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ABSTRACT A novel neural pipeline allowing one to generate pose aware 3D animated facial landmarks
synchronised to a target speech signal is proposed for the task of automatic dubbing. The goal is to
automatically synchronize a target actors’ lips and facial motion to an unseen speech sequence, while
maintaining the quality of the original performance. Given a 3D facial key point sequence extracted from
any reference video, and a target audio clip, the neural pipeline learns how to generate head pose aware,
identity aware landmarks and outputs accurate 3D lip motion directly at the inference stage. These generated
landmarks can be used to render a photo-realistic video via an additional image to image conversion stage.
In this paper, a novel data augmentation technique is introduced that increases the size of the training
dataset from N audio/visual pairs up to NxN unique pairs for the task of automatic dubbing. The trained
inference pipeline employs a LSTM-based network that takes Mel-coefficients as input from an unseen
speech sequence, combined with head pose, and identity parameters extracted from a reference video to
generate a new set of pose aware 3D landmarks that are synchronized with the unseen speech.

INDEX TERMS Machine learning, computer vision, lip synchronization, talking head generation, automatic
dubbing, audio driven deep fakes, artificial intelligence.

I. INTRODUCTION
Automatic speech dubbing is an area of great interest to
the entertainment sector as not only is it relevant to the
task of automatic dubbing for movies, television, and videos
in general, it is also applicable to speech-based animation
pipelines for video game characters, CG animated movies,
and increasingly, personal avatars within the realm of virtual
reality.

Automatic audio-visual speech dubbing is a topic which
falls under the broader field of talking head generation,
or talking heads for short. A talking head video is a video
which contains one subject talking directly to the camera. The
goal of talking head generation is either to generate a photo-
realistic talking head video from a static reference image and
target audio source (image-based methods), or in the case of
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this paper and the task of automatic dubbing / speech driven
video editing, to modify an existing video based on a new
target audio clip (video-based methods).

The meteoric rise in popularity of deep learning over the
last decade has in turn lead to a surge in interest towards
talking head generation and its associated sub tasks such
as dubbing, video editing, and video generation. Numerous
approaches have been suggested over the last five years,
each one looking to advance the state of the art within the
field of talking heads. For the vast majority of image-based
methods (where a video is generated from a single reference
image + audio), a neural network is trained to generate the lip
movements and facial expressions from audio, while a second
network is trained to generate the head pose information.
Likewise for most video-based methods (where the content
of an already existing video is modified based off the audio),
a single network is used to generate the lip movements onto
a static face mesh, which then gets fitted on top of landmarks

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133357

https://orcid.org/0000-0002-7704-2829
https://orcid.org/0000-0002-4891-494X
https://orcid.org/0000-0003-1670-4793
https://orcid.org/0000-0002-6471-8455


D. Bigioi et al.: Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated Dubbing

extracted from each frame of the video before rendering. For
both cases, these pipelines are quite complex, and there is a
need for simpler, more intuitive approaches such that artists
can make better use of these technologies.

Speech dubbing itself is a highly complex task, as not only
does one need to generate accurate lip and jaw motion to
match the target speech signal, special care must be taken to
not diminish from the actors visual performance. Factors such
as the actors facial expressions, head movements, and man-
nerisms, must be kept as close to the original performance
as possible such that the only difference between the dubbed
video, and the original is the motion of the lips and jaw in
response to the new target audio.

The aim of this paper is to test the feasibility of a
novel 3D landmark pipeline that outputs pose, and identity
aware talking head landmarks directly in one forward pass
given an unseen target audio speech signal, and video to be
modified. This differs from other approaches in the litera-
ture which typically generate moving lips onto an identity
removing, static fixed head before aligning the lips with
the desired head pose in a later step. In these approaches
the static mesh then must be given identity specific infor-
mation such as head pose and general head movement by
either a separate network that generates artificial head pose
sequences (when generating a video from a static image),
or by extracting head pose information from the reference
video and refitting the static mesh to match it. More com-
monly when modifying video, an intermediate 3D model is
used to generate the desired facial animations, before ren-
dering back to photorealistic frames like in [1]. Typically
these methods and techniques are a lot more complex to
implement and run than landmark-based solutions. An aim
of this work therefore is to take the first steps towards a
landmark based video modifying pipeline that may serve
as a lighter, simpler, and more practical tool for animation.
To this end, two main contributions are made as part of this
work:
• A novel lightweight LSTM-Based Model capable of
generating pose and identity aware 3D landmark
sequences driven by a target audio speech signal and
source video clip.

• A novel data augmentation technique for de-correlating
lip, jaw, and head motion, making the generation of
pose-aware landmarks possible directly at inference.

The rest of this paper is organized as follows. In section 2
a review of recent relevant works in the literature is pro-
vided to give context for this paper. To this end a concise
taxonomy of papers and methods within the field of audio
driven talking head generation is presented. In section 3 the
methodology of the approach is reviewed, discussing the
contribution of the paper in depth, and detailing the data
processing methods, the network architecture, the training set
up, and experiments. In section 4 the results are presented and
discussed. In section 5 societal impact and ethical considera-
tions of the work are discussed before the conclusion of the
paper.

II. RELATED WORKS
Talking head generation is a topic which falls under the wider
umbrella of ‘‘Deep Fakes’’, where the goal is to generate
realistic fake content of a target person. There are many
different approaches for generating ‘‘Deep Fakes’’, making
a detailed literature review of the topic challenging. Here the
scope of the related works section is limited to research with
a focus on facial animation and motion driven directly from
a speech sequence - audio driven talking heads. For a more
thorough review of the literature surrounding the topic of
‘‘Deep Fakes’’ the reader is directed to [2] as it provides a
comprehensive overview of the field and the main methods
for generating fake content.

Following a thorough review of the literature surrounding
audio-driven talking heads, several interesting pipelines were
identified that could be applied to the task of automatic
speech dubbing. These pipelines can be broadly classified
into two over-arching approaches: Structural approaches [1],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30] transform the input image/video and
audio into an intermediate structural representation (typically,
2D facial landmarks, or a 3D mesh) that is used as input to
a neural renderer to generate a photo-realistic talking head
sequence. Image reconstruction approaches [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41] leverage direct
image reconstruction techniques and latent feature learning
to generate a photo-realistic sequence from a target audio and
reference image/video.

While there are many approaches out there that generate
lip movements from audio such as [19], [22], [26], and [42],
none of these approaches generate pose-aware landmarks in
a single forward pass, instead generating the lip movements
onto a static face shape, introducing head movement at a later
step. In this paper it is argued that this is inefficient, and
can be done directly at inference time through a simple data
augmentation. Creating a faster pipeline, with less moving
parts, that lends itself better to real time usage.

This work is inspired by and extends the methodology
presented in [19] and [20], which are approaches that take
in a target audio clip as input, and generate fixed (no head
pose, just lip movement) 2D talking face landmarks as output.
The approach presented in this paper allows one to generate
3D talking face landmarks that maintain the head pose and
identity of the original speaker, while accurately driving the
lips from the target audio.

This work is also comparable to [22], which is an approach
used to generate talking head animations given a single target
image and audio clip. Specifically, one can compare the
model in this work to their landmark prediction network
which disentangles the audio into content and speaker iden-
tity embeddings. These embeddings are used to predict the
landmark displacements, which are then rendered into either
photo-realistic or animated frames.The approach presented
in this paper works on modifying an existing video rather
than generating a new one from a single image, and modifies
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the landmarks based on Mel Coefficients extracted from the
audio sequence that are fed into the network.

The aim of talking head generation is to generate a photo-
realistic audio driven talking head video in which the facial
movements of the talking head are naturally synchronized
with the target speech. Note that ‘‘audio driven talking head
video’’ is used as a blanket term to encompass all works
related to generating facial motions and animations driven
by audio, regardless of whether it is modifying a preexisting
video or animating a static image.

Most of the works referenced in this section, can be clas-
sified into one of two fundamental approaches for the task of
audio driven talking head generation: structural based meth-
ods [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], and image reconstruction-
based methods [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41].
Structural Based Methods: These are approaches where

the input image, video, or audio are transformed into an
intermediate structural representation of some sort such as a
3D model / mesh [1], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15] a sequence of facial landmarks [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], and more recently a sequence of dense motion
fields [18], [30]. These are then used as a training feature for
an underlying network that takes these structural sequences
as input to render a photo-realistic video. These methods are
the most relevant to this paper, specifically landmark based
ones, as this work introduces a novel way of generating pose
aware 3D facial landmark sequences from a preexisting video
sequence and target audio clip.
Image Reconstruction Methods: These are the approaches

which use pure image reconstruction techniques and latent
feature learning [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41]. One could consider these as true ‘‘End to
End’’ approaches, essentially passing the target image/video
and audio through a generative neural network, outputting
the synchronized talking head video directly. Other Methods:
These are approaches which do not strictly fall within the two
classes above, that are still highly relevant to this field and
worth mentioning. Approaches such as [42] and [43] which
are audio driven models trained to animate face rigs through
visemes. Or [44] that can generate dynamic neural radiance
fields from audio and using them to synthesize photorealistic
talking head videos.

It is also worth noting that each of the categories mentioned
above can be further broken down intowhether they are image
or video-based methods.
• Image Based Methods: The goal is to animate a cropped

facial image given an input image/limited number of frames
as a reference, and an audio clip.
• Video Based Methods: Where the goal is to alter the

lip movements and facial expressions of an already exist-
ing video so that they are synchronized with a new audio
clip. Generally, the videos are full frame, containing the

FIGURE 1. Typical landmark based pipeline.

background, face, neck, and torso regions, not just the
cropped face, unlike the image-based methods. The work
presented in this paper is a video-based approach, as it seeks
to modify existing video based on a new target speech audio
clip.

A. LANDMARK BASED METHODS
Typically, with landmark-based methods [16], [17], [18],
[19], [20], [21], [22], [23], [24], [26], [27], [28], [29], the goal
across all approaches is to generate frame by frame a set of
predicted facial landmarks based on a reference image/video,
driven by an audio clip. The predicted landmark sequence is
then passed through a separate rendering network to generate
the photorealistic video frames required for the final output.
Figure 1 is a simplified example of what a typical pipeline
looks like, note the two main components, the landmark pre-
diction, and the frame rendering modules. As the contribution
of this paper is a novel landmark generation technique, this
section focuses discussion on the various landmark predic-
tion modules across the literature, with less emphasis on the
rendering side of things.

It stands to reason that there is a lot of variation across
approaches regarding the most effective method of construc-
tion for the landmark prediction module. Most modules in the
literature can be grouped according to the following design
choices:
• Audio input pre-processing: Some approaches take in

phoneme labels extracted from audio like in [16]. Others
extract Mel spectrograms or MFCCs from the audio first
which are then fed into the predictor such as the approaches
taken by [18], [19], [20], [23], [24], [25], [26], [28], and [29].
Audio embeddings obtained from trained speech to text mod-
ules such as the approaches employed [21] and [27] have
also been tried, along with methods that take in custom audio
embeddings such as [17] and [22]. For the approach within
this paper, mel-coefficients are extracted from the audio and
fed in as input features to the network. They were chosen as
they are quite easy to extract compared to other audio features
used by some of the approaches mentioned above, and they
are immensely popular in classical speech related tasks such
as text to speech, speaker recognition, and automatic speech
recognition.
• The underlying network architecture: Some approaches

such as [17], [19], [20], [21], [22], [23], [25], [26], and [28]
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FIGURE 2. Typical 3D Model based pipeline.

employ a recurrent neural architecture and others such
as [16], [18], [24], [27], and [29] use feed-forward designs.
While feed-forward architectures are typically faster, a recur-
rent, lstm-based approach very similar to [19] and [22] was
chosen for this paper. The idea was that by using a recurrent
architecture, the network would learn the temporal depen-
dence associated with audio and its output lip movements,
generating a higher quality of lip movements.
• Generating the Output Landmarks: Some approaches in

the literature generate the output landmarks using a static face
mesh with moving lips that needs to then be fitted to a target
video such as [16], [17], [19], [20], [23], [26], [27], and [28]
while others such as [18], [21], [22], [24], [25], and [29]
generate the head pose information using one network, and a
second network generates the lipmovements, combining both
to have a pose inclusive face mesh. This paper’s approach
differs to these as it uses a single network trained to generate
3D pose aware landmarks synchronized to audio as described
by Figure 3. This is done to simplify the overall landmark
generation pipeline for faster inference speeds, and doing so
allows for the generation of more accurate landmarks as less
information is lost through extensive normalisation of the
ground truth.

Often, the rendering modules are variations of either
CycleGAN [45] or Pix2Pix [46], which are approaches for
training a neural network for the task of image 2 image
translation. Recently however, denoising diffusion models
are becoming more and more popular for the task of image
2 image translation, and it would not be a surprise to see future
renderers incorporate the power of these generative models.
As the main contribution of this paper is a novel landmark
generation module for the task of overdubbing, no further
analysis is carried out on these modules as they fall outside
the scope of this work.

B. 3D MODEL BASED METHODS
Even though the approach presented in this paper is a land-
mark based one, it is worth briefly discussing 3D model-
based ones [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. Most of these approaches follow the high-
level pipeline denoted by Figure 2 above.

Monocular reconstruction is carried out on each frame
of the target video, generating a 3D mesh for every frame.
From these meshes, pose, facial expression, and geometry

parameters are extracted. The target audio is passed through
a specially designed ‘‘audio to expression’’ network, that can
generate blend shape expression parameters from the audio
directly. Finally, the newly generated expression parameters
are combined with the pose and geometry parameters from
the original video, in order to generate a new set of meshes.
These are then rendered back into photo-realistic frames with
the help of a neural rendering network.

C. IMAGE RECONSTRUCTION METHODS
As mentioned earlier, these are the approaches which use
pure image reconstruction techniques and latent feature learn-
ing [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
where one can feed in a reference image and target audio clip
into the network, and output a photo-realistic talking head
video. Because these are typically ‘‘End-to-End’’ systems,
they have several advantages over structural methods: all
parameters can be trained under one loss, they are typically
faster, and can be deployed with more ease on neural infer-
ence chips. The quality of the videos they produce however
are not as good as structural methods, and produce a lot more
artifacts, especially when dealing with more extreme head
poses. While these methods are exciting and show promising
results, it was chosen to use a structural-based method for this
paper, as the quality of the final rendered video is significantly
better, and more control over the contents of the generated
video can be exerted.

III. METHODOLOGY
Following a detailed review of the current literature for auto-
matic dubbing, a gap was identified that provides the basis
for this work. Typically, in image-based networks, where
the goal is to generate a photo-realistic talking head video
from a single reference image and target audio, the common
approach is to have one network focus on generating the lip
movements, and another network for generating the rest of
the facial movements such as head pose, jaw movements, etc.
The outputs of both networks are then combined to generate
the fully animated facial landmark sequence like in [22].
For video-based methods, the goal is to modify a reference
video given a target audio. The approach generally involves
generating the lip movements first, before refitting them onto
a landmark sequence extracted from the reference video.

As this approach is a video modifying task for the pur-
poses of automatic dubbing, it is proposed to discard the
intermediate processing steps mentioned above entirely and
train a network to generate audio driven moving lips that
are in alignment with 3D head pose extracted from the ref-
erence video directly. An advantage to this is that the over-
all animation pipeline is faster, simpler, saves on compute,
and lends itself better to real time applications. Secondly,
due to the unique pre-processing approach employed before
training, classic normalisation techniques for this task such
as removing speaker identity and head motion are not used,
allowing the training data to maintain its structural integrity,
and therefore the network can learn to generate more accurate

133360 VOLUME 10, 2022



D. Bigioi et al.: Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated Dubbing

and expressive lipmovements. This is evidenced by the strong
results obtained by the approach in this paper from the sub-
jective user study carried out as part of this work, comparing
the method presented in this paper, against other relevant
landmark-based techniques from the literature.

Therefore, the contributions in this paper are twofold:
1) A novel LSTM-based pipeline is introduced, that takes

as input a target speech clip along with pose and iden-
tity parameters extracted from a reference video. The net-
work outputs a pose, and identity aware 3D facial landmark
sequence with the lips synchronised to the target speech clip.
This approach works in the 3D space and does not use a static
face model to first generate the lip movements before retar-
geting them to a moving one, separating this work from other
similar approaches such as [19], [22], and [20]. The model
directly outputs lips synchronized to audio, that also follow
the head pose and movement of the speaker, simplifying the
overall pipeline.

2) A novel data augmentation method is introduced for
the pipeline training task, increasing the number of usable
audio/visual pairs during training from N pairs up to NxN
pairs, allowing the network to better learn the relationship
between audio, lip expression, and pose. More precisely,
Procrustes alignment is used to take the lip movements cor-
responding to a given audio signal and apply them to N
additional landmark sequences, essentially ending up with a
dataset where every audio sequence has N associated land-
mark sequences, each with unique head pose and movement,
but with the lips being synchronized to that respective audio
sequence. This augmentation helps when training the network
as not only does it provide additional unique data, it de-
correlates the lip movement from the rest of the face. During
early experiments it was noticed that prior to adding this
augmentation that lip movements become strongly correlated
with global facial motion and head pose. Extensive details
are provided in the data augmentation section on how to
implement this and why it is important to do so.

An objective study evaluating the accuracy of the land-
marks generated by this method against its ground truth was
carried out and compared to other approaches in the litera-
ture. Additionally, a subjective user study was also carried
out testing the quality of pose-aware landmarks versus other
approaches by asking a series of carefully thought ques-
tions for each landmark sequence tested. The results of these
experiments show it is possible to generate accurate, pose-
aware landmarks at inference that are superior than other
relevant approaches which use a static face shape and that by
simply using the Procrustes lip augmentation at train time,
one can generate accurate pose-aware landmarks using any
existing method or architecture. Details on these experiments
are provided in the results section.

To summarize, this work presents an automatic facial
dubbing network that takes in a target speech audio and a
reference facial landmark sequence as input. The network
modifies the lip displacements of the reference landmark
sequence in order to produce a new sequence whose mouth

movements are correctly aligned with the speech audio while
maintaining the original head movements and poses of the
reference video. This is done to keep the actor’s performance
as close to the original as possible, and not to take away from
its quality in any way. See Figure 3 below as it depicts a high-
level overview of the network architecture.

A. DATA PROCESSING
1) DATA-SET SELECTION
While the end of goal of any automatic dubbing pipeline is
for it to be subject / speaker independent, for the purposes of
this paper a single speaker dataset was chosen to establish a
proof of concept and determine the different elements of the
training pipeline. Therefore, the ObamaWeekly Address [47]
data-set was chosen. A collection of nearly 300 frontal full-
face videos of President Barrack Obama, consisting of over
18 hours of audio-visual content. This dataset was selected
for the following reasons:

1) It contains high quality audio, available at a frequency
of 48KHz to go with video available at several different
resolutions. For the task at hand, a video resolution of 720p
was chosen.

2) In most of the videos, President Obama is the only
speaker on video, making it very easy to isolate his facial
region using an off the shelf face detector, and extract his 3D
facial landmark co-ordinates.

3) President Obama is an ideal subject, as in his weekly
address speeches he always faces the camera, speaks clearly,
andwhile there is a large amount of variation in the head pose,
there are not many extremes.

The native frame rate of the dataset is 29.97 FPS. For the
experiments in this paper, the videos were down sampled
to 25FPS as it made aligning each frame of audio with its
corresponding video frame a much easier task and ensured
that no audio information would be lost, i.e., with a frame rate
of 25fps, each frame in the video would have an associated
audio sequence of 40ms. For training of the network, most of
the videos in the dataset were used, with a train/validation/test
split of 85/10/5 percent maintained. Lists of the names and
indexes of the videos, as well as pre-processing code are
available on the project GitHub page, which will be made
openly available to the public with the paper.

2) LANDMARK EXTRACTION
Initially, an off-the-shelf facial landmark extractor provided
by [48] was employed to extract 68 3D facial landmarks
from the individual frames from the videos in the dataset.
Unfortunately the quality of the predicted landmarks from
this library was found to be highly inconsistent, and to contain
a lot of global jitter that had to be eliminated using smoothing
techniques. It was found however that even small amounts of
smoothing caused the landmarks to lose fine details in the lip
motion, reducing the overall quality of the ground truth which
ultimately affected the network’s ability to generate accurate
lip motions. Due to this, it was decided to use the 468 key
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FIGURE 3. High level overview of architecture.

point face mesh extraction algorithm provided by Google’s
MediaPipe library [49]. Compared to [48], the 3D landmarks
were near perfect, and more importantly, had virtually no
global jitter present. For the sake of simplicity, 68 of the
468 keypoints that best resembled the landmarks returned by
the traditional 68 keypoint dlib extractor were chosen to use
as ground truth for training.

The landmark extraction process is very simple. First,
the videos are processed with FFMPEG to get rid of any
thumbnails at the start of the video or blank frames at the
end. Second, individual frames are extracted from the training
videos using the Open CV python library. Finally, the 468
3D landmark coordinates are extracted using the media pipe
face mesh extractor, before selecting 68 custom keypoints
that best resemble the traditional DLIB extractor to use for
training the network. This process is done for every video in
the dataset, with the code to do so available on the project
GitHub page. To prepare the data for training, the landmark
frames extracted from each video are combined such that a
matrix of shape [N, 68, 3] is created for each video, where N
is the total number of frames in that particular video.

Once the 3D facial landmarks have been extracted from
every frame in every video, the next step is to normalise all
the landmarks, and then apply a smoothing filter to get rid of
any remaining jitter present. Normalisation is done by scaling
the width of the face and centering the landmarks at the zero
point like in [22]. The Savitzky-Golay filter is then used to
smooth out the remaining jitter.

3) AUDIO FEATURE EXTRACTION
Once the videos are processed and the landmarks are
extracted, the next step is to prepare the audio for training.
The audio being used as part of the training set is single
channel, has a sampling rate of 48000 Hz and is stored as a
WAV file. Remember that since the framerate in the training
videos is 25FPS, each frame covers 0.04 seconds of audio
information.

The chosen audio features which are to be fed into the
neural network are known asMel Coefficients. These are state
of the art features used in many related applications, most
commonly in automatic speaker/speech recognition tasks.
Reference [50] provide an in-depth explanation of what they
are and how they are computed.

The audio signal is framed into 40ms frames, and various
experiments were carried out training the network with a
range of hop lengths starting from a hop length of size 1920
(no overlapping frames), to 960, to 480, ensuring various
degrees of overlap between audio frames. It was decided
to not use overlapping frames as no visible difference was
noticed in the accuracy of the predicted landmarks against
the original. A mel-filterbank of size 80 was also chosen.
Therefore, for a 1 second audio sequence, the resulting fea-
ture matrix would have shape (25,80).

4) ALIGNING AUDIO WITH LANDMARKS
Now that the audio and landmark features are ready, the next
step is to pair them together in preparation for training. For a
given video V that contains T number of frames is depicted
as VT . Additionally, for the corresponding audio sequence
A, which contains T-1 audio frames, is depicted as A(T−1).
Notice that there is one extra video frame at the start of every
sequence which is discarded from the audio/landmark pair.
This is done as it is assumed that the audio preceding the
frame influences it, therefore there is no need to keep the first
frame in the sequence as it has no audio associated with it.
Note that this assumption is made as the data is being fed into
an lstm as a sequence, therefore the network has knowledge of
past and future frames. Hadwe been using an architecture that
would generate the output frame by frame, we would need to
expand the audiowindow to cover future frames too. This is to
ensure that facial movements caused by plosive sounds would
be correctly learnt. The first frame in the video is instead
saved as a separate entity from which the identity parameter
is extracted for its associated sequence.

The final step is to combine these audio/visual frames
into a sequence of 100 pairs for training. 100 is chosen as
it is equivalent to 4 seconds worth of audio/visual content
(25 fps × 4). This was a simple design choice influenced
by the memory constraints of the available GPU. Please see
Figure 4 below for a visual description of the alignment
process. Note how the first frames in each of the 4 second
sequences are discarded as explained above.

B. DATA AUGMENTATION
1) PROCRUSTES LIP AUGMENTATION
In this section ‘‘Procrustes Lip Augmentation’’ is introduced,
a novel augmentation technique designed to increase the
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FIGURE 4. Landmark frame / audio sequence pairing process.

number of usable audio-visual pairs available during training
from N pairs up to NxN pairs, as well as decouple the rela-
tionship between the movement of a person’s lips, and the
direction, pose, and movement of their face.

Assuming one has a number of aligned audio/landmark
sequences denoted as A0/L0→ AN /LN where N denotes the
total number of sequences. For a given audio sequenceA0, it’s
associated lip landmarks are extracted from the overall land-
mark sequence L0, and inserted into every other landmark
sequence in the dataset using Procrustes Analysis. Through
this, one can obtain N sequences of landmarks, where the lip
movements are synchronized to the speech fromA0, while the
head poses, and head movement are all unique. By doing this,
one can successfully de-correlate the relationship between
head pose, and lip movement. The following steps depict the
process:

2) RATIONALE FOR LIP AUGMENTATION
The technique evolved from some initial experiments, where
the model was being trained on speech from a single speaker,
and having it output the aligned animated facial landmarks.
In this initial training experiment, 4 second long sequences
of audio combined with a head position vector at each frame
were fed to the network, where the role of the position vector
was to provide information about the head pose to the net-
work. The intuition was that the network would take these
inputs and use them to output the new pose aware facial land-
mark co-ordinates, with the lips being synchronised to the
audio. The idea was that the audio would drive the movement
of the lips, while the position sequence would tell the network
the direction in which the head was facing, and generate the
position of the lips on the face accordingly.

Rather than having the desired effect of outputting pose
aware facial landmarks, the network ended up treating the
audio portion of the input as noise, and completely ignoring
it. Instead, the network learned how to generate accurate lip
movements from the head position sequence alone. A number
of tests were carried out to confirm this, specifically silence
was fed into the network, alongwith a variety of head position
sequences to test whether the network would still generate lip
motion. The tests indicated that the network was ignoring the
audio portion of the input entirely, as in each of the tests with
silence, the generated lips would still be moving. Therefore
it was concluded that there was a strong correlation between

FIGURE 5. Visualisation of the Procrustes lip augmentation process.

the movement the speakers lips in the dataset, and their head
pose at any given frame.

This phenomenon led to the realization that in order to
train a network to generate audio driven lip landmarks, it is
crucial to de-correlate the relationship between the motion of
the lips, and the head pose / general movement of the face.
It is for this very reason that most approaches in the literature
employ a static face mesh during training as it allows their
models to learn the movement of the lips with respect to the
audio, without having to worry about other aspects like head
pose and facial movement. As the purpose of this work is to
output pose aware moving lips, a workaround for this issue
was necessary.

Initially it was believed that the model was overfitting on
the single speakaer dataset, and introduced a multispeaker
dataset during training to try and alleviate this issue. Despite
this, the network continued to treat the audio portion of the
input as noise, learning the lip movement from the head pose
sequence alone. It was at this point that the idea to use the
‘‘Procrustes lip augmentation’’ came about. The augmenta-
tion had the desired effect, successfully de-correlating the
relationship between the head pose, and lip movement in the
training data set. This allowed the network to learn to output
3D facial landmark sequences, with the head pose controlled
by the pose sequence extracted from a reference video, and
the lip movement synchronised to and driven by the target
audio. To replicate this augmentation, please see the steps
below:

3) STEPS FOR PROCRUSTES LIP AUGMENTATION
1) Process the whole dataset as described in section 3.1,

such that you have Audio/Landmark Sequence pairs
ready.

2) ‘‘Procrustes analysis determines a linear transformation
(translation, reflection, orthogonal rotation and scaling)
of the points in Y to best conform them to the points in
matrix X, using the sum of squared errors as the good-
ness of fit criterion’’ [51]. For a given audio/landmark
pair, A0/L0, take L0 and run Procrustes analysis against
sequence L1.
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FIGURE 6. High level overview of model architecture.

TABLE 1. Detailed breakdown of the model layers displayed in figure 6 above. The input and output shapes, along with any relevant hyperparameters are
included.

3) You will have to do it frame by frame. L0 is Y, and L1 is
X. What you obtain is the conformed sequence L̂0

4) Isolate the lip landmark positions from L̂0 and use them
to replace the lip landmark positions in L1.

5) Repeat steps 2 and 3 for the rest of the landmark
sequences in your dataset such that you end up with LN
modified sequences that are synchronized to A0.

6) Repeat the steps above with the rest of the audio
sequences in your dataset A1→N

Realistically though, one cannot do this for every single
audio sample in the dataset as the processing time would
take too long. Instead, for every audio sample, 10 random
landmark sequences were chosen to do the Procrustes lip
augmentation for, increasing the size of the training dataset
by 10 times. The number 10 was chosen as no noticeable
improvements in the accuracy of the networkwere discovered
by increasing this number further. In fact, even applying
the augmentation to 5 landmark sequences for every audio
clip was found to be more than enough to de-correlate the
audio from the head pose. Please see figure 5 for a visual
representation of this process.

C. NETWORK ARCHITECTURE AND TRAINING SET UP
In this section the network architecture, and training set up
of the work in this paper is discussed. With a focus on

the choice of model, hyper-parameters, and rationale behind
certain design choices.

1) NETWORK ARCHITECTURE
The network is a very simple LSTM-based neural network,
that takes speech audio features as input combined with
a head pose sequence and identity embedding. The net-
work is trained to output the pose-aware facial landmark
co-ordinates. This is depicted by the architecture diagram
presented in Figure 6.

The audio features are sequences ofMel Coefficients span-
ning 4 seconds of audio each, as described in section 3.1.
They have a shape of (99,80). The head pose sequence is
extracted from each frame of the corresponding landmark
sequence. For each frame, the ‘‘pose’’ is computed from 3 co-
ordinates associated with the nose on the face. In total for a
4-second-long sequence, 99 such head pose embeddings are
obtained, having a shape of (99,3,3). The head pose sequence
array is then flattened, and concatenated with the mel coeffi-
cients array, ending up with a new training feature of shape
(99,89). Recall that the first landmark frame in the sequence
is removed as it has no equivalent audio information. This
frame is saved, and from it the identity parameter is extracted
by passing the landmarks extracted from the frame through
3 linear layers, reshaping it to be of size (1,89). This feature
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is then inserted at the beginning of the training array, ending
up with a final feature shape of (100,89).

The input is then passed through a stack of 4 bidirectional
LSTMs with an input size of 89, and hidden size of 128. The
output of the LSTMs then passes through a linear layer of
in size 256, and out size 256. This then passes through a
batch normalization layer followed by a leaky ReLU layer
with a 0.2 slope coefficient. Another linear layer then takes
the embedding of size 256 as input, and outputs one of size
128. Followed by a dropout layer, and another batch norm
and leaky ReLU. Finally, one last linear layer of in size 128,
outputs an embedding of size 60. This is a flattened set of
20 lip co-ordinates. Please see table 1 for a summary of all
layer parameters.

Next, the original landmark sequence minus the lips is
concatenated with the newly generated lip co-ordinates. This
passes through a final linear layer of in size 204, out size
204 to smooth out any jitter. The output is our new set of
generated landmarks for the given audio sequence.

For training the network, L1 loss is chosen as the loss
function combined with the ADAM optimizer. Two losses
are calculated, a lip loss, and a face loss. The lip loss simply
takes the generated lips and compares them to the original
lips, while the face loss takes the entire set of landmarks and
compares them against the original. The lip loss is weighted
90 percent, while the face loss is given a weight of 10 percent.

2) TRAINING SET UP
The network is trained using a 3070-laptop edition GPU. The
training data is prepared and extracted from 200 videos of
the ObamaWeekly Address dataset. The data is augmented as
described in section 3.1, for every audio sequence, 10 random
landmark sequences were chosen, and modified their lips
such that they would be synchronised for the given audio.
Ending upwith 10 sequences of unique headmotion per audio
sequence. The network is trained on the augmented dataset
for approximately 12 hours with a learning rate of 0.001 and
the ADAM optimizer.The batch size is set to 512, and the
Audio/Landmark sequences are shuffled for training.

IV. EXPERIMENTS AND RESULTS
In this section, the experiments and results of this paper are
presented and discussed. The results in this work are subjec-
tively compared to the results obtained by works presented
in [22] and [20] as these are the methods most relevant to
the one in this paper. It was attempted to also compare the
model to the approach taken by [17] however the authors have
not made the code necessary for this available. Additionally,
an objective comparison is also provided between the gen-
erated landmarks of this paper versus the ground truth, and
those of [19], [22], and [20] and their respective ground truth
data. Note that both [19] and [20] use the same approach for
generating landmarks. Because this work focuses on the land-
mark generation aspect of the automatic dubbing pipeline, the
evaluation is carried out on the generated landmarks. Sample
video renderings that are generated using landmarks extracted

TABLE 2. Mean opinion score per question.

from the approach presented in this paper are provided as a
proof of concept however a dedicated renderer to transform
the 3D landmarks back to 2D RGB frames has not been
trained, as that falls outside the scope of this paper.

A. SUBJECTIVE USER STUDY
A subjective user study was carried out, evaluating the quality
of the landmarks generated by thework in this paper, the work
in [22], and the work in [20]. Ten different videos of Pres-
ident Barrack Obama speaking were evaluated per model,
30 (3 models × 10) videos in total. Each video had length
16 seconds. Additionally, ten ground truth videos were also
evaluated as part of the study to be used as a baseline. In total,
28 subjects participated, evaluating 40 videos each. Note that
the subjects were asked to evaluate videos produced using
landmarks, and not the RGB frames. The scale of the study
was kept small as the goal was to show that generating highly
accurate, pose-aware landmarks at inference is possible, and
that the accuracy of the generated lip movements using the
method outlined in this paper is comparable to other ‘‘static’’
face based methods.

Subjects were asked to watch each of the 40 videos in
random order, and to answer 5 questions per video to evaluate
it. The subjects had a choice of 5 answers per question,
which were ‘‘Strongly Disagree’’, ‘‘Disagree’’, ‘‘Neutral’’,
‘‘Agree’’, and ‘‘Strongly Agree’’. The subjects were not told
which approaches were used to generate the particular video
they were evaluating, nor were they told whether the video
came from the generated or ground truth set. Table 2 contains
a summary of the results, showing the mean score each model
obtained per question while figure 7 contains a more detailed
breakdown for each individual question. Note that the ques-
tions asked are listed above their respective tables. From these
results it is clear that the approach presented in this paper pro-
duces a model capable of generating audio driven pose-aware
landmarks that are near indistinguishable from the ground
truth landmarks extracted directly from video. Readers are
encouraged to view the generated videos provided in the
supplementary materials section to see the accuracy of the
model.

B. OBJECTIVE STUDY
Evaluating the the predicted landmarks in an objective man-
ner is a non-trivial task. Distance based metrics are by far
the most popular method of evaluating the predicted land-
marks against their ground truth, and some type of a distance
metric (usually L1/L2 distance) is often used as the loss
function during the training phase. As part of this work,
an objective study is carried out using the distance-based
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FIGURE 7. Estimated marginal means calculated for each question the
subjects answered.

metrics described by [17], comparing the accuracy in the
predicted landmarks from a range of models against their
respective ground truths. The ground truth landmarks asso-
ciated with each of the models were extracted from their
respective test sets, and pre-processed in accordance with
the instructions provided by their respective GitHub pages,
and papers. The landmark distance, and landmark velocity
difference [20], [22] functions are used to evaluate the pre-
dicted landmarks against their ground truths. The results of
these evaluations are provided for in figure 9. Like in [17],
the LD and LVD functions are used on the mouth and face
area separately. This is denoted by M-LVD, M-LD, F-LVD,
and F-LD respectively. Note that F-LD and F-LVD are very
low for this paper compared to other approaches because the

TABLE 3. Objective evaluation results against GT.

FIGURE 8. Plot of mean scores each model obtained per question.

FIGURE 9. Comparison of ground truth landmarks extracted from the
same frame.

model is trained with knowledge of what the face looks like,
and the direction in which the head is facing.

C. INTERPRETING RESULTS
Both the subjective and objective studies carried out as part
of this work show that the approach presented in this paper
for generating 3D pose-aware landmarks is a feasible one for
generating accurate, and expressive talking head landmarks.
It is indeed possible to generate high quality, pose-aware
landmarks at inference, without a suffering losses in the
quality of the lip synchronization. Based on the subjective
results it is clear that subjects preferred talking heads that had
identity, and pose information. While the approach presented
in this paper slightly outperforms the ground truth in most of
the question categories, this can be simply attributed to the
very high similarity between the ground truth landmarks and
generated ones. A common piece of feedback from subjects
who did the study was that they were confused why they were
shown two of the same video ( recall that the information
that one was ground truth and one was generated was not
revealed).

Additionally, it can be seen that the approach presented
in [22] outperforms [20] in categories related to overall
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motion, motion naturalness, and head motion, while scor-
ing slightly worse on lip/audio synchronization and motion
artefacts. This tracks well as [22] approach is capable of
generating realistic head motion for the landmarks, and it can
be seen from this study that subjects noticed and preferred
that over [20].

V. CONCLUSION
The goal of this paper was to introduce an approach for gen-
erating 3D pose and identity aware talking head landmarks
given a source video and driving speech signal for the task
of automatic video dubbing. It is shown throughout the paper
that this is quite feasible to do via a novel data augmentation
technique, and that subjects preferred landmarks generated by
this approach over other, existing approaches such as [20],
[22], and [19]. A number of key insights were gained by
conducting this work:

1) Generating 3D pose aware landmarks is possible, and
can be easily achieved by de-correlating the relationship
between the lips, jaw, and global head movement through the
Procrustes lip augmentation that is proposed in this work.

2) The quality of the ground truth data is much more
important over the choice of model for learning the relation-
ship between audio and lip movement. Oftentimes noisy data
needs smoothing, and smoothing leads to losing valuable lip
motion, therefore the model wont be able to learn anything
meaningful from audio. This can best be seen from the results
of the subjective study where models trained with inferior
ground truth scored poorly on metrics such as naturalness and
motion distortions.

3) By carrying out a subjective study, and surveying
28 users, it was shown how important the inclusion of head
movement information is when evaluating the quality of talk-
ing head landmarks.

As part of this work, all data-sets, code, and trained model
weights will be made available to the community.

A. FUTURE WORK
This research has opened up a number of potential avenues for
future work. At the forefront of these, is the idea to develop
a generalised pose-aware model with the capability to few-
shot learn individual speaking styles. Over the course of this
work, it was discovered that when training a landmark pre-
diction network on a single speaker, the network was robust
to generating landmarks from a wide variety of speakers.
Regardless of what speech was being input to the network,
it was observed that the network would always generate accu-
rate landmarks but in the speaking style of President Obama.
This indicates that it may be possible to train a generalised
model and teach it via few-shot learning techniques to output
landmarks in a specific speaker style given a very small
amount of data of that speaker.

A dedicated neural renderer for the task of landmark based
automatic dubbing is also in the works. Sample renderings
were generated using the pretrained model provided by [22]
as a proof of concept, however it does not handle extreme

variations in the head pose very well as it is an image-
based renderer. These can be seen in the supplemental videos
section. Training of a video-based renderer is necessary to
generate the best possible results. Recent advances in gener-
ative neural networks related to diffusion models seem like a
promising avenue to explore.

Additionally there is still room to improve the lip landmark
generation, increasing its robustness to unseen speakers via
deep-learning based audio augmentation techniques such as
voice cloning, and synthetic speech generation, as well as
more classical approaches like pitch variation, time warping,
or noise addition.

B. LIMITATIONS
There are several limitations when generating pose aware
landmarks using the method presented in this paper.

1) The network does not generate realistic jaw movements
from audio. Due to the nature of the data augmentation
(de-correlating lip motion from jaw/head movement), the
network is not able to learn to also generate the correspond-
ing jaw movement from the audio. This limitation can be
overcome by computing the distance between the upper lip,
and lower lip, and raising/lowering the position of the jaw by
this amount via a simple linear equation. Alternatively, a very
simple network can be trained to solve this, consisting of just
a couple of LSTM layers as there is a very direct correlation
between lip and jaw movement that can be learnt.

2) Throughout this work it is shown that head pose is
related to audio, and a method is demonstrated to decouple
this relationship. Due to this, the approach in this paper is not
a suitable one for audio-driven video generation. Rather than
generating talking head videos from scratch, the proposed
network learns to modify an existing video, keeping the
original headpose but changing the lip content in response to
a new audio signal. This is ideal for the task of dubbing, as it
is assumed that the speech content and emotion of the dubbed
speech is similar to that of the original. Therefore it is desired
that the performance of the actor in the generated video is kept
as close to the original performance as possible, including the
head movements. However, this is a limitation, because when
inputting new speech content that doesn’t necessarily match
the original headpose, such as silence, the resulting output
will contain the original head motion, but with the lips firmly
shut. This may lead to the user perceiving the resulting video
as being ‘‘unnatural’’, however more study in this direction is
needed.

3) The approach presented in this paper is a single speaker
approach. Because the network was trained using videos
and audio from a single speaker (President Barrack Obama),
it should not perform as well when exposed to audio from
different speakers. That being said, the network is very robust,
generating accurate and realistic landmarks from speech
coming from a wide variety of speakers who were unseen
to the network. Instead, it was observed that the speaking
‘‘style’’ of the output landmarks was very similar to that
of President Obama regardless of the identity of the input
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speech. It is possible to extend this work to be a multi-speaker
network by training the networkwith data processed using the
same techniques as employed by the works presented by [22]
and [20] combined with the Procrustes lip augmentation.

4) Distance-basedmetrics are not that useful when attempt-
ing to judge the quality of landmarks generated across
different models in the literature, especially when one tries to
make a direct comparison between said models. For example,
consider model A, trained using landmarks extracted, and
normalised using pre-processing method A. The quality of
the landmarks generated by model A are only as good as
the ground truth model A was trained on. Furthermore, any
distance metric used for evaluating the landmarks, will be
calculated using the predicted landmarks, and it’s associ-
ated ground truth, therefore one cannot directly compare the
landmarks from model A and model B with distance based
metrics as they are both likely to have different methods for
extracting their ground truths. See figure 8 to see just how
different the landmarks extracted from the same frame can
be. Due to the reasons outlined above, it is entirely possible
that in a comparison between two models, A, and B, where
model A has inferior ground truth to B due to variations
in the landmark extraction process, model A could report
better scores than B even though B may look visually better.
Despite this, it is still very useful to provide distance based
comparisons between other similar models in the literature,
and their respective ground truths, as it helps one gain a rough
idea regarding the quality of their generated landmarks with
respect to other approaches.

5) As this is an approach towards generating audio driven
pose-aware landmarks, rendering the landmarks falls outside
the scope of this work. That being said, example renderings of
the landmarks generated by this approach using the pretrained
renderer from [22] are provided in the supplementary videos
section. These videos are there as a proof of concept, showing
that one can render high quality videos from the 3D pose-
aware landmarks presented in this paper.
C. FINAL REMARKS
While automated dubbing has implications for deep-fakes,
it is becoming a reality and the benefits for making enter-
tainment more readily available to a wider and more global
audience is important - this doesn’t just mean English to
other languages - it can also mean content in low-resource
languages dubbed back into more realistic English! Major
streaming companies already have a lot of non-English con-
tent so this is important for the further democratisation of
content.
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