
1

Efficient deadlock avoidance for
2D mesh NoCs that use OQ or VOQ routers

Philippos Papaphilippou, Thiem Van Chu

Abstract—Network-on-chips (NoCs) are currently a widely used approach for achieving scalability of multi-cores to many-cores, as
well as for interconnecting other vital system-on-chip (SoC) components. Each entity in 2D mesh-based NoCs has a router responsible
for forwarding packets between the dimensions as well as the entity itself, and it is essentially a 5-port switch. With respect to the
routing algorithm, there are important trade-offs between routing performance and the efficiency of overcoming potential deadlocks.
Common deadlock avoidance techniques including the turn model usually involve restrictions of certain paths a packet can take at the
cost of a higher probability for network congestion. In contrast, deadlock resolution techniques, as well as some avoidance schemes,
provide more path flexibility at the expense of hardware complexity, such as by incorporating (or assuming) dedicated buffers.
This paper provides a deadlock avoidance algorithm for NoC routers based on output-queues (OQs) or virtual-output queues (VOQs),
with a focus on their use on field-programmable gate-arrays (FPGAs). The proposed approach features fewer path restrictions than
common techniques, and can be based on existing routing algorithms as a baseline, deadlock-free or not. This requires no modification
to the queueing topology, and the required logic is minimal. Our algorithm approaches the performance of fully-adaptive algorithms,
while maintaining deadlock freedom.

Index Terms—FPGA, NoC, SoC, deadlock avoidance, VOQ, OQ, NoC router, turn model

✦

1 INTRODUCTION

A network-on-chip (NoC) is an interesting and diverse ap-
proach for interconnecting a high number of computing en-
tities. With the increase of the number of entities in today’s
processors and their heterogeneity, NoCs have an increasing
presence in research. This includes field-programmable gate
arrays (FPGA), where NoCs are applied to prototyping,
CGRA implementation [1] or simply for connecting systems
of smaller logic components.

One of the fundamental challenges in NoCs are dead-
locks, and this is usually solved at the routing level or/and
at the flow control level. This work focuses on the former.
At the routing level, deadlocks are avoided by ensuring that
the paths produced by the routing algorithm do not form
any cycles. At the flow control level, deadlocks are avoided
by preventing router buffers from being allocated to packets
in a way such that a dependency cycle of packets is formed.
Note that in practice, this distinction may be less clear, as it
can relate more directly to implementation, such as to divide
the router logic into pipeline stages [2].

While the NoC research mostly focused on virtual chan-
nels (VCs) for buffering, in FPGAs and embedded systems,
it is also common to use NoC designs with routers based on
output-queued (OQ) switches [3], [4] or input-queued (IQ)
switches with virtual output queues (VOQs) [5], [6]. These
have a queue for every input-output combination (see figure
2). As a result, each router in the nodes of such NoCs has
a queue per pair combination of the 5 directions ({E, S, W,

● Philippos Papaphilippou is with the School of Computer Science &
Statistics, Trinity College Dublin, Ireland (E-mail: papaphip@tcd.ie).

● Thiem Van Chu is with Tokyo Institute of Technology, Japan (E-mail:
thiem@artic.iir.titech.ac.jp).

N, C} for east, south, west, north and centre respectively),
assuming a 2D-mesh topology.

Limitations in state-of-the-art: While there is a plethora of
research on deadlock freedom in NoCs with routers based
on virtual channels (VCs), NoCs that have a VOQ-like queue
organisation still rely on simpler routing algorithms to
achieve deadlock avoidance. This is because there is no theo-
retical background to increase path freedom for approaching
full-adaptivity. While it is possible to adapt some methods
from VCs, they are costly to apply, such as by introducing
numerous additional queues for implementing/emulating
escape channels. This limitation has an impact on routing
performance, while the studied queue organisation remains
popular among FPGA and embedded applications [3], [4],
[7].

Insights: The main idea of this paper is that in NoC
routers with VOQ-like queue organisation (one queue per
input-output pair), deadlock avoidance can be achieved
with more path flexibility than traditional models by cal-
culating a worst case occupancy of specific queues. This is based
on the observation that this queue topology already implies turn
information, which can be exploited to relax the turn model for
building more flexible deadlock-free routing algorithms.

Motivation: In order to demonstrate the importance of
path flexibility, figure 1 presents simplified results from a
8 × 8 NoC simulation with output-queues under 3 routing
algorithms. The first algorithm is dimension order routing
(DOR) which limits 4/8 of the possible turns, the second is
“north last” which forbids 2/8 of the available turns. The
third one, however, does not have any turn limitation, but
has a potential for creating deadlocks. The traffic model
for this example was purposely selected to produce lower
probability for deadlocks, in order to show the potential

2

impact of path flexibility on performance.

5 15 25 35 45 55 65 75 85
0

10

20

30

40

50

60

70

80

90

100
Traffic: Bit-reverse

4/8 of turns (DOR)

6/8 of turns (North-last)

8/8 of turns

Input rate (%)

⚠

T
hr

ou
gh

pu
t

(e
xt

ra
ct

ed
 /

in
je

ct
ed

 p
ac

ke
ts

, %
)

Fig. 1. NoC throughput under different quantities of turn restrictions

For instance, for a 55% input rate of bit-reverse traffic [2],
DOR yields a throughput (extracted over injected packets)
of 40%, while the heuristic-based “north-last” and the full-
freedom ones yield 59% and 72% respectively. The goal is to
approach the performance of the latter, but with deadlock
freedom. Note that these numerical values are case-specific.
The throughput metric is simplified for the introduction
here. See section 5.1 for more detailed discussion and simu-
lations from which this example is based on.

Contribution: The proposed solution is a hybrid approach
that solves the deadlock problem more efficiently than
traditional routing algorithms. It gives the illusion of full
freedom to any routing algorithm, deadlock-free or not,
by using it by default, while intervening with a fallback
algorithm when needed. A fallback algorithm such as XY or
YX dimension order routing (DOR) is activated only locally
and when deemed necessary according to the freedom con-
dition. The freedom condition requires minimal information
to decide if a packet can perform an originally restricted-
turn. This is achieved without assuming additional queues
(such as escape channels [8], interface buffers [9]), deadlock
detection [10] and recovery routines [9], misrouting (non-
minimal path), packet reordering and global knowledge that
are usually found in the literature on NoCs with input-
queued VC routers. An intentional but indirect outcome of
this paper is also the increased routing performance of ex-
ample hybrid algorithms exploiting the additional flexibility
of the formally proven deadlock-avoidance technique. The
evaluation framework is open source.1

Following is background information (section 2) on the
related router architectures and the baseline deadlock avoid-
ance model. Section 3 introduces the proposed algorithm,
while section 4 is a proof for the correctness of the proposal.
The evaluation (section 5) includes simulations of example
routing algorithms based on the proposed approach, as well
as a study on the router resource utilisation and implemen-
tation efficiency. Finally, the paper concludes with related
work (section 6), discussions on future work (section 7) and
a conclusion (section 8).

1. Source available: https://philippos.info/deadlock

2 BACKGROUND

2.1 Network-on-chip routers

NoC routers are essentially switches, forwarding packets
from port to port. The most common NoC routers are based
on an input-queued switch with virtual channels (VCs). On
each port ({E, S, W, N, C} for east, south, west, north and
centre), the input is connected to a demultiplexer splitting
the packets/flits into a fixed number of VCs (buffers). A
virtual channel allocation scheme is one of the first decisions
a NoC router makes on packet arrival, which can also relate
to quality of service (QoS).

Each group of VCs are then demultiplexed into the
assumed crossbar (functionally a superset of permutation
networks) connected to the outputs (ports), resulting in a
5 × 5 switch. The buffering is necessary to facilitate the
temporary storage of incoming packets until a passable
matching is achieved between the output ports and all
virtual channels. A matching is calculated on every fixed
period of time and is used by the crossbar. See figure 2 (top
left) for an illustration of a router with a number of VCs near
each of its inputs.

2.1.1 Input-queued routers with VOQs

Instead of virtual channels (VC), virtual output queues
(VOQs) can be used to implement switches, and are es-
pecially common in network switches. There is a queue
for every input-output port combination. Thus, there are P
groups of P VOQs, resulting in P 2 total buffers for a P -port
switch (in 2D-mesh NoCs, P = 5).

A disadvantage of virtual output queues over virtual
channels in NoCs is that they work as a static virtual
allocation scheme in a switch with 4 or 5 virtual channels.
This essentially means that the queue utilisation may be
less efficient, and the buffer space is generally higher. It
is also more challenging to reduce the number of those
queues (one way is to restrict routability, see the discussion
of section 5.3). Additionally, supporting quality of service
(QoS) can challenge scalability, due to the increased queuing
requirements.

However, as both VCs and VOQs support memory shar-
ing per queue group, their differences can become less sig-
nificant according to the implementation, also considering
that 4 VCs may already be a norm in modern processors
[11], [12].

2.1.2 Output-queued (OQ) routers

Another approach to NoC router implementation is output-
queues. They eliminate the use of a crossbar in favour of
simpler logic. In this case, the queue organisation is the same
with virtual output queues, and is illustrated in figure 2
(bottom).

On FPGAs, this is a prominent NoC router architecture
[13], as with the split-merge switch [3], [4]. The split-merge
switch is an output-queued switch meaning that, upon
arrival, the incoming packets are immediately split across
queues according to the destination port. Those queues are
then grouped based on their destination port, and are mul-
tiplexed only once. This results in low-complexity and/or
highly-pipelinable logic, the split and merge units, which

https://philippos.info/deadlock

3

N

S
E

W

CN

S
E

W

C

Output-queuedInput-queued (with VOQs)

N

S
E

W

C

Input-queued (with VCs)

...

...

...

...

...

Fig. 2. Input and output-queued NoC routers. Colour-coded queues feed the output port of the corresponding colour. The non-coloured queues
rely on virtual channel (VC) allocation, hence each of their packets can be destined to different output ports. The outputs to ports other than E are
abstracted for simplicity.

are here equivalent to demultiplexers and multiplexers re-
spectively.

There is no need for an expensive scheduling algorithm,
such as by featuring an iterative approach to perform well.
There is only arbitration near the output, for every output
port, which can be fulfilled by only using priority encoders.
This also results in high scheduling performance, as it natu-
rally provides more connectivity combinations than input
queued for the same queue topology. This is because of
the absence of additional arbitration steps near the inputs,
which would otherwise serialise dequeuing from the output
queues coming from the same input port.

A potential disadvantage of output-queued switches as
NoCs routers is the limited scope for memory sharing, the
associated cost of which also relates to QoS support. Both
memory sharing and QoS are seemingly less popular on
FPGAs, as simpler designs are preferred [4], [7].

Our proposal provides the theoretical foundations to
provide more flexibility in routing for such VOQ-like queue
topologies, instead of relying on worse-performing tradi-
tional routing.

2.2 Turn Model

The turn model can be used to create routing algorithms
based on turn restriction to avoid forming any possible
cyclic dependency [14]. The resulting set of possible algo-
rithms can be summarised by the rules illustrated in figure
3. There are clockwise and counterclockwise turns for which
at least one turn from both must be forbidden. However, for
each diagonal direction there must be at least one way for
packets to travel, hence the “≥ 1” sum rule per column in
the figure. This model is a superset of the older “dimension
ordered routing” (DOR), i.e. XY DOR for first traversing
along the x-axis (no “Å,¼,¾,Ç” turns) and YX DOR (no
“½,Æ,Ä,¿” turns).

When reducing the restrictions as much as allowed
by this model, there needs to be one clockwise and one
counterclockwise turn restriction, out of which they are not
on a common path, as explained above. This results in 12
possible combinations for the forbidden turns (permutations
of 2 from 4 (i.e. P(4,2)), as repetition from the table columns
would lead to forbidden destinations). In other words, the
turn model gives 12 turn-restriction-based algorithms. How-
ever, if a rotated mesh is considered equivalent, this reduces

Clock-
wise

Anti-
clock-
wise

Turns Sum

Sum ≥1 ≥1 ≥1 ≥1

≤3

≤3

S

S

S

N N

S

E

E

E

W

W

W

W

E

NN

Fig. 3. Turn model for deadlock avoidance

the number of algorithms to only 3: “west-first” (no “Å,¾”
turns), “north-last” (no “Å,¼” turns) and “negative-first”
(no “Å,¿” turns) routing algorithms.

2.3 Deadlocks
The deadlocks that happen in NoC routers with a VOQ
or OQ queueing topology are a bit less trivial than the
classical example paths on a simple 2×2 mesh [15]. In such a
deadlocked 2 × 2 mesh with a single queue (of length 1) per
link per node, the remaining packets all have 2-hop path,
as 1-hop paths would have been consumed directly by the
destination, and 3-hop paths would have been U-turns (this
paper only studies minimal path routing). In this case, there
is a cyclic dependency on the four buffers. In the OQ and
VOQ case, however, it is impossible to create a deadlock on
a 2 × 2 mesh, as all of the four different 2-hop paths never
pass from the same queue.

Figure 4 illustrates an extended deadlock state (i.e. also
including blocked queues not necessarily from the cyclic
dependency) that is observed in a simulation of 3 × 4 mesh
NoC with OQs. The OQs are of length 2 and the simulation
uses a routing algorithm without deadlock avoidance. The
numbered nodes represent the NoC nodes, while the blue
arrows represent the filled output queues. The start and
target positions of the blue arrows denote the source and
destination of single turns (e.g. “¼” for the SE turn), as
(V)OQs are associated here with turns. The dashed arrows
represent queue dependencies on filled queues. They do not
necessarily show which queues are involved (the heads of
two queues can target the same destination queue), though
here it is more apparent, given that this simulation is in a
saturated state.

4

1 2 30

5 6 74

9 10 118

Fig. 4. Extended deadlock state example from a simulation of a 3 × 4
NoC with OQs.

3 PROPOSED ALGORITHM

The proposed algorithm is bimodal, and avoids deadlocks
by selecting between a base algorithm and a fallback algo-
rithm based on the freedom condition F (section 3.2) for
every individual next hop decision. The fallback routing
algorithm in our case shall follow the turn model, and can
be for example XY DOR, “west-first”, etc. The algorithm 1
presents the distributed algorithm among the NoC’s nodes
that relates to the routing decisions of OQ or VOQ-based
NoC routers.

1 in inp = from(p); ▷ the input port receiving p
2 out sel; ▷ the output port selection
3 while forever do
4 receive (p);
5 if F(p)==True then
6 sel ← base algorithm(p);
7 else
8 sel ← fallback algorithm(p); ▷ Turn model
9 end

10 OQs[inp][sel].enqueue(p);
11 end
Algorithm 1: Proposed routing algorithm for (V)OQs

As the goal of this algorithm is to provide path flexibility,
such as for better routing performance, the base algorithm
is expected to allow a superset of the turns allowed by the
fallback algorithm. The base algorithm can be any arbitrary
routing algorithm, deadlock-free or not, which is also very
useful for adopting algorithms that would otherwise require
a specialised queue organisation for achieving deadlock
freedom. Some examples include O1-Turn and LEF [16] that
assert virtual channel allocation requirements. Like with
turn model algorithms, the flexibility of the base algorithm
is also appropriate for adaptive routing, where the routing
decisions are based on heuristics such as for estimating
network congestion.

Sections 3.2 and 3.3 provide a detailed description of the
proposed freedom condition.

3.1 Assumptions

The proposed approach is studied under the assumptions
listed in table 1. The table classifies these assumptions based
on whether they are a requirement of the proposed algo-
rithm (“fundamental”), or if they are design choices serving

simplicity or practicality (“adaptable”). The discussion of
section 7 elaborates on some trivial cases for generalising
some of the “adaptable” attributes.

TABLE 1
Assumptions

Attribute Value Comments

Fundamental:
NoC topology 2D mesh

Queue organisation OQ or
VOQ

up to 5 × 5 virtual/physical
queues from (N, W, S, E and C)1

Variable-size packets supported head flit carries the packet size
(elaborated in sections 3.2 and 7)

Adaptable:
Multi-flit packets supported

Allowable paths minimal
(shortest)

Manhattan distance
(i.e. ∣x1 − x2∣ + ∣y1 − y2∣)

Misrouting no no temporary redirections
Interface queues no

Flow control ready signal
per port

5-bit based on queue occupancy
per (N, W, S, E and C) turn1

Re-allocation scheme WPF [12] non-empty channels can receive
new packets, if a tail flit arrives

Processing latency 1 router implementation-specific

1fewer in practice, as minimal path contains no U-turns etc.

The series of events when a node receives a packet is
the following: routing (proposed algorithm), virtual chan-
nel allocation (fixed because of the (V)OQ organisation),
scheduling (including for the whole crossbar when using
VOQs [7]) and finally switch traversal. The routing decisions
of an upstream node are assumed not to influence the
routing decisions of a downstream node.

The proposed approach supports multi-flit packets. The
paper focuses mostly on single or few-flit packets, a com-
mon case for NoCs in processors [17]. This is also the
case with NoCs working as system interconnects inside
FPGAs. Hence the use of whole packet forwarding (WPF)
that avoids unnecessary blocking of the buffers (see table
1). A simple scheduling assumption for the output arbiters
is required to give priority to flits of the same packets (e.g.
before applying round-robin) to avoid packet overlapping.

In the nomenclature, the term “turn” is also sometimes
used for forwardings from and to a port that is on the
opposite side (going straight), as well as to the node’s centre
(“C”). These are considered legal in accordance with the
turn model. The centre in this case is a “sink”, being able
to consume packets directly [18], [19]. A node’s centre as a
consumer cannot contribute to a deadlock, as every inserted
packet is eventually consumed in a dedicated (virtual) out-
put queue. Also, the turn model does not consider straight
forwardings for deadlocks, though different models can also
break circles in straight sections of a packet’s path.

3.2 Freedom condition

The freedom condition (F) is a sufficient condition for the
avoidance of deadlocks, and is applied on packet arrival
into any non-sink node (sink is the final destination).

5

The main idea of F goes as follows. If an incoming
packet p can do a clockwise or a counterclockwise turn on
the next hop, and those turns are considered restricted based
on the fallback algorithm (e.g. “north-last”), we check the
worst case occupancy for that queue of the next hop router.
This is achieved by summing up the contents of all queues
that feed into that queue (only the packets that can go into
that queue), plus its own contents, and checking whether the
addition of the incoming packet would cause an overflow
in the worst case. The worst case is for all packets in the
sum to end up in the restricted-turn queue and that for
any reason it stops being consumed in the meantime. The
time frame for the worst case occupancy is for until packet
p manages to be enqueued into the restricted turn/queue.
Whenever F (p) = False, p takes an alternative queue/output
port/direction, which ensures that p will not be able to make
a turn not following the turn model of the fallback algorithm
in the routing step of the next hop.

N

S
E

W

C

S

W

C

N

S
E

W

C

S

W

C

N

E

N

E

node 2 node 3

node 0 node 1

Fig. 5. Example NoC state with single-flit packets and OQ (of depth 8)

Figure 5 illustrates the main idea with an example NoC
state that can benefit (avoid a deadlock) from the use of the
freedom condition. An incoming packet to node 0 has node
3 as a destination. This packet can be routed to two possible
queues, one for going through node 2 (middle queue in
node 0) and one for going through node 1 (not shown).
The depicted queues in node 0 with green packets are all
the queues that feed node 2 from its south port. Given that
the fallback routing algorithm is based on the turn model,
and the originally-forbidden turn is on the path through
2 (“¼” queue/turn in node 2, with red hint), we notice
that the packet may not be able to be accommodated, if the
forbidden path is followed. Assuming all packets (green)
in those queues target the red queue, i.e. based on packet
destination, the worst case occupancy for the red queue is 8
(2+1+3 from node 0 and 2 from node 2). This will happen,
for example, under the current queue states, if the red queue
stops being consumed in the meantime. Thus, the incoming
packet could cause a stall, if it follows the path through 2,
and it would be safer to follow the path through node 1.
The receiving queue in node 1 (“Ä” turn) is not forbidden
by the turn model, as it is the counterclockwise direction-

equivalent of the forbidden one (≥ 1 requirement in section
2.2), and therefore will not cause a cyclic dependency on its
own.

Let p be a packet or flit received from any port from(p) ∈
{E,S,W,N,C}. Let sel ∈ {E,S,W,N,C} be the selected
direction of the proposed routing algorithm. based on the
result of the freedom condition.

The freedom condition is only useful whenever the next
hop implied in sel could make p land in a queue of the next
hop that would be a restricted turn based on the turn model.
next(p) is the set containing all possible queue destinations
of p inside the next-hop’s router, and in practice here it also
follows no-misrouting. When p arrives at the next hop, ac-
cording to its designated final destination it can go straight
(“↗”), to the centre, clockwise (“⟳”) or counterclockwise
(“⟲”). Based on our assumptions the latter two are the
only ones that can be forbidden turns, and are mutually
exclusive.

The piecewise function of the freedom condition is as
follows: F (p) ≡
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(p) + occp(q′
⟳
) +∑d∈{C,↗,⟲} occp(qd) ≤ cap(q′⟳),

q′
⟳
∈ next(p) ∧ ¬turn(q′

⟳
)

size(p) + occp(q′
⟲
) +∑d∈{C,↗,⟳} occ

′(qd) ≤ cap(q′
⟲
),

q′
⟲
∈ next(p) ∧ ¬turn(q′

⟲
)

True, Otherwise

where cap(q) is the capacity of queue q, qd is a queue
of the current node (receiving p) that receives packets from
direction d, while q′d is a queue of the next hop as pointed
by sel. turn(q) indicates that the queue q corresponds to
a legal turn based on an algorithm derived by the original
turn model.

The occupancy of queue q is calculated as occp(q) =
∑p′∈q size(p′), which counts multi-flit packets rather than
the physical occupancy. The size(p) function indicates the
number of flits a packet p consists of. This is useful in
the cases where multi-flit packets are allowed, where this
function is only useful on the head flits of packets. The
availability of this information is assumed. For multi-flit
packets the head flit shall mention the number of flits for the
whole packet. For non-head flits of a packet p, size(p) = 0,
since the final packet occupancy for multi-flit packets should
be known by the time their first flit is accommodated.

3.3 Freedom condition adaptation
In order to simplify the presentation of the freedom condi-
tion also based on implementation practicality, this subsec-
tion provides an adaptation example. The section provides
a simplified sufficient condition F ′ based on system imple-
mentation assumptions and a higher degree of approxima-
tion for the queue occupancy, but with the same worst case
(i.e. F ′(p)→ F (p)).

The size of the packets (size(x) function) is replaced by
1, as only single-flits are considered for brevity. A related
modification is to replace the packet/flit counts having a
potential queue target inside the next hop with the entire
(physical) occupancy of each of the corresponding queues

6

(denoted by occ(x) for each queue x). Although there can
be an overhead in the path flexibility the algorithm provides,
it could also be implemented more efficiently as the queue
length circuitry is likely to be already existent.

Another adaptation is that the “north last” routing algo-
rithm is selected as the fallback condition (or a restriction
subset that still follows a turn model). By having the same
output port (“N”) as the potential direction for the start of
both forbidden turns for the next hop (SW, SE, i.e. “Å,¼”),
there needs to be less logic for the queue capacity checks
in total. This is because qC , q↗, q⟳ and q

⟲
represent the

same queues for the turns SW and SE, happening at q′
⟲

and q′
⟳

respectively in the next hop across the N direction.
Under this assumption, the counterclockwise, straight and
clockwise of the current node in F become the WN, SN and
EN queues (“Ä, ↑,½”) and for the next hop the SW, SN, SE
(“Å, ↑,¼”) respectively.

The link overhead in this case is two southerly wires
between each consecutive neighbouring nodes in the y-axis,
of bit widths equal to ⌈log2(cap(q′¼))⌉ and ⌈log2(cap(q′Å))⌉
correspondingly. This metric makes the simplifying assump-
tion that the occupancy of the next hop can be provided
within the same cycle. A practical implementation with a
credit system, such as with pipelined router implementa-
tions, is also likely to use fewer wires between the nodes.

F ′(p) ≡
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + occ(q′
¼
) + ∑

d∈{C,↑,Ä}
occ(qd) ≤ cap(q′¼), q′

¼
∈ next(p)

1 + occ(q′
Å
) + ∑

d∈{C,↑,½}
occ(qd) ≤ cap(q′Å), q′

Å
∈ next(p)

True, Otherwise

Figure 6 illustrates the potential paths that involve non-
allowable turns/queues by “north-last” as the fallback rout-
ing algorithm, which restricts SW and SE turns. When a
packet can make such turns in the next hop (associated with
the queues q′

Å
and q′

¼
), then exactly one of the first two

pieces of the piecewise function F ′ is used.
For the sake of notation simplicity both F and its varia-

tion F ′ are only valid when applied “serially” on the set of
incoming packets per cycle (but still being a combinational
circuit operating in the same cycle). In practice, their com-
putation can be implemented in parallel for each input port,
but there needs to be a simple arbitration step for synchro-
nisation, such as with a priority encoder among the input
ports. This is for whenever two packets can compete for the
same potential queue of the next hop (packets from different
ports/directions are still placed in different queues).

3.4 Novel routing algorithms
Two example routing algorithms are provided for the pur-
poses of evaluation, and are based on the proposed bimodal
algorithm. The first one is “XY/Adaptive” and uses XY
DOR as a fallback algorithm. This fallback algorithm is
equivalent to the restrictions as found in “north-last” in
our arrangement (adaptation of section 3.3), as F ′ = True
for south ports, since they cannot form a forbidden turn
as per our base turn model. The “Adaptive” component

N

S
E

W

C

N

S
E

W

C

S S

NN

E

E

W

W

Allowable turns
by the turn model

(North-last)
(q')

qC

counter-
clockwise

clockwise

counter-
clockwise

center

straight

q'

(q')q'

(q)q

clockwise

(q)q
(q)q

Fig. 6. Packet paths involving originally-forbidden turns on the next hop

of “XY/Adaptive” is full-freedom, i.e. there is no turn
restriction and the routing decisions follow a heuristic.

As adaptive routing algorithms like “north-last” intro-
duce a degree of turn freedom, heuristics are used to
avoid congestion. Throughout the entirety of this study,
the adaptiveness heuristic is consistent for all experiments.
It is enabled where applicable, including for the novel
“XY/Adaptive”. The higher priority is given to the turn
for which the direction maps to the queue with the least
occupancy. This is conventional, but in this way, the infor-
mation used by the heuristic is also local to the node. The
occupancy of each local queue is still indirectly associated
with the congestion in the corresponding next hops.

The second proposed algorithm based on the freedom
condition F ′ is “XY/O1-Turn”, which alternates between
XY DOR and O1-Turn [20] per packet arrival. O1-Turn ran-
domly selects XY or YX DOR for the whole path of a packet,
and does not provide adaptiveness. O1-Turn is originally
designed for routers with virtual channels and achieves
deadlock freedom by using separate queues/channels for
XY and YX packets [16]. Therefore, this is an example where
the proposed technique is used to adapt an algorithm to a
VOQ-like queue organisation, without the need to double
the storage requirements. In this case, the aforementioned
heuristic is never consulted, as XY DOR acts as a fallback
algorithm when O1-Turn’s decision involves the north port
and F ′ considers it unsafe.

4 PROOF

In order to prove that the algorithm in F is always deadlock-
free, a proof by contradiction is provided.

Let c be a cyclic dependency [21] between n buffers that
has been allowed by the routing algorithm at time t.

c = {q0, q1, ..., qn−1, q0 = qn} (1)

7

As this is a deadlock, all queues in the cycle are full, with
each head packet only able to be served by queues of the
subsequent node (including the subsequent queue in the
cycle). That is

occ(qi) = cap(qi)∀i ∈ {0,1, ..., n − 1}, (2)

where occ(qi) and cap(qi) is the occupancy and capacity of
queue qi respectively. Additionally,

qj+1 ∈ next(head(qj)) (3)

for every j rotation of i, where next(head(qj)) is the set
containing all possible buffer destinations of the head of
queue qj . Note that as long as a packet is in a queue, the
direction for the next hop (corresponding to a specific node)
is already determined, but the queue placement in the next-
hop node will still be decided upon arrival at time t + 1.

For every (qj , qj+1) pair, a head packet proceeds from qj
to qj+1 if and only if the algorithm considers the packet
making a legal forwarding to node(qj+1) (for deadlock
avoidance), and the node(qj+1) notifies that it will be able
to accommodate it on cycle t + 1.

As each queue represents a turn (a permutation of 2-
selection from {E, S, W, N, C}), based on the turn model,
it is impossible for the cyclic dependency to be based only
out of turn/queues being inline with the turn model. That
is ¬(∀i, qi ∈ c ∧ turn(qi)), where turn(qi) denotes that qi
follows the turn model. In other words, there is at least one
queue/turn not following the turn model. That is, for c to
be able to be formed,

∃i, qi ∈ c ∧ ¬turn(qi). (4)

Similarly, based on the turn model, as summarised in
figure 3, the forbidden turns alone are also not able to form
the circle c either, as they will consist of a strict subset of the
4 turns in the clockwise direction and a strict subset of the 4
turns in the counterclockwise direction. Therefore,

¬(∀i, qi ∈ c ∧ ¬turn(qi)) (5)
↔ ∃i, qi ∈ c ∧ turn(qi). (6)

From (4) and (6), there is at least one consecutive queue
pair that consist of one queue following the turn model and
one that does not, i.e. ∃l = (i + k) mod n, k ∈ Z,

turn(ql) ∧ ¬turn(ql+1) (7)

As this pair also denotes a dependency (ql+1 ∈
next(head(ql))), at the time of insertion of the now
head(ql) to ql, the F condition has been met, i.e.

size(p) + occp(ql+1) + ∑
d∈{C,l,l′}

occp(qd) ≤ cap(ql+1), (8)

where ql′ is the other queue in the node(ql) than ql that
can feed ql+1. One of them (ql and ql′) is for the straight
movement (q↗, or q↑ for F ′). The other, based on F , if ql+1 is
clockwise (q′

⟳
, or q′

¼
for F ′), it is counterclockwise (q

⟲
, or

qÄ for F ′), and vice-versa (if ql+1 = q′⟲ (or q′
Å

for F ′), then
it is q

⟳
(or q½ for F ′)). There is also qC that starts from the

centre of node(ql). These queues (ql, ql′ and qC) are the only
queues that can feed ql+1 based on the assumptions, such as
with no misrouting.

First, in section 4.1, the proof is done under the assump-
tion that there is only a single flit per packet. Then, section
4.2 elaborates on the multiple-flit case.

4.1 Single-flit packets

As F is always followed, at the time head(ql)was enqueued
into ql, the value of F was True, i.e.

1 + occ(ql+1) + ∑
d∈{C,l,l′}

occ(qd) ≤ cap(ql+1). (9)

Following the worst case, it is assumed that the queue
ql+1 stops being consumed in the meantime for any reason,
such as congestion. Any packet p that arrived to node(ql)
after (the now) head(ql) would have been one of the
following cases based on the turn options allowed by the
minimal path:

A) p can land in ql+1: this is the case when p avoids the
“forbidden” turn (ql+1), since the freedom condition causes
it to be routed it to its alternative direction. As F (p) = False
based on the current occupancies, p will follow the fallback
algorithm which will place it in a queue other than ql, qC
and q′l, as it will target a different node to node(ql+1). Since
the turn model always provides full-routability without
relying on non-allowable turns, p will simply follow the
fallback routing algorithm, which will ensure a next hop
without a queue violating the turn model.

B) p cannot land in ql+1, but still passes through qC , ql or
ql′ : in this case, the fallback condition will always hold (i.e.
F (p) = True). Since it passes through one of the queues that
can feed ql+1 (qC , ql or ql′), the only effect with respect to the
deadlock condition is an earlier falsification of the freedom
condition in future packets that actually land in ql+1 (as in
case A). This happens when:

– p’s destination is the next hop (node(ql+1)). The
landing queue will be q′C , which does not cause a
deadlock (being a sink).

– p can only go straight for the remainder of its path.
The current x or y-axis (according to the topology of
ql and ql+1) coordinate is the same as the one of the
packet destination. This would lead to q′↗ (q′

↑
for F ′),

which already follows the traditional turn model.
– p can go to the other forbidden turn q′l+1 ∈ {q′⟳, q′

⟲
}

or {q′
¼
, q′
Å
,} for F ′. In this instance, it cannot also

have ql+1 as a potential destination (being mutually
exclusive to q′l+1), as U-turns are not allowed in
minimal routing. Thus, this remains orthogonal to
the studied deadlock condition, though such packets
can still go straight, with equivalent outcomes as
the instance above. Note that this is subject to the
followed turn model, as with F ′ that places the
forbidden turns on the same downstream router (at
North for F ′).

C) p cannot be placed in qC , ql or ql′ : this case p includes
all other instances when it cannot go towards node(ql + 1)
(at North for F ′). As these are the only queues that feed the
queue of the forbidden turn ql + 1, they are unrestricted by
following the turn model.

In all the aforementioned cases, head(ql) would have
been the last packet of all queues ql, ql′ and qC that could
land in ql+1 (for which ¬turn(ql+1)) on the next hop. As
F (head(ql)) = True (the now-head) at the time of arrival, it
would have been able to be forwarded before ql+1 became
full. This packet would have been able to become the tail of

8

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Injection rate (packets/node/cycle)

Bernoulli

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bursty

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

XY-DOR
YX-DOR
West-first

Negative-first
North-last

DyAD
XY/Adaptive
XY/O1-Turn

Injection rate (packets/node/cycle)

Bit-complement

1

10

100

1000

10000

0.2 0.3

Injection rate (packets/node/cycle)

Hotspot

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Injection rate (packets/node/cycle)

Transpose

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bit-reverse

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bit-rotate

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Butterfly

Fig. 7. Comparison of average packet latency using different routing algorithms under different traffic patterns.

ql+1 at least. Thus, when ql+1 is full, the head of ql cannot
have a dependency to ql+1, i.e.

ql+1 ∉ next(head(ql)). (10)

From (3) (ql+1 ∈ next(head(ql))) and (10), this leads to a
contradiction.

4.2 Multiple-flit packets
When taking into account the existence of multi-flit packets,
the cases presented at section 4.1 can be adapted accord-
ingly. Based on the assumptions, each head-flit contains the
packet’s length information, which can be used to calculate
the worst case occupancy for F for the entirety of the
packets. In other words, the decisions happening at the time
a head-flit arrives are enough to ensure the packets fit inside
their assigned queues (concerning ql+1). As this assignment
lasts for the entirety of a packet, when p is not a head flit, it
does not consult F again. It also does not impact the other
instances of F (e.g. from other ports), as its size is considered
0 by the occp() occupancy function (see section 3.2).

As an example, packet p′ is another packet (head-flit)
that arrives midway through the arrival of a packet/flit p
to a queue from the set {qC , ql′} (excluding ql, as output
arbiters are required to extract full packets). In this case, all
flits from p are guaranteed to fit inside ql+1, as the freedom
condition counts for the whole size of packets. At the same
time, p′ is only granted with F=True if there is space for it,
including all flits of both the packets of p′ and p.

5 EVALUATION

The proposed theory is explored by evaluating the proposed
novel algorithm examples of section 3.4. First, section 5.1

uses high-level simulation to comment on the algorith-
mic performance of the freedom condition adaptation (F ′).
Then, sections 5.3 and 5.4 provide implementation-related
results based on an example NoC as described with Verilog,
a hardware description language (HDL). The goal is to
isolate and compare the routing algorithm behaviour as
found in the state-of-the-art (see related work in section 6).

5.1 Routing performance – synthetic

The performance of the proposed routing algorithm
methodology is studied under a variety of synthetic traffic
models in simulation. The presented results are for an 8 × 8
2D mesh NoC, the routers of which use output queues. The
simulation framework builds upon our earlier open source
framework for a study on FPGA switches [7].

The traffic models used in this evaluation are selected
with diversity in mind, but are also synthetic which is
considered the norm for this level of system design at NoC
routing. First, uniform Bernoulli arrivals and uniform bursty
traffic are the most common models for interconnection
circuits and relate to system interconnect use cases [7], [16].
Then, bit complement, bit reverse, bit rotate [2] and butterfly
produce destination permutations based on the correspond-
ing bit manipulation operations on the destination address.
These and the transpose model are based on applications,
such as the latter for FFT accelerators [2]. Finally, hotspot is
the Bernoulli model modified for the central node to receive
requests with four times higher probability than the rest of
the nodes, modelling system-on-chip behaviour [2], [16].

Figure 7 presents the performance results from this ex-
periment with respect to the average packet latency. Each
output queue has a depth of 16 flits-packets. There are
only single-flit packets and the forwarding from a node can

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
hr

ou
gh

pu
t (

pa
ck

et
s/

no
de

/c
yc

le
)

Injection rate (packets/node/cycle)

Bernoulli

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bursty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y=x

Injection rate (packets/node/cycle)

Bit-complement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Hotspot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
hr

ou
gh

pu
t (

pa
ck

et
s/

no
de

/c
yc

le
)

Injection rate (packets/node/cycle)

Transpose

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bit-reverse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Bit-rotate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Injection rate (packets/node/cycle)

Butterfly

XY-DOR
YX-DOR
West-first

DyAD
XY/Adaptive
XY/O1-Turn

Negative-first
North-last

Fig. 8. Comparison of throughput among different routing algorithms under different traffic patterns

happen under a cycle, also according to the queue states.
Each simulation has a region of interest of 5,000 cycles.
warmup period. When the average latency is predicted to
become above 1,500 cycles, the simulation stops early and
the series stops to save simulation time. Each data point is
an average of 5 runs. The observations for the equivalent
experiment with virtual output queues are similar but not
shown for brevity.

A general observation is that the novel “XY/O1-Turn”
and “XY/Adaptive” are the winners in the majority of
the traffic patterns, achieving the lowest average packet
latency for almost any presented injection rate. Two no-
ticeable exceptions are the uniform Bernoulli and bit-
complement cases. In the first, both fully-adaptive algo-
rithms are marginally worse than with dimension order
routing (DOR). In the second case, “XY/Adaptive” comes
third, but it is not a close third, so it could be said that
‘XY/O1-Turn” is a more balanced solution.

The second-class performance of the full-adaptiveness
examples under certain traffic cases is expected, but it is
not a limitation of the deadlock avoidance model. There
are traffic patterns where additional turn-freedom is not
always beneficial, at least when the adaptiveness heuristic
has a more-local scope [22]. Hence, instead of a fine-tuned
routing algorithm, the main focus is the theoretical model
that allows a superset of potential packet paths than is
currently feasible. For instance, as XY and YX DOR use a
subset of the allowable turns, future adaptiveness heuristics
could still use the proposed model while also reverting to
XY or YX DOR where deemed beneficial to performance.

Another observation is that overall “XY/O1-Turn” and
“XY/Adaptive” are more well-rounded than the alternative
algorithms in this selection, always being among the top
performers. For example, DyAD routing [23] sometimes

performs the worst, as under high bursty or bit-complement
traffic, whereas for bit reverse and transpose traffic is the
next best alternative to the proposed ones.

Figure 8 presents the throughput results from the
same experiment for numerical comparison examples. The
throughput is defined as the average number of extracted
packets per node per cycle. On average for all the traffic
models, under a 35% injection rate, “XY/Adaptive” pro-
vides 1.23, 1.22, 1.17, 1.28, 1.19 and 1.19x the throughput
of XY, YX DOR, west-first, negative-first, north-last and
DyAD respectively. At 35% the corresponding numbers for
“XY/O1-Turn” remain very similar at 1.23, 1.22, 1.17, 1.29,
1.19 and 1.17 times.

5.2 Routing performance – traces
Alongside synthetic workloads, we also conduct a similar
experiment with the studied routing algorithms using real-
world benchmarks. Specifically, we employ the PARSEC [24]
traces provided by Hestness et al. [25], which are derived
from full-system simulations on the M5 simulator [26]. In
our experiments, the packet generation is based on the
injection timestamps and traffic patterns (that is, patterns
of source-destination pairs) contained in these traces.

Figure 9 presents the results of this comparison. Under
this traffic, the general observation is that the proposed rout-
ing algorithms remain competitive throughout all traces,
with “XY/O1-Turn” taking the lead with up to 8% lower
average latency over the best non-proposed alternative.

5.3 Resource utilisation
In order to study the hardware utilisation of the proposed
deadlock avoidance methodology, an 8 × 8 NoC is imple-
mented in System Verilog and synthesised using yosys [27].

10

Fig. 9. Packet latency using different algorithms under traffic from Ne-
trace

Each NoC router has a 5× 5 output-queued switch, with
25 queues in total. The router queues are based on a rather
popular formally-verified synchronous queue [28]. The size
of each queue is indicatively set to 8, and each packet
is 64 bits wide. As building an optimised and specialised
implementation is outside the scope of this paper, the router
designs do not feature pipelining and the NoC nodes do
not perform a useful task (random packet generation). The
results are presented for both 6-input lookup tables (LUT6)
that are found in most modern FPGAs [29], and a standard
cell library (“cmos cells.lib”) for ASICs.

Table 2 presents the synthesis results for 4 variations of
the NoC router based on their routing algorithm. From left
to right, each approach is expected to use more resources.
North-last uses queue information in its heuristic, while
DOR does not. “Full-freedom” (deadlock-prone) uses a su-
perset of this information, as its heuristic is responsible for
the turns from the north as well. This is the equivalent of
“8/8 of turns” from figure 1. Finally, the proposed example
routing algorithm “XY/Adaptive” includes the signals re-
quired for the freedom condition, hence also the two extra
wires in the y-axis carrying occupancy information (for
queues q′

⟲
and q′

⟳
). This is reflected in the addition of 4

public wires, two as inputs in the north direction and two
as outputs of the downstream router for monitoring the two
restricted turns.

It is also worth mentioning that for the turn-restriction
based (XY DOR and north-last) yosys was not able to
optimise unused queues away, as 25 queues were used in
all cases. As the proposal is based on the observation that
(V)OQs imply turn information, we know that the first two
cases could result in (4 for XY DOR, and 2 for north-last)
fewer queues. The no-misrouting assumption is also not
exploited without manual intervention, as it could yield
5 fewer queues per router (for when sending to oneself).
Additionally, as synthesis is also based on heuristics, small
variations are expected, such as in the distribution of logic
cells in the standard library.

As can be observed, “XY/Adaptive” being a superset of
the “full-freedom” in terms of logic complexity, it has a small
but measurable overhead on the wire and cell utilisation.
For the FPGA case, the proposed approach only uses 21

TABLE 2
Routing algorithm impact on router resource utilisation

XY DOR North-last Full-freedom
(deadlock-prone) XY/Adaptive

Look-up table-based (FPGA)
Wires 885 957 977 1002
Public wires 182 182 182 186
Cells 1132 1204 1224 1245
6-LUT 1092 1164 1184 1205

Standard cell library-based
Wires 10707 10985 11230 11458
Public wires 183 183 183 187
Cells 5630 5797 5962 6062
NAND 3476 3803 3566 3823
NOR 1455 1344 1649 1518
NOT 659 610 707 681

Common
DFF 15 15 15 15
Sync. FIFOs 25 25 25 25

more LUTs (<2% increase). By using the standard cell library,
the most noticeable change is in the NAND gate count that
increases by 7%.

5.4 Performance overhead
This part of the evaluation demonstrates that the perfor-
mance overhead of including the proposed deadlock avoid-
ance mechanism is minimal. Although the paper mostly
provides a theoretical background rather than implemen-
tation insights, an indicative NoC implementation verifies
our expectations on the impact on the operating frequency.

The last two router implementations from the resource
utilisation study (section 5.3) are used as a building block
to build a 4x4 NoC on an FPGA. The first of these routers
is the deadlock-prone version that enables “full-freedom”
by having no turn restriction and follows the adaptive-
ness heuristic to achieve high scheduling performance (see
section 3.4). The second one is the “XY/Adaptive”, which
is essentially the same, but with the proposed deadlock
avoidance mechanism enabled. The idea is to focus on
the impact of adding this additional logic and wires in
the NoC’s routers, while having all other aspects common,
including the adaptiveness heuristic.

The target device is Xilinx UltraScale+ ZU3EG using
Avnet’s Ultra96 board. The toolchain is Vivado 2020.2 and
is used to place-and-route the logic onto the device. The
implementation directives are set to “ExploreWithRemap”
for design optimisation, and “Explore” for post-place and
post-route physical design optimisation. The idea is to have
relatively aggressive optimisation to minimise the effects
of place-and-route heuristic-related discrepancies when re-
porting the maximal operating frequency (fmax).

The resulting worst negative slack is -1.69 ns for “full-
freedom”, and -1.706 ns for “XY/Adaptive”, for a target
clock of 375 MHz. This results in a sub-1 MHz drop when
extending “full-freedom”’s logic to become “XY/Adaptive”,
as the fmax of the two is about 230 MHz and 229 MHz
respectively.

As mentioned, there can still be small variations based
on the nature of place-and-route tools. Still, the numerical

11

results show that the proposed method can be supported
efficiently in implemented designs. Note that the NoC de-
sign space is very narrow, but it also represents a worse case
with respect to how the approach can be used. This is since
no NoC function is pipelined and all router logic tries to fit
inside a single FPGA cycle. See future work (section 7) on a
further discussion on implementation.

6 RELATED WORK

Deadlock avoidance, or detection and recovery in NoCs is
still an active and thorough research topic. A great majority
of the related literature is about NoCs based on virtual
channels (VCs) instead of (virtual) output queues.

The proposed algorithm is applicable to NoC routers
that feature a VOQ-like (VOQ or OQ) queuing topology.
On FPGAs, this includes the commonly used split-merge
router [4] and variations or adaptations based on the same
basic switch primitives [3]. For instance, the Hoplite NoC
[30] uses the split-merge router, but with less buffering
and variations for different NoC topologies [31]. All afore-
mentioned examples are classified into the output-queued
category, and utilise routing algorithms following the turn
model (DOR and west-first). Such switches with static vir-
tual channel allocation by the use of OQ or VOQ queues
are focused on implementation efficiency, given certain con-
straints. Routers based on OQ seem to be the best option
for FPGA implementation because there is no need for an
FPGA implementation of a crossbar. A crossbar’s schedul-
ing algorithm is better represented by hardened circuits,
as it is more challenging to include clock domain crossing
and iterative algorithms on a unified FPGA logic [7]. Hence
the natural decision for FPGA-optimised NoCs to use OQ
routers. Our research aims to close the knowledge gap on
modern deadlock avoidance techniques on these types of
NoCs.

In general, deadlock freedom can be achieved by focus-
ing on the routing algorithm or the flow control protocol.
A routing algorithm ensures deadlock freedom, if the paths
produced by it do not form any cycles. On the other hand,
a flow control protocol ensures deadlock freedom if it al-
locates buffers to packets in a way such that a dependency
cycle of packets cannot be formed. Note that this is achieved
even in the case the employed routing algorithm is not
deadlock-free, that is, it may produce paths that form a
cycle.

Glass and Ni conducted a foundational study of
deadlock-free routing algorithms for 2D meshes [14]. They
observed that there are eight possible turns in a 2D mesh
and found that cycles of paths can be prevented by pro-
hibiting only two of these eight turns. The details have
been described in Section 2.2. Chiu [32] pointed out that
the flexibility provided by the routing algorithms proposed
by Glass and Ni is not even for all source-destination pairs.
Specifically, at least a half of the source-destination pairs
have only one minimal path while the remaining pairs have
more. Chiu proposed to use different sets of prohibited
turns for nodes in odd and even columns, called odd-even
routing. In this way, the routing flexibility can be improved
while deadlock freedom is still guaranteed.

Our proposed algorithm as illustrated in algorithm 1 is
inspired by the DyAD routing algorithm [23]. DyAD is a
bimodal algorithm as well, as it selects between two com-
ponent algorithms. One of those components is set as odd-
even routing. This is provided indicatively, since as with our
proposal, it originally models a routing model rather than a
fine-tuned algorithm. Nevertheless, the algorithm selection
in DyAD only relates to routing performance, and still has
permanently forbidden turns.

There are a number of works also focusing on approach-
ing fully-adaptive routing, but these are still with VCs [8],
[17], [33]. Initially, this could be achieved with additional
virtual channels called “escape” channels, where certain
packets could resort to in order to avoid deadlocks. Condi-
tional forwarding [34] is a deadlock avoidance mechanism
and has similar aspects to our proposed approach. It also
uses a function (“conditional forwarding flow control”) to
determine if a packet can follow a restricted path. It aims
to increase flexibility in VC allocation, however. This is
achieved by eliminating the need to have separate escape
channels, which is a common aspect with our approach on
(V)OQs.

7 DISCUSSION AND FUTURE WORK

In this section, we discuss the usage aspect of the proposed
approach, especially with respect to future adaptations and
improvements. The discussion is divided into the themes of
implementation efficiency, adaptation and improvements.

Implementation efficiency: There could be additional
and/or different simplifications to F ′ (see section 3.3) based
on restrictions or architectural assumptions that still satisfy
F . One such example could be a quantisation of the queue
length measurements for reducing the related signals. An-
other example is to force the 1st hop of all packets to follow
the turn model so that qC will not need to be checked
alongside the other queues that contribute to the contents
of q′

⟲
and q′

⟳
. The trade-offs between the decisions in such

a design space, especially with respect to circuit complexity
and algorithm performance would be interesting to explore.

As with other routing algorithms, the model can also be
used in pipelined implementations for hardware scalability
and performance. With respect to flow control, a credit
system can be used to replace the presented ready signals
denoting FIFO space availability [2].

N

W

C
S

E

qC

clockwise

center

(q')q'

--; --;

++; ++;

credit
counters

dequque

dequque

straight
(q')q'

Fig. 10. Flow control credits can be reused for pipelining F (shown F ′)

12

Similarly, as shown in figure 10, some of the flow con-
trol credit counters can be reused to estimate the freedom
condition. The example shows a packet from the upstream
router that can pass through q′

↑
and the originally-forbidden

q′
¼

of the downstream router. The upstream router already
maintains a credit counter for each buffer of the downstream
router (the buffers in the channel connected to the upstream
router) by using a credit-based flow control. When it is
dequeued, both of the counters of the corresponding queues
shall be greater than 0, and are both decremented by 1.
In the downstream router, when the packet is dequeued
from either q′

↑
or q′

¼
, both corresponding counters are in-

cremented by 1. For the purposes of F , the only useful
external queue occupancies are for the forbidden turns (q′

¼

for this example), hence only consulting the corresponding
credit counters. Equivalent arrangements can be made for
the multiple-flit case, but it may still be worth duplicating
the credit registers for the two purposes (flow control and
F) according to the pipelining requirements. Earlier notifi-
cations are also possible for restoring the non-taken paths,
since this information is known at the time of enqueuing.

Adaptation: The set of system assumptions (section
3.1) is partly due to brevity and practicality, such as for
FPGA use. Some of them can be straightforward to remove.
Misrouting can be supported at the expense of additional
checks accounting for the additional movements that are
now possible. These are the U-turns for when a packet does
two consecutive clockwise or counterclockwise turns, as
well as when a packet goes back and forth through the same
port. This results in additional monitoring in the queue
occupancies, which are the supersets of the clockwise and
counterclockwise directions plus the backward movement.
This results in checking all queues of the upstream router
that feed the same port, instead of only including qd for
either d ∈ {C,↗,⟲} or d ∈ {C,↗,⟳} in F (p). Similarly,
when incorporating interface queues, the formulas can be
modified to take the occupancy of additional queues into
consideration for calculating the worst case occupancy of
the queues of the “forbidden” turns.

The approach can also be used meaningfully in systems
supporting both packets of unknown and known size. This
is achieved by assuming F (p) = False on packets p of
unknown size, while still benefiting the others, since the
fallback is localised. Such a scheme would be beneficial as
the majority of NoC packets are single or few-flit [17], while
streaming traffic is commonly split into fixed packets rather
than flits, at least according to the protocol. Similarly, as
with WPF [12], it is not necessary for the queues to fit all the
flits of a packet, but larger packets will tend to follow the
fallback routing more easily.

Improvement: The F condition can be extended to
provide additional flexibility. For the queues of the up-
stream router that feed into originally forbidden turns (e.g.
{qC , q↗, q⟲} for q′

⟳
), the notion of the occupancy could

also be restricted to only count for the packets whose desti-
nation includes the forbidden turn/queue q′f (e.g. q′

⟳
), i.e.

occp(q, q′f) = ∑p∈q∧q′
f
∈next(p) size(p). Future work includes

the evaluation of this extension, as the additional checks
might lead to implementation complexity tradeoffs.

Finally, the provided routing algorithms “XY/Adaptive”

and “XY/O1-Turn” are example uses of the approach.
A routing algorithm-focused study could propose fine-
tuned variants that combine the best performances that are
achieved here per benchmark, for instance.

8 CONCLUSIONS

This paper relaxes the turn model for building fully-
adaptive routing algorithms on NoCs with an output-
queued or virtual output-queued router architecture. These
two queueing topologies are useful in applications such
as in FPGAs, where deadlock avoidance is traditionally
achieved using non-fully-adaptive algorithms. The pro-
posed algorithm is a hybrid algorithm, with a fallback
component being activated only locally based on the pro-
posed freedom condition. The provided example rout-
ing algorithms “XY/Adaptive” and “XY/O1-Turn” gener-
ally outperform older algorithms significantly in simula-
tion. These presented examples are relatively well-rounded
across the traffic model selection, though the proposed ap-
proach can be used to build other novel routing algorithms
and is easily generalisable. An example implementation of
“XY/Adaptive” is shown to have minimal overhead on
resource utilisation and operating frequency over when not
featuring deadlock avoidance for full routing freedom.

ACKNOWLEDGEMENT

The support of the JSPS, Japan KAKENHI Grant Number
21K17720 and the Human Capital Initiative (HCI) of HEA,
Ireland is gratefully acknowledged.

REFERENCES

[1] B. Adhi, C. Cortes, Y. Tan, T. Kojima, A. Podobas, and K. Sano,
“The Cost of Flexibility: Embedded versus Discrete Routers in
CGRAs for HPC,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), 2022, pp. 347–356.

[2] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[3] N. Kapre, N. Mehta, M. Delorimier, R. Rubin, H. Barnor, M. J.
Wilson, M. Wrighton, and A. DeHon, “Packet switched vs. time
multiplexed fpga overlay networks,” in 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2006, pp. 205–216.

[4] Y. Huan and A. DeHon, “Fpga optimized packet-switched noc
using split and merge primitives,” in 2012 International Conference
on Field-Programmable Technology. IEEE, 2012, pp. 47–52.

[5] J. Wang, Y.-b. Li, and Q.-c. Peng, “A performance analytical model
for noc with voq router architecture,” in The 2nd International
Conference on Information Science and Engineering. IEEE, 2010, pp.
924–927.

[6] A. B. Ahmed and A. B. Abdallah, “Graceful deadlock-free fault-
tolerant routing algorithm for 3d network-on-chip architectures,”
Journal of Parallel and Distributed Computing, vol. 74, no. 4, pp. 2229–
2240, 2014.

[7] P. Papaphilippou, K. Sano, B. A. Adhi, and W. Luk, “Experimental
survey of fpga-based monolithic switches and a novel queue
balancer,” IEEE Transactions on Parallel and Distributed Systems, pp.
1–14, 2023.

[8] F. Verbeek and J. Schmaltz, “On necessary and sufficient con-
ditions for deadlock-free routing in wormhole networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 12, pp.
2022–2032, 2011.

[9] H. Farrokhbakht, H. Kao, K. Hasan, P. V. Gratz, T. Krishna,
J. San Miguel, and N. E. Jerger, “Pitstop: Enabling a virtual net-
work free network-on-chip,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2021,
pp. 682–695.

13

[10] A. Ramrakhyani, P. V. Gratz, and T. Krishna, “Synchronized
progress in interconnection networks (spin): A new theory for
deadlock freedom,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 699–
711.

[11] Y. Dai, K. Lu, S. Ma, and J. Chang, “Full-credit flow control: a
novel technique to implement deadlock-free adaptive routing,” in
2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2022, pp. 1041–1046.

[12] S. Ma, N. E. Jerger, and Z. Wang, “Whole packet forwarding:
Efficient design of fully adaptive routing algorithms for networks-
on-chip,” in IEEE International Symposium on High-Performance
Comp Architecture. IEEE, 2012, pp. 1–12.

[13] P. Papaphilippou, K. Sano, B. A. Adhi, and W. Luk, “Efficient
queue-balancing switch for fpgas,” in 2021 International Conference
on Field-Programmable Technology (ICFPT), Dec 2021, pp. 1–5.

[14] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,”
ACM SIGARCH Computer Architecture News, vol. 20, no. 2, pp. 278–
287, 1992.

[15] P. Lopez, J.-M. Martı́nez, and J. Duato, “A very efficient distributed
deadlock detection mechanism for wormhole networks,” in Pro-
ceedings 1998 Fourth International Symposium on High-Performance
Computer Architecture. IEEE, 1998, pp. 57–66.

[16] T. Van Chu and K. Kise, “Lef: An effective routing algorithm for
two-dimensional meshes,” IEICE TRANSACTIONS on Information
and Systems, vol. 102, no. 10, pp. 1925–1941, 2019.

[17] S. Ma, Z. Wang, N. E. Jerger, L. Shen, and N. Xiao, “Novel flow
control for fully adaptive routing in cache-coherent nocs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 9, pp.
2397–2407, 2013.

[18] R. Holsmark, “Deadlock free routing in mesh networks on chip
with regions,” Ph.D. dissertation, Linköping University Electronic
Press, 2009.

[19] J. Duato, “A new theory of deadlock-free adaptive routing in
wormhole networks,” IEEE transactions on parallel and distributed
systems, vol. 4, no. 12, pp. 1320–1331, 1993.

[20] D. Seo, A. Ali, W.-T. Lim, and N. Rafique, “Near-optimal worst-
case throughput routing for two-dimensional mesh networks,” in
32nd International Symposium on Computer Architecture (ISCA’05),
2005, pp. 432–443.

[21] J. Duato, “A necessary and sufficient condition for deadlock-free
adaptive routing in wormhole networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 10, pp. 1055–1067, 1995.

[22] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Ten-
hunen, “Catra-congestion aware trapezoid-based routing algo-
rithm for on-chip networks,” in 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 320–325.

[23] J. Hu and R. Marculescu, “Dyad: smart routing for networks-on-
chip,” in Proceedings of the 41st annual Design Automation Conference,
2004, pp. 260–263.

[24] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, 2011.

[25] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: dependency-
driven trace-based network-on-chip simulation,” in Proceedings of
the Third International Workshop on Network on Chip Architectures,
2010, pp. 31–36.

[26] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt, “The m5 simulator: Modeling networked
systems,” Ieee micro, vol. 26, no. 4, pp. 52–60, 2006.

[27] C. Wolf, “Yosys open synthesis suite,” 2016.
[28] J. Bush, N. Taherinejad, E. Willegger, M. Wojcik, M. Kessler,

J. Blatnik, I. Daktylidis, J. Ferdig, and D. Haslauer, “Nyuzi: An
open source gpgpu for graphics, enhanced with opencl compiler
for calculations.”

[29] Xilinx, “Versal architecture prime series libraries guide (ug1344),”
2022. [Online]. Available: https://docs.xilinx.com/r/2022.
1-English/ug1344-versal-architecture-libraries/Primitive-Groups

[30] N. Kapre and J. Gray, “Hoplite: Building austere overlay nocs for
fpgas,” in 2015 25th international conference on field programmable
logic and applications (FPL). IEEE, 2015, pp. 1–8.

[31] K. Helal, S. Attia, H. A. Fahmy, T. Ismail, Y. Ismail, and H. Mostafa,
“Dual split-merge: A high throughput router architecture for
fpgas,” Microelectronics Journal, vol. 81, pp. 51–57, 2018.

[32] G.-M. Chiu, “The odd-even turn model for adaptive routing,”
IEEE Transactions on parallel and distributed systems, vol. 11, no. 7,
pp. 729–738, 2000.

[33] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M.
Prellezo, “The adaptive bubble router,” Journal of Parallel and
Distributed Computing, vol. 61, no. 9, pp. 1180–1208, 2001.

[34] Z. Yu, X. Wang, and K. Shen, “Conditional forwarding: simple
flow control to increase adaptivity for fully adaptive routing
algorithms,” The Journal of Supercomputing, vol. 72, no. 2, pp. 639–
653, 2016.

Philippos Papaphilippou received his PhD
from Imperial College London in 2021. His PhD
was funded by dunnhumby (Tesco) for research-
ing novel accelerators to improve the perfor-
mance of big data analytics. He has recently
joined Trinity College Dublin as an Assistant
Professor for contributing to the Human Capital
Initiative (HCI). His research topics include FP-
GAs, sorting algorithms, network switches, multi-
processor architectures and data science.

Thiem Van Chu completed his Ph.D. at Tokyo
Institute of Technology in 2018. Upon gradua-
tion, he joined the School of Information Sci-
ence, Japan Advanced Institute of Science and
Technology as an Assistant Professor. In 2020,
he moved to Tokyo Institute of Technology.
His research interests lie at the intersection of
computer architecture, reconfigurable comput-
ing, and machine learning.

https://docs.xilinx.com/r/2022.1-English/ug1344-versal-architecture-libraries/Primitive-Groups
https://docs.xilinx.com/r/2022.1-English/ug1344-versal-architecture-libraries/Primitive-Groups

	Introduction
	Background
	Network-on-chip routers
	Input-queued routers with VOQs
	Output-queued (OQ) routers

	Turn Model
	Deadlocks

	Proposed algorithm
	Assumptions
	Freedom condition
	Freedom condition adaptation
	Novel routing algorithms

	Proof
	Single-flit packets
	Multiple-flit packets

	Evaluation
	Routing performance – synthetic
	Routing performance – traces
	Resource utilisation
	Performance overhead

	Related Work
	Discussion and future work
	Conclusions
	References
	Biographies
	Philippos Papaphilippou
	Thiem Van Chu

