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Abstract

The importance of magnetic materials in modern applications is unquestionable. They

are used in a wide range of applications, going from data storage devices to green energy

production. This class of materials is well known since antiquity; yet the number of

materials known to be magnetic has been limited to ∼ 5000. A magnetic material is

considered to be useful for applications if the Curie temperature TC (the temperature at

which a ferromagnetic material ceases to be magnetic) is well above room temperature.

If we enforce this constraint on the known materials then the number of useful ones

reduces dramatically, this implies the need for the design of novel magnetic materials.

Traditionally, the search for suitable candidates is done experimentally. This task

is not only time-consuming, reducing the throughput so much that it is impossible to

explore the vast chemical spaces available, but is also expensive both in workforce and

in resources.

Advances in computational materials science and artificial intelligence make the

theoretical discovery of magnetic materials increasingly accessible. Tools like machine

learning and high-throughput ab-initio calculations give us the ability to scan large

chemical spaces in search of novel compounds that exhibit desired properties in a

fraction of time. Moreover, the stability of these compounds can be assessed with

high confidence. Suitable candidates can be studied with state-of-the-art ab initio

simulations, and their properties can be predicted before they are synthesized

experimentally.

This thesis is divided into 3 parts. In the first two chapters, we introduce our

workflow for material exploration. This uses a combination of machine-learning and ab-

initio methods for the search of thermodynamically stable ternary alloy materials. To
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achieve the needed throughput, we diminish the use of expensive ab-initio simulations

by utilising Machine Learning Interatomic Potentials, MLIAPs. Using them as energy

predictors, the exploration of large materials spaces becomes reachable. Then a

methodology is explored for the creation of possible ternary candidates. Providing us

with viable material candidates as a starting point is crucial for materials exploration

workflows.

In the third chapter of this thesis, we will solely use high-throughput ab-initio

methods to explore the Heusler family of materials. Heusler ternaries are well known

for their magnetic properties, and interestingly, several high-performance magnets are

discovered among them. Thoroughly, we use density functional theory, DFT, to search

for antiferromagnetic and tetragonal distorted materials. The former are known to

be used for spintronics applications, and the latter exhibit large magnetic crystalline

anisotropy.

In the first part of this thesis, the reader will be introduced to the scope underpinning

this work and the computational tools used. Then the main part of the work is divided

into three chapters where the results of each project will be presented and discussed.

The last part is focused on discussing the main findings of this work and presenting

the future outlook.

Keywords : Machine Learning, High-Throughput Calculations, Density Functional

Theory, Ternary Phase Diagrams, Crystal Structure Generator, Heusler Alloys.
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The First Step

The young poet Evmenis

complained one day to Theocritus:

“I’ve been writing for two years now

and I’ve composed only one idyll.

It’s my single completed work.

I see, sadly, that the ladder

of Poetry is tall, extremely tall;

and from this first step I’m standing on now

I’ll never climb any higher.”

Theocritus retorted: “Words like that

are improper, blasphemous.

Just to be on the first step

should make you happy and proud.

To have reached this point is no small achievement:

what you’ve done already is a wonderful thing.

Even this first step

is a long way above the ordinary world.

To stand on this step

you must be in your own right

a member of the city of ideas.

And it’s a hard, unusual thing

to be enrolled as a citizen of that city.

Its councils are full of Legislators

no charlatan can fool.

To have reached this point is no small achievement:

what you’ve done already is a wonderful thing.”

C.P. Cavafy
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Chapter 1

Introduction

1.1 Materials Science has shaped the World

No one can deny that materials have played an important role in the existence and

advancement of humankind [1]. History is intertwined with the pursuit of materials

that exhibit the best mix of required properties. A visit to a national history museum

will be capable of persuading any individual. A variety of artifacts from different

historical eras are presented.

In the first museum section usually, stone, wood, shells and clay are the materials

predominantly used. These materials were primarily employed in crafting tools, weapons,

and shelters. They held such significance in the daily lives of people that they were

buried alongside them to accompany them in the afterlife. Historians even named

the corresponding historical eras based on the predominant materials of the time,

designating this historic area as the Stone age.

Following that section, one can observe the introduction of a more sophisticated

material—an alloy of copper (Cu) with tin (Sn), named bronze. Bronze dominated

ancient civilizations for nearly 2100 years. This was due to its remarkable mechanical

properties and relatively low melting temperature, which makes it easier to manipulate

than its predecessor, stone.

A variety of materials continued to shape the world in the following centuries, and

they all shared a common characteristic: they were more advanced than the materials

1
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previously used. These innovations often sparked revolutions in the industries and

economies of nations fortunate enough to harness their potential.

If the reader has not yet been persuaded of the importance of materials in everyday

life, this last example will surely convince them. Consider that you are reading these

lines from the screen of their computer. One has to reflect on how many different

classes of materials are working in concert to enable you to read these sentences.

The pursuit of more advanced materials lies at the heart of human advancement.

Traditionally, this endeavor relied heavily on experimental methods. However, this

approach is not only time-consuming, significantly reducing throughput and making it

impossible to explore vast chemical spaces, but it is also expensive in terms of both

workforce and resources. Fortunately, advances in computational materials science and

artificial intelligence have made the theoretical discovery of materials with enhanced

properties faster and increasingly accessible.

1.2 Magnetic Materials

The workflows developed in this thesis will ultimately be employed to navigate the

expansive chemical space—a space formed through the combinatorial arrangements of

various elements and stoichiometries—in the quest for materials exhibiting magnetic

properties. It would be beneficial to introduce briefly this class of materials.

Magnets [2] are a class of materials in which the atomic spins allign between

themselves, creating a macroscopic order. The interactions between two neighbouring

atoms with atomic spin, Si, are of electrostatic nature. Heisenberg formulated the

exchange Hamiltonian as follows,

H = −
∑
i,j

JijSiSj, (1.1)

where the coupling constant between neighboring atoms, i and j, denoted as Jij,

governs the strength of the interaction. The values of the coupling constant, Jij, change

with the type of magnetic ordering. For instance, negative values imply that spins
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have an energy minimum when antiparallelly aligned, resulting in antiferromagnetic

materials. In contrast, positive values lead to the formation of ferromagnetic order,

where the spins are aligned parallel to each other, as presented in Figure 1.1.

Figure 1.1: The two most common types of magnetic ordering, ferromagnetic (left) and
antiferromagnetic (right).

Both these magnetic orderings cease to exist above a critical temperature, giving

rise to a different magnetic structure, where the spins have no specific alignment

(paramagnetism). This critical temperature for ferromagnetic materials is known as the

Curie temperature, denoted as TC, while for antiferromagnetic materials, it is referred

to as the Néel temperature, denoted as TN.

In the present work, we mainly focus on ferromagnetic materials. For a ferromagnetic

material to be useful in a given technology, its critical temperature should exceed

significantly the room temperature. Unfortunately, not many materials exhibit such

property, making the vast majority of magnets known so far to be paramagnetic at

room temperature. Interestingly, there is no material with higher Curie temperature

than Cobalt (Co), TC = 1400K. However, it is worth noting, as indicated in [3],

that magnets can be crafted by including practically any element from the periodic

table excluding the noble gases and the highly radioactive ones. This fact provides us

with immense flexibility when it comes to choosing compatible materials and specific

stoichiometries, thereby greatly expanding the pool of potential candidates.

The vastness of this chemical space defies exploration through experiments. In order

to tackle this challenge, an inverse design approach that leverages machine-learning

models for property prediction and high-throughput calculations to narrow down our
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search to specific areas within the vast material space is the strategy of choice.

1.3 High-throughput andMachine-Learning Techniques

High-throughput computational material design is a rapidly evolving field within materials

science [4]. It combines advanced ab-initio methods for assessing thermodynamic

stability and calculating electronic properties, with data science. This powerful synergy

provides new capabilities for storing, managing and analyzing vast databases to extract

intriguing relationships and fundamental patterns among families of materials, offering

fresh insights into the design of exciting novel materials.

The steps that high-throughput frameworks usually follow imitate the experimental

procedure, where a material is virtually grown and studied. Subsequently, the data are

stored in databases and an analysis is performed. These techniques have been used in

a variety of problems in different areas of materials science.

There are various approaches to use high-throughput techniques in materials research.

One strategy involves starting from experimental insights about a class of materials and

then expanding the search combinatorially by introducing a variety of different elements

into a crystal structure of interest. For example, in Ref. [5] researchers explored the

chemical space of ABO3 structures in their search for high-performance piezoelectrics.

In another study [6], the Heusler alloy family was investigated for high-performance

magnets by decorating the crystal structure with all the possible combinations of a

specific pool of elements.

An alternative approach is to use theoretical criteria to search a specific materials

database for materials of interest. An example of this approach is found in Ref. [7],

where researchers used criteria based on Bardeen–Cooper–Schrieffer (BCS) superconductivity [8]

to screen the JarvisDFT [9] database for superconducting materials.

Most of these studies rely on ab-initio methods, such as density functional theory

(DFT), which are known to be computationally intensive. This complexity makes

exploring vast chemical spaces a challenging task. However, recent advances in machine-

learning and applied statistics have greatly expanded the toolkit available to computational
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materials scientists, significantly increasing the screening throughput.

Machine-learning has found a wide range of applications in the field of computational

materials science. From serving as surrogates for DFT to predicting material properties,

both approaches significantly enhance the throughput of the materials discovery workflow.

Various Machine-Learning Inter-Atomic Potentials (MLIAPs) [10–14] are currently in

use, accurately mapping the potential energy surface of compounds and enabling the

study of systems on larger time and size scales without compromising accuracy. Models

trained on properties extracted from ab-initio calculations are capable of predicting

crucial parameters, including Curie temperature (TC) [3], the critical superconducting

temperature [15], and even crystal structure information [16].

Machine-learning methods, when combined with high-throughput calculations in

inverse design workflows, have the capability to pinpoint the most promising regions

within the chemical space for a specific application. This synergy enables the discovery

of the next generation of high-performance materials.

1.4 Inverse Design

Utilizing high-throughput methods to explore a significant portion of the chemical space

and subsequently employing data analytics tools to assess the properties and stability

of compounds remains computationally demanding. This challenge arises from the

use of ab-initio methods, which are known for their computational cost. However, in

recent years, a novel paradigm has emerged, where the property of interest defines the

chemical space to be explored, followed by methods of increasing accuracy to screen and

identify the most promising candidates. This approach is known as inverse design [17].

The main components of most inverse-design workflows typically are a property

predictor, a prototype structure generator, and a series of high-throughput calculations.

In the final stages, high-accuracy ab-initio calculations are employed to examine the

properties of the most promising candidates, alongside experimental synthesis, if appropriate.

Starting from a vast number of created prototypes, different tools are used to characterize

the potential candidates. In the first stage, machine-learning models able to predict
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the property of interest, for example, the Curie temperature in our case, are used

to screen the structures. For the promising candidates, high-throughput calculations

are performed, and their thermodynamic stability is assessed. Moving onto the next

step, high-fidelity DFT is used to study the materials of interest more accurately and

determine whether they are of interest for potential experimental synthesis. As we

move towards the last layers, the number of prototypes are reduced significantly and

only the most promising and the most exciting survive up to the last layers of the

screening. A schematic representation is shown in Figure 1.2.

Figure 1.2: A schematic representation of an inverse design workflow is presented. Its
main components are highlighted. Initially, a property predictor based on machine-
learning tools is employed to explore the materials space. Subsequently, high-
throughput (HT) calculations are used to evaluate the stability of the structures. This
is followed by high-fidelity DFT calculations, which provide further insights into the
properties of the materials, and ultimately, the experimental synthesis

As can be observed in Figure 1.2 a variety of different techniques need to work in

concert to tackle such a complicated task. In the final section of this Introduction, we
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will provide a brief statement outlining our contribution to this complex problem.

1.5 Our contribution

Here, we present the outline of the thesis and how the following chapters are connected

to the inverse-design workflow that was discussed previously.

In Chapter 3, we explore the initial steps of implementing an inverse design workflow.

This involves benchmarking the boundaries and gaining insights into training machine-

learning force fields to serve as energy predictors using readily available data. The

models discussed are valuable for such kinds of workflows as they function as rough

energy screening tools during the initial stages of a prototype-selection workflow.

In Chapters 4 and 5, we build upon the knowledge obtained in the first step. We

establish a prototype-design workflow for predicting ternary phase diagrams, comparing

it to state-of-the-art workflows, and employing it to discover novel intermetallics within

various ternary transition-metal systems. Subsequently, we extend this workflow to

systems containing magnetic elements, where we assess its strengths and weaknesses.

In Chapter 6 a high-throughput study is presented aimed at uncovering interesting

materials belonging to the Heusler alloy class. We build different workflows in order to

assess possible lattice distortions from the ideal cubic cell as well as different magnetic

ordering.

Overall, the work presented illustrates in a natural way the progression of ideas

and research contributions within the context of materials science and inverse design

methodologies.
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Chapter 2

Theoretical Background

This chapter serves as an introduction to the computational tools utilized throughout

the thesis. Multiple methods have been employed collectively to produce the results

presented in the following chapters. The goal of this thesis is ultimately to present

a data-driven workflow for predicting ternary phase diagrams. In order to achieve

this, various methods, including ab-initio calculations and different types of machine-

learning and data analytics tools, as well as computational thermodynamics concepts

have worked in concert. Therefore, it is crucial to introduce the reader to the fundamentals

of these methods.

In the following sections, we present the fundamentals of Density Functional Theory

(DFT) [18]. Additionally, we provide an overview of the most widely used functionals.

Special emphasis will be placed on the approximations implemented in the Vienna ab-

initio Software Package, commercially known as VASP, as this software was extensively

utilized for the majority of the ab-initio calculations reported in this work.

Following that, we will introduce the general concepts of machine-learning (ML) and

machine-learning force fields (MLFF). These tools were employed as surrogate models

to replace computationally expensive DFT in the creation of the ternary phase-diagram

workflow.

An introduction to the construction of phase diagrams and the fundamental concepts

of materials thermodynamics will also be provided. Additionally, we will introduce

other tools employed in this work, such as the Automatic FLOW for Materials Discovery

9
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(AFLOW). AFLOW is a data informatics package that integrates data analytics, data

handling, and data sharing tools into a comprehensive platform.

2.1 Density Functional Theory

The birth certificate of DFT is considered the famous paper by Hohenberg and Kohn

(HK) in 1964 [19]. In this paper, the foundational ideas that underpin DFT were laid

out. The special role of the density of particles in the ground-state of a quantum many-

body system was discussed. The idea is that all ground-state properties of a system

can be considered as unique functional of the ground-state charge density.

Shortly after the paper by Hohenberg and Kohn in 1964, a seminal work from

Kohn and Sham in 1965 [20] laid the foundation upon which modern methods have

been built. These methods have enabled us to calculate properties of molecules and

solids that would otherwise have been impossible to predict.

2.1.1 Hohenberg and Kohn Theorems

For any system of interacting particles in an external potential, Vext(r), supposing that

the nuclei are fixed, one can write the total energy operator of the system, known as

Hamiltonian, as the sum of the operators for the kinetic, T̂ , and the potential energy, V̂ ,

of the system as shown in Equation (2.1) (here we neglect the repulsive nucleus-nucleus

contribution).

Ĥ = T̂ + V̂ =

= − ℏ
2µe

∑
i

∇2
i +

∑
i

Vext(ri) +
1

4πϵ0

∑
i ̸=j

e2

|ri − rj|
.

(2.1)

Knowing the Hamiltonian operator, defined by the external potential, one can

solve the Schrödinger equation to determine all the states of the system, Ψi({r})

these indeed the ground-state wave-fucntion, Ψ0({r}), and ultimately the ground-state

density, n0(r).
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n0(r) =
⟨Ψ0| n̂(r) |Ψ0⟩

⟨Ψ0|Ψ0⟩
, (2.2)

where the density operator is n(r) =
∑

i=1,N δ(r − ri). The intuition of Hohenberg

and Kohn allows us to determine the external potential directly from the ground-state

density, n0(r). DFT is based on two theorems introduced by Hohenberg and Kohn in

the first sections of the paper [19].

In the first theorem, it is proven that for any interacting many-body system subjected

to an external potential Vext(r), the potential can be uniquely determined by the

ground-state density n0(r) up to a constant. This leads to a fully determined Hamiltonian

and enables the determination of all states within the studied system. The theorem

implies that all properties of the system can be determined solely from the ground-state

density.

In order to prove the theorem, we assume two different external potentials, V
(1)
ext (r)

and V
(2)
ext (r) that differ only by a constant and lead to the same ground-state n(r).

These two external potential are thus associated to two different Hamiltonians, Ĥ(1)

and Ĥ(2), which have different ground-state wavefunctions Ψ̂(1) and Ψ̂(2). However,

from the hypothesis we assumed that these two wavefunctions correspond to the same

ground-state energy n0(r).

Furthermore, we know that the Ψ(1) is not the ground-state of the Ĥ(2) and vice-

verse, Ψ(2) is not the ground-state of the Ĥ(1). Then we can write for that the energy

of the given system is:

E(1) =
〈
Ψ(1)

∣∣ Ĥ(1)
∣∣Ψ(1)

〉
<

〈
Ψ(2)

∣∣ Ĥ(1)
∣∣Ψ(2)

〉
(2.3)

The inequality in Eq. ( 2.3) means that the ground-state is not degenerate. Then

one can write,

〈
Ψ(2)

∣∣ Ĥ(1)
∣∣Ψ(2)

〉
=

〈
Ψ(2)

∣∣ Ĥ(2)
∣∣Ψ(2)

〉
−

〈
Ψ(2)

∣∣ Ĥ(1) − Ĥ(2)
∣∣Ψ(2)

〉
= E(2) +

∫
d3r

[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r)

(2.4)
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which results in

E(2) < E(1) +

∫
d3r

[
V

(2)
ext (r)− V

(1)
ext (r)

]
n0(r) (2.5)

Starting from the E(2) of the system and following the same approach, we end up in

symmetrical equations, where only the superscripts are exchanged as follows,

E(1) < E(2) +

∫
d3r

[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r) (2.6)

If we sum Equations (2.6) and (2.5) together, we will obtain the inequality E(1) +

E(2) < E(1)+E(2). Clearly, such an inequality cannot exist. This establishes the desired

property that there cannot be two different external potentials that differ by more than

a constant and correspond to the same non-degenerate ground-state density.

Since the Hamiltonian of the system is now well defined, one can solve the Schrödinger

equation to uniquely determine the wavefunction corresponding to the ground-state,

which is the one with the lowest energy. In other words, this theorem asserts that, in

the case of electrons in a material, the electron density uniquely determines both the

positions and types of nuclei.

In the second theorem, Hohenberg and Kohn discuss that a universal energy functional,

E[n], can be defined, and that the ground-state energy of the system corresponds to

the global minimum of this functional. This functional E[n] is minimized only for the

ground-state density n0(r), meaning that the functional is sufficient to determine the

exact ground-state energy and density.

Since all the properties of a system can be expressed as a functional of the density

n(r), then the total energy functional is given as follows,

EHK[n] = T [n] + Eint[n] +

∫
d3r Vext(r)n(r) + EII =

= FHK[n] +

∫
d3r Vext(r)n(r) + EII ,

(2.7)

where EII is the Coulomb repulsion energy of the nuclei. The functional FHK[n]

contains all the contributions in the energy from the kinetic, potential and internal
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energies. If we now consider a system with ground-state density of n(1)(r) that determines

an external potential V
(1)
ext (r) then from the Equation (2.7) we can find,

E(1) = EHK[n
1] =

〈
Ψ(1)

∣∣ Ĥ(1)
∣∣Ψ(1)

〉
, (2.8)

and for a different density, n(2)(r), which determines a different wavefunction Ψ(2) we

have that,

E(1) =
〈
Ψ1

∣∣ Ĥ(1)
∣∣Ψ(1)

〉
<

〈
Ψ(2)

∣∣ Ĥ(1)
∣∣Ψ(2)

〉
= E(2). (2.9)

This means that if the functional FHK[n] in Equation (2.7) holds, one can minimize

the total energy of the system by varying the corresponding density functional and

ultimately determine the exact density and energy of the ground-state.

The HK functional is defined only for densities that can be represented by an

external potential [21], which are called “V-representability”. Subsequently, Levy-

Lieb [22–25] gave an alternative definition of functional that extends the previous

definition to densities that are derivable from a wavefunction of N electrons, ΨN ,

which are called “N-representabily”.

So far, it has been demonstrated that a functional can be formulated for any density,

provided certain conditions are met. By minimizing this functional, one can obtain the

density and energy of the actual interacting many-body system. However, no specific

method has been introduced to determine this functional beyond the various definitions

established thus far.

2.1.2 Kohn-Sham DFT

Adopting the approach proposed by Kohn and Sham (KS) in 1965 [20] made DFT one

of the most widely used methods for electronic structure calculations. Their approach

consists in replacing the difficult problem of an interacting many-body system, for

which we can write its Hamiltonian as follows,
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Ĥ = − ℏ2

2µe

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI|
+

1

4πϵ0

∑
i ̸=j

e2

|ri − rj|

−
∑
I

ℏ2

2MI

∇2
I +

1

4πϵ0

∑
I ̸=J

ZIZJe
2

|RI −RJ|

(2.10)

where electrons are denoted as lowercase subscripts and nuclei as uppercase subscripts.

In Eq. (2.10) MI is the mass of the nucleus, I, and ZI is the charge of the nucleus, I.

Then if we set the mass of the nuclei to infinity, the kinetic energy of the nuclei can be

ignored. This is known as the Born-Oppenheimer approximation [26].

One can then substitute this problem with an alternative auxiliary system that is

easier to solve. The underlying idea is to correlate the ground-state density of the

original interacting system with that of a non-interacting one. This approximation

leads to a set of independent-particle equations for the non-interacting system, which

can be exactly solved using numerical methods. At the same time, all the complexities

arising from the interacting many-body part of the problem are transferred to the

exchange and correlation potential, which is a functional of the density. Subsequently,

one can solve these equations to determine the ground-state density, although with an

approximation applied to the exchange and correlation functional.

Two criteria need to be taken into account in order to construct the auxiliary

single-particle system. In the first one, the ground-state density of the interacting

system must be identical to the ground-state density of a system of non-interacting

particles. Secondly, the Hamiltonian of the auxiliary system is created by the sum

of the operators of the usual kinetic and an effective local potential V σ
ext(r) that acts

on an electron of spin σ at point r. All the calculations are then performed on the

auxiliary independent-particle system defined by the auxiliary Hamiltonian (which can

be defined in Hartree units) as follows,

Ĥaux = −1

2
∇2 + V σ(r) (2.11)

Then the density of this non-interacting system is given by Equation (2.12),
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n(r) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2 (2.12)

where ψσ
i are all orbitals that correspond to electrons with spin σ. The independent

kinetic energy can then be expressed as follows,

TS = −1

2

∑
σ

Nσ∑
i=1

⟨ψσ
i | ∇2 |ψσ

i ⟩ . (2.13)

The classical Coulomb repulsion, EHartree of the electron density can be defined as well,

EHartree =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′| . (2.14)

This led us to rewrite the expression (2.7) for the energy functional as follows.

EKS = TS[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + EXC[n] (2.15)

For Equation (2.15) to be equal to Equation (2.7) all the many body effects are

grouped into the exchange and correlation energy EXC[n]. The exchange and correlation

functional then can be written in terms of HK functionals,

EXC[n] = FHK[n]− (TS[n] + EHartree[n]). (2.16)

If the exchange and correlation functional is known, then one can proceed and

calculate the ground-state energy of the many-body problem by solving the KS equations.

2.1.3 Kohn-Sham Variational Equations

Up to this point, we have introduced the concept of replacing the challenging many-

body interacting problem with that of non-interacting particles, which is easier to be

solved using numerical methods. For the solution to be found, the minimization of the

KS energy functional needs to be performed with respect to either the density or the

external potential. We can see from Eqs. (2.15) and (2.13) that the kinetic energy is a

functional of the orbitals but the other terms are functionals of the density. Then one
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can use the chain rule to derive the variational equation,

δEKS

δψσ∗
i

=
δTS
δψσ∗

i

+

[
δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δEXC

δn(r, σ)

]
δn(r, σ)

δψσ∗
i

= 0 (2.17)

By using the Lagrange multipliers to enforce particle conservation, this equation

leads to the Kohn-Sham Schrödinger-like equation,

(Hσ
KS − ϵσi )ψ

σ
i = 0, (2.18)

where ϵσi are the eigenvalues and the HKS is the Kohn-Sham hamiltonian.

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r) (2.19)

and:

V σ
KS(r) = Vext(r) + VHartree(r) + V σ

XC(r) (2.20)

The Equations (2.18), (2.19), and (2.20) are known as the Kohn-Sham equations.

The solution of these equations typically follows a self-consistent procedure. Furthermore,

it should be noted that these equations are independent from any approximation and

would lead to the exact ground-state density and energy should the exact exchange

and correlation functional be known.

2.1.4 Solution to the Kohn-Sham Equations

An iterative approach is adopted to solve the Kohn-Sham equations. These equations

are solved using a self-consistent manner, meaning that the input is adjusted until

convergence. The key idea is that an initial guess for the electron density is used to

compute the effective potential, which is then used to solve the Schrödinger equation.

From this solution, a new electron density is obtained.

The process is repeated iteratively: the new electron density is used to update the

effective potential, which is then used to solve the Schrödinger equation again. This
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cycle continues until the electron density and effective potential converge to a self-

consistent solution, meaning that further iterations do not significantly change these

quantities. The accuracy of a given calculation is determined by a threshold value,

which specifies the difference in a given property (e.g., energy) between consecutive

steps.

Figure 2.1: A schematic representation of the self-consistent cycle used for the solution
of the Kohn-Sham equations. From an initial guess for the electron density the effective
potential is calculated. Then, the Schrodinger-like Kohn-Sham equation is solved
and the new electronic density is calculated. If the difference is above a threshold,
then the electron density will be used to calculate the new value and the loop starts
again. Otherwise the energies, forces and any additional ground-state properties are
calculated.

2.1.5 Exchange and Correlation Functionals

Density functional theory is the lead method in ab-initio calculations of the ground-

state properties of a quantum many-body system. However, a range of approximations

must be considered. The total energy, Etotal of the system can be expressed as,
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Etotal = T + Eestat + EXC (2.21)

where the T is the kinetic energy of the Kohn-Sham non-interacting system of electrons,

the electrostatic contribution is Eestat and the exchange and correlation effects are

included in EXC. This subsection is dedicated to this important last term of Eq. (2.21),

as it is the one to correct for the missing electronic energy. So far no closed form for

the exchange and correlation functional has been found. However, there is a variety of

different approximated ones that are used. We will rapidly review the Local Density

Approximation (LDA) and Generalised Gradient Approximation (GGA), which are

two of the most frequently utilised approaches in literature. The latter has been used

throughout this work.

In the first approximation, considering a point of space r where the electron density

takes a value of n(r), then the exchange and correlation energy is the energy of a

uniformly distributed electron gas [20] computed at that density. This approximation

assumes that there are no rapid changes in the electron charge density. The value is

given by Equation (2.22).

EXC[n(r)] =

∫
d3r n(r) ϵ(n) (2.22)

For materials where the charge density is closer to the homogeneous electron gas,

for example metals, this approximation is expected to work well.

In the Generalised Gradient Approximation (GGA) [27], which is considered to be

an improved version of LDA, one not only considers the value of the electron density at

a point, r, but also the gradient of the density, ∇ n(r), which gives information about

the slope of the charge density at that point. In this work, the GGA Perdew, Burke,

and Ernzerhof functional will be employed for our calculations. The general expression

is given by the following equation,

EPBE
XC =

∫
d3r n(r) ϵPBE

XC (rs(r), s(r), ζ(r)), (2.23)
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where the rs is the Wigner-Seitz radius , given by rs = (4π n
3
)
−1
3 , ζ is the relative spin

polarisation and s is the reduced density gradient. The exact expression for ϵPBE
XC is

constructed to satisfy a range of criteria explored in detail in Ref. [27].

In the present work, we have performed DFT calculations, as introduced in the

preceding sections, using the Vienna ab-initio Software Package (VASP) [28–31].

2.2 Machine Learning Interatomic Potentials

Calculating the ground-state energy using ab-initio methods, such as DFT, can be

computationally expensive, especially when performing thousands of calculations for

a specific system. Machine-learning provides tools to overcome this challenge. In this

study, we train machine-learning models to serve as surrogates for DFT in predicting

the ground-state energy of the systems under investigation. Therefore, it is essential

to provide the reader with the foundational knowledge regarding the machine-learning

techniques applied in this work.

2.2.1 Machine-Learning and Types of Learning

The machine-learning (ML) term refers to the variety of techniques used to address

problems for which exact algorithm development may be inefficient. These problems

are tackled by enabling machines to “discover” their “ own” algorithms [32], eliminating

the need for explicit programming or guidance from human-developed algorithms.

In other words, provided that the necessary data sufficiently sample the space

of the studied problem, one can algorithmically build a statistical model based on

that dataset. This means that in the end, the trained model learns a mathematical

function that connects the input with the output. In order to enable the machine

to construct such relationships, one needs to provide the model with a vector of

numbers representing the important characteristics of the problem, called the feature

vector. Then, an optimization process begins, adjusting the parameters of the model

to reproduce the output in the most accurate way possible and to predict the output
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for unseen cases more effectively. A schematic representation of a generic ML model is

shown in Figure 2.2.

Figure 2.2: Schematic representation of the main steps of a machine-learning workflow.

Furthermore, there are various types of learning, including supervised [33],

unsupervised [34], and reinforcement learning [35]. The differences between these types

of learning results from how the model interacts with the dataset and the type of data

used for training. In the first case, the model is trained on labeled data {(xi, yi)}Ni=1,

where each data point is represented as a feature vector xi corresponding to a label

yi. The goal of supervised learning is to construct a model that takes a feature vector

xi as input and returns the label yi. In unsupervised learning, the dataset consists

of a collection of unlabeled examples, {xi}Ni=1, and the model’s objective is to extract

insights from the provided data. In the last category, the model interacts with the

user based on a reward system, allowing the model to learn through examples. In this

work, we primarily focus on the first category of learning as we train machine-learning

models to replace computationally intensive DFT calculations.

2.2.2 Ridge Regression and Model Training

In the present work, we focus on training linear models, namely linear ridge regression.

The main reason behind that choice is the lack of available data points, as the goal of

this project is to explore how well models perform, when trained on readily available

data. Then, it is proved that linear models [36, 37], when combined with highly

nonlinear descriptors (in our case, bispectrum components) are able to fit complex

relationships [38–42].

Let us assume to have a database ({(xi, yi)}Ni=1) consisting of N different pairs

of data points corresponding to the vectors xi and the output label yi. A typical
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linear model assumes a function that maps the inputs to the outputs through a linear

relationship. To predict the values yi corresponding to the example xi, one can use

Equation (2.24),

yi = fRidge(x) = a · xi (2.24)

Here, a = (a1, a2, . . . , ap) represents the vector containing the learned coefficients,

where p is the number of features in the vector xi. In order to determine the coefficients

a one has to optimise a specific loss function, which measures how well the model

performs with respect to known data. A famous example is the least squares LLS(ŷi, yi) =∑N
i=1(ŷi − yi)

2, where ŷi is the known label corresponding to xi and yi is the output of

the linear model. The coefficients a correspond to the ones that minimize the value of

a specific loss function. The ridge regression case can be considered as an extension to

least-squares, as it adds a regularization term to the least-squares loss function. The

loss function can then be written as follows,

LRidge(a) =
N∑
i=1

(yi − axi)
2 + λ|a|2. (2.25)

The second term in Eq. (2.25) is called the regularization term and corresponds to a

L2 regularization [43]. The constant λ corresponds to a hyperparameter of the model,

so it has to be minimised in order to provide the most optimal model. The aim

of the regulatisation is to prevent overfitting by imposing a penalty on large model

parameters (outliers), helping to create a more generalized model that performs well

on unseen data.

An overfitted model [44] is one that exhibits excessive complexity for the dataset

it is intended to fit. While the loss function typically attains low values, these models

tend to capture not only the underlying patterns, but also the noise within the data.

Consequently, they become less useful for making predictions on data that was not

part of the training set.

An underfitted model [44] is the opposite, characterized by being a mathematical
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model that is overly simple for the dataset it is meant to fit. These models typically

exhibit higher loss functions and perform poorly on unseen data. For instance, a linear

fit applied to non-linear data is a classic example of underfitting. In Figure 2.3, a visual

representation of an underfitted, overfitted, and correctly fitted model is presented.

Figure 2.3: Illustration of Underfitting (left), Overfitting (middle), and Proper Fitting
(right). In this figure, different polynomial orders were used to fit the same sine
function. It is demonstrated that as the degree increases, the models transition from a
significant underfitting, which is too simple to represent the data, to a highly complex
model that learns the noise introduced to the dataset (overfitting). The last panel show
a well balanced fit.

2.2.3 Matrix Notation and Gradient Descent

The same equations can be expressed in matrix notation, which simplifies their implementation

through vectorization. Vectorization is a technique in which the implementation of a

mathematical equation is transformed from a scalar approach, where pairs of operands

are processed one at a time, into vectorized operations that handle multiple pairs of

operands simultaneously. In thi way the calculations are made faster by orders of

magnitude.

Consider a system where we have N vectors represented by x, with each of these

vectors corresponding to p distinct features. Then, we can define as the matrix X the

N × p matrix, where the row k corresponds to the xk, namely,
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X =



x11 · · · x1p

...
. . .

...

xk1 · · · xkp

xN1 · · · xNp


. (2.26)

In contrast, Y corresponds to the vector of all the outputs yi and the vector a is the

vector of coefficients. Then, one can write the Equation (2.24) in vector form as

Y = Xa ⇔


y1

...

yN

 =



x11 · · · x1p

...
. . .

...

xk1 · · · xkp

xN1 · · · xNp




a1

...

ap

 . (2.27)

The loss function, defined in Equation (2.25), can be writen as follows,

LRidge = (Y−Xa)⊺(Y−Xa) + λa⊺a. (2.28)

After defining the loss function, it is important to discuss the algorithm used to

optimize the values of the coefficients a. Although there are a variety of different

optimisation algorithms such as probabilistic methods like Bayesian optimisation [45]

or brute force methods like grid-search, by far one of the most popular is gradient

descent.

Gradient descent [46] is an iterative optimization algorithm for finding the local

minimum of a differentiable function. The core idea of this method is to start from

a random guess and move in the opposite direction of the gradient of the function at

the current point until one reaches the minimum. We start by calculating the partial

derivative of Equation (2.25) with respect to the optimisation parameter,

∂LRidge

∂a
= −2

N∑
i=1

xi(yi − axi) + 2λa, (2.29)

and in matrix notation
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∂LRidge

∂a
= −2X⊺(Y−Xa) + 2λa. (2.30)

Then, by starting from a random choice of the vector a, one can optimize it iteratively

by updating the values in the following way

ai+1 = ai − η
∂LRidge

∂a
. (2.31)

Here, the subscript i refers to the updated vector a, and η represents the learning rate.

The optimization algorithm continues to iterate until convergence, which occurs when

the change in the loss function falls below a certain predefined threshold.

2.2.4 Interatomic Potentials

Interatomic potentials [47] are functions that correlate the structure of a given system of

atoms with its potential energy. By taking the derivative of this interatomic potential

with respect to the atomic coordinates, one can calculate the forces acting on the

system. Interatomic potentials are commonly used in molecular dynamics simulations

to explain and predict material properties [48, 49].

Interatomic potentials can be written as a summation of contributions that correspond

to one, two, three, etc., atoms at a time. The total potential can be expressed as follows,

Vtotal =
N∑
i=1

V1(r⃗i) +
N∑

i,j=1

V2(r⃗i, r⃗j) +
N∑

i,j,k=1

V3(r⃗i, r⃗j, r⃗k) + · · · (2.32)

where V1, V2, V3, etc. are the one-, two-, three-body terms correspondingly. A variety

of different interatomic potentials have been proposed with arguably the most famous

being the Lennard-Jonnes potential [50]. The function of this potential is a sum of a

repulsive term (∝ r−12) that dominates at very short distances and an attractive term

∝ r−6, which dominates at intermediate distances. The complete function then is

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (2.33)
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where ε is the depth of the potential, σ is the distance at which the potential is takes the

zero value and r is the distance between the centers of the two particles. In applications

these values are fitted with to experiments or theoretical calculations. Combining these

two terms in the Lennard-Jones potential, the model captures both the strong repulsion

at very short distances (to prevent particles overlap) and the attractive forces that

become significant at intermediate distances. Other types of parametric potentials are

the Morse potential [51], the Ziegler-Biersack-Littmark (ZBL) potential [52] and others.

2.2.5 Machine Learning Interatomic Potentials, the Case of

SNAP

Machine Learning Interatomic Potentials (MLIAPs) employ machine-learning methods

to map the potential energy surface (PES), including the total energy and interatomic

forces, as functions of the atomic positions. In a concept similar to empirically fitted

force fields, the parameters of ML interatomic potentials are optimized using provided

data, typically computationally expensive DFT calculations. However, MLIAPs do

not make any assumptions about the shape of the interatomic potential. Instead, they

directly learn all information from the input data. Once the potential has been fitted,

it can be used to predict the energies, forces, and stress tensors of larger ensembles of

atoms without the need for additional reference data, and it does so in a fraction of

the time. This approach provides access to ab-initio accuracy in molecular dynamics

simulations for extended length and time scales.

In this study, the Spectral Neighbor Analysis Potential (SNAP) serves as a DFT

surrogate. SNAP operates under the assumption of a linear relationship between the

local environment, expressed in bispectrum components, and the atom energy. SNAP

has been employed to train robust models [37, 39, 40] with a limited amount of data.

As SNAP is extensively utilized throughout this work, it is crucial to introduce the key

concepts related to this type of interatomic potential.

The fact that the PES is a smooth function of the nuclear coordinates [10], is a

property that makes interatomic potentials useful. Then, the property of nearsightedness [53]
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states that the electron density at a point is only weakly affected by atoms that are not

near. This results to the main assumption that the energy of a configuration of atoms

can be expressed as a sum of contributions of different clusters of atoms as expressed

in Equation (2.34),

Etot =
Natom∑
i=1

εLocal({rij}), (2.34)

where rij is the relative position between the atoms i and j. Therefore, it is reasonable

to create a class of descriptors that represents the local chemical environment of each

atom, or the relative positions and bonds of the neighborhood. In general, this is

done by identifying geometrical structures composed of the pair distances and angles.

One of the descriptors studied by Bartók et al. [10, 54, 55], namely the bispectrum of

the neighbor density mapped on to the 3-sphere, forms the basis for their Gaussian

Approximation Potential (GAP) [10]. SNAP interatomic potential also uses the same

basis.

The derivation starts by expressing the density of neighbor atoms around a central

atom i at a location r. This can be considered as a sum of δ-functions in the three

dimensional space,

ρi(r) = δ(r) +
∑

rii′<Rcut

fc(rii′)wi′δ(r− rii′). (2.35)

Here, rii′ is the vector connecting atom i to atom i′, wi′ represents the elemental

weights, used to distinguish different species, and Rcut denotes the cut-off radius that

defines the local neighborhood. The last two types of parameters are hyperparameters

of the problem, which means that, in order to obtain an optimized SNAP potential,

they must be optimized. The function fc(r) [56] is a smooth function defined to ensure

that the contribution of the atoms goes smoothly to zero as the distance from the

central atom increases above Rcut. In SNAP this is defined as follows,
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fc (Rij)


0.5

[
cos( πr

Rcut
) + 1

]
for r ≤ Rcut

0 for r > Rcut

. (2.36)

In order to expand the angular part of the neighbor density one can use the basis

of the spherical harmonics [57], Y l
m(θ, ϕ) where l = 0, 1, 2, . . . and m = −l, . . . , l. The

radial part of the neighbor density is expanded onto a radial basis and multiplied by

the spherical harmonics. In the work of Bartók et al. the radial distance is mapped

onto an angle θ0 = θmax
0

r
Rcut

. This projection is similar to a Riemann projection, and

the choice of it allows for a more sensitive representation for the entire range.

The 4D hyperspherical harmonics U j
m,m′(θ0, θ, ϕ) are used as a basis for the 3-

sphere [57]. Then the neighbor density can be expanded as follows,

ρ(r) =
∞∑

j=0, 1
2
,...

j∑
m=−j

j∑
m′=−j

ujm,m′U
j
m,m′(θ0, θ, ϕ), (2.37)

where the coefficients of expansion, ujm,m′ are given by,

ujm,m′ =
〈
U j
m,m′

∣∣ρ(r)〉 , (2.38)

and the U j
m,m′ are the Wigner matrices [57]. Since the neighbor density is represented

as a sum of δ-functions, each term in the expansion can be expressed as a sum over

discrete values of the corresponding basis function as follows,

ujm,m′ = U j
m,m′(0, 0, 0) +

∑
rii′<Rcut

fc(rii′)wiU
j
m,m′(θ0, θ, ϕ) (2.39)

However, although we have expanded the neighbor density into coefficients, ujm,m′

is it known [57] that these coefficients are complex valued, so they are not suitable

to be used as descriptors of the local chemical environment. Furthermore, they do

not contain the symmetries that we would like them, such as invariant under rotation.

However, it was shown that the scalar triple product of the expansion coefficients are

real-valued and are invariant under rotation [55]. Then, the bispectrum components
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can be written as follows,

Bj1,j2,j =

j1∑
m1,m′

1=−j1

j2∑
m2,m′

2=−j2

j∑
m,m′=−j

(ujm,m′)
∗Hjmm′

j1m1m′
1

j2m2m
′
2

uj1m1,m′
1
uj2m2,m′

2
. (2.40)

Here, Hjmm′

j1m1m′
1

j2m2m
′
2

represents the Clebsch-Gordan coefficients of the SO(4) group. The

advantage of the bispectrum components lies in their ability to capture both radial

and angular information, while inherently preserving the necessary symmetries. The

number of these components is determined by the value of j in Equation (2.37), which

is now denoted as jmax. In most implementations, it is multiplied by two, 2jmax, so to

take integer values [37].

The different hyperparameters in this descriptor are the cut-off radius Rcut, the

2jmax, and the elemental weights wi′ . The first one, controls the amount of interactions

that are taken into account when building the feature vector, so it controls the amount

of information that is encoded in the feature vector. The second hyperparameter,

2jmax, controls the complexity of the feature vector. For example, as we increase it,

the more complex the models produced are. The last ones, the elemental weights wi′ ,

add information regarding the different atomic species.

The model can then be trained to correlate the descriptor calculated by Equation

(2.40) with the energy produced by quantum mechanical calculations. In order to do

that, we assume that the local energy can be decomposed into separate atomic energy

contributions, as from Equation (2.34), but now the atomic energy ε is a function of

the descriptors. In this case, it is the vector containing the bispectrum components

Bi = (Bi
1 . . . B

i
K), where K is controlled by 2Jmax. Then, for a system of Natoms atoms

we can write,

Etot =
Natoms∑
i=1

Ei
SNAP(B

i). (2.41)

It is assumed that the SNAP atomic energy, Ei
SNAP(B

i), is a linear function of the

descriptors. Then the linear equation can be written as
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Ei
SNAP (B

i) = aβi
0 + aβiBi, (2.42)

where βi is the chemical identity of atom i and aβi

K are the coefficients for the

atoms of type β. The excercise is then reduced to an optimisation problem of a linear

function, meaning that one has to find the values of the coefficients aβi that reproduce

the accuracy of the ab-initio simulations. In the case of a structure consisted of Natoms

of a single type one can write,

Etot =
Natoms∑
i=1

Ei
SNAP (B

i) =
Natoms∑

i=1

(a0 + a = Bi) =

= Natomsa0 + a
Natoms∑
i=1

Bi.

(2.43)

By calculating the derivative of the total energy with respect to the position of the

atoms are then calculate the forces that act on the atoms of the structure,

Fj
SNAP = −∇jEtot = −a

Natoms∑
i=1

∂Bi

∂rj
, (2.44)

and the stress tensor,

WSNAP =
Natoms∑
j=1

rj ⊗ Fj
SNAP = −

Natoms∑
j=1

rj ⊗
Natoms∑
i=1

∂Bi

∂rj
. (2.45)

From a single quantum mechanical calculation for a system of Natoms atoms, in

general, we have access to 3Natoms + 7 data points, namely the energy, the six values

of stress tensor and the 3Natoms forces. In general, an interatomic potential should be

trained on all the available data. In the next few equations we formulate the excercise

in a matrix notation form. In order to find the optimal values for the coefficients of

the vector a, one has to follow the methodology presented in Sections 2.2.2 and 2.2.3,



30 CHAPTER 2. THEORETICAL BACKGROUND



...
...

Natoms

∑Natoms

i=1 Bi

...
...

0 −∑Natoms

i=1
∂Bi

∂rβj
...

...

0 −∑Natoms

j=1 rβj
∑Natoms

i=1
Bi

∂rβj
...

...



[
a0

a

]
=



...

EDFT
s
...

FDFT
j,β
...

WDFT

...


. (2.46)

The objective now is to determine the coefficients of the vector a in such a way that

the predictions for these quantities can accurately reproduce the data points provided to

the model. Thompson et al. [37] achieved this by employing least-squares optimisation.

In our case, as discussed earlier, we are utilizing ridge regression.

Lastly, a mention should be made about the variety of different fingerprints that

have been successfully implemented and used in a variety of studies. A necessary

condition is that they present the same symmetries as the property one has to predict.

In our case, we are interested in energy predictions. Hence, the relevant fingerprints

should be invariant under translation and atomic permutation, while they are usually

constructed to be locally rotational invariant. Just to name a few of the most used

MLIAPs: Behler-Parinello symmetry functions, combined with Neural Networks in

Neural Network Potentials (NNP) [56] which successfully employed to perform molecular

dynamics simulation for bulk silicon with ab-initio accuracy. The Smooth Overlap

of Atomic Position (SOAP) descriptors with Gaussian process regression in Gaussian

Approximation Potentials (GAP) [10], used to accurately describe bulk semiconductors

and iron at high temperature. Furthermore, invariant polynomials with linear regression

in Moment Tensor Potentials (MTP) [12] and N-bond basis functions with linear

regression in Atomic Cluster Expansion (ACE) [58]. The models employing the feature

vectors highlighted before utilize a DFT dataset to fit the model parameters and are

capable of predicting energies and forces at ab-initio accuracy, provided these are made

for structures for which the model interpolates.
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2.2.6 Applications

Machine Learning Interatomic Potentials (MLIAPs), trained on data extracted from

ab-initio calculations, present a compelling alternative to computationally expensive

DFT. While still a relatively young field in materials science, MLIAPs find applications

in a range of different fields. In the following paragraphs, we will present a selection

of studies in which the versatility and effectiveness of incorporating such tools into

material prediction workflows is demonstrated.

MLIAPs based on SNAP and neural networks, have previously been employed

to map the potential energy surface of multiple phases and reconstruct the T =

0 K phase diagram, thereby determining the lowest energy structures for metallic

alloys. A notable example is the case of the Ni-Mo binary system as demonstrated

in reference [38]. In that study, a SNAP model tailored for the Ni-Mo binary system

achieved excellent agreement with experimental data in predicting the Ni-Mo phase

diagram. Furthermore, it exhibits near-DFT accuracy in predicting various key properties,

including elastic constants, formation energies, melting points, and more, across the

entire range of binary composition. This surpasses the accuracy of the embedded-atom

method potentials previously used for the same purpose.

In the case of reference [59] a neural network based interatomic potential was trained

for the Au-Li binary system. They used the trained interatomic potential to explore

the miscibillity in that binary phase diagram, discovering a variety of structures near

the convex hull. Furthermore, they were able to find three structures at the convex

hull, which means that they are thermodynamically stable. Another case where a NN-

based interatomic potential was used is that of the Mg-Ca binary alloy [60] where a

trained model was used to find two different stable phases.

Another example of an interatomic potential being employed to explore a ternary

phase diagram can be found in reference [61]. In this study, an interatomic potential

was trained to reproduce the energies, phonon dispersions, and formation enthalpies of

Cu, Pd, Ag, Cu-Pd, Cu-Ag, Pd-Ag, and Cu-Pd-Ag systems. Attempts have been made

to predict the stability of a given material [62, 63] directly by measuring its distance
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from the convex hull. These models leverage available databases, combining data from

various stoichiometric compositions, chemical species, and crystal structures to provide

the necessary information.

However, when it comes to SNAP interatomic potentials, their applicability has

been somewhat limited to explore a wide range of different structures and stoichiometries,

and they have not been extensively utilized to discover new stable alloys. In contrast,

Neural Network Potentials (NNPs) have been trained on very large datasets, typically

containing thousands to tens of thousands of structures. This enables NNPs to capture

a comprehensive set of structures, similar to what is required for constructing a fully

ab-initio convex hull.

One of the few cases where a MLIAPs trained on a limited number of structures,

was used to predict materials’ stability in an accelerated manner is illustrated in the

work of Gubaev et al. [64]. In their research, they performed ab-initio calculations on

a range of structures, between 383 and 2,393, to train a MLIAP capable of reproducing

binary and ternary convex hulls. The selection of these structures was facilitated by

an efficient active learning algorithm [64], which explored approximately 104 − 105

configurations for each phase diagram. This approach demonstrated that MLIAPs

have the potential to aid high-throughput computational searches of novel alloys.

2.3 Prototype Creation Strategies

The crystal structure is undoubtedly one of the most significant attributes of a material,

as it exhibits a strong correlation with its properties. Knowing the arrangement of

atoms is important for studying their properties as well as to estimate their stability.

It is significant in many different areas of science in which someone wants to know

the structure of a given material. Since it is a global optimization problem, finding

a solution is not always possible. The primary focus is on thermodynamically stable

structures, as those are more probable for experimental synthesis in ambient conditions.

However, metastable structures also offer valuable insight into a specific compound

under particular conditions, such as temperature or pressure. However, determining
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the atomic arrangement in a material solely on the basis of its stoichiometry remains an

ongoing scientific challenge. Various strategies have thus far been employed to tackle

this problem. In the following subsection, I will provide a concise overview of some

well-known approaches. In addition, we will introduce the methodologies employed in

this work.

One of the most commonly used approaches to predict crystal structures is the

ab initio random structure search (AIRSS) [65]. The underlying idea behind this

strategy is that, when no prior knowledge of the atomic arrangements of a material is

available, it is reasonable to begin by relaxing random structures. However, as outlined

in the foundational paper of this method [65], several criteria must be followed. For

instance, the volume of a specific material can be estimated based on the volume

of its components, and the distances between atoms should be appropriate, avoiding

both overly close and overly distant configurations. This ensures that the optimisation

algorithm to refine the structures can operate effectively. This approach has been

applied to a wide range of problems. It has been used to study the phases of silane

(SiH4) [66], to predict its crystal structure, to confirm the expected metallic behaviour,

and demonstrate that silane can exhibit high temperature superconductivity. This

phenomenon arises from the pre-compression of hydrogen induced by the presence

of the group IV element. In another interesting study, the same author, utilised a

random structure search to study the phase diagram of hydrogen sulphide at high

pressures [67].They employed this method to predict the crystal structures of different

compositions throughout the phase diagram. Another application that combines the

advantages of AIRSS with machine-learning potentials [68] is presented. In this work,

the same author, used this methodology to uncover a large unit cell structure in the

high-pressure phase diagram of silane, as well as to identify the correct crystal structure

for the 12-atom icosahedral alpha-boron and the 28-atom gamma-boron.

Another well-known method employs an evolutionary algorithm [69] to search for

structures that lie at the minimum of the potential energy surface. In the evolutionary

crystal structure algorithm SPEX [70] starting from a variety of different inputs such as
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stoichiometry, pressure-temperature conditions, and the number of atoms, just to name

a few. It creates the parent structures (the first generation step) then, by imitating the

Darwinian evolution idea, the structures created before are combined and a relaxation

step will bring them to the minimum. New structures are produced by slicing the

parent over during an heredity phase, and the new generation of structures is created by

mutation, change of the cell, by permutation or by switching elemental identities of the

atoms in the crystal. This strategy has been used in a variety of works and has yielded

results, especially for crystal structures under extreme conditions [71]. Furthermore,

they proposed and studied a super-hard phase of monoclinic carbon [72], in agreement

with the experiments. Also, they studied and proposed that under pressure sodium

becomes transparent [73], which is due to the fact that under pressure it transforms

into an insulating phase.

Although these strategies yield truly remarkable results, they are computationally

intensive because of the need for an exhaustive number of ab-initio calculations. Furthermore,

due to their probabilistic nature, they do not guarantee to always find the absolute

minimum. However, they are ideal for those who want to find novel compounds and

focus on a specific system. This makes them challenging to employ within a high-

throughput framework.

2.3.1 AFLOW Dictionary Method

Starting with the main idea of the task we aim to address—creating an inverse design

workflow that combines high-throughput and machine-learning techniques—the challenge

of efficiently generating candidate structures. In particular, the objective of this study

was to combine elements from the transition metal region of the periodic table to

create ternary alloys. This implies that the chemical environments of the anticipated

structures would be variations of the binary constituents. Here, our prototype generation

workflow draws inspiration from the dictionary method utilized by AFLOW [74, 75] and

the derivative structure creator developed by Hart et al. [76–78]. Both of these methods

are known for their speed. Furthermore, the structural diversity of the structures
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created is sufficient for the problem we want to tackle. In the following paragraphs, we

will introduce these two methods, which played a crucial role in the present work.

We start from the dictionary method, which is a more high-throughput-oriented

method for generating crystal structure prototypes, particularly for constructing binary

and ternary phase diagrams. The concept behind this strategy is rather straightforward.

By having an encyclopedia [79–81] containing all available atomic positions and cells

of known materials, one can utilise the prototypes and decorate them with the desired

elements. Such approach has been used in a variety of high-throughput studies, where

the crystal structure of an interesting family of compounds was used as a prototype

and decorated accordingly. In references [6, 82], the crystal structure of the Heusler

family of alloys is explored using high-throughput calculations. In the first work,

the Heusler alloy structure was decorated accordingly to search for novel magnetic

materials. They assessed the stability of a quarter of a million different compounds and

predicted and synthesised three novel magnets. In the second work, an experimental

criterion was employed, namely the electron count to be equal to 19, in order to search

for semiconductors. Here, Figure 2.4 shows the procedure used when considering the

dictionary method.

(a) A0.5B0.5 (b) Cu0.5Au0.5 (c) Fe0.5Pt0.5

Figure 2.4: The figure shows the body-centered cubic 2x2x2 supercell. In the leftmost
panel, the general A0.5B0.5 binary alloy is depicted, where A atoms are shown in green
and B atoms are shown in purple. In the central figure the Cu0.5Au0.5, where Cu
atoms are shown in bronze and Au atoms are show in yellow. In the rightmost figure
the Fe0.5Pt0.5, where Fe atoms are shown in red and Pt atoms are show in grey.

In general, apart from decorating already known crystal structures, there is a scaling

process that ensures the volume of the created structure to be in accordance with the
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volume of the constituent elements, known as Vegard’s law [83]. This ensures that the

relaxation step is more efficient and corrects for abnormal structures. The disadvantage

of the dictionary method is that this approach is less likely to predict crystal structures

that have not been explored before. AFLOWLIB employs this strategy to create the

structures used for a given convex hull with success, as it is able to find a variety of

different stable intermetallics in the space of binary and ternary alloys.

2.3.2 Enumlib

The idea of populating a known crystal structure with a specific stoichiometric decoration

is a fundamental aspect of this work. However, decorating the lattice sites with various

motifs can be a challenging task, especially when creating supercells based on a specific

unit cell, as the number of decorations scales with the available sites. Several tools have

been developed for this purpose [76, 84]. We have determined that the algorithm best

suited to address the challenges of our proposed solution is the enumeration algorithm

developed by Hart et al. [76], as it provides the required throughput for our purposes.

The following section will introduce the key concepts of this method.

The algorithm, as described in references [76–78], is designed to generate all the

different derivative superstructures from a given parent structure. This category of

structures consists of those, whose lattice vectors are multiples of a parent lattice, and

their atomic basis vectors correspond to lattice points of the parent lattice. Furthermore,

it is capable of generating all unique rotationally and translationally decorations or

colorings.

The definition of a lattice, A, is presented. If there is a set E = {ϵ1, ϵ2, . . . , ϵk} of

linearly independent vectors in n-dimensional Euclidean space in Rn then we can write

A(E) = {
k∑

i=1

λiϵi | λi ∈ Z} (2.47)

is called a lattice with basis E and k is the dimension of A(E). Then, the basis can

compactly be represented as a square n×k-matrix with vectors ϵ1, ϵ2, . . . , ϵn as columns.

At the heart of the algorithm lies the concept of superlattice of size n. Let us consider
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the transformation B = AH, where A is the basis of the lattice defined in Equation

(2.47) (in general, this can be any lattice), H is a matrix of integer elements, and B is

the transformed lattice. The determinant of the transformation matrix gives the size

of the supperlattice B. For instance, if det(H) = −1,+1 then the transformation is

just a change in basis. If det(H) = 2 then the lattice B is a superlattice of size n =2.

Different H matrices with the same determinant correspond to different bases for the

same lattice. These matrices are in the lower-triangular Hermite normal form (HNF)

that is given by the equation


a 0 0

b c 0

d e f

 . (2.48)

In cases where 0 ≤ b < c and 0 ≤ d, e < f , the determinant is defined by the

multiplication of the diagonal elements. Finding all the Hermite Normal Form (HNF)

matrices for a specific size n is the initial step of this algorithm. For a given size n, one

would start by identifying all the different diagonal elements and then determining the

rest of the elements in an algorithmic way (for the complete procedure, see page 3 of

the reference [76]).

Calculating all Hermite Normal Form (HNF) matrices defines all the derivative

lattices that can be created using a parent lattice. However, not all of these lattices are

unique. Following the first step, the lattice symmetry of the parent lattice is leveraged

to remove redundant structures that are related to others already in the list by rotation,

reflection, or change in basis. In order to do that for each new superlattice Bi = AHi

the algorithm checks that it is not a rotated duplicate of a previous superlattice, Bj.

The problem can be reduced to ensuring that the matrix B−1
j R−1Bi contains only

integer elements, where R is the rotation matrix.

Subsequently, the algorithm calculates all possible element decorations for each

distinct superlattice. For a superlattice of size n corresponding to a specific HNF, there

are n sites available for decoration. If there are k different elements to choose from, the
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total number of possible decorations is kn. However, there may still be redundancy in

the decorated structures, so further steps are taken to eliminate duplicate structures

from the list.

In order to remove the redundancy of the created decorations, arguments based

on group theory are utilised, rather than comparing the structures geometrically as

was done in other algorithms [84]. This helps to maintain the linear scaling of the

algorithm, making it suitable for high-throughput applications. In the first step of the

algorithm, the elimination of the translation duplicates takes place.

Let us assume a system of four sites n = 4 that we want to decorate with 2 elements

(e.g. Ag and Au). Then, the Cayley table is calculated for the Z4 = (0, 1, 2, 3), this

corresponds to the sum modulo 4. The matrix is presented in Table 2.1.

X 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 2.1: Cayley table of Z4.

This provides all the different unique permutations, namely (0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1),

(3, 0, 1, 2) corresponding to the rows of the table. All the different 42 = 16 decorations

can be calculated, Table 2.2.

AgAgAgAg AgAgAgAu AgAgAuAg AgAgAuAu

AgAuAgAg AgAuAgAu AgAuAuAg AgAuAuAu

AuAgAgAg AuAgAgAu AuAgAuAg AuAgAuAu

AuAuAgAg AuAuAgAu AuAuAuAg AuAuAuAu

Table 2.2: Hash table of the complete decoration of a lattice with four sites. Incomplete
decorations are enclosed withing black rectangles.

It can be observed that the decorations inside the rectangle are incomplete as they

consist of only one element. However, redundancy exists for the rest of the decorations.

In order to identify redundant structures, the Cayley table can be used. For example,

we know that the unique decorations are (0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2).
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Starting from the string in the second column, AgAgAgAu, we can create pairs like

(0,Ag), (1,Ag), (2,Ag), and (3,Au). By comparing these pairs with the list of decorations,

we can identify the redundant ones, namely AgAgAuAg, AgAuAgAg, and AuAgAgAg,

as shown in Table 2.3.

AgAgAgAg AgAgAgAu AgAgAuAg AgAgAuAu

AgAuAgAg AgAuAgAu AgAuAuAg AgAuAuAu

AuAgAgAg AuAgAgAu AuAgAuAg AuAgAuAu

AuAuAgAg AuAuAgAu AuAuAuAg AuAuAuAu

Table 2.3: Hash table of a lattice decoration with four sites. Incomplete decorations are
depicted in red, and the starting decoration is shown in blue. Redundant decorations
are enclosed within black rectangles.

Finishing this procedure, the superstructures of AgAgAgAu, AgAgAuAu, AgAuAgAu,

and AuAuAuAg remain. In the next step, the decorations that are equivalent under

the exchange of labels are removed. This is done because the composition can be

recovered by making all possible label exchanges. For example, here the superstructure

corresponding to AgAgAgAu and AuAuAuAg is the same, so one of them can be

removed. Next, the structures that correspond to non-primitive structures are removed.

This results from the fact that structures of smaller sizes have already been enumerated.

In the last step, the structures that correspond to label-rotation duplicates are

removed. The label-rotation duplicates are identified using the properties of the quotient

group and the Smith Normal Form (SNF) transformation. The row and column

operations required to transform the HNF matrix of a superlattice into its SNF can

be represented by two integer transform matrices, L and R, so that LHR = S, where

S is the SNF matrix. The present algorithm was implemented with the use of the left

transformation matrix L. The n members of the quotient group are represented with

three components and together form the 3×n matrix G. These are transformed under

a rotation to give new labelings G′ as,

G′ = LA−1R(LA−1)−1G. (2.49)

As these checks are performed within the quotient group, duplicate labelings are
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eliminated in a time proportional to the number of labelings in the list.

The main details of the method are explained in reference [76]. However, this

methodology was initially constrained to Bravais lattices. In a second paper [77], the

algorithm was extended to nonprimitive parent lattices, providing the freedom to create

derivative structures using any parent structure. In a third paper [78], the creation of

derivative structures for cases with fixed concentrations was discussed. This extension

to the algorithm allows us to increase the number of atoms used for decoration in a

given structure.

2.4 Thermodynamic Stability

A crucial component of an inverse design workflow is a methodology to assess the

potential for the laboratory synthesis of a predicted material. The main objective

of this thesis is to implement a workflow with the necessary throughput to explore

the vast materials space. In computational materials science, one arbitrarily can

study any imaginary material as long as it obeys some general physical laws (e.g. no

overlapping of atoms, etc.) and come up with a variety of materials that hold several

interesting properties. However, only a small fraction of the predicted compounds can

be experimentally synthesized. Each unsuccessful attempt to do so results in a waste

of resources. In order to accurately assess the likelihood of successful synthesizing of a

predicted material, we utilized materials thermodynamics.

Let us consider a crystalline solid material denoted as AxBy. This compound is

characterized by two key parameters: its composition, which determines the proportions

of its constituent elements, A and B, as well as their types; and the crystal structure,

which describes how these elements arrange themselves in space. To be considered

stable under a predefined set of conditions, the energy of this material cannot be

reduced by rearranging the atomic positions.

The decrease in energy can occur with two distinct mechanisms in which phase

separation or phase transition must take place. Phase separation is observed when

the material undergoes decomposition, resulting in the formation of a mixture with
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the same average composition. Phase transition occurs when there is an alternative

crystal structure that reduces its energy in a fixed composition. For a material to be

thermodynamically stable, all possible phase separation and phase-transition reactions

must be thermodynamically unfavorable. The Gibbs free energy [85] of the binary

AxBy, is defined as follows,

G(T, p, x, y) = H − TS, (2.50)

where x and y are the atomic concentrations. The same process can be easily

generalized to higher-order materials. In Eq. 2.50, T is the temperature and p is

the pressure. One can observe an entropy term S and an enthalpy term H. Due

to the constraints of our high-throughput workflow, we limit our calculations to the

determination of zero-temperature ground-state energies using density functional theory.

We can determine the enthalpy of formation as follows,

H = HAxBy − (xHA + yHB), (2.51)

where HAxBy , HA and HB are the calculated enthalpies of formation for the binary

and the corresponding unaries. In other words, a material is considered stable relative

to its components, when the decomposition of the material requires overcoming an

energy barrier, as shown by the following equation,

AxBy −−→ xA+ yB +∆G > 0. (2.52)

For the decomposition of the binary material into its components, an amount

of energy should be added to the system. By neglecting the entropy contribution

to the Gibbs free energy, this energy is equal to the enthalpy of formation. The

thermodynamically stable phases correspond to the outermost points on the plot of

the enthalpy of formation as a function of composition for the binary and ternary

systems. This is mathematically expressed by calculating the convex hull of the system.

Schematically, is presented in Figure 2.5. For these plots we are going to use the Cu-



42 CHAPTER 2. THEORETICAL BACKGROUND

Ag-Au ternary system, which is one of the materials systems employed as a test bed

for the algorithms discussed in this thesis:
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Figure 2.5: Phase diagram of the AuCu binary system. On the left panel, the complete
phase diagram is presented. The stable structures (convex hull structures) are marked
with red “x”, the calculated convex hull with the black line, and the calculated
structures with blue circles. In the right panel, a zoomed version of the same phase
diagram is presented.

The convex hull analysis visually demonstrates the stability against phase separation

for all ground-state polymorphs within the relevant chemical space of interest. It

assesses whether a given material can lower its energy by decomposing into a linear

combination of materials with the same average composition. However, constructing a

phase diagram is not a trivial task.

In order to create an accurate phase diagram a large number of ab-initio calculations

have to be performed. For instance, for the phase diagrams presented in Figure 2.5

around 300 DFT calculations were performed. To construct the convex hull, which is

the mathematical object created by connecting the outermost structures with straight

lines as seen in the right panel of the Figure 2.5, Quick-Hull [86] algorithm was

employed.

In this case, five thermodynamically stable structures are identified, and denoted

with red “x”. The distance of a given structure from the convex hull is considered a

metric of its stability. Should a material below the calculated convex hull be found,

the convex hull landscape changes, and the stability of the remaining compounds is

reassessed. However, if a material is discovered above the convex hull, its distance from
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the convex hull serves as a metric of stability. Neglecting the entropy contribution

means that there is always the chance that an entropic contribution could potentially

stabilize the studied material. This introduces an energy cut-off in which the predicted

materials might be synthesized. In this work [87], the ideal entropic contribution to the

Gibbs free energy is assessed for systems with different numbers of distinct elements,

showing that as the number of elements increases the entropy contribution dominates

the Gibbs free energy, making the convex hull analysis unsuitable for stability analysis.

Nevertheless there are studies [88, 89] that assume this cut-off to be as high as 100

meV/atom. In this work, stable structures are identified as those calculated to be on

the convex hull.
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Figure 2.6: In the left panel the phase diagram of the AgCu is presented. The stable
structures are denoted with red “x”, and the convex hull with the black line. In
the right panel, the Cu-Ag-Au ternary phase diagram is shown, and the enthalpy of
formation of the convex hull at this point is presented as color-coded. The black lines
define the corresponding convex hull planes.

As an example, the convex hull for the AgCu binary system is presented in Figure 2.6,

when no stable structures are identified. The experimentally observed [90] miscibility

gap between these two elements is recovered. The same analysis can be extended for

systems containing more elements. On the right hand side of Fig. 2.6 the ternary phase

diagram of the Cu-Ag-Au system is presented. In the same manner, the 3-dimensional

convex hull is created.

As the number of elements increases, the compositional entropy contribution to

the Gibbs free energy also increases, making the approximations employed so far
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unreliable. However, for ternary systems, as demonstrated by Toher et al. [87], enthalpy

continues to play a significant role in determining the Gibbs free energy, making the

existing approximations a reliable stability criterion. Moreover, from a combinatorial

perspective, numerous unexplored ternary systems remain within the space of transition

metal elements, a fact that holds potential for exciting physics. With 38 transition

metals, there are C38
3 = 8436 possible ternary systems. In essence, there is still “plenty

of room” (to paraphrase the famous quote by R.P. Feynman [91]) within the space of

ternary compounds to uncover exciting new physics.

2.5 AFLOW and AFLOWLIB

Recent advances in software and hardware have drawn attention to the high-throughput

way of exploration. Such types of workflow take advantage of massively parallelized

systems to explore vast materials spaces by performing thousands of calculations

simultaneously. This kind of calculations aims to remove the human factor as much

as possible. After the study of interest is initialized, then suitable software is handling

most of the simulations. Human involvement occurs at a later time, when insights need

to be drawn out of these studies. Then the amount of data created has to be stored

for further analysis in the future.

Various different software are used in such types of studies, Automated Interactive

Infrastructure and DAtabase [92] (Aiida), Python Materials Genomics [93] (pymatgen)

and the Automatic FLOW [74] (AFLOW) just to name a few. The calculated properties

are stored in databases and can be accessed with the use of appropriate application

program interfaces (API). Such types of databases are AFLOWlib [75], materials

project [94] and the Open Quantum Materials Database [95] (OQMD) to highlight

a few.

In the present work, many of these tools will be employed, meaning that a brief

introduction to them is necessary. We have mostly used AFLOWlib and the tools that

come with the AFLOWsoftware. The main reason is the vast amount of data stored

in that database, mainly about ternary phase diagrams, with more than 3 million
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calculated enthalpies of formation by the time this thesis was completed.

2.5.1 RESTful API and AFLOW-CHULL

Being able to communicate with such types of database is crucial for high-throughput

studies. In order to access the data stored in AFLOWlib, the RESTful API will be

employed throughout this work. This offers an accessible way to communicate with

the database in a query-based approach. The API is organized in a project-oriented

way, with respect to the type of the compound (e.g. unary, binary, ternary etc.).

For example, if someone wants to access the calculated enthalpy of formation of a

corresponding entry, characterized by its label (i.e. 278), of a binary phase (i.e. AgAu),

one has to write a query with the following format,

http://{Database name}/{stored project}/{AgAu}/{278}/ ?enthalpy_cell

Different keywords (e.g. the last part of the query) can be used to access a variety

of properties such as the magnetic moment, the distance from the convex hull, and

the band gap value, just to mention a few. Keywords that give information about the

parameters of the calculation performed are also available, making it easier for someone

to reproduce the corresponding calculations.

Another important aspect that AFLOW offers is the convex hull creation tool,

AFLOW-CHULL [96]. This algorithm retrieves the data stored in the database, it

can create the convex hull and it can calculate the distance from it for the structures

available into the database.

However, it is important to note that AFLOWCHULL cannot be used to assess

the distance of a newly calculated structure, as the convex hull is only calculated

for structures already stored in the AFLOWlib database. Nevertheless, it remains a

valuable tool that offers a starting point for understanding the shape and depth of the

convex hull for a given ternary system. Furthermore, it is important to highlight that

AFLOWlib offers one of the most comprehensive ternary phase diagram databases.

It includes phase diagrams for 30,307 ternary systems, with an average assessment of
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approximately 90 candidates for each ternary system across 10 different stoichiometries.

This combination of features makes AFLOWlib an ideal benchmark for our ternary

phase diagram prediction workflow.

2.5.2 AFLOW standards

To ensure the quality of the calculations submitted in the AFLOW repository, specific

convergence criteria must be followed. These criteria are described by Calderon et

al. [97] and are called the AFLOW standards. In this subsection, we will quickly present

the criteria used in the calculations stored in the AFLOWLIB database. The k-mesh

is constructed using the Monkhorst-Pack scheme [98]. For the hexagonal (hP) and

rhombohedral (hR) Bravais lattices, it ensures that the mesh is Γ-centered to preserve

the hexagonal symmetry. The number of sampling points, Ni, is proportional to the

norm of each corresponding reciprocal Bravais lattice vector, b⃗i, and are minimized

ensuring the following condition,

NKPPRA ≤ min

[
3∏

i=1

Ni

]
×N, (2.53)

where NKPPRA is the number of k-points per reciprocal atom and N the number of

atoms in the cell. In particular, NKPPRA is chosen at 10,000 for all static calculations

and at 6,000 for all geometry relaxations. For bandstructure calculations the number is

increased to 15,000 in order to ensure a well-converged charge density. For the energy

cut-off, a kinetic energy of 1.4 times the one provided by the VASP pseudopotentials

is generally used, whereas in our case we used a flat energy of 600 eV, which is

always greater than the standard used and ensures optimisation of 10−3 eV. Geometry

relaxations are considered to be convergent when the atomic forces are smaller than

10−3 eV/Å.

The structure optimisation calculations are performed in two steps. First, an

optimisation with a KPPRA of 6,000 points is performed, followed by a self-consistent

static calculation to determine the ground-state energy. For bandstructure calculations,
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an SCF calculation is first performed in order to produce a well-converged electron

density; then a non-SCF calculation is performed taking into account a high-symmetry

KPOINT path as specified by Setyawan et al. [99]. For the calculations throughout

this thesis, we went a step further and enforced tighter convergence criteria in most of

the cases, which we will review in greater detail in the following chapters.

2.5.3 Thesis overview

Having introduced the computational tools employed, we now move onto the central

part of this dissertation, where the main results will be presented. The results are

presented in three chapters, corresponding to the three projects that I have worked on

during the past few years.

In the third chapter, a machine learning interatomic potential will be constructed

as a surrogate to DFT. There, we benchmark whether a specific training procedure can

be utilized to train models that extrapolate into unseen data, using training sets made

specific from structures that are byproducts of previous phase diagram constructions.

In the fourth chapter, a material discovery workflow will be implemented,

benchmarked, and employed to search for stable intermetallic ternary structures. By

exploiting insights from the first project, this method can find novel ternary compounds

by leveraging the byproducts of the binary phase diagram construction. This model is

then used to study the ternary phase diagrams for a variety of systems and is compared

with state-of-the-art methods.

In the fifth chapter, the previously implemented workflow will be used to predict

novel ternary intermetallics for systems that contain magnetic elements. This

methodology is compared to known phase diagrams and the strengths and drawbacks

are discussed.

The sixth chapter of this work focuses mostly on the family of Heusler alloys. Here,

we use high-throughput density functional theory calculations to investigate tetragonal

distortions and antiferromagnetic ordering and assess their stability in the search for

novel antiferromagnetic or tetragonally distorted materials.
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Chapter 3

ML Surrogate Model for

Accelerating the Search of Stable

Ternary Alloys

This work is published at [100]. The research was conducted as a collaboration between

the author of this thesis and H. Rossignol. All parts of the above paper are equally

contributed by the first two authors.

3.1 Introduction

Discovering stable alloy phases is a complex and computationally intensive task, involving

numerous ab-initio calculations to evaluate the ground-state energies of a plethora of

stoichiometries and crystal structure decorations. In fact, for a given system, one must

study structures varying both in stoichiometries and crystal structures. Creating a plot

of the enthalpy of formation as a function of the stoichiometry provides a criterion for

determining whether an alloy is metastable or thermodynamically stable. This tool

is called a phase diagram. Generating an accurate ternary phase diagram for a given

system often requires more than a thousand calculations. This comes from the fact

that the corresponding binary phase diagrams need to be studied before attempting to

proceed to the ternary one.

49
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Calculating an accurate phase diagram, even when knowing the crystal structures

for the studied stoichiometries, remains an intimidating task. However, most of the

time, this knowledge is unavailable, necessitating the sampling of a plethora of crystal

structures using computationally demanding ab-initio calculations (relaxations and

SCF) for each given stoichiometry. This leads to a pool of potential candidates in

the equilibrium state. Out of these materials, the one exhibiting the lowest ground-

state energy is selected as a single stable point in the phase diagram. By calculating

the convex hull, the straight line that envelopes all the points demonstrating the lowest

ground-state energy, as displayed in Figure 3.1 one can obtain information regarding

the stable and metastable structures present in the system of interest.
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Figure 3.1: The convex hull diagrams of the HfRh binary phase diagram is presented.
In the left panel the complete graph is shown whereas in the right panel a zoomed
version of the convex hull for Hf < 0 meV/atom. The stable phases are denoted with
red crosses and the convex hull bounds with black solid lines. Then, rest calculations
are depicted with blue circles. Seven stable intermetallics are found in that phase
diagram.

For the phase diagram presented in Figure 3.1, 267 SCF calculations are needed,

as well as structural relaxations for unit cells that went up to 30 atoms. As we can

see, the vast majority of the phases lie above the convex hull. To determine the crystal

structures of the required stoichiometries, the go-to method for calculating the ground-

state energy is density functional theory (DFT). However, density functional theory can

quickly become expensive as the number of atoms increases, and the level of accuracy

it provides is not always necessary when the goal is to screen a large materials space.

Advances in machine-learning tools and the combination of them with materials
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science make it possible to train machine-learning force fields, which provide accuracy

compared to ab-initio simulations. Once trained, these force fields offer a much quicker

alternative to ab-initio simulations. In many cases, these force fields are trained on

curated datasets, aiming to sample the materials space as extensively as possible. This

process often becomes time-consuming, and the time taken to create the database is

comparable to performing the calculations firsthand.

In this study, we explore the possibility of integrating machine-learning models into

the construction of ternary convex hull diagram workflows, using a highly restricted

dataset consisting only of by-products of the binary phase construction. Specifically,

we train a set of spectral neighbour analysis potentials (SNAPs) over readily available

binary phases and establish whether this is sufficient to predict the energies of novel

ternaries.

The studied approach does not require any new calculations specific for the construction

of the model, but just avails of data stored in binary-phase-diagram repositories. The

goal of this work is to assess whether such trained models offer the precision required

to order the energy of a given pool of materials efficiently. If this criterion is satisfied,

then perhaps such trained potentials can be employed in materials discovery workflows.

By combining it with structure creation algorithms such as the AFLOW dictionary

method [79–81] to generate a pool of structures, the trained force-field would serve as

a preliminary screening tool.

In this work, we use the Spectral Neighbour Atomic Potential (SNAP) to describe

the local chemical environment (feature vector) as discussed in Section 2.2.5. By using

the assumption that the energy of our system can be decomposed in the sum of the

atomic energies, Ei, corresponding to the elements, Zi and provided that we have a

data set that contains the atomic coordinates and the total energies, EDFT
tot , we use

ridge regression to train our SNAP models as defined in Equation (3.1).

min
[ ∣∣EDFT

tot − ESNAP (Bi,α)
∣∣2 + λ|α|2

]
(3.1)

where ESNAP (Bi,α), is the energy of the fitted SNAP model compared to the DFT-
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calculated value, EDFT
tot . The constant λ is used as a hyperparameter during the training

process in order to minimise the error on the validation set while the training set is

used for the fitting.

The Vienna Ab-initio Software Package [28] (VASP) was used to perform the DFT

total energy calculations presented in this chapter, namely to create the dataset of

the model. VASP makes use of periodic boundary conditions, a plane wave basis

set, and the Projected-Augmented-Wave (PAW) method with pseudopotentials. All

calculations are performed with a plane wave cutoff of 600 eV and an energy convergence

criterion of 10−4 eV. The standard generalised gradient approximation as parameterised

by Perdew, Burke, and Ernzerhof [27] is used throughout, together with the corresponding

VASP pseudopotential library. The convergence criteria set by the AFLOW standard [97]

are employed throughout this chapter. Regarding the k-mesh, it is constructed using

the Monkhorst-Pack scheme and ensuring that the mesh is Gamma-centered for the

hexagonal (hP) and rhombohedral (hR) Bravais lattices. The number of sampling

points, Ni, is proportional to the norm of each corresponding reciprocal Bravais lattice

vector, b⃗i, and are minimised ensuring the following condition.

NKPPRA ≤ min

[
3∏

i=1

Ni

]
×N. (3.2)

Here, NKPPRA is the number of k-points per reciprocal atom and N the numb er of

atoms in the cell. In particular, NKPPRA is chosen to be 10,000 for all static calculations,

which results in a finely sampled k-space and at 6,000 for all geometry relaxations. The

structural relaxations are considered to converge when the atomic forces are less than

10−3 eV/Å.

The calculation of the bispectrum coefficients necessary for SNAP, is performed

with the LAMMPS software [101], while the energy fitting is performed with an

internal Python library that makes use of the SCIKIT-LEARN package [102]. The

hyperparameters of the model are Jmax, Rc and the set of elemental weights, wi′ ,

are optimised with the Tree-Parzen estimator (TPE) algorithm [103–105], which is a

Bayesian Optimisation algorithm, as implemented in OPTUNA [106].
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3.2 Results

The goal of this work is to assess whether a SNAP model trained on data extracted

from the binary-phase construction can be used in a material-discovery workflow. This

means that such a trained model should have an extrapolatory ability accurate enough

to screen structures and order them energetically. As a first step, it is sensible to

start with the easiest of the cases; for this reason, the Cu-Ag-Au ternary system was

considered. The Cu-Ag-Au system has been extensively studied both experimentally [107]

and theoretically [108], and it provides a simple first benchmark for our methodology

because it does not present complex chemical environments (noble metals). This arises

from the fact that the chosen elements are metals which belong to the same column

in the periodic table. They share a filled d-band and crystallize in the same crystal

structure (face-centered cubic).

An ensemble of SNAP models are trained individually over each of the three binary

systems, namely Ag-Au, Cu-Ag, and Cu-Au, for which AFLOWlib contains 261, 190

and 260 structures, respectively. The associated unary systems are included as well.

In order to ensure consistency, eliminating all the errors that unconverged calculations

would introduce into our models and make sure that we have a robust database, we

preferred to rerun static DFT calculations according to the standards presented in

Section 2.5.2, for all unary and binary structures. However, it was later proved that

using the AFLOWlib energies directly provides us with the necessary accuracy for the

use these models are intended.

3.2.1 Learning Curve

In order to determine the amount of data to be used as a training set during the training

process, one has to plot the learning curve. The learning curve graphically depicts how

a model becomes more proficient in a certain task as a function of the amount of data

that is trained on. For this task, we trained one model for each of the binary phases

by splitting the data into a training and a cross-validation set over a range of different

proportions as shown in Fig. 3.2.
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Figure 3.2: Learning curve of the models trained on the data from each binary phase
diagram, namely Ag-Au, Cu-Au, Cu-Ag. The optimum amount of data necessary for
the training set is 80% and 20% for the cross-validation.

It can be seen from Fig. 3.2 that a split of 80% for training and 20% for the cross-

validation set is ideal for training the models presented. Following the process to

determine the amount of data needed for the training process, we then move onto the

hyperparameters optimisation for the ensemble of the models.

The data set is now divided into a training set and a cross-validation set, while

the ternary phases present in AFLOWlib are used as a test set. This strategy aims to

train a ternary-agnostic model and assess its ability to predict the energy of ternary

structures. By doing that, we aim to quantitatively measure the extrapolation power

of the trained models to predict the energy of a given ternary.

3.2.2 Hyperparameter Optimisation

The hyperparameter optimisation step is of great importance during the model training

process. It is the process with which one determines the values for all the different

parameters that are used in a model. Poorly optimised models often result in inadequate

insights regarding the task trained to perform on. Additionally, during this stage, the

behaviour of the model under different conditions can be examined. In our case, the

hyperparameters that need to be optimised are Jmax, which regulates the degree of
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expansion used to represent the chemical environment as stated in Equation (2.37),

Rcut, which represents the radius cutoff defining the neighbourhood of a given atom used

in the representation, and the elemental weights , wi, used to create the representation

of the neighbour density.

To perform the optimisation, we employed OPTUNA [106] and especially the Tree-

structured Parzen Estimator [103–105] (TPE) algorithm. This is a Bayesian algorithm

that, following a rapid screening of the defined hyperparameters space, is able to

identify the areas of interest and focus in fine-tuning the parameters in this relatively

small range of values. The significant advantage of this algorithm is that it spends the

majority of the time in searching in the relevant optimization area. This gives us the

freedom to explore wider areas compared to using a grid-based algorithm, which would

spend most of the search time in non-interesting hyperparameter areas.

The parameters Rcut and wi′ are optimized simultaneously. For the cutoff radius

we searched an interval between 3 Å and 10 Å which corresponds to a distance greater

than that of the first neighbors for the systems of interest. For the elemental weights

wi′ , positive values between 0 and 5 are selected. The same ensemble strategy discussed

previously was followed to reduce any bias resulting from the small number of available

data points.

For each optimization step, an ensemble of 10 different SNAP models was trained,

corresponding to a different random split (80% for training and 20% for the cross-

validation set) of the available data. The Root Mean Squared Error (RMSE) of

the ensemble defined as the average value of the RMSE on the cross-validation set

for each trained model was used as the value for optimization. The hyperparameter

tuning is carried out 50 times for 400 steps for each of the systems explored, and the

hyperparameters that minimize the RMSE are then selected. The values corresponding

to each of the models trained on binary systems are presented in Table 3.1.

Regarding Jmax throughout the optimization of the hyperparameters, we employed

Jmax equal to 3, which corresponds to 30 (chemical neighborhood) + 1 (intercept of

the fit) parameters. Following that step, we used Jmax equal to 4, which corresponds to
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Hyperparameter Ag-Au Cu-Ag Cu-Au

Jmax 3 3 3

Rc 4.144006 4.358127 4.452703

wX 0.526867 0.174029 0.193797

wY 0.701251 0.225576 0.341620

Table 3.1: Summary of the optimal hyperparameters for the SNAP models individually
trained over the binary systems. Here wX and wY refer to the weights of the X and Y
species of the X-Y binary system.

a more complex feature vector of 56 descriptors. In fact, using a less complex feature

vector allows one to save computational time during the optimization process, letting

you explore a more complex hyperparameter space.

3.2.3 Binary Phases Trained Models

In this first step, the models presented are trained only on data extracted from a single

binary phase, namely Ag-Au, Cu-Ag, and Au-Cu. This benchmarks our idea of training

a machine-learning interatomic potential to predict the energy of structures that are

structurally similar to those it has been trained on. The split is 80% training and 20%

cross-validation. To divide the data sets, we employ the Monte Carlo cross-validation

strategy, which involves generating multiple random splits of the total data.

To mitigate the bias introduced by a small subset of structures in the training set,

an ensemble strategy was implemented due to the structural diversity of available data.

For each model, we trained 10 different models using random splits of the training data.

Then the mean average of the prediction made by each of the SNAP models of the

ensemble is considered as the final output. Throughout this work, the SNAP ensemble

will be called SNAPs. The averages of the mean absolute error (MAE) and the root

mean square error (RMSE) are presented, over 10 SNAP models, for the three binary

systems for the training set (T) and the cross-validation (CV) set are presented in the

Table 3.2

The accuracy of the trained models is found to be on the order of ∼10 mev/atom,
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Error (meV/atom) Ag-Au Cu-Ag Cu-Au

MAE (T) 2.63 2.82 4.30

RMSE (T) 4.37 4.01 6.25

MAE (CV) 6.85 7.27 8.57

RMSE (CV) 13.83 15.15 15.73

Table 3.2: Summary of the average errors over 10 SNAP models for the three binary
systems. T = training, CV = cross-validation

which is enough to be used as a screening tool. To visually display the results, a parity

plot for one model randomly chosen from the trained ones is presented in Figure 3.3.
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Figure 3.3: Parity plot presenting the SNAP predicted energies compared to the DFT
calculated for the Ag-Au,Cu-Ag,Cu-Au binary systems. The DFT calculated energies
of the elemental Cu, Ag and Au are shown with the vertical dashed lines.

It can be observed that all three binary systems are fitted to a similar standard.

The cross-validation errors are of the order of 10−2 eV/atom. This error is due to the

fact that there are high-enthalpy structures present in the database for all the systems.

These data points have proved to be more challenging to fit, even when present in the

training data set. This can be seen by their distance with respect to the parity line as

seen in Figure 3.3. Furthermore, from Table 3.1 one can see that the optimal value for
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Rc of the Ag-Au binary system is lower than that of the other two binaries. Also, it is

optimal to have a larger weight for Au, while having a lower weight on Cu compared

to the other two elements helps to reduce the error.

3.2.4 Testing over the ternary phases

The models trained in the previous subsection are those trained over each binary system

individually. They contain information on a couple of species at a time. Hence, they

cannot predict the energy of a ternary structure. The next step in this study will be to

use all available data extracted from the three binary phases, namely, Ag-Au, Au-Cu,

and Ag-Cu. Here, we have employed the same strategy as before, we train another

ensemble of SNAPs. However, we use the entire library of unique unary and binary

compounds available (677 data points). We use a 80% / 20% split between the training

data set and the cross-validation data set to create these sets, we used Monte-Carlo

cross-validation.

For the hyperparameters optimization, we followed the same strategy as before. We

use the Tree-Parzen-Estimator algorithm, which is a Bayesian method as implemented

in OPTUNA to scan the hyperparameter space. Then, we used an ensemble of models

trained with a different random split of the available data. Finally, we employed the

mean average of the predictions made by each SNAP model of the ensemble as the

output taken by the optimization algorithm. The hyperparameter tuning is carried

out 50 times for 400 steps for each of the systems explored, and the hyperparameters

that minimize the RMSE are selected. The values corresponding to each of the models

trained all the binary systems are presented in Table 3.3.

Following the optimization of the hyperparameters, we trained an ensemble of

SNAPs. To perform the testing we used the 78 ternary structures contained in AFLOWlib

for the Cu-Ag-Au ternary phase diagram, for which we first recalculated their ground-

state energies with DFT. The parity plot for this model is presented in Figure 3.4. As

before, the data presented belong to a SNAP prediction of a model randomly chosen

from the 10 of the ensemble.
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Hyperparameter Cu-Ag-Au

Jmax 4

Rc 4.647073

wAg 0.305086

wAu 0.418890

wCu 0.245647

Table 3.3: Summary of the hyperparameters used for the Cu-Ag-Au SNAP models
trained over the combined binary phases.
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Figure 3.4: Parity plot, showing the SNAP-predicted energies against the DFT ones,
for both the binary (training and cross-validation set) and ternary (test set) compounds
contained in AFLOWlib for the Cu-Ag-Au system. Here the SNAP models forming
the ensemble have been trained on the entire pool of binary phases. The RMSE is
reported in the legend.

From Figure 3.4 we can see that our ensemble of SNAP models have the same

accuracy in predicting the ground-state energy for both the binaries and the ternary

phases. This strengthens our hypothesis that a machine-learning model, which has

knowledge of enough binary structures is capable of accurately predicting the ground-

state of the ternary structures. Note that the interactions found in the ternary structures,

namely the three-body interactions of Cu-Ag-Au species, are not present in the binary
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structures. However, this first result implies that, despite the lack of such interactions

in the description of the local chemical environment, an accurate prediction of the

total energy is still possible. This gives insight into the similarities of the chemical

environments when studying such types of alloys. Furthermore, it is established that

by training on data extracted from the binary phase diagrams. The SNAP models are

able to predict the ground-state energy of fully relaxed ternary structures.

More quantitatively, the RMSE of the model is 5.87 meV/atom for the training set,

and it actually decreases marginally to 4.84 meV/atom for the test one. Interestingly,

this is even lower than the cross-validation error found for individual binary SNAPs

(see Table 3.2), a result that we attribute to the more extended diversity of the chemical

environments that the model now has to fit to.

3.2.5 Testing on Novel Ternaries

We have now established that an MLIAP trained on data used to create the binary

phase diagrams is capable of predicting the energy of the ternary structures that are

available in the AFLOWlib. To put our models against a more severe task, we are

now investigating whether the models can predict the energy for structures not present

in the AFLOWlib database. The dictionary method, as implemented in the AFLOW

encyclopedia [79–81], was employed to create 42 structures that are not available in

the database.

In order to create structures with the dictionary method, one has to decide on

the structure that will be used during the decorating process. Subsequently, this unit

cell undergoes a decoration with the designated chemical species. To obtain a more

accurate estimate of the volume of the unit cell, the algorithm considers the volumes

of the elements that are used for decoration. Consequently, an appropriate volume

optimization procedure is performed to ensure that the volume per atom in the resulting

structure is aligned with the weighted average of the constituents, as specified by

Vegard’s law [83].

Then, DFT relaxation is performed for the newly created ternaries until the forces
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are below 10−3 eV/Å. We finally assess the extrapolation ability of the SNAP models

to predicting the ground-state energy of both the relaxed (R) and the initial non-

relaxed (NR) ternary prototypes. The SNAP ensemble used here is the same as the

one introduced in Section 3.2.4. The results are presented in Figure 3.5.
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Figure 3.5: Parity plot, showing the SNAP-predicted energies against the DFT ones,
for both the binary compounds contained in AFLOWlib (training set) and for a new set
of ternary phases either in their prototypes, non-relaxed (NR), geometry or after full
DFT relaxation (R). Here, the SNAP models forming the ensemble have been trained
on the entire pool of binary phases as described in Section 3.2.4. All data are for the
Cu-Ag-Au system.

We need to recall that the goal of this work is to create a force field capable of

screening a large pool of structurally different ternary candidates. This does not imply

high accuracy, but rather the ability of the force field to screen the low energy from

the high energy structures. Furthermore, this task becomes more difficult when the

database is fixed and one cannot curate it by sampling the structural space widely

enough. From the figure displayed, we can observe that once the structures are

fully relaxed by DFT, the error is satisfactory, which confirms that the good energy

estimate for ternary compounds does not remain limited to the data available from

the AFLOWlib. In this case, the RMSE grows from 4.84 meV/atom for the original

ternaries included in AFLOWlib to about 27.74 meV/atom for the new relaxed prototypes,
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reflecting the more diverse set of structures generated for this test.

However, when one tries to predict the energy of the prototypes as constructed

by the dictionary method, the error is significantly ;arger. We now report a RMSE

of 663.56 meV/atom, with SNAP systematically underestimating the DFT energy.

Surprisingly, there is still a fraction of the created structures on which the SNAP

model performs well; these structures appear to be structurally closer to the equilibrium

ones. Furthermore, we can see that the energy per atom of these structures is in the

same range as the ones sampled in the training set, giving a first hint regarding the

similarity of the local chemical environments of the binary and ternary structures.

It should be emphasized that SNAP can correctly identify the DFT energy trend,

suggesting that such a trained model can be employed as an effective screening tool in

materials discovery workflows. The keypoint of this analysis proves that an ensemble

of SNAP models, trained on relevant data extracted from the binary phase diagram,

can extrapolate to associated generic ternary structures when these are near or at their

equilibrium geometry and can accurately estimate the energy ordering for the non-

equilibrium ones, characteristics that make such-trained models valuable components

in materials discovery workflow.

Generally, the dictionary method and all the materials discovery workflows start

with a non-relaxed crystal structure, and they gradually optimize it to reach the relaxed

candidate. Being able to relax these structures is of great importance when we want to

reduce the ab-initio simulations, normally used for the relaxation, to zero. Therefore,

it is important to benchmark whether such constructed SNAP models are able to drive

the atomic relaxation.

For this task, we employed the LAMMPS package [101] for geometry optimization,

where the energy and force convergence criteria are set at 10−4 eV and 10−3 eV/Å respectively.

The relaxation then is performed in two consecutive steps; in the first step, the atomic

positions are optimized; in the second step, we relax both the cell parameters and the

atomic positions. This procedure is repeated five times for each structure to ensure

convergence. We find that although the resulting SNAP-optimized structures generally
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have a lower DFT-computed total energy than the unrelaxed ones, they are still far from

the optimal DFT-computed geometries. This means that although the ensemble SNAP

is capable of some relaxation, in general it is not able to find the equilibrium structure.

In Figure 3.6 we provide the difference in energies of the unrelaxed and SNAP relaxed

structures with respect to the energy of the fully ab-initio relaxed structure.
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Figure 3.6: The energy difference between the SNAP relaxed (Orange) or Unrelaxed
(Blue) with the DFT relaxed structure. An arbitrary label is assigned for each relaxed
structure, as shown in the x-axis. For some cases SNAP-relaxed structure is lower
in energy than the unrelaxed (e.g. 1,8,9), in one case, 11, is able to fully relax the
structure, for the rest the SNAP relaxed structure is more distorted from the created
unrelaxed.

Still, there are structures in which snap relaxation results in unrealistic geometries,

such as overlapping between atoms. For these the DFT calculation was not even

possible. As we observe, the energy difference in most cases remains the same or

increases as a result of the poor relaxation performance. However, there is a structure

for which SNAP is able to fully relax it, see label 11 in 3.6.

In order to obtain further insights regarding this result, we performed a principal

component analysis (PCA) using the sklearn library. This technique projects the

feature space into lower dimensions; in this case, we used two dimensions, so that one

can visually perform a comparison between the training set and the test structures. We
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compare the training set and the structure encountered along the DFT relaxation path

of a given prototype. This analysis was performed for each of the three species, namely

Cu, Ag and Au, separately. The PCA plot for the first two principal components of

Ag is presented in Figure 3.7.

The graphs for Cu and Au are presented in the Appendix A. In the PCA plot the

local chemical environments of Ag sampled in the training set are coloured blue. These

are included in the binary phases. The coloured points are then obtained through the

DFT relaxation trajectory starting from the black one. This initial configuration is

found to be in a region of poorly sampled feature space and the relaxed structure ends

up in a high density one (yellow). This plot visually explains the good performance of

the SNAP, model when the structure is near or at equilibrium, as such structures result

in a well-sampled part of the feature space. However, in order to reach this structure,

the system has to move across poorly represented areas of the parameter space.
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Figure 3.7: Principal Components Analysis plot for the first two components of the
local chemical environments of Ag sampled in the training set (blue circles). The
coloured circles denote the local chemical environments of Ag encountered through the
relaxation path. Interestingly, DFT relaxation begins in a region of the feature space
that is poorly covered by the training set. However, it ends up in a region of high
density.

An interesting fact is that the binary feature space is inhomogeneously distributed
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with many high- and low-density areas. Furthermore, there are many uncharted

regions, which can lead to poor performance of the machine-learning model when

predicting atomic energy for environments belonging to these spaces. Initially, it is

evident that the relaxation trajectory starts from an area unknown to the SNAP model,

which explains the initial poor performance. As the relaxation progresses, the structure

travels over areas that were not sampled in the training set and eventually reaches a

densely populated area, leading to more accurate energy predictions.

Poor energy estimation in the initial steps of the relaxation process translates into

inaccurate force predictions, meaning that the SNAP relaxation process is not driven

towards structural equilibrium. This explains the fact that such trained force fields are

not able to perform relaxation. However, there are approaches by which one can face

such a type of problem. In this context, one can attempt to curate a given training set

to fill the voids in the feature space. An approach involves using a more sophisticated

way of selecting the structures that create the training set, through the use of relevant

metric. For example, in this Ref. [40] a Gaussian metric was used to identify unknown

structures from the training set. Then, by including these structures to the training

set, resulted in a robust force field capable of performing molecular dynamics and

relaxation.

Another stratety is to tailor [109] a force field, especially for a specific application,

by starting from a handful of initial structures. However, such types of strategy require

a considerable amount of DFT calculations. This seems to fail the scope of the present

work, which is to generate a force field by taking advantage of only the available

data extracted as byproducts of the binary phase diagram workflows. Furthermore,

by adding DFT calculations to a materials discovery workflow, results in lowering the

throughput by a considerable amount, making the exploration of large materials space

impossible. Moreover, in the case of a ternary phase diagram, adopting the above

strategies could lead to the number of DFT calculations needed becoming comparable

to the ab-initio calculations needs for the creation of the entire phase diagram.

As one can observe from Fig. 3.7 the relaxation ends up in a densely populated area
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of the feature space. Perhaps selecting a better initial candidate structure could result

in improved performance of the MLIAP, without requiring data curation by introducing

new calculations. This approach may lead to enhanced relaxation performance without

specifically altering the available database.

3.2.6 Model Benchmark: Cd-Hf-Rh and Ti-Mo-Pt

In this subsection, to expose our models to a more rigorous benchmark, we selected

phase diagrams that offer a more complex landscape of chemical environments. The

rationale behind the choice of elements for the ternary systems is to select early (Ti

and Hf), mid- (Mo and Rh), and late (Pt and Cd) transition metals. Furthermore, the

selection of these particular elements was guided by the fact that the data available from

the binary phase diagrams of AFLOWlib, were deemed sufficient to train a machine-

learning model.

It should be emphasised that each of the ternary phase diagrams offered more than

800 crystal binary structure-energy pairs, and they contain the same number of ternary

prototypes (90 structures) that will be used as test set. However, emphasis should be

given to the fact that one of the three binaries is always over-represented in these

two datasets, namely Ti-Mo for Ti-Mo-Pt and Cd-Hf for Cd-Hf-Rh, in contrast to the

balanced dataset of the Cu-Ag-Au phase diagram.

The selection of these phase diagrams offers a more challenging task, providing us

with a larger chemical variety than that provided by the noble metal systems. In order

to simulate the exact procedure of a materials discovery workflow that starts from

already available data, we did not recalculate any DFT energies. This is an important

difference from the approach followed before. On the one hand, the advantage of this

tactic is that by reducing the DFT calculations to zero, we save valuable computational

time. On the other hand, errors in convergence propagate to the MLIAPs produced.

However, since the trained models are used for the screening of a large pool of candidates,

high accuracy is not essential as long as it is capable of predicting the energy ordering

satisfactorily.
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The training process that followed is the same as before. The training and cross-

validation set is constructed from the 80% and 20% of the available data (unary and

binary compounds), respectively. The ternary structures are used for the test set.

Then, an ensemble of SNAP models was used throughout the optimization of the

hyperparameters, namely Rc, Jmax and wi′ . The parity lines for the energy predictions

of the ternary Cd-Hf-Rh and Ti-Mo-Pt systems are presented in Figure 3.8.
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Figure 3.8: Parity plot of the comparison between SNAP-predicted and DFT calculates
energies for the binary (training and cross-validation set) and ternary (test set)
compounds contained in AFLOWlib. The Ti-Mo-Pt (upper graph) and Cd-Hf-Rh
(lower graph). The ensemble models have been trained on the entire database of
binary phases, and the legend provides the Root Mean Square Error (RMSE) for each
case.
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The main outlook from the parity plots presented in Figure 3.8 is that both systems

closely follow the parity line; hence, they succeed in predicting the energy of the

ternaries satisfactorily. In both cases, the values of the test errors are increased as

compared to those of the noble metal system. It should be noted that in this case the

energy range is much larger than that of the Cu-Ag-Au system. A better metric to

compare the errors would be the percentage ratio with respect to the average energy

per atom. The Cu-Ag-Au system was calculated to be 0.19% for the training set and

0.15% for the test set. These must be compared with 0.40% and 0.86% for Ti-Mo-Pt

and to 0.74% and 1.57% for Cd-Hf-Rh. Such values reflect the increasingly complex

chemical environments in which the SNAP models have to fit. Furthermore, errors

become less significant when compared to the depth of the convex hull for these systems.

For Ti-Mo-Pt for Ti-Mo-Pt and Cd-Hf-Rh the convex hull minimum is located at an

enthalpy of formation of 951 meV/atom and 921 meV/atom respectively, compared to

61 meV/atom for Cu-Ag-Au.

3.3 Discussion and Conclusion

It would be beneficial to discuss how the work presented differentiates from the traditional

way of building Machine Learning Interatomic Potentials, such as the approach that

we have followed, the database we use, and the way we treat our data. Furthermore, it

should be reminded that the aim of this potential is to be used as a screening tool in a

materials discovery workflow and not to perform ab-initio accurate molecular dynamics

simulations. The average error expected to be adequate to perform this task efficiently

should lie around 50 meV/atom as stated in the relevant bibliography [62, 110, 111],

where machine-learning screening tools were employed alongside with DFT calculations

in high-throughput materials discovery workflows.

In this particular case, the greatest challenge that we are facing arises from the

fact that the number of data is limited. Perhaps we would be able to create additional

data; however, this approach is not suitable for this kind of use case, it only lowers

the throughput of the method. The only choice with regard to the dataset available
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is to remove data points that exhibit unphysical crystal structures and, as a result, a

high enthalpy of formation. Furthermore, in our case we choose to use readily available

data that are byproducts of the phase diagram construction process, rather than using

a sophisticated process to create the used database. This research aims to investigate

the quality, value and limitations of creating models using these databases, in our

case AFLOWlib. Such types of databases offer structures that are relevant for the

construction of the convex hull. They are made from a variety of compositions and

space groups. The diversity that such databases offer is critical for the robustness in

phase diagram construction workflows.

To better understand the differences between a tailor-made database and one that

is already available I will present a couple of different studies of force fields trained to

perform screening for a ternary phase diagram prediction workflow. The most relevant

example is the work of Gubaev et al [64], which trains a Moment Tensor Potential

(MTP) to accelerate the search for novel stable alloys for the Cu-Pd, Co-Nb-V and Al-

Ni-Ti systems. The force field that they trained is capable of screening and performing

relaxation. To train this model, they constructed a database using an active learning

method. They created 104-105 structures from hexagonal-closed-packed (hcp), body-

centered-cubic (bcc), and face-centered-cubic (fcc) supercells that are decorated with

different stoichiometries. Then, the model is trained on the fly as the structures are

relaxed. This resulted in a training set of 523 and 383 structures for Cu-Pd and Co-

Nb-V. Interestingly, except from the numbers of the data available, a fundamental

difference when comparing the two works is that the database they used to train the

MTPs contains a lot of non-equilibrium structures. In our case, all included structures

are at equilibrium, do not need to be generated, and are directly relevant for binary

convex hull construction. Furthermore, forces and stress tensors were used for the

training, in contrast to our study, since these data are not available from AFLOWlib.

Another example highlighting the differences between the work presented and the

traditional way of training machine learning interatomic potentials (MLIAP) is the

research conducted by Chen et al. [39]. This study discusses the conventional method
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for deploying a SNAP model as a general force field. In their research, they trained and

tested a general force field for molybdenum using a database containing approximately

103 training points. The diversity of the training set was high, encompassing ground-

state phases from the Materials Project Database [112], surface slabs, and distorted

large cells with up to 54 atoms. The variety of chemical environments sampled during

the training process provided SNAP with sufficient information to act as a robust

general force field capable of accurately performing Molecular Dynamics (MD) simulations

over large length and timescales. Creating these curated databases is computationally

intensive. It needs to be noted that only the materials project ground-state structures

are readily available data and are not ideal when screening a large materials space.

In conclusion, we have benchmarked the accuracy and extrapolation ability of SNAP

models, trained on readily available data extracted from binary phase diagrams, to

predict the energy and estimate the thermodynamical stability of novel created ternary

candidates. This analysis was presented for a noble-metal ternary system, namely, Cu-

Ag-Au and a couple of mixed systems, namely, Ti-Mo-Pt and Cd-Hf-Rh, chosen to

replicate the chemical variety that transition metal systems display.

We have established that SNAP models that exploit binary phase data are able

to accurately predict the energy of novel ternaries, when those are close or near the

equilibrium structure. However, the quality of the predictions starts to decrease as we

move away from the relaxed structure as a result of the poor sampling of the chemical

environments of the database used. Surprisingly, such trained models are able to predict

the energy ordering of such compounds, indicating their effectiveness as screening tools

in a high-throughput materials discovery workflow. Such kinds of MLIAPs can be used

as a layer-1 screening solution to a phase diagram prediction algorithm that explores

large materials spaces where high-throughput are more needed than high-accuracy.

Based on the results presented in this chapter, we can conclude that such trained

force fields and freely available databases are useful and can be integrated in the

construction of ternary-phase diagrams. This approach will improve once a more

sophisticated strategy of generation of the prototypes is found.
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Machine-Learning-Assisted

Construction of Ternary Convex

Hull Diagrams

This work is published at [113]. The research was conducted as a collaboration between

the author of this thesis and H. Rossignol. All parts of the above paper are equally

contributed by the first two authors.

4.1 Introduction

The search for novel intermetallic ternary alloys is an intimidating task, as one has

to perform a wide range of ab-initio calculations sampling various stoichiometries and

exploring different crystal structures. While density functional theory (DFT) is the go-

to method that provides the necessary accuracy, it is also highly expensive, especially

when one wants to perform numerous calculations. As a result, using DFT in a high-

throughput manner for exploring a combinatorially vast number of ternary systems

becomes impractical. Therefore, it is crucial that alternatives to DFT be implemented

in materials discovery workflows to make this search viable.

In this work, our aim is to tackle this problem by demonstrating how a machine

learning interatomic potential (MLIAP) that is trained on data readily available and

71
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relevant, extracted from one of the open databases, namely AFLOWlib [75], can be

employed to screen a pool of ternary alloy prototypes. We have established [100] that

an ensemble of SNAP [37] models trained on the crystal structure and energy pairs

extracted from associated binary systems are capable of providing accurate predictions

with a mean absolute error (MAE) of∼ 30 meV/atom for the energies of the corresponding

ternary compounds, as long as they are close to or at equilibrium. Furthermore, such

trained models are able to order energetically the candidates away from the equilibrium,

a property that is much needed in materials discovery workflows.

Using an MLIAP as a DFT surrogate provides us with the required efficiency to

screen large materials spaces once trained. The core of the workflow presented, lies on

the fact that the chemical environments between the binary and ternary transition-

metal alloys are similar [100]. In this work, the crystal structures of the binary

compounds closer to the convex hull were employed for the decorating process, similar

to the encyclopedia method seen in Chapter 2.3.1. This assumption is based on the idea

that crystal structures close to the convex hull would potentially serve as better initial

guesses for the structures chosen to be decorated, as opposed to randomly selecting

them. This pool of decorated structures is then screened in a high-throughput manner

using an ensemble of SNAP models. The lowest-enthalpy compounds are then chosen

as the most promising candidates, and their energies are calculated using high-accuracy

DFT. Subsequently, the ternary convex hull is calculated and updated.

The critical difference between the models employed in the workflow and the tailor-

made MLIAPs employed for the convex hull construction is that all the data used, from

the prototype generation stage to the models’ training process, are readily available

and extracted from the AFLOWlib database, resulting in an almost DFT-less workflow.

In contrast to the strategy generally adopted of training models with databases tailor-

made for a specific application [39, 64]. We have demonstrated that such trained

force fields exhibit low enough error to predict the energy and accommodate a high-

throughput search algorithm for novel ternaries. Through this workflow, we leverage

the byproducts of the binary phase diagram construction already available in AFLOWlib
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to predict the ternary convex hulls and identify stable configurations.

4.2 Ternary Phase Diagram Workflow

The main stages of the ternary convex hull prediction workflow, shown schematically

in Figure 4.1, are explained here. The algorithm begins with the binary compounds

from the AFLOWlib database and their associated DFT-calculated energies, the stable,

metastable and unstable compounds provide the necessary structural diversity required

by our approach. These databases are utilized to train an ensemble of SNAP models,

as described in Chapter 3.

Following that, the convex hull of each binary phase diagram is constructed, and

the distance of each structure from the convex hull is assessed. A crucial assumption

is made here: the crystal structures of the binaries that are closer to the convex hull

are more likely to form stable ternary intermetallics. This selection is preferred over a

brute-force method that would suggest decorating all available crystal structures in the

structure encyclopedia [79–81], something that would generate an enormous amount

of candidate structures. The structures selected using these criteria form the parent

prototypes.

Then, ternary candidates are generated by decorating the parent prototypes, creating

all possible and unique derivative structures using the enumlib algorithm [76–78] explained

in Chapter 2.3.2. These structures are subsequently relaxed using the ensemble of

SNAP models. The energies and their standard deviation are predicted by the SNAP

models, enabling the detection and removal of geometries for which relaxation has

failed.

The structures exhibiting the lowest energy and standard deviation, indicating

higher certainty in the predictions, are chosen as the most promising candidates. To

ensure proper convergence, a full ab-initio relaxation is conducted, followed by a single-

point self-consistent field (SCF) calculation with tighter convergence parameters. The

energies of those structures are then used to update the convex hull. The ternary

system Cu-Ag-Au is used to develop this methodology, serving as a first example of
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the functionality of the algorithm.

Figure 4.1: The convex hull prediction workflow implemented in this work begins with
initializing the algorithm using the binary structures available (upper left corner).
These structures are used for two purposes: i)Training the ensemble of SNAP models,
and ii)Constructing the pool of parent prototype structures. Next, by decorating the
parent structures with a specific stoichiometry all the possible derivative structures are
created. Subsequently, the SNAP relaxation of these structures is performed, followed
by screening of the lowest enthalpy structures. Then, a DFT relaxation and an SCF
step are conducted, and finally, the phase diagram is updated.

In the following subsections, we will present the different stages of the workflow

using the Cu-Ag-Au ternary phase diagram as an example. Following that, the Mo-

Ta-W ternary system will be used as a benchmark against the state-of-the-art AFLOW-

CHULL method of generating ternary phase diagrams.

4.2.1 The Prototype Generation stage

In the beginning of the workflow, a suitable library of binary prototype materials needed

to be created. We have established in Chapter 3 that the local chemical environments

of the prototypes constituting the binary convex hull are similar to the ternary ones,

especially those that are near or at the equilibrium. This comes from the fact that

a MLIAP trained on data extracted from the binary phase diagram is capable of

accurately predicting the energy of novel ternaries, as shown in Figure 3.5. This

guides the selection algorithm implemented to select the most promising candidates
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for decoration.

The lowest-enthalpy criterion was implemented to select the most promising candidates

for the decorating step. The rationale behind selecting this approach is based on the

assumption that crystal structures of binary compounds, which are closer to their

calculated convex hulls and thus more thermodynamically stable, are more likely to

form stable ternary alloys when decorated. It is generally known that stable binary

alloys can be made with substitutions of elements in the lattice of the elemental

structures, for example, the Ag3Au1 is a face-centered cubic (fcc) variant of the parent

crystal structure.

More specifically, for the Cu-Ag-Au ternary system, we scanned the binary convex

hull of the binary constituents, namely Cu-Ag, Cu-Au, and Ag-Au and selected the

compounds closer to the convex hull. All the data considered here are extracted from

the AFLOWlib database. To avoid oversampling a specific binary phase diagram, we

defined an energy window, which dictates the number of the structures sampled from

each binary. This energy distance works as a hyperparameter to ensure homogeneous

sampling of the binary data. The number of structures, Nstruct, chosen from each binary

phase diagram, as well as the energy window, ∆E, used, is presented in Table 4.1.

X − Y Nstruct ∆E (meV/atom)

Ag - Au 24 1.7

Cu - Ag 25 65.4

Cu - Au 25 6.2

Table 4.1: Number of structures, Nstruct, and the maximum distance, ∆E, from the
convex hull (defined energy window) of the selected structures from each binary system.
These constitute the parent structures pool.

It can be observed from Table 4.1 that in order to keep the selection of the three

different binaries balanced, one has to use a higher energy window for the Cu-Ag

binary phase diagram. As for the rest of the binaries, namely Ag-Au and Cu-Au a

distance of the order of 10 of meV/atom is plenty for this reason. This reflects the fact

that Ag and Cu are immiscible [114], meaning that no stable intermetallics are formed

between these two elements. This can also been observed from the fact that all the
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binaries formed with a combination of these two elements exhibit positive enthaply of

formation, resulting in a distance far from the convex hull (i.e. tie line that connects

the two elementary phases). The visual representation of the observations discussed

above for the Cu-Au and Cu-Ag binaries is presented in Figure 4.2, the figure for the

Ag-Au system is presented in the Appendix B.
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Figure 4.2: The energy window employed for the selection of the necessary number of
crystal structures for the Cu-Au and Cu-Ag binaries. The structures selected as parent
structures lie inside the pink area.
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We observe an inverse relationship between the convex hull depth and the energy

interval used for sampling. This is due to the fact that deeper convex hulls exhibit

a higher number of metastable structures close to the stable ones. However, the

number of candidates chosen to create the pool of parent structures is a function of

the computational resources and is used as a hyperparameter of the workflow.

Following the selection of the prototypes, the structures are then stripped of their

chemical identity, which is done to make the comparison between the structures more

efficient. To avoid redundancy, the AFLOW symmetry tool (AFLOW-SYM) [115] is

employed. AFLOW-SYM is a tool that let us identify the symmetry properties of

a given material based on different representations that include the spacegroup, the

point-group, the Wyckoff positions, etc. Then, by comparing them, a database of given

crystal structures is grouped into sets that exhibit the same structural characteristics.

This is done to ensure that the parent crystal structures are unique. Furthermore, all

structures are reduced to their primitive cells at this step of the workflow. This leads

to a library of unique, undecorated prototypes, extracted from the binary convex hulls.

Following this analysis, for the case of Cu-Ag-Au ternary, 40 unique structures proceed

to the stoichiometry decoration selected from the initial 74. A sample of the structures

that were chosen to be decorated is presented in Figure 4.3.

Figure 4.3: A sample of the structures chosen for decoration is presented. Here, gold
color denotes the Au element, silver represents Ag, and bronze is used for Cu.

The structural diversity of the candidates used for decoration can be observed in

Figure 4.3. Following that step, the library of the 40 unique structures is decorated

accordingly. A fixed stoichiometry is used each time for the decoration of the parent

structures; furthermore, the number of atoms for the created ternaries will be fixed
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as well up to a certain number Nmax. The prototypes with the number of atoms

compatible with the fixed stoichiometry, a set of all the unique derivative structures

is created by using the procedure explained in more details in the Section 2.3.2. In

general, enumlib [76–78] is an algorithm that by analyzing the symmetries of a specific

cell can determine all the unique atomic configurations and decorations.

This concludes the first part of the workflow and results in a set of unique ternary

compounds of a specific stoichiometry, inspired by the binary structures. An MLIAP

is then employed to relax and screen the created ternary compounds.

4.2.2 Ensemble of Models

The creation of possible candidates follows an energy screening with the use of SNAP.

The approximation that most MLIAPs work under is that the total energy, E, of a

crystal structure consisted of N number of atoms can be expressed as the sum of all

contributions of atomic energy, Ei as expressed in Equation (4.1).

E =
N∑
i=1

Ei . (4.1)

Here, a linear function is trained to create a relationship between the local chemical

environment expressed by bispectrum components Bαi
i for the atom, i, of element, αi.

The summation of the SNAP-predicted atomic energies defined as defines the total

energy predicted by SNAP defined as follows.

ESNAP

(
rN

)
=

N∑
i=1

βαi
0 + βαi ·Bαi

i , (4.2)

where βαi
0 and βαi are the species dependent linear coefficients of the machine-learning

(ML) model, fitted in the training process. Further details on the potential used can

be found in Section 2.2.5.

In Chapter 3 was discussed that a SNAP model taking advantage of the linear form

of the function trained and the highly non-linearity of the feature vector once trained

exhibits good accuracy with a small number of features, 55 bispectrum coefficients +1
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intercept used here, and a small dataset, typically of ∼ 103 structures.

In order to increase the robustness of our predictions, an ensemble of SNAP models

trained and optimized using a different random subset of the available data is employed

for the screening of the available structures. The advantages behind this strategy lie

in the fact that using an ensemble of models provides you with information regarding

the uncertainty of the prediction, by calculating the mean and standard deviation of

the predicted values.

The ensemble is defined as a set of K different trained models,
{
Ek

SNAP

}K

k=1
, in our

case K = 5 models were trained. Each model is trained in a different random set of

data and has seen a different variety of chemical environments. Having an ensemble

of SNAPs also helps address biases resulting from small training sets. The energy

prediction for a given structure is given as the average of the energy predictions, µ,

and the standard deviation, σ̂, of the predictions is defined as follows.

µ = Ê
(
rN

)
=

∑K
k=1E

k
SNAP

(
rN

)
K

, (4.3)

σ̂
(
rN

)
=

√∑K
k=1

(
Ek

SNAP (r
N)− µ

)2
K

=

√√√√∑K
k=1

(
Ek

SNAP (r
N)− Ê (rN)

)2

K
. (4.4)

where rN are the positions for a given system of N atoms, Ê or µ is the average

value of the predictions from the ensemble of K models and the standard deviation

σ̂, is defined as in Equation (4.4). Following, the same model-training approach,

discussed in Chapter 3, the training set is consisted of all the available binary alloys

and unaries obtained from the AFLOWlib database. Their energies have been re-

calculated for consistency. All the SCF single-point DFT calculations are performed

with VASP [28] software and the convergence parameters are in close alignment to the

AFLOW-standards [97]. The same approach was adopted during the training for the

Mo-Ta-W ternary system, the key difference compared to the Cu-Ag-Au system lies

in the fact that the data used for the prediction of the Mo-Ta-W phase diagram are
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precalculated and stored in the AFLOWlib database. Furthermore, we demonstrate

that models trained on data extracted from AFLOWlib offer enough accuracy to be

used in a convex hull construction algorithm.

The ensemble of models employed in this workflow is consisted of five models trained

with the complete database, each trained model utilizes a different set of elemental

weights, wCu, wAg, wAu for Ag, Au and Cu to calculate the bispectrum components.

This difference in the training process is adapted in order to distinguish effectively

compounds with identical positions in their structures (i.e. structures created from the

same parent) but with different atomic site decoration.

Let us consider two different compounds that originate from different decorations

of the same parent structure. If the SNAP model employs identical atomic weights to

calculate the bispectrum components, it will predict equal energies for these compounds,

even though they are decorated differently. This is because the local geometries that

translate into the feature vector are the same, as stated in Equation (2.37).

We need to remind ourselves that candidate structures, at this stage, are created by

decorating a parent structure accordingly. This is presented graphically in Figure 4.4,

where two candidates were created with different decorations of the same parent structure,

here the composition Cu1Ag1Au2 of a bcc cell. The only difference between these two

structures lies in the permutation of the Ag and Cu atoms. In Table 4.2, the SNAP

predictions are shown for a variety of different elemental weights.

wCu, wAg, wAu ETop(eV) EBottom(eV)

1 1 1 -25.640 -25.640

1 1 2 -25.879 -25.879

1 2 1 -25.717 -25.676

2 1 1 -26.162 -26.047

3 1 2 -25.640 -25.742

Table 4.2: Total energies predicted by a SNAP model for prototypes A (Top) and B
(Bottom), different weights were employed to calculate the bispectrum components for
each case. In other words, for each case, the models trained on different feature vectors
taking into account different elemental weights. All values are given in meV/atom.
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Figure 4.4: Different decorations of the same parent structure for the creation of two
different compounds, here gold color corresponds to Au, silver to Ag, bronze to Cu and
z-axis is with yellow. Prototype A (upper figure), Prototype B (lower figure).

From Table 4.2 we observe that when identical weights are used to calculate the

bispectrum component, SNAP models trained on these data are unable to distinguish

the diversity introduced by different decoration of the same parent structure. The

ensemble of the trained models in this work employ different values for the elemental

weights for each of the species available in the training set.

The optimization of Rcut and Jmax of the MLIAPs used in this work was carried out

before the choice of the values for the elemental weights. These values were optimized

manually and independently using 10-fold Monte Carlo cross-validation, the elemental

weights in that step were assumed as 1 − 1 − 1 for Cu-Ag-Au correspondingly. The

optimized values used are : Rcut=3.5 Å and Jmax=4. To optimize the atomic weights

we performed a grid search taking integer step of 1 for values spanning from -5 to

5. Then the five sets of weights that minimize the cross-validation (CV) root mean

squared error (RMSE) are chosen for the ensemble of the SNAP models. Training

and cross-validation errors for each model of the ensemble are given in Table 4.3. The

ensemble of these models was then used to screen the prototype structures that exhibit

the lowest values of enthalpy of formation.

From Table 4.3 can be observed that the RMSE for the cross-validation set are of

the order of ∼ 80 meV/atom, below the values used so far in the literature [62], which
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wCu, wAg, wAu Training MAE Training RMSE CV MAE CV RMSE

1 1 2 8.0 13.4 27.1 83.5

1 2 2 8.7 13.5 24.8 64.7

-1 -2 -1 9.7 16.4 30.6 86.4

-1 -2 -2 8.5 13.2 23.5 64.3

-1 -1 -2 7.7 13.1 25.6 75.0

Table 4.3: The training and the cross-validation errors for the ensemble of 5 models
used for screening. Errors are presented as a function of the different set of atomic
weights w′

i. All values are given in meV/atom.

is enough to perform the selection of the most promising candidates.

4.2.3 Screening of the Prototypes

After completing the first steps of the algorithm, we obtain an ensemble of SNAP

force fields, each trained by considering a different set of atomic weights, along with

a pool of potential candidates. The objective of the proposed workflow is to screen

structures that demonstrate low energy, hence resulting in a low enthalpy of formation

for a specific stoichiometry.

The pool of created structures exhibits a wide SNAP-predicted energy distribution,

ESNAP, as shown in Figure 4.5 and the parity plot in Figure 3.5. In order to be able to

accurately screen the created candidates, the force field must be accurate at the low end

of the energy distribution and capable of predicting the energy ordering at the higher

end, as we established in Chapter 3. We have shown that even though such-trained

MLIAPs accurately predict the energy of structures close or near at the equilibrium,

their reliability decreases as we move away from the relaxed structure or for crystal

structures that are not sampled during the training process, as seen in the Principal

Component Analysis (PCA) plot in Figure 3.7. As a result, an informed decision

regarding the candidate geometry can increase the robustness of the final decision.

This is at the heart of the method used in this work and has already been introduced

by the fact that binary compounds are sampled to be used as parent structures during

the decoration step.



4.2. TERNARY PHASE DIAGRAM WORKFLOW 83

−3.3 −3.2 −3.1 −3.0 −2.9 −2.8 −2.7 −2.6 −2.5

ESNAP (eV/atom)

0

100

200

300

400

500

#
of

S
tr

uc
tu

re
s

Figure 4.5: Here, the SNAP-predicted Energy distribution,ESNAP, for the structures
with stoichiometry Cu1Ag1Au1 as predicted with a SNAP force field randomly chosen
from the ensemble.

By definition, the created candidate structures exhibit the same volume as the

parent crystals from which they were created. However, one can adjust the volume to

obtain a more accurate estimate and, consequently, a structure that closely approaches

the equilibrium volume. To achieve this, a Vegard’s law-like [83] approach was imple-

mented to estimate the volume of the crystal structure. The volume of the created

crystal is approximated by taking the weighted average of the elemental volumes of the

constituent atoms and multiplying it by the number of atoms in the corresponding

cell. Subsequently, it is adjusted accordingly through homogeneous expansion or

contraction. This approximation satisfactorily reproduces the result for DFT-relaxed

compounds, as can be observed from the Figure 4.6.

Having established a way to cleverly estimate the volume of a given material, we can

use a SNAP-driven relaxation trying to approach equilibrium. For this step, the volume

and lattice parameters are kept fixed. This choice stems from the fact that, while the

database used for training the model includes structures with structural diversity, all of

them are in equilibrium. This implies that, in the absence of distorted configurations

in the training set, SNAP models exhibit poor performance when applied to perform
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Figure 4.6: Plot showing the initial unrelaxed volumes and relaxed equilibrium volumes
of a set of ternary prototypes at the stoichiometry Cu2Ag1Au1. The dashed line
indicates the mean equilibrium volumes for these compounds, while the solid line shows
the volume predicted by the weighted average of the elemental volumes.

full structural relaxation. To be able to select the structures that exhibit the lower

enthalpy, we are using a “cross-validated” energy prediction for each relaxed structure.

The rationale behind this approach is to choose the energy and crystal structure that

we are most certain has the lowest energy based on the standard deviation of the

predictions.

In more detail, we used the ensemble of the trained SNAP models to drive the ionic

relaxation. During this procedure each of the K SNAP models, trained in the entire

database, is used to drive the relaxation of the internal degrees of freedom , with a

maximum of Ns steps, for all the prototypes created. This leads toK relaxed structures

which one would expect to relax in a different way. Furthermore, for each “relaxed”

structure, we have K− 1 predicted energies from the force fields that did not drive the

relaxation. This is used as a form of cross-validation for the energy prediction for a

given candidate. Then the mean and standard deviation of the energy predictions of

the K-1 models are saved. Then for each prototype, we select the K relaxed structures

with lowest “cross-validated” standard deviation, this corresponds to the structure for
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which the relaxation is most probable to have been converged. Therefore, we end up

with one relaxed structure per prototype. This procedure is presented graphically in

the Figure 4.7.

Figure 4.7: The relaxation procedure employed in the workflow for a single prototype
is presented schematically. In the first step, the selected prototype relaxes its internal
degrees of freedom using each of the K SNAP models. Then, an energy prediction is
performed for the relaxed structure using the remaining K-1 SNAP models from the
ensemble. Subsequently, the standard deviation is calculated and the structure and
energy with the minimum standard deviation are selected.

The rationale behind this process is to take advantage of the robustness regarding

the predictions that a cross-validation algorithm offers. Furthemore, we chose a fixed

number of steps, Ns, for the relaxation in order to avoid leading to structures trapped in

non-physical local minima of the potential energy surface (PES) of the driving SNAP

model. Introducing this algorithm helps to avoid that from happening and offers a

more accurate prediction for the relaxed structure at the same time. In general, SNAP

performs relaxations with the largest change in energy occurring during the first few

steps, similar to DFT-driven relaxation. By limiting the relaxation procedure to a fixed

number of steps, we obtain structures that are lower in energy than the initial non-

relaxed structure. This approach reduces the risk of obtaining high-energy structures,

making the workflow more robust.
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Furthermore, in a manner similar to the work discussed in Chapter 3, a cross-

validation algorithm helps to remove the bias introduced by a specific SNAP model.

During a typical SNAP relaxation, the structure is driven towards a geometric configuration

that corresponds to the local minima of the potential energy surface (PES) fitted by

the given model. In the case of an inaccurate relaxation, the standard deviation, σ̂, of

the energy calculated from the predictions of the rest of the SNAP force fields will be

high enough for the workflow to avoid selecting the corresponding structure. It needs

to be noted that since the training set is the same for all the MLIAPs in the ensemble,

this could lead to a bias towards the same structure. This problem is addressed by

using the standard deviation as the criterion for the selection of a specific structure out

of the relaxed ones. More precisely, if several of the SNAP models are biased towards

a falsely relaxed structure and they predict it to have low energy, this will lead to

different predictions for each model, increasing the value of the standard deviation,

and thus the uncertainty.

The “cross-validated” standard deviation prediction for all the structures must be

less than a cutoff value, σcut, to be considered for the final energy screening. The value

we used in this workflow is 10−3 eV/atom. Resulting in the last stage of the screening

algorithm with a pool of candidate structures for which we are more confident about

their predicted energies. Then, the ones with the lowest mean energy are chosen

and relaxed with high-fidelity DFT. Here, we chose to fully relax ten structures per

stoichiometry. The idea behind this choice is that there are energy errors in the

workflow introduced by the MLIAPs used, and selecting a wider sampling window

we manage to successfully sample almost always the lowest-energy structure without

reducing the throughput of the workflow drastically.

The proposed workflow takes advantage of the binary materials space and the

robustness of the cross-validation-based approaches in order to screen for the lowest-

energy prototypes. This is done for a given fixed stoichiometry. Then, the energy

of the proposed ternaries is calculated with full DFT relaxation and the convex hull

is updated. The advantage of this workflow in comparison to other state-of-the-art



4.3. RESULTS 87

methods like AFLOW-CHULL [96] is that it focuses all the computationally demanding

DFT calculations on the most promising candidates. The next step is to employ this

workflow for the reconstruction of the ternary-alloy convex hulls of Cu-Ag-Au and

Mo-Ta-W.

4.3 Results

Having defined a workflow that leverages the binary materials space to suggest possible

ternary compounds and an ensemble of MLIAPs to screen for the low-energy ones, we

are now required to benchmark this method against well-established state-of-the-art

methods used for constructing ternary phase diagrams, namely AFLOW-CHULL. To

do that, we first examine the performance of our workflow against the noble element Cu-

Ag-Au ternary system, which has been extensively studied experimentally [116]. Then,

we compared the predictions of our algorithm with one of the better-characterized phase

diagrams extracted from AFLOWlib, specifically that of Mo-Ta-W, which presents

four stable intermetallic phases. Using ab-initio calculated ternary phase diagrams as

benchmarks of our workflow, we gain valuable insights regarding the effectiveness of

the followed approach.

The Qhull [117] algorithm was used to calculate the convex hull for a given ternary.

The same method was also used in AFLOW-CHULL, ensuring consistency in the

comparison between the different approaches. For a given ternary system, the available

data in AFLOWlib were downloaded to calculate the reference convex hull. Then to

ensure consistency, we recalculated the energies of these compounds with the Vienna

Ab-Initio Package (VASP) [28] (version 5.4.4 ). Throughout the entire process, we

have strictly followed the AFLOWlib standards as outlined in reference [97]. The same

Projector augmented wave (PAW) pseudopotentials that were employed from AFLOW

are used for each element together with the Perdew-Burke-Ernzenhof (PBE) functional.

For the plane wave cutoff, we used a value of 600 eV for all calculations, which is

slightly above the 1.4 × ENMAX (default ENCUT (energy cut off) value provided

by the pseudopotential) as proposed by the VASP team. The energy convergence
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criterion for self-consistent field (SCF) calculations was defined as 10−4 eV. The ab-

initio relaxations were considered converged when the forces were below 10−3 eV/Å .

A Fermi-Dirac smearing of 0.2 eV was chosen for all the calculations. Regarding the

k−point, a Γ-centered mesh was used with number of k−points per reciprocal atom

(KPPRA) of more than 6 × 103 for the relaxations and 104 for the SCF calculations.

The number of sampling points along each direction is proportional to the norm of the

corresponding reciprocal lattice vector as defined by the Equation (3.2).

4.3.1 Cu-Ag-Au ternary convex hull

To measure the performance of our workflow, the first step would be to study a ternary

system that has already been thoroughly investigated in this thesis. This system is

the Cu-Ag-Au ternary phase diagram, which was extensively discussed in Chapter 3.

Another reason for the selection of this ternary is that it provides ample data to

train a robust MLIAP. Furthermore, we have already recalculated, using DFT, all

the energies of the available structures extracted from AFLOWlib in Chapter 3. This

makes it even more appealing, as the errors introduced by DFT convergence would be

minimized. This advantage allows us to identify and correct any errors in the workflow

implementation.

During the first attempt, we focused on the equiatomic Cu1Ag1Au1 ternary and

compounds with stoichiometric ratios of 2-1-1 and 2-2-1 (and the corresponding permutations).

Furthermore, we ensured that the number of atoms in the unit cell remained less than 10

for all the systems studied. This was done to keep the number of derivative structures

low. The reason behind the selection of these stoichiometries is that they have already

been explored by AFLOW-CHULL, serving as benchmarks for our study. To assess the

stability of a given structure, we calculate the energy distance from the convex hull,

δ, for a given structure. The enthalpy of formation corresponding to the convex hull

plane in this composition, denoted ∆HCH
f , is subtracted from the formation enthalpy
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of the compound studied, denoted ∆HComp
f . This distance is defined in Equation (4.5).

δ = ∆HComp
f −∆HCH

f (4.5)

The distance from the convex hull, δ, generally takes positive, negative, or zero values.

Its value is used as a criterion to assess the thermodynamic stability of a studied

compound. Positive values mean that the enthalpy of formation of the structure lies

above the convex hull plane, resulting in a metastable or unstable structure. A zero

or negative value means that the studied structure is considered thermodynamically

stable, as it lies on or below the previously calculated convex hull. For the negative

values, the convex hull is recalculated and the point that corresponds to the stoichiometry

is added in the phase diagram, resulting in change of the shape of the convex hull.

Furthermore, to highlight the potential of our workflow in exploring novel regions of

a given phase diagram, we have also predicted the stability for structures in the 3-1-1

(and the permutations 1-3-1 and 1-1-3) compositions. The results of the workflow are

presented in Figure 4.8. It can be observed that the workflow manages to identify

one stable intermetallic phases namely Cu1Ag1Au2. Interestingly, the Cu1Ag1Au2 was

already close to the convex hull, as calculated by AFLOW, without being able to

touch it. This paradigm shows the versatility of our workflow to identify possible

stable intermetallics.

The scalability and speed of the proposed algorithm allow us to investigate more

regions of the phase diagram that would be computationally expensive with a DFT-

based phase-diagram construction scheme. It should be noted that for these four

stoichiometries we performed 40 relaxations and 4 SCF DFT calculations, whereas

AFLOW performed 87 relaxations and 87 SCF DFT calculations, which comprises the

vast majority of all the ternary calculations. The AFLOW strategy of constructing

ternary phase diagrams is based on decorating the same amount of parent structures

over all the studied systems; these crystal structures are extracted from known materials

and stored in the AFLOW encyclopedia.

The workflow will then be employed to predict structures for the 2-2-1 and 3-1-1
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Figure 4.8: Workflow predictions for the Cu-Ag-Au ternary system across different
stoichiometries. The graph presents the different compositions (x-axis) and their
corresponding enthalpies of formation, ∆Hf . The blue dots denote the calculated
enthalpy of formation of the prediction of the proposed workflow, whereas the orange
ones represent the enthalpy of the best AFLOWlib prediction. The dashed line
corresponds to marks the tie-plane positions of the convex hull. Here, the Au atoms
are in gold, the Ag atom in silver, and the Cu atom in bronze. The proposed workflow
manages to identify one stable intermetallic phase, namely Cu1Ag1Au2. Furthermore,
the workflow manages to outperform the AFLOW dictionary method during all cases
presented.

stoichiometries (and their permutations). It should be noted that the latter compositions

do not correspond to studied compounds. Instead, they serve as a showcase of the

flexibility of the workflow. The results are presented in Table 4.4.

In Table 4.4, it is observed that the gold-heavy Cu1Ag1Au3 compound exhibits

a negative distance from the AFLOW-calculated convex hull, indicating that it is

thermodynamically stable. Therefore, it is necessary to update the convex hull by

incorporating this compound into the algorithm. Furthermore, it is observed that

the proposed workflow outperforms the dictionary method during all the cases studied.

Interestingly, the predicted structures are consistently closer to the convex hull compared

to the ones proposed with the dictionary method. This means two things a) that

the workflow effectively selects the relevant structures for creating the pool of ternary

candidates and b) that the crystal structure of the binary compounds can be effectively
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Stoichiometry δAFLOW (meV/atom) δWP (meV/atom)

Cu2Ag2Au1 208.95 25.99

Cu2Ag1Au2 205.69 37.45

Cu1Ag2Au2 90.27 17.21

Cu3Ag1Au1 – 20.35

Cu1Ag3Au1 – 31.05

Cu1Ag1Au3 – -0.02

Table 4.4: Workflow predictions for the Cu-Ag-Au ternary system with 2-2-1 and 3-1-1
compositions. The stoichiometries and their corresponding distance from the convex
hull, δWP, are presented. For the 2-2-1 compounds, the distance from the convex hull
of the phases available in the AFLOWlib database, δAFLOW, are also given. Note that
for all materials, the distance from the AFLOWlib convex hull tie plane is used as
reference. A new gold-heavy intermetallic, namely Cu1Ag1Au3 is predicted as stable
(its crystal structure is displayed in Fig. 4.9).

Figure 4.9: The unit cell of the crystal structure on the convex hull, namely Cu1Ag1Au3,
is presented in both a top-view with respect to the z-axis (left), a side-view along
the x-axis (middle) and a tilted view (right). In this structure, gold (Au) atoms are
represented in gold color, silver (Ag) atoms in silver color, and copper (Cu) atoms in
bronze color.

used to create ternaries. Overall, these results highlight the success and potential of

the proposed workflow for predicting stable ternary compounds.

Consistently predicting structures with a negative formation enthalpy gives us

confidence in the reliability of the workflow. Interestingly, we have been able to
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identify a couple of gold-heavy stable phases, namely Cu1Ag1Au2 and Cu1Ag1Au3.

This indicates that a possibility of stable intermetallic phases exists on the gold side of

the studied phase diagram. We have confidence in our prediction, given the fact that the

dictionary method structure for Cu1Ag1Au2 was within 3 meV/atom from the convex

hull, suggesting the possibility of the existence of a stable phase. This is consistent with

the formation of solid solutions in the gold-rich region of the experimentally studied

phase diagram [116]. The rest of the structures are considered metastable, with an

average distance from the convex hull of ∼30 meV/atom.

To visually interpret the differences between the phase diagrams, in Figures 4.10, 4.11

and 4.12 we present the phase diagram calculated by AFLOW and predicted from our

workflow. Furthermore, the difference between these two phase diagrams is presented.

For the AFLOW phase diagram, we recalculated the database consisting of the three

binaries namely Cu-Ag, Ag-Au and Cu-Au, the unaries and the corresponding ternaries,

then we used Qhull to calculate the convex hull. For our prediction, we added the newly

predicted ternaries to the entire database, then we recalculated the convex hull.
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Figure 4.10: Convex hull of the ternary system Cu-Ag-Au as calculated using AFLOW-
CHULL. The stable binary phases are denoted with black crosses and are located within
the Ag-Au and Cu-Au binary systems. No stable ternary phases are predicted.
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Figure 4.11: Convex hull of the ternary system Cu-Ag-Au as predicted from out
workflow. The stable binary phases are denoted with black crosses and are located
within the Ag-Au and Cu-Au binary systems. Two stable ternary intermetallics were
found in the gold-heavy area, namely Cu1Ag1Au2 and Cu1Ag1Au3.
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Figure 4.12: Difference between the AFLOW-predicted and the workflow-predicted
convex hulls. A decrease in the depth of the convex hull calculated by AFLOW is
observed in the gold-heavy area.
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The ternary phases proposed with our workflow are consistent with the formation

of solid solutions in the gold-rich region of the experimental phase diagram as reported

in [116]. Furthermore, several ternary metastable structures were proposed with an

average distance of the convex hull of ∼ 30 meV/atom. Our analysis demonstrates the

ability of the discussed workflow to predict and identify structures closer to the convex

hull than those from the state-of-the-art dictionary method and uncover novel ternary

phases, should they exist.

4.3.2 Mo-Ta-W ternary convex hull

To put our workflow to a more severe test, we chose to predict the phase diagram

of a system that exhibits a plethora of stable intermetallics. Most of the ternary

phase diagrams in the AFLOWlib database exhibit only a couple of stable ternary

phases, and finding a ternary system that has more than two ternary intermetallics

is quite rare. The criteria we used to identify the benchmark system is selecting a

phase diagram created from transition metal elements where the highest number of

intermetallic phases exist.

Using the AFLOW REST-API [118] to search the database, the Mo-Ta-W ternary

system emerged as a good candidate. In fact, it exhibits the highest number of stable

ternary phases in the entire database of transition-metal alloys. To reproduce the phase

diagram predicted from AFLOW we extracted the stoichiometry and energy pairs from

the database. The ternary phase diagram calculated from AFLOW is presented in

Figure 4.13.

To be consistent with the analysis and the comparison between energy distances,

we recalculated the energies of the structures used in the phase diagram shown in

Figure 4.13. To do that, we used high-fidelity DFT consistent with the standards

described in [97]. Then, we calculate the convex hull and reassess the stability for the

ternary phases. The recalculated phase diagram is shown in Figure 4.14.

By recalculating the energy of the compounds used for the construction of the

convex hull, the depth of it increased marginally. This increased the distance from the
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Figure 4.13: Convex hull of the ternary system Mo-Ta-W as calculated using AFLOW-
CHULL. The stoichiometry-energy pairs extracted from the AFLOWlib database were
used to reproduce the calculated phase diagram. There are four intermetallic phases
predicted to be stable, depicted with black crosses, namely Mo1Ta1W1, Mo2Ta1W1,
Mo1Ta2W1, Mo1Ta1W2.

convex hull for two of the four ternary phases. The distance from the convex hull for

Mo1Ta2W1 is 2 × 10−3 meV/atom and 6 × 10−4 meV/atom for the Mo1Ta1W2. The

distance from the convex hull for these “unstable” compounds is on the order of the

DFT error, and practically they are considered stable compounds. The comparison will

use the recalculated version of the convex hull. The comparison between the proposed

workflow and the dictionary method will follow the same path as previously. We have

made predictions corresponding to the same compositions as those presented in the

previous section. Furthermore, we have used our method to explore areas of the phase

diagram that are poorly covered by AFLOWlib.

The structure prototypes used for the element decoration are extracted based on

their distance to the convex hull. More information on convex hull analysis can be found

in the Appendix C. An ensemble of machine-learning models is trained using the entire

available database. This ensemble of models is employed to refine and screen the pool of

generated prototypes. Subsequently, the 15 structures with the lowest predicted energy
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Figure 4.14: Convex hull of the ternary system Mo-Ta-W as calculated using AFLOW-
CHULL. The DFT-calculated energies were employed to create the convex hull. The
number of ternary structures reduced to two, depicted with black crosses , namely
Mo1Ta1W1, Mo2Ta1W1.

are selected for sampling and subjected to DFT relaxation and stability assessment.

The significant difference compared to the workflow used for the Cu-Ag-Au ternary

lies on the fact that now we use AFLOWlib’s database to train the MLIAPs that drives

the relaxations and the screening, without any further recalculation. As we discussed

in Chapter 3 the accuracy of a force trained solely with the energies provided from

AFLOWlib is enough to separate low- from high-energy structures. This increases

the throughput of the workflow and gives us an option to increase the number of the

structures selected for relaxation. The AFLOW REST-API is employed to download

the energies and the crystal structures for the three binary convex hulls (Mo-W, W-

Ta, and Mo-Ta), the data points used to train the MLIAPs consisted of binaries and

unaries that were calculated for each system, namely 307, 306, and 941 for Mo-W,

Ta-W, and Mo-Ta accordingly. It should be noted that one of the binaries, namely

Mo-Ta is sampled more thoroughly compared to the rest. Following this approach, we

managed to avoid about 1500 DFT calculations, some of them for cells up to 46 atoms,
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which would greatly reduce the throughput of our workflow.

The workflow was employed to predict the stability for the 1-1-1 and 1-1-2 compositions.

We then corrected the convex hull by adding the newly predicted compounds. In

Figure 4.15 we present the comparison of the distance from the recalculated convex

hull for the stoichiometries 1-1-1 and 2-1-1 (and the permutations).

Figure 4.15: Workflow predictions for the Mo-Ta-W ternary system across different
stoichiometries, 1-1-1 and 1-1-2. The graph presents the different compositions and
their formation enthalpy ∆Hf . The blue points are associated to the predictions
from the proposed workflow, whereas the orange ones represent the lowest-energy
AFLOWlib’s data. The dashed line marks the tie plane position of the convex hull.
The unit cell of the crystal structure on the convex hull is presented as well. Here, Ta
atoms are in gold, W in silver, and Mo in purple. The proposed workflow managed to
identify one intermetallic phase, namely Mo1Ta2W1.

In this case, we still predict one new stable intermetallic phase, namely Mo1Ta2W1,

which increases the depth of the convex hull, as can be observed in Figure 4.15. This

time, our workflow consistently outperforms the best cases of the dictionary method.

In fact, for two of the four stoichiometries investigated, we obtain compounds with

energies similar to the ones present in AFLOWlib, while for one, Mo2Ta1W1, our

search yields a compound with higher energy.

As observed in Figure 4.15, the compound Mo1Ta1W1 exhibits the same distance
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from the convex hull for both the workflow and the AFLOW prediction. It is of

interest to determine whether these two compounds share the same crystal structure

or exhibit structural similarities. To conduct this analysis, the AFLOW-SYM tool

is employed to calculate the space-group and lattice constants of each crystal. The

two crystals display distinct symmetry groups and crystal systems. The one predicted

by the workflow belongs to space group 8 and is categorized under the monoclinic

crystal system, whereas the AFLOW-predicted crystal belongs to space group 107 and

is classified as tetragonal. In Figure 4.16 a visual representation of the two crystals is

shown and in Table 4.5 the lattice parameters are summarised.

Figure 4.16: Workflow and AFLOW crystal structure predictions for the Mo1Ta1W1

compound.The unit cell of the structures predicted by the two methods is visually
presented. Here, the Ta atoms are in gold, W in silver, and Mo in purple.

Utilizing an approach that is heavily based on the quality of the trained force field

means that the workflow improves as the quality of the MLIAP increases. However,

in this instance we are exploring the case of an end-to-end workflow based solely on

calculations already performed for the construction of the binary phase diagrams. In

this context, the data used to train the MLFF are extracted from the AFLOWlib

repository. As we saw in Chapter 3 there is a trade-off between accuracy and throughput

by following this path. We anticipate that the trained force field will not be as accurate

as the one used for the Cu-Ag-Au ternary system. It should be noted that minor
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Workflow AFLOW

a (Å) 3.2045 5.3488

b (Å) 7.1661 5.3488

c (Å) 7.0234 5.3488

c/a 2.1916 1

α (◦) 107.9623 145.0910

β (◦) 103.1872 145.0910

γ (◦) 90.0 50.1988

Table 4.5: Structural parameters regarding the AFLOW and the workflow prediction
for the Mo1Ta1W1 compound predicted from AFLOW and the workflow.

inconsistencies in the energy values translate to large errors in the force field [119].

Given this understanding, we have nevertheless demonstrated that novel phases can be

predicted through an almost DFT-free workflow, due to the accessibility of our data

within a database. Being able to avoid calculating the compounds already present in

the binary phase diagrams saves us more than a thousand DFT calculations.

Having said that, perhaps a more accurate force field would also be able to find

the AFLOWlib minimum for Mo2Ta1W1 (see Fig. 4.15). However, it is demonstrated

that the current workflow is already capable of creating and identifying the majority of

the structures of interest and predicting candidates close to the convex hull. Emphasis

should be given in the fact that this is the phase diagram for which the AFLOWlib’s

dictionary method works the best, as it is capable of detect 4 intermetallic phases,

more than any other transition metal alloy phase diagram.

We proceed our analysis by comparing the predictions of our method with AFLOWlib

for structures predicted as metastable. This provides us with insight into the behavior

of our method in areas of the phase diagram susceptible to metastable structures. For

this analysis, we compared the workflow predictions for the rest of the stoichiometries

for which AFLOW fails in predicting stable structures. Furthermore, the enthalpy of

formation for these structures takes positive values, and, as a result, the distances from

the convex hull are large. More quantitatively, the best prediction is for Mo4Ta1W1

with a distance of 320.95 meV/atom and the worst prediction is for Mo2Ta1W2 with
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1032.50 meV/atom. In Table 4.6 we provide a comparison of the distance from the

convex hull for the structures predicted with our method, δWP , and those of AFLOWlib,

δAFLOW .

Stoichiometry δAFLOW (meV/atom) δWP (meV/atom)

Mo2Ta2W1 880.90 0.00

Mo1Ta2W2 962.84 0.00

Mo2Ta1W2 1032.50 8.50

Mo4Ta1W1 320.95 46.56

Mo1Ta4W1 516.30 3.25

Mo1Ta1W4 334.16 0.33

Table 4.6: Workflow predictions for the Mo-Ta-W ternary system with 1-2-2 and 1-1-4
compositions. The stoichiometries and their corresponding distances from the convex
hull, δ, are presented. Three intermetallics are predicted to be stable and two others
to be metastable. Surprisingly, our algorithm is able to identify structures 3 orders of
magnitude closer to the convex hull than those predicted from AFLOWlib.

Here, Table 4.6 illustrates the ability of our workflow to consistently predict structures

that satisfy two key criteria: (i) proximity to the convex hull and (ii) negative formation

enthalpies. The former indicates that the proposed workflow possesses the capacity to

generate and identify stable intermetallic compounds if they do exist. This property

makes it a powerful tool for materials exploration. The latter validates the physical

intuition behind the approximation that crystal structures extracted from the closer-

to-the-convex hull prototypes, once decorated, can be used as a viable option for the

structure of the ternary phases. This indicates that such a workflow spends most of

the time searching for a specific compound, with structures that are relevant.

More quantitatively, we were able to identify three novel intermetallic phases presented

in Table 4.6, namely Mo2Ta2W1, Mo1Ta2W2, and Mo1Ta1W4. Furthermore, we find

two metastable phases with distances below 50 meV/atom. The advantages of the

presented algorithm compared to the dictionary method are clearly displayed. The

freedom for the structure search of the proposed algorithm is highlighted, proving

that previously explored areas hide difficult-to-find stable intermetallics that a more

versatile method will be able to unhide.
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In the last part of the work and in accordance with the analysis of the Cu-Ag-Au

ternary, we use the workflow to predict structures that belong to previously unexplored

regions of the phase diagram. This gives us insight regarding the extrapolation ability

of the workflow in predicting and identifying stable structures. The results are shown

in Figure 4.17.

Figure 4.17: Workflow predictions (blue) for the Mo-Ta-W ternary system across
different stoichiometries 1-2-3 and 3-1-1. The enthalpy of formation that corresponds
to the minima of the convex hull is shown with the dashed line. The unit cell of the
crystal structure on the convex hull is presented as well. Here, Ta atoms are in gold, W
in silver, and Mo in purple. Two new intermetallics were identified namely Mo1Ta2W3

and Mo1Ta3W1.

The workflow successfully identifies two new intermetallics: Mo1Ta2W3 and Mo1Ta3W1.

Furthermore, both predicted metastable phases are within 15 meV/atom distance from

the convex hull. To be more quantitative, the distance from the convex hull for

Mo3Ta1W1 is 10.94 meV/atom, and for Mo1Ta1W3 is 1.91 meV/atom. This solidifies

the effectiveness of the proposed workflow as a tool suitable for materials discovery.

The introduction of stable phases in the Mo-Ta-W phase diagram translates into

changes in the depth of the convex hull with respect to the newly predicted stable

ternaries. The newly calculated convex hull is presented in Figure 4.18.
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Figure 4.18: The ternary phase diagram of the MoTaW system. The color map suggests
the calculated enthalpy of formation corresponding to each of these stoichiometries.
The crosses represent the intermetallic phases that we discovered.

To better illustrate how the stable-predicted structures influence the landscape of

the convex hull, we present a comparison between the two phase diagrams discussed

(AFLOW- and workflow-predicted), in Figure 4.19. The complete phase diagram of

the Mo-Ta-W ternary system that presents all the stable intermetallic phases predicted

for this ternary system to date is presented in Figure 4.20.

At first glance, it is evident that the majority of identified ternary structures

belong to the Ta-W region of the phase diagram. In the molybdenum-rich region,

we encounter challenges in identifying any new intermetallic compounds, and we are

unable to confirm the stability of Mo2Ta1W1. The Mo-Ta-W ternary system is well-

documented [120] for forming a ternary solid solution at finite temperatures across the

entire phase diagram.

In the case of Mo2Ta1W1, a closer examination of the crystal structure provides

insights into our inability to identify it. This compound belongs to the family of Heusler

compounds, and its unit cell corresponds to symmetry group 225 and face-centered

cubic (fcc) crystal structure. A more thorough analysis of the parent structures sheds
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Figure 4.19: Difference between the AFLOW-predicted and the workflow-predicted
convex hulls. A decrease in the depth of the AFLOW calculated convex hull in the Mo-
Ta-W central area. However, there is an increase in the depth around the Mo2Ta1W1

region and this comes from the lack of stability confirmation for this compound. Black
crosses denote the structures predicted from the worfklow, and red crosses presents the
structures predicted from AFLOW.
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Figure 4.20: Complete convex hull construction for the Mo-Ta-W ternary system. The
stable intermetallic phases predicted are presented with black crosses.
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light on the result that we did not sample any structure from this specific space group

or those closely related to it. This scarcity of similar structures in the binary phases

could explain why the workflow was unable to identify this particular material.

Furthermore, it is important to note that the Mo-Ta binary system is significantly

better sampled in AFLOWlib compared to the Ta-W and Mo-W systems. This could

suggest that it is more challenging to approach the convex hull region near this facet.

Additionally, the depth of the binary convex hull between Mo and W is considerably

smaller than in the other binary systems. This implies that both Mo and W form more

stable phases with Ta than with each other. These two factors may explain the greater

difficulty in discovering stable intermetallic phases within the Mo-rich portion of the

phase diagram.

4.4 Conclusion

In summary, this chapter outlines the development of a workflow capable of predicting

crystal structures for compounds with specific stoichiometry and effectively screening

them based on their energy prediction. The workflow relies on an ensemble of SNAP

force fields to identify and select the most stable structures. Additionally, the underlying

assumption of employing binary structures as prototypes for creating potential ternary

compounds seems to be a good alternative to the state-of-the-art encyclopedia method.

Using a MLIAP as a DFT surrogate and reducing the amount of DFT calculations

to minimum, offers the needed throughput and scales the ability of the workflow to

perform well even when vast materials spaces need to be scanned. Then the proposed

workflow is employed to map the ternary convex hull for two different transition

metal alloy systems. Another crucial aspect of the proposed scheme is that relevant

information is leveraged throughout the workflow. Both the force fields and the creation

of the prototype ternary structures are based on the knowledge of the binary phases

only. The availability of the data used in open databases such as AFLOWlib minimizes

the need for DFT. This means that a phase diagram for a ternary system can be

explored thoroughly with a few hundreds of DFT calculations. More importantly, these
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DFT calculations are performed only for the ternary phases that have a high possibility

of lying near or at the convex hull minimum. The versatility of the proposed scheme

allows us to map previously unexplored ternary regions and help drive the search for

novel material compounds with interesting properties.

The demonstrated workflow is generally capable of predicting crystal structures

with negative formation enthalpy, which means that the parent prototypes used to

create the candidate ternaries are relevant choices. Furthermore, it is able to identify

novel intermetallics should they exist. To showcase the abilities of the models, we

used two different ternary systems, namely Cu-Ag-Au and Mo-Ta-W. In both cases,

we managed to predict stable phases that altered the convex hull landscape, resulting

in a reduction of the convex hull by a few meV/atom.

Additionally, we identified a few metastable phases with an energy difference of less

than 20 meV/atom that could potentially also be experimentally synthesized. In the

Cu-Ag-Au ternary system, we pinpointed Au-rich compositions as the most promising

region for stable intermetallics. Furthermore, for the Mo-Ta-W ternary system, which

is one of the most studied and best-performing ternary phase diagrams in AFLOWlib,

our method identified a variety of novel phases. This led to the correction of the phase

diagram calculated by AFLOW-CHULL.

In summary, we have proposed an end-to-end phase diagram prediction algorithm

which leverages the strengths of machine learning interatomic potentials as surrogates

to DFT in order to scan large numbers of candidate structures. The presented workflow

harnesses existing DFT calculations, enhancing its throughput and rendering it well-

suited for scanning extensive materials spaces. This study serves as an illustration

of how machine-learning tools can be seamlessly integrated with prototype generation

techniques to build a pipeline, eliminating the need to generate extensive training sets.

Instead, it achieves this by re-purposing data already present in large-scale databases.
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Chapter 5

Machine-Learning-Assisted

Construction of Magnetic Ternary

Convex Hull Diagrams

The research was conducted as a collaboration between the author of this thesis and H.

Rossignol. All parts of this chapter are contributed equally by the two authors.

5.1 Introduction

It has been demonstrated in Chapter 4 that a workflow integrating machine-learning

tools with prototype creation algorithms enables the effective creation and screening

of a wide range of different prototypes. This approach, using a minimal amount

of DFT calculations, can generate an efficient and accurate ternary phase diagram

prediction algorithm with the same quality as fully DFT-created ones. Interestingly,

the predictions generated by these workflows are capable of altering the landscape of the

AFLOW convex hull and suggesting areas of interest for forming stable intermetallics.

However, the lack of data or minor inconsistencies in the calculated energies translate

into significant errors [119] resulting in a decrease in the quality of the screening abilities

of the MLIAPs employed. For example, in the Mo-Ta-W ternary system discussed in

Chapter 4.3.2, we are able to predict a variety of novel phases for the W-Ta side of the

107
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phase diagram, but the workflow is not efficient in the Mo-rich area. Furthermore, to

establish a robust SNAP-based workflow, an increase in the number of DFT relaxations

was introduced, resulting in a decrease in throughput. However, it is established that

such workflows are able to discover thermodynamically stable structures accurately

and perform better than DFT-based methods.

The rise of universal Graph Neural Networks (GNN) [13, 121] offers an alternative

to the linear models used in the previous work. Here, we investigate whether such

pre-trained models are robust enough to completely bypass the MLIAPs ensemble. If

that is the case, such ability would be a great advantage resulting in an increased

throughput.

It is demonstrated in Ref. [13] that universal GraphNN is capable of effectively

driving the relaxation of the atomic coordinates towards the right path, so that the

relaxed structures are most of the time closer to the equilibrium than the initial

structures. As a result, prototype structures generated by workflows employing these

models, in the relaxation and energy ordering stage, are typically closer to equilibrium,

reducing the number of DFT relaxation steps and decreasing computational time.

In this chapter, we investigate whether these models are capable of relaxing and

screening ternary compounds that contain magnetic elements. Such an ability would

provide them with an advantage over linear models. Although models that incorporate

information about magnetic moments exist [122, 123], creating the database with which

they are trained is not trivial, as it involves computationally expensive calculations,

such as spin-spiral calculations in the case of reference [122]. This makes them less

than ideal candidates for integration into relaxation and screening workflows.

Here, we explore the possibility of replacing the linear model (namely SNAP) with a

universal GNN (in this case, M3gnet [13]) within the context of the previous workflow.

This transition results in a more scalable and simplified workflow scheme. A visual

representation of the workflow is presented in Figure 5.1.

After providing a concise overview of the workflow, we introduce the employed

Graph Neural Network (GNN) in more detail. Then, we use this workflow to replicate
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Figure 5.1: The convex hull prediction algorithm, implemented by replacing SNAP
with M3gnet. The workflow makes use of the binary structures available to initialise
a pool of parent structures. Then, the derivative structures are created from the
parent prototypes with the corresponding ternary decoration. Subsequently, the
relaxation of these structures is performed followed by the screening of the lowest
enthalpy structures. Finally, a DFT relaxation and an single-point SCF calculation
are conducted. The phase diagram is updated incorporating the new information.

the results for the Mo-Ta-W ternary system as a benchmark. Following that, we

present the results for the Al-Fe-Ni and Bi-Fe-X (withX representing Zr or Ta) ternary

systems.

5.2 Graph Neural Networks: MEGNet and M3gnet

Given the significant use of graph neural networks in this chapter of the thesis, it

is crucial to provide a more comprehensive introduction to this kind of interatomic

potential, in particular of the Megnet and M3gnet architectures. It should be noted

that no training was performed for the GNN utilized here. We trace the historical

development of how MEGNet [121] initially used as property predictor evolved into

M3gnet [13], which is used as a universal force-field.

The discussion starts by introducing the MatErials Graph Network (MEGNet) [121].

Graphs are considered as a natural representation of molecules and crystals, where the

nodes/vertex (V ) represent the atoms and the edges (E) correspond to the bonds.
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The visual representation of the water molecule (H2O) and the corresponding graph is

presented in Figure 5.2.

Figure 5.2: On the left hand side of the figure, the water (H2O) molecule is depicted,
with red representing Oxygen and pink representing Hydrogen. On the right hand
side, one can see the corresponding graph representation. This graph consists of three
vertices,v1, v2, and v3, and two edges, e1 and e2.

Although MEGNet is applicable to both molecules and crystals, our focus in this

discussion is primarily on the latter, because of the greater relevance to our work. The

key distinction between the description of a crystal and a molecule lies in the way the

bonds are defined. In the case of crystals, bonds are defined through a radius cutoff, in

a way similar to that used in linear potentials, defining the local chemical environment.

The graphs used in the MEGNet model are represented as G = (E, V, u), where E

encompasses bond information E = { (ek, rk, sk) }k=1:N for a given system of N atoms.

Here, ek denotes the bond attribute vector, while rk and sk refer to the indices of the

atoms forming this bond. For example, in Figure 5.2, for k = 1, e1 corresponds to the

bond between the atoms indexed by r1 and s1 that correspond to node 1 and node 3.

Here, the nodes, V, is a set of vi corresponding to an atomic attribute vector for the

atom i in a system that contains Nv atoms. Lastly, the global state vector u is a vector

that contains state attributes.

For the atom attributes, vi, the atomic number Z of the corresponding element is

used. The bond attributes ek, are then expanded over a Gaussian basis. The state
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vector u, a vector of two zeros, is initialised and works as a placeholder for any global-

state attributes of the system. This initial graph, G, is then fed into an ensemble of

MEGNet blocks, which return an updated graph representation, G′ = (E′, V′, u′).

This update of the representation could perhaps lead the model to “learn” information

regarding the magnetic property of the materials without explicitly adding information

about the magnetic moment. Subsequent to these blocks enters into the output layer

that makes the prediction.

In order to calculate the updated version of the graph, a series of updates needs

to take place. The first update acts on the bond attributes ek, where it leverages

information of itself, and the attributes of the connecting atoms vrk and vsk , in addition

to the global state vector u. The updated e′k is calculated as expressed in Equation

(5.1),

e′k = ϕe(vsk ⊕ vrk ⊕ ek ⊕ u), (5.1)

where ϕe represents the update function, learned during the training procedure. In

this case, a two-layer neural network is chosen for improved model accuracy, and ⊕

symbolizes the concatenation operator. The atom attributes vi are then updated using

information from the atom itself, the bonds connected to it, and the global state. In

order to calculate the number of bonds and the updated version of the atom attributes,

the updated version of the bond attributese′k from the Equations (5.1) are used,

v̄e
i =

1

N e
i

Ne
i∑

k=1

{e′k}rk=i. (5.2)

Then, the update is performed in a similar way to Equation (5.1), namely

v′i = ϕv(v̄
e
i ⊕ vi ⊕ u). (5.3)

Here, Equation (5.2) corresponds to average pooling and Equation (5.3) involves updating

atomic details using all the available information up to that stage. The update function

ϕv follows the same learning approach as before, employing a dense two-layer neural

network trained to approximate it. Finally, the global attribute u is updated taking
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advantage of the global information of the atoms, the bonds and itself as follows,

ūe
i =

1

N e

Ne
i∑

k=1

{e′k}. (5.4)

ūv
i =

1

N v

Nv
i∑

i=1

{v′i}, (5.5)

u′ = ϕu(ū
e
i ⊕ ūv

i ⊕ u), (5.6)

where N e and N v are the total number of bonds and atoms in the system, respectively.

Regarding the update function ϕ, the choice is made solely to enhance the performance

of the model and it is treated as a hyperparameter of the model. For all the cases,

a dense deep neural network with two hidden layers was used. Then, the updated

function can be approximated with Equation (5.7), based on the weights, Wi and

biases, bi, of each layer,

ϕ = W3(ζ(W2)(ζ(W1ẋ+ b1)) + b2) + b3, (5.7)

where W3 corresponds to the weights of the output layer and W2 and W1 are the

weights of the second and first hidden layer, respectively. A graphical representation

of the MEGNet architecture is presented in Figure 5.3.

MEGNet was mostly used as a property predictor, mainly for energy, of molecules

and crystals. In contrast, M3gnet is used as an interatomic potential. M3gnet trained

on a subset of Materials Project database [94] that contains more than 187,000 ionic

relaxation steps that offer more than 187,000 energies, 16,000,000 forces and 1,600,000

stress tensors, is a universal potential for 89 elements. In the next few paragraphs we

are going to discuss it in greater detail.

The key difference between MEGnet and M3gnet that allows the latter to be used

as an interatomic potential is the addition of a many-body interaction component in

the representation. In this case, the input graph is referred to as G = (V,E,X, [M,u])

where, in a similar way as previously, V contains information regarding atoms, E
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Figure 5.3: A graphical representation of the MEGNet architecture. Initially the
graph representation G = (E,V,u) is fed to the model. In the case of crystals the
representation regarding atoms, V, is expanding into 16-element vector, with the use
of an embedding layer. Following that, the representation is fed in a series of MEGNet
blocks, the components of which are two fully connected hidden layers and the updating
functions that are approximated with two fully connected hidden layers as well. Also,
for training purposes the input representation is added in the output of the block, in a
similar way to the Residual Network [124]. Consequently, a set2set layer reduces the
atom and bonds representation, that so far was a set of components for each atom, to
a single vector, following by a concatenation step. Then, a number of fully connected
layers results to an output layer.

corresponds to bond information, u is the global state information, X is the information

regarding the atomic coordinates, and M is a 3× 3 crystal matrix necessary in order

to obtain predictions for the stresses and forces, using backpropagation.

Suppose a chemical environment with atoms i, j and k as shown in Figure 5.4 then

the angle between the bonds eij and eik is denoted as θjik. In order to calculate the

updated bond equations, the three-body angular interactions are expanded with the

use of Bessel and spherical harmonics as in the Ref. [125]. The bond update function

is rewritten as,
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ẽij =
∑
k

jl(zln
rik
rc

) Y 0
l (θjik)⊙ (Wuuk + bu)fc(rij)fc(rik), (5.8)

e′ij = eij + g(2ẽij + 2)⊙ σ(2ẽij + 1), (5.9)

fc(r) = 1− 6(
r

rc
)5 + 15(

r

rc
)4 − 106(

r

rc
)3 (5.10)

Figure 5.4: Local chemical environment between the atoms i, j and k. The
corresponding bonds are denoted with eij and eik and the angle between these bonds
is represented by θijk.

where W and b are the weights and biases of the neural network. The spherical

Bessel function is jl and the spherical harmonic with m = 0 are Y 0
l , the ⊙ operator

corresponds to the element-wise product, σ corresponds to the sigmoid function and

the fc(r) is given by Equation (5.10). Furthermore, g(x) = xσ(x) is the nonlinear

activation function. Following that, similarly to MEGNet, the bond, atom, and global

state information are updated. The only difference lies in the updating function used

in this new model. Here, it is represented by a gated multilayer neural network. The

gated multi-layer NN is an architecture that combines traditional NN with a gating

mechanism that controls the flow of information. This enhances the learning of complex

patterns. The equations in which the updating mechanism takes place are presented

as follows
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e′ij = eij + ϕe(ui ⊙ uj ⊙ eij ⊙ u)W0
eeij, (5.11)

v′i = vi +
∑

ϕ′
e(vi ⊙ vj ⊙ e′ij ⊙ u)W0′

e eij, (5.12)

u′ = g[Wu
2g{Wu

1(
1

Nv

Nu∑
i

vi ⊙ u) + bu1}+ bu
2 ], (5.13)

where Nv is the number of atoms of the system. The updating functions ϕe and ϕ′
e

are approximated in a similar way as previously. A graphical representation of the

architecture of the model used in this work is presented in Figure 5.5.

Figure 5.5: In this figure a graphical representation of the M3gnet architecture is
presented. Initially the graph representation G = (E, V,X, [M,u]) is introduced to the
model. Then, based on this information a graph featurizer and a 3-body calculation
step are introduced. Following that, the M3gnet block in which we have the 3-body
to bond step which uses bond information regarding the description to calculate the
3-body interactions. Then in the graph convolution step, the update of the bond, atom,
and global state information takes place. Exiting the stacked M3gnet blocks there is a
gated Multilayer Perceptron (MLP) resulting in the output layer.

As observed in Figures 5.5 and 5.3 the differences between these two models are

limited to the architecture. The key difference of M3gnet is related to how the
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information regarding the local chemical environment is implemented in the descriptor.

This upgrade is crucial, so that M3gnet can be employed as an interatomic potential,

in contrast to its predecessor, which was mainly used as a property predictor.

5.3 M3gnet-based workflow : M3GW

Here, we explain the different parts of the M3gnet-based workflow (M3GW) with

respect to the previously implemented SNAP-based one. These both share the same

underlying idea and core steps. For a given ternary system, say A-B-C, energy and

crystal structure information for compounds involved in the convex hull construction

of the three binary phases, namely A-B, A-C, and B-C, is extracted. Subsequently,

a preliminary pool of parent structures is chosen based on their convex hull energies.

The energy window, which determines the maximum distance from the convex hull for

structure selection, is then individually calibrated for each binary phase diagram. This

ensures a balanced pool of parent prototypes, where each binary convex hull contributes

an equal number of structures. Next, the AFLOW-SYM tool [115] is utilized to identify

structures with unique crystal lattices and the fewest number of atoms.

The pool of structures established in the previous step serves as the parent prototypes,

used in the decorating process. Enumlib [76] is, then, utilized to generate all possible

derivative structures for a given stoichiometry up to a specific number of atoms, Nmax,

creating the candidate compounds. The key difference in M3GW lies in the fact that

there is no potential training or optimization process. Furthermore, there is no need

for multiple relaxations per candidate structure.

The procedure is then rather straightforward, where the MLIAP relaxes the structure

(in this case we relaxed each of the structures for 50 steps). Then the energy of the

relaxed structure is assessed and stored. Upon completion of the relaxation process, the

workflow arranges the predicted structures based on their energies. The 15 structures

associated with the lowest energies are then selected for DFT relaxation.

Here, DFT calculations performed during this workflow with the Vienna Ab-initio

Simulation Package (VASP) [28]. Projector augmented wave (PAW) pseudopotentials
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are used for each element together with the Perdew-Burke-Ernzerhof (PBE) functional [27].

A 600 eV plane-wave cutoff is used for all calculations. The energy convergence criterion

for each self-consistent cycle is 10−4 eV. Full atomic relaxations are performed (update

of the atomic positions, cell volume and lattice parameters) with a stopping criterion on

the forces of 10−3 eV/Å. A Fermi-Dirac smearing of 0.2 eV is chosen and a Γ-centered

k-point mesh is used for all calculations. The density of the mesh and the spacing

between the k-points are chosen according to the convergence criteria of AFLOW [97].

The mesh is system specific and determined from the NKPPRA (number of k-points per

reciprocal atom) as defined in Equation (3.2). The total number of sampling points

per reciprocal atom is then minimized, and NKPPRA is used as a lower bound. Values

of 104 and 6× 103 are used for static calculations and relaxations, respectively.

In cases where magnetic elements are present in the system studied, collinear

spin-polarized calculations are performed. Initialization of magnetic moments aligns

with the AFLOW standards [97]. Specifically, a magnetic moment of 5 µb/atom

is initialized for Fe, while for the remaining elements we employ 1 µb/atom. It is

important to note that this workflow does not include spin-orbit coupling due to its

high computational cost, which makes it unsuitable for high-throughput applications.

A graphical representation of the workflow discussed is presented in Figure 5.6.
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Figure 5.6: The main steps of the M3GW are illustrated in a flowchart. The process
begins by extracting the binary phase diagrams of the system’s constituents. Next, a
parent prototype set is formed by selecting structures that closely align with the convex
hull of each binary phase. For each stoichiometry under investigation and for every
parent structure, derivative structures are generated using enumlib [76–78], provided
that the parent structure is appropriate. Then, M3gnet is employed to perform a
relaxation for each structure produced in the previous step, sorting them based on
energy. In the final step, for the 15 structures that correspond to those with the lowest
predicted energy, DFT calculations are initiated.
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It is of great interest to discuss the throughput of this workflow. The most expensive

part of this algorithm is the relaxation and the energy prediction part. To be able to

run the workflow in parallel in a high-performance computing (HPC) system, we take

advantage of the task farming system that almost all HPC systems provide. This

helps us to run one calculation per CPU, meaning that we can run multiple parallel

calculations on a single node. To take advantage of this option, after creating the

pool of ternary prototypes, we split them into batches and perform the relaxation of a

corresponding batch per CPU in a node. Then, the results are collected and ordered

based on their energy. A graphical representation of this procedure is presented in

Figure 5.7.

Figure 5.7: A graphical representation of the task-farming approach used in this
workflow. Firstly, the created amount of ternary candidates is splitted into batches.
Then, each of the CPUs in a given node is allocated with the relaxation and the
prediction of energy for each structure in the batch. Then the energies are collected
and ordered.

In order to measure how this split affects the running time, we performed a parallel

efficiency test. For this test, 70,000 candidate structures created with M3GW were

used. Following that, we split them into batches according to the number of processors.

Then we initialized a 50-step relaxation and an energy prediction for each one of them.

To quantitatively measure the effect in the CPU-hours of the split of the data, we

calculated the parallel efficiency ϵ as defined

ϵ =
1

P

T1
TP
, (5.14)
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where P is the number of processors used. Here, T1 is the time it takes for the

calculation to run in one processor and TP is the time for the number of P processors.

Then the speedup is defined as S = ϵP . The results are presented in Figure 5.8.

Figure 5.8: Speedup as a function of the number of processors. It is observed that there
is a decline from the ideal linear case. For our case we selected to split the calculations
in 40 batches as it is the maximum number of cores per node in the cluster that we
are using.

By selecting 40 CPUs to run our calculations, we take advantage of the entire cluster

node available. The clock time that takes for the system to relax 70,000 structures in 40

processors is 74 minutes, which provides us enough freedom to increase the maximum

number of atoms used to create the derivative structures.

5.4 Results

This section is divided into three subsections, each aimed at presenting the main

outcomes of our methodology. Firstly, we evaluate the efficacy of our newly developed

workflow by comparing its performance against the well-studied Mo-Ta-W ternary

phase diagram (see Chapter 4). Secondly, we employ our workflow to study ternary

systems containing magnetic elements. In particular, we use the extensively researched

Al-Fe-Ni phase diagram as a benchmark [126, 127] to assess the reliability of our
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workflow when it comes to exploring systems containing magnetic elements. Lastly,

we use the workflow to predict the convex hulls of different Bi-Fe-X systems, where

X can be either Ta or Zr, in the search of novel magnetic materials with interesting

properties.

Regarding evaluating the stability of the predicted prototypes and ensuring consistency

in the analysis, the same procedure as in Chapter 4 is followed. The QHull algorithm [117]

is used to calculate the convex hulls presented in this chapter. The data used to

construct the reference convex hull correspond to the thermodynamically stable ground-

state compounds calculated and stored in the AFLOWlib repository. In order to ensure

consistency among calculations, the energies of these compounds were recalculated with

the Vienna Ab-Initio Simulation Package (VASP) [28]. Throughout the entire process,

we have adherently followed the AFLOW standards defined by Calderon et al. [97].

5.4.1 Mo-Ta-W ternary system

We used M3GW to predict the ternary convex hull of the Mo-Ta-W system as a

benchmark. This ternary system was chosen because it was extensively studied with

the first version of the workflow, presented in Chapter 4, and was also thoroughly

investigated with the AFLOW encyclopedia method. The usefulness of the present

methodology is associated to the performance with this system as compared to the

previous workflow. Furthermore, this comparison serves to demonstrate the capabilities

and limitations of the workflow. M3GW demonstrates several differences compared to

the SNAP-based workflow, particularly in the selection of the candidate compounds,

as discussed in Section 5.3.

The parent structures used for the prototype creation are the same as those used in

Chapter 4.3.2, for more details, see Appendix C. As before, the maximum number of

atoms, Nmax, was chosen to be equal to nine. As expected, the universal potential might

be less accurate in the energy predictions compared to an MLIAP created specifically

for a studied system. In order to balance this decrease in accuracy, we increase the

number of structures selected for DFT relaxation to 30, needs to be noted that with
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SNAP-based worfklow we sampled 15 compounds per stoichiometry. Phase diagrams

for the Mo-Ta-W ternary systems predicted with the SNAP-based workflow and M3GW

are presented in Figure 5.9.

(a) (b)

Figure 5.9: The SNAP-based workflow predictions (a) and the M3GW ones (b) are
presented. It can be observed, that while the SNAP-based workflow offers better
results in the Ta-W heavy region, the M3GW one excels in predicting structures in the
Mo-W rich region. Both workflows demonstrate sufficient accuracy in the central area
of the phase diagram.

We observe that both phase diagram predictors have sufficient accuracy in the

central region of the phase diagram. Interestingly, this area is where the AFLOW

encyclopedia method also excels. On the one hand, the SNAP-based workflow [see

Figure 5.9(a)] performs better than M3GW in the Ta-W region, as it is able to identify

five stable intermetallics. Interestingly, the Ta-W binary system exhibits the larger

number of thermodynamically stable binary compounds compared to the rest of the

binary phase diagrams, namely 5. On the other hand, the M3gnet-based workflow [see

Figure 5.9(b)] performs slightly better in the Mo-W region of the phase diagram as it

is able to predict three novel ternary intermetallics. Furthermore, both methods are

able to identify one W-rich thermodynamically stable ternary alloy. The training set

of M3gnet contains a higher volume of data for Mo and W as compared to Ta [13], a

fact that could potentially explain the higher accuracy towards this area of the phase

diagram. The distribution, in fact, could potentially explain why M3gnet is capable

of selecting the lowest energy structures in that specific area more efficiently. The

difference between the M3GW and the AFLOW-predicted convex hull is presented in

Figure 5.10, which shows schematically how the phase diagram changes with the use
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of each of the different workflows.

Figure 5.10: The difference between the AFLOW- and the M3GW-predicted is
graphically presented. We can see that the M3gnet-based workflow is performing better
compared to the AFLOW-predicted ternary phase diagram. The maximum difference
between these two convex hulls is of 11.90 meV/atom.

The shape of the convex hull changes when compared to the one calculated with

AFLOW (shown in Figure 4.13) which leads to the prediction of novel intermetallics.

The newly calculated stable intermetallics are Mo2Ta2W1, Mo1Ta2W2, Mo2Ta1W2,

Mo1Ta1W3, and Mo1Ta1W2, while the compound predicted by both methods is Mo1Ta1W1.

Interestingly, the Mo2Ta1W1 compound predicted as stable by the AFLOW-CHULL

is now predicted to be metastable on the newly calculated convex hull. Overall, we

see that using M3GW the predicted convex hull changes shape in the central and

Mo-W-rich area, leading to a decrease of around 10 meV/atom.

Following that step, it is crucial to compare the results obtained from M3GW with

those predicted from the SNAP-based workflow. In order to do this we calculated

the difference between the convex hulls constructed with SNAP and M3GW. This

is presented schematically in Figure 5.11. Two distinct regions, blue and red, are

observed. In the blue one, the M3GW is able to predict structures with lower energy
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Figure 5.11: The difference between the SNAP-based and the M3GW-predicted convex
hull is graphically presented. It can be seen that two regions exist. The red region is
where the SNAP-based workflow identifies low-energy structures, with a convex hull
depth increase of 3 meV/atom at the lowest point. In contrast, the blue region is where
the M3GW performs better in identifying low energy structures, reducing the convex
hull depth by 12.33 meV/atom at the lowest point.

than those predicted with the SNAP-based workflow, this results to decrease in the

depth of the convex hull up to 12.33 meV/atom. This region corresponds to where

the M3GW finds the majority of the thermodynamically stable ternary intermetallics.

In contrast, in the red one, the M3GW-predicted convex hull is 3 meV/atom higher

than that computed with the SNAP-based workflow. A combination between these

two methods would be beneficial for a thorough investigation of that particular phase

diagram. Combining the predictions from these two workflows results in a phase

diagram showing phases in the largest area of it, according to the experimental

literature [120], which states that a solid solution is expected across all the ternary

phases.

By combining the predictions of these two workflows, one can construct a “complete”

phase diagram of the Mo-Ta-W ternary system. In the next step of the analysis, we

combine all the ternary structures predicted from the SNAP-based and M3GW and we
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compute the convex hull. We refer to this phase diagram as “ complete ”. This phase

diagram is presented in Figure 5.12.

Figure 5.12: The “complete” Mo-Ta-W phase diagram is displayed. In this diagram,
we can discern eight distinct intermetallics with Mo-Ta-W stoichiometries of 1-1-1, 1-
1-2, 1-2-1, 2-2-1, 2-1-2, 1-2-2, 1-3-1, and 1-1-3. When SNAP-based and M3GW are
combined, stable intermetallics can be identified throughout the entire ternary phase
diagram.

In the final part of our analysis, we focus on the compounds predicted to be

thermodynamically stable using either the SNAP-based or M3GW workflows. To

gain a better understanding of the contribution of each workflow, namely SNAP-

based and M3GW, to the ’complete’ phase diagram, we present the formation enthalpy

for the compounds predicted by M3GNET (depicted as blue pentagons), the SNAP-

based workflow (represented by black crosses), and AFLOW (shown as orange circles).

Additionally, we include the enthalpy of formation at the convex hull predicted by

AFLOW, CHaflow, and M3GW, CHM3gnet, presented as red and green dashed lines

correspondingly. This plot is presented in Figure 5.13.

The general result arising from Figure 5.13 is that there is a decrease in the depth

of the convex hull for all the cases studied when the MLIAPs-based workflows are

used. Furthermore, M3gnet is capable of identifying structures that lie close or at the

convex hull. In cases where it is not capable to find a compound thermodynamically

stable as for the Ta-rich compounds, the structures predicted are sufficiently close to
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Figure 5.13: The convex hull values as predicted by AFLOW (red dashed line) and
M3gnet (green dashed line) for each studied stoichiometry are presented. The lowest
enthalpy of formation for the structures predicted with each methodology is presented,
namely AFLOW (orange circles), SNAP workflow (black crosses), and M3gnet workflow
(blue pentagons). In general a decrease in the depth of the convex hull with respect to
the AFLOW predicted one is observed, apart the Mo1Ta3W1, where both methods yield
the same result. For the majority of the cases, the compounds predicted by the M3gnet
workflow exhibit lower energy than those predicted by the AFLOW or SNAP-based
workflow. Note that for Mo1Ta2W1 and Mo1Ta3W1, the compounds predicted from
the SNAP-based workflow exhibit lower energy than those predicted from M3GW.
Overall, the MLIAP based workflows perform consistently better than the AFLOW
encyclopedia method. Note that AFLOW predicts negative enthalpy of formation for
only the Mo1Ta1W1, Mo1Ta1W2, Mo1Ta2W1.

the prediction of the SNAP-based workflow, with the difference being of the order of

a few meV/atom. It is not surprising that the AFLOW encyclopedia method under-

performs in almost all cases studied. The number of structures that can be scanned is

on the order of 102, while machine-learning-based methods can screen approximately

105 to 106 compounds, which are based on a variety of parent structures, providing

more versatility than fully ab-initio methods.

In conclusion, the advantages of the presented method stem from the fact that it

employs a universal potential that does not require retraining for each new system under

investigation. This approach can significantly increase throughput, as the focus shifts

towards selecting a broader range of parent structures for decoration. Furthermore, the

method robustly guides the relaxation of a compound along the correct path, reducing
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the time needed for the DFT relaxation in the final stages of the workflow. However,

it should be noted that such force fields may exhibit lower accuracy compared to force

fields tailored specifically for a given system.

5.4.2 Al-Fe-Ni ternary system

In this subsection, the M3gnet-based workflow will be used to predict the phase diagram

of ternary compounds that contain magnetic elements. Before moving to the main

results, let us explain why a SNAP-based workflow would not be capable of predicting

the energies of such structures.

The machine-learning model that we have used so far is able to learn the relationship

between the local chemical environment and the total energy of the system. In order

to do so it expands the neighbor density over a given basis thus creating the necessary

feature vector. In the case of SNAP the local chemical environment is defined within

the radius cut off, Rcut, and it is expanded on the basis of 4D hyperspherical harmonics.

Subsequently, the use of the triple-scalar product of the coefficients of the expansion

leads to the definition of the bispectrum components, as discussed in Section 2.2.5.

Consider now a magnetic material, for a two-dimensional cubic lattice presented

in Figure 5.14. The SNAP force field does not contain any information regarding

the magnetic state of a structure. In fact, for these two lattices, the trained model

would predict the exact same energy, because no information on the magnetic state

is introduced in the representation. Although, their total energy is different. Having

no possibility to distinguish different magnetic orders makes SNAP a bad choice to

integrate into a workflow that aims to discover materials that contain magnetic elements.

Moreover, although force-fields that contain information regarding the magnetic moment

of the system exist [122, 123] the data that such models need and the training process

are not trivial.

In order to demonstrate this point, we have downloaded the crystal-structures and

spin-polarized DFT energies from the AFLOWlib repository for the Fe-Co-Ni ternary

system. Then, we fit a SNAP in the same way as discussed in Chapter 3. The results
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Figure 5.14: A two-dimensional cubic lattice for two different magnetic configurations.

are shown in Figure 5.15.

Figure 5.15: Parity plot for the Fe-Co-Ni binaries, namely Fe-Co, Fe-Ni, and Co-Fe.
Here, the model is trained and optimized with the three binary systems. It can be
observed that the trained model fails to predict the energies of the binaries that it was
trained on. Also, no clear trend can be observed as the model predict high energy for
structures that are known to exhibit low energy.

In the parity plot in Figure 5.15, one can observe that a SNAP model trained

with the three binary constituents of the Fe-Co-Ni ternary system cannot predict the

energies for the compounds with which it was trained. Furthermore, no clear energy

trend is presented, as low-energy structures are predicted to exhibit high energy. This

is due to the SNAP model lacking information regarding the magnetic state of the

corresponding compounds.

There are works in the literature that incorporate information regarding the magnetic
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moment in the description of the local chemical environment. For instance, the power-

spectrum for vector fields in [123] introduces descriptors that take into account the

magnetic structure of the compound. Another work is that contained in reference [122],

where a spin Hamiltonian term was added to SNAP and deployed and deployed to

correct the total energy with its magnetic component.

In contrast to the previously discussed methods that incorporate information about

the magnetic state of the system into the feature vector, M3gnet, trained with DFT

calculations of compounds containing magnetic elements (Fe, Co, Ni, etc.), has demon-

strated robustness in guiding the relaxation towards the correct path and accuracy in

sufficiently ordering the structures. Although this seems surprising, it can be attributed

to the mechanism by which graph neural networks update the representation during the

training process. Furthermore, the update of the global attribute that is incorporated

in the descriptor might be able to learn information regarding the magnetic state of

the system.

The first system containing magnetic elements employed to benchmark our method

is the Al-Fe-Ni system. The rationale behind this choice lies in the fact that it is a well-

studied ternary system, both experimentally and theoretically [126, 127]. Furthermore,

all the elements form stable binary alloys with each other, for example the Al-Ni binary

system exhibits the maximum convex hull depth and forms 6 stable binary alloys. This

means that there is a high probability that ternary intermetallics are discovered.

In order to ensure consistency in the analysis performed in this chapter, we start

by re-calculating the AFLOW-predicted phase diagram. The structures used from

AFLOW to calculate the phase diagram are extracted with the use of AFLOW REST-

API. Subsequently, VASP [28] was used to perform DFT calculations, with the energy

cutoff and plane cutoff following the AFLOW standards defined by Calderon et al. [97]

(for more information, see Chapter 5.3). The phase diagram predicted by AFLOW is

presented in Figure 5.16.

Here, in Figure 5.16 we reproduce the shape of the convex hull as predicted with

AFLOW. One stable ternary intermetallic phase is predicted for the Al2Fe1Ni1 and the
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Figure 5.16: Calculated convex hull for the Al-Fe-Ni phase diagram as predicted with
AFLOW. Here, a stable intermetallic was found in the Al-rich area, namely Al2Fe1Ni1.

maximum depth of the convex hull is identified at the Al-Ni (Al1Ni1) side of the convex

hull. Moreover, the number of stable binaries remained unchanged for each side of the

convex hull.

It is experimentally [128] and theoretically known that there are two more intermetallic

phases in the aluminum-rich area of the ternary phase diagram. These two phases

correspond to the Al10Fe3Ni1 (τ1), which is of Co2Al5-structure type as was found in

reference [129] and Al9Fe1Ni1 (τ2), which has been found to crystallize in a monoclinic

lattice of Co2Al9-structure type as reported in reference [130]. Initially, these two

compounds were not considered due to the fact that their unit cells contain a significantly

large number of atoms (28 and 22 atoms respectively), making them impractical for

examination using a high-throughput algorithm. In order to perform a more complete

analysis, we have calculated the ground-state energy of these two intermetallic phases,

added them to the phase diagram, and assessed their stability. The structures for the

two phases are extracted from the reference [128]. The crystal structures of the phases

τ1 and τ2 are presented in Figure 5.17.

Subsequently, the enthalpies of these two intermetallic compounds are incorporated



5.4. RESULTS 131

Figure 5.17: The crystal structures of Al10Fe3Ni1 (τ1, left panel) and Al9Fe1Ni1 (τ2,
right panel) are depicted. Here, Aluminum (Al) atoms are shown in gray, Iron (Fe)
atoms are represented in orange, and Nickel (Ni) atoms are depicted in green. These
compounds belong to the 194 and 14 space group correspondingly.

into the ternary database utilised to construct the AFLOW ternary convex hull, and

their stability is evaluated. The ternary convex hull created using all available data

(AFLOW and experimental) is presented in Figure 5.18. The newly calculated convex

hull will be used as a benchmark for the rest of this subsection.

Subsequently, the M3gnet workflow, as introduced in Section 5.3 is used to predict

the ternary convex hull of the system. The increased throughput now enables us to

increase the maximum number of atoms in the cell when creating the pool of candidate

structures. Furthermore, to compensate for the reduced accuracy that a universal

force field provides, the number of structures sampled by DFT is increased to 30.

The workflow was then used to create and screen structures that span 33 distinct

stoichiometries. Table 5.1 provides information on the explored stoichiometries, the

maximum number of atoms Nmax, and the total number of structures created for each

different stoichiometry.

A total of 10,334,288 structures were generated and screened to create the phase

diagram predicted with the M3gnet-based workflow. The predicted ternary phase of

the Al-Fe-Ni diagram is presented in Figure 5.19.

We have identified four stable intermetallics as shown in Figure 5.19, namely

Al2Fe1Ni1, Al3Fe2Ni1, Al4Fe2Ni1 and Al2Fe4Ni1. Surprisingly, all the predicted compounds
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Figure 5.18: The Al-Fe-Ni ternary convex hull, computed through the incorporation of
experimental data into the AFLOW dataset, is displayed. Phase τ1 is indicated by a
blue cross, while phase τ2 is indicated by a red cross. The intermetallic phases shown
in this phase diagram are three, namely Al2Fe1Ni1, Al9Fe1Ni1 and Al10Fe3Ni1.

Stoichiometry (Al-Fe-Ni) Nmax Structures Created

111 9 13358

112 (121,211) 12 1590192

113 (131,311) 10 42774

114 (141,411) 12 359208

115 (151,511) 14 215238

122 (212, 221) 10 101346

124 (142,214,241,421,412) 14 2527835

132 (213,231,312,321) 12 2674450

133 (313,331) 14 2806860

223 (232,322) 7 3027

Table 5.1: The table presents the information regarding the stoichiometries, maximum
number of atoms per supercell and the total number of stuctures created and screened.

belong to the aluminum-iron rich region of the ternary phase diagram. Interestingly,

the Al-Fe binary forms a variety of stable binary intermetallics. Also, the convex hull

on this side is shallower than that on the aluminum-nickel side. Note that, Al2Fe1Ni1



5.4. RESULTS 133

Figure 5.19: The Al-Fe-Ni ternary convex hull as predicted from the M3gnet-based
workflow. Interestingly, we predict a total of four ternary stable intermetallics, namely
Al2Fe1Ni1, Al3Fe2Ni1, Al4Fe2Ni1 and Al2Fe4Ni1. It should be noted that Al2Fe1Ni1 is
predicted to be stable in both the AFLOW and M3gnet-based workflows.

is predicted to be stable in both AFLOW and M3gnet-based workflows. From the

experimental phase diagram presented in reference [128] it can be seen that a solid-

state solution of B2-type (BCC structure) is found in the neighborhood of the predicted

structures.

A comparison between the convex hull predicted by AFLOW and that from M3GW

is presented next, in Figure 5.20. It can be seen that for most of the phase diagram the

shape of the convex hull remains unchanged. However, for the red region, where M3GW

returns lower-energy structures than AFLOW, it is capable of identifying a stable

intermetallic structure and increasing the depth of the convex hull by 4.71 meV/atom.

In contrast in the blue region, the AFLOW encyclopedia method outperforms the

M3GW, predicting a convex hull that it is deeper. This results in increasing the

distance of the convex hull for the Al4Fe2Ni1 and Al2Fe4Ni1, which are now considered

metastable.

In the last part of this analysis we combine all the theoretically predicted ternaries,



134 CHAPTER 5. M3GNET-BASED WORKFLOW

Figure 5.20: The difference between the ternary convex hulls predicted by AFLOW
and M3GW. Interestingly, we observe that for most of the phase diagram, the shape
of the convex hull does not change. However, in the region near to Al2Fe1Ni1, the
AFLOW encyclopedia method performs better (blue region), predicting a structure
which is 8.27 meV/atom lower than those found by M3GW. It should be noted that
Al2Fe1Ni1 is predicted to be stable from both methods. This change in the depth of
the convex hull results in Al2Fe4Ni1 and Al4Fe2Ni1, to become metastable. For the red
region we see that M3GW outperforms dictionary method and is able to predict one
new intermetallic, increasing the depth of the convex hull by 4.71 meV/atom.

namely AFLOW and M3GW and we assess their stability. The phase diagram that is

created then is referred as the “complete”. The complete theoretical phase diagram is

presented in Figure 5.21. The M3GW is capable of identifying one additional ternary

intermetallic, namely Al3Fe2Ni1. Furthermore, M3GW is able to identify the Al2Fe1Ni1

as stable intermetallic. A more thorough comparison between the two phase diagrams

(see Figure 5.20) proved that the predicted structure is metastable and that a different

isomer is found stable at this stoichiometry, predicted from AFLOW.

Subsequently, a comparison is made between the convex hull shown in Figure 5.18,

which corresponds to the ternary convex hull calculated once the experimental structures

are added, and the one theoretically predicted shown in Figure 5.21, the complete one.

This comparison is shown in Figure 5.22.

Two distinct regions can be observed in Figure 5.22. In the red region, where
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Figure 5.21: The complete theoretically predicted ternary phase diagram for the Al-Fe-
Ni system. It can be seen that two different intermetallics predicted, namely Al2Fe1Ni1
(predicted by both) and Al3Fe2Ni1 (predicted from M3GW).

Figure 5.22: The complete theoretically predicted ternary phase diagram for the Al-
Fe-Ni system. It can be seen two different intermetallics predicted, namely Al2Fe1Ni1
(predicted by both) and Al3Fe2Ni1 (predicted from M3GW).
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Al3Fe2Ni1 was identified by M3GW, the convex hull depth experiences a slight decrease.

In contrast, in the blue region where experimentally synthesized compounds were

included, the convex hull undergoes a significant change on the order of 20 meV/atom.

In the last part of the analysis, the distance from the AFLOW-predicted convex

hull, δ, will be calculated for all different stoichiometries studied over the Al-Fe-Ni

ternary system.This comparison is presented in Figure 5.23.

Figure 5.23: The distance, δ, with respect to the AFLOW-calculated convex hull, for
each one of the searched stoichiometries for the Al-Fe-Ni ternary system.

The analysis identifies the Al-Fe side of the ternary phase diagram as the most

promising for the discovery of stable or metastable structures. In addition to the

structures identified as stable, namely Al2Fe1Ni1 and Al3Fe2Ni1, the workflow is capable

of identifying a variety of structures closer than 15 meV/atom from the convex hull in

the Al-Fe-heavy region, namely Al1Fe3Ni1, Al2Fe4Ni1 and Al4Fe2Ni1. These compounds

can be considered metastable. In the experimental literature, it is well-documented

that the Al-Fe binary system forms a variety of stable alloys [131]. Regarding the

ternary phase diagram, several studies have explored the Al-rich side, such as the
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references [126, 128, 132]. In these works, the structures τ1 and τ2 were identified,

along with B2 solid state solution that span over these stoichiometries. However,

needs to be noted that these works do not report any structures with a percentage of

Iron exceeding 30%, making it challenging for us to make direct comparisons. Their

distances from the convex hull, δ, are calculated and presented in Table 5.2.

Stoichiometry δ (meV/atom)

Al1Fe3Ni1 10.06

Al2Fe4Ni1 2.39

Al4Fe2Ni1 4.48

Table 5.2: The distance from the convex, δ for the Al-Fe-Ni compounds considered
as metastable. As it can be seen, all of them belong to the Al-Fe region of the phase
diagram.

The versatility and capability of the proposed workflow regarding the search for

stable and metastable ternary alloys that include magnetic elements is highlighted in

this chapter.

5.4.3 Bi-Fe-X ternary system

In the final section of this chapter, we utilize the implemented workflow to search for

potential ternary intermetallics within the Bi-Fe-X system, where X stands for Zr or

Ta. The rationale of the project revolves around the combination of heavy metals

with magnetic elements. The underlying concept is to merge bismuth (Bi), a heavy

metal, with iron (Fe), a magnetic element. This could potentially lead to compounds

with high magneto-crystalline anisotropy since the spin-orbit coupling increases with

the atomic number. Despite the experimentally known immiscibility between Bi and

Fe, as discussed in reference [133]. Perhaps studying a ternary system where the

third element form alloys with Fe and Bi could lead to ternary intermetallics. This

intermediary element could serve to bridge the gap and establish the ternary system.

The first system of interest is Bi-Fe-Zr. It can be seen both experimentally and

theoretically that zirconium forms stable phases with the rest of the constituents,



138 CHAPTER 5. M3GNET-BASED WORKFLOW

namely iron [134] and bismuth [135]. The idea of using zirconium as an intermediary

element, comes from the fact that it is able to form stable binary alloys with the rest

of the elements in the ternary.

The second system of interest is Bi-Fe-Ta. For this system, we tried to explore a

ternary consisting of a heavy metal, bismuth (Bi), a magnetic element, iron (Fe), and a

refractory metal, tantalum (Ta). For the Bi-Ta binary system, complete immiscibility

is reported [136], while the Fe-Ta binary system forms a range of binary alloys that are

known experimentally [137].

To perform this analysis, we employed the developed workflow to search for 34

unique stoichiometries on both phase diagrams. We used the same elemental compositions

as those employed to search for ternaries in the Al-Fe-Ni system. These consisted of

1-1-1, 2-1-1, 3-1-1, 4-1-1, 5-1-1, 3-2-1, 3-3-1 and 4-2-1, considering also their elemental

permutations. We then calculated the distance from the AFLOW-predicted convex

hull. To ensure consistency in the analysis, we extracted the compounds calculated as

stable from AFLOW and recalculated their energy with single-point DFT as described

in Section 5.3. The results are shown in Figure 5.24 and 5.25.

Figure 5.24: The distance, δ, with respect to the AFLOW-calculated convex hull, for
each one of the stoichiometries investigated for the Bi-Fe-Zr ternary system.
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It is observed that no stable structure is discovered in the Bi-Fe-Zr ternary system.

The closest one to the convex hull structure predicted from the workflow is found at

the Zirconium edge and its distance from the convex hull is of 38.56 meV/atom, a

structure that would be characterized as unstable.

Figure 5.25: The distance, δ, with respect to the AFLOW-calculated convex hull, for
each one of the stoichiometries investigated for the Bi-Fe-Ta ternary system.

No stable structure is discovered in the Bi-Fe-Ta ternary system. The closest

to the convex hull structure predicted from the workflow is found at the Tantalum

edge. Its distance from the convex hull is 69.05 meV/atom, a structure that would be

characterised as unstable. Interestingly, for both systems, the structure closest to the

convex hull is found at the edge of the binary system that creates the highest number

of stable binaries.

For completeness reasons in Table 5.3 and 5.4, we present a comparison between

the distance from the convex hull for the best-performing structures predicted by both

AFLOW and M3GW.

Although the M3GW workflow is not able to identify any new intermetallics in the

case of the Bi-Fe-X ternary phase diagrams, surprisingly, it is performing better than

AFLOW in discovering structures closer to the convex hull. In general, the ternary
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Stoichiometry δM3GW meV/atom δAFLOW meV/atom

Bi2Fe1Zr1 126.17 165.95

Bi1Fe1Zr1 150.97 200.09

Bi1Fe1Zr2 60.093 218.12

Bi1Fe4Zr1 124.98 142.90

Bi1Fe2Zr1 175.28 337.38

Bi2Fe2Zr1 170.22 430.60

Bi1Fe2Zr2 124.35 446.05

Table 5.3: The distance from the convex hull for the M3GW predicted, δM3GW, and
AFLOW predicted, δAFLOW, structures for the Bi-Fe-Zr ternary system.

Stoichiometry δM3GW meV/atom δAFLOW meV/atom

Bi1Fe3Ta1 127.86 248.36

Bi2Fe1Ta1 173.31 277.84

Bi1Fe1Ta2 118.51 413.91

Bi1Fe2Ta1 158.50 406.04

Bi1Fe2Ta2 124.71 383.54

Bi2Fe2Ta1 187.46 758.93

Table 5.4: The distance from the convex hull for the M3GW predicted, δM3GW, and
AFLOW predicted ,δAFLOW, structures for the Bi-Fe-Ta ternary system.

systems selected for exploration in this chapter were not ideal because bismuth is

known to be immiscible with magnetic elements such as iron or cobalt [138] and to

form binary alloys with a handful of elements such as lead and tin [139]. Perhaps a

system containing magnetic elements, where all the pairs of the elements form stable

binaries would be a better alternative.

5.5 Conclusions

In conclusion, we have implemented and tested a phase diagram prediction workflow

that creates and assesses structures containing magnetic elements. This workflow is

based on a universal machine-learning interatomic potential trained with data extracted

from the relaxation trajectories stored in the Materials Project Database [112]. The

universal nature of the potential employed in this chapter allows us to increase the

maximum number of atoms in the unit cell. To balance the decrease in accuracy of
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the employed model, we also increased the structures selected for DFT calculations.

This workflow is used to predict the phase diagram for four different ternary systems,

namely Mo-W-Ta, Al-Fe-Ni, Bi-Fe-Zr, and Bi-Fe-Ta.

In the case of Mo-Ta-W. It is shown that this workflow has enhanced performance in

the central and Mo-rich region, in contrast to the SNAP-based workflow. Furthermore,

for the rest of the phase diagram, it is shown that they exhibit similar accuracy.

Interestingly, we are able to discover a couple of novel intermetallics on the Mo-heavy

side of the phase diagram, namely Mo2Ta2W1, Mo1Ta2W2, Mo2Ta1W2, Mo1Ta1W3,

Mo1Ta1W2, and Mo1Ta1W1.

Following that, the same workflow was employed to study the Al-Fe-Ni ternary

phase diagram. The challenge we faced came from the fact that we introduced magnetic

elements into the systems of study. Interestingly, M3gnet, which is not trained specifically

to describe magnetic structures, is able to identify one stable ternary on the Al-Fe side

of the phase diagram, namely Al2Fe1Ni1 and Al3Fe2Ni1, as well as some metastable

structures, namely Al1Fe3Ni1, Al2Fe4Ni1, and Al4Fe2Ni1.

Lastly, we used the proposed workflow to explore the Bi-Fe-X phase diagrams,

where X is either Zr or Ta. The interesting combination of elements, which could

potentially enhance the magnetocrystalline anisotropy was the driving force of that

selection. However, our workflow was not capable of identifying any novel ternaries

within these systems. This result is supported by the fact that bismuth is an element

that forms alloys with only a handful of other elements in the periodic table such as

lead and tin [139].
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Chapter 6

High-throughput study of

Tetragonally Distorted and

Antiferromagnetic Heusler Alloys

6.1 Introduction

In this chapter, our focus will be on presenting the results and methodologies used to

conduct a high-throughput study across the family of Heusler alloys. The goal is to

identify ternary Heusler alloys that exhibit tetragonal distortion, while also identifying

their magnetic orders. We will reassess their thermodynamic stability and select the

most promising candidates for experimental synthesis and further exploration.

The history of Heusler alloys began in 1903 when Fritz Heusler discovered that

a ternary compound with the elemental composition of Cu2Mn1Al1 behaved like a

ferromagnet, even though the elements from which it is composed in their bulk form are

not ferromagnetic by themselves [140]. This collection of materials includes compounds

that exhibit a variety of interesting properties. For example, it includes ferromagnetic

materials with high critical temperatures [6], TC, antiferromagnets [89], low thermal

conductivity semiconductors [141], and superconductors [142].

The crystal structure of Heusler alloys is formed by four interpenetrating face-

centered-cubic crystal, fcc, lattices. Most commonly, it crystallizes in the Fm3̄m (225)

143
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space group, and the general chemical formula is X2Y1Z1. In these lattices, the two X

atoms occupy the (1
4
, 1
4
, 1
4
) and (3

4
, 3
4
, 3
4
) positions, namely the 8c Wyckoff positions, Y

atoms are at (1
2
, 1
2
, 1
2
), 4b Wyckoff positions, and Z atoms occupy the positions (0,0,0),

4a Wyckoff positions. The Heusler alloy family is completed by inverse-Heusler and

half-Heusler. Inverse-Heusler [143] crystallize in the F4̄3m (216) space group, and the

general chemical formula is (XY )(XZ). Here, the X elements occupy the 4a, (0,0,0),

and 4d Wyckoff lattice positions, (3
4
, 3
4
, 3
4
), whereas Y and Z are at the 4b and 4c

positions, (1
2
, 1
2
, 1
2
) and (1

4
, 1
4
, 1
4
), respectively. The half-Heusler [144] is of the general

type XY Z and it crystallizes in the F4̄3m (216) space group. The X atoms occupy

the 4a Wyckoff positions, while Y and Z are at the 4b and 4c positions, respectively.

In Figure 6.1, we present the conventional cells for full-, inverse-, and half-Heusler, as

well as the primitive cell for full-Heusler.

Figure 6.1: Atomic distribution for full-Heusler (a), inverse-Heusler (b) and half-
Heusler alloys(c) are presented. The primitive cell for the full-Heusler (d) is presented
as well. Here, X elements are denoted with gold color, the Y elements with green, and
the Z elements with blue.

Given the established presence of several high-performance magnets within the

Heusler alloy family as documented by reference [145], it becomes justifiable to conduct

a high-throughput study aimed at identifying any remaining magnets within this

family should they exist. In a previous study performed by Sanvito et al. [6], they
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created a library of all the possible Heusler alloys by decorating the primitive cell [see

Figure 6.1(d)] with all the permutations of elements that belong to the 3d, 4d, and

5d periods of the periodic table, as well as some elements from groups III to V in

a combinatorial fashion. The full list of the elements used in this work is presented

graphically in Figure 6.2.

Figure 6.2: Periodic table of the elements. The elements used for the creation of the
Heusler alloys studied by Sanvito et al. [6] are represented in blue.

Then, all the possible combinations of three elements were used to decorate the

primitive cell for full-, inverse-, and half-Heusler, resulting in 236,115 prototypes, which

are then relaxed with the use of spin-polarized density functional theory calculations.

Subsequently, their energy was calculated using single-point DFT, and the distance

from the convex hull for each ternary system was assessed to determine their stability.

Finally, those who carry magnetic moment and those who have negative enthalpy of

formation are considered for further investigation. Then, for the remaining candidates,

they created the corresponding phase diagrams and assessed their thermodynamic

stability by calculating the distance from the convex hull. In the last step, a small

fraction of materials from the initial pool was considered for experimental synthesis.

For a compound to be thermodynamically stable, its distance from the convex hull

should be zero. In order to calculate the convex hull and the distance from it, we
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construct the phase diagram, which represents the Gibbs free energy as a function

of composition. The structures with the lowest Gibbs free energy define the convex

hull, and the distance of a compound from the hull determines its thermodynamic

stability. Gibbs free energy consists of an entropic and an enthalpic term, as defined

in Chapter 2. In our case, where DFT calculations are employed to calculate the

ground-state energy of the system, we neglect the entropic contribution to the Gibbs

free energy. This means that for a given system, the phase diagram is calculated as

a function of the enthalpy of formation with respect to the composition. In our case,

the enthalpy of a system is equal to the DFT total energy. It is reasonable to expect

that as the AFLOW database continues to grow and more compounds are added to the

corresponding phase diagrams, the distances from the convex hull for some compounds

will eventually change. In Figure 6.3, we present the histogram of the Heusler alloys

with an AFLOW-calculated distance of less than 100 meV/atom from the convex hull,

δAFLOW, which exhibit a non-zero magnetic moment. Furthermore, the compounds

that have been experimentally synthesized are indicated with red dashed lines.
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Figure 6.3: The histogram of the AFLOW-calculated distance from the convex hull,
δAFLOW, is presented for the Heusler alloys that exhibit non-zero magnetic moment.
The compounds known to have been experimentally synthesized are marked with red
dashed lines.

Note that about 80 magnetic Heusler alloys are known to have been synthesized to
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date, and in Figure 6.3 they are denoted by red dashed lines. Plotting their distances

from the convex hull using vertical red dashed lines reveals a considerable concentration

in the zero or near-zero region, as expected. However, a significant number of structures

are found to be above that threshold, lying towards the metastable or unstable regions.

The reason for this can be attributed to various factors, such as wrong magnetic

configurations (e.g., antiferromagnetic instead of ferromagnetic) or lattice distortions

not captured by the primitive cell representation (e.g. tetragonal distortion) in the

ground-state, or disorder that was not accounted for when the analysis took place.

Furthermore, when determining the energy threshold at which a structure is deemed

stable or unstable, it is advisable to expand the criteria to incorporate possible entropic

contributions.

The purpose of this study is to explore various conditions that could potentially

bring the compounds closer to the convex hull. In order to achieve this, we investigate

potential tetragonal distortions and explore the possibility of high-symmetry anti-

ferromagnetic order. Then, we correct the distance from the convex hull and identify

those that are thermodynamically stable. We aim to identify as thermodynamically

stable the large majority of the Heusler compounds known to have been experimentally

synthesized. This success rate defines the accuracy of the computational scheme. Then,

we extend the methodology and assess the stability of the ones that have not yet been

synthesized.

6.2 Computational details

6.2.1 Tetragonal Distortion and Antiferromagnetic

configurations

The present work aims to investigate the corrections to the DFT energy associated

to different cell and magnetic order. These distinctions have been documented in

the literature [145] and will be explored here. It is stated in reference [6] that the

ground-state of five Heusler compounds, namely Co2Nb1Zn1, Co2Ta1Zn1, Pd2Mn1Au1,
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Pd2Mn1Zn1 and Pt2Mn1Zn1, is tetragonally distorted. However, the rhombohedral

primitive cell employed in the high-throughput study is unable to accommodate this

tetragonal distortion. The reason for this is that the rhombohedral cell belongs to

the trigonal system, while the tetragonal one belongs to the tetragonal system, and

the fundamental symmetries of these two systems are incompatible. In order to

accommodate a tetragonal distortion within the trigonal system, one must break the

inherent symmetry constraints. In our case, to capture a possible tetragonal distortion,

we will start from the conventional cubic cell to simulate the material (see Figure 6.1)

and elongate it along one of the axes. In this work, the structures are created using

the python materials genomics library, Pymatgen [93]. A graphical representation of

the tetragonally distorted cell used in this work is presented in Figure 6.4.

Figure 6.4: The tilted view of the tetragonal distorted structure of Au2Ag1Mn1, where
Au atoms are presented in gold, Ag atoms in silver and Mn atoms in purple. The
elongation axis is shown in blue color.

In the original study of reference [6] only the ferromagnetic order was taken into

account. However, there are several Heusler alloys that present antiferromagnetic

order, such as Ir2Mn1Al1 [146] and Ir2Mn1Ga1 [147]. As such, the most common

antiferromagnetic orders reported in the literature [145] will be explored. Here, in the

antiferromagnetic 1 (AF1) state, the magnetic moment orientation is located in the

[001] planes, whereas in the antiferromagnetic 2 (AF2) state, the magnetic moment

is staggered in the [111] plane. In these planes, there is ferromagnetic order, and

they are oriented in an antiferromagnetic manner with respect to each other. Due
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to the presence of inversion symmetry, all the arrangements within the {001} and

{111} planes are considered equivalent, respectively. The initial magnetic moments

utilized in this study were obtained from AFLOWlib. A visual representation of the

two antiferromagnetic orders investigated is depicted in Figure 6.5.

Figure 6.5: The AF1 (a) and AF2 (b) configurations accounted for in this study, are
depicted within an fcc cell. The red planes correspond to atoms with negative magnetic
moments (e.g. pointing down), while the green planes represent those with positive
values (e.g. pointing up). Adopted from reference [89].

6.2.2 DFT details

All properties are calculated with DFT in the GGA as parametrized by Perdew,

Burke and Ernzenhof [27], together with the corresponding VASP pseudopotential

library. The software used for the calculations is the Vienna Ab-initio Simulation

Package (VASP) [28]. Each structure is relaxed with spin-polarized collinear DFT. A

convergence criterion on the energy of 10−4 eV is employed throughout this work. For

all DFT calculations, the convergence criteria are closely aligned with the AFLOW

standards as defined by Calderon et al. [97]. The Monkhorst-Pack scheme [98] is

adopted to construct the k-mesh, and the number of sampling points, Ni, is proportional

to the norm of each corresponding reciprocal Bravais lattice vector, b⃗i, and is minimised

ensuring the following condition.
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NKPPRA ≤ min

[
3∏

i=1

Ni

]
×N (6.1)

Here, NKPPRA is the number of k-points per reciprocal atom and N is the number

of atoms in the cell. In particular, NKPPRA is chosen at 10,000 for all static calculations

and at 6,000 for all the geometry relaxations following the AFLOW standard [97]. The

geometry relaxations are considered to be converged when the atomic forces are smaller

than 10−3 eV/Å.

6.2.3 Convex hull Distance Correction

In order to correct the AFLOW-calculated distance from the convex hull, δAFLOW, as

calculated in reference [6], a specific procedure needs to be followed, which involves

comparing the formation enthalpies. For each compound under study, we conducted

a single-point DFT calculation using the same cell, pseudopotentials, and convergence

parameters as employed in [6]. This calculation provided us with the reference energy,

denoted as Eref . This was performed in order to create a highly-converged reference

energy, avoiding any software version and pseudopotentials incompatibility issues.

Furthermore, we computed the value of the distance from the AFLOW convex hull,

δAFLOW, using AFLOW-CHULL [96].

In order to calculate the correction on the distance from the convex hull, δcorr, and

ultimately determine the corrected distance from the convex hull, δ′, for a compound of

the form X2Y Z, we must compute the difference between the formation enthalpies for

the reference calculation, Href
f , and the new calculation, H ′

f . The formation enthalpies

for each of these calculations are presented in Equations (6.2),

∆Href
f = Eref(X2Y Z)− 2E(X)− E(Y )− E(Z),

∆Hnew
f = En(X2Y Z)− 2E(X)− E(Y )− E(Z).

(6.2)

In these equations, E(X2Y Z) represents the DFT-calculated energy of the ternary

compound, while E(X), E(Y ), and E(Z) denote those of the ground-state of its

constituent elements. The correction to the calculated convex hull, δcorr, is defined
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as the difference between the enthalpy of formation for the reference and the new

calculation. The correction in the convex hull distance, denoted as δcorr, is defined in

Equation (6.3).

δcorr = ∆Hnew
f −∆Href

f

= En(X2Y Z)− Eref(X2Y Z)

(6.3)

Subsequently, the newly calculated distance from the convex hull, δ′, is computed

by adding δcorr to δAFLOW as in Equation (6.4),

δ′ = δAFLOW + δcorr (6.4)

In the case, where the newly calculated structure exhibits a lower energy than the

reference calculation, meaning that En is less than Eref , the newly calculated structure

is considered to be in the equilibrium state, meaning that the correction δcorr takes

negative values, thus reducing the distance from the convex hull. In the opposite case,

δ′ remains unchanged, indicating that the previously calculated state is the equilibrium

one.

6.2.4 Workflow

The workflows employed to study the tetragonal distortion, as well as the different

magnetic configurations, are presented in this subsection. The general workflow consists

of two steps. In the first step, a reference calculation is performed using a ferromagnetic

order for the relaxed structure obtained from AFLOW. In the second stage, the corresponding

changes in the lattice or magnetic order are applied, followed by an atomic relaxation

and a single-point DFT calculation. Subsequently, the correction of the distance

from the convex hull is calculated, and the thermodynamic stability is assessed. A

graphical representation of the workflow used for the tetragonal distortion is presented

in Figure 6.6.

The workflow followed to calculate the antiferromagnetic configurations is presented

in Figure 6.7. The rationale remains the same as before: we utilize reference calculations
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conducted in the initial step. Subsequently, we generate the antiferromagnetic configurations

depicted in Figure 6.5. After generating these configurations, we determine the lowest

energy magnetic structure. This lowest-energy magnetic configuration is then used

to adjust the convex hull distance obtained from AFLOW, allowing us to assess the

stability of the configurations. Importantly, the cell employed for the various magnetic

configurations can now accommodate tetragonal distortion as well, allowing us to

accommodate changes in the lattice and magnetic order simultaneously. Before initiating

the relaxation process, we also apply a tetragonal distortion. This step ensures that

we account for the possibility of both tetragonally distorted and antiferromagnetic

configurations.

Figure 6.6: Workflow for the investigation of possible tetragonal distortions in the
Heusler alloys. For all the Heusler alloys studied in this work a reference calculation is
performed. Then the conventional cubic cell is created with the use of pymatgen [93]
and a tetragonal distortion is applied. Then a relaxation and an single point DFT
calculation is performed. The energy calculated is used to correct the AFLOW distance
from the convex hull, δ′.
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Figure 6.7: Workflow for determining the magnetic ground state of Heusler alloys.
Two distinct antiferromagnetic configurations are initialised and relaxed, followed by
a single-point DFT calculation. The reference energies previously calculated are used
to calculate the correction to the distance from the convex hull.

6.3 Results

6.3.1 Correcting the Convex Hull Distance

As AFLOW continues to expand, more data are added to the existing database, a

fact that has the potential to reshape the convex hulls once they are recalculated.

The initial step of this work involved updating these distances and observing how

the landscape depicted in Figure 6.3 evolves. We utilized AFLOW-CHULL [96] to

construct ternary phase diagrams containing the compounds of interest and calculated

the updated convex hull distances, δAFLOW. The new version of Figure 6.3 is presented
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in Figure 6.8.

Figure 6.8: In the main histogram, we present the distance from the convex hull for
the Heusler alloys of interest, denoted as δAFLOW . The compounds known to have been
experimentally synthesized are indicated with red dashed lines. Additionally, in the
upper-right corner, we provide a zoomed-in version of the plot, focusing on the range
of 0 to 100 meV/atom distance.

We observe that the x-axis now spans a wider range of energies. This comes from

the fact that new calculations are added to the database, resulting in the increase of

the depth of the convex hull, and hence in the increase of the distance from the convex

hull for some compounds. For instance Ru2Ge1Mn1 which was considered stable at

0.086 meV/atom, now it is considered unstable with a distance of 283.338 meV/atom.

Interestingly, this alloy is experimentally synthesised as reported in [148]. However, it

is not clear from this reference whether the created sample had any type of disorder

or if it was metastable, as not much of the studied material was synthesised in order

to perform rigorous experiments. Interestingly, AFLOW predicts a stable intermetallic

with stoichiometry 2-1-1 of the Ru-Ge-Mn ternary phase diagram. This compound is

a tetragonal distorted structure related to the Heusler family, as they are created from

the same prototype, with spacegroup 139. Another example is the Mn2Co1Ga1; its

distance from the convex hull increases from 81.26 meV/atom to 332.78 meV/atom,

and it is considered unstable. This occurred due to the additional structures in the



6.3. RESULTS 155

ternary phase diagram, resulting in an increase in the depth of the ternary convex hull,

thereby increasing the distance for the studied compound.

The majority of the experimentally synthesized compounds, are situated away

from the convex hull, are found within the sub-100 meV/atom region. Consequently,

our study primarily focuses on the region when the calculated δAFLOW is below 100

meV/atom. This choice is based on the likelihood that compounds in this range are

more susceptible to move closer to the convex hull, via a potential correction of their

distance, than those that are several hundreds of meV/atom away from it. When

the magnetic configurations change, it is expected that the enthalpy gain will be on

the order of tens of meV/atom, as it is influenced by the exchange interaction, as

reported in reference [89]. In the case of lattice distortions, it is anticipated that the

enthalpy gain will exceed that associated to the magnetic order, still not enough to

move a compound a couple of hundreds of meV/atom closer to the convex hull. This

choice also saves around 100 DFT calculations (both relaxations and single point).

Furthermore, in this work, full and inverse Heusler alloys will be treated separately

from the half-Heuslers.

Another important aspect of this analysis is related to the energy threshold up to

which we are confident that a predicted compound is considered thermodynamically

stable. Gibbs free energy is consisted from an enthalpic and an entropic term as defined

in Equation (2.50). Although we are able to calculate the enthalpy of a system with

DFT, calculating the entropy is not trivial, especially when needs to be done for a large

number of compounds. In this work, we estimate the ideal entropy of mixing within the

Heusler alloys lattice and utilize it as a threshold to determine stable structures. In our

case, we will be employing two distinct approximations for this energy threshold. In the

first one, we assume the regular structure of a Heusler alloy, while in the second case,

we consider an ideal solid solution of the B2-type. The B2-type lattice, characterized

by the prototypical compound CsCl [149], is an ordered body-centered cubic lattice

with two distinct atomic sites (0,0,0), Wyckoff position 1a, and (1
2
, 1
2
, 1
2
) corresponding

to a Wyckoff position of 1b. We assume the second structure as it is reported in a
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variety of studies [148, 150, 151] where there is structural disorder and corresponds to

our upper limit.

Let us take a Heusler alloy, A2B1C1. Its primitive cell is composed of 4 sites. If we

take into account the symmetries of the crystal, we obtain two equivalent 8c Wyckoff

positions, one 4a and one 4b. For the studied Heusler to be formed, we can have

two different configurations, where the B-species and the C-species elements exchange

positions, namely AABC and AACB. Then the entropy value, S, is determined by

Equation (6.5).

S = kBln(Ω), (6.5)

where kB is Boltzmann’s constant and Ω is the number of different microscopic states

available to the system. The entropic contribution is then defined as TS. At T = 298

K, the calculated value is 17.81 meV, representing the entropic contribution arising

from structural disorder between positions Y and Z. This entropic contribution,

when divided by the assumed number of atoms in the cell, serves as the first upper

limit for the distance from the convex hull at which the compounds are considered

thermodynamically stable. Therefore, the upper limit is defined at a distance of 4.45

meV/atom away from the convex hull.

When considering the B2 lattice type, we encounter two non-equivalent sites. If we

expand the cell into a supercell to accommodate four elements for decoration, we end

up with four sites. There exist four distinct ways to decorate a supercell of B2-type,

namely AABC, ABAC, ACAB, and BCAA. The entropic contribution to the Gibbs free

energy, as calculated using Equation (6.5), for the same temperature, amounts to 35.62

meV. This corresponds to the entropic contribution observed when a solid solution

of B2-type is formed, and is the upper boundary for a compound to be considered

stable. The entropic contribution value, divided by the number of atoms assumed

in the studied cell (4), defines the furthest distance from the convex hull at which a

compound is considered thermodynamically stable, namely 8.91 meV/atom.

For all the compounds presented, we employed a machine learning model to predict
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their corresponding critical temperatures, denoted as T pred
C . The pre-trained model

used for this task is a random forest regressor [152] trained on experimental data. The

experimental dataset used to train this model is the same as the one used by Nelson

et al. [3], enriched with additional information from the database [153]. The model

uses a 129-element feature vector containing chemical information, such as the atomic

number, the number of valence electrons, group and the period corresponding to the

elements constituting the compound, and a one hot encoding of the compound chemical

formula, etc. More details can be found in Ref. [3]. It is important to note that in

the case of an antiferromagnetic material, the predicted temperature corresponds to

the Néel temperature. Moreover, in these cases, it is expected that the prediction

may be less accurate due to the fact that the vast majority of the database consists

of ferromagnetic materials. Nevertheless, the prediction still offers a useful estimate of

the critical temperature.

After applying the workflow for the compounds that are known to have been

experimentally synthesized, we have identified that 51.5% of those, fall below the

energy threshold of 4.45 meV/atom. Specifically, of the 80 compounds, 41 meet this

criterion. When the second boundary is used, namely 8.91 meV/atom, additionally ten

compounds are considered thermodynamically stable, namely 51 out of 80 compounds,

and the success rate increases to 63.75%. This defines the success rate that our workflow

has in order to determine the compounds that could be potentially experimentally

synthesized. In the analysis, we focus mostly on the first threshold. The compounds

predicted to be stable are listed in Table 6.1. Additional information provided in the

table includes the Heusler type [inverse (IH) or full Heusler (FH)], tetragonal distortion

(Tet), antiferromagnetic order [Type 1 (AF1) or Type 2 (AF2)], the experimental Curie

temperature when it is available, T exp
C , the corresponding corrected distance from the

convex hull, δ′, and the relative references. Here, in Table 6.1 we present the 51

compounds, identified as thermodynamically stable by applying the threshold of 8.91

meV/atom.
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Compound IH/FH Tet AF1 AF2 T pred
C (K) T exp

C (K) δ′ (meV/atom) Ref.

Rh2Mn1Sn1 FH ✗ ✓ ✗ 381.62 431 -9.71 [154]

Rh2Ge1Mn1 FH ✗ ✓ ✗ 399.59 431 -8.15 [155]

Ru2Fe1Ga1 FH ✗ ✗ ✓ 466.34 ✗ -2.11 [148]

Co2Al1Zr1 FH ✓ ✗ ✗ 212.91 185 -0.65 [156]

Rh2Ga1Mn1 FH ✗ ✗ ✓ 141.35 ✗ -0.58 [148]

Co2Mn1Ti1 FH ✓ ✗ ✗ 714.91 1040 -0.50 [6]

Co2Al1Ta1 FH ✓ ✗ ✗ 293.78 260 -0.45 [157]

Co2Sc1Sn1 FH ✓ ✗ ✗ 226.47 268 -0.35 [158]

Ru2Ge1V1 FH ✓ ✗ ✗ 190.94 ✗ -0.33 [159]

Mn2Ga1V1 FH ✓ ✗ ✗ 673.54 783 -0.23 [160]

Ru2Cr1Ge1 FH ✓ ✗ ✗ 197.88 ✗ -0.22 [161]

Rh2In1Mn1 FH ✓ ✗ ✗ 225.53 ✗ -0.14 [162]

Ru2Al1Mn1 FH ✓ ✗ ✗ 290.02 353 -0.08 [163]

Fe2Co1Ge1 IF ✓ ✗ ✗ 885.71 ✗ -0.03 [164]

Rh2Al1Fe1 FH ✗ ✗ ✗ 463.99 ✗ 0.00 [148]

Pd2Mn1Sn1 FH ✗ ✗ ✗ 223.78 198 0.00 [165]

Ir2Ga1Mn1 FH ✗ ✗ ✗ 370.55 65 0.00 [147]

Co2Ge1Ti1 FH ✗ ✗ ✗ 354.42 386 0.00 [166]

Fe2Co1Si1 IF ✗ ✗ ✗ 982.50 723 0.00 [167]

Ru2Cr1Si1 FH ✗ ✗ ✗ 164.14 ✗ 0.00 [168]

Mn2Ge1Ru1 IF ✗ ✗ ✗ 304.62 ✗ 0.00 [169]

Mn2Pd1Pt1 FH ✗ ✗ ✗ 349.87 320 0.00 [6]

Mn2Fe1Ge1 IF ✗ ✗ ✗ 280.37 ∼ 200 0.00 [170]

Rh2Al1Mn1 FH ✗ ✗ ✗ 190.33 ✗ 0.00 [148]

Co2Al1Nb1 FH ✗ ✗ ✗ 364.51 383 0.00 [166]

Co2Al1Fe1 FH ✗ ✗ ✗ 950.79 ∼ 1150 0.02 [171]

Ni2Al1Mn1 FH ✗ ✗ ✗ 564.51 ✗ 0.03 [172]
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Co2Al1Mn1 FH ✓ ✗ ✗ 711.37 [600, 1000] 0.04 [173]

Co2Mn1Si1 FH ✓ ✗ ✗ 845.75 1014 0.06 [174]

Co2Al1V1 FH ✗ ✗ ✗ 312.12 ✗ 0.06 [175]

Co2Fe1Ge1 FH ✗ ✗ ✗ 982.31 ✗ 0.07 [175]

Co2Al1Ti1 FH ✗ ✗ ✗ 193.20 ✗ 0.10 [175]

Pd2In1Mn1 FH ✗ ✗ ✗ 282.88 ✗ 0.16 [176]

Co2Fe1Si1 FH ✗ ✗ ✗ 1023.85 1100 0.17 [175]

Co2Ge1Mn1 FH ✗ ✗ ✗ 801.12 ✗ 0.23 [175]

Ru2Mn1Si1 FH ✗ ✗ ✗ 278.96 ✗ 0.29 [177]

Co2Mn1Sn1 FH ✓ ✗ ✗ 672.16 ✗ 0.37 [178]

Mn2Al1V1 FH ✗ ✗ ✗ 626.62 760 0.47 [179]

Fe2Mn1Si1 FH ✗ ✗ ✓ 300.07 220 0.52 [180]

Ir2Al1Mn1 FH ✗ ✗ ✓ 373.55 500 3.24 [181]

Co2Ga1V1 FH ✗ ✗ ✗ 364.61 ✗ 4.75 [182]

Co2Ga1Nb1 FH ✗ ✗ ✗ 375.08 ✗ 5.01 [183]

Co2Fe1Ga1 FH ✗ ✗ ✗ 1087.8 1093 5.06 [184]

Mn2Co1Ga1 IF ✗ ✗ ✗ 646.62 740 5.07 [185]

Co2Ga1Mn1 FH ✗ ✗ ✗ 664.53 650 5.08 [186]

Co2Ga1Hf1 FH ✗ ✗ ✗ 203.82 ✗ 5.19 [166]

Co2Mn1Sb1 FH ✓ ✗ ✗ 463.66 600 5.58 [187]

Co2Ga1Ti1 FH ✗ ✗ ✗ 200.66 ✗ 5.88 [166]

Fe2Ge1Mn1 FH ✗ ✗ ✓ 451.44 428 7.01 [180]

Au2Al1Mn1 FH ✗ ✗ ✗ 225.71 240 7.42 [188]

Table 6.1: The experimentally synthesized Heusler compounds that exhibit the lowest
calculated distance from the convex hull. Their predicted lattice distortion is indicated,
as well as the magnetic order. Additionally, both their predicted and experimentally
measured Curie temperatures are presented as well as the relevant experimental
reference.

For compounds where the antiferromagnetic order seems to be the ground-state,
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we calculated the difference between the ferromagnetic and antiferromagnetic energies

to quantitatively assess their magnetic energy ∆EF−A. These values are presented in

Table 6.2. Notably, we observe that when the energy difference between the ferromagnetic

and antiferromagnetic states is significant, the machine learning model predicts a higher

critical temperature. This correlation arises from the fact that a substantial energy

difference implies a larger exchange parameter, hence a higher critical temperature.

This behavior is not followed by the Ir2Al1Mn1 which could be due to the fact that the

machine learning model we use is not accurate enough to predict the Néel temperature

for that material.

Compound ∆EF−A (meV/atom) T pred
C (K)

Rh2Mn1Sn1 9.72 381.62

Rh2Ge1Mn1 10.68 399.59

Ru2Fe1Ga1 8.69 466.34

Rh2Ga1Mn1 2.25 141.35

Fe2Mn1Si1 5.83 300.07

Ir2Al1Mn1 2.69 373.55

Fe2Ge1Mn1 7.28 451.437

Table 6.2: Energy difference between the ferromagnetic and antiferromagnetic
configurations. For the ones that have an antiferromagnetic ground-state.

The maximum energy gain that we observe by changing the magnetic configuration

is 10.68 meV/atom, found for Rh2Ge1Mn1, which is substantial in drive the distance

from the convex hull to -8.15 meV/atom from 2.15 meV/atom and the compound is

now considered thermodynamically stable. The same analysis has been performed to

describe how the tetragonal distortion affects the energy. We calculate the difference in

energy when the compound is in a cubic versus a tetragonal lattice, ∆EC−T. Although

we were unable to identify any significant differences for compounds with distances

below 8.91 meV/atom, extending this discussion to compounds with distances below

kBT for T = 300 K reveals the interesting case of Co2Si1V1. The calculated value for

introducing a lattice distortion in that compound is 25.51 meV/atom. Remarkably,

this energy gain helps reduce the convex hull distance from 39.51 meV/atom to 14
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meV/atom, which is very close to the upper bound we defined. The table with

the calculated energy differences between the ferromagnetic and antiferromagnetic

configurations is presented in the Appendix D.

In the next part of the analysis, we focus on compounds that have been synthesized

experimentally but are not predicted to be stable with the use of our workflows for

the search of tetragonally distorted or antiferromagnetic configurations. The total

number of these compounds is 29 and the distance from the convex hull increases

to 283.34 meV/atom. The maximum distance from the convex hull corresponds to

the Ru2Mn1Ge1. It should be emphasized that from Ref. [148], we are not able to

understand whether there was any type of disorder in the material, or if the synthesized

compound was stable, as not much materials was grown in order for rigorous experiments

to be performed. The rest of the materials are concentrated at distances below 100

meV/atom. The results are presented in Table 6.3.

Compound IH/FH Tet AF1 AF2 T pred
C (K) T exp

C (K) δ′ (meV/atom) Ref.

Au2Mn1Zn1 FH ✗ ✗ ✗ 265.55 160 8.99 [189]

Rh2Mn1Pb1 FH ✗ ✓ ✗ 301.90 338 11.88 [190]

Ni2Mn1Sn1 FH ✓ ✗ ✗ 319.29 ✗ 12.22 [191]

Pd2Mn1Sb1 FH ✓ ✗ ✗ 265.34 ✗ 12.48 [192]

Ni2Ga1Mn1 FH ✓ ✗ ✗ 416.89 393 12.94 [193]

Co2Si1V1 FH ✓ ✗ ✗ 222.52 ✗ 14.01 [166]

Mn2Fe1Ga1 IF ✗ ✗ ✓ 514.70 ✗ 19.29 [150]

Pd2Al1Mn1 FH ✗ ✗ ✗ 270.71 415 30.67 [194]

Mn2Al1Co1 IF ✗ ✗ ✗ 649.96 745 32.67 [195]

Fe2Al1Cr1 FH ✓ ✗ ✗ 267.23 260 32.73 [196]

Fe2Ge1Ru1 IF ✗ ✗ ✗ 479.69 860 34.97 [197]

Mn2Ga1Ni1 IF ✗ ✗ ✗ 595.04 588 34.98 [151]

Co2Ge1Sc1 FH ✓ ✗ ✗ 225.79 ✗ 35.25 [166]

Co2Cr1Ga1 FH ✗ ✗ ✗ 425.22 ✗ 37.44 [198]
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Fe2Ga1Ni1 IF ✗ ✗ ✗ 779.58 840 38.00 [199]

Ni2In1Mn1 FH ✓ ✗ ✗ 312.21 ✗ 38.87 [200]

Rh2Fe1Sn1 FH ✓ ✗ ✗ 475.98 ✗ 43.25 [148]

Fe2Ge1Ni1 IF ✗ ✗ ✗ 712.58 835 47.04 [201]

Mn2Ga1Rh1 IF ✗ ✗ ✗ 352.36 ✗ 47.33 [169]

Fe2Sn1V1 FH ✗ ✓ ✗ 237.79 ✗ 58.80 [202]

Cu2Al1Mn1 FH ✓ ✗ ✗ 553.11 (424,605,614) 63.65 [203]

Fe2Mn1Si1 IF ✗ ✗ ✓ 300.07 220 64.07 [180]

Ni2Mn1Sb1 FH ✗ ✗ ✗ 354.69 ✗ 67.88 [204]

Co2Al1Cr1 FH ✗ ✗ ✗ 328.53 340 68.37 [205]

Cu2In1Mn1 FH ✓ ✗ ✗ 457.48 530 76.01 [206]

Co2Sn1V1 FH ✗ ✗ ✗ 150.07 105 77.64 [166]

Pd2Ge1Mn1 FH ✗ ✗ ✗ 220.56 ✗ 79.27 [207]

Fe2Al1Cu1 IF ✗ ✗ ✗ 807.18 875 80.45 [208]

Cu2Mn1Sn1 FH ✗ ✗ ✗ 471.70 ✗ 99.03 [209]

Ru2Mn1Ge1 FH ✗ ✗ ✗ 283.34 296 [210]

Table 6.3: The Heusler compounds, which are predicted to be unstable but have been
experimentally synthesized. Their predicted lattice distortion is indicated, as well as
the magnetic order. In addition, their predicted critical temperature is provided as
well as the relative reference.

A closer examination of the literature may shed light on some of the reasons

behind our inability to predict the stability of the studied compounds through ab-

initio methods. One potential explanation is the presence of structural disorder, which

has been reported for the majority of the compounds studied here. When dealing with

a disordered structure, the contribution of entropy to the Gibbs free energy increases,

and this entropy contribution tends to stabilise these compounds. Disorder has been

documented for Mn2Fe1Ga1, Fe2Al1Cr1, Fe2Ge1Ru1, and Mn2Ga1Ni1 as reported in

references [150, 151, 196, 197].

Furthermore, for several of these compounds, a different less ordered crystal structure
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was discovered, specifically the B2 crystal structure, which has CsCl as the prototypical

material. Here, B2 is an ordered body-centered-cubic (bcc) structure formed by two

interpenetrating simple cubic sublattices. A derivative of the B2 lattice is the L21

structure used here to model the Full and Inverse Heuslers. Structures that crystallise

on the B2-type are reported for Pd2Al1Mn1 [194], Fe2Al1Cr1 [196], Fe2Ga1Ni1 [199], and

Ni2In1Mn1 [200]. Interestingly, Fe2Ni1Ga1, has a transition from the ordered Inverse

Heusler at low temperatures, to the less ordered B2-type at higher temperatures.

In summary, the disorder reported in these structures might explain our inability to

predict their thermodynamic stability.

Next, we proceed by presenting the compounds that have not yet been experimentally

synthesized, and their corrected distance from the convex hull lies below the threshold

of 8.91 meV/atom defined before. The total number of these structures is 93, where the

majority of them, 63% are predicted to lie below 1 meV/atom away from the convex

hull. Two histograms, with respect to their predicted critical temperature, T pred
C , and

their corrected distance from the convex hull, δ′, are presented in Figure 6.9.

Figure 6.9: Histograms of the corrected distance from the convex hull, δ′, and the
predicted critical temperature, T pred

C , for the compounds predicted to lie below the
energy threshold, and never synthesized before. The average value for the critical
temperature predicted is 303 K, slightly above room temperature. However, there are
compounds that are predicted to have robust ferromagnetism such as Co2Fe1Zn1 with
a predicted critical temperature of 1050 K respectively. The histogram of the critical
temperatures for the compounds that considered stable with the boundary of 4.75
meV/atom is denoted with green color and those added with the extended boundary
of 8.91 meV/atom is presented with red.

Here, 49 out of 93 compounds are predicted to lie below the AFLOW-calculated



164 CHAPTER 6. HT STUDY OF TET. AND AF HEUSLER ALLOYS

convex hulls, thus exhibiting negative corrected distance from the convex hull. The

system corresponding to the lowest corrected distance is the Co2Hf1Mn1, which is

204.28 meV/atom below the calculated convex hull. This compound is predicted

to exhibit type 1 antiferromagnetic order, with opposite magnetic moments at the

Manganese atoms. A subset of the complete catalog consisted from the 10 structures

that correspond to those with the lowest corrected distance from the convex hull,

denoted as δ′ is presented. The results are shown in Table 6.4. The complete catalog

of the compounds that are not yet experimentally synthesized, but are calculated to

be thermodynamically stable can be found in the Appendix D.

Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Co2Hf1Mn1 FH ✓ ✓ ✗ 266.45 -204.28

Pt2Cr1Mn1 FH ✓ ✗ ✗ 389.17 -80.10

Fe2Mn1Ni1 IF ✓ ✗ ✗ 541.41 -50.80

Mn2Ge1Li1 IF ✗ ✗ ✓ 381.88 -43.25

Mn2Ge1Tc1 IF ✗ ✗ ✓ 412.79 -35.85

Mn2Ir1Zn1 IF ✓ ✗ ✗ 283.92 -30.73

Pt2Mn1Zn1 FH ✓ ✓ ✗ 336.91 -29.32

Mn2Co1Os1 FH ✓ ✓ ✗ 324.15 -28.93

Pt2Cr1Zn1 FH ✓ ✓ ✗ 172.30 -25.72

Mn2Cr1Pt1 FH ✓ ✗ ✗ 319.79 -24.55

Table 6.4: The Heusler compounds predicted to have the largest distance below the
convex hull. Their predicted lattice distortion is indicated, as well as the magnetic
order. Furthermore, their predicted Curie/Néel temperature is presented. To the best
of our knowledge, these compounds have never been synthesized.

A large portion of the materials predicted to be stable are found in the tetragonal

distorted configuration, more quantitatively 50 out of 93. Structural instabilities of this

kind are widely reported in the literature [211]. The reason behind this occurrence is

that structural deformation lifts the degeneracy of the d-electron bands, reducing the

energy of the system by electron redistribution. Furthermore, sometimes tetragonal

distortion suppresses the magnetic moment of the material, resulting in a distorted

nonmagnetic ground-state. The energy gain from this lattice distortion is of the order
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of ∼ 102 meV/atom for some compounds, for example Mn2Ir1Zn1, Pt2Cr1Mn1, and

Fe2Mn1Ni1. In Table 6.5 we present the energy difference between the cubic and

tetragonal distortion, ∆EC−T , also the magnetic moment of the tetragonal-distorted

compounds shown in Table 6.4. Furthermore, for the structures that their ground

state is found to be antiferromagnetic we present the energy difference between the

ferromagnetic and antiferromagnetic state, ∆EA−F.

Compound m (µb/f.u.) ∆EC−T (meV/atom) ∆EA−F (meV/atom) δ′ (meV/atom)

Co2Hf1Mn1 0.00 4.41 223.81 -204.28

Pt2Cr1Mn1 1.10 172.10 ✗ -80.10

Fe2Mn1Ni1 0.65 149.68 ✗ -50.80

Mn2Ir1Zn1 1.09 85.38 ✗ -30.73

Pt2Mn1Zn1 0.00 15.22 65.43 -29.32

Mn2Co1Os1 0.00 49.84 77.63 -28.93

Pt2Cr1Zn1 0.00 69.85 37.84 -25.72

Mn2Cr1Pt1 1.01 57.83 ✗ -24.55

Table 6.5: The tetragonally distorted predicted Heusler compounds. Their magnetic
moment per formula unit, m, the energy difference between the cubic and the tetragonal
distortion, ∆EC−T and the corrected distance from the convex hull, δ′ are presented.

As evident in Table 6.5, modifications to the lattice structure can result in a

substantial difference in energy. Consequently, structures that were once considered

thermodynamically unstable can be re-evaluated as stable. As an example, consider

Pt2Cr1Mn1, whose cubic cell is 92 meV/atom above the convex hull, suggesting initial

instability. This is predicted to achieve thermodynamic stability through a tetragonal

distortion. Another example is the Fe2Mn1Ni1 with an energy distance of 98.88 meV/atom

above the convex hull for the cubic phase, but ultimately stabilising through distortion

with an energy level of 50.80 meV/atom below the tie plane. Furthermore, for the

ones that are found to have an antiferromagnetic ground state, we observe large energy

differences between the ferromagnetic and antiferromagnetic ground state energies.

The largest one is calculated for Co2Hf1Mn1 with value of 223.81 meV/atom. For

this compound, the opposite magnetic moments are located in the manganese atoms.
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The complete catalog of the energy differences between the ferromagnetic and antiferro-

magnetic compounds as well as between the ferromagnetic and antiferromagnetic compounds

are presented in the Appendix D.

Non-cubic crystals exhibit a natural inclination toward directional magnetization

magnetocrystalline anisotropy, that is not found in cubic materials. This property

is associated with the tetragonal alteration of the crystal axes. Studies have shown

that tetragonally distorted Heusler compounds, containing heavy transition metals

and characterized by low magnetic moments, hold promise for displaying significant

magnetocrystalline anisotropy [212]. This property makes them attractive candidates

for spintronics applications. For instance, Fe2Mn1Ni1 is a tetragonally distorted ferro-

magnetic material with a low magnetic moment. Another interesting compound is the

Ti2Ga1Pd1 which is a low magnetic moment antiferromagnet and includes palladium

(Pd), which is a heavy transition metal. We recommend further investigation of the

entire list of proposed tetragonally distorted materials, as presented in Appendix D,

regarding their magnetocrystalline anisotropy.

6.3.2 Band Structure Calculations

Next a series of band structure and density of states calculations are conducted.

These calculations provide valuable insights into the materials’ type and electronic

structure. Band structure calculations are carried out for compounds that have not

been experimentally synthesized and are located within a threshold of 10 meV/atom

away from the convex hull. Applying this criterion results in a total of 94 calculations.

In order to ensure high precision in our calculations, we utilize a Monkhorst-

Pack [98] k-point mesh with 20,000 k-points per reciprocal atom, NKPPRA. The

determination of the high-symmetry path within the Brillouin zone was achieved by the

Python Materials Genomics (pymatgen) [93] library, which uses the paths described

in Ref. [99]. Our computational workflow consists of an initial self-consistent field

(SCF) calculation to attain well-converged charge densities, followed by a non-self-

consistent field (non-SCF) calculation along the high symmetry path to compute the
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material’s band structure and density of states (DOS). The number of bands used in

the calculations is defined by Equation (6.6) and it is VASP’s default number increased

by 100.

max

(
Nelectrons

2
+
Nions

2
, Nelectrons × 0.6

)
+ 100, (6.6)

where Nelectrons is the number of electrons in the system and Nions is the number of

ions.

The graphs of band structures show that almost all of the materials studied are, in

fact, metals. For the materials that exhibit an antiferromagnetic ground state and there

is not a structural deformation that breaks the symmetry of the crystal, we observe

a degeneracy in the bands as it should be expected. A sample of the bandstructure

graphs is presented for an antiferromagnet of type 1 and type 2, in Figure 6.10 and 6.11,

Type 1 (Pt2Mn1Zn1) and Type 2 (Fe2Ge1Mn1 ), respectively.

Figure 6.10: Spin-polarised electronic band structure of the full Heusler Pt2Mn1Zn1.
Solid blue and red dashed lines represent the bands of the up and down spin channels,
respectively.

Although, for the vast majority of compounds studied, band degeneracy is observed

as it should be in the absence of spin-orbit coupling, in the case of Rh2Cr1Zn1 this
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Figure 6.11: Spin polarised electronic band structure of the full Heusler Fe2Ge1Mn1.
Solid blue and red dashed lines represent the bands of up and down spin channels,
respectively.

degeneracy is lifted. This can be observed from the band structure where a shift in

bands is observed. This occurence could be explained by the fact that a structural

distortion breaks the crystal symmetry and hence the lifts degeneracy in the band

structure. In Figure 6.12 we present a bandstructure plot regarding the Rh2Cr1Zn1

compound.

However, this behavior changes when it comes to tetragonally distorted Heusler

compounds. In these cases, the band degeneracy is generally lifted, and the magnitude

is analogous to the calculated magnetization value. This means that as the magnetization

increases, the band degeneracy becomes more pronounced.

As can been observed from the bandstructures the majority of the Heusler alloys

calculated are metals. However, in the case of Co2Mn1Si1 (see Figure 6.13), half-

metallicity is observed. Interestingly, the material acts as a metal for electrons with

one spin configuration and as a semiconductor for those with the opposite orientation.

This property is described to be found in the Heusler alloy family [213]. This interesting

family of materials are expected to be used in spin electronics. In the following figures,
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Figure 6.12: Spin polarised electronic band structure of Rh2Cr1Zn1 full Heusler.
Solid blue and red dashed lines represent the bands of up and down spin channels,
respectively.

the calculated band structure graph and the DOS are presented to illustrate this

phenomenon. For the rest of the Heusler compounds the calculated bandstructures

and DOS graphs can be found in this github repository.

Figure 6.13: Spin-polarized electronic band structure of Co2Mn1Si1 full Heusler. The
solid blue lines and red dashed lines represent the bands for up and down spin channels,
respectively.

https://github.com/Minotakm/Data_Thesis
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6.4 Conclusions and Discussion

In this chapter, we have conducted a high-throughput analysis on the Heusler compounds

family. Inspired by the work of Sanvito et al. [6], our study aimed to identify tetragonally

distorted compounds, to correct their distances from the convex hull, and to re-evaluate

their stability. Additionally, we have explored various magnetic orders.

We began with a candidate pool of approximately 700 compounds, each having an

energy distance of less than 100 meV/atom from the convex hull. We have demonstrated

that by modifying their lattice or magnetic configuration, their distances from the

convex hull gets reduced. Ultimately, we identified 124 compounds with energy distances

below the threshold of 17.81 meV/atom, boundary 1, which is increased to 182 if we

take into account the second energy boundary. These structures, which have not yet

been synthesized experimentally, encompass both ferromagnetic and antiferromagnetic

materials, with an average predicted critical temperature of 303 K based on our

trained model. The list of materials created by these compounds is anticipated to

be synthesized in the future.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The work presented in this thesis covers two distinct paths in the area of theoretical

discovery of materials. In the first three chapters, we explore the more modern, data-

informed materials discovery route. Here, we developed and applied tools designed to

accelerate the throughput of proposed and screened candidate materials. Additionally,

we incorporated already available methods, e.g., Enumlib crystal structure enumeration

library, towards this goal. By combining these methods, we successfully implemented,

benchmarked, and ultimately established an end-to-end workflow for predicting ternary-

phase diagrams. These materials discovery workflows, coupled with property prediction

models, are expected to play a crucial role in uncovering materials with intriguing

properties.

In the last chapter of the thesis, a more traditional approach is pursued. Such

approaches are commonly known as combinatorial searches, wherein an interesting

material serves as the starting point. The crystal structure of this material is then

utilized as a prototype, initiating an exhaustive search where the material is systematically

decorated in a combinatorial fashion with appropriate elements. Subsequently, the

created candidates undergo screening based on their thermodynamic stability. At this

stage, materials deemed most feasible for synthesis are selected, and comprehensive

studies based on their properties follow. The ultimate goal is to identify the most

171
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possible experimentally realizable materials, which are then synthesized and further

studied in the laboratory.

A variety of interesting results and outcomes have been extracted from this work,

which will be summarized in the following paragraphs. However, the general conclusion

is that computational materials science plays a crucial role in materials discovery.

Both approaches, one more general than the other in terms of the materials studied,

contribute to this understanding. The first method aims to focus on specific interesting

triplets of elements, where for the selection of these ternary systems, data-driven

methods are employed to assess the property of interest and exhaustively search a

variety of different materials candidates. Meanwhile, the second method targets a

specific family of materials by exploring all possible combinations of appropriate elements.

Both approaches have successfully uncovered thermodynamically stable materials, where

some of them exhibit interesting properties, indicating a promising future for such

studies in revealing the potential of functional materials.

The journey towards implementing an end-to-end data-driven materials discovery

workflow commences in Chapter 3, where we assess the utility of existing data extracted

from ab initio calculations. The key focus is to assess the potential effectiveness of a

machine-learning model trained on these data within the context of materials discovery

workflows. The existence of numerous repositories containing ab initio results from

calculations raises the question of whether these databases offer sufficient and accurate

data that models trained with them are capable of accurately assess the energy, hence

the stability, of candidate materials. Consequently, we explore whether models trained

with such databases, when integrated into materials design workflows, are capable of

accurately predicting the thermodynamic stability of materials candidates.

Since the workflow is built towards uncovering thermodynamically stable ternary

intermetallics, we explore the idea of training models with the use of data extracted

from their constituent binaries. These models will be employed towards the energy

prediction of ternary compounds. We then use them to predict the energy of created

ternaries by exploiting the similarity between binary and ternary compounds made of
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transition metals.

To test the hypothesis, we trained SNAP models and benchmarked their accuracy

for different ternary systems. We began with the Cu-Ag-Au ternary system, as this

noble metal system provides enough simplicity to demonstrate the concept we explored.

After establishing the training workflow with this system, we progressed to more

challenging ternary systems, such as Ti-Mo-Pt and Cd-Hf-Rh. These systems involve

early, mid, and late-transition metal elements, introducing increased complexity to the

local chemical environment from which our model learns. While models trained with

data from these systems show a higher energy prediction error, it remains insignificant

when compared to the depth of the convex hull. This suggests that they are valuable

tools for materials discovery workflows.

Interestingly, we were able to establish that machine learning interatomic potentials,

trained with readily available data consisting only of energy-structure pairs extracted

from binaries, can predict the energy of ternary materials when they are near or at

their equilibrium. Remarkably, for materials candidates that are away from their

equilibrium, these models can be used to accurately order their energy. This characteristic

renders them powerful screening tools in high-throughput materials discovery workflows

and suggests their potential use as a preliminary, layer-1 screening solution for phase-

diagram prediction algorithms. Additionally, we can conclude that the potential of

such trained force fields and the wealth of information within freely available databases

should be fully leveraged in materials discovery efforts.

In the following two chapters, Chapter 4 and Chapter 5, we worked towards building

a ternary convex hull prediction workflow and applied it to study various systems,

such as CuAgAu and MoTaW. Some of these systems contained magnetic elements,

specifically AlFeNi, BiFeZr, and BiFeTa. The approach we followed for these two

projects is relatively similar. For a specific ternary system, we create a catalogue of

candidate materials, which is subsequently screened using a machine learning interatomic

potential (MLIAP). The choice of MLIAP dictates the limitations of our approach.

In the first case, we employed SNAP, as discussed in the previous paragraphs, which
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accurately predicts the energy of ternary systems when they are near or at equilibrium.

In Chapter 5, we utilized a universal graph deep learning potential based on representing

crystals and molecules as mathematical graphs, namely M3GNet.

For both approaches, we identified that ternary compounds created by decorating

binary structures with the chosen elements provide a useful approximation for constructing

the materials catalogue that will be used in the screening step. In the final part of the

workflow, we conduct high-throughput DFT calculations to generate a ternary phase

diagram with ab initio accuracy. Overall, the constructed workflows leverage data

that are byproducts of ternary convex hull construction to search for novel ternary

compounds. This is done in parallel to increasing the throughput of existing workflows

and avoiding compromises in accuracy.

The first workflow, based on the SNAP potential, was employed in the search for

thermodynamically stable compounds in the CuAgAu and MoTaW ternary systems.

It successfully identified two novel ternaries in the Au-rich region of the ternary phase

diagram, aligning with the finite temperature phase diagram for that system. Subsequently,

it was applied to study the MoTaW ternary system, chosen for the performance of

AFLOW there. For this system, the workflow identified six novel ternary structures

in the center and near the TaW binary region, surpassing the two phases identified

by AFLOW. This highlights its capability to identify multiple stable and metastable

phases throughout the entire phase diagram in accordance with the experimental finite

temperature phase diagram, consistently outperforming the AFLOW encyclopedia

method of predicting ternary phase diagrams.

Overall, this study highlights the usefulness of readily available data. Workflows

based on the byproducts of ab initio ternary phase diagram explorations are capable of

predicting reasonable materials candidates. This work emphasizes the fact that there

is still room for exploration in already-searched materials systems.

In Chapter 5, we employed M3GNet, a universal graph deep learning interatomic

potential, to study ternary convex hulls containing magnetic elements. M3GNet utilizes

the graph representation of molecules and solids, along with 3-body interactions, to
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create a force field accurate enough for use as a screening tool. While its ability to guide

structure relaxation towards the correct path reduced the throughput compared to the

previous workflow, it enables the screening of a larger volume of candidate structures.

However, the increased prediction error necessitates sampling more structures for DFT

calculations. Despite this, the workflow surpasses known ab initio ternary prediction

workflows, such as the AFLOW encyclopedia method, in predicting novel ternaries by

being able to scan a larger space of materials.

The M3GNet-based workflow is compared with the SNAP-based workflow using the

MoTaW ternary system. It systematically tracks the quality of predictions made by

the latter and eventually surpasses it by predicting a variety of novel stable ternaries.

Subsequently, the M3GNet workflow was applied to study ternary systems containing

magnetic elements, specifically AlFeNi, BiFeTa, and BiFeZr. It successfully identified

some novel stable and metastable ternaries in the AlFeNi system. However, it did not

uncover any new phases in the bismuth-based ternaries. One possible explanation for

this could be attributed to the poor alloying ability that bismuth exhibits with the rest

of the elements in the periodic table.

In summary, we have introduced an end-to-end phase diagram prediction algorithm

that harnesses the capabilities of machine-learning interatomic potentials as surrogates

for DFT, enabling the efficient exploration of numerous candidate structures. These

studies exemplify the seamless integration of machine-learning tools with prototype

generation techniques, creating a pipeline capable of significantly reducing the need for

ab initio calculations and, ultimately, generating ternary phase diagrams with DFT-

level accuracy. Workflows of this nature exhibit valuable characteristics that, once

complemented with accurate property predictors, such as critical temperature in the

case of magnetic materials, are of great importance for the targeted search of functional

materials.

In the final section of this thesis, we focused solely on a specific family of materials,

in contrast to the previously discussed workflow. Heusler alloys are known to harbor

materials with interesting properties, and in our case, we concentrated on exploring
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them for tetragonally distorted and antiferromagnetic compounds. For this reason, we

implemented two distinct workflows to accommodate the change in lattice or magnetic

configuration. Subsequently, we moved on to discussing different approximations regarding

the distance from the convex hull, based on available literature regarding disorder in

these compounds. This study resulted in the correction of the distance from the convex

hull for compounds that exhibit different ground state. Furthermore, machine learning

models were trained with data extracted from the scientific literature to provide an

estimation for the critical temperature of the explored compounds.

The results of this study are summarized in three tables. The number of compounds

experimentally synthesized and those identified as stable by the workflows provide an

estimate of the accuracy of the implemented workflow in making predictions. Compounds

that are known to have been synthesized experimentally but were not predicted as

stable by our workflows offer insights into the limitations of the high-throughput

frameworks employed and underscore the role of disorder in predicting materials under

ambient conditions. Ultimately, the comprehensive catalogue of compounds that fall

below the energy threshold and are classified as stable serves as a valuable resource for

those interested in the synthesis of novel Heusler compounds.

To sum up, in this thesis, we discuss a variety of tools and methods to create a

machine-learning-assisted workflow used for the prediction of ternary phase diagrams.

Additionally, we employ more traditional approaches to extensively explore a specific

family of materials known as Heusler alloys. Beyond a materials design study, this

thesis serves as a comparative analysis between these two approaches, presenting their

limitations and advantages in each chapter. Furthermore, we demonstrated that data-

driven methods and high-throughput ab initio calculations can be employed for the

exploration and identification of novel materials. In the next section, we will explore

potential future work, including the development of a more accurate workflow and the

investigation of interesting properties of the predicted tetragonal Heusler compounds.
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7.2 Future Work

In the last part of this thesis, we discuss potential directions for future research,

considering the findings and limitations of the current work. We explore ways to

improve the methodologies developed in this thesis and leverage them to expand

research into possible areas of interest. Our objective is to contribute to a deeper

understanding in the field of materials discovery and potentially identify functional

materials of interest.

As discussed earlier, one of the limitations of the considered ternary phase diagram

workflow lies in the fact that the interatomic potential employed is not accurate enough

to predict the energy value of structures away from equilibrium but rather to order them

energetically. This can be addressed by employing an active learning-like strategy to

train the model by introducing similar structures in the training set. However, training

a MLIAP with the use of active learning is often an expensive procedure. In the case of

our workflow, we perform DFT calculations to validate our predictions by constructing

the ternary phase diagram of the studied system.

Structures sampled along the relaxation path of these calculations can then be

added to the training set of the machine learning potential. Doing that will enrich the

training set with chemical environments far from equilibrium but still reasonable, as

they were constructed by utilizing the binary compounds. Such a trained MLIAP may

offer improved accuracy for energy prediction and the potential for atomic relaxation,

as the variety of chemical environments contained in the dataset is, by definition, more

diverse. Importantly, this step does not incur additional cost in the proposed workflow,

as it leverages data already available from the previous step.

Such a trained potential can then be employed to re-evaluate the energy of the

created materials and re-order their energy. This might be able to uncover predicted

materials that had their energy wrongly ordered during the first energy screening.

Furthermore, we can use it to estimate the entropy-forming ability, as introduced

in [214], which serves as a descriptor of configurational entropy. Calculating this

descriptor involves determining the number of different configurations that can be
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formed for a specific stoichiometry, a byproduct of our workflow, and accurately predicting

their energy.

So far, we have built a workflow to predict the ternary phase diagrams with ab

initio accuracy. Employing such workflows alongside property predictors, such as the

random forest regressor we used to predict the critical temperature in Chapter 6, creates

a workflow that can be used for the search of thermodynamically stable compounds

with targeted properties. Following the same idea to increase the prediction accuracy,

we could fine-tune M3GNet with the use of data extracted from AFLOWLib for the

class of materials that we are mostly interested in, in our case transition metals. This

would result in a more accurate force field to be used in our workflow.

In the last part of our work, we explore Heusler alloys to identify potentially stable

tetragonally-distorted compounds. It is reported that materials crystallize into non-

cubic structures show a directional preference for magnetization, a phenomenon absent

in cubic materials. This effect, known as magnetocrystalline anisotropy, refers to the

fact that it requires more energy to magnetize a compound in a specific direction

than it does in others. For this reason, high throughput magnetocrystalline anisotropy

calculations can be employed to assess how strong this phenomenon is for these compounds.

Combining that information with the distance from the convex hull can help us provide

compounds that exhibit this property but are also experimentally realizable.



Appendices

179





Appendix A

PCA plot for Cu and Au

Principal Component Analysis (PCA) is a dimensionality reduction method used to

analyze large datasets. It aids in improving interpretability with minimal information

loss. In our case, the PCA algorithm was utilized to visualize the local chemical

environments sampled during the relaxation of a given structure. Subsequently, they

were compared with those sampled during the training process. This provides us with

insights into the response of the trained model when it comes to predicting the energies

of unseen chemical environments. Therefore, it would be beneficial to briefly present

the basic concepts behind this method.

The way in which PCA reduces the dimensionality of the given dataset (in our

case, the local chemical environment is translated to a vector of coefficients known

as Bispectrum Components, Bi) is by fitting an ellipsoid to the data, where each of

the axes represents a Principal Component. The algorithm to calculate the principal

components begins by defining a matrix X, where the number of rows, denoted n,

corresponds to the different observables of the experiment (in our case, each of the

different structures), and p represents the number of columns corresponding to the

features of these vectors, which in our case is equal to 56. Furthermore, the mean of

the columns of the matrix X is shifted to zero by subtracting the mean value.

To calculate the transformation of w(k) that maps the rows of X, denoted as x(i), to

the vector of the principal components tk(i) = x(i) ·w(k) for i = 1, . . . , n and k = 1, . . . , l,

this is done in a way that maximizes the variance for the new vector of components,
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ensuring that the information remains unchanged through this transformation. Then

we proceed to calculate the coefficientw(1) that will lead us to the principal components

tk(i).

w(1) = arg max
∥w∥=1

{
∥Xw∥2

}
= arg max

∥w∥=1

{
wTXTXw

}
(A.1)

to get the unit vector w(1) we calculate.

w(1) = argmax

{
wTXTXw

wTw

}
(A.2)

Once the coefficients w(1) are calculated. Then the first principal component can

be calculated by t1(i) = x(i) ·w(1). To calculate the remaining k components, one has

to subtract the k − 1 components from the matrix X and perform a procedure similar

to before. The matrix X̂ is calculated from Equation (A.3).

X̂k = X−
k−1∑
s=1

Xw(s)w
T
(s) (A.3)

The weights, w(k), are calculated using Equation (A.2). The matrix that corresponds to

the full principal component decomposition is given by T = XW. This transformation

maps an original space of p variables to a new space of p variables. However, not all

the components are needed always, in our case the first two components are visualised

, calculated from the T2 = XW2.

In our case, the analysis is conducted separately for each species. For all the

structures in the training set, one must calculate the bispectrum components for each

of the atoms contained in the crystal structure. Then, the bispectrum components

corresponding to the same atom species are summed element-wise. Subsequently, this

resulting vector (one vector per species and structure) is used to form the matrix X

and calculate the bispectrum components. The results for the elements Au and Cu are

shown in Figures A.1.

In the cases of Au and Cu (shown in Figure A.1), the relaxation process begins

in a region that is better sampled in the training set. However, having an inaccurate
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Figure A.1: Principal Components Analysis plot for the first two components for the
local chemical environments of Au (upper panel) and Cu (lower panel) sampled in the
training set (blue circles). The colored circles denote the local chemical environments
of Au encountered through the relaxation path.

prediction for the Ag element (shown in 3.7) implies that the prediction of the total

energy for the ternary structure will also be inaccurate. This underscores that in the

case of ternary structures, achieving accurate predictions for all species is essential to

ensure an accurate total energy prediction.



Appendix B

Candidates Selection for the AgAu

The Ag-Au binary system exhibits five distinct stable binary intermetallics across

numerous stoichiometries, namely Ag2Au2, Ag1Au3, and Ag3Au1. Furthermore, a large

number of metastable structures are energetically close to these stable configurations,

resulting in a deeper calculated convex hull compared to those of the other two systems,

namely Ag-Cu and Au-Cu. A narrower energy window for selecting structures from

this convex hull is necessary to ensure equal sampling across all systems, preventing

bias toward any particular binary. This energy window ensures a selection of 25 binary

structures from the AgAu binary phase diagram.
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Figure B.1: The energy window used for selecting the required number of crystal
structures in the Ag-Au binary system includes those within the pink-shaded region.
These 25 structures are added to the primary pool of the parent compounds.
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Convex hull analysis Mo-Ta-W

For the Mo-Ta-W ternary system, we scanned the binary convex hull of the consituents,

namely Mo-Ta, Ta-W,and Mo-W and we selected the compounds with formation

enthalpy closest to the calculated convex hull. The energy window is adjusted for each

of the binary phase diagrams so that a similar number of compounds were selected. The

energy window is a hyperparameter of the model and is employed to avoid oversampling

of a specific binary. In the Figure C.1 the structures selected from each binary phase

diagram are selected, as well as the energy window used.

In this case the Mo-Ta binary is the one with the deeper hull with depth of 170

meV/atom. This binary corresponds to those that exhibit the largest number of stable

binary intermetallics with six stable compounds across different compositions. An

energy window capable of selecting ∼ 50 compounds per binary is chosen. The energy

window is narrower as we move to deeper binary phase diagrams. Subsequently, the

same procedure as before was followed, and we used the AFLOW-SYM [115] tool to

select the unique structures prior decorating them.

Utilizing the AFLOW-SYM tool results in 28 unique structures. Following this step,

these compounds will be decorated with the stoichiometries of interest and subsequently

relaxed using an ensemble of SNAP models trained on the entire database consisting

of data extracted from the phase diagrams of the three binary systems, namely Mo-W,

Mo-Ta, and Ta-W. The structures with the predicted lowest energy then proceed to

the DFT step.

185



186 APPENDIX C. CONVEX HULL ANALYSIS MO-TA-W

0 20 40 60 80 100
Ta %

200

175

150

125

100

75

50

25

0

H
f (

m
eV

/a
to

m
)

0 20 40 60 80 100
Mo %

12

10

8

6

4

2

0

2

H
f (

m
eV

/a
to

m
)

0 20 40 60 80 100
Ta %

120

100

80

60

40

20

0

H
f (

m
eV

/a
to

m
)

Figure C.1: The energy window employed for the selection of the necessary number of
crystal structures for the Mo-Ta (upper), Mo-W (middle),and W-Ta (lower) binaries.
The structures selected as parent structures are the ones inside the pink area.
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Heusler Alloys

The list of the calculated differences between the cubic and tetragonally distorted

structures for compounds that are experimentally synthesized and lie below the energy

threshold of 17.81 meV/atom is presented below.

Compound ∆EC−T (meV/atom)

Rh2Mn1Sn1 -89.07

Rh2Ge1Mn1 -1.50

Ru2Fe1Ga1 -10.63

Co2Al1Zr1 0.65

Rh2Ga1Mn1 -82.35

Co2Mn1Ti1 0.93

Co2Al1Ta1 0.58

Co2Sc1Sn1 0.35

Ru2Ge1V1 0.33

Mn2Ga1V1 0.34

Ru2Cr1Ge1 0.22

Rh2In1Mn1 0.14

Ru2Al1Mn1 0.08

Fe2Co1Ge1 0.03
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Compound ∆EC−T (meV/atom)

Rh2Al1Fe1 -105.81

Pd2Mn1Sn1 -0.95

Ir2Ga1Mn1 -37.41

Co2Ge1Ti1 -11.47

Fe2Co1Si1 -102.31

Ru2Cr1Si1 -1.14

Mn2Ge1Ru1 -113.10

Mn2Pd1Pt1 -33.84

Mn2Fe1Ge1 -84.48

Rh2Al1Mn1 -113.67

Co2Al1Nb1 -60.20

Co2Al1Fe1 -237.21

Ni2Al1Mn1 -8.95

Co2Al1Mn1 0.01

Co2Mn1Si1 0.09

Co2Al1V1 -31.18

Co2Fe1Ge1 -55.59

Co2Al1Ti1 -2.49

Pd2In1Mn1 -3.65

Co2Fe1Si1 -65.45

Co2Ge1Mn1 -81.65

Ru2Mn1Si1 -0.33

Co2Mn1Sn1 0.25

Mn2Al1V1 -117.57

Fe2Mn1Si1 -0.18

Ru2Mn1V1 -119.75
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Compound ∆EC−T (meV/atom)

Ir2Al1Mn1 -69.59

Co2Ga1V1 -2.53

Co2Ga1Nb1 -17.59

Co2Fe1Ga1 -181.79

Mn2Co1Ga1 -138.86

Co2Ga1Mn1 -1.41

Co2Ga1Hf1 -0.04

Co2Mn1Sb1 0.03

Co2Ga1Ti1 -6.46

Fe2Ge1Mn1 -0.08

Au2Al1Mn1 -0.14

Au2Mn1Zn1 -0.63

Rh2Mn1Pb1 -19.81

Ni2Mn1Sn1 0.84

Pd2Mn1Sb1 2.60

Ni2Ga1Mn1 2.74

Co2Si1V1 25.51

Table D.1: The energy difference, ∆EC−T, between the cubic and tetragonally distorted
structures for the compounds that are experimentally synthesized and lie below the
energy threshold.

From Table D.1 we observe that a large number of the compounds have large

negative energy differences, meaning that a cubic cell is strongly favored with respect

to the tetragonally distorted. The maximum value we calculate for introducing a

tetragonally distortion in the lattice for those experimentally synthesized and predicted

stable, is 25.51 meV/atom for the Co2Si1V1, which helps to reduce the convex hull

distance from 39.51 meV/atom to 14 meV/atom and to consider it stable.

Next, the complete list of Heusler compounds predicted to be stable, according
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to the criteria introduced in Chapter 6, is presented below. It is important to note

that, to the best of our knowledge, none of these compounds have been experimentally

synthesized. The compounds are sorted in decreasing order based on their corrected

distance from the convex hull, δcorr.

Additionally, we provide predictions of the critical temperature T pred
C using the

model referenced in [3]. This catalogue offers concise details regarding the stability of

each specific compound, which may be valuable for researchers interested in experimental

studies.

Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Rh2Mn1Zn1 FH ✗ ✗ ✓ 190.36 -21.76

Ti2In1Zn1 FH ✓ ✗ ✗ 356.03 -20.06

Mn2Pd1Rh1 FH ✗ ✗ ✓ 237.70 -18.45

Fe2Ge1V1 FH ✗ ✓ ✗ 404.69 -12.73

Pd2Hg1Mn1 FH ✓ ✓ ✗ 275.16 -11.09

Mn2Ir1Ru1 FH ✗ ✓ ✗ 337.58 -10.29

Mn2Co1Ru1 FH ✓ ✓ ✗ 248.88 -9.56

Rh2Mn1Si1 FH ✗ ✓ ✗ 207.87 -9.41

Rh2Mg1Mn1 FH ✗ ✗ ✓ 399.99 -8.46

Rh2Cr1Li1 FH ✗ ✓ ✗ 260.20 -7.13

Mn2Os1Si1 IF ✗ ✗ ✓ 319.26 -6.06

Pt2Li1Mn1 FH ✗ ✗ ✓ 236.96 -5.80

Pt2Mg1Mn1 FH ✓ ✓ ✗ 270.77 -5.11

Pd2Mg1Mn1 FH ✗ ✓ ✗ 385.66 -5.04

Pt2Cr1Cu1 FH ✓ ✗ ✗ 209.73 -4.57

Pt2Cd1Mn1 FH ✓ ✓ ✗ 351.00 -3.91

Pt2In1Mn1 FH ✓ ✗ ✗ 299.86 -3.09

Pd2Cd1Mn1 FH ✓ ✓ ✗ 300.53 -3.01

Fe2Ge1Nb1 FH ✗ ✓ ✗ 234.44 -2.77

Mn2Si1Tc1 IF ✗ ✗ ✓ 384.74 -2.55
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Co2V1Zn1 FH ✓ ✗ ✗ 268.42 -1.76

Be2Mn1Pt1 FH ✓ ✗ ✗ 400.57 -1.60

Rh2Li1Mn1 FH ✓ ✗ ✓ 400.61 -1.59

Ru2Cr1Sn1 FH ✓ ✗ ✓ 232.94 -1.47

Co2Ta1Zn1 FH ✓ ✗ ✗ 415.09 -1.40

Pd2Mn1Zn1 FH ✓ ✗ ✗ 187.59 -1.30

Fe2Sb1Ti1 FH ✗ ✓ ✗ 205.81 -0.87

Be2Ir1Mn1 FH ✓ ✗ ✗ 388.09 -0.62

Co2Hf1In1 FH ✓ ✗ ✗ 225.08 -0.58

Be2Co1Ir1 FH ✓ ✗ ✗ 207.93 -0.55

Mn2Ge1Ti1 FH ✓ ✗ ✗ 374.01 -0.53

Pd2Cu1Fe1 FH ✓ ✗ ✗ 519.04 -0.42

Au2Mn1Pd1 IF ✓ ✓ ✗ 287.05 -0.25

Sc2Cd1Tl1 FH ✓ ✗ ✗ 63.85 -0.17

Co2Ge1Zn1 FH ✓ ✗ ✗ 191.33 -0.09

Fe2Be1V1 FH ✓ ✗ ✗ 181.06 -0.09

Pd2Li1Mn1 FH ✓ ✗ ✗ 407.93 -0.08

Mn2Fe1Si1 IF ✓ ✗ ✗ 182.57 -0.04

Ru2Cr1Ga1 FH ✓ ✗ ✗ 152.22 -0.02

Fe2Ga1Ir1 IF ✗ ✗ ✗ 587.97 0.00

Co2In1Zr1 FH ✗ ✗ ✗ 239.36 0.00

Mn2Ga1Ir1 IF ✗ ✗ ✗ 351.37 0.00

Rh2Fe1Zn1 FH ✗ ✗ ✗ 505.93 0.00

Rh2Fe1Ga1 FH ✗ ✗ ✗ 515.38 0.00

La2Cd1Tl1 FH ✗ ✗ ✗ 58.61 0.00

Mn2Co1Cr1 FH ✗ ✗ ✗ 445.99 0.00

Ru2Si1V1 FH ✗ ✗ ✗ 175.05 0.00
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Ir2Fe1Ga1 FH ✗ ✗ ✗ 394.05 0.00

Ru2Sn1V1 FH ✗ ✗ ✗ 236.37 0.00

Y2Ga1Li1 FH ✗ ✗ ✗ 85.44 0.00

Co2In1Ti1 FH ✗ ✗ ✗ 305.28 0.00

Ru2Al1Cr1 FH ✗ ✗ ✗ 135.18 0.00

Rh2Mn1Ti1 FH ✗ ✗ ✗ 211.81 0.00

Mn2Al1Nb1 FH ✗ ✗ ✗ 458.68 0.00

Zn2Co1Mn1 FH ✓ ✗ ✗ 400.71 0.08

Co2Ga1Ta1 FH ✗ ✗ ✗ 391.62 0.09

Mn2Al1Ti1 FH ✗ ✗ ✗ 543.89 0.47

Cu2Mn1Pt1 FH ✓ ✗ ✗ 262.82 0.56

Fe2Ir1Rh1 FH ✗ ✓ ✗ 649.73 1.09

Ir2In1Zr1 FH ✓ ✗ ✗ 30.42 1.27

La2Hg1Tl1 FH ✗ ✗ ✗ 25.63 1.29

Ni2Mn1Zn1 FH ✓ ✗ ✗ 539.17 1.33

Y2Hg1Tl1 FH ✓ ✗ ✗ 22.51 1.53

Sc2Hg1Tl1 FH ✗ ✗ ✗ 43.06 1.58

La2Ag1Tl1 FH ✗ ✗ ✓ 36.76 1.62

Co2Nb1Zn1 FH ✗ ✓ ✗ 356.88 2.00

Mn2Ga1Ti1 FH ✗ ✗ ✗ 483.62 2.16

Ir2Mn1Zn1 FH ✗ ✗ ✓ 379.11 2.16

La2Ag1Hg1 FH ✓ ✗ ✗ 36.33 2.96

Rh2Bi1Mg1 FH ✓ ✗ ✗ 39.13 3.96

La2Cd1Hg1 FH ✓ ✗ ✗ 48.23 3.96

Co2Be1Ta1 FH ✓ ✗ ✗ 331.70 4.12

Co2Ga1Zr1 FH ✓ ✗ ✗ 237.13 4.17

Zn2Ir1Mn1 FH ✓ ✗ ✗ 283.14 4.39
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Fe2Ga1Ti1 FH ✓ ✗ ✗ 504.78 5.41

Ru2Mn1Nb1 FH ✗ ✗ ✗ 241.40 6.15

Co2Fe1Zn1 FH ✓ ✗ ✗ 1134.93 6.98

Ru2Mn1Ta1 FH ✗ ✗ ✗ 288.01 7.09

Mn2Ru1Si1 IF ✓ ✗ ✓ 512.74 7.30

Mn2Ga1Nb1 FH ✓ ✗ ✗ 445.90 7.48

Fe2Al1Mn1 FH ✗ ✓ ✗ 197.52 7.54

Hf2Os1V1 FH ✓ ✗ ✗ 44.28 7.66

Ti2Ga1Pd1 FH ✓ ✗ ✗ 389.17 9.13

Mn2Ga1Zn1 FH ✓ ✗ ✗ 469.43 9.24

Ta2Fe1Os1 FH ✓ ✗ ✗ 182.05 9.82

Os2Mn1Si1 FH ✗ ✗ ✓ 345.14 10.17

Zn2Mn1Pt1 FH ✓ ✗ ✗ 254.72 10.24

Ir2Fe1Mn1 FH ✓ ✗ ✗ 402.29 10.30

Rh2Fe1Mg1 FH ✗ ✗ ✗ 343.47 10.60

Fe2Nb1Sn1 FH ✗ ✓ ✗ 226.07 10.69

Rh2Cr1Zn1 FH ✗ ✗ ✓ 156.12 10.91

Be2Co1Rh1 FH ✓ ✗ ✗ 228.01 11.25

Mn2Ir1Si1 IF ✗ ✗ ✓ 329.55 11.44

Au2Mn1Pd1 FH ✓ ✗ ✗ 287.05 11.52

Rh2Hf1Mn1 FH ✗ ✗ ✗ 258.12 12.02

Rh2Mn1Zr1 FH ✗ ✗ ✗ 318.48 12.32

Ir2Cr1Ga1 FH ✓ ✗ ✗ 116.83 13.26

Rh2Mn1Sc1 FH ✗ ✗ ✗ 352.71 13.69

Mn2Cr1Ga1 FH ✓ ✗ ✗ 633.11 13.85

Ti2Al1Ir1 IF ✗ ✗ ✗ 105.31 14.29

Cu2Mn1Pd1 FH ✓ ✗ ✗ 267.76 14.44
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Pt2Cu1Mn1 FH ✓ ✗ ✗ 332.74 14.64

Be2Co1Mn1 FH ✓ ✗ ✗ 466.91 14.74

La2Ag1Cd1 FH ✗ ✗ ✗ 81.04 14.86

Sc2Hg1In1 FH ✓ ✗ ✗ 85.51 15.11

Rh2Be1Fe1 FH ✗ ✗ ✗ 432.06 15.12

Cd2La1Y1 FH ✗ ✗ ✓ 80.06 15.50

Co2Cr1Si1 FH ✗ ✗ ✗ 176.24 16.47

Fe2Co1Ti1 IF ✗ ✗ ✗ 801.75 16.48

Rh2Fe1In1 FH ✗ ✗ ✗ 389.40 16.55

Be2Mn1Rh1 FH ✗ ✗ ✗ 458.90 16.89

Al2Ir1Mn1 FH ✓ ✓ ✗ 381.50 16.98

Ni2Ge1Mn1 FH ✗ ✗ ✗ 392.57 17.33

La2Ag1Zn1 FH ✗ ✗ ✓ 80.67 17.37

Ru2Al1Fe1 FH ✓ ✗ ✓ 450.50 17.92

Pd2Cu1Mn1 FH ✗ ✗ ✗ 200.33 18.13

Mn2Al1Hf1 FH ✗ ✗ ✗ 161.87 18.36

Pt2Cu1Fe1 FH ✓ ✗ ✗ 417.46 19.78

La2Ag1Sn1 FH ✓ ✗ ✗ 77.13 20.16

Mn2Co1Si1 IF ✗ ✗ ✗ 455.60 20.25

Ti2Os1V1 FH ✗ ✗ ✓ 122.38 20.60

Pt2Ga1Mn1 FH ✓ ✗ ✗ 285.19 21.51

Co2Be1Fe1 FH ✓ ✗ ✗ 845.40 21.65

Ru2Fe1Ta1 FH ✗ ✗ ✗ 350.35 21.83

Os2Mn1Ta1 FH ✗ ✗ ✗ 320.75 21.98

Pd2Au1Fe1 FH ✓ ✗ ✗ 334.64 22.49

Mn2Co1Ni1 FH ✗ ✗ ✗ 391.37 22.97

Zr2Co1Fe1 FH ✓ ✗ ✗ 216.03 23.33
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Cu2Au1Mn1 FH ✓ ✗ ✗ 253.84 23.89

Fe2Ta1Ti1 FH ✗ ✗ ✗ 212.79 24.09

Ir2Mn1Sn1 FH ✗ ✓ ✗ 353.99 24.17

La2Hg1Zn1 FH ✓ ✗ ✗ 51.67 24.39

Be2Cr1Pt1 FH ✓ ✗ ✗ 113.01 24.57

Zn2Mn1Rh1 FH ✓ ✗ ✗ 258.76 24.65

Ti2Co1Ni1 FH ✗ ✓ ✗ 256.23 24.91

Ti2Mn1Ru1 FH ✗ ✗ ✗ 304.80 24.92

Ir2Mg1Mn1 FH ✗ ✗ ✓ 250.38 25.00

Rh2Be1Mn1 FH ✓ ✗ ✓ 360.52 25.92

Ir2Al1Fe1 FH ✗ ✗ ✗ 396.12 26.31

Co2Mg1Sn1 FH ✗ ✓ ✗ 208.68 26.44

Pd2Fe1Li1 FH ✗ ✗ ✗ 260.40 26.73

Hg2La1Y1 FH ✓ ✗ ✓ 26.79 27.28

Cu2Mn1Pt1 IF ✓ ✓ ✗ 262.82 27.59

Fe2Ir1Si1 IF ✗ ✗ ✗ 460.09 28.28

Co2Fe1Ti1 FH ✗ ✗ ✗ 897.83 28.29

Fe2Ru1Si1 IF ✗ ✗ ✗ 486.73 28.51

Ir2Be1Mn1 FH ✓ ✗ ✓ 393.31 28.63

Ir2Mn1Si1 FH ✗ ✓ ✗ 355.09 28.90

Al2Co1Ni1 FH ✓ ✗ ✗ 148.77 28.90

Fe2Ti1V1 FH ✓ ✗ ✗ 139.90 28.97

Mn2Al1Cr1 FH ✗ ✗ ✗ 604.99 29.28

Au2Cu1Mn1 FH ✓ ✗ ✓ 282.40 29.35

Co2Hf1Ti1 FH ✗ ✗ ✗ 308.89 29.81

La2Ag1Pb1 FH ✗ ✗ ✗ 32.04 29.90

Al2Cr1Ir1 FH ✓ ✗ ✗ 97.49 30.35
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Compound IH/FH Tet AF1 AF2 T pred
C (K) δ′ (meV/atom)

Mn2Rh1Ru1 FH ✗ ✓ ✗ 236.98 30.43

Fe2Ru1V1 IF ✗ ✗ ✗ 484.53 30.47

Co2Be1Nb1 FH ✗ ✓ ✗ 266.33 31.49

Pt2Al1Mn1 FH ✓ ✓ ✗ 292.71 31.73

Au2Li1Mn1 FH ✓ ✗ ✓ 195.91 32.54

Al2Ir1V1 FH ✗ ✗ ✗ 69.04 32.59

Mn2Ge1Os1 IF ✗ ✗ ✗ 273.96 33.52

Mn2Al1Os1 IF ✗ ✗ ✓ 300.31 33.61

Ir2Mn1Ti1 FH ✗ ✗ ✗ 347.39 34.21

Cu2Mn1Ni1 IF ✓ ✗ ✗ 545.73 34.28

Ba2Ga1Zn1 FH ✗ ✗ ✗ 81.72 34.33

Rh2Cu1Mn1 FH ✓ ✗ ✓ 214.76 34.42

Ni2Cu1Fe1 FH ✓ ✗ ✗ 624.39 34.45

Al2Fe1Ni1 FH ✓ ✓ ✗ 349.79 34.65

Ru2Fe1V1 FH ✗ ✗ ✗ 401.52 34.71

Au2Mg1Mn1 FH ✗ ✗ ✗ 250.94 34.76

Co2Ge1V1 FH ✓ ✗ ✗ 273.27 35.18

Table D.2: The complete catalog of Heusler compounds predicted to be
thermodynamically stable according to our criteria, yet not experimentally synthesized,
is presented up to of 35.62 meV/atom away from the convex hull. When the 8.91
meV/atom boundary is taken into account, the specific compounds are added and
correspond to those above the red line. For each compound, we indicate its Heusler
type (Inverse (IH) or Full (FH)), predicted lattice distortion (Tetragonal distortion
(Tet)), and magnetic ordering (Antiferromagnet 1 (AF1) or Antiferromagnet 2 (AF2))
in case they correspond to an antiferromagnetic ground-state. Additionally, we present
the predicted Curie temperature, T pred

C , and the corrected distance from the convex hull
(δ′).

Next, we present the energy differences between the cubic and tetragonally distorted

lattice, as well as between the antiferromagnetic and ferromagnetic ground state energies

when the ground state of the studied compound corresponds to an antiferromagnetic

state.
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Rh2Mn1Zn1 -44.84 27.09

Ti2In1Zn1 114.09 ✗

Mn2Pd1Rh1 -179.71 24.60

Fe2Ge1V1 -5.08 16.23

Pd2Hg1Mn1 37.58 13.25

Mn2Ir1Ru1 -33.19 57.65

Mn2Co1Ru1 7.66 73.97

Rh2Mn1Si1 -88.99 9.77

Rh2Mg1Mn1 -0.23 29.68

Rh2Cr1Li1 -0.11 12.78

Mn2Os1Si1 -225.42 6.22

Pt2Li1Mn1 -3.64 8.43

Pt2Mg1Mn1 13.71 28.67

Pd2Mg1Mn1 -9.32 10.18

Pt2Cr1Cu1 98.60 ✗

Pt2Cd1Mn1 59.63 21.84

Pt2In1Mn1 49.54 ✗

Pd2Cd1Mn1 20.16 13.86

Fe2Ge1Nb1 -8.77 18.84

Mn2Si1Tc1 -185.47 24.14

Co2V1Zn1 9.73 ✗

Be2Mn1Pt1 1.60 ✗

Rh2Li1Mn1 0.16 24.52

Ru2Cr1Sn1 0.23 12.47

Co2Ta1Zn1 3.72 ✗

Pd2Mn1Zn1 20.49 ✗

Fe2Sb1Ti1 -0.16 15.10
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Be2Ir1Mn1 0.62 ✗

Co2Hf1In1 0.58 ✗

Be2Co1Ir1 0.55 ✗

Mn2Ge1Ti1 0.53 ✗

Pd2Cu1Fe1 26.58 ✗

Au2Mn1Pd1 78.38 3.39

Sc2Cd1Tl1 0.17 ✗

Co2Ge1Zn1 0.21 ✗

Fe2Be1V1 0.09 ✗

Pd2Li1Mn1 0.61 ✗

Mn2Fe1Si1 0.04 ✗

Ru2Cr1Ga1 0.02 ✗

Fe2Ga1Ir1 -133.85 ✗

Co2In1Zr1 -2.24 ✗

Mn2Ga1Ir1 -143.21 ✗

Rh2Fe1Zn1 -67.75 ✗

Rh2Fe1Ga1 -84.09 ✗

La2Cd1Tl1 -0.16 ✗

Mn2Co1Cr1 -125.27 ✗

Ru2Si1V1 -8.62 ✗

Ir2Fe1Ga1 -112.46 ✗

Ru2Sn1V1 -4.86 ✗

Y2Ga1Li1 -0.32 ✗

Co2In1Ti1 -17.48 ✗

Ru2Al1Cr1 -194.16 ✗

Rh2Mn1Ti1 -150.73 ✗

Mn2Al1Nb1 -1.95 ✗
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Zn2Co1Mn1 53.90 ✗

Co2Ga1Ta1 -15.08 ✗

Mn2Al1Ti1 -10.53 ✗

Cu2Mn1Pt1 79.81 ✗

Fe2Ir1Rh1 -52.90 52.44

Ir2In1Zr1 83.35 ✗

La2Hg1Tl1 -0.08 ✗

Ni2Mn1Zn1 9.28 ✗

Y2Hg1Tl1 0.42 ✗

Sc2Hg1Tl1 -0.27 ✗

La2Ag1Tl1 -0.12 0.12

Co2Nb1Zn1 -15.03 2.02

Mn2Ga1Ti1 -0.27 ✗

Ir2Mn1Zn1 -8.92 13.92

La2Ag1Hg1 0.12 ✗

Rh2Bi1Mg1 24.55 ✗

La2Cd1Hg1 0.26 ✗

Co2Be1Ta1 10.52 ✗

Co2Ga1Zr1 0.53 ✗

Zn2Ir1Mn1 38.05 ✗

Fe2Ga1Ti1 0.03 ✗

Ru2Mn1Nb1 -157.68 ✗

Co2Fe1Zn1 0.21 ✗

Ru2Mn1Ta1 -230.10 ✗

Mn2Ru1Si1 0.04 0.46

Mn2Ga1Nb1 0.02 ✗

Fe2Al1Mn1 -0.16 8.37
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Hf2Os1V1 24.63 ✗

Ti2Ga1Pd1 84.77 ✗

Mn2Ga1Zn1 59.97 ✗

Ta2Fe1Os1 0.05 ✗

Os2Mn1Si1 -1.72 8.18

Zn2Mn1Pt1 22.30 ✗

Ir2Fe1Mn1 73.80 ✗

Rh2Fe1Mg1 -117.06 ✗

Fe2Nb1Sn1 -12.70 33.04

Rh2Cr1Zn1 -14.50 11.08

Be2Co1Rh1 0.49 ✗

Mn2Ir1Si1 -87.12 1.98

Au2Mn1Pd1 60.74 ✗

Rh2Hf1Mn1 -324.49 ✗

Rh2Mn1Zr1 -304.74 ✗

Ir2Cr1Ga1 66.75 ✗

Rh2Mn1Sc1 -136.88 ✗

Mn2Cr1Ga1 17.26 ✗

Ti2Al1Ir1 -0.36 ✗

Cu2Mn1Pd1 66.79 ✗

Pt2Cu1Mn1 37.28 ✗

Be2Co1Mn1 0.06 ✗

La2Ag1Cd1 -0.17 ✗

Sc2Hg1In1 0.33 ✗

Rh2Be1Fe1 -125.31 ✗

Cd2La1Y1 -0.01 0.14

Co2Cr1Si1 -8.50 ✗
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Fe2Co1Ti1 -168.36 ✗

Rh2Fe1In1 -71.28 ✗

Be2Mn1Rh1 -6.89 ✗

Al2Ir1Mn1 0.49 34.08

Ni2Ge1Mn1 -9.95 ✗

La2Ag1Zn1 -0.39 0.15

Ru2Al1Fe1 0.29 7.89

Pd2Cu1Mn1 -0.01 ✗

Mn2Al1Hf1 -6.78 ✗

Pt2Cu1Fe1 50.07 ✗

La2Ag1Sn1 0.19 ✗

Mn2Co1Si1 -86.16 ✗

Ti2Os1V1 -2.43 16.80

Pt2Ga1Mn1 44.96 ✗

Co2Be1Fe1 0.19 ✗

Ru2Fe1Ta1 -151.02 ✗

Os2Mn1Ta1 -110.55 ✗

Pd2Au1Fe1 57.23 ✗

Mn2Co1Ni1 -1.16 ✗

Zr2Co1Fe1 19.02 ✗

Cu2Au1Mn1 46.42 ✗

Fe2Ta1Ti1 -0.23 ✗

Ir2Mn1Sn1 -11.69 58.95

La2Hg1Zn1 0.83 ✗

Be2Cr1Pt1 1.39 ✗

Zn2Mn1Rh1 20.23 ✗

Ti2Co1Ni1 -45.52 0.11
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Ti2Mn1Ru1 -1.57 ✗

Ir2Mg1Mn1 -39.69 22.57

Rh2Be1Mn1 0.42 22.30

Ir2Al1Fe1 -135.02 ✗

Co2Mg1Sn1 -0.34 0.89

Pd2Fe1Li1 -2.21 ✗

Hg2La1Y1 0.22 0.02

Cu2Mn1Pt1 37.24 1.91

Fe2Ir1Si1 -130.73 ✗

Co2Fe1Ti1 -0.30 ✗

Fe2Ru1Si1 -142.68 ✗

Ir2Be1Mn1 0.25 10.13

Ir2Mn1Si1 -116.12 56.43

Al2Co1Ni1 0.10 ✗

Fe2Ti1V1 0.70 ✗

Mn2Al1Cr1 -1.55 ✗

Au2Cu1Mn1 0.46 0.41

Co2Hf1Ti1 -1.12 ✗

La2Ag1Pb1 -0.14 ✗

Al2Cr1Ir1 0.23 ✗

Mn2Rh1Ru1 -83.66 9.16

Fe2Ru1V1 -117.72 ✗

Co2Be1Nb1 -3.35 1.19

Pt2Al1Mn1 11.93 1.79

Au2Li1Mn1 0.07 3.29

Al2Ir1V1 -2.40 ✗

Mn2Ge1Os1 -89.11 ✗
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Compound ∆EC−T (meV/atom) ∆EA−F (meV/atom)

Mn2Al1Os1 -0.10 49.75

Ir2Mn1Ti1 -79.01 ✗

Cu2Mn1Ni1 52.61 ✗

Ba2Ga1Zn1 -0.26 ✗

Rh2Cu1Mn1 16.45 5.95

Ni2Cu1Fe1 47.26 ✗

Al2Fe1Ni1 0.32 2.58

Ru2Fe1V1 -79.09 ✗

Au2Mg1Mn1 -0.94 ✗

Co2Ge1V1 37.92 ✗

Table D.3: The complete catalog of Heusler compounds predicted up to a distance of
35 meV/atom away from the convex hull. The compounds added when the boundary
of 8.91 meV/atom is taken into account are those above the red line. For each
compound, we present the energy difference between the cubic and the tetragonally
distorted structure, ∆EC−T (meV/atom). As well as the energy differences between
the antiferromagnetic and ferromagnetic ground state, ∆EA−F (meV/atom), when an
antiferromagnetic ground state is found.

Here, in Table D.3 we observe that for a number of structures the tetragonal

distorted structure is strongly favored against the cubic one. Some examples are the

Ti2In1Zn1, that exhibits and energy difference of 114.09 meV/atom, the Pt-rich alloys

of Pt2Cr1Cu1, Pt2Cd1Mn1, and Pt2In1Mn1 with energy differences of 98.60, 59.63, and

49.54 meV/atom. Furthermore, there are structures that the antiferromagnetic ground

state is strongly favored comprared to the ferromagnetic, for example the Mn-rich

alloys Mn2Ir1Ru1 and Mn2Co1Ru1 with energy values of 57.65 and 73.97 meV/atom,

respectivelly.
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