as = 24)

B[000] π[000] B[000] π[000] B[000] π[000]

B[100] π[-100] B[100] π[-100] B[100] π[-100]

B∗[000] ρ[000] B∗[000] ρ[000] B∗[000] ρ[000]

B[110] π[-1-10] B[110] π[-1-10]

B[111] π[-1-1-1]

B∗[100] ρ[-100]

Table A2.1: Operators used in the isospin-3/2 S-wave Bπ fits. Subscripts indicate
momentum types. The respective lattice spatial length is noted in brackets. For details
of the calculation these operators were used in, see Chapter 6.

T−1 (L/as = 16) E+ (L/as = 16) T−1 (L/as = 20) E+ (L/as = 20)
B[100] π[-100] {2} B[100] π[-100] B[100] π[-100] {2} B[100] π[-100]

B[110] π[-1-10] {3} B[110] π[-1-10] {2}

Table A2.2: As for table A2.1, but for the T−1 and E+ irreps. The number in curly
brackets indicates the number of operators of this kind that were used.For details of the
calculation these operators were used in, see Chapter 6.
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