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Summary

Spintronic materials have the potential to revolutionise certain aspects of information

technology. Proposed applications include high-speed low-power MRAM (magnetic ran-

dom access memory) for more efficient computers and on-chip THz magnetic oscillators

for increased wireless data transmission speeds. An ideal material for spintronics is a

zero-moment half-metal (ZMHM), which exhibits no stray magnetic field but simultane-

ously intrinsic spin-polarised conduction. The first ZMHM, Mn2RuxGa, was discovered

by the Magnetism and Spin-Electronics Group in Trinity College Dublin in 2014, with a

vast body of work being undertaken in the last decade to develop and take advantage of

the discovery. Initial efforts focused on optimisation of the stoichiometry of the material,

thereby changing electronic density of states (DOS), a process referred to as Fermi-level

engineering. The static and quasi-static properties of Mn2RuxGa are currently quite well

understood thanks to the efforts of those students who came before me, along with the

interpretive talents of the senior researchers. Key properties such as spin-polarisation,

magnetic moment per atom and the strength and direction of the magnetocrystalline

anisotropy have been thoroughly investigated. With this foundation to build off, my focus

has been to develop a complete “picture” of the system and its dynamic properties, a

conceptual physical basis for all of the effects that we do observe or wish to observe. This

encompasses both a mathematical simulation model for the dynamics as well as knowledge

and control of the physical structure of the system and, importantly, how the two relate.

The layout of this thesis reflects the goals outlined above.

In the first chapter, I give an extended introduction and motivation for the investigation

of spintronics materials and why computational models and knowledge of the physical

structure is so important.

In the second chapter, I discuss the computational models that I have helped to develop,

with my supervisor. Our goal was, and is, the ability to simulate all the effects that interest

us in a physically justifiable manner with as minimalistic a model as possible. Because

of the enormous complexity, a suitable strategy is to divide and conquer different aspects

of the final envisioned model, to this end our first model was a relatively simple, 1D,
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classical spin dynamics model, which was nonetheless capable of simulating complex spin

structures and interesting dynamics. We then went the opposite direction, calculating

the static energy of a system with some quasi-particle of dynamic motion (a magnon or

phonon) imposed, but with a realistic 3D lattice structure where interatomic interactions

were distance-dependent. The final model encompasses both previous models and much

more: Ehrenfest dynamics where the conduction electrons are modelled fully quantum

mechanically and are coupled to the classical atomic spins of the first model and classical

mobile nuclei.

In the third chapter, I focus on the structural characterisation of materials, primar-

ily through crystal diffraction. I investigated variations on the quintessential Mn2RuxGa

in the name of optimisation as well as potential new materials. As mentioned, the elec-

tronic and magnetic properties depend on the electron wavefunction overlap, which in turn

depends critically on the crystal lattice size and structure. Understanding not just the

relationship between crystal structure and magnetic properties but also all the intervening

steps is imperative to us.

In the fourth chapter, I detail the Mössbauer spectroscopy setup developed with my su-

pervisor. This technique utilises the peculiarities of the nuclear energy levels of a naturally

occurring isotope of iron, 57Fe, to probe with startling sensitivity the local electromag-

netic environment of said nuclei, thereby yielding information about the chemical bonding

and magnetic orientation. The limitation to Fe-containing materials is unfortunate but we

would be remiss not to take advantage of the technique simply because Mn-based materials

appear to be more promising for ferrimagnetic spintronics at present. When opportunities

arose to collaborate and provide unique measurements and data to fellow researchers, we

were more than happy to act despite sometimes the tenuous links to “the dynamics of

spintronic materials”.

I finally conclude what I have accomplished in this work, build on the foundations of

the work of previous students and with sufficient anchoring to allow those who come after

to continue the construction of this grand picture we have envisioned.
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ŷ. Right panel shows the nuclear (non-magnetic) F 2 as a function of Ru

content, assuming vacancies in the lattice for reduced content. . . . . . . . 168

3.43 Some examples of the raw neutron data for different reflections, fit with

Gaussian profiles. The large peaks near L = 1.9 in the upper panels is due

to the substrate. The peaks are quite noisy but the SNR ratio is quite good

considering the 25 nm thickness of the film. On the right is a list of all the

peaks that were scanned (excluding substrate alignment). . . . . . . . . . . 168

3.44 The squared structure factors (Lorentz and polarisation corrected inte-

grated intensities) for peaks measured at T = 2K and T = 300K. On

the right are the averaged values for the room-temperature scans. These

peaks are the most suitable for combined refinement with the X-ray data

in the previous section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xxv



3.45 Result of simultaneous Rietveld refinement on neutron and X-ray diffraction

data from the MRG sample (t = 25 nm, Tdep = 225 ◦C). The goodness of fit

is not as impressive as for other samples demonstrated, but the refinement

was still a success. The (404) reflection in the X-ray case is again left out

due to being at too low of an incidence angle to be accurately measured. . 170

3.46 SQUID magnetisation data measured at room temperature on the same

Tdep = 225 ◦C MRG sample that neutron diffraction was performed on.

The moment is very small and almost perfectly compensated at remanence

with no hysteresis loop evident. . . . . . . . . . . . . . . . . . . . . . . . . 172

3.47 Possible spin configuration for the two MRG sublattices. A very small

canting angle results in a net moment which is roughly perpendicular to

the individual atomic moments. . . . . . . . . . . . . . . . . . . . . . . . . 173

3.48 Isometric and top-down views of the Co2TiSi and MgO unit cells, showing

epitaxial relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.49 Predicted θ/2θ scan for single-crystalline, (001) oriented Co2TiSi/MgO. . . 175

3.50 An XRD scan of a Co-Ti-Si thin film epitaxially grown on an MgO substrate.

The large number of peaks within the 2θ range implies a large unit cell.

The peaks shown in red are were calculated from Equation 3.1 using d =

11.23/L. This spectrum was recorded on a different diffractometer than

the aforementioned Bruker, in the Bragg-Brentano geometry, resulting in

higher SNR, but poorer resolution and more instrumental artefacts: the

“cliff edges” to the left of the substrate peaks in the spectrum are due to

the adaptive filter of the detector, above a certain intensity threshold, the

detector switches to a strong filter to protect itself. . . . . . . . . . . . . . 175

3.51 Isometric and top-down views of the Co16Ti6Si7 and MgO unit cells, showing

assumed epitaxial relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3.52 Accessible, non-forbidden reflections in reciprocal space, rotated into the

scattering plane, for Mn4N on MgO. . . . . . . . . . . . . . . . . . . . . . . 178

3.53 Isometric and top-down views of the Mn4N and MgO unit cells, showing

epitaxial relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xxvi



3.54 Reciprocal space map of Mn4N/MgO, aligned to the MgO (113) peak. The

Mn4N (113) peak was centred at q⃗ = (3.651, 7.817) nm−1, yielding lattice
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4.2 Typical patterns observed in 57Fe MöS, with splitting greatly exaggerated,

adapted from [6]. IS and QS stand for isomer shift and quadrupole splitting

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.3 A comparison of the Bhf-distribution and Q-distribution models for two

different values of the broadening parameter σ which controls the width of

the normal distribution from which the parameter values are chosen. . . . . 196

4.4 Backscatter geometry with γ-ray to sample-surface angle shown. Minimal

(graded) Pb shielding is used to allow for the reduction of the sample-

detector distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.5 γ-ray production with absorber excitation and decay illustrated, adapted

from De Grave et al. [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.6 Block diagram for our backscatter setup. . . . . . . . . . . . . . . . . . . . 199

4.7 (a) The data summed over the velocity axis, aka the fluorescence spectrum,

with contributions fit using Gaussian profiles. Before the geometry was

optimised to remove Pb. (b) The data summed over the energy axis, clearly

showing the resonance. The velocity axis is mirrored as both the upstroke

and downstroke of the triangular velocity are included, this is addressed in

the next section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.8 Energy calibration using the theoretical values for the K and L X-ray edges

of the various elements that contribute to the detector signal. The average

value is used for W/Au since at high energy the absolute energy resolution

is poor and there is no benefit to separating the peaks. . . . . . . . . . . . 202

xxvii



4.9 The electronics: NIM rack with drive units, amplifiers and ADCs for two

setups; overhead view of the MPA showing the connections and an oscillo-

scope showing the triangular wave and drive error. . . . . . . . . . . . . . . 203

4.10 A bus diagram showing the path of the data takes after it is digitised. . . . 204

4.11 The 3D view of the raw data from a calibration sample, showing the low-

energy region (150/1024 channels). The X-ray and γ-ray peaks are clearly

visible at approximately energy channel 20 and 90 respectively. The velocity

resonances are also clearly visible at the top of these peaks, particularly the

at γ-ray energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.12 (a) The raw data in the low-energy region with the minimum velocity, off-

resonance region denoted. (b) The normalised data with the X-ray, γ-ray

and background energy regions denoted. (c) The three spectra obtained

from this process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

4.13 Velocity unit conversion and folding point determination using a reference

sample of natural α-Fe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.14 The mosaic sample arranged from strips of the Co75.5Fe4.5B20ribbons, show-

ing the WS and FS. With respect to these pictures, the incoming photons

from the source travel to the right and into the page, while those travelling

to the right and out of the page will be captured by the detector. This infor-

mation is important to relate the measured values of Θ to actual magnetic

orientation in the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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4.17 Nd2Fe14B unit cell, and the Mössbauer spectrum for Nd2Fe14B plotted using

the hyperfine values measured by Pinkerton et al. [25] from a melt-spun

bulk alloy using the transmission geometry [25]. . . . . . . . . . . . . . . . 213

4.18 X-ray and γ-ray spectra from the films labelled as in Table 4.2. The dif-

ference annealing makes to the crystal structure is obvious (top row vs

lower rows), as is the difference in peak ratios between the X-ray and γ-ray

spectra, signifying the existence of surface domains. . . . . . . . . . . . . . 215

4.19 The magnitude of the hyperfine field (or central value of the distribution

for the Bhf-broadened model) and the magnetic moment orientation (the

weighted average is used for the two-phase model) are plotted. The x-axis

shows increasing Tdep and Tan, with field-polarised data appended. . . . . . 216
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Chapter 1

Introduction

1.1 History and Context

Technological advancement has been dominated by innovations in semiconductor processes

since the proliferation of the CMOS (complementary metal-oxide semiconductor) process

in the early 1960s [1]. This process enabled high-speed, low-power transistors to be created

and incorporated into ICs (integrated circuits) and the optimisation of these transistors

was the task at hand for the next almost half-century. A very well-known statement re-

garding the development that followed was Moore’s law [2], where Moore noted in 1965

that the number of transistors per IC doubled roughly every two years. This “law” trans-

lated directly into cost-per-performance decreases for decades before eventually slowing

down. Moore’s law slowed dramatically in the 2000s and has ceased to be valid since the

2010s, primarily because MOSFETs cannot physically be made any smaller. In the verti-

cal direction the insulating gate dielectric is only a handful of monolayers thick and cannot

decrease further due to electron tunnelling leakage currents, while in the planar direction

the size is limited by the lithography process: as of 2014, the cutting-edge in extreme-UV

lithography (in public knowledge) utilised a wavelength of 13.5 nm, with maximum reso-

lution being a similar size to the wavelength [3], with established commercial equipment

reaching < 20 nm in lateral size1. Similarly to transistors, the size and therefore areal

density of magnetic recording bits also roughly doubled every two years in the late 20th

1Of course, the talk of “4 nm” nodes and similar by the companies such as Samsung and Intel is purely
marketing propaganda with no connection whatsoever to the technologies in question, although the terms
would be accurate had Moore’s law continued.
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century. This is perhaps unsurprising given both technologies depend on the deposition

and small-scale control of thin films. Scaling has also stagnated when it comes to mag-

netic bits: when they fall below a certain size (dependent on the material properties), stray

fields can no longer be made precise enough to individually control them and they become

susceptible to thermal fluctuations. Occasionally, new breakthroughs occur, such as the

addition of an exchange-coupled hard magnetic layer to improve stability [4]. More re-

cently, the HAMR and MAMR (heat/microwave assisted magnetic recording) write heads

have been developed, which allow the recorded magnetic bits to be natively very stiff, with

their switching then being assisted by means of heat (using a surface-plasmon focused laser

to heat locally) [5], or by a microwave field (thus exciting ferromagnetic resonance in the

recording medium locally using a tiny spin-torque oscillator) [6].

Due to the eventual stagnation of these and other technologies, which have driven

advancement in the information age, focus has increasingly shifted to searching for new

technologies rather than improving old ones. For example, three very important fields

which are intensively researched today include:

� Quantum computing, which seeks to harness the inherent probabilistic nature of

quantum mechanics, where there are predicted uses in, for example, cryptography:

creating unbreakable encryptions while breaking older ones. A leading candidate is

single photon qubits [7] and it is a very illustrative example: if a standard optical

beam splitter allows through 50% of a beam of light and deflects the other 50%,

what happens if a single photon hits the splitter? It cannot be split so it must

either be entirely transmitted or reflected with a certain probability of each occur-

ring. Superconductivity is another promising mechanism to enable quantum qubits:

entanglement and other quantum properties are clearly exhibited on a macroscopic

scale in such materials [8] with the obvious caveat that non-ambient conditions are

required2. Finally, there is a strong connection to magnetism: the exchange inter-

action is a common mechanism by which quantum qubits are entangled, such as

in a gated array of single-electron quantum dots, where the gate voltage is used to

control the degree of coupling [9].

2Unless the recent arχiv pre-prints are to be believed. Update as of the thesis corrections: the claims
of superconductivity in these papers have indeed been shown to be incorrect
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� Battery technologies are very important in the modern world with renewable en-

ergy such as solar seeing increased adoption, and fossil-fuel burning engines being

phased out. Bigger, better, cheaper and cleaner batteries are needed to store re-

newable energy such as solar (which is only available during the day...) and enable

electric motors to compete with their bi-stroke brethren.

� Spintronics is arguably the field which can continue the progress in IT without a

drastic change of approach. While the charge and spin of electrons have long been

harnessed in, for example, transistors and magnetic recording, respectively, their

functionality is rarely combined and used together. The broad aim of spintronics

is to harness that combined power. Phenomena which are quite mature and have

already seen adoption in commercial devices include GMR and TMR (giant and

tunnelling magnetoresistance) where the measured electrical resistance strongly de-

pends on an external magnetic field, lending itself to use in magnetic field sensors

or hard drive read heads. This is only the tip of the iceberg, however, and currently

technologies based around spin-torque are being developed in applications such as

MRAM (magnetic random-access memory) and SOT (spin-orbit torque) oscillators

[10].

The latter of the above fields is the one which I find myself in. However, rather than

commercial device development, we are more concerned with the fundamental material

research, in particular the modelling and understanding of novel materials, which have the

potential to satisfy some of the requirements of spintronics devices and hence enable the

visions to be realised. Developing a complete picture of exactly how these novel materials

work, why they exhibit the properties that they do, and what effects/phenomena can be

realised as a result, is an imperative task where work must be backed by computation and

experiment.

1.2 Basic Magnetism

It is worthwhile to recap some of the more fundamental aspects of magnetism before

discussing more specific theory and experimental methods. Magnetic materials span a

plethora of systems which exhibit varied manifestations of magnetism, in particular spon-
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taneous magnetisation and the hysteretic and coercive effects that accompany it. Today,

we know that magnetisation can be reduced to the angular momentum of electrons and

to a lesser extent, nuclei, and this angular momentum obeys quantum mechanics. To

understand the many varied effects of magnetism, it is wise to start with the quantum

mechanics of the electron.

1.2.1 Magnetism of The Electron

1.2.1.1 Orbital and Spin Angular Momentum

Orbital angular momentum of electrons can be phenomenologically treated as due

to their orbital motion around the nucleus. Electric current travelling in a loop causes

a magnetic moment |m| = IA where A is the area of the loop and the direction of m⃗

is determined by the cross product of the position and velocity vectors of the electron,

or equivalently using the right hand rule: when giving a “thumbs up”, if ones’ fingers

follow the path of the conventional current then the thumb points in the direction of m⃗.

The same logic applies to single electrons with the caveat that they travel in the opposite

direction of current as they are negatively charged particles. The current is charge per

unit time I = − e
τ
= − ev

2πr
, giving m⃗ = − e

2
r⃗ × v⃗ when multiplied by the area. Classical

angular momentum tells us that l⃗ = mer⃗ × v⃗ and so m⃗ = −( e
2me

)⃗l = γl⃗, where we define

the gyromagnetic ratio γ = − e
2me

, one of the more important proportionality constants in

magnetism.

Of course, the classical picture of electrons whizzing around the nucleus following some

ring-shaped path is not correct, that would require constant electromagnetic radiation to

be produced due to the constant acceleration of the charged particle. Rather, electrons

exist is quantised orbital states of the nucleus in their ground state. The orbital angular

momentum is similarly quantised in units of ℏ such that mz = γmlℏ where the z axis

is arbitrarily chosen as the quantisation axis and the orbital quantum number ml =

0,±1,±2... depends on the orbital state in question. This provides another fundamental

unit, the Bohr magneton µB = eℏ
2me

≈ 9.274× 10−24Am2 3, so that mz = −mlµB.

3It is often convenient to express µB in other units: µB ≈ 9.274× 10−24 JT−1 ≈ 0.0579meVT−1
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Spin angular momentum is a intrinsic property of electrons (and other fermions)

which does not depend on some orbital state. It could be treated similarly as due to the

spinning motion of the finite-volume electron but this is not as justifiable as the surface of

the electron would need to break the speed of light to provide enough angular momentum.

The spin moment has constant magnitude and can only be quantised by its direction

ms = ±1/2, importantly it cannot be zero, unlike the orbital moment. The gyromagnetic

ratio for the spin angular momentum is double that for the orbital: m⃗ = − e
me
mss⃗. For

consistency, the “g-factor” is introduced, equal to gl ≈ 1 for the orbital and ge ≈ 2 for the

spin angular momenta so we can write m⃗ = −g e
2me

mss⃗. The g-factor is absorbed into the

gyromagnetic ratio γ = −g e
2me

.

Spin-orbit coupling describes how the spin and orbital angular momenta of an electron

orbiting a nucleus combine to form the total j⃗, with the effective atomic g-factor then being

determined by the Landé equation [11, §3.7]. It can be classically approximated again

by assuming the electron is travelling around the nucleus, this time from the electrons

reference frame. The nucleus orbits the electron with a resulting magnetic field due to the

circulating current |Bso| = µ0
In
2r

= µ0
Zev
4πr2

which acts on the spin moment of the electron

with energy εso = −µBBso. The appearance of the atomic number Z and the electron

orbital radius r show that this interaction is greater for heavier elements and inner shell

electrons.

Angular momentum is more properly described fully quantum mechanically using wave

or matrix mechanics due to Schrödinger (and later Dirac) or Heisenberg respectively. It

turns out that the three Cartesian components of the angular momentum vectors do not

commute with one another but all commute with the total angular momentum.

[jx, jy] = iℏεxyzjz,
[
j2, jz

]
= 0,

where ε is the cyclic permutation operator and jz is conventionally chosen as the Cartesian

component to be measured along with j2. In quantum mechanics, observables can only be

measured simultaneously if their operators commute so we cannot know all components

of angular momentum, but we can know one component and the magnitude, typically

again z is chosen as the quantisation axis along which we do know the angular momentum

5



Chapter 1. Introduction

projection. The end result is that we can describe angular momentum vector as being

positioned on a cone of values around the z axis, where the planar projection of the

vectors is not, and indeed cannot be, known.

The possible orbitals (eigenvectors) that an electron can occupy are defined as solu-

tions to the Schrödinger (or Dirac as appropriate) equation Hφ = εφ where applying the

Hamiltonian operator to the eigenvector yields the scalar energy (eigenvalue) of the vector.

The Hamiltonian in question is

H = − ℏ2

2me

∇− Ze2

4πϵ0r

where ∇ is the spatial Laplace operator and the second term is the potential well from

the nucleus due to the Coulomb interaction. Solutions are obtained by separating the

radial and angular parts of the wave function and utilising the spherical harmonics, the

known solutions to the Laplace equation in spherical coordinates. These harmonics form

an orthonormal basis such that any function defined on the surface of a sphere can be

expressed as a sum of them. In tandem with the radial part of the wave functions, this

accounts for all of space. The correlation of the spherical harmonics to the structure of

the magnetic quantum numbers is clear when examined, see Figure 1.1. The radial part

of the solution for a spherical potential such as the nuclear Coulomb potential can be

described by the product of Laguerre polynomials with an exponential decay [12, §3.7].

The radial part of the wavefunction for a given orbital is determined by the quantum

numbers n and l while the angular part is determined by l and ml. In general, the

principal quantum number n determines the size of the orbital while l and ml determine

the shape and orientation respectively. The orbitals described so far are exact solutions

to the Schrödinger equation for a one-electron atom, i.e. hydrogen, and their energy

increases with increasing quantum numbers. For real atoms with many electrons, the

electron-electron and spin-orbit interactions complicates things, in some cases causing

anomalies in the energies of successive atomic orbitals.

6



1.2. Basic Magnetism

Figure 1.1: One-electron (hydrogenic) orbitals for n = 5, with n − 1 possible val-
ues for l, and 2l + 1 possible values for ml. For comparison, on the right are the
complex-valued pure spherical harmonics with phase indicated by colour while the
left shows the commonly used real superpositions. As the spherical harmonics form
an orthonormal basis, any superposition of them can be used and real superposi-
tions oriented with respect to the Cartesian axes are a useful choice as these will be
eigenvectors of a Hamiltonian whose symmetry is determined by crystal structure.
© Geek3 [13] / CC BY-SA 4.0

1.2.2 Many-Electron Atoms

Electrons are indistinguishable Fermions, meaning no two electrons can occupy the same

quantum state, in contrast to bosons for which many can occupy an identical state. Prac-

tically, this means that electrons on the same atom (which can technically be found in the

same position) must have different quantum numbers. In addition to the three numbers

related to the orbitals, electrons can have positive or negative spin, signified by the quan-

tum number ms = ±1
2
. Thus two electrons can exist in any orbital. Taking ground-state

iron as an example, there are 26 electrons to distribute among the orbitals. According

to Hund’s empirical rules, electrons fill orbitals with ml taking precedence over ms, the

explanation being that electrons in the same orbital experience greater mutual repulsion

from the Coulomb interaction so tend to fill different orbitals first [14, §4.2.0]. The elec-

tron configuration for free iron is [Ar]3d64s2, illustrated in Figure 1.2. In filled orbitals

the magnetic quantum numbers, both orbital and spin, cancel out so that there is net

7
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zero effect. For the 3d6 electrons of Fe, the quantum numbers are ml = −2,−1, 0, 1, 2,−1

and 2ms = 1, 1, 1, 1, 1,−1, thus the atom as a whole has orbital angular momentum∑
ml = L = 2 and spin angular momentum

∑
ms = S = 2. The total angular mo-

mentum is the vector sum of the orbital and spin components, Hund’s third empirical

rule describes how the two angular momenta couple: if the orbital is more than half-

full J = L + S and if it is less than half-full J = L − S, so that for ground-state iron

J = 4. There are some quirks regarding the order in which electron orbitals are filled, the
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Figure 1.2: The successive ionisation energies of iron i.e. the energy required to
remove the outermost electron of Fe, Fe1+, Fe2+ and so on.

[Ar]3d64s2 ground state of iron being an example. The first oxidation is in fact [Ar]3d7:

when the first s electron is removed, the “bonus energy” from having a fully filled orbital

is no longer relevant and energy is minimised by putting the lone remaining s electron

into the d orbital.

1.2.3 Many-Atom Lattices

The total angular momentum J determines the magnetic moment of the atoms, but when

atoms bind together to form materials, another layer of intrigue is added. The orbitals

of adjacent bonding atoms tend to hybridise, altering their energy and occupation. In

fact, the nature of bonding is to reduce the overall energy of a system, usually via the

transfer or sharing of electrons between atoms such that the undesirable partially-filled
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1.2. Basic Magnetism

shells become filled, thus almost by definition, bonding tends to destroy the magnetism of

atoms. Depending on the nature of the bonding (ionic, covalent, metallic), the details of

the magnetism can vary wildly and are quite difficult to predict. One of the more popular

methods of modelling the hybridised-orbital band structure of materials in magnetism is

spin-resolved DFT (density functional theory) [15], which attempts to predict the energy

and occupancy of all the hybrid orbitals of a material with the macroscopic properties

being predicted from there. However, DFT involves many approximations and it cannot

model the effect of finite temperature or crystalline disorder, and is very computationally

intensive.

One standard way to model magnetisation is to take an extreme situation which can be

predicted with come confidence and treat non-extreme materials as a linear combination

of the extremes. Electrons in a material can be considered localised on their host atom,

maintaining their atomic magnetisation, or delocalised throughout the material as in a

metal with the Coulomb potential of the lattice being considered a perturbation. The

electron wavefunctions in 4f orbitals and in the 3d orbitals of insulating ionic compounds

are not involved in hybridisation, they are either buried far enough below other orbitals

(such as 5s and 5p) or undergo complete electron transfer, with the magnetism being the

same as for a free atom in some oxidation state in the latter case. Usually, the lanthanide

materials have localised magnetic electrons while the 3d metals have delocalised ones [14,

§3.4].

1.2.3.1 The Crystal Field Interaction

Apart from orbital hybridisation, there are two further important phenomena that occur

when magnetic atoms form a solid. These are due to the crystal field interaction, that

is, the interaction of electrons on one atom with the Coulomb potentials of other nearby

atoms in a crystal lattice. Three common lattice structures are shown in Figure 1.3. The

non-spherical d and f orbitals, which are responsible for magnetisation, are affected by

the crystal field potential. For the transition metals, the 3d orbitals are some of the outer

ones along with the 4s orbitals and are relatively strongly affected by the neighbouring

atoms’ electrons. The crystal field potential usually has cubic symmetry, as in Figure 1.3,

and this potential is added to the spherically symmetric Coulomb potential of the host

9



Chapter 1. Introduction

Figure 1.3: Zincblende, bcc and rocksalt lattice structures with nearest-neighbour
coordination highlighted. All structures have cubic symmetry with 4, 8 and 6 nearest
neighbours respectively. The element-wise interactions in Heusler alloys have the
same symmetry as in zincblende structures while simple cubic lattices have the same
nearest-neighbour symmetry as rocksalt.

nucleus. This results in the ring-like symmetry of the spherical harmonics which describe

the orbitals being broken, as the pure spherical harmonics are not eigenstates of the com-

bined nuclear and crystal field potentials. Linear combinations of the spherical harmonics

with cubic symmetry can be found that are eigenstates of both potentials, resulting in the

orbitals illustrated on the left hand side of Figure 1.1. The end result is that the orbital

angular momentum of the electrons is quenched as the rings of charge density, which al-

lowed the electrons to circulate in the xy plane, are disrupted. This means that for the

transition metals, the atomic magnetisation is due only to the spin: max(mz) ≈ gSSµB,

where, to reiterate, gS ≈ 2 and S =
∑
ms with |ms| = 1/2. For free atoms of the same

element max(mz) ≈ gJJµB. This quenching does not apply to the lanthanide elements

however, the magnetic 4f shell is more tightly bound to the host nucleus on average and

does not feel the effect of potentials from other atoms in the crystal. For more detail and

examples, see [14, §4.4].

1.2.4 Collective Magnetism

So far, we have discussed the origin of magnetism from an atomic perspective and how it

evolves when multiple atoms come together to form materials. The main question now is

how and why the magnetic moments associated with individual atoms often work together

to yield macroscopic magnetic phenomena such as ferromagnetism and ferrimagnetism.

The force which causes the magnetic moments of unpaired electrons on adjacent atoms

10



1.2. Basic Magnetism

to align parallel is the exchange force and it can be seen as an extension of the orbital

hybridisation discussed above. Electrons are indistinguishable meaning that they can

be exchanged without altering the energy of a system, in the common example of a

hydrogen molecule with two nuclei and two electrons, this means that the electrons can

swap atoms and orbit the molecule as a whole. This implies that the electrons can inhabit

the same space, but from the Pauli exclusion principle electrons in the same place must

have opposite spin. Quantum mechanically, we say that the total wavefunction for the

two electrons must be antisymmetric meaning they can either have the same spin or be

able to occupy the same space, but not both or neither. To give an idea of the maths; for

the hydrogen molecule, the possible combined wavefunctions are:

ΨI = ϕasym(1, 2)χsym(1, 2) ΨII = ϕsym(1, 2)χasym(1, 2) (1.1)

where ϕ and χ denote the spatial and spin parts of the wavefunction and 1, 2 refer to

the two electrons. The spatial parts are equal to ϕsym/asym =
(
1/
√
2
)
(φ1 ± φ2) where φ

are the wavefunctions (eigenvectors of the Schrödinger equation) for the two individual

electrons. The energies of the two possible total wavefunctions are evaluated using the

Hamiltonian for the Schrödinger equation. The difference in these energies turns out to

be equal to the exchange integral:

J =

∫
φ∗
1(r⃗

′)φ∗
2(r⃗)H(r⃗, r⃗ ′)φ1(r⃗)φ2(r⃗

′) dr3dr′3 (1.2)

where we note the position r is exchanged across the integral. The energy of the system

is written as ε = −2Js1 · s2 where J (henceforth the exchange integral rather than total

angular momentum) is expressed in units of energy. The famous Heisenberg Hamilto-

nian generalises this equation describing the exchange between two electrons to describe

exchange between arbitrary magnetic atoms. This leads to the Heisenberg model of ma-

terials where atoms are treated as singular composite spins, discussed in the following

chapter.

H = −JS⃗1 · S⃗2

Properly, the spin vectors S⃗ should be quantum mechanical operators, but in the Heisen-

berg model of treating atoms as magnetic moments, they are effectively vectors.

11
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We now understand the origin of this Hamiltonian: the exchange integral J is equal to

the energy difference between total wavefunctions for two electrons with symmetric and

antisymmetric spatial parts, while the dot product S⃗1 · S⃗2 is 1 for parallel spins and 0 for

anti-parallel, but also can be treated continuously where the dot product is proportional

to the cosine of the angle between the two spin vectors. It is interesting to observe that the

exchange interaction described here is analogous to Hund’s third rule applied to adjacent

atoms rather than different orbitals of the same atom. The electrons filling the d orbitals

in an atom tend to align their spins first in orthogonal orbitals before occupying the same

orbitals with opposing spins.

In general, the sign and magnitude of J dictates the type of magnetism exhibited by

a material. Positive J lowers the energy for parallel spins (ferromagnetism), negative J

lowers the energy for anti-parallel spins (antiferromagnetism) and small J is not able to

overcome the thermal random vibrations by itself so the atomic spins essentially ignore

each other (paramagnetism), until an external field is applied which works with the ex-

change to create a magnetic moment bigger than expected for independent atoms. Recall

also that atoms with no unfilled orbitals have 0 net angular momentum and there are no

unpaired spins to consider (non-magnetic). There is also diamagnetism wherein a material

opposes an applied field, this is classically explained by Langevin [16] as the applied field

reducing the effective current which leads to electrons’ orbitals moment, thus effectively

inducing a negative moment in the material relative to the applied field, an identical effect

also occurs with conduction electrons. In fact all materials exhibit this diamagnetic effect

but it is small and only really important for those that are non-magnetic. One situation

where diamagnetism is encountered in my line of work is when measuring the moment of

a magnetic thin film on a non-magnetic substrate: the huge relative volume of the sub-

strate means its “small” diamagnetic response dominates the overall signal and must be

subtracted.

Refer to Coey [14, §5.2] or Cullity & Graham [11, §4.3], along with your favourite

introductory quantum mechanics textbook, for a more pedagogical introduction.

12
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1.2.4.1 Distance-Dependence

We have seen that the magnitude and size of the exchange integral J largely determines the

magnetic properties of a material, together with crystal structure. What then determines

the value of J? In real materials with different types of atoms, each with many electrons

which are localised and delocalised to different degrees, it is an immense challenge to

try and conceive a method to determine the magnetic state from first principles. The

Bethe-Slater curve shown in Figure 1.4 plots the value of the exchange integral J as a

function of the ratio between the size of the atom ra and the size of the d orbital r3d.

Physically, the Bethe-Slater curve makes a lot of sense. A smaller ra/r3d implies that the

Figure 1.4: The Bether-Slater curve showing the value of the nearest-neighbour
exchange integral as a function of the ratio of atomic radius to 3d (or 4f) orbital
radius. Not only are the ferromagnetic elements clearly outliers in the graph but
their J values match up to their observed Curie temperatures. This curve, while
obviously not capturing the full detailed physics of the interactions, reinforced the
idea that orbital-overlap is crucial to exchange.
Zureks, CC0 License [17]

magnetic 3d orbitals extend relatively further from the host nucleus and interact more

strongly with similar orbitals on adjacent atoms. For very small values as in Cr and Mn,

the overlap is so much that the electrons must have opposing spin to satisfy the Pauli

exclusion principle. For Fe, Co and Ni, there is significant overlap between the 3d orbitals

of adjacent atoms such that the exchange integral is large but there is enough “room” for

the electrons so they do not have to occupy the same quantum state and force J negative.

Then for larger ratios the 3d orbitals are buried and do not interact with orbitals from

other atoms. This curve gives a surprisingly accurate prediction of the type and strength
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of exchange coupling, in particular it predicts that Mn exchange becomes ferromagnetic

in compounds where the Mn atoms are further apart. The Bethe-Slater curve does not,

however, account for exchange interactions between further than nearest-neighbour atoms,

does not consider orbital hybridisation and does not consider the different interactions

between different d orbitals with different shapes. The Bethe-Slater curve is discussed in

the context of modern electronic structure theory, with orbital-resolved DOS (density of

states) computed via DFT, by Cardias et al. [18].

1.2.4.2 Band Magnetism

Many of the arguments presented in the previous few sections implicitly assumed the mag-

netic electrons were localised, true for the 4f electrons and for insulation 3d compounds.

For the 3d metals, this is not the case. The 3d and 4s electrons are both relatively far

away from the host nuclei and engage in hybridisation and bonding with other atoms in

solids. In this scenario it no longer makes sense to consider the individual orbitals but

material-wide hybridised bands of electron density, a.k.a. the DOS. An excellent con-

ceptual description of the formation of bands is given by Cullity & Graham [11, §4.4], in

summary, when two similar atoms with an outer filled s shell come together, eventually the

orbitals will begin to overlap. The electrons on the different atoms are not distinguishable

and cannot occupy the same space by the Pauli exclusion principle so this causes the s

orbitals to hybridise and form two new, energy-split levels. As the two new levels have

different energy, the electrons can happily occupy them and satisfy Pauli’s principle. If

we consider say 1017 Fe atoms4 in a metal where the outer orbitals strongly hybridise, then

to satisfy Pauli exclusion the 3d and 4s orbitals will need to split into a great number of

sub-levels to the extent that they effectively form a continuum in energy: a band. The

width of the bands depends on the how many sub-levels are necessary, which depends

on how many electrons have to “share” the same space, which depends on how close to-

gether the atoms are (the material’s lattice parameter) and how far from the nucleus the

atomic orbitals are (proportional to the nuclear charge). The s orbitals are further from

the nucleus and form wider bands than the 3d orbitals, which often form sharp bands. In

addition, since d orbitals can house 10 electrons compared to s bands’ 2, the d bands have

4There are 1.061× 1017 Fe atoms in a 50 nm× 5mm× 5mm film.
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a much greater density.

The equilibrium properties of metals depends on the position of the Fermi level in the

DOS. The Fermi level is simply the energy up to which the DOS is populated by electrons.

For a single atom, the Fermi energy is just the energy of the highest occupied orbital but

for metals, it depends on the hybridisation of the orbitals into bands and the number

of electrons in the orbitals which hybridise. Just as the exchange energy following from

the Pauli exclusion principle leads to Hund’s third rule and preferentially fills orbitals

with a certain spin quantum number, it analogously shifts the spin-up and spin-down

DOS relative to the Fermi level in metals. An example of some calculated spin-resolved

DOS for the magnetic 3d metals are shown in Figure 1.5. In essence, for a metal to be

Figure 1.5: The spin-resolved DOS for the three elemental metals which are ferro-
magnetic at room temperature, with the effect of exchange-splitting denoted. Also
shown are the calculated DOS for fcc γFe with three different assumed lattice pa-
rameters to show the immense sensitivity of the DOS to the interatomic spacing.
(Calculations courtesy of Ivan Rungger, via Coey [14].)

ferromagnetic, there must be significant 3d (or 4f) DOS both sides of the Fermi level but

not too far apart, and the responsible atoms must be at the correct separation relative

to their atomic number so that the exchange energy is sufficient to push electrons in one
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spin band below the Fermi energy into the other spin-band above the Fermi energy. This

is the case for Fe, Co and Ni in elemental form and the case for innumerable other mixed-

elemental compounds. Note in Figure 1.5 that while Fe has the largest splitting of its

bands, the splitting is not as “clean” as the other ferromagnetic metals, so Fe does not

have the largest Curie temperature.

One of the initial great accomplishments of the band magnetism theory was the expla-

nation of the magnetic moment per atom in the ferromagnetic metals. In free atoms, the

moment must be an integer number of Bohr magnetons as the electrons occupy discrete

energy levels, but when the orbitals are continuous bands of both 4s and 3d character,

the spin imbalance can naturally be non-integer as the electrons of the entire material are

shared between the bands which cross the Fermi energy. In modern times, DFT-calculated

band structure has found increasing applications in spintronics where it can help explain

the myriad of electron transport properties and anomalies which are intrinsically linked

to the DOS and position of the Fermi surface.

The origins of the main magnetic interactions, namely exchange and the crystal field,

have been introduced here for both “types” of magnetism: localised and delocalised. The

effect of these interactions and many more are discussed in more detail in the following

chapter, which concerns simulations, as they are introduced into our numerical atomistic

dynamics simulation model.

1.3 Spin Electronics

I will give a brief introduction to spin electronics and a briefer introduction to some of the

applications because many are discussed in more depth in later chapters where they are

relevant.

1.3.1 Spin Polarisation

Spin-polarisation is a measure of the discrepancy between spin-up and spin-down states at

the Fermi level. There are a number of different definitions depending on the application

at hand: when considering electron tunnelling, the difference in DOS for up and down

states is what matters; while for ballistic or diffusive electric current the DOS should be
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scaled by the value or squared value of the Fermi velocity respectively [19, 20]:

P =
N↑(EF ) v

n
F↑ −N↓(EF ) v

n
F↓

N↑(EF ) vnF↑ +N↓(EF ) vnF↓
(1.3)

where ↑, ↓ denotes the spin band, N is the DOS, EF is the Fermi energy, vF is the Fermi

velocity and n = 0, 1, 2 for tunnelling, ballistic or diffusive transport respectively. We can

see from the Figure 1.5 that the strong ferromagnetic metals Co and Ni have a significant

spin-polarisation at the Fermi level. If a material is fully spin-polarised at the Fermi level

(P = 100%) it is referred to as a half-metal, this occurs when the hybridised 4s states are

pushed above or below the Fermi surface and the 3d states are sufficiently spin-split by

exchange so that only one spin has DOS at the Fermi energy. Half-metallicity is a very

interesting property predicted in 1986 in the transition metal oxide CrO2 [21] and first

demonstrated via spin-resolved photo-emission spectroscopy (SR-PES) in a complex Mn

perovskite material La0.7Sr0.3MnO3 [22]. Different forms of half-metallicity are discussed

by Coey et al. in the context of the discoveries of the late 80s and 90s [23]. Most materials

which exhibit this phenomena are transition metal oxides or Heusler alloys.

1.3.2 Magneto-Transport

The key property of half-metals is that low-bias current (low, so that it only involves a

small shift of the Fermi surface) only involves electrons of one spin and is a spin current

as much as a charge current. This is naturally of great interest in the field of spintronics.

The various magneto-resistance effects AMR, GMR and TMR (anisotropic, giant and

tunnelling magneto-resistance) are all commercially useful effects in sensors and other such

devices and can be traced back to the band-structure. TMR spin valves in particular have

a diverging magnitude of effect when incorporating a half-metallic material: these involve

the tunnelling of electrons from a magnetic material with fixed direction of magnetisation,

across an insulating barrier, to a magnetic material with a magnetisation which can be

changed. These conduction electrons pick up the polarisation direction of the fixed layer.

When the two magnetic layers have parallel magnetisation, the resistance is lowest as the

polarised conduction electrons have similarly polarised states in the free layer which they

can occupy. If the free layer is a half-metal and has anti-parallel magnetisation compared
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to the fixed layer, then the resistance will theoretically be infinite as there are no minority

spin states at the Fermi level in the material. GMR and TMR stacks are discussed again

in the simulations chapter.

1.3.3 Magnetic Precession

Something I have not yet mentioned is magnetic moment precession or magnetic resonance.

An applied field exerts a torque on a magnetic moment perpendicular to their co-plane

such that the magnetisation precesses about the field direction. In addition, real materials

have a damping term that causes the motion to lose energy and the magnetisation to fall

towards the applied field direction, a typical spiral motion is shown in Figure 1.6. The

~H ~S

−~S×~H

Figure 1.6: The spiral motion of a magnetic moment in an external field due to the
torque and intrinsic material damping.

various magnetic interactions in a material, such as exchange and anisotropy, together

yield an effective magnetic field, which acts on a given electronic or atomic magnetic

moment. If the magnetic moment is not parallel to this field, a torque is exerted, resulting

in precession. The frequency of precession depends on the strength of the effective field

and thus the magnetic interactions. Kittel solved the equation of motion (discussed at

length in the simulation chapter so I will not go into detail here) to obtain the natural

resonance frequency using a mean-field approximation and assuming thin film geometry
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for ferromagnets and antiferromagnets [24, 25]:

ω0 = γµ0 (Ha −MS) ω0 = γµ0

√
Ha (Ha + 2Hex) (1.4)

where Hex and Ha are the effective field due to the exchange and anisotropy, MS is the

saturation magnetisation of the material and γ is the gyromagnetic ratio with units of

Hertz per Tesla; for free electrons γe ≈ 28GHzT−1. The effective anisotropy field in the

uniaxial (single easy axis) approximation is Ha = 2Ku/MS. These results, while simple

and approximate, give a very good idea as to how magnetic precession might occur in

materials. Ha is typically of order 1T and thus results in resonance frequencies in the 10s

of GHz, however, if the saturation magnetisation can be made small while maintaining

atomic magnetisation, the frequency can increase. Hex is typically two orders of magnitude

higher ≈ 100T, yielding resonance frequencies in the THz range.

Exchange-driven precession is thus one potential way to access the famed “THz gap”5.

The frequency of oscillation itself is just one piece of the puzzle, how to excite and con-

trol the oscillation is another. Ideally, the oscillation will be optically or electronically

controlled and should not be susceptible to the influence of external perturbations.

1.4 The Zero-Moment Half-Metal

One might envision an optimal spintronics material to have:

� A half-metallic band structure, wherein spin-currents are generated simply upon

application of a voltage.

� Large intrinsic effective fields due to anisotropy (preferably uniaxial) and exchange.

� No stray field that could effect neighbouring devices in a small scale integrated chip,

or be effected by external field.

Such a material is called a zero-moment half-metal (ZMHM) and is not a figment of imag-

ination but a theoretically well-studied and even experimentally demonstrated material.

5Producing and detecting THz frequency electromagnetic radiation is notoriously difficult, lying in the
region between those easily accessible using mature electronic and optical technologies [26]. Bridging the
THz gap is an oft-quoted motivating factor in spintronics [27].
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ZMHMs were first discussed and predicted by electronic structure calculations by van

Leuken and de Groot in 1995 [28]. Many of the predicted materials were Heusler alloys,

containing two transition metals and a p-block element, thus providing all the orbital

states and unpaired electrons necessary, the difficulty being in growing these materials

with the correct crystal structure to realise the effects. Many materials were predicted

by DFT or more conceptual arguments to be ZMHMs in the proceeding years [29, 30]

but without any success in actually fabricating the materials. The structures assumed in

calculations were always unstable or the magnetic properties different in reality than in

simulation because of some ignored effects or approximations. This is indeed one of the

major downfalls of DFT and similar calculations, they are aggressive simplifications of

the real, detailed picture and complete spin-polarisation or other binary predictions are

often “smoothed-out” in reality for these typically high-entropy materials. Indeed, for the

highly-structured, complex and continuous DOS of transition metal compounds to have a

significantly large region in energy with absolutely no states for one spin orientation and

a non-negligible amount of states for the other spin orientation, and for the Fermi energy

to further fall in this region, requires a small miracle of band structure engineering.

With the technological advancement, increasing skill and endless work of scientific re-

searchers in the field however, these miracles become possible. Modern crystal growth

techniques, particularly in thin film form, are a far cry from those even 20 years ago.

Especially, high-quality deposition facilities are more accessible than previously, with a

large number of researchers worldwide being able to add their efforts. The first experi-

mental demonstration of a ZMHM was the material Mn2RuxGa (MRG) fabricated by the

magnetism and spin electronics group in Trinity College Dublin in 2014 [31]. Prior to, and

since, this discovery, MRG and other Mn-containing Heusler alloys have been thoroughly

investigated by our group here in Trinity in a quest to understand, improve and optimise

the material and its properties [32, 33, 34, 35, 36].

MRG is not an antiferromagnet but a ferrimagnet as the two antiferromagnetically

coupled Mn sublattices lie on chemically inequivalent crystal sites, with Ga or Ru as

nearest-neighbour elements respectively: this of course changes the orbitals’ hybridisation

and occupancy and thus the magnetic properties. The two sublattices exhibit different

evolution of their respective magnetic moments as a function of temperature, pressure
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and other external parameters. The differing evolution of the magnetisation of the two

sublattices with temperature means that there will exist a temperature where the mag-

nitudes of the moments of the two sublattices are equal and thus cancel each other out,

resulting in zero net moment for the material, but without the symmetry constraints of a

pure antiferromagnet. This “compensation temperature”, as it is called, can also be tuned

by changing the lattice parameters, composition etc. of the material; we saw earlier how

sensitive the magnetic properties are to the crystal structure. This enables a great deal of

control over the material properties.

One of the more interesting and unique properties predicted to be exhibited by MRG is

current-driven THz-frequency self-oscillations [37, 38]. The low-power oscillating elements,

when incorporated in devices with a power source and amplifier, would enable high-speed

(albeit short-range due to the nature of electromagnetic radiation, suitable for intra-device

or NFC communications) wireless communication at speeds currently unachievable. This

is only possible because of the broken inversion symmetry in MRG, a product of its inverse

Heusler alloy structure which is not possible in pure antiferromagnets. Thus this subset

of ZMHMs, the compensated ferrimagnets, are more practically useful due to the spin-

orbit coupling effects that can exist in the materials due to the lack of crystal inversion

symmetry.

Mn2RuxGa has also been shown to exhibit all-optical-switching (AOS), one of the

only rare-Earth-free materials to show this phenomenon. Mn2RuxGa shows deterministic

toggle-switching on a sub-pico second timescale without other external stimuli apart from

light [39, 40]. This type of non-equilibrium ultrafast dynamics involves multiple degrees

of freedom and multiple quasi-particles (electrons, spins, phonons etc.) and understand-

ing the details of energy and momentum transfer involved in this process is part of our

motivation.

This harkens back to the common concept of a three-temperature model, where the

spin, lattice and electron subsystems are treated as independent but coupled energy baths,

this can be extended to a four-temperature model for systems with antiferromagnetically

coupled spins. The dynamics of the system are governed by the empirical coupling con-

stants between said baths. The simplicity of this model is its primary strength but for

understanding and attempting to control some of the aforementioned more complicated
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phenomena, microscopic formalisms of the empirical coupling constants are desired, i.e.

the constants G1,2 in Figure 1.7 will be replaced with equations from the relevant theo-

ries. For example, sd-exchange coupling between the spin and electron subsystems, with

the spin and lattice subsystems coupled via magnetocrystalline anisotropy. A fully mi-

Spin (Mn4c)

Spin (Mn4a)

Gl,s

Ge,l

Ge,s

Jac

Jcc

Jaa

Two spin 

subsystems for 

ferrimagnets.

Electron

(plasmons)

Lattice

(phonons)

Spin

(magnons)

Figure 1.7: A diagrammatic representation of a four-temperature model for coupled
subsystems. In a simulation, the dynamics of each would be simulated separately
with the influence of the different subsystems on one another treated as external
fields or potentials.

croscopic four-temperature model is a lofty goal to strive towards. In the simulations

chapter, a comprehensive microscopic description of the dynamics of the spin subsystem

is developed, with inclusion of the other subsystems beginning in the later parts of the

chapter.

MRG is an extremely interesting and promising material which drove the development

of our simulation model, the topic of the second chapter, and is the subject of the majority

of the experiments in the third, structural characterisation, chapter. For this reason, it is

introduced here, more details about the magnetisation and structure are discussed in the

aforementioned chapters.

1.5 Techniques

Some more general techniques, not strictly limited to applications in spin electronics,

that I have utilised over the years are Mössbauer spectroscopy and point-contact Andreev

spectroscopy.
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1.5.1 Mössbauer Spectroscopy

The Mössbauer effect is the ability of nuclei in solids to emit or absorb photons with

effectively no recoil, due to the photon energy being low enough not to excite any phonons,

and the crystallite which contains the nucleus recoiling as one mass. The recoil energy

is reduced by a factor equal to the number of atoms in the crystallite, relative to a free

nucleus emitting the same photon, becoming negligible. A radiative nuclear transition

which exhibits this effect and has a suitably small bandwidth is capable of precisely probing

the hyperfine shifts in nuclear energy levels due to changes in the chemical environment.

Mössbauer spectroscopy is most often performed with 57Fe which is a naturally occurring

isotope of Fe with an abundance of 2.12%. This first nuclear energy level of this isotope

has energy E = 14.4 keV with a half-life of τ1/2 ≈ 100 ns. When excited the nuclei

can decay via photon emission with a bandwidth of order Γ ≈ 5 neV, these photons

can then be used to probe the hyperfine shifts in energy levels of other 57Fe nuclei with

resolution of order E/Γ ≈ 1012. The penetrative nature of γ-rays means sample can

be investigated completely non-destructively and with no surface preparation necessary.

As a nuclear probe, this technique is especially complementary to most electromagnetic

radiation-based techniques which rely on interactions with the atomic electrons. This

technique is an extremely useful and somewhat unique tool for investigating the local

structural and magnetic properties of Fe in materials which contain this most famous

of magnetic elements, the technique is discussed in great detail in the fourth chapter of

this thesis, which is based on our methodology-themed paper recently published in IOP

Measurement Science and Technology [41].

The technique was used to study a wide range of materials of interest in the field of

spin electronics and general magnetism including CoxFeyBz amorphous ribbons used in

high-speed switching power electronics and magneto-oscillators, thick films of the very

strong magnet Nd2Fe14B deposited using a new high-throughput sputtering technique,

and tetragonal FeNi (tetrataenite) from meteoritic samples with potential to replace high-

anisotropy rare-Earth containing magnets.
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1.5.2 Point-Contact Andreev Spectroscopy

Another technique which is of great use and is extremely relevant in the field of spintronics

is point-contact Andreev-reflection (PCAR). This is something I spent significant time on

at the beginning of my doctoral research but since the start of the COVID pandemic, we

have only been able to acquire the liquid He required to perform these measurements for

less than a month of combined time and a negligible amount of new results were obtained.

PCAR utilises a superconducting point contact to measure the contact spin polar-

isation of a material [19]. The sample is mounted on a stage below a Nb (or similar

superconductor) wire with a sharpened tip attached to a piezo stepper motor. The ap-

paratus is inserted into a cryogenic chamber and cooled down below the superconducting

temperature of Nb at 9.2K, before the motor is used to lower the wire into the sample,

hopefully puncturing any protective oxide layer which has formed. The conductance of

the contact is then measured as a function of applied bias of order ±20mV.

How does this yield information on spin-polarisation? In superconductors, electrons

do not travel alone but in Cooper pairs, which experience almost no electrical resistance

[42]. These Cooper pairs consist of two electrons with opposite spin. Consider a normal-

metal (NM) superconductor (SC) interface with a low-bias current applied. An electron

will travel from the NM towards the SC interface and impinge. To conserve charge,

momentum and spin, upon generation of a Cooper pair in the SC, an “electron hole” with

opposite charge and momentum to the impinging electron is reflected from the interface

in the NM. In this case, a charge of 2e is transferred across the interface and so the

conductance is doubled relative to the baseline. The baseline is determined by either the

high-bias or high-temperature (> Tc) conductance where superconductivity is destroyed.

Now consider the NM is replaced by a fully spin-polarised half-metal (HM). When the

electron impinges on the interface, there are no states of opposite spin in the HM and so

spin cannot be conserved and no Cooper pair is generated: the conductance is completely

suppressed. Thus by measuring the conductance of the SC point contact in this technique,

the contact spin-polarisation can be obtained. I was personally not able to measure a

significant amount of PCAR data from MRG samples or otherwise during my Ph.D. for

the aforementioned reasons and I therefore do not devote any more time to the technique in

this dissertation, for more information, refer to the thesis of Borisov [20] or the publications
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of Soulen et al. [19] and Stamenov [43, 44]. In the future, PCAR measurements may

become more popular here if the proposed plan to purchase a closed-loop system (utilising

He gas and a compressor rather than liquid He) comes to fruition. This would make

running the cryogenic chamber significantly cheaper and less prone to supply-chain issues

but with the not-insignificant hurdle that > ¿250,000 capital investment is required up

front. Proposals for a grant to enable this purchase are being submitted to funding calls

when possible.
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Chapter 2

Atomistic Magnetics Simulations

2.1 Motivation

Observation is the basis of science and empirical evidence will always trump simulated

results, however, simulations do and will always have a place in research. In particular,

experiments which are very difficult or expensive and have well-developed theories, such

as magnetic neutron scattering from polycrystalline thin films, are good candidates for

confirmation via simulation. Simulations of physical equations provide a fast and inex-

pensive method to investigate phenomena and compare materials. From the invention

and proliferation of computers through to the current information age, simulations and

computations constitute an ever-increasing proportion of physics research and for good

reason. Making a particular thin-film stack with the desired accuracy requires access

to deposition and characterisation facilities typically costing millions, while experimental

procedures often take months to optimise. On the other hand, in 2023 anyone with access

to a computer can perform simulations and test variations of that same stack. A small

workstation with excellent computation ability will cost in the tens of thousands, while

access to large-scale supercomputer facilities for a limited time can be obtained for a mod-

est fee. Of course, simulations always involve some approximation of physical reality, but

the results obtained are nonetheless invaluable and in particular can help serve as a guide

to experimental work. The speed and ease of exploring a vast amount of parameter space

once the underlying equations are coded means a huge amount of results can be simulated

and compared to observations to see which simulated microscopic event matches the ob-
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served effect most closely, this is especially useful in the development of new materials to

help understand the underlying mechanisms, see e.g. Barker et al. [1].

In materials science and especially magnetism, there are traditionally three distinct

paradigms when it comes to simulations: macroscopic, microscopic and atomistic, with

the newer atomistic approach becoming more popular in recent times with increasing

computer power [2]:

� Macroscopic simulation deals with averages and so-called mean field models which

makes it easy to simulate large volumes quickly, this is especially useful for things like

magnetisation reversal and domain structure simulation of relatively simple materials

[3, §7]. Of course, the typical materials in modern investigations are not at all simple

and the focus on nanoscopic and quantum phenomena means macroscopic models

are becoming less useful.

� The microscopic approach is essentially an extension to the macroscopic approach

where the material parameters can vary spatially but the variation is confined to be

smooth (or slow), such that it remains continuous and integrable. This framework

allows the simulation of features down to the sub-micrometre (100s of nm) +range

including the domain structure in many materials and shape effects.

� Atomistic simulations consider the interaction of magnetic moments on individual

atoms in a material. This is obviously the most accurate approach as no averaging

or assumptions are made which could obscure nanoscale effects that are observed in

reality and is actually conceptually easier as the discrete interaction terms between

individual magnetic dipoles are very simple1. The issue arises when one considers the

sheer number of atoms which must individually be considered. A cube of Fe with side

length 10 nm contains 85000 atoms. Due to the long range (1/r) of some magnetic

effects including the demagnetisation field, the interaction of each atom with every

other atom must be considered. If we then consider dynamics where the energy and

fields must be computed for many thousands of time steps, the calculations quickly

become prohibitive, but can still be performed on scales of 10s of nanometres and

1This is neglecting higher-order (quadrupole or octupole) expansions. This is a reasonable approxima-
tion for many systems, such as 3d transition metals, but not necessarily for more complicated alloys which
may contain multiple 4f and 3d elements, where the shape of the electronic orbitals comes into play.
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nanoseconds with modern supercomputers. The atomistic approach is the only truly

justifiable approach when considering non-collinear or ferrimagnetic materials where

the magnetisation is not continuous, or when considering ultra-fast processes [2, 4].

The frontier of magnetic simulations showcases startling parallels with the famous

technological “THz Gap”, which says there are no devices which operate efficiently at THz

frequencies, roughly between the electronic and optical regimes. Magnetism has long been

a proposed medium to bridge the gap, but perhaps not coincidentally, the simulation of

THz phenomena is also less than trivial. True “deep-theory” approaches like DFT already

take days to compute a small number of static atoms on a periodic grid at zero temperature

and cannot be used for dynamics. Complex and cumbersome Hamiltonians which can

accurately describe all the phenomena necessary for fast dynamics can generally only be

propagated by numerical integration methods in time-dependent simulations for 100000s

of steps (with size typically below ∆t = 0.01 fs) before the diverging build-up of errors due

to the finite precision of computers and especially of methods such as FFTs [5]. So these

types of microscopic dynamics simulations can go up to roughly 105× 0.01 fs = 1 ps, i.e. a

single period of a THz oscillation, which is not enough to gain an accurate picture. More

simple simulations or manually normalising the results at each step can circumvent this

problem, but are not ideal methods. The necessary continuity constraints of micromagnetic

approaches also precludes effects that occur faster than high GHz speeds.

In this chapter, I will discuss existing simulation models and programs, before describ-

ing my own and discussing some specific results that were obtained and their significance.

2.1.1 Existing Magnetics Simulations Programs

I will briefly discuss a few of the most common and useful existing magnetic simulation

frameworks/programs, how they are programmed, their intended strengths and their use-

fulness and shortcomings. In general, the equations solved are partial differential equations

(PDEs) which describe the evolution of some property (in this case magnetisation) with

time.
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2.1.1.1 OOMMF

The Object Oriented Micro Magnetics Framework (OOMMF) was first released, by the

US government backed NIST, in 1998 and has been one of the most widely used magnetics

simulations programs since then [6]. OOMMF uses a finite-difference mesh to compute

large volumes efficiently. Different meshing techniques and their strengths are discussed

by Sjodin [7]. Meshing is the concept of dividing a large volume into a manageable

number of cells or elements, or equivalently averaging over chunks of atoms, to enable

simulation at a macroscopic scale. Finite-difference methods divide a volume into a grid

of points and essentially perform a Taylor-expansion of the PDE at each point, generating

finite-difference equations. This is a relatively easy method to implement and can be

made more accurate by increasing the number of points in the grid and the order of

the integrator, but does not deal well with complex geometries or non-uniform grids or

parameters, which vary sharply in space or time. The program is written in C++ for

efficiency, with a user interface written in the tk/tcl language. The main draw of this

program is its robustness and maturity that come with development over multiple decades

by a world-leading institution. It was somewhat dated in appearance and perhaps less

accessible compared to other newer programs but there have been many extensions and

interfaces written, such as a Python interface by Beg et al. [8]. In addition, OOMMF

version 2.0 was released in beta in 2022 and represents a significant modernisation of the

software.

2.1.1.2 MuMax3

MuMax3 is a newer framework for micromagnetic simulations which also uses the finite-

difference discretisation method. The primary purpose of MuMax3 was to leverage the

power of modern GPUs (graphics processing units) to speed up computation. The software

is written in the GO and CUDA languages, the latter being specific to NVIDIA-brand GPU

architecture [9]. For large-enough meshes, the use of GPUs can speed up calculations by an

order of magnitude or more compared to CPUs, forming a kind of middle ground between

typical PCs and supercomputer clusters but much closer to the price point of typical PCs.

The software also has a web browser interface and, generally, an increased accessibility

that one would associate with a newer software. The aforementioned update to OOMMF
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may make the accessibility battle a lot closer.

2.1.1.3 VAMPIRE

The VAMPIRE software package is another new package which facilitates the atomistic

simulation of magnetisation dynamics [10]. The program focuses both on efficiency (nec-

essary for atomistic simulations) and accessibility, where the experiment to be simulated

is defined by a number of commands written in an input file. It is written in C++ with

a large but well-organised and well-commented code-base, which is a big positive, as one

can quite easily find the bare code for any calculation of interest. This is the most actively

developed project meaning it regularly changes and has features added. While there are

numerous good ways to perform many basic experiments, there are still many features

missing, partly as a result of the focus on accessibility: it was very simple to define a bcc,

fcc or amorphous lattice using a built-in command but there was no easy way to define

a custom unit cell structure in the past. When I briefly used VAMPIRE 4 in 2019 the

documentation was rather poor as it had not caught up with development. Now with

VAMPIRE 6, the number of commands and importantly their documentation appears to

have greatly increased, making VAMPIRE a truly accessible and useful tool limited pri-

marily by the intrinsic limits of atomistic simulations. VAMPIRE has found particular

use for modelling small-size phenomena and ultra-fast demagnetisation, both of which are

far easier to do with an atomistic approach [11, 12].

2.1.1.4 Others

There are, of course, many other downloadable programs and software for magnetics sim-

ulations, I have only discussed the (arguably) most popular ones here, which happen to

be finite-difference and atomistic based. The excellent MuMax3 review [13] lists and ref-

erences many others, including finite-element based programs. Finite-element solutions

are generally less efficient and slower than finite-difference, but can be more useful for

complex shaped materials as a uniform grid is not needed and resolution can be increased

in specific areas and decreased elsewhere as needed.

A more recent development in micromagnetics is the Landau-Lifshitz-Bloch (LLB)

equation, where the effect of temperature is intrinsically included in the derivation via the
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Curie-Weiss equations, allowing for the length of the magnetic moment vectors to change

[14]. This is therefore not a Heisenberg model where the lengths are constant. This

method is now seeing some adoption in the canonical programs listed above as it brings

micromagnetism a step closer to atomistic simulations whilst maintaining the performance

advantage, at the cost of a significantly more complex underlying theory.

2.1.2 Greater Context of Simulations

It is beneficial to comment on the connection of the simulations described later in this

chapter with other calculations, experiments and real-world materials. When considering

input values for the parameters in the simulations, there are essentially two options which

we follow: either choose values close to those observed in or calculated for real materials,

or choose values so that simulations can be performed in the desired region of phase space

without necessarily corresponding to a specific material, to verify model correctness for

example.

Concerning magnetic parameters in MRG, namely exchange and anisotropy, a mix-

ture of calculations and observations can help inform the values for input parameters.

Anisotropy in particular can be derived from measurements of magneto-transport effects

[15], while exchange is primarily directly calculated by ab initio methods (DFT) while

being restrained by magnetisation or resonance measurements. Careful MFT (mean field

theory) fitting of precise magnetisation data can help to determine the different exchange

(inter and intra sublattice) parameters in MRG or similar materials [16]. Magnetisation

measurements are particularly difficult for low moment materials however and high fields

(¿ 50T) are desired.

Regarding the input parameters for the electronic part of the Ehrenfest dynamics

simulations in section 2.3, there is one particular method of fixing the values. Extensive

DFT simulations have been performed on MRG over the years and it is known that the

∆1 and ∆5 hybridised bands are the most prominent at the Fermi level, for example

see calculations of Stamenova on the related but simpler material Mn3Ga [17]. Since we

used a TB (tight-binding) model for the Ehrenfest dynamics, we can fit the TB model to

the dispersions calculated by DFT, adjusting parameters to get a close match, thus the

parameters for the electronic part of the simulations correspond to the real-life (or as close
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as DFT can get) MRG material. Incidentally, one way to gain experimental insight into

the electronic states at the Fermi level is PCAR measurements.

In terms of outputs from the ultrafast dynamics simulations, the main in-house com-

parative technique we have is TR-MOKE (time-resolved magneto-optical Kerr effect)

which can be used in particular to measure demagnetisation. The main issue is that

many of the simulations are based on the assumption of being close to the Fermi energy,

while laser-induced thermal excitation relies on massively inflating the electronic temper-

ature. “THz-in THz-out” experiments are the next step up but would require access to a

FEL (free-electron laser), which are in high-demand.

With this commentary in mind, the rest of the chapter can proceed more clearly with

more obvious context for the simulations described.

2.2 Atomistic Magnetic Simulation Model

All the popular existing software have their own ideal use cases but they all fall into the

common trap of making specific niche simulations quite difficult or involved, in exchange

for general accessibility and broad applicability to simple problems. For this reason it is

not uncommon to write ones own software, which can do a very specific job adequately,

while not being as efficient or nearly as widely applicable as a published software package.

This is what I did, starting in earnest over the COVID lock-down in 2019. The code,

which will described in the coming sections, was based on one initially written by my

supervisor Prof. Stamenov, using the engineering software MathCad 15 [18]. This version

of the intuitive and surprisingly performant software was first released in 2010 but as of

2021 is no longer supported2. I re-wrote and extended the code in Python, making it more

generally accessible and adaptable with especially more input/output options.

2.2.1 Theory

The materials I and most of the spintronics group in Trinity are interested in are primarily

ferrimagnetic materials. This class of materials, and the related antiferromagnets, obvi-

ously do not have spatially continuous magnetisation so atomistic simulations are an easy

2MathCad was originally released in 1986 and was one of the first live-editing interactive notebook
interfaces for calculations
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choice. In an atomistic model, the only interactions we have to consider are between pairs

of spin vectors, which makes the physics quite simple.

An optimal balance between complexity and performance can be obtained using a

classical Heisenberg model of the spins [19]. In this kind of model, the spins are treated

as constant length vectors which can rotate freely in 3d Cartesian space. It is a very

intuitive model which nonetheless captures many of the key physical aspects of spin dy-

namics. Physically, the Heisenberg model is applicable to localised spins, such as exist in

insulating materials or the deep-lying 4f electrons of the rare-Earths. Generally, if the

electrons which contribute to the magnetisation and conduction can be separated at least

to first order, the Heisenberg Hamiltonian can be used. Exchange interactions between

the localised magnetic electrons and mobile conduction electrons can be included via an

s − d model, where the letters refer to the energy sub-levels hosting the electrons. For

materials with orbital hybridisation of the s and d bands, a tight binding model which

explicitly includes site-hopping would be more appropriate. Treating the entire electronic

band structure as a whole is the next level up, this is necessarily the most accurate model

but for dynamics simulations is impractical. Different models and their applicability are

discussed by Coey [3, §5.2,§5.3]. Generally, “electron”, “spin” and “lattice” processes

occur at different timescales (roughly < 1 fs, 100 fs and > 1 ps respectively) and can be

considered independently. There are many instances where this is not the case, for instance

some models for ultra-fast demagnetisation where the magnetisation lowers faster than the

exchange interaction should allow. A different model that does not assume classical spins

is necessary for proper modelling, such as the pd-band model of Töws and Pastor [20].

The classical Heisenberg model is by far the most common approach due to its sim-

plicity, with most existing programs such as VAMPIRE using it by default. From here on,

I use S⃗ and H⃗ to denote the atomic spin vector and perturbing field.

2.2.1.1 Equation of Motion

An equation of motion is needed so we can simulate the dynamics of the magnetic moments

by numerical integration. A starting point is that the rate of change of the orientation of
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the magnetic moment is directly proportional to the torque on it:

∂S⃗

∂t
= γτ⃗

The torque on a magnetic moment in a magnetic field is simply τ⃗ = S⃗ × H⃗. In real-

materials, there is also a damping term which tends to align the moment with the field. The

damping is driven by quantum mechanical spin-lattice relaxation events and so is included

phenomenologically in this classical model, defined as perpendicular to the precession via

another cross product: τ⃗ = S⃗ × S⃗ × H⃗. The origin of the damping is the transferral of

angular momentum from the localised spins to the lattice system via conduction electrons

(s−d scattering), this naturally depends on the resistivity and therefore the temperature,

as well as just how localised the polarised electrons are (3d versus 4f) [21, §2.4.1]. The

equation of motion was formulated by Landau and Lifshitz [22] and then the damping

altered by Gilbert [23] to give the LLG equation:

∂S⃗

∂t
= − γi

1 + α2
i

[
S⃗i × H⃗i + αiS⃗i ×

(
S⃗i × H⃗i

)]
, (2.1)

where i denotes a particular atom and γ and α are the atom-specific gyromagnetic ratio

and damping parameters respectively, which can be temperature and frequency dependent.

Numerical integration of this equation with a suitably small time step will yield the time

evolution of the magnetic moments and is the key process in magneto dynamic simulations.

The above form is a common one due to the relative ease of numerical integration [24].

The effective field H⃗ in the LLG equation has a number of terms, which depend on the

Hamiltonian, for each atom through [4, §3].

H⃗i = − 1

µi

∂Hi

∂S⃗i

(2.2)

Within the Heisenberg Hamiltonian, which described the energy of the system, there are

many physical terms that can be included, depending on whether they are expected to be

significant for a given material and experiment, for example:

H = Eex + Ean + EZe + EDM + Ed,
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where the five terms come from the direct exchange, the magnetocrystalline anisotropy,

the Dzyaloshinsky-Moriya (antisymmetric superexchange) interaction, an external field

and the demagnetising or dipole field, respectively. Now we need expressions for each of

these energy terms to complete the model.

2.2.1.2 Hamiltonian Energy Terms

Exchange The most important magnetic interaction is of course the exchange interac-

tion. It arises from the overlap of the wavefunctions of electrons and the Pauli exclusion

principle, where the spin part of the wavefunction must have the opposite polarity (sym-

metric or antisymmetric) to the spatial part to satisfy that the total wavefunction be

antisymmetric for the Fermionic electrons. The exchange interaction strength is propor-

tional to the difference in energy between the symmetric and antisymmetric states, which

depends on the spatial extent of the electron orbitals and generally on the details of the

atomic energy levels. For complex realistic materials, the interactions become numerous

and complicated, especially when orbital hybridisation is involved and it is best to em-

pirically determine the strength of the exchange interaction [3, §5.2]. DFT and other

tight-binding models which consider the entire electronic band structure can estimate

the exchange strength between different pairs of atoms. Heisenberg’s generalised equation

simply relates the energy to the cosine of the angle between the spin operators of two

atoms, or equivalently, their vector dot product, for a particular atom i:

Eex,i = −
∑
j

Ji,j

(
S⃗i · S⃗j

)
, (2.3)

where Ji,j is the strength of exchange between atoms of type i and j and we sum over all

other atoms in the system. Practically, exchange is a short-range interaction so the sum

is only over nearby atoms, usually nearest and second-nearest neighbours, or extending to

some specific cut-off distance.

Magnetocrystalline Anisotropy The 3d and 4f orbitals, that contain the unpaired

electrons which lead to magnetism, are typically oblong in shape. In a typical crystal

structure consisting of atoms on discrete positions, the orbitals of a central atom pointing

in certain high-symmetry directions with respect to the surrounding ions and their orbitals
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will be stabilised. Then, through spin-orbit coupling, the spin moment of the central

atom gains preferred directions of orientations [3, §4.4]. Uniaxial anisotropy is the most

interesting for the majority of applications due to its binary nature, with two low energy

states and a barrier between them. This form of anisotropy will often suffice to model

materials with a long axis such as many hexagonal materials, like Co, or tetragonal lattices.

For the 3d elements, the magnetic electrons are in the outer shells, close to the surrounding

ions, which create the crystal field. This is why the orbital moment is quenched for the

3d magnetic elements and why the crystal anisotropy is strong than for the rare-Earth

elements. The latter have magnetic 4f shells, which are closer to the nucleus, with more

shielding relative to the 3d electrons. Due to its crystal lattice origin, magnetocrystalline

anisotropy can be described by an expansion in terms of the direction cosines of the

crystal [3, §A.H]. Conventional forms of the uniaxial [25] and cubic [10] anisotropy used

in calculations are given below. Note that only even terms are permitted by time-reversal

symmetry and uniaxial anisotropy starts at second order, while cubic anisotropy starts at

fourth.

Uniaxial : Ean,i = −Ku2,i

(
S⃗i · e⃗k,i

)2
− Ku4,i

12

[
35
(
S⃗i · e⃗k,i

)4
− 30

(
S⃗i · e⃗k,i

)2]
,

Cubic : Ean,i = −1

2
Kc4,i

(
S4
ix + S4

iy + S4
iz

)
+Kc6,i

(
S2
ixS

2
iyS

2
iz

)
,

(2.4)

where Ki are the (empirically determined) anisotropy constant of various orders and e⃗k is

the uniaxial anisotropy unit vector, for which the system energy is lowest when parallel

with the spin moment. This form of anisotropy is local and so there is no summing over

adjacent atoms.

Zeeman Interaction This is the most simple term in the Heisenberg Hamiltonian,

simply equal to the energy of a magnetic dipole in an external field.

EZ = −µ0S⃗i · H⃗ (2.5)

A common convention is to assume the spin moment is in unit of Bohr magnetons µB, so

the Hamiltonian remains with energy units.
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Dzyaloshinsky-Moriya Interaction The DMI is an antisymmetric exchange interac-

tion first described by Dzyaloshinsky in 1957 [26]. After Anderson proposed a new theory

for superexchange in 1959 [27], exchange between two cations mediated through a non-

magnetic anion, Moriya was soon able to rigorously derive the DM interaction by including

spin-orbit coupling (SOC) in Anderson’s theory using a second order perturbation method

[28]. The interaction is described by the simple formulae:

EDM = D⃗i,j ·
(
S⃗i × S⃗j

)
D⃗i,j = −JDM (r̂ik × r̂jk) , (2.6)

and interestingly has lowest energy penalty when the two spins are aligned perpendicularly.

This very interesting result implies that the DM interaction can stabilise non-collinear

magnetic structures and indeed is the reason for the very small magnetic moments observed

in some materials, which should otherwise be antiferromagnetic such as αFe2O3 [26]. In

addition, DMI helps to stabilise chiral domain structures and skyrmions, which can lead

to some interesting effects [29]. DMI is frequently encountered in the interfacial form,

whereby the inversion symmetry is inherently broken by the interface and a heavy metal,

such as Pt or W, with large SOC can populate the opposite side of the interface to the

magnetic atoms, as illustrated in Figure 2.1.

Whether the spins cant towards or away from one another depends on the sign of JDM

and therefore on the heavy metal and magnetic element chosen [30]. The strength of this

interaction, thanks to its SOC origins, is roughly two orders of magnitude less than the

direct exchange [3, §5.2.1]. It is not always included in calculations but given the interest

in chiral and topological effects in recent years, any simulation software would be remiss

to exclude the effect.

Dipole (Demagnetising) Interaction Perfectly aligned magnetic moments results in

a large stray field and increased in free energy which is combated by the dipole field. The

dipole field at an atom is the sum of the contributions from all other atoms, as usual:

Hd,i = −µ0S⃗i · H⃗d,i H⃗d,i =
1

4π

∑
j ̸=i

3

r3ij

[(
S⃗j · r̂ij

)
r̂ij − S⃗j

]
(2.7)
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Figure 2.1: An illustration of interfacial DM interaction between two spins Si and
Sj, mediated by superexchange through an atom k with positive JDM . The finite
angle between the spins results in a non-zero cross-product and a reduction in energy
via Equation 2.6. The signs are chosen by convention. Note that S⃗i × S⃗j is directed

along the y-axis so D⃗i,j · (S⃗i × S⃗j) is negative and the energy is lowered, if JDM was
negative, the spins would be canted towards one another rather than away.

Contrary to the short-range (exponential) exchange and local anisotropy terms, the r−3

fall-off of the dipole interaction means it is long-range. This is not ideal as it means the

contribution from every other atom must be considered for each atom, and is the slowest

part of the calculation in atomistic simulations. Often, the authors of publications concern

themselves with nanoparticles or antiferromagnets, where the dipole field is negligible, or

use some micromagnetic approximation [4, §2].

2.2.1.3 Other Torques

Some effects are not related to an energy density and more readily included directly

as torques to be added to Equation 2.1. These include the spin-torque terms which

are due to currents flowing through the material. There is much interest in controlling

magnetic moments and structures directly through currents as there is far greater scope

for miniaturisation in devices compared to attempting to control the magnetisation via

stray fields. After Manchon et al. [31, §II.A], a convenient way to include the torques in
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the equation of motion is via:

T⃗ = τFLS⃗ × ξ⃗ + τDLS⃗ ×
(
S⃗ × ξ⃗

)
, (2.8)

where FL and DL refer to the field-like and damping-like components of the torque,

respectively. Field-like means it acts similar to an external field and tends to cause the

moment to precess while the damping-like tends to align the moment with the field. This

formula can be used to model most types of spin-torques, with the vector ξ⃗ depending on

the microscopic origin of the torque. The near-identical form of this equation to the LLG

equation is striking and not a coincidence. It is convenient to describe the spin-torque

phenomena as a two-step process, first the polarisation of moving conduction electrons

and second the effect of the local magnetic field produced by the conduction electrons on

the localised magnetic electrons.

STT The simplest current related torque is the spin-transfer-torque (STT) due to Slon-

czewski [32]. As the name suggests this involves the transfer of angular momentum from

strong magnetic “reference” layer to another layer. The geometry is illustrated in Fig-

ure 2.2.

The geometry is identical to GMR (giant magneto-resistance) stacks because of the

similar underlying physics. A conducting barrier must be used (as opposed to the tun-

nelling barriers which yield the largest MR) because an insulating spacer simply does

not allow enough energy to transfer through to affect the free layers magnetisation. The

combination of MR and current-based switching is finding commercial use in STT-based

MRAM (magnetic random access memory) devices, wherein a small current can read the

MR and a large current can reverse the free layer magnetisation via the STT.

SOT A second class of spin-torques are the spin-orbit torques (SOT). With this fun-

damentally different phenomenon, the SOC plays a more direct role in polarising the

conduction electrons and a second polarising magnetic layer is not required. Additionally,

the SOT effects can be separated into those due to intrinsic and extrinsic SOC, the latter

usually involving a heavy-metal layer. SHE (spin hall effect) and iSGE (inverse spin gal-

vanic effect) are extrinsic effects due to spin-dependent scattering and broken symmetry
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Figure 2.2: STT requires a CPP (current perpendicular to plane) geometry and a
magnetic reference layer which is strongly pinned or damped to polarise the conduc-
tion electrons without itself being deflected. These polarised electrons then cross a
(conducting) barrier and exert a torque on a second magnetic layer. The angular
momentum is transferred simply by exchange in both magnetic layers, as the mech-
anism is the same, the reference layer must be more strongly pinned.

at an interface respectively. Intrinsic SOC can be provided by the Rashba and Dresselhaus

effects, which are similar to iSGE but result directly from the broken inversion symmetry

of the magnetic crystal [33].

The SHE is due to spin-dependent scattering of an electric current in a material with

SOC, the up and down electrons are deflected transverse to the direction of current flow

in opposite directions, resulting in a pure-spin current transverse to the electric current

[21]. This can then be treated essentially the same way as STT, its just the origin of the

polarisation that is different. Importantly, this effect is experimentally realised in a CIP

(current in plane) geometry, which changes the practical picture for device applications.

For example, in a switching device, the large switching current pulse has to be passed

through the thin-film stack, which degrades the interfaces and limits the device lifetime.

If the same device uses SOT switching, then only the reading current passes through the

stack and there is essentially no degradation.

A magnetic crystal with a non-centrosymmetric space group can exhibit intrinsic SOC,

resulting in a spin-current which exerts a torque on the magnetisation, through the Rashba
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Free Layer

~je~js
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Figure 2.3: An SOT switching device, such as one shown here which utilises the
SHE, has a CIP geometry. Crucially, this means that the large “write” current does
not need to pass through the stack of delicate thin layers as in the STT case, thus
improving longevity. The non-magnetic HM layer (W, Pt etc.) provides the SOC
which creates the transverse spin-current.

or Dresselhaus effects [33]. Additionally, in strained thin films, which would otherwise

be centrosymmetric, the entire volume can be non-centrosymmetric due to the changing

lattice parameter. We saw earlier that the SOT can be considered as a magnetic field to

determine its effect on the local magnetisation. I will not go into the detailed quantum

mechanics of the SOC, but linear response theory says that the magnetic field can be

related to the electric field by a tensor and following Neumann’s symmetry principle, the

tensors have to have the same symmetry as the crystal point group [21, §III.B]. The tensors

can then be expanded in the direction of the magnetisation for each crystal point group,

as has been done by Železný et al. [34]. If one knows the symmetry of their crystal, the

SOT due to intrinsic SOC can be described using the matrices calculated by Železný et

al., with the strength of the SOC usually determined experimentally, except for simple

systems which can feasibly be calculated using DFT.

A last point of interest about SOT effects: in the linear response theory, since the

effective field from the SOC can be expanded in terms of the local magnetic moments, a

staggered local field can be generated on alternating atomic sites thanks to the broken

inversion symmetry [35]. This allows for the control of antiferromagnetic and ferrimagnetic

magnetic sublattices, which can not be influenced by a globally uniform field, whether that

be an applied Oersted field or STT injected polarised current. This is probably the main

reason for the current interest specifically in SOT devices.
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Non-Adiabatic Spin-Torque A type of spin torque due to Zhang and Li is the non-

adiabatic spin-torque due to current moving in a spatially varying magnetisation [36]. Con-

ceptually this is a quite simple phenomenon again due to the exchange coupling between

conduction electrons and local magnetisation. A conduction electron can be polarised by

the local magnetisation at site 1, then move to site 2, and if site 2 has a different mag-

netisation than site 1, the conduction electron can exert a torque on said magnetisation,

torquing it towards the direction of site 1. This means that, in a domain wall (DW) for

example, moving electrons will tend to drag the DW along with them.

~je

e− e− e− e− e−

Figure 2.4: As the electrons move from left to right, they are polarised by each
local magnetisation site they come too. In aligning to the magnetisation of each
subsequent site, they exert a reactionary torque on that site towards the orientation
of the previous site. This results in DW motion opposite to the direction of current
flow (with the electrons).

The non-adiabatic torque can be included via an equation of the form:

T⃗ = bJ S⃗ ×
[
S⃗ ×

(⃗
je · ∇⃗

)
M⃗
]
− cJ S⃗ ×

(⃗
je · ∇⃗

)
M⃗, (2.9)

which is then added directly to the LLG Equation 2.1. Note that this equation has the

same form as the aforementioned torques but with the current density times the spatial

derivative of magnetisation replacing the effective field. The magnitude of the effect (the

terms bJ and cJ) depends on a number of material parameters, including the spin-current

polarisation, the current density, the spin-flip relaxation time and the exchange relaxation

time.

Temperature The effect of finite temperature is a difficult one to include. The LLB

equation mentioned in subsubsection 2.1.1.4 includes finite temperature in a physically

reasonable but complex way. The usual way of including temperature in atomistic simula-
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tions is using Langevin dynamics and adding a temperature-dependent stochastic effective

field, which then contributes to the torque in the LLG equation. This field is typically

uncorrelated Gaussian white noise, to emulate the random effects of temperature fluctua-

tions. However, it has been pointed out that the thermal fluctuations are correlated with

the atomic properties at the atomic level due to the mutual interactions of the atomic,

electronic and magnetic systems, and this has implications for ultra-fast processes that

might occur at timescales of the order of the integration step ∆t < 1 fs [10]. In fact, using

coloured noise rather than white noise can help to alleviate this problem, that is, biasing

the Gaussian distribution towards lower or higher energy depending on the problem at

hand [37]. We have chosen not to include these temperature effects in our model at the

current time as we are not so interested in temperature dependent processes compared to

phenomena that can be modelled with a T = 0K assumption, so the added complexity is

not necessary. Later in the examples section, we show how a perturbing “energy pulse”

can effectively be simulated directly through the applied field or current term.

2.2.1.4 Atoms

As mentioned, one of the primary reasons for choosing atomistic simulations is the ability

to naturally simulate ferrimagnetic materials and high-frequency phenomena. Two (at

least) distinct sublattices are required with different material parameters (magnetic mo-

ment, exchange and anisotropy strength, etc.). Physically this is trivial and the practical

implementation will be discussed later.

The number of interaction included in the Hamiltonian and the cut-off distance chosen

will dictate the number of parameters for each atom. For a simple simulation of two sub-

lattices using only nearest-neighbour, first order uniaxial anisotropy and not including any

current-dependent terms, there will be nine parameters: the nearest-neighbour exchange

strength, anisotropy constant, DMI constant and magnetic moment for each sublattice and

the inter-sublattice exchange constant. Hereafter I will use the example of the material

MRG when discussing different terms, as this has been the main material of focus for my

simulations. Recall that MRG is a Heusler alloy with anti-ferromagnetically coupled Mn

atoms on the 4a and 4c Wyckoff positions, as these sites are chemically inequivalent, the

magnitude of the magnetic moments are different, making this a ferrimagnetic material.
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The subscripts a and c are used to denote the sublattice that specific material parameters

apply to. For example, the nearest-neighbour inter-sublattice exchange constant is Jac

while the intra-sublattice second nearest-neighbour exchange would be Jaa2 and Jcc2. The

strength of the pair-wise exchange interactions in MRG were estimated by Siewierska et

al. [38] using a mean-field model, they are of order 10K and are used to emulate a ”real

material” in the following.

Initially, we simulated a 1D chain of fixed-position Heisenberg spins, to test the code

and remove the need for optimisation. Extending to more dimensions of course massively

slows down simulations. Material parameters were constant, making the simulation very

simple but nonetheless allowing the investigation of different magnetic configurations for

the atomic chain, thus providing a proof of concept.

A second iteration of the code calculates the exchange energy depending on the dis-

tance between atoms, using an oscillating potential reminiscent of the RKKY interaction

[3, §5.2.2]. This is applicable to Mn atoms, the sign of whose exchange constant is strongly

distance-dependent [39]. To make use of this distance-dependence exchange, the atomic

positions can be allowed to change with an exponential restoring force similar to the

Lennard-Jones potential [40] pushing them back into position. If the pairwise exchange

between neighbouring atoms and the resulting effective fields are recalculated after every

time step, then we can effectively simulate coupled magnon-phonon interactions, some-

thing which is very rarely attempted: generally the concept of “atoms” does not even

exist in magnetic simulations, only the spins and their magnetic/electric interactions are

considered. Additionally, including phonons in micromagnetic simulations where the ma-

terial is averaged over substantial volumes is of course impossible. Of course, this greatly

increases the calculation time and requires substantial optimisation of the code.

2.2.2 Implementation

2.2.2.1 Programming Language

The choice of how to implement the numerical simulations and in particular what pro-

gramming language to use is not important in the initial proof-of-concept stage. When

extending the model to larger simulations or including more long-range (including many
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atoms) effects, the efficiency of computation becomes very important. Our simulation code

was initially written using the engineering software MathCad 15 [18]. This is a very visual

software whose GUI (graphical user interface) is reminiscent of a sheet of paper and is

therefore quite accessible for those with engineering or physics backgrounds, who are not

necessarily experienced programmers. In addition, many of the back-end algorithms are

optimised compiled code and thus very fast 3. While it has some advantages, MathCad is

an old piece of software and the pen-and-paper style makes for limited options especially

for data visualisation and input/output. For better control when exploring the very broad

parameter space, better presentation of the results and much better accessibility, a Python

[41] version of the code was also written.

Python is an interpreted language which is run in real time by the Python Interpreter.

Code can be tested “on-the-fly”, allowing for very quick and easy testing as one is writing.

Python avoids the usual speed penalty of interpreted languages via a plethora of libraries

which are imported and called by the interpreter. In particular, the NumPy (numerical

Python) library [42] introduces vectorised arrays into Python: mathematical operations on

or with these arrays is automatically delegated to highly-optimised compiled machine code,

vastly speeding up computation time. Compiled extensions can also be manually written

in languages such as C and called from within Python. Another comparatively rarely

discussed benefit of NumPy is that code can be written in a format that closely resembles

the mathematical form, thanks to the vectorisation, making the implementation of physical

equations yet easier/more intuitive. For visualisation I use the package matplotlib [43],

which is a powerful but user-friendly plotting interface which makes the production of

vector (capable of infinite scaling) images trivial

More recently, to speed up computation and enable the extension of the code to more

dimensions, a number of the heavy computation functions were written in the OpenCL

language, an open-source standard for parallel computation [44]. This is a C-style lan-

guage, wherein the written code is first compiled to a general intermediate format and a

local compiler can detect the hardware capabilities of the current system and compile the

intermediate code to execute across multiple available CPU and GPU cores simultaneously,

3Compiled code is written and then converted to low-level CPU instructions before being executed
and is by far the fastest type of code. Interpreted code uses a large and heavy (in computation terms)
software engine to interpret written code in real time and execute it, this is necessarily much slower but
a lot easier to write and test.

50



2.2. Atomistic Magnetic Simulation Model

allowing automatic and highly parallel computation on a plethora of platforms. Provided

the code is written in a fashion which can be parallelised, this can allow for a speed-up

of orders of magnitude. As an example, numerical integration cannot be parallelised as

each step depends on the previous state and steps have to be performed one at a time,

however, the numerous calculations within each step can be performed simultaneously

across multiple available computing cores, be they on the CPU or GPU.

2.2.2.2 Integration

In order to propagate the dynamics of the system, the LLG partial differential equation

(Equation 2.1) must be numerically integrated with a suitably small time-step. The various

forms of numerical integration follow from the basic property of calculus that as one “zooms

in” on a continuous function (reduces the range of the independent variable), the function

will more closely approximate a linear one. This is equivalent to a first order Taylor

expansion. The premise with propagation by integration is that the differential equation

which specifies the derivative is complicated and not directly integrable so we choose a

small enough step size and assume the function is approximately linear at the length scale

and thus we can calculate the next point only having knowledge of the slope at the current

point.

The most fundamental version of this is Euler integration, which is exactly the method

stated above. Here I use the usual notation with the time step h = ∆t and the derivative

function written as dy
dt

= f(y, t). The value of the function at every point in time can be

iteratively determined using the unintegrable derivative function via:

yi+1 = yi + hf(yi, ti)

where ti+1 = ti + h. So long as the time step h is sufficiently small, this method should

work for any continuous function, however, more complex algorithms can achieve better

results.

There are many established algorithms but two of the main families are the Runge-

Kutta (RK), or predictor-corrector, and Adams-Bashforth (AB), or linear multistep, meth-

ods. RK algorithms are single-step algorithms which use the derivative at multiple inter-

mediate steps to minimise the local error due to truncation and obtain a better prediction
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while the multistep algorithms rather remember the positions and derivatives at previous

steps and use a linear combination of previous derivatives to predict the next step. An

excellent overview of these algorithms can be found at their respective Wikipedia pages

[45, 46]. Their applicability and implementation is discussed from a more practical point

of view by Press et al. [47, §16]. I will describe the fourth order versions of both here:

Runge-Kutta 4 Adams-Bashforth 4

f0 = f(y0, t0) f0 = f(y0, t0)

y1 = y0 + f0
h
2

y1 = y0 + f0h

f1 = f(y1, t0 + h/2) f1 = f(y1, t0 + h)

y2 = y0 + f1
h
2

y2 = y1 + (3f1 − 1f0)
h
2

f2 = f(y2, t0 + h/2) f2 = f(y2, t0 + 2h)

y3 = y0 + f2h y3 = y2 + (23f2 − 16f1 + 5f0)
h
12

f3 = f(y3, t0 + h) f3 = f(y3, t0 + 3h)

y4 = y0 + (f0 + 2f1 + 2f2 + f3)
h
6

yi+1 = yi + (55fi − 59fi−1 + 37fi−2 − 9fi−4)
h
24

t0 t0+h/2 t0+h

y0

y0+hf0/2
y0+hf1/2

y0+hf2

f0

f1

f2

f3

(t0, y0)

(t0+h, y4)

y1 = y0 + h
6

(f0 + 2f1 + 2f2 + f3)

RK

t0 t0+h t0+2h t0+3h t0+4h

y0

y1

y2

y3

y4

f0

f1

f2

f3

(t0, y0)

(t0+4h, y4)

y4 = y3 + (55f3 − 59f2 + 37f1 − 9f0) h
24

AB

Figure 2.5: An example of numerically integrating the differential equation dy
dt

= y
with t0 = 2 and y0 = e2, using the two fourth order methods defined above. In order
to cover the same range, the step h is four times smaller for the AB method. Note
that the derivative needs to be evaluated four times per range. Both methods give
an accurate answer despite the large step size here.

There are a number of practical differences between the methods, the AB method is a

multistep method which uses linear combination of n previously calculated positions and

derivatives to calculate the next step, for nth order. This has the downside that the first few

steps are not as accurately approximated as there are no previous derivatives to consider.

After the initial stage, propagation is simple and done via one equation. In the classic RK
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method as described above, each step is a function of a number of intermediate steps and

calculations, the intermediate steps are discarded after the final step is obtained. One of

the key benefits of this and other single-step methods is that adaptive stepping is trivial

to implement. Adaptive stepping estimates the error in the previous step by finding the

difference between methods of order n and n− 1. If the error is small, the step size can be

increased and vice versa, this can allow for far faster convergence of integral problems [47,

§16.2]. Another advantage is that there is no need to save previous derivatives, in case

memory efficiency is a large issue. Both methods are explicit in that the next position is

calculated directly from previous or intermediate steps as opposed to solving a system of

equations.

In addition to accuracy, the other key characteristic of numerical integration methods

is the stability, which quantifies how fast error builds up due to small discrepancies, which

might be due to very rapidly changing slope or simply floating point errors from the finite

precision computer numbers. Both being fourth order, the two methods described above

are again similar, the AB method can be more accurate for very smooth functions while

the RK function is more adaptable. For my simulations, I tended to use the third or fourth

order AB method as it was quite easy to implement and offered sufficient stability, as well

as being faster as only one derivative is calculated per step. My Python code for a number

of different order AB methods can be found on my GitHub [48]. It is worth noting that

the VAMPIRE simulation software utilises the Heun’s method, which is a second order

RK method, which they decided offered an optimal trade-off of efficiency and accuracy

[10, §4.3]. A short-but-sweet comparison of different numerical integration methods can

be read courtesy of Fathoni et al. [49].

In the future, implementing the RK4 method with an adaptive step could prove useful.

One can envisage this might be particularly suitable for simulating the time evolution of a

system returning to equilibrium after an initial sharp perturbation, the rate of change of

the system should steadily decrease and become more smooth over time, meaning larger

steps could provide enough accuracy and therefore speed up the simulation of a given time

period. An analogy be made with the finite element method in micromagnetics, where

a material can be split into large or small regions as necessary to use computing power

where it is needed the most.
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A last point is that, when dealing with stochastic equations, such as the LLG equa-

tion with the random temperature field included, additional considerations are required

to ensure convergence. Specifically, the magnitude of the spin must be conserved, this is

most easily done simple by normalising the magnitude at each time step. Such a brute

force method is rather inelegant, though effective, and utilising a more complicated im-

plicit method would be mathematically preferable. Another point is that integration of

an ODE with a stochastic element is non-trivial. The wide range of frequency components

in a Gaussian random field can easily confuse adaptive-step algorithms with their noise.

Technically, stochastic equations with white noise should not be integrated using conven-

tional calculus but Itô calculus [50][51, §4], but usually this complicating factor is ignored,

which is justifiable for short-time integration using small uniform step size. Regardless, as

mentioned, we have not used the temperature dependent LLG equation so have not had

to consider this point.

The first results reported here are all from a 1D chain of Heisenberg spins with fixed

atomic positions. This simple one-dimensional analogue is easy to understand and visualise

as well as being computationally very cheap, allowing a wide swathe of parameter space to

be investigated relatively quickly. Despite the simplicity, many complex phenomena can

be investigated in this 1D analogue. Another point in the favour of reduced-dimensional

models is that modern technological devices are tending towards low dimensions as well:

thin films layers can often be considered as effectively 2D, sometimes being a single mono-

layer thick, while nanowires constitute 1D systems and nanodots can be treated as 0D in

some cases.

Regarding the Hamiltonian, the only terms that are included in all simulations are

the nearest-neighbour inter-sublattice and intra-sublattice exchanges (Jaa, Jcc and Jac),

second order uniaxial anisotropy (Ka and Kc (The u2 subscript of Equation 2.4 is dropped

in place of a ferrimagnetic sublattice denomination)), the DMI (JDMa and JDMc) and the

applied field (B). Other terms that are included for a particular simulation are introduced

when relevant. This 1D ferrimagnetic model can be easily visualised, see Figure 2.6. It is

important to stress that the while the supposed physical layout of the atoms is 1D in this

model, the spins are still 3d Heisenberg classical spins.

The relative strengths of the different terms can change depending on the material in
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Ka,c

DMa

Jaa

DMc

Jcc

Jac
Bap

Figure 2.6: A diagram illustrating the default system, with interatomic interactions
in red and green respectively, while the macroscopic interactions (which are the same
for all atoms) are in blue. The usual way this is treated in the simulations is with
the spin unit vectors of the two sublattices stored in two N×3 arrays where N is the
number of atoms. This simplifies things as the first array index is then effectively
the position of the atom.

question, but a comparative table is given below, with values for FePt from Strungaru et

al. [52] and Mryasov et al. [53], GdFeCo alloys from Ostler et al. [54] and Evans et al.

[4], and values for MRG from Siewierska et al. [38] or Fowley et al. [16]. Terms such

as the temperature field, STT and indeed the Zeeman interaction of course depend

on the size of the temperature, current and field respectively, but are generally similar in

strength, at around 0.1meV.

Table 2.1: The relative strengths of some of the material-dependent interaction terms
in the LLG Hamiltonian for an atomistic spin model. Strungaru et al. used a
nearest neighbour model for FePt with the exchange raised to give the observed
Curie temperature, so the exchange parameter is inflated due to containing higher-
order terms. The huge anisotropy is thanks to the large spin-orbit coupling of the
heavy metal Pt.

FePt GdFeCo MRG

Exchange (intra-sublattice) 42meV 28.1meV 2meV

Exchange (inter-sublattice) NA −6meV −2.1meV

Anisotropy 1.47meV 0.05meV 0.1meV

DMI 0.05meV 0.01meV < 0.01meV

Another bonus of the 1D layout is that by putting time on the second axis, the evolu-

tion of the system can be visualised in a 2D colour map, although to view all Cartesian
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projections of the spin on both sublattices, a minimum of six plots would be required.

2.2.3 Skyrmion Simulations

Though not directly relevant to MRG, there is a huge amount of interest in chiral mag-

netism and effects in the present-day [55]. Chiral magnetic structures are often topolog-

ically protected, i.e. they sit in an energy minimum due to the geometric orientation of

the spins. Chiral domain walls (DWs) and skyrmions [56] are the two quintessential ex-

amples of chiral magnetic structures, with DWs representing a 180◦ rotation of the local

magnetisation while skyrmions represent a full 360◦ rotation.

Bloch

x
y

z

x
y

z

Néel

x
y

z
x

y

z

Figure 2.7: An illustration of Bloch (top) and Néel (bottom) magnetic DWs. If we
assume the magnetisation is switching from up to down in the x direction, and the
black dashed line is the x axis: in the Bloch wall, the magnetisation rotates around
x while in a Néel wall, it rotates around y. See also figure 7.5 of Coey [3].

These configurations can more easily be observed by separately plotting the x, y and

z projections as lines on a 1D graph:

Skyrmions can be thought of as two DWs stuck together, with the caveat that the DWs

must have the same chirality. Their topologically protected nature comes from the fact

that they cannot be annihilated via a continuous deformation of their host field, as per

their original definition by their namesake Tony Skyrme [57] in the context of quantum

field theory. This chirality is enforced by the aforementioned DMI, caused by SOC in
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Bloch Wall

Sx Sy Sz

Néel Wall

Sx Sy Sz

Figure 2.8: The Cartesian projections of typical Bloch (left) and Néel (right) mag-
netic DWs.

tandem broken inversion symmetry that is intrinsic to the crystal structure or due to an

interface. For an excellent illustration of the four basic types of skyrmion (right-hand

x
y

z
Bloch:

right-hand
x

y

z

x
y

z
Bloch:

Non-chiral x
y

z

Figure 2.9: An example of a Bloch skyrmion with right handed chirality (top) and
a joining of two DWs with different chirality (bottom). It is clear from the side-
on view that in the non-chiral version, the magnetisation can be made uniform
via rotation without crossing an energy barrier - there is no topological protection.
In the skyrmion case, assuming the spins at the ends of the chains are fixed, the
magnetisation can only be made uniform by rotating two neighbouring spins away
from each other, resulting in a large exchange-driven energy barrier.

and left-hand chiral Bloch and Néel skyrmions) see figure 1 of Chen at al. [58].
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RH-Chiral Bloch Skyrmion

Sx
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Sz

Non-chiral Néel “Skyrmion”

Sx
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Sz

Figure 2.10: The Cartesian projections of right-hand chiral Bloch skyrmion (left),
and non-chiral Néel (right) quasi-skyrmion.

2.2.3.1 Procedure

We wished to investigate the stability and size of skyrmions as a function of the material

parameters within the framework of our model. The method we choose for this was

to impose a skyrmionic state as an initial condition and then let the system evolve by

numerically integrating. The x-axis is chosen as the direction in which the spins are

placed and the z direction is the axis along which the spins are aligned (so the uniaxial

anisotropy or applied field axis). For the Bloch skyrmions, the spins rotate around x

through the yz plane, while for the Néel skyrmions, the spins rotate around y through the

xz plane. The initial state was defined by the equation:

S⃗i = cos

[
π

2
tanh

(
i+ r

w

)
− π

2
tanh

(
i− r

w

)]
êz +

√
(1− S2

z ) êσ, (2.10)

where σ = x or y, r is the skyrmion radius and w is the wall width. This is an approx-

imation which is very close to the analytical solution computed by energy minimisation

and since this is a dynamic simulation the true solution should be obtained over time in

any case. For chirality, Sσ can be multiplied by a step function centred on the middle of

the skyrmion to swap the sign on one side. The second sublattice is defined with slightly

reduced magnitude and antiferromagnetic coupling as Sc = −0.85Sa. A 1D chain of atoms

of length N = 100 was simulated for each sublattice, with the initial skyrmion diameter

equal to 22 atoms. Both types of chiral skyrmion and also a non-chiral DW pair were

tested.

Regarding the material parameters, we choose “average” values for the exchange similar

to typical FM or AFM materials: Jaa = 30.4meV and Jac = −20.27meV. A large
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anisotropy value of Ka,c = 0.95meV was chosen (same for both sublattices), close to

those observed in heavy-metal containing materials, and a very large DMI of JDM =

0.61meV was chosen. The latter two parameters were chosen to ensure the simulations

were performed in the correct phase space that skyrmions might be stabilised, rather than

corresponding to one specific material, values observed in real materials can be compared

in Table 2.1. The Damping parameter α was set to unity (critical damping) as opposed

to a realistic value to accelerate the relaxation to the equilibrium state, a realistic value

(closer to α ≈ 0.1) is only needed when simulating a time-dependent phenomena. The time

step was chosen to be 1 fs, again smaller is not needed as no fast dynamics are expected

during relaxation. The time step can equivalently be set to 1 and the exchange constant

20 in the meV fs unit system (as opposed to SI: J s).

2.2.3.2 Results

Firstly it is interesting to consider the evolution of a pair of DWs with opposite chirality,

what I have been referring to as a quasi-skyrmion. This spin configuration is not topo-

logically protected and thus is not expected to be stable and indeed, this is what was

observed.
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Figure 2.11: Time taken before skyrmion radius diverges in the relaxation simulation
for non-chiral quasi-skyrmions. The fact that non-chiral spin configurations are not
stable is a promising result for the model and the implementation of the various
energy terms. The lifetime increases for increasing DMI strength and appears to
start diverging (indicating stability) for large values, the values around JDM = 0 are
more realistic, as we know DMI is a spin-orbit correction to the exchange and should
be orders of magnitude smaller.

Secondly, we tested Bloch and Néel skyrmions for a range of anisotropy and DMI
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strengths to observe the equilibrium size after relaxation by integrating the LLG equa-

tion. The results are shown in a colour-map: The results are quite interesting: clearly,
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Figure 2.12: This colour diagram shows the equilibrium skyrmion diameter, the
value of 2r obtained by fitting the final profile with Equation 2.10, for various values
of JDM and Ka,c. Equilibrium is deigned to have been reached when r and w no
longer change significantly over roughly 100 time steps (only a few hundred steps are
usually saved to save memory and post-processing time). The simulations performed
resulted in an irregular grid of points being measured in this range and the “wobbles”
in the colour-map are artefacts of the interpolation of the plotting software.

increasing DMI strength tends to reduce the equilibrium skyrmion size, there is a rather

sharp threshold above which the skyrmion was stable over the length of the simulation.

Below around 3meV, a stable skyrmion state was not found as the skyrmion increased to

near the size of the lattice used. The DMI strength which facilitated stable skyrmionic

configurations was an order of magnitude larger than the values observed in real materials,

perhaps emphasising that a perfect 1D chain of spins, though useful to consider, is not

always an accurate analogue to the real world. Larger values for the uniaxial anisotropy

led to a greater area of stability in the phase space shown in Figure 2.12. The anisotropy

did not have a huge effect on the skyrmion size except for small values less than ≈ 1meV.

At the upper end of the energy scale investigated, when the DMI constant is greater

than roughly half the ferromagnetic exchange constant, the skyrmion is no longer stable
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and collapses on itself on a fs timescale. This makes sense intuitively, as the favourable

angle between adjacent spins increases with increasing DMI coupling constant, this cant-

ing becomes stronger than the anisotropy and the spins rotate away from the easy axis. At

some point the ferromagnetic exchange will take over and a ”spin-flop” will occur within

the centre of the skyrmion, which only extends over a couple of atoms at very high DMI

strength. Following collapse there were many residual oscillations or magnons (see subsec-

tion 2.2.4) propagating through the spin chain due to the energy released by the abrupt

spin reordering.

Following Rohart and Thiaville [59], if we assume the magnetisation is confined in the

xz plane, then the micromagnetic energy density for a 1D chain of atoms can be expressed

as

E(θ(x)) =

∫ xB

xA

[
A

(
∂θ

∂x

)2

−D
∂θ

∂x
−K cos2 θ

]
dx, (2.11)

this equation is not considering a second sublattice, but since there were no external

perturbation in in our investigation of the skyrmions and the lattice was assumed to be

collinear, the results should still apply. From this equation we can see that the rate of

rotation of the spins, equivalent to the sharpness of the skyrmion, is increased or decreased

depending on the sign of the DMI, matching up with our intuitive picture.

Higher-Dimensional Lattice The properties of skyrmions in a 2D lattice was consid-

ered by Wang et al. [60]. There is an additional energy term in that case due to the

curvature of the DWs which form the rim of the skyrmion and the skyrmion diameter

tends to increase with increasing DMI strength. As succinctly explained by Kim et al.

[61], a primary function of the DMI is to lower the energy cost of DWs thus enabling the

skyrmion to smooth out, there is no other consideration for the 1D case. However, in the

2D case, the area of the DW also increases for increasing skyrmion size even if the shape of

a cross-section through the wall remains constant, an area (r2) related effect which cannot

occur in 1D. This is the reason for the discrepancy between the two dimensionalities.

The results we obtained using the LLG equation and an 1D atomistic approach are

therefore consistent with results in literature, which are dominated by energy minimisation

techniques in 2D and occasionally micromagnetics simulations using OOMMF or other

standard software packages.
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2.2.4 Magnon Simulations

Magnons are a collective excitation of a system of coupled spins. They can be thought

of as quasiparticles which constitute localised, slightly out-of-phase, coherent rotation of

neighbouring spins. They arise essentially because, due to the sinusoidal variation of the

projection of the spin vector onto an axis as it rotates away from said axis, the energy

penalty from the exchange interaction due to the misalignment of neighbouring spins is

minimised by having a small misalignment spread across a number of spins instead of

a large misalignment of one spin. Coupled with Larmor precession in the event of an

effective field, this results in the coherent and slightly out-of-phase rotation of the spins.

An illustrative example of a magnon in a 1D lattice of spins is shown in Figure 2.13.

Here the wavelength of the magnon has a defined meaning, as illustrated by the red line.

Uniform easy-axis Magnon superimposed

Figure 2.13: A 1D lattice of spins in an uniform spin state aligned along the vertical
easy axis (left) and the same with a magnon mode (right), showing a top-down and
side-on view of the spins. The magnitude of the canting away from the easy axis is
exaggerated for clarity.

The frequency of the magnon describes how fast the spins oscillate around the circular

path shown while the wavevector describes how close in phase adjacent spins are. The

wavevector therefore determines how far from parallel alignment the adjacent spins are,

meaning the energy of a basic magnon monotonically increases with increasing wavevector

due to increased penalty from the exchange. For more complicated magnon modes in

lower-symmetry directions, especially in non-cubic lattices, the dependence of the energy

on the wavevector can be non-trivial.

One of the main promising features of ferrimagnetic spintronics materials is the po-

tential for high-frequency dynamics. Conventional magnons occur when ferromagneti-

cally aligned spins rotate about the applied or magnetocrystalline field with a very small

misalignment between neighbouring spins. Antiferromagnets possess an additional mode
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wherein the spins within each sublattice remain aligned but a finite angle appears between

the spins in opposing sublattices such that they are no longer anti-parallel. In this case, the

restoring force comes from the, usually very strong, inter-sublattice exchange (Jac, which

is always ≫ ku), which permits high energy (and therefore high frequency) oscillations.

The two modes are visualised in Figure 2.14 in a macrospin approximation:

FM Magnon AFM Magnon

Figure 2.14: The ferromagnetic (FM) and antiferromagnetic (AFM) magnon modes
available to a material with two anti-parallel spin sublattices, in a macrospin ap-
proximation. The magnitude of the oscillations is greatly exaggerated compared to
reality. For the FM mode, the spins on the two sublattices precess in phase so they
remain collinear at all times, while for the AFM mode, the spins precess out of phase

2.2.4.1 Procedure

The existence of oscillations after skyrmion collapse, mentioned in the previous section,

boded well for the capability of the code to simulate magnons. In order to investigate

the evolution of magnons in our 1D lattice, it is necessary to apply some perturbation.

We accomplished this with an applied field pulse. In order to excite the widest range of

magnons possible (energy and wavelength), the field pulse applied must be both spatially

and temporally sharp, this way high energy and short wavelength magnons can be excited

which will decay over time to lower energies and longer wavelengths. To force a turbulent

initial state and ensure as many different magnon modes are occupied as possible, the field

applied was also bipolar in space, mathematically, we define the field pulse as a DW with

atomic-scale width. The field pulse thus defined contains a large range of Fourier compo-
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nents extending up to high frequencies, the exact details of the pulse are not important

as the purpose is simply to excite a large range of natural modes of the magnetic system.

There is no direct physical analogue for such a sharp pulse, but, for example, SOT effects

(which are proportional to the local magnetisation) can vary on a sub-unit-cell scale in

AFM materials. Another method which works similarly well is to simply have the spins

be randomly oriented in the initial state and allow relaxation from there, the effective

fields and torques will be sufficiently huge, but the method of applying a field pulse to the

uniform spin structure is a more realistic and elegant solution. The spatial and temporal

profile of a typical applied field pulse are shown in Figure 2.15:
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Figure 2.15: Orientation of the applied field at each atom as well as the time depen-
dence of the field magnitude. The very sharp bipolar perturbation dumps a large
amount of turbulent energy into the system which is then allowed to propagate, set-
tling into the natural frequencies of the spin system which constitute the magnon
spectrum. The high-frequency sinusoidal magnitude also promotes high-frequency
oscillations.

For these investigations, a lattice 300 atoms long was used to allow the long wavelength

magnons to propagate. Regarding the material parameters, for this magnon investigation,

values closer to those observed in MRG [62, 63] were used to ensure the applicability of

the results to this material:

Jaa = 1.2meV, Jcc = 0.3meV, Jac = −3.4meV, Ka,c = 0.01meV, JDM = 0.1meV

The DMI was deliberately overestimated in this case, it was found that it does not con-

tribute massively to the magnon spectrum where chirality is not relevant: the oscillations

64



2.2. Atomistic Magnetic Simulation Model

are dominated by exchange. The significant difference between the intra-sublattice ex-

change values should create two separate branches in the magnon spectra. In addition,

a realistic magnitude was used for the damping: α = 0.05 was used. The spins were

initially uniformly aligned along the y axis, with the applied field correspondingly bipolar

along y with a sharp rotation through the yz plane. The magnitude of the applied field

corresponds to one period of a 100THz AC field.

The LLG equation was used to simulate the evolution of the spin system, typically a

time step of 0.25 fs and around 105 steps for a total length of 25 ps was used, a smaller step

is useful to accurately capture high-frequency dynamics, especially in the beginning of the

simulation when the effective fields and torques are very large. Following the numerical

integration, the 2D discrete Fourier transform is computed from the z (or x) projection of

the spins and a subset of the time steps using, for example, the NumPy multi-dimensional

fast Fourier transform (FFT) function (documentation here). This directly converts the

space and time coordinates into frequency and momentum space, yielding the magnon

spectrum.

2.2.4.2 Results

The evolution of the spins on one of the sublattices (c) are plotted in a colour-map format

in Figure 2.16. The sharp perturbation at the center of the lattice is evident in the x and

z projections. With the normalised colour scale, we can clearly see the large number of

magnons that are created and propagate outwards from the center due to this perturbation.

In this case, looped boundary conditions were used so the magnons loop around the

chain back towards the centre, creating interesting interference patterns, clearly visible

in Figure 2.16. Loose, fixed or damped boundary conditions are also implemented; for

the damped boundary conditions, the Gilbert damping is exponentially increased over the

last few atoms either end of the chain so that oscillations are damped before the magnon

“hits” the end of the chain (recall that time and position are shown on the horizontal and

vertical axes respectively).

The Sx (or equivalently Sz) data, which is centred around 0, was Fourier transformed

and folded for both sublattices (only one sublattice is shown but the same data is recorded

for both). The dispersions for the two sublattices are added together and normalised: the
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Figure 2.16: The magnitude of the x (left), y (middle) and z (right) projection of the
c sublattice spins as a function of atom position and time. A normalised log scale
is leveraged to make the small projections off the easy axis evident: the maximum
value of Sx or Sz was ≈ 0.01 while the minimum value of Sy was ≈ 0.99995. The
colour-bar therefore indicates the relative tilt away from the initial value which was
uniform spin projection along y. N atoms = 300, pulse width = 1 atom, freq = 100
THz

normalisation is performed independently for each k-value to visualise the position of the

bands, population information is lost in this particular case. The resulting magnon spectra,

for two sets of material parameters, are shown in Figure 2.17. The effect of changing

the material parameters is illustrated in the figure, indicating that our simple method is

capable of accurately calculating all the features of a magnon spectrum. The maximum

frequency of the magnon modes is proportional to the direct exchange interaction: the

white lines in Figure 2.17(b) are free-electron-like dispersions fit to the magnon spectra at

large k-values yielding effective masses of roughly 260 and 170 electron masses respectively,

the ratio is approximately 1.5, equal to the intra-sublattice exchange ratio. Note the low-

frequency gap due to the uniaxial anisotropy, which is made obvious in (b) with a large

value for Ka,c
4. The dashed black line in Figure 2.17 follows 1 − cos(ka), the typical

equation for a magnon dispersion [3, §5.4.1], with linear scaling and shifting applied.

Information about the population of the magnon branches can also be obtained if

the spectra are not normalised. Thus the dependence of the population on the material

parameters and the properties of the perturbation can be investigated quite efficiently.

The first half of magnon spectra for various properties of the applied field perturbation are

4For comparison, the elemental material with the strongest magnetocrystalline anisotropy, Co (hcp),
has a uniaxial anisotropy constant Ka,c ≈ 0.035meV [3, §5.5.2]

66



2.2. Atomistic Magnetic Simulation Model

-1 -0.5 0 0.5 1.0

k (π/a)

0

2

4

6

8

10

ω
(T

H
z)

(a) Jaa

Jaa

-1 -0.5 0 0.5 1.0

k (π/a)

0

2

4

6

8

10

ω
(T

H
z)

(b)
Jaa

Jcc

Figure 2.17: Two magnon spectra computed by taking the 2D discrete FFT of the
z projection of the spins and the time on both sublattices separately, then adding
the two and normalising the spectra for a consistent colour scale. In (a) the values
used are Jaa = 2, Jcc = 0.5, Jac = −3.0, Ka,c = 0.01 (all meV), in (b) Jaa = 1.5, Jcc =
1.0, Jac = −3.0, Ka,c = 0.1 (all meV).

shown in Figure 2.18. There is a clear dependence of the population of the magnon branch

on the perturbing field, higher frequency field pulse provides energy to populate higher

frequency and wavevector magnon modes. What is interesting is that either increasing

spatial or temporal frequency populates the higher energy magnons, increasing both is not

necessary.

We have shown that our spin-propagation model based on the LLG equation can

successfully capture the magnon dynamics of both branches in a two-sublattice system.

The possibilities for future work are numerous, examples of potential developments of this

model include:

� Extending the model to higher dimensions for more realistic exchange interactions

and the implicit inclusion of crystal symmetries.

� Adding additional exchange parameters: 2nd and 3rd nearest neighbour interactions

are especially important in multidimensional lattices.

� Using the model to confirm experimental results or the reverse, devising experiments

to test the model, is an important step in development and testing.
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Figure 2.18: The non-normalised magnon spectra for different values of the spatial
and temporal frequency of the perturbing field, corresponding to how sharp the ro-
tation at the center of the field is, and the frequency of the sinusoid that determines
the magnitude of the field with time, see Figure 2.15. Horizontal lines evident par-
ticularly in (a) are artefacts of the Fourier transform due to the finite size of the
system.

2.2.4.3 Discussion, In An Experimental Context

The astute reader may have noticed that the AFM magnon modes that are particularly in-

teresting for their potential high frequency were not observed. These modes (Figure 2.14)

are difficult to excite in a classical spin model. Essentially, in order to excite the AFM

modes, we need a perturbation which is staggered such that it is a different sign on each

sublattice [64], an external applied field cannot achieve this. However, there is potential for

current-induced SOT (subsubsection 2.2.1.3) to satisfy the requirement. As a relativistic

correction, the spin-orbit effects are intrinsically proportional to the local magnetisation

and in a crystal with broken inversion symmetry, a damping-like torque can be gener-

ated [31, §III.F]. Recall that a damping-like torque pushes the magnetisation towards or

away from the effect field while the field-like torque causes precession about the external

field, thus a field-like torque would cause the FM magnon modes while the damping-like

torque could excite an AFM mode. The non-adiabatic spin-torque described in subsub-
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section 2.2.1.3 due to Zhang and Li [36] could also excite AFM modes if the conduction

electrons travelled from one sublattice to another, this will be discussed again later.

Bulk broken inversion symmetry is not necessary to excite SOT but to generate the

sublattice staggered effective fields which could excite AFM magnons, it is required. MRG

is a ferrimagnetic Heusler alloy with broken inversion symmetry and could be a good

candidate for this. Despite its lack of any heavy elements with large spin-orbit coupling,

MRG’s conduction attributed to states originating from one Mn sublattice and is thus

significantly spin-polarised with only DOS for one electron spin state present at the Fermi

level [65, 66]. MRG has been shown to exhibit large damping-like SOT before [67] and

is a good candidate material to investigate, although current-induced switching or AFM

magnons have not been experimentally demonstrated yet.

2.2.5 “Frozen” Dynamics Simulations

Going from a 1D model to a 3d model almost automatically accomplishes the development

points listed in the previous section. Considering the real position of the spins rather than

just an index in an array allows for the material parameters to trivially be made functions

of inter-atomic separation. The inclusion of an additional matrix to store the positions

and the computation of pair-wise separations at each time step is a significant increase in

computational complexity however. To circumvent this problem initially, we decided to use

a “frozen dynamics” approach, where an assumed dynamic state is imposed on the system

and the energy is calculated relative to the ground state, so no numerical integration is

actually performed. Thus we have essentially swapped the benefits and disadvantages with

the previous approach based on integration of the LLG equation in 1D.

2.2.5.1 Frozen Magnons

For the calculation of the frozen magnon dispersions, the same classical Heisenberg Hamil-

tonian for the spins was used, but rather than invoking the LLG equation and numerically

integrating that differential equation to investigate the dynamics, we use the energy terms

for the interatomic interactions to calculate the total energy penalty for a given magnon

mode, in a 3d lattice of spins. Rather than manually setting the value of the exchange

for two or three pair-wise interactions, a functional exchange which depends on distance
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was implemented. The exchange followed an RKKY-like oscillatory trend as a function

of inter-atomic distance, with the inter-sublattice exchange Jac 90◦ out of phase relative

to the inter-sublattice exchanges Jaa, Jcc, to ensure the signs are correct to yield antifer-

romagnetic and ferromagnetic couplings. The exchange for different atom pairs is plotted

in Figure 2.19.
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Figure 2.19: Exchange as a decaying oscillatory function of distance for the three
possible pairs of atom types: Jaa, Jcc and Jac. The inter-sublattice exchange Jac is
negative for first nearest neighbour and overall but not necessarily for all pairs of
atoms, as in real materials such as MRG, evidenced by DFT calculations (performed
by Zsolt Gercsi, unpublished). The discrete inter-atomic distances in MRG are shown
as points. The MRG Heusler alloy unit cell is also shown, with Mn atoms in red (a)
and blue (c), to illustrate the points plotted in the main figure.

To investigate magnon dispersions, a certain direction is chosen for the magnon prop-

agation direction sense of rotation, generally we used a crystal lattice extended in the

x direction with the phase increasing along this direction. For a range of wavenumbers

between k = 0 and k = 1 in units relative to the unit cell size, we impose a magnon mode

with said wavevector on the spin system and calculate the total energy of the system in

this magnonic state. The energy of the system in the ground state (usually uniform spins)

can then be subtracted yielding the energy of the magnon. Recall that smaller wavenum-

bers (longer wavelengths, more spread out magnons) implies a slower variation of the spins

and smaller misalignment between adjacent spins, meaning a smaller energy penalty from

the exchange interaction.

Calculating the energy once for a pre-defined magnon mode is of course a much faster

calculation than any dynamic simulations. The caveat is that the magnon modes are

strictly imposed in order to calculate their energy and they may not exactly correspond to
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those which are true natural modes of the spin system, particularly for more complicated

3d systems with many different high-symmetry directions. To emulate magnon modes we

rotate the spins by a small angle (≈ 1◦) away from the easy axis, which we will assume is

the z axis. They can then be rotated around the z axis such that their projection along

x and y varies sinusoidally, with a period equal to the reciprocal of the wavevector, as

illustrated in Figure 2.13. For the FM mode, the spins on the two sublattices precess in

phase so they remain collinear at all times, while for the AFM mode, the spins precess out

of phase. In this AFM mode, the strong inter-sublattice exchange comes into play and

raises the energy of the magnon further. This procedure is illustrated in Figure 2.20.

x̂ŷ

ẑ

Figure 2.20: The procedure for generating the frozen magnon modes for z as the
easy axis: rotation about y away from the easy axis, then in-phase or out-of-phase
rotation about the easy axis proportional to the atom position and the magnon
wavenumber. The out-of-phase rotation causes a finite tilt angle between the spins
of the two sublattices, resulting in a higher energy magnon as the Jac exchange begins
to contribute. The magnitudes of the tilting is greatly exaggerated.

The results of some frozen magnon calculations for constant nearest-neighbour ex-

change and distance-dependent long-range exchange, for two sets of material parameters,

are shown in Figure 2.21. The lattice used for the calculation was 3d, consisting of 40×2×2

unit cells of MRG, which is a cubic Heusler alloy of size a = b = 5.956 Å, c = 6.0 Å. The

anisotropy easy-axis was chosen to be z while the in-plane projection of the spins varied

the host sites x position, along the long axis of the crystal.

The shape of the magnon dispersion follows the canonical 1 − cos(ka) trend when

only nearest neighbour interactions are considered, as in Figure 2.21(a,c). With continu-

ous distance-dependent exchange, some more interesting features are evident, particularly

around the center point corresponding to a phase of 180◦. The AFM magnon mode,

wherein the spins on the opposing sublattices oscillate out of phase, has a higher energy

(Eoptical) than the FM mode (Eacoustic) as expected, with finite energy at k = 0, which in
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Figure 2.21: Frozen magnon spectra for four distinct cases: (a) Using MRG material
parameters and nearest neighbour interactions, (b) Using MRG material parame-
ters and extended distance-dependent interactions, (c) Using large inter-sublattice
exchange and nearest neighbour interactions, (d) Using large inter-sublattice ex-
change and extended distance-dependent interactions.

this case corresponds to the spins within each sublattice remaining collinear throughout

but the two sublattice average moments becoming non-collinear. If Jac is larger than Jaa

and Jcc by a sufficiently large amount, the dispersion of the AFM magnon can even ex-

hibit a negative slope, becoming reminiscent of the acoustic-optical phonon dispersion for

a diatomic chain [68, Figure 4.7]. Interplay between distinct magnon modes in a multi-

sublattice material can result in interesting effects, for instance it has been hypothesised

that angular momentum transfer between two magnon modes aides in the all-optical-

switching process of some rare-Earth transition-metal alloys [1].

2.2.5.2 Combined Magnon-Phonon Modes

Combined magnon-phonon dispersions are rarely seen due to the difficulty of their re-

alisation. They are very computationally expensive to simulate, effectively squaring the

computation time needed, as the motion of the atoms (spins) and re-calculation of the ex-
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change energies has to be performed for every time step before the effective field on each of

the spins can be calculated. They are also quite difficult and expensive to measure exper-

imentally, requiring advanced techniques in large facilities such as time-of-flight resolved

inelastic neutron diffraction [69], BLS (Brillouin Light Scattering) [70] or RIXS (resonant

Inelastic X-ray Scattering) [71]. Nonetheless, the interaction of these two quasi-particles

is becoming an active sub-field of research in the greater spintronics community [72].

Figure 2.22: An (exaggerated, as usual) example of a phonon in a 2D square lattice, in
the direction of the arrow shown. The equilibrium positions (left) and phonon mode
(right) are shown. In order to investigate the coupling of magnons and phonons, the
material parameters which control the magnons, namely exchange, must be made
distance dependent so that the atomic movement due to the phonons changes the
properties of the magnons.

Within this frozen framework, the addition of phonons to the model is very simple as

we already have distance-dependent exchange. The only new addition required is some

function to govern the energy penalty suffered by moving the atoms away from their

equilibrium positions, i.e. a restoring potential. Directly measuring phonon stiffness or

restoring potentials is not a trivial matter. inelastic neutron scattering is used to measure

phonons but will not yield sufficient signal for thin films. Nano-indentation using an AFM-

type setup is another method which can be used to measure stiffness but again, in thin

films it is very difficult to separate the contributions from the substrate and capping layers

etc. The physical properties of the metals which make up MRG are of course well-known

and to get an estimate for the relative magnitudes of the restoring force, the stiffness of

the bonds for the different sublattices is estimated from their relative atomic masses, mean
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free paths and elemental Young’s moduli via dimensional analysis:

E =
Y

mrel

(
L

2

)3

This estimate gives approximately correct relative phonon energies for the sublattices, for

example Mn is considerably stiffer than Ga (due in part to its differing orbital structures

and bonding) so phonons propagating in directions with more Mn will be higher in en-

ergy. The values are scaled to yield photons of similar energies to the magnons. With

unit-less relative atomic mass used, the correct energy units are obtained, one issue with

this estimate is that the stiffness is implicitly assumed to be isotropic within sublattices.

Phonons are defined in the system by their propagation and phase direction, respectively

the direction in which atoms are displaced and the direction in which the phase of the

oscillation increases, or

dR⃗ = A cos

(
2πk

Rx

a

)
d⃗,

where A is an amplitude, d⃗ is the vector direction of displacement, k is the phonon wavevec-

tor, Rx is the atomic positions along the x-axis and a is the unit cell size along the x-axis,

this is visualised in Figure 2.23. Thus k is specified in units of π/a and controls the

wavevector on the unit-cell scale: when k = 0 all atoms shift the same amount in the same

direction and there is no energy change; when k = 1, adjacent atoms (which are a min-

imum half unit-cell apart) are shifted in opposite directions. The change in interatomic

spacing, i.e. the compression or expansion, is scaled by the stiffness energy and summed

to yield the phonon energy:

Eph =
n∑
j

N−1∑
i

Ej

∣∣∣dR⃗i − dR⃗i+1

∣∣∣ ,
where j is over all n sublattices and i is over all but one atom within each sublattice

(N atoms are joined by N − 1 bonds in one direction). The atoms are displaced in one

direction only so only that axis needs to be summed over to account for all changes in

interatomic spacing.

The calculation procedure is identical to the frozen magnon case: magnon and phonon

modes of given wavevectors are imposed on the system and the energy is calculated and
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Figure 2.23: Two phonon modes with phase increasing along the x-axis. The dis-
placement vector is directed along x and y in the top and bottom examples. The
real simulation is three-dimensional and not a simple-cubic lattice but the principle
is the same. The magnitude of the displacement is greatly exaggerated: A = 0.005
was used for the simulations below.

this is repeated for a 2D grid of values. The total system energy is a sum of the magnon and

phonon energies and as the exchange is distance dependent, the phonon modes should alter

the magnon energy. As the total energy is calculated for only a few hundred discrete states,

the 2D dispersion surface only takes a few seconds to compute5. Some resulting magnon-

phonon dispersion surfaces are shown in Figure 2.24. The spectra were computed using a

102×2×2 unit cell lattice of MRG, with identical magnetic material parameters to previous

sections. The phonon stiffness was estimated as described above. The non-magnetic atoms

are, of course, included for the phonon simulations while they were ignored for magnon-

only calculations. There is little observable difference between the frozen magnon modes

with and without phonons being simultaneously imposed. The small displacement in the

atomic positions does not change the pairwise exchange interaction strengths appreciably.

The nature of these frozen calculations means that natural interference or coupling of the

modes cannot occur, we would have to get lucky with our imposed modes, such is the

limitation of a frozen model.

5With reasonably optimised code, or a few minutes to compute with code written in just a few minutes
in a simple but slow language.
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(a) (b)

(c) (d)

Figure 2.24: Combined magnon-phonon dispersions. Four dispersions were com-
puted, three with acoustic magnons and phonons displaced along the three Cartesian
axes and one with optical magnons and phonon displacement along the x axis. All
had phonons travelling along the x axis. (a) The pure magnon modes for a k = 0
phonon along x (b) The phonon modes for a k = 0 acoustic magnon. Surface plots
show the 2D magnon-phonon dispersions for (c) acoustic magnons and longitudinal
phonons and (d) optical magnons and transverse phonons. The kinks of E(k) for
the calculated phonon dispersion are likely due to beating from the finite lattice size
(150 unit cells in x direction).

2.3 Ehrenfest Dynamics Model

Combining the multi-dimensional lattice and distance-dependent interactions of the frozen

model with the time-dependent numerical integration of the dynamics model was a natural

next step along the model development path. As discussed at length in previous sections,

this kind of model requires an updated implementation which makes use of compiled code6

6Compiled code is translated into the binary machine language which runs natively on computing
devices, and is often optimised, before being run. This is in contrast to interpreted programming language
where the interpreting engine runs and recognises human commands and can run they on the fly, this
allows for easier writing and testing but slower less efficient code.
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and parallel execution to be computable in a reasonably short time. Since the move to

highly-optimised code is necessitated, it was decided that a true molecular dynamics (MD)

model for nuclear motion and electronic density with the familiar spin-dynamics should

be attempted.

The most general way to model MD is by attempting to solve the many-body Schrö-

dinger equation for the electrons and nuclei but this is not feasible for more than a handful

of particles. As a first step, the electron and nuclear sub-systems can be separated and

then there are numerous ways to treat the problem of solving for the electronic density as a

function of position in a crystal lattice, DFT being the first that comes to mind. Many MD

models calculate the ground-state electronic wavefunction, often via DFT, and treat the

nuclear motion as occurring in the potential landscape therein. This is known as the Born-

Oppenheimer (BO) approximation and it a physically reasonable approximation to make:

the excitation timescales for electrons and nuclei is vastly different due to their difference

in mass (three orders of magnitude) so transient dynamics in the electronic system will

propagate and decay before the nuclei have time to react, thus from the perspective of the

nuclei, the electrons are indeed usually in, or very close to, their ground state. This is also

known as the adiabatic approximation as the electrons do not change state, the density

can only be continuously deformed [73].

There is a large amount of interest in “beyond-BO” formalisms in modern MD, in

particular for researchers investigating the interaction of photons with molecules, chemical

bonds, and chemical reaction rates [74, 75, 76]. In recent times, full-blown time-dependent

DFT has used to calculate the electron DOS at each step [73], something which was not

computationally feasible in the past: for example the first-principles calculation of time-

dependent magnon spectra in the 3d ferromagnets [77]. There are other “in-between”

methods which are easier to use.

A bridging method known as trajectory surface hopping (TSH) involves the initial

calculation of a handful of potential electron wavefunctions and what amounts to a quan-

tum mechanical interpolation between the states when modelling the dynamics, this is an

effective approach, especially for small systems with only a few potential wavefunctions

where the entire physics can then be captured.

Then comes the idea of Ehrenfest dynamics where the electronic states are treated as

77



Chapter 2. Atomistic Magnetics Simulations

a mix (superposition) of all possible states. In this formalism, the nuclei are treated clas-

sically as electric point charges and the electron density enters the propagation equations

for the classical nuclei via the expectation value for the mixed quantum state. The nuclei

in turn enter the Hamiltonian for the electrons parametrically via their position, which can

be treated as a perturbation to the equilibrium periodic potential. This is the formalism

we have chosen to implement: the simple connection between the quantum and classical

systems, via the expectation value of the operators for the electrons, makes it easy to link

to the classical spin dynamics model.

The MD accounts for the electron-electron, nuclei-nuclei and electron-nuclei interac-

tions. The now familiar LLG-based classical magnetisation dynamics model handles the

spin-spin interactions as before. The direct spin-nuclei interactions are very small and are

neglected, however, the dependence of the pairwise exchange interactions on interatomic

separation, as seen in the frozen magnon-phonon model, means that the nuclear motion

does indirectly affect the spin system. Lastly, the spin-electron interactions are handled

via conventional sd exchange coupling between the conduction and core electrons. The

Ehrenfest dynamics model is thus two-thirds classical with expectation value of the appro-

priate operators of the quantum electronic system used in the equations for the classical

systems. The interaction of the system with external perturbations such as photons can

be simulated in an ad hoc fashion by adding an oscillating electromagnetic field to the

potential terms for the systems, this is similar to how current-driven spin-torque terms

are conventionally added to the LLG model, but with the quantum electron system in

this model, the spin-torque terms are modelled with a real physical basis. Some of the

various quasi-particles arising from the interactions of electrons with the crystal lattice are

discussed by Patterson and Bailey [78, Table 4.1], including plasmons (electron-electron),

polarons (electron-phonon), polaritons (photon-magnon/plasmon) and more. We are par-

ticularly interested in electron/plasmon-magnon scattering.

2.3.1 Parallelisation for Combined Dynamics

Dynamic simulations of systems governed by partial differential equations require time

steps an order of magnitude (or two) shorter than the time in which the dynamics of

interest occur, for example, in order to accurately simulate magnon dynamics up to f =
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100THz (1014 s−1) a time-step δt on the order of fs or smaller is required. The electron

system reacts faster than the spin system. The plasma frequency which is characteristic

of the electron system is typically on the order of f = 1015Hz (coupling to ultraviolet

radiation of wavelength λ ≈ 300 nm), thus requiring time steps significantly smaller than

δt = 1 fs. To simulate both magnon and plasmon excitations, the time step must be

δt < 0.01 fs but the total time must be t > 1 ps: long enough for the magnon to be visible

(“visible” as in its frequency contribution is resolvable in a Fourier transform). This all

means that at least 105 time steps will generally be necessary. If calculating the energy

or effective field for a single step takes around one second then the total simulation will

take over 24 hours, just for a few hundred atoms. Clearly a new, more efficient, method

of implementation must be chosen.

Up to now, all calculation were effectively done serially, whether through MathCad

or Python. To increase performance, a parallel paradigm was needed and to provide

the widest adaptability and performance, we chose to use the OpenCL framework [44].

OpenCL is a framework for writing programs that execute across heterogeneous platforms.

What this essentially means is that it acts as a middle-man language for writing programs

that will then execute in parallel on a variety of different hardware architectures, such

as standard CPUs, discrete gaming GPUs or dedicated vector processors, without any

change to the OpenCL code. This is achieved by having the processor manufacturers

program their device drivers to execute OpenCL functions. Most modern processors and

graphics cards are OpenCL compliant, thus enabling the coder to write programs that will

take advantage of parallel hardware on (almost) any device. CPUs typically have 4 − 12

computing cores while basic GPUs have 24+ and modern gaming GPUs can have 1000s. In

the ideal case, a speed-up of computation proportional to the number of computing cores

could be expected. Of course the reality is more nuanced, in particular, the bottleneck

in high-performance computing is often memory transfer speed as opposed to computing

speed. More information on parallel computing with a focus on OpenCL can be found at

the Khronos Group web page https://www.khronos.org/opencl/.

In practice, the most time consuming parts of the computation, the various matrix

operations which loop over the position index performing the same simple calculations

for every spin/atom, can be written as OpenCL compute kernels which are in turn called
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from another code written in C which handles all the memory allocation and copying.

This computation pipeline is then compiled into libraries which are callable from other

programs. With a few extra steps in the compilation to ensure the data interfaces correctly,

the libraries can be made callable in MathCad or Python, allowing the same efficient and

familiar work-flow to be used as before but with the platform-independent parallelisation

provided by the OpenCL functionality.

2.3.2 The Model

2.3.2.1 Conduction Electron System

It is necessary to treat the conduction electrons quantum mechanically and refer to their

continuous probability density ρ. A tight-binding Hamiltonian which facilitates hopping

between adjacent atomic sites is used; while a single tight-binding Hamiltonian is not

appropriate for a true metallic system (with more electrons than, say, Na), it is nonetheless

useful for modelling many-body systems, especially those that are less conductive or low-

dimensional. It is possible to use a few tight-binding models together for distinct electron

bands in a metallic system, provided electron-electron interactions are not too strong and

the band structure is not too complicated. See any condensed matter theory text book

for details on this type of Hamiltonian [78, §3.2.3] [79, §2.2].

The tight-binding Hamiltonian for N discrete sites can be written in a linear equation

format as

Hi,j = δi=j

(
ε0 − UE

i (t) + Jsd

(
s⃗i,j · S⃗i

))
+δi=j±1 (thop)+δi=0,j=N−1 (λ0)+δi=N−1,j=0 (λN) ,

or in matrix format as:

H =



εi thop . . . 0 λ0

thop εi thop 0 0
... thop

. . . thop
...

0 0 thop εi thop

λN 0 . . . thop εi


εi = ε0 − UE

i (t) + Jsd

(
s⃗i,j · S⃗i

)
(2.12)

The on-site energy at site i, εi, is the sum of the ground energy due to the periodic
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potential ε, an external electric bias potential UE
i , and the last term is energy due to

the sd exchange coupling to the core electrons of the atom at site i. The conduction

electron polarisation vector s⃗i,j is the product of the electron density matrix ρi,j with the

Pauli vector σ⃗ = σxx̂ + σyŷ + σzẑ. The hopping parameter for nearest neighbours thop

indicates the likely of hopping, or the conductance in a sense, while λ0, λN control the

boundary conditions. In the current iteration of the model, the electron-nuclei interaction

is neglected so that ε0 is constant. In principle, it can become a function of the nuclear

positions ri.

The density matrix is equal to:

ρ =
∑
i

DOS(Ei)φiφ
∗
i

where Ei and φi are the eigenvalues and eigenvectors of the Hamiltonian Hi, respectively,

and the density of states is smeared using a finite-temperature Fermi-Dirac distribution

where the effective electron temperature is generally chosen as kBT = 0.025 eV (T ≈ 290K,

room temperature).

The electron density is propagated through time using the quantum Liouville equation

(a.k.a. von Neumann equation) which describes the time evolution of a density operator

[80, §3.4].
∂ρ

∂t
=

1

iℏ
[H, ρ] → ρ(t+ δt) = ρ(t) +

1

iℏ
[H, ρ] δt, (2.13)

where the square brackets denote the commutator of the operators. The same procedure

for numerical integration is used for this combined model as for the classical spins model

propagated via the LLG equation, the only different is the equation used to calculate the

integration step, in this case it is the quantum Liouville equation.

2.3.2.2 Nuclear System

We use the famous Lennard-Jones (LJ) potential to model the pairwise interaction between

two nuclei, the total potential on a nucleus i is the sum of the pairwise potentials from
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the other nuclei:

UN
i =

N∑
j ̸=i

ε4

( c

|R⃗i,j|

)12
−
(

c

|R⃗i,j|

)6 , R⃗i,j = r⃗i − r⃗j, (2.14)

so that the directional force on the nucleus is:

F⃗N
i =

R⃗i,j∣∣∣R⃗i,j

∣∣∣ d

dR̃i

UN
i =

N∑
j ̸=i

6ε4

(
c6

R⃗i,j

|R⃗i,j|8
− 2c12

R⃗i,j

|R⃗i,j|14

)
, (2.15)

where ε4 is the overall LJ factor (four times the depth of the potential well) and c is the

core LJ factor (distance at which the potential is zero).

Given the force on the nuclei, their motion is governed via Newton’s classical equations

of motion with an additional phenomenological velocity-dependent damping (viscosity)

term:

r⃗i(t+ δt) =r⃗i(t) + v⃗i(t)δt+
1

2
a⃗i(t)δt

2,

v⃗i(t+ δt) =v⃗i(t) + a⃗i(t)δt,

a⃗i(t+ δt) =
F⃗i(t+ δt)

mN

− ηv⃗i(t),

(2.16)

where mN is the effective nuclear mass, η is the aforementioned damping parameter and δt

is the integration time step, the other terms are self-explanatory. The effect of the conduc-

tion electrons on the nuclei, when implemented, will be incorporated as an additional term

in F⃗N
i which depends on ρi,j or more formally ρi,jρ

∗
i,j since only the expectation values can

enter the classical dynamics. See future work subsection 2.3.5.

2.3.2.3 Localised Spin System

The localised atomic spin system is treated identically to the original LLG model subsec-

tion 2.2.1. The additional contribution from the sd exchange with the conduction electrons

enters as an effective field in to the LLG equation:

Hi = HHeisen + Jsd s⃗i, (2.17)

where S⃗ is the classical atomic Heisenberg spin as usual and s⃗ is the conduction electron

polarisation calculated from the density and Pauli matrices and HHeisen is the effective
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field due to the classical Heisenberg Hamiltonian, see subsection 2.2.1.

2.3.3 Procedure

The initialisation of the three subsystems in the model is performed separately before

propagation commences. The ground state for the electron density is computed from

eigenvalues and eigenvectors of the Hamiltonian with the Fermi-Dirac distribution. The

bias potential is a function of both position (site) and time, with a negative bias being

applied to the first 3 sites and positive to the last 3 sites. This stimulates current flow

through the system. The spin system is initialised to a DW configuration and the nuclear

positions are chosen to be at the potential minima of the pairwise LJ potential, which will

be close to the equilibrium position but not exactly there due to the long range interactions

and the asymmetry at the ends of the atom chain. The initial state of the three subsystems

is visualised in Figure 2.25.

After initialisation, the system is propagated by numerical integration as before, with

the step for the electrons, spins and nuclei computed via the quantum Liouville equation

Equation 2.13, LLG equation Equation 2.1, and Newton’s equations of motion Equa-

tion 2.16, respectively.

2.3.4 Results

Some preliminary results from the Ehrenfest dynamics model are described here. No

substantial phase investigation has been attempted yet, so these results essentially consti-

tute the basic propagation of the individual subsystems. The system initialised as shown

Figure 2.25 is shown again after propagation in Figure 2.26. The propagation was for

n = 40000 steps of length δt = 0.002 fs for a total time of t = 80 fs.

2.3.4.1 Domain-Wall Precession

The action of an electric current in the presence of sd exchange coupling to to exert a

non-adiabatic spin-torque on the magnetic moments due to the angular momentum being

transferred from localised spin to localised spin through the atom chain, via the conduction

electrons. This process was illustrated in Figure 2.4 and is referred to as Zhang-Li or non-

adiabatic spin-torque [36]. However, while this term is introduced phenomenologically in
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Figure 2.25: The initialised states of the model showing: (a) The classical Heisenberg
spin components for each atom with a DW configuration, (b) The shift in nuclear
positions, zero at t = 0, for the x-axis (in principle this is a 3D model but a 1D
atom chain along x̂ is specified) and (c) The density matrix (which is fully real at
t = 0) showing near-constant magnitude in the middle of the chain with significant
difference at the ends due to the applied bias potential. (d) Shows the diagonal
((i = j) terms) and the anti-diagonal (i = N − j terms where N is the size of the
square matrix) of the density matrix for clarity.

the conventional magnetisation dynamics via a general equation like Equation 2.9, this

Ehrenfest dynamics model introduces the effect in a rigorous physical way.

The reproduction of the current-induced spin-torque, shown in Figure 2.26, from what

is essentially a first-principles model is a great success and shows the worth of the Ehrenfest

model in an era where current-excited spin-torques are the hottest topic in the field of

spintronics.

2.3.4.2 Atom Chain Relaxation

The simple but telling result from the nuclear subsystem is the relaxation of the atom

chain with inter-atomic spacing increasing at the ends of the chain. This is due to the

asymmetry at the ends: the end atoms have only one other atom strongly pulling them

in towards the center of the chain and no additional atoms on the outside pushing them
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Figure 2.26: The t = 80 fs states of the model showing: (a) The beginning of DW
precession (magnetisation dynamics are closer to ps in timescale than fs), (b) Nuclear
chain expansion along the x-axis, (c) The relaxation of the density matrix after the
bias potential is turned off, density is no longer bunched at one end due to the bias
and spreads out in the center of the chain and (d) The diagonal and anti-diagonal
of the density matrix again.

inwards. This indicates the fundamental LJ potential and nuclear motion is correctly

implemented, see Figure 2.26.

2.3.4.3 Electron Density Relaxation

When the steady state bias which defined the initial state in Figure 2.25 is turned off, the

electron density immediately begins to relax and homogenise, spreading out across the

atom chain, which is equivalent to a conventional electric current travelling from right to

left. The aforementioned interaction of the electron density with the DW through the sd

exchange is the most interesting phenomena here. Also of note however, is the increase of

the off-diagonal terms in the electron density (which are no longer fully real, resulting in

the negative values in Figure 2.26), this is due to scattering as the hoping electrons move

through the various potential barriers defined by the TB model.
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2.3.4.4 Plasmon Dispersion Spectrum

Plasmons are the electronic density analogues of phonons and magnons, being quantised

oscillations in the density of electrons as a function of space. Their dispersion is distinct to

that of magnons and phonons. Analogously to how the magnon dispersion was calculated

for the spin system in Figure 2.17, the FFT of the time evolution of the real part of the

density matrix was performed to obtain the plasmon spectrum, some results are shown

in Figure 2.27 and Figure 2.28. The plasmon spectrum is very rich, due to the sharp
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Figure 2.27: The forward and backward travelling plasmon spectra for our model
system, calculated by taking the Fourier transform of the time evolution of the real
part of the electron density matrix. A time step of δt = 0.002 fs per step was used
for n = 50001 steps, meaning the total simulated time was t = 100 fs. This spectrum
was calculated with the system starting with an applied bias on the chain ends which
was then switched off.

shock the system experienced. Two distinct modes appear to be visible, one linear and

one sinusoidal at low k, with both becoming sinusoidal near the edge of the Brillouin

zone. Most of the intensity is built up at low k (long wavelength, low energy). This

spectrum exhibits similarity to the continuum of excitations for interacting Fermions on

a lattice, illustrated diagrammatically by Pereira [81, Fig. 17]. The upper boundary in

particular is well-reproduced. The diagram in the aforementioned citation was computed

for spinless Fermions: the inclusion of spin in our model adds more structure to the

spectrum. The discretisation in Figure 2.27 (and Figure 2.28) is due to the finite size

and boundary conditions of the atom chain that was used when computing the spectrum.
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There is a slight difference between the forward and backward propagating plasmons due

to the interaction with the bound magnetic electrons - the spin subsystem. The DW acts

as a moving potential via the sd exchange and exerts a force on the conduction electrons

which is different depending on their direction (and speed) of propagation due to the

Doppler effect. To illustrate another parallel between subsystem interactions, the same

phenomena can in principle be observed in phonon spectra due to magnetostrictive effects:

DW motion causes localised lattice strain due to the exchange striction which naturally

propagates outwards as phonons, the dispersions of which will be anisotropic due to the

motion of the DW and resulting Doppler effect.
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Figure 2.28: These spectra were obtained by performing the same FFT after prop-
agation with a time step of δt = 0.002 fs for n = 20001 steps, meaning the total
simulated time was t = 40 fs. In this case, propagation started after the system had
been relaxed for an additional 80 fs with no bias applied. The significance of this is
explained in the text.

The short applied bias pulse was identical for both situations shown here. However, for

the first spectra (Figure 2.27) the ground state is calculated from the Hamiltonian with

the bias applied so we can actually consider the “pulse” as having been applied for infinite

time and the system is effectively in equilibrium with the bias applied, thus when the bias

is sharply turned off, the shock is propagated for all the remaining steps. This is contrast

to the second case (Figure 2.28), where the system starts in a relaxed state with no bias

and when the bias is briefly turned on, there are a limited number of time steps for the bias

to impact the electron density through the Liouville equation, the eigenstates of the bias-
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on Hamiltonian are only slightly mixed into the relaxed electron density, resulting in much

less turbulence being introduced and a more clearly defined plasmon spectrum (the lower

number of steps and shorter time simulated contributes to the lower resolution). Only

the upper boundary plasmon branch which is linear at small k, reminiscent of acoustic

phonons, is evident in this case. Additionally there is no observable difference in the

forward and backward travelling spectra, since the electron density is never as asymmetric

as shown in Figure 2.25(c) due to this simulation being pre-relaxed for 80 fs before the

data input to the FFT was recorded.

2.3.5 Future Work

2.3.5.1 Electron - Nuclei Interaction

The most notable omission from the current version of the model is the conduction electron

- nuclei coupling which would enable plasmon-phonon scattering.

The force on the nuclei due to the electronic density in a current-carrying steady state

can be written, after Todorov, as [82, §3.1]:

F⃗N
i = · · · − 4

N∑
j ̸=i

Re[ρi,j]
d

dR̃i

Hi,

where Hi is the electron Hamiltonian. Only off-diagonal elements contribute so Hi is equal

to the hopping integral in the tight-binding model, which in principle can be a power-

function of inter-atomic separation [82], but in our present case is a constant value for

nearest-neighbours only. This is a simple approximation where summation over multiple

potential states for each site is assumed. The choice of form for the tight-binding integral

(specifically the dependence on R⃗) is very important. This follows from the Hellman-

Feynmann theorem which states that once the distribution of electrons in space is known

(the density matrix) then all the forces in the system can be treated classically [83, 84],

which also is essentially the basis of Ehrenfest dynamics in general.

Though a possible equation to satisfy the electron-nuclei coupling is known, integrating

this into the existing parallel computer code in an optimised way is not trivial and will

take some time to implement, hence the existence of this section under “future work”.
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2.3.5.2 All-Optical-Switching

The ultimate goal of this model would to fully explain, for each stage of the process, the

AOS switching of a material like Mn2RuxGa, where the energy from the incident photon

beam transfers primarily to the electrons, then through the spin system and eventually

to the lattice (nuclei). We hypothesise that the transfer of energy proceeds from photons

to hot electrons, the electrons then thermalise and the energy is transferred to the high-

energy optical (AFM) magnonic branches. The magnons scatter and thermalise by shifting

their population, along the branch, to the position of maximum group velocity (largest

slope of E(k)), there they can transfer energy and momentum to their acoustic magnon

counterparts. The acoustic magnon population travels down its branch and can transfer

energy, resonantly or non-resonantly, to the multitude of phonons in the lattice (in film

itself and ultimately the substrate on which it sits). Thus the photon energy is eventually

dissipated. Modelling the plethora of quasi-particle interactions throughout this process

is a daunting task but the essence of the behaviour should nevertheless be captured by a

1D two-sublattice model of the dynamics of the type described here.

2.3.5.3 Different Hamiltonian

There are a number of “elaborations” or reversal of approximations that can be done

on the current version of the model as described above. One particular alteration of

interest is replacing the constant nearest-neighbour hopping parameter t with a functional

t which depends on the inter-atomic separation between sites [82]. This inclusion of longer

range terms can more closely model a real conductor which is not strictly 1D and, as we

observed in in the frozen magnon simulations when switching from nearest-neighbour to

long-range exchange interactions, this change can qualitatively alter the relevant quasi-

particle dispersion, plasmons in this case and magnons for the exchange interaction.

2.3.5.4 Systematic Phase-Space Investigation

Akin to the anisotropy and DMI phase space exploration to determine skyrmion stabil-

ity, changing the various input parameters; hopping strength, bias potential, etc., and

observing the change on the overall system behaviour is of great interest.
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2.3.5.5 Polish and Publish

A potential but as yet distant end goal would be the polishing and publishing of the

simulation code, in a callable command-line format as well as a more-universally accessible

GUI (graphical user interface) format. Aspirations such as multi-dimensional phase space

exploration and even incremental additions/improvements to the model go much more

rapidly with more “cooks”.
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[34] J. Železnỳ, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Mašek, J. Sinova,
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P. Stamenov, and J. M. D. Coey, “The zero–moment half metal: How could it change spin

electronics?,” AIP Advances, vol. 6, no. 5, 2016. [Cited on pages 20 and 69]
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Chapter 3

Structural Investigation by X-ray

and neutron Diffraction

The atomic scale structure of materials defines that materials’ macroscopic properties.

In the development of new materials, characterisation of the structural properties is an

imperative task in the optimisation process, this is especially true for thin films, whose

vertical extent is microscopic itself. X-rays with wavelengths of a similar order to the

interatomic spacings in crystals provide a powerful method to probe the structural prop-

erties via diffraction. The interatomic spacing in crystals is typically of the order 1−10 Å,

which roughly translates to photons with energies in the range 10− 1 keV.

For over a century now, X-rays have been most commonly generated using X-ray tubes,

where electrons are emitted by a hot cathode wire and accelerated towards a metal anode

material using a high voltage, generally > 20 keV. These electrons hit the metal and are

inelastically scattered and slowed, emitting “bremsstrahlung” radiation in the process.

More importantly, the electrons can strike atoms and cause inner K-shell electrons in the

atom to be ejected, provided the impinging electrons have more kinetic energy than the

binding energy. When this occurs, the hole in the atomic energy level of the atom in the

metal will typically be filled by an electron from the next shell up, and to conserve energy,

this electron must emit a photon with energy equal to the difference in energy between the

atomic levels Eγ = Eb(n = 1)−Eb(n = 2). Due to this dependence on the exact energy of

the atomic levels, these photons are characteristic of each element, and a photon emitted

concurrent to the energy level transition from the second to first level (2p3/2 → 1s) is

known as a Kα1 photon. The most common anode material for X-ray tubes is Cu, with
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3.1. Theory

Eγ = 8.05 keV and λγ = 1.54 Å for the Kα1 radiation (these values are perfect for X-ray

diffraction). In addition, Cu is easily cooled and potentiated due to its large thermal

and electrical conductivity. Mo is another common material with Eγ = 17.5 keV: shorter

wavelengths grants accessibility to smaller values of interatomic spacing, as will become

clear below when Bragg’s diffraction equation is introduced.

Much more advanced sources of X-rays come in the form of synchrotrons and free-

electron lasers. These large-scale facilities have far higher spectral power, providing far

more photons per unit time, allowing for much faster acquisitions and larger signal-to-

noise ratios, especially for thin films with smaller numbers of atoms. However, they are in

very high demand and it is difficult to justify their use and gain access (and none exist in

Ireland of course) and I have not made use of them during my work, so I will not go into

any further detail.

3.1 Theory

3.1.1 Photon Scattering

3.1.1.1 Scattering from an Electron

Given their electromagnetic nature, photons will interact with and be scattered by the

electromagnetic potential of charged particles. The low-energy, elastic phenomenon of

Thompson scattering describes the coherent scattering of electromagnetic radiation by a

charged particle such as an electron. This elastic limit is always valid for the photon

energies we are interested in (when the wavelength is a similar size to the crystalline

interatomic distances) around 1 keV − 10 keV.

In this classical theory, the total scattering cross section for an electromagnetic plane

wave incident on a charged particle is obtained by equating the oscillation of the charged

particle to that of the electric component of the electromagnetic field, treating the particle

as a dipole antenna and integrating the radiated power of the antenna over a solid angle

[1]:

σ =
8π

3

(
q2

4πε0mc2

)
In materials science, the charged particles we are interested in are electrons and protons.
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Given the charge and mass of these particles |q| = 1.602× 10−19C, me = 9.109× 10−31 kg

and mp = 1.673 × 10−27 kg, their scattering cross sections are σe = 6.652 × 10−29m2 and

σp = 1.973 × 10−35m2, thus we can assume the photons are only scattered by electrons

in a crystal lattice. The polarisation of the electric field is considered later in subsubsec-

tion 3.1.2.1.

3.1.1.2 Scattering from a Periodic Potential

For a detailed derivation of the diffracted intensity from a crystal, see for example [2,

§1.3]. Central to theory of diffraction is the concept of constructive interference of waves.

A coherent incident monochromatic plane wave will scatter elastically from two scattering

centres, and the resulting waves interfere constructively, if the difference in path length is

equal to some integer multiple of the wavelength. W. L. Bragg’s initial theory considered

the plane wave being partially specularly reflected by a series of mirror planes in a crystal

[3]. This yielded the very familiar equation for Bragg diffraction

d

d sin(θ)

θ θ

θ

Figure 3.1: Diffraction from a crystal according to Bragg.

nλ = 2d sin(θB), (3.1)

where λ, d and θ are the wavelength, inter-plane spacing and angle of incidence respectively.

Despite its simplicity, this is a remarkably useful result that is still used in everyday

crystallography. However, to capture the full essence of diffraction from a crystal we must

consider the Thomson scattering of photons from the individual electrons: we should use
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a vector approach and integrate over the electron density. From Figure 3.2, the total

scattered field is proportional to the integral of the waves which are Bragg scattered by

each infinitesimal point in the electromagnetic potential:

Figure 3.2: The geometrical construction is similar to the Bragg case. The path
difference is the sum of the projections of r⃗ onto the incoming and outgoing photon
wavevectors, equal to (−k⃗0 · r⃗) + (k⃗1 · r⃗) = Q⃗ · r⃗. Picture reproduced from Kittel [4].

∫
ρe(r⃗) exp

(
−iQ⃗ · r⃗

)
dr (3.2)

Where Q⃗ is the scattering (or momentum transfer) vector:

Q⃗ = 2πq⃗ = k⃗1 − k⃗0, |⃗k| = 2π

λ
, |Q⃗| = 2π|q⃗| = 4π sin(θ)

λ
(3.3)

These relations for the scattering vector Q⃗ and reduced scattering vector q⃗ will become

useful later on.

Now, any periodic function, or a function defined in a finite volume, such as that

describing the atomic sites in a crystal lattice, can be expanded in a Fourier series of sines

and cosines. The electronic density in a crystal can be written

ρe(r⃗) =
∑
G⃗

nG⃗ exp
(
iG⃗ · r⃗

)
(3.4)

where ρe(r⃗) is the electronic density at a point r⃗ from the origin, G⃗ is a set of vectors in

the Fourier space that leaves ρe(r⃗) unaltered and nG⃗ are the Fourier coefficients. In fact,

the vectors which describe the translational symmetry of a crystal are sums of integer

multiples of the reciprocal lattice vectors: G⃗ = hx̂∗+kŷ∗+ lẑ∗. On substituting Equa-
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tion 3.4 into Equation 3.2, the phase factor becomes exp
(
−i(G⃗− Q⃗) · r⃗

)
. The intensity

is proportional to the absolute square of the total field and in fact vanishes, except when

the scattering vector differs appreciably from a reciprocal lattice vector sum. Therefore

our new scattering condition can be stated as G⃗ = Q⃗ for constructive interference: we

will have diffracted intensity when the scattering vector is equal to a linear combination

of reciprocal lattice vector.

3.1.1.3 Scattering from an Atom (Form Factors)

If we now consider the scattering of photons from a single atom, the scattered field will

be proportional to the integral over the electronic density around the atom. The atomic

form factor is defined:

f =

∫
at

ρe(r⃗) exp
(
−iQ⃗ · r⃗

)
dr (3.5)

The electronic density will increase for larger atoms with more electrons, while coherent

photons scattering from different points of the atomic charge density will slightly lose

coherency. Accurate values for each atom (and oxidation state) have been calculated

using various quantum mechanical methods and tabulated in tables such as [5].

3.1.1.4 Scattering from a Lattice (Structure Factors)

The atomic form factors and the scattering condition G⃗ = Q⃗ are in fact all that is necessary

to determine the intensity of each reflection for simple cubic structures where all atoms

are identical, however, for more general structures, we must integrate over the unit cell,

which is equivalent to summing the integral contribution from each of the N atoms in the

unit cell:

F =

∫
uc

ρe(r⃗) exp
(
−iQ⃗ · r⃗

)
=

N∑
n=1

∫
at

ρe(r⃗) exp
(
−iQ⃗ · (r⃗ − r⃗n)

)
dr

where the atomic form factors Equation 3.5 can be factored out to yield the Structure

factors for a given crystal:

F =
N∑

n=1

fn exp
(
−iQ⃗ · r⃗n

)
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The structure factors give the intensity of coherent scattering from the atoms in a unit

cell for a given scattering vector. The additional condition for constructive interference

from the crystal is G⃗ = Q⃗. Writing the position vector for an atom (in a cubic unit cell)

as r⃗ = xnx̂+ ynŷ + znẑ where in are the fractional coordinates and î the lattice primitive

unit vectors, the dot product in the phase factor is equal to G⃗ · r⃗ = (hx̂∗ + kŷ∗ + lẑ∗) ·
(xnx̂ + ynŷ + znẑ) = 2π(hxn + kyn + lzn) where i∗n are the reciprocal lattice vectors, so

finally:

F (hkl) =
N∑

n=1

fn exp(−i2π (hxn + kyn + lzn))

To see the effect of the structure factors, it is instructive to now take the example of

body-centred and face-centred cubic lattices made up of identical atoms: For the body-

BCC FCC

Figure 3.3: bcc and fcc lattices with the primitive atoms needed to periodically
replicate the unit cell indicated.

centred-cubic (bcc) lattice, there are two atoms in the primitive unit cell, situated at

(0, 0, 0) and
(
1
2
, 1
2
, 1
2

)
. For the face-centred-cubic (fcc) lattice, there are four atoms in the

primitive cell, situated at (0, 0, 0),
(
1
2
, 1
2
, 0
)
,
(
1
2
, 0, 1

2

)
and

(
0, 1

2
, 1
2

)
. The respective structure

factors for the two types of lattice can then be written:

Fbcc(hkl) = f0 (1 + exp(−iπ (h+ k + l)))

Ffcc(hkl) = f0 (1 + exp(−iπ (h+ k)) + exp(−iπ (h+ l)) + exp(−iπ (k + l)))

Per the definition of G⃗, (hkl) are the integer multiples of the reciprocal lattice vectors,

or in other words the miller indices of the lattice. This result tells us that in addition to
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satisfying the diffraction condition G⃗ = Q⃗, there are reflections which are forbidden based

on the symmetry of the primitive lattice. For example, for the fcc lattice, if we consider

the (111) and (103) reflections and recall the Euler formula exp(ix) = cos(x) + i sin(x):

Ffcc(111) = f0 (1 + 3 exp(−i2π)) = 4f0

Ffcc(103) = f0 (1 + exp(−iπ) + exp(−i4π) + exp(−i3π)) = f0 (1− 1 + 1− 1) = 0

See, for example, Kittel [4, §2], for more details. So we see how the reciprocal lattice

notation has allowed us to construct a rather elegant method of determining the intensity

diffracted from families of lattice planes. For more complicated structures with multiple

types of atoms, the exponents are scaled by their atomic form factors fn and we generally

get partial constructive or destructive interference and significantly more non-negligible

reflections. Calculation of full diffraction patterns is always done on computers in modern

times and offers a method to fingerprint crystal structures. Common tools for calculating

structure factors include FullProf [6] and VESTA [7].

3.1.1.5 The Laue Interference Function

Another important concept in diffraction is the interference function, which will become

especially useful later when considering the shapes and widths of diffracted peaks. We

have seen that the total diffracted field amplitude, due to constructive interference, is

proportional to a sum over all N diffracting centres:

F ∝
N∑

n=1

exp
(
−iQ⃗ · r⃗n

)
The position vector can be split into its three Cartesian components, as was done for the

structure factors but not just over the unit cell in this case r⃗n = n1ax̂+n2bŷ+n3cẑ, where

a, b, c are the primitive lattice lengths. This leads to a triple sum over all the atoms in the

three orthogonal directions:

F ∝
Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

exp(−iQxnxa) exp(−iQynyb) exp(−iQznzc) (3.6)
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We can utilise the fact that these sums are equivalent to a geometric series:

N−1∑
n=0

rn =
1− rN

1− r

Let k = Qax̂∗ for each sum:

Nx−1∑
nx=0

exp(−iknx) =
Nx−1∑
nx=0

(exp(−ik))nx =
1− (exp(−ik))Nx

1− exp(−ik)

and then multiplying with the complex conjugate:

1− exp(−ikNx)

1− exp(−ik) · 1− exp(ikNx)

1− exp(ik)
=

1− (exp(−ikNx) + exp(ikNx))

1− (exp(−ik) + exp(ik))

=
1− 2 cos(kNx)

1− 2 cos(k)
=

sin2
(
Nx

k
2

)
sin2

(
k
2

)
Taking this knowledge back to Equation 3.6, we finally obtain:

I ∝ |F |2 ∝ sin2
(
Qxa

Nx

2

)
sin2

(
Qxa

1
2

) ·
sin2

(
Qyb

Ny

2

)
sin2

(
Qyb

1
2

) · sin
2
(
Qzc

Nz

2

)
sin2

(
Qzc

1
2

) (3.7)

There are no cross terms while taking the complex conjugate due to the mutual orthog-

onality of the Cartesian vector basis. This formulation makes the diffraction condition

more obvious, e.g. for maximum intensity Qzc = 2πL along the ẑ direction. And is useful

when discussing the origins of peak broadening in later sections.

3.1.2 Instrumental Corrections

3.1.2.1 Polarisation Correction

The scattering of a photon from an electron was introduced in the beginning of this section.

What was not considered is the electric field and its polarisation. It is convenient to

separate the polarisation into components in and normal to the scattering plane, denoted

Eπ and Eσ. Consider the acceleration of an electron by the electric field of an incident

photon and the resulting field produced by the radiating dipole at a point R in Figure 3.4

below:
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~E0π

~E0σ

~k0
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2θ
α

Figure 3.4: Electric field components for a photon elastically scattered by an electron.

Only looking at the angular dependencies, the perpendicular component is unaltered:

E1σ = E0σ. For the component in the scattering plane, an observer at R will see the

projection of the radiating dipole perpendicular to the vector R⃗, so E1π = E0π sin(α) =

E0π cos(2θ), as α = 90◦ − 2θ. If we consider the common case of an unpolarised X-

ray beam diffracted first by a monochromating crystal and then by our sample with the

scattering vectors all coplanar, the resulting electric field polarised in the plane at R is then

Eπ = E0π cos(2θM) cos(2θ) where θM is the Bragg scattering angle of the monochromating

crystal. The perpendicular component is still unaltered. The intensity of the radiation is

proportional to the absolute square of the electric field I ∝ ⟨E2⟩ = ⟨E2
π⟩+ ⟨E2

σ⟩. We have

worked out that Eπ = E0π cos(2θM) cos(2θ) and Eσ = E0σ, and for an unpolarised initial

X-ray beam we know that ⟨E2
0σ⟩ = ⟨E2

0π⟩ = 1
2
⟨E2

0⟩, leading to the final expression for the

polarisation correction for the intensity:

I ∝ 1

2

[
1 + cos2(2θM) cos2(2θ)

]
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3.1.2.2 Lorentz Correction

The exact meaning of the Lorentz factor can cause confusion at first as it has a different

useful form depending on whether one is investigating polycrystalline or single crystal thin

film and bulk samples [8, §6.2.4]. When considering single-crystal diffraction, the Lorentz

factor is most often discussed in terms of the angular velocity of the scan along the given

axis of rotation, however, most scans in modern diffractometers rotate a given angular

step and record intensity with the entirety of the system stationary for a set integration

time. It is more aptly referred to as a geometrical factor in this case.

The correction arises from the fact that a scan linear in a real-space angle is not linear

in reciprocal space units. The correct form is given in the international tables [8, §6.2.4]

or for example by Smilgies [9] and a more general solution for arbitrary scan types was

given by McIntyre and Stansfield [10]. The correction in our case is usually of the form

Lcorr ∝ 1/ sin(2θ). Alternate forms are described when necessary in the following sections.

3.1.2.3 Illuminated Volume Correction

The most common geometry used in XRD is the parafocusing Bragg-Brentano geometry

used for powder diffraction. The source, sample and detector lie on the focusing circle

with the entire sample illuminated. This geometry has the benefit of a very high intensity

but due to the focusing constraints can only be used to measure reflection with scattering

vectors normal to the surface of the sample.

In my work, I am interested in a wide range of reflections with a variety of orientation

angles. We instead use the much more versatile collimated-beam geometry. This geometry

is more suited to thin film investigation and is comparatively simple to visualise. One

additional correction that is introduced is the illuminated volume correction. For a beam

with a constant cross-sectional area and a sample of finite size, the volume of material

illuminated, and therefore the number of atoms which contribute to the diffracted intensity,

depends on the angle of incidence of the incoming X-ray beam. A simple geometric

construction, as in Figure 3.5, helps to visualise the situation and we can infer that the

volume correction is equal to Vcorr = b · t/ sin(ω). We are generally only interested in the

relative intensities of reflections from a given sample so we simply say Vcorr ∝ 1/ sin(ω).

One thing to note is that the simple correction as we have introduced it above assumes
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I ∝ A = b·t
sin(ω)

Figure 3.5: 2D projection of the illuminated volume in a collimated beam XRD scan
for incident angles ω = 40◦ and ω = 20◦, with film thickness greatly exaggerated
for clarity. The inset shows how the X-ray beam may overflow the sample and be
imperfectly centred.

that the entire X-ray beam is incident on the sample and that there are no elemental

inhomogeneities etc. If part of the X-ray beam should fall outside the sample surface,

especially if the sample is oriented diagonally, the volume correction will need to be altered

slightly, as illustrated in the inset of Figure 3.5.

3.1.2.4 Monochromation and Collimation Correction

Radiation produced by any kind of source is rarely perfectly monochromatic. As was

discussed at the beginning of this section, most laboratory systems typically produce radi-

ation by bombarding an anode metal with high-energy electrons, resulting in continuous

“bremsstrahlung” radiation as well as sharp peaks in intensity at energies characteristic to

the anode material. A spectrum that might be observed from a copper target is shown in

Figure 3.6. The largest number of photons are produced from the n = 2 to n = 1 atomic

transition Kα in the Cu with energy E = 8.05 keV, but there is a significant background

from the bremsstrahlung and the characteristic peak is quite broad due to the high tem-

perature etc. To be more useful, the radiation must be monochromated. The most basic

way to do this is to simply use a filter (or filters) with an absorption edge just above

(and below) the desired characteristic energy, such as a Ni foil. However, the Kα line

is actually a doublet since the 2p energy levels are split by their total quantum number,

consisting of Kα1 and Kα2 , with the latter having a slightly lower energy of E = 8.03 keV

with around half the intensity. If using the filter-monochromating method, one therefore

must account for this doublet when analysing data, while peaks in the emission spectrum

further from this energy (such as Kβ lines) can safely be ignored. A more effective way is
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Figure 3.6: A calculated X-ray emission spectrum for an X-ray tube with a Cu anode
operated at 40 kV. The bremsstrahlung is calculated using Kramer’s law [11] and
the values for the characteristic X-ray peaks are from Hölzer et al. [12].

to use diffraction to monochromate (in order to perform more diffraction), for which very

high-quality crystals are needed because a resolution of 0.25% is required to separate the

Kα sub-peaks. Luckily, the unhalting progress of the semiconductor industry has provided

us with macroscopic atomically perfect crystals of semiconductors such as Si and Ge. An

example of a modern monochromator used in a laboratory system for Cu Kα1 radiation

is the Ge (220) double-bounce monochromator; given the photon energy E = 8.0478 keV

(λ = 1.5406 Å) and Ge cubic lattice size a = 5.658 Å, we can rearrange Equation 3.1 to ob-

tain θM = 45.296◦. Doing the Bragg diffraction twice gives a very good monochromation

which suppresses the Kα2 to an intensity typically less than 1% the magnitude of Kα1 ,

enough that it can be ignored during data analysis, greatly simplifying that part of the

experimental procedure. The benefits of various crystal monochromator configurations

are analysed by Konya [13].

Collimation for parallel-beam experiments is generally performed in tandem with the

monochromation. The simplest collimation method is the use of shadowing slits, thus ex-

tracting a roughly collimated beam by geometry alone. Collimation slits work in tandem

with wavelength dispersive diffracting crystals enhancing monochromation. In addition

to diffraction from perfect semiconductor crystals, a graded curved multilayer, known as

a Göbel mirror, can be used for combined monochromation and collimation [14]. These

parabolically curved mirrors consist of alternating layers (often W/Si or Ni/C), deposited

on a curved substrate such that the layer thickness increases as the parabolic curve radius
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decreases, with the source positioned at the focal point, the divergent photons emitted

will be collimated and monochromated by Bragg diffraction from different points on the

mirror. Göbel mirrors offer similar collimation to shadowing slits with a factor 10 in-

creased intensity [15, §1.2] Excellent collimation and monochromation can be achieved by

coupling the output of the Göbel mirror into a Ge (220) double-bounce channel-cut crystal

monochromator, allowing through the Cu Kα1 photons with wavelength of λγ = 1.5406 Å

but as little as possible of the Kα2 with λγ = 1.5444 Å [16]. Absorbing slits are often

additionally used to control the size and divergence of the beam. For the highest possible

resolution, additional monochromating crystals are sometimes used on the detector side

of the setup as well, known as “analyser crystals” instead of monochromators in this case.

The downside is that the overall intensity is of course significantly reduced, meaning that

the various monochromation and collimation methods all have their preferred applications

depending on the system being investigated: there is a trade-off between resolution and

intensity. Monochromation by crystal diffraction in particular alters the polarisation of the

X-ray beam which impinges on the sample, as was discussed in the polarisation correction

section.

3.1.2.5 Absorption Correction

Photons travelling through a material can be absorbed via the photoelectric effect as

well as inelastically Compton-scattered. The well-known mass absorption cross-sections

describe how likely photons are to interact in a material at a given energy. NIST maintains

a database of these coefficients at https://dx.doi.org/10.18434/T48G6X. For example,

from the NIST calculator, the inelastic mass absorption coefficient at E = 8.0478 keV

for a material that I have worked with, Mn2RuxGa, is σ = 182 cm2 g−1. This material

has a density of roughly ρ = 8g cm−3, resulting in a linear attenuation coefficient µ =

ρσ = 1456 cm−1. The reciprocal of this characterises the average penetration depth zav =

6.87 µm. I have dealt exclusively with diffraction on thin films with t < 100 nm, far smaller

than this penetration depth, showing that the effects of absorption can be safely ignored.
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3.1.3 Material-Dependent Corrections

3.1.3.1 Thermal Vibrations

This is the appropriate place to introduce the effect of thermal vibrations. These vibra-

tions of the atoms cause a larger effective spread of the electronic density and a resulting

reduction of the diffracted intensity. We can obtain an expression for the effect of these

vibrations by including a shift of position into the atomic form factors Equation 3.5:

fT =

∫
at

ρe(r⃗) exp
(
−iQ⃗ ·

(
r⃗ + δ⃗r

))
dr

Splitting the exponential term

fT =

∫
at

ρe(r⃗) exp
(
−iQ⃗ · r⃗

)
exp
(
−iQ⃗ · δ⃗r

)
dr

The experimentally relevant quantity here is the time average, we perform this average

for the vibrational term. In addition, since the displacements of the atoms from their

equilibrium positions is small, we can approximate the exponential by its Taylor series:

fT = f⟨exp
(
−iQ⃗ · δ⃗r

)
⟩ = f

(
1− iQ⃗ · ⟨δ⃗r⟩ − Q⃗2 · ⟨δ⃗r2⟩+ iQ⃗3 · ⟨δ⃗r3⟩+O(4)

)
If the displacements δ⃗r are isotropic around 0, then the odd powers will average to 0. We

can convert back to a single exponential using the same small displacement assumption

after dropping these terms:

fT = f
(
1− Q⃗2 · ⟨δ⃗r2⟩

)
= f exp

(
−1

2
Q⃗2 · ⟨δ⃗r2⟩

)

The squared magnitude of the scattering vector is |Q⃗|2 = 16π2 sin2(θ)/λ2 and we can

replace the average of the displacement vector with the mean displacement along the

scattering vector direction for a given atom to yield:

fT = f exp

(
−8π2

λ2
sin2(θ)ū2

)
= f exp

(
−B(T )

sin2(θ)

λ2

)
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Where B = 8π2ū2 is usually called the Debye temperature factor. Finally the new struc-

ture factors, corrected for thermal vibrations of the atoms, are:

FT =
N∑

n=1

fn exp

(
−B(T )

sin2(θ)

λ2

)
exp
(
−iQ⃗ · r⃗n

)
We see that thermal vibrations cause a reduction in intensity that increases for larger

temperatures and angles. The Debye factor is usually absorbed into the atomic form

factor.

3.1.3.2 Finite Size Broadening

Simple diffraction formulae such as Bragg’s law implicitly assume infinite diffracting crys-

tals. If we are to derive an expression for the effect of a finite-sized diffracting crystallite

on the shape of a real-life detected peak, we can follow the method of Birkholz [17] and

refer back to the interference function Equation 3.7. For simplicity, we will assume that

the scattering vector is vertically oriented such that Qx = Qy = 0. We then have:

I ∝ sin2
(
QcNz

2

)
sin2

(
Qc1

2

)
We can convert to the dimensionless scattering coordinate ξ = Qc, where the main peak

in the spectrum then extends from −π to +π, as shown in Figure 3.7. The integrated
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Figure 3.7: The interference function as a function of the scattering coordinate for
two values of N , the numbers of atoms along the diffraction vector direction.
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intensity of the peak is then simply calculated:

Iint =

∫ π

−π

sin2(ξNz/2)

sin2(ξ/2)
dξ = 2πNz

while the amplitude of the peak is simply I0 = N2
z . This means the integral breadth of

the peak is βξ = Iint/I0 = 2π/Nz. Converting back to Q by multiplying by dQ/dξ = 1/c

and noting that the crystallite size along the scattering vector direction is Dz = cNz, we

finally obtain:

Dz =
2π

βQ

This result was first derived, in terms of 2θ, by Scherrer [18] and is typically referred

to as the Scherrer equation. Note that the subscript z is used because we assumed the

scattering vector was directed OOP, in general, the crystallite size along the direction of the

scattering vector is what is measured. This remarkably simple result relates the observed

broadening of a diffracted peak to the size of the crystallites in the diffracting medium. It

generalises trivially to scattering vectors which are not coincident with a particular crystal

axis, as in this case, with a few caveats. For non-cubic crystallites, the apparent crystallite

size will be different depending on exactly what part of the crystallite that the photon

impinges on. To properly account for the shape anisotropy of the crystallite, dividing the

crystallite into columns of unit cells of different heights is a useful method, more details

can be found in, for example, [17, §3.4.2]. For spherical crystallites, a more realistic

assumption, the secondary peaks will be smoothed out since the sum over the intensity

from different columns will have different values of N and therefore different oscillation

frequencies. The integral breadth can be shown to be Dsph = (6/π)
1
3 Dcube = 1.241Dcube.

The correction factors for various crystal shapes were calculated by Langford et al. [19].

The second important factor to consider is that the crystallite size value obtained is a

volume average and so is heavily weighted towards larger crystallites in the sample.

The distribution of crystallite sizes is often close to log-normal in shape, as per Hinds

[20]. These facts must be considered when attempting to quantitatively interpret the

crystallite size estimated using this method. Lastly, due to how small the breadths become

when the crystallite size grows and N becomes very large, the Scherrer equation is only

truly accurate for D ≤ 100 nm [18]. Beyond that, the finite-size broadening becomes a
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tiny fraction of the total observed peak width and cannot be accurately determined. In

summary, smaller coherently diffracting crystallites result in broader reflections due to the

nature of constructive interference (less atoms means a smaller number of sinusoids to sum

and a less sharp peak) and non-cubic crystallites result in a smoothing out of the peak

due to the summing of sinusoids with different frequency.

3.1.3.3 Microstrain Broadening

Microstrain in the context of XRD refers to local distortions in the interatomic or inter-

planar distance d within individual coherently diffracting crystallites. These distortions

generally are caused by defects in the crystal lattice which form as a result of strain. Epi-

taxial thin films typically grow with a large amount of compressive or tensile strain in the

plane due to mismatch between the substrate and sample equilibrium lattice parameters.

In most cases, the relaxation of the atomic bond lengths as sample atoms become further

away from the substrate is accompanied by lattice defects, although for extremely thin

films it can be the case that not enough strain has built up. One of the more common

types of lattice defect in epitaxial thin films is known as a dislocation. In addition to their

prevalence, they cause a distortion in interatomic distances that scales as r−1 while some

other defects such as lattice faults decay as r−2 [17, §3.5], so it is somewhat justified to

only consider microstrain due to dislocations when interpreting the breadth of diffracted

peaks from epitaxial thin films.

For an isotropic Gaussian (normal) distribution of strain ε, as would be caused by

random dislocations, the apparent strain η is given, after Stokes and Wilson [21], by the

equation:

η =
β2θ

tan(θ)
= 2
√

2πε̄2

Converting from units of 2θ to Q by means of Equation 3.3 and its derivative:

β2θ
tan(θ)

=
βQ

tan(θ)

λ

2π cos(θ)
=

βQλ

2π sin(θ)
=

2βQ
Q0

= 2
√
2πεrms

Alternatively, the weighted average strain, again assuming a Gaussian distribution, is

given by:

ε̃ =
1

2

√
2πεrms =

βQ
2Q0
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3.1.4 Neutron Diffraction

Neutron diffraction is a very useful technique which has proved invaluable in condensed

matter research over the previous decades, however the technique is not as ubiquitous as

X-ray diffraction because of the necessity for a nuclear reactor or a particle accelerator

facility complete with moderators and special optics, a summary of facility types and a

short list of locations are given by Baruchel et al. [22, §V.1.2]. Neutron diffractometer

facilities have many of the advantages that large-scale X-ray facilities achieve, such as

tunable wavelength (De Broglie wavelength is simply proportional to the velocity for non-

relativistic massive particles). Neutron diffraction has two distinct advantages over X-

ray diffraction: elements with similar atomic numbers and even isotopes can easily be

distinguished due to the erratic variation of the neutron scattering length with the number

of protons and neutrons in a nucleus, and neutrons scatter magnetically due to their

magnetic moment which facilitates an atomic scale probe of the magnetic moment density

of a sample.

The coherence conditions for constructive interference and thus strong diffraction are

identical in the X-ray and neutron cases as wave mechanics are still wave mechanics, but

the underlying scattering mechanisms are very different, albeit quite complementary. Pho-

tons, being the force carriers of the electromagnetic field, scatter strongly off the electronic

density around atoms, while neutrons are neutral and do not. However, neutrons are com-

posite fermions which interact via the strong (and the weak) force and also weakly interact

electromagnetically via their magnetic moment. This leads to two separate terms in the

neutron structure factors, a nuclear and a magnetic term, as shown in subsection 3.1.4.

The reader should refer to Chatterji [23, §1.6] for more details.

|FN |2 =
∣∣∣∣∣

N∑
n=1

bn exp
(
−iQ⃗ · r⃗n

)∣∣∣∣∣
2

+

∣∣∣∣∣
N∑

n=1

pnµ⃗n exp
(
−iQ⃗ · r⃗n

)∣∣∣∣∣
2

where b and p are the nuclear and magnetic scattering lengths for the particular iso-

tope/atom, and m⃗u is the magnetic interaction vector equal to the difference between the

magnetic moment of the scattering electron and its projection onto the scattering vector

µ⃗ = m̂− Q⃗(Q⃗ · m̂)/|Q⃗|2 = m̂− Q̂ cos(θ). This interesting result means that the magnetic

structure factor is 0 when the scattering vector is collinear with the magnetic moments

115



Chapter 3. Structural Investigation by X-ray and neutron Diffraction

x

y

z~k0

~k1

~Qm̂

~p

~µ

2θ

α

Figure 3.8: The magnetic interaction vector µ⃗, illustrated for scattering vector Q⃗ =
[111] and magnetic moment m⃗ = [001]. p⃗ is the projection of m̂ onto Q̂, = Q⃗(Q⃗ ·
m̂)/|Q⃗|2 = Q̂ cos(α) in the figure. 2θ ≈ 31◦, corresponding to a cubic lattice with a ≈
5 Å. The vector lengths may appear slightly inconsistent due to the 3D projection.

in the sample, and maximum for 90◦ orientation, allowing the local magnetic orientation

to be probed. This sensitivity to local atomic magnetism makes neutron diffraction one

of the most powerful methods for investigating the magnetisation of antiferromagnets or

compensated materials, as most magnetometry techniques probe the macroscopic average.

Some conceptual details about the two terms are discussed below.

The nuclear strong force is very strong but also very short range, extending roughly the

size of a nucleus (≈ 10−15m). Neutrons used for diffraction naturally have wavelengths on

the order of inter-atomic distances (≈ 10−10m), much larger than the range of the strong

force and so the potential can be treated as a delta-function. To first order, this means

that the scattering amplitude, and therefore the scattering length, of a given nucleus is

equal to a constant b [24, 25], i.e. it does not change with the length of the scattering

vector. This scattering length is generally a complex number where the imaginary part

accounts for absorption. There is no theory for the strong force near as developed as

electromagnetism which allows accurate calculations from first principles, but the nuclear

scattering lengths have been determined experimentally and tabulated in literature [8,

§4.4.4]. The scattering lengths depend on the internal structure of the nucleus and exhibit
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large variations between similar sized atoms and also between isotopes of the same element.

For so-called “thermal neutrons” used for diffraction (with λ ≈ 2 Å), the scattering lengths

are constant as a function of energy (or wavelength/wavenumber/frequency/velocity...)

except for some heavy isotopes, for which resonant interactions occur.

The other important contribution is the magnetic scattering of neutrons. While still

electromagnetic in origin, it differs from the photon case in that the scattering field comes

from the unpaired electrons in the outer shells of atoms. The magnetic interaction is

relatively long range but is also relativistic in origin and much weaker than the strong

force, so perturbation theory is still valid and analytical models can be derived. Detailed

derivations can be found in the crystallography tables [8], by Chatterji [23] or Zaliznyak

[25], for example. The scattering potential which defines the magnetic form factor is

proportional to the magnetic density of the atom, which is proportional to an integral

over the radial parts of the relevant wavefunctions of the atoms. As in the photonic case,

the scattering length p as a function of scattering vector length |Q⃗| is solved for numerically

using a Hartree-Fock or similar solution to the wave equations. The solved points can then

be interpolated via least-squares regression by a series of sums of Gaussian profiles, the

coefficients for the approximations are again given in [8, §4.4.4.5].

The magnetic scattering lengths pn in subsection 3.1.4 are of the order 5 fm, very similar

to the nuclear scattering lengths. The nuclear and magnetic structure both contribute

equally to diffraction and both can be resolved simultaneously, in addition, heating a

material above its Curie temperature for example will remove the magnetic periodicity

and only the nuclear structure will contribute to diffraction.

3.2 Techniques - Experimental Concerns

3.2.1 Reciprocal Space

We saw earlier that diffraction occurs when the photon scattering vector is equal to a

reciprocal lattice vector of the crystal being irradiated. To investigate reciprocal space, we

need to be able to change the length and orientation of the photon scattering vector. This

is done by rotating the source and detector around the sample as shown in Figure 3.9.

Properly understanding the layout of the reciprocal space for a crystal and the traversal
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Figure 3.9: An example of how the length and orientation of the scattering vector is
controlled via the angle of inclination of the source and detector, for a symmetric or
asymmetric scan.

of the scattering vector through this space is imperative to measuring and interpreting

diffraction data. The inclination of diffraction planes, and their corresponding reciprocal

lattice vectors τ , is a simple matter of the geometry of the unit cell and choice of reflection,

the length of the vectors is inversely proportional to the interplanar spacing, for a square-

angled lattice:

τ = arctan

(
c

l

√
h2

a2
+
k2

b2

)
, d =

(
h2

a2
+
k2

b2
+
l2

c2

)− 1
2

(3.8)

and d can be inserted into Equation 3.1 to calculate 2θ for a given reflection. The diffrac-

tometer angles for a reflection are then ω = θ− τ and detector = θ+ τ = 2θ−ω. Working

in the reduced scattering units of Equation 3.3 is convenient for some types of scans. The

components of this vector are easily worked out from Figure 3.9:

qx =
1

λ
[cos(2θ − ω)− cos(ω)] qz =

1

λ
[sin(2θ − ω) + sin(ω)] (3.9)

A figure showing the 3D reciprocal space for a cubic elemental fcc lattice, with the scatter-

ing vector, is shown below. For this type of lattice, as shown in subsubsection 3.1.1.3, only

reflections with the Miller indices h, k, l all even or all odd are non-zero. The scattering

vector is coincident with the (204) plane normal in the figure, thus the Bragg condition

for diffraction is satisfied and intensity would be observed.
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Figure 3.10: Geometry for diffraction from the (204) plane of an elemental fcc lattice,
with a wavelength equal to a

3
where a is the unit cell lattice parameter: ω = 21.6◦

and 2θ = 96.4◦.

Clearly, if the crystal structure of the film being investigated is known, the layout of

the reciprocal space is as well, and we can measure the intensity of reflection from any peak

that is accessible in the geometry. The reverse problem is usually more pertinent however,

we want to determine the exact crystal structure by scanning the expected positions in

reciprocal space. In the next section, some common types of XRD scans are described

and the particular diffractometer(s) that I have had access to are detailed.

3.2.2 Diffractometer

Some common scans (in the scattering plane) which are typically available in the software

of high-resolution diffractometers are shown in Figure 3.11. The area which is accessible

depends on the geometry, in the reflection geometry, only the space above the sample can

be probed. An animation showing how the accessible area is traced out as a function of

the source and detector positions can be found on my GitHub [26].

Not shown in Figure 3.11 are pole figures where the sample is rotated around the z axis

(φ scan) to move different members of the same family of reflections into the scattering

plane (e.g. (204) and (024) reflections). These scans are more pertinent for texture and

grain orientation analysis of polycrystalline samples.

The apparatus I have primarily used is a Bruker D8 Discover diffractometer. The source

is a sealed-tube Cu anode, operated at 40 kV and water-cooled, which provides intense
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Figure 3.11: Conventional scans in reciprocal space including: (a) “constant 2θ”
or “rocking curve” scan, (b) “constant ω” or “detector” scan, (c) “dω = dθ” or
“ω/2θ” or “unlocked coupled” scan and (d) “linear qz” or “l” (Miller index) scan.
The green region is accessible in the reflection geometry for a standard two-circle
diffractometer; the large and small circles have radii 2/λ and 1/λ respectively, see
Figure 3.9.

Kα radiation with energy Eγ = 8.048 keV equivalent to a wavelength of λγ = 1.5406 Å.

A Göbel parabolic mirror subsubsection 3.1.2.4 is used to collimate and provide initial

monochromation on the divergent beam from the source, with a Ge (220) double-bounce

channel-cut crystal used to attenuate as much as possible the Kα2 with λγ = 1.5444 Å.

We often use 5mm and 0.2mm absorbing slits in the y-axis and 2θ-axis direction to

yield a relatively large rectangular parallel beam (similar to Figure 3.5), more aggressive

collimation is used if better resolution is required.

The sample stage is capable of motion in the x, y and z Cartesian directions in order

to facilitate centring of the sample in the beam. Additionally, φ and X rotations of the

stage (rotations not in the diffracting plane) are possible to adjust the sample such that

the diffracted beam is centred on the detector. The inclination of the source and detector

can be changed independently (rotations in the diffracting plane) to move the scattering

vector and probe a large swath of reciprocal space. A diagram of a typical two-circle

diffractometer, accurate for the Bruker D8 that has been available to me, is shown in

Figure 3.12.
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x y

z

φo

2θo / ωo

χo

Figure 3.12: A diagram of a typical two-circle diffractometer. The xz-plane is the
scattering plane and φ or X rotations are used to move the desired reciprocal lattice
vectors into the plane. ω and 2θ angles then move the scattering vector in the plane
to be coincident with the reciprocal lattice vector (Q⃗ = G⃗).

Before detection, a Soller slit [27] is used to remove divergent reflected photons from

the sample, this is a simple sets of thin absorbing planes where photons that are not at

the precisely correct angle will impinge on the planes and be absorbed. The detector is

a LYNXEYE-XE 1D line detector. The active area is 14.4mm long, consisting of 192

separate silicon strip detectors of 75 µm each, and covers an angular range of ∆2θ =

2.6◦ with the geometry we use. The detector can be used in 0D mode with a subset of

the individual strips active (or rotated for large azimuthal acceptance) for conventional

XRD scans. Alternatively, in the 1D mode, a 2.6◦ wide range of 2θ values are scanned

simultaneously by treating each strip as an independent detector. This greatly speeds up

the acquisition time for 2D scans known as Reciprocal Space Maps (RSMs) as essentially

only
√
n as much time is needed compared to a 0D detector (provided we only need a

∆2θ = 2.6◦ range in one dimension).

Despite all the conditioning, the X-ray beam from the source will never be perfectly

monochromatic or collimated. As a result, even for infinite perfect materials, the detected

intensity around each reflection will be somewhat spread in a peak with finite angular
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width. This is the instrumental profile and is generally accounted for empirically by mea-

suring some “Standard Reference Material”. The standard reference material for charac-

terising instrument response of the type we are interested in (high-resolution single-crystal

diffraction) is a sintered alumina (Al2O3) plate containing many large (quasi-infinite) crys-

tallites with a huge amount of reflections accessible. Fitting of all of these peaks allows

us to empirically verify the instrumental corrections (subsection 3.1.2) and obtain values

for the instrumental broadening.

I have also used another diffractometer, the Panalytical X’Pert Pro, which is a Bragg-

Brentano geometry, partially monochromated (by means of a Ni filter for the Cu Kβ

radiation) machine intended primarily for investigating powder samples. However, it is still

useful for symmetric XRD scans on thin films where the Bragg-Brentano (parafocusing)

geometry offers significantly higher intensity for the price of reduced resolution compared

to a collimated beam. The detector for this diffractometer has an automatic attenuator to

prevent excess photon flux from burning the active part, which can cause some artefacts

in the recorded spectrum, as will be seen in the examples section later.

3.2.3 XRD - 1D θ/2θ Measurements

The most common type of XRD scan in structural analysis is a “symmetric θ/2θ” scan.

This is equivalent to the bottom left panel of Figure 3.11 with qx = 0 such that the

scattering vector is normal to the sample plane, the length of the scattering vector changes

during the scan but not the orientation as the source and detector are moved symmetrically.

Families of crystal planes which are perpendicular to the scattering vector are probed. As

can be seen from the figure, having qx = 0 also allows the largest range of 2θ values, and

therefore scattering vector lengths, to be scanned in the accessible region. This type of

scan is particularly useful for random powder samples where grains are oriented in random

directions so that all reflections have reciprocal vectors pointing vertically upwards. This

allows all reflections to be probed with a single scan and the use of the Bragg-Brentano

parafocusing geometry’s higher intensity.. For the single-crystal epitaxial thin films that I

am more interested in, the c-axis (001) or another high-symmetry direction (often (110) or

(111)) of the substrate is oriented OOP (out-of-plane) and the deposited film will generally

be seeded by this and similarly grow with some high-symmetry direction oriented OOP.
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Epitaxy implies that the IP (in-plane) lattice parameters of the deposited film are equal

(or some multiple such as
√
2a or 2a) to those of the substrate and the positions of the

reflections in the θ/2θ scan allow us to infer the OOP lattice parameters. This is generally

the first port of call in the structural characterisation of single-crystalline or polycrystalline

thin films and can be performed in under an hour (longer may be necessary if the film is

exceptionally thin).

3.2.3.1 Procedure

The first step in any XRD measurement is centring the sample on the stage to ensure

the rotation axes coincide with the sample axes and provide maximum irradiation and

intensity. For epitaxial single-crystal films, we additionally want to align to a substrate

peak to ensure the surface normal is coincident with the instrument z-axis, since the

deposited films generally have their IP lattice axes coincident with the substrate (or rotated

45◦ if the difference in lattice parameter size between the substrate and sample is large).

For inclined reflections, we also want to rotate the desired reciprocal lattice point into the

scattering plane via a φ rotation. Once aligned, the source and detector are stepped at

the same speed from an inclination to the horizontal plane of roughly 5◦ up to 60◦ (for

the symmetric, vertical scan), so 10◦ < 2θ < 120◦.

3.2.3.2 Analysing a Single Peak

Most of the steps to analyse diffraction data have been independently discussed in the

preceding section. The last piece of the puzzle is what mathematical model to use to

describe the intensity as a function of angle or reciprocal space unit, in particular what

peak shape to use for reflections. The various sources of broadening intrinsic to the sample,

and due to the instrumental profile, yield both Lorentzian (Cauchy) and Gaussian type

broadening, the former due to the finite lifetime effects of the electronic transitions which

produce characteristic X-rays in the source and the latter due to the fact that crystal

defects and errors in general typically result in a normal distribution of strain. To account

for this, a Voigt profile, the convolution of a Lorentzian and a Gaussian profile, is typically

used to fit the peaks. Other profiles such as the pseudo-Voigt have historically been popular

but this was mainly due to the relatively arduous computation of the convolution for a
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true Voigt profile, which is not a concern with modern computing power. The relevant

formulae are as follows: The Voigt profile is defined as:

Table 3.1: Formulae for Gaussian and Lorentzian profiles

Gaussian (G) Lorentzian (L)

Intensity G = y0 exp
(
− (x−x0)2

2σ2

)
L = y0γ2

(x−x0)2+γ2

Height (I0) y0 y0

FWHM 2σ
√

2 ln(2) 2γ

Area (Iint) y0σ
√
2π y0γπ

Breadth (β = Iint

I0
) σ

√
2π γπ

V (x, σ, γ) = G(x, σ)⊛ L(x, γ) =

∫ ∞

−∞
G(x′, σ)L(x− x′, γ)dx′

In practice a numerical convolution on a computer is performed where the amplitude of

the profile is normalised to y0 and in order to make sure the profile centroid is at the

desired x0, the Lorentzian profile is centred at x0 while the Gaussian profile is centred in

the middle of the x interval so the convolution does not shift the peak. For example,

in Python [28] using the NumPy [29] package where x is an array, the following function

returns a Voigt profile specifying the height for each value in x:

def Voigt(x, x0 , sig , gam , y_0)

G = numpy.exp(-(x - x.mean()) **2 / (2*sig **2)) # Gaussian

L = gam ** 2 / ( (x - x0) **2 + gam **2 ) # Lorentzian

V = numpy.convolve( G, L, mode="same" ) # numpy convolve

return (V / V.max()) * y_0 # normalise to y_0

There are no analytical expressions for the properties of the Voigt profile as there are for

the Gaussian and Lorentzian profiles, but there are many approximations with varying

degrees of complexity and accuracy, the ones I have used are:

FWHM = aγ
√
bγ2 + cσ2; a = 1.0692, b = 0.86639, c = 5.54518

β = 2w
1 + Ck +Dk2

E(1 + Ak +Bk2)
; k =

γ

σ
√
π
,
A = 0.903965 B = 0.769955 C = 1.364216

D = 1.136195 E = 0.939437
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Iint = βy0

where the expressions for the FWHM and Breadth were given by Olivero [30] and Ahtee

[31] respectively.

It can be shown [17, §3.3] that for a convolution of two Lorentzian profiles, the integral

breadth of the convolution is simply equal to the sum of the integral breadths of the two

constituents. For Gaussian profiles on the other hand, the breadth is equal to the square

root of the sum of the squared original breadths:

βI⊛S
L = βI

L + βS
L βI⊛S

G =

√
(βI

G)
2
+ (βS

G)
2

(3.10)

This holds for Voigt profiles so that the Gaussian component of the breadth for a convo-

lution of two Voigt profiles is equal to the root sum of squares of the Gaussian component

of the breadths of the two constituent Voigts, and similarly for the Lorentzian compo-

nents. The measured diffraction pattern is the convolution of the instrumental profile

and sample profile, therefore, if we obtain the instrumental profile by measuring a perfect

crystal standard, we can obtain the integral breadths due to sample broadening alone via

Equation 3.10. It is always preferable to measure multiple different reflections since the

two types of sample-based broadening discussed have different θ (or Q) dependence, but

this single-line technique is invaluable nonetheless. It has been shown that the Gaussian
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Figure 3.13: Gaussian and Lorentzian profiles and their convoluted Voigtian profile
for different values of the Gaussian and Lorentzian broadening parameters σ and γ.
In general, the larger the Lorentzian contribution, the larger the “tails” of the peak.

and Lorentzian breadths obtained separately from σ and γ and can be related to the
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micro-strain and finite-size broadening of the sample, respectively. This fact has both

some experimental and theoretical justification, see [32] and references therein. This is

another reason to use a Voigt profile for fitting the diffracted peaks since the Lorentzian

and Gaussian breadths are obtained separately and can easily be corrected for broadening

due to the instrument. This provides a method to estimate the crystallite size and degree

of micro-strain in a material from just one XRD scan of a single reflection:

D =
2π

βS
L

ε̃ =
βS
G

2Q0

(3.11)

Where the integral breadth is in reciprocal space units Q and Q0 is the peak centre. The

assumptions (such as isotropic strain) implicit in the derivation of these relations were

discussed earlier and must be considered when reporting results. Some examples of the

use of the formulae detailed in the section will be given later in the material case studies

section.

3.2.3.3 Strain Profile Analysis

The previously discussed broadening due to microstrain in subsection 3.1.3 is applicable

especially to polycrystalline or powder thin films. If the sample being investigated is

very thin (10s of nanometres), epitaxial, and almost single crystalline with little-to-no

dislocations, then the relaxation of the sample lattice parameters can occur smoothly

over the thickness. We previously obtained an expression for the weighted average strain

derived from assuming an isotropic and random strain distribution, by contrast, in this

case, the displacement field as a function of depth into the sample (u(z)) will be highly

asymmetric. Rather than causing a general broadening, this form of strain can cause

asymmetry in the diffracted peaks. Additionally, with highly perfect and smooth (low

interface roughness) thin films, the number of atoms in the z direction will be near-constant

across large swaths in the planar directions (by the definition of smoothness), meaning

the oscillations from the interference function of photons incident on different areas of

the sample are not completely washed out by the summation of sinusoidal functions with

different periods, as is usually the case.

Finding an expression for the diffracted intensity resolves to integrating over the range

of different interplanar spacings which contribute to the diffraction, described by the strain
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εzz = 0 εzz = f(z)

Figure 3.14: An illustration of how a vertical strain profile might form as a result of
tensile IP strain due to epitaxial growth in a single-crystalline ultra-thin film, with
displacements exaggerated by a factor of ten. In this diagram, the substrate interface
clamping the sample atoms would be at the bottom.

field. The problem of obtaining the strain field from a measured intensity profile was

discussed by Boulle et al. [33]. The method consists of finding a model for the strain field

to insert into the expression for the intensity and then adjusting the input parameters of

the model to match data via non-linear least-squares regression. The model they settled

on for the strain field was a cubic-beta spline [34, 35]. This type of function is very useful

thanks to a number of properties. An important feature is that the function has minimum

curvature over the interpolated range, meaning it is very appropriate for modelling physical

features where the wild oscillations of higher-order polynomials can give unphysical results.

These splines can be defined as the weighted sum of an arbitrary number of basis functions

where the bases are piece-wise-defined cubic polynomials. This means we have local control

over the shape/curvature and with enough bases we can model almost any smoothly

varying curve.

For modelling strain profiles of very thin films, it is sufficient to use circa 13 bases1.

Practically, this adds 13 parameters to the non-linear regression, which does significantly

slow down convergence. However, the parameters are not very strongly correlated and

have physical meaning, i.e. they relate to the local strain in the corresponding section

113 was the number of bases chosen by Boulle et al. which gave them adequate flexibility to fit realistic
strain profiles while not being so large as to overly slow down computation time.
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of the film. The details of the implementations of the functions are given in the original

publication [33]:

I(qz, t) =

∣∣∣∣∣F
∫ ∞

0

Ω(z, t) exp

[
−iG⃗

N∑
i=1

wiBi,3(z)

]
exp(−ihzz)dz

∣∣∣∣∣
2

(3.12)

B0,3(z) =
1

6



z3 0 < z ≤ 1

−3z3 + 12z2 − 12z + 4 1 < z ≤ 2

3z3 − 24z2 + 60z − 44 2 < z ≤ 3

(4− z)3 3 < z ≤ 4

0 otherwise

, Bi,3(z) = B0,3(z − i) (3.13)

where Ω is a shape factor between 0 and 1 characterising the roughness of the film at

the interfaces, z is the distance from the substrate into the sample, wi are the weighting

factors for each basis, hz is the z component of the reduced scattering vector h⃗ = Q⃗− G⃗

(so maximum diffracted intensity occurs at h⃗ = 0) and other symbols retain their usual

meaning. The term in brackets in Equation 3.12 is the strain profile and would be replaced

by a standard isotropic Debye-Waller factor for samples with small random thickness

fluctuations. The weighting factors for the spline bases completely determine the shape of

the curves, while the films thickness and roughness determine the frequency and damping

of the oscillations of the interference function, respectively. Some example displacement

profiles with underlying spline bases, and resulting strain profiles inset, are illustrated in

Figure 3.15.

The diffracted intensity profile obtained by integrating Equation 3.12 for the displace-

ment profiles in Figure 3.15, are shown in Figure 3.16.

The use of this method will be referred to as “strain fitting” in the examples section

to distinguish from fitting simple peak profiles to data where intensity oscillations are not

evident.
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Figure 3.15: Four possible displacement profiles and the corresponding strain profile
inset, modelled with 13 cubic beta spline bases.
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Figure 3.16: The results of integrating Equation 3.12 using the displacement profiles
shown in Figure 3.15. Constant displacement is zero strain and an unchanged peak.
Linear displacement is constant strain and a linearly shifted peak. Non-linear strain
near the interfaces, as might realistically be expected in ultra-thin epitaxial films,
results in asymmetric peaks. The data shown was calculated assuming a (004) re-
flection from an 18 nm film with lattice parameter c = 5nm, σ = 0.5 nm interface
roughness and σsub = 0.2 nm substrate roughness.
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3.2.4 RSM - Adventures in Reciprocal Space

3.2.4.1 Geometry

Reciprocal Space Maps (RSM) are a natural extension of the one-dimensional XRD scans

mentioned thus far. Simply put, rather than tracing out a line in reciprocal space, we

measure a 2D area of reciprocal space. Ideally this type of measurement would be per-

formed using a large, purpose-made, 2D detector, such as the modern EIGER2 detector

offered by Bruker which has 5 × 105 pixels and thus simultaneously covers a large area

of reciprocal space with good resolution. However, these new types of apparatus are pro-

hibitively expensive and older technology is just as capable, albeit often with much slower

measurement speed. It is important to note that a detector which is two-dimensional in

real space does not measure a 2D section of the crystal reciprocal space since the source

(and therefore ω is still constant). What it does incorporate is a wide range of ϕ and χ an-

gles (see Figure 3.12), offering both a significantly higher counting rate (shorter acquisition

time), and a plethora of additional information about the orientation of crystallites in the

sample, for the same experimental geometry. As previously mentioned in subsection 3.2.2,

our system is equipped with a LYNXEYE 1D position-sensitive detector (PSD) which

spans a 2.6◦ range of 2θ values simultaneously, which corresponds to a parallel constant-ω

scan in Figure 3.11, this will be referred to as a PSD scan henceforth. In practice, RSMs

are constructed by coupling the PSD scan to a linear qz scan (or dω = dθ scan) with our

system: successive PSD scan arcs vertically shifted in reciprocal space covers a hatched

area. The PSD scan consists of 177 points corresponding to the individual pixels, while

100 to approximately 250 shifted detector scans are performed. A discussion of the use

of 1D PSDs for measuring RSMs has been published by Masson et al. [36], where the

authors used a custom-built curved PSD covering a huge 2θ angle of 120◦ simultaneously.

The particular limitations of pixel-type PSDs are discussed therein. If only one sharp

diffraction peak is expected to lie within the measured range, a smaller number of points

can be used for faster measurement time. As will be explained later, it is desirable to

have a substrate peak in the same scan as the sample peak to allow for normalisation, if

possible, and thus scans can be expanded to include both peaks. Finally, we primarily

work with thin films with thicknesses of order 10 nm, in this case, fewer detector scans
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Figure 3.17: An example of an RSM scan covering a 2θ range of 10◦ and a qz range
of 0.4λ−1, with 10 constant-ω scans. In practice, a smaller range corresponding to
∆qx ≈ 0.05λ−1 and ∆qz ≈ 0.15λ−1 is used with the LYNXEYE PSD.

are desired (a sparser grid of points is measured) in order to maximise counting time for

the performed scans and acquire an appreciable intensity from the minuscule diffracting

volume.

Once an RSM has been measured, there are a number ways and degrees of complexity

with which to analyse the data. First of all, the position of the peak in reciprocal space

units directly translates to the a and c lattice parameters of the crystal being measured

(with some caveats, discussed in the following sections). Vertical (constant qx) and hori-

zontal (constant qz) slices can be taken through the peak centre and analysed in the same

way as a traditional 1D XRD spectrum, offering structural information for the OOP and

IP directions. If desired, one can perform a 2D non-linear regression to fit the entire peak,

this is something I have explored to more accurately determine the position of the peak

centre for noisy or unusual peak shapes, but does not offer much more information than the

1D slice method for much greater computational complexity and as such is not something

I took further. A systematic determination and simulation of the 2D instrumental profile

and analysis of measured data via deconvolution techniques is a pre-eminent method per-

formed by some experts in the field, e.g. Boulle et al. [37], but is outside the scope of my

work.
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3.2.4.2 Procedure

The first step in the measurement of a reciprocal space map from an epitaxial thin film is to

familiarise oneself with the location and intensity of the diffracted reflections in reciprocal

space, for the sample and the substrate. All the relevant theory has been introduced

already. I have written a program to show the position and intensity of reflections in

the diffraction plane for a given azimuthal orientation of the substrate and sample, which

greatly aides in the selection of regions to scan, it is available on my GitHub [26]. Ideally,

Source

Detector

Figure 3.18: Screenshots from the program for visualising reciprocal space, for the
case of Mn2RuxGa grown on MgO and a BTO layer grown on a Si substrate. Different
materials, surface orientations and plotting units can be chosen from a drop-down
list and the lattice mismatch for two common types of epitaxy are shown in the
corner. The source of detector of a typical diffractometer are overlaid on the left
picture to show how the scattering vector relates to this picture.

it is best to perform a scan which encompasses both a substrate and sample peak so that

the former can be used as a reference to correct for misalignments or any drift. Failing

that, performing separate scans one after another without changing the initial alignment

is recommended. The visualisation program is very useful for determining which peaks to

scan to satisfy these conditions.

In order to calculate the peak positions, we must know the structure (space group) and

size of the unit cells of a material. The space group is a useful concept which characterises

the symmetry of a crystal lattice and thus, in the context of diffraction, makes it clear

what reflections are allowed. In general, we always have an idea of the structure and size

of the unit cells of the materials we are working with. The online database Materials

Project is a useful source to obtain .cif files for various materials, both simulated and
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experimentally verified, and the lattice parameters or compositions can be adjusted as

needed thereafter. Generally, the first crystal structure characterisation step is a symmet-

ric scan (subsection 3.2.3). This can be completed in an hour and gives the OOP lattice

size, usually the c-axis (unless the sample grows with (111) oriented OOP for example).

Substrates are always assumed to be perfect single crystal with known lattice parameters

(although this is not always the case, unfortunately) and for thin films, we assume epitaxy

such that our samples IP lattice is determined by the substrate: depending on the relative

sizes of the relaxed lattices, the sample will grow “cube-on-cube” or rotated by 45◦. Other

orientations are possible but these are the most common. So to summarise, the IP and

asamp = asub/
√

2

asamp = asub

asamp= asub
√

2

Figure 3.19: Possible orientations for a square sample to grow on a square fcc-lattice
substrate, depending on whether the relaxed sample IP lattice parameter is closer
to asub/

√
2, asub or asub

√
2.

OOP lattice parameters are obtained from assuming epitaxy and measuring a symmetric

1D XRD scan.

When we know what we want to scan and where to find it in reciprocal space, we start

by aligning the sample position in the diffractometer as in the general XRD case. Next

we must align to the substrate peak which we want, the diffractometer software should

help with this, but even without any help, we have calculated where the peak should

lie ourselves already. Aligning to the substrate peak ensures that the diffraction plane

intersects all the peaks that we want as well as possible, especially important for very thin

films or low-intensity reflections.

The Bruker “XRDWizard” software provides a means to perform RSMs where the de-

sired scan coordinates are input relative to the current position of the source and detector,

which should at this stage be aligned to the substrate peak. There is a graphical interface
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very similar to Figure 3.17 where we can make sure the scan covers the desired range.

Generally, a counting time of 30 s - 500 s is used for each constant-ω slice (depending on

film thickness and expected diffracted intensity), with roughly 100 - 250 slices in the scan.

Measurements can take anywhere from say 3 hours for thick high crystalline quality sam-

ples to an entire weekend for light 5 nm films. These values are sample and diffractometer

specific but are a good ballpark for nanometric films and typical laboratory equipment.

3.2.4.3 Data Analysis

RSM data files generated by the diffractometer typically have 3 columns containing ω,

2θ and intensity with > 104 rows, with the exact number a multiple of 177, the default

number of points in a constant-ω scan). Generally, we convert to reciprocal space units of

Equation 3.9, where analysis is more simple. Fitting a full 2D surface to the entire data

set is possible, or vertical (qz) and horizontal (qx) slices can be taken through the peak

maximum and fit as 1D XRD spectra as described in the preceding sections. Using the

1D slices is much faster and mathematically easier with very little information sacrificed.

Often, a basic 2D fit is used to accurately determine the center of the peak and the 1D

slices are properly fit and their shape used to infer details about the crystal structure in the

IP and OOP directions. A note here is that the hardware acceleration enabled by OpenCL

code, discussed in detail in the simulations chapter, is also well suited to applications such

as this: the computation of a numerical convolution in two dimensions. This can reduce

the extra computation time of performing the more complicated fit to negligible values.
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3.2.5 Rietveld Analysis of Single-Crystal Thin-Films

3.2.5.1 Geometry

The technique of “Rietveld refinement” simply refers to the least-squares refinement of a

full calculated diffraction pattern parametrised by an assumed underlying structure. In the

refinement, the only parameters changed are that of the crystal structure of the diffracting

material until the calculated and measured patterns match as well as possible [38]. The

reason the method is known thusly is because Rietveld was the first to use the method when

it became feasible on computers at the dawn of the digital age [39, 40]. This method is

essentially one step upwards from the single-peak fitting described in the previous section,

the sum of all available peaks in the scan are refined simultaneously to give a good idea of

the structure. The method was first described for neutron diffraction on powder samples

and remains mainly applicable to powder samples because far more peaks are available in

a single scan: for single-crystals or even highly textured films, only a few families of peaks

will be correctly aligned. There are a number of Rietveld refinement computer programs

available which will calculate a list of integrated intensities or an entire diffraction pattern,

the most notable of which is probably FullProf (FP) [6], but this program is still somewhat

outdated (latest manual version is 2001), possibly because with modern computers the

data reduction which was the reason for the inception of the method is not necessary and

anyone relatively computer savvy can write their own least-squares fitting program. As

I deal with primarily single-crystal samples, I use an average method where I separately

measure as many peak families as possible, obtain their corrected structure factors or

integrated intensities and then perform a kind of reduced Rietveld refinement, using FP.

This is a simple modification conceptually, but in practice the experiment is quite difficult

to perform efficiently due to the strict alignment requirements and low diffracted intensity

of epitaxial thin films. As mentioned, only one or two peaks can typically be measured in a

single scan with our setup and sample morphology so a large number of scans are needed.

To justify the comparison of integrated intensities from different peaks, the alignment

must be equally good for all peaks. Re-aligning the sample for every measurement is not

really an option as this would take an exorbitant amount of human-time between scans

(spending 15 minutes every few hours as opposed to letting the scans run overnight or
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over the weekend). To this end I wrote a computer code with Dr. Karsten Rode, to

calculate the so-called “UB-matrix” of Busing and Levy [41] for a given sample from three

or four alignment scans of the substrate peaks and subsequently generate .job files for the

diffractometer with the alignment angles calculated for 20+ scans of sample reflections.

Thus maybe 30 minutes of alignment to substrate peaks is all that is necessary and the

multitude of sample scans can be performed sequentially over the weekend. This method

does assume perfect epitaxy of the sample growth on the film and neglects possible drift

or interruptions that could occur over 48 hours of scanning but is still a very useful

technique to thin-film structure analysis. The UB matrix is the product of the crystal

matrix which relates the [hkl] Miller-index vectors to reciprocal lattice vectors B, and the

orientation matrixU which relates the reciprocal lattice vectors to the Cartesian vectors in

the diffractometer frame of reference. More details will be given in the procedure section.

3.2.5.2 Procedure

It is useful to define a number of coordinate systems related by transformation matrices

to mathematically simplify the problem of calculating the angular position of sample

reflections. Firstly there is the reciprocal lattice defined by the Miller indices ν⃗h. We

define a crystal Cartesian system anchored to the reciprocal lattice defined by ν⃗c = Bν⃗h

where B is a 3× 3 matrix that depends on the lattice parameters and angles. Finally we

define what I will refer to as a diffractometer Cartesian system anchored to the ϕ axis of

the diffractometer (ν⃗ϕ) and a diffractometer angular system defined by the angles input

into the diffractometer software, ν⃗θ. The laboratory Cartesian system is related to the

angular one by the three rotation matrices around the diffractometer axes: Φ, X and

Ω corresponding to the typical ϕ, χ and ω axes of the diffractometer, see Figure 3.12,

ν⃗θ = ΦXΩν⃗ϕ. The crystal-Cartesian ν⃗c and Diffractometer-Cartesian ν⃗ϕ systems can be

superimposed on one another (and this is in fact the diffraction condition in this formalism)

and the transformation for this is given by the orientation matrix ν⃗ϕ = Uν⃗c. To summarise,

we have:

ν⃗θ = ΦXΩUBν⃗h (3.14)

where Φ, X and Ω are the rotation matrices defined by the angular settings of the diffrac-

tometer, B is the crystal matrix determined by the crystal structure and U is the orien-
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tation matrix defined by the orientation of the crystal in the diffractometer. The sample

is assumed to be perfectly epitaxial with the substrate so that they have the same U so

determining the substrate orientation is sufficient.

Actually determining U for the substrate is done by least squares regression after

measuring at least three substrate reflections which are not close to coincident and have

components along each Cartesian axis, these might be the (204), (024) and (004) reflections

for example. At least two are required to form an orthonormal basis and measuring

more allows for determining the matrix via regression. The diffractometer angles are

obtained in the usual manner for alignment to find the position of maximum intensity

and the large, crystallographically perfect substrate yields huge diffracted intensity so

that this can be performed quickly. It is important to note that 2θ (i.e. the length of

the scattering vector) is never refined here, which is equivalent to not varying the lattice

parameters of the crystal. For a full description of each matrix and a method generalised to

more advanced diffractometers such as the 4-axis ones found at synchrotrons, refer to the

original publication [41]. Once the orientation matrix is determined, Equation 3.14 yields

the “aligned” diffractometer settings for arbitrary sample reflection. It is then trivial to

program whatever diffractometer software is used to perform rocking curves (constant-2θ

scans) around chosen reflections.

3.2.5.3 Data Analysis

The procedure described above allows for the efficient measurement of tens of reflections

from an epitaxial thin film sample while only having to align a single time. Once all the

data has been measured, the reflections are each fit with Voigt profiles and the integrated

intensity, or peak area, is noted. It is very important to then consider all the instrumental

and sample corrections that need to be performed. In particular, the irradiated volume,

Lorentz and polarisation corrections discussed in subsection 3.1.2 can have a very large

effect, particularly for reflections that are far from the film normal with a small ω angle.

The corrected intensity should be equal to the square of the structure factors and thus

directly related to crystal structure. These measured structure factors are to be compared

to those calculated by FullProf or similar. As explained in subsubsection 3.1.1.3, the

symmetry of the lattice mainly dictates what reflections are allowed, the size of the lattice
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dictates the positions, and the details of the relative peak intensities depends on the

atomic form factors. In general, larger atoms with higher electron density have a larger

interaction cross section. So when refining the structure to match experimentally observed

structure factors, we can theoretically obtain the symmetry, size and site-specific atomic

composition of a lattice if the data is numerous and precise enough. For powder samples

this is often possible, but for our epitaxial thin films, we can fix the structure and lattice

size (determined by other methods already mentioned) and use this Rietveld-style analysis

to try and resolve information about the atomic composition.
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3.3 Case Studies Mn2RuxGa

3.3.1 Motivation

Mn2RuxGa is a member of the versatile Heusler alloy class of materials. Heusler alloys

have the chemical formula X2Y Z where X and Y are transition metal elements and Z

is a p-block element. The four constituents sit on four inter-penetrating fcc sublattices.

The potential inclusion of magnetic, metallic or semiconducting elements often results in

unique and interesting magnetic and electronic properties. Ferrimagnetism is one such

property wherein two or more magnetic sublattices with different magnetic moments are

antiferromagnetically coupled such that the net moment per formula unit is far less than

the constituent atomic moments. Macroscopically, these materials are immune to external

field perturbations and can be miniaturised to a greater degree than materials which cre-

ate large external fields. The distinct sublattices in ferrimagnetic materials often exhibit

different temperature dependence of their atomic magnetic moments, meaning that it is

sometimes possible to find a temperature or composition which has zero net moment (com-

pensation point) despite large atomic moments and lower symmetry than antiferromag-

nets. As well as the insensitivity to external field and demagnetising effects, low-moment

materials should have low damping and high magnetic resonance frequencies, since these

are related to the anisotropy, which is proportional to the reciprocal of magnetisation and

thus diverging. Another feature exhibited by some specific materials, many of which are

Heusler alloys, is half-metallicity. This hard-to-predict phenomena occurs when there is a

gap in the electronic band structure for just one spin band at the Fermi level, meaning that

the low-bias conductance is intrinsically full spin-polarised. Half-metals have a plethora of

potential applications in next-generation devices [42]. A hybrid material which is both fer-

rimagnetic and half-metallic could represent a great step forward in spin electronics as the

atomic magnetic moments could be controlled/influenced directly by applying a normal

voltage. These so-called zero-moment half-metals (ZMHM) could combine the benefits of

compensated ferrimagnets and half-metals.

Since half-metallicity results from a gap in the electronic density of states (DOS)

for one spin-band, it is very hard to accurately predict. The only way to even have a
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chance is through advanced density functional theory (DFT) simulations which calculate

the spin-resolved band structure. DFT is quite involved, especially with complicated

multi-elemental materials like Heusler alloys. It is also nigh impossible to take account of

things like strain and epitaxy in the small representative unit cells that are used to make

calculations feasible, the result is that DFT often fails to predict experimental reality in

the form of false-positives. Either the predicted half-metals will not have truly zero DOS

for the minority spin band or the gap does exist but not at the Fermi level. The current

best approach involves a lot of expensive and time-consuming trial and error, informed by

DFT calculations.

Kurt et al. [43] experimentally demonstrated the first ZMHM in Mn2RuxGa (MRG).

MRG is an inverse full-Heusler (XA structure) where the Mn atoms sit on two chemically

inequivalent sublattices, with the space group F 4̄3m (#216) as opposed to Fm3̄m (#225)

thanks to the inequivalent Mn sites. Mn sits just before the ferromagnetic 3d elements

in the periodic table with the electron configuration [Ar]3d54s2 and has an exchange

integral which is very sensitive to the interatomic distances. Pure Mn metal has a net

negative exchange energy as per the Bethe-Slater curve [44] but is paramagnetic at room

temperature. In MRG, the Mn atoms sit on two crystallographically inequivalent sites, 4a

and 4c, with the Ga and Ru on the 4b and 4d sites respectively. The nearest-neighbour

distance between Mn atoms on the same sites (red-red or blue-blue in Figure 3.20) is

4.211 Å while the inter-sublattice distance between Mn atoms on different sites (red-blue

in Figure 3.20) is 2.591 Å. This results in ferromagnetic exchange within each sublattice

but antiferromagnetic exchange between the two different sublattices. In addition, the 4a

Mn atoms are tetrahedrally coordinated by Ru and octahedrally coordinated by Ga, while

the opposite is true for the 4c Mn atoms, this difference in chemical environments results

in different net magnetic moment for the two types of Mn atoms. MRG was found to

have a gap in the minority spin DOS and the Fermi level could be shifted into this gap

by varying the Ru content of the alloy. Adding Ru to MRG adds electrons and electronic

states, shifting the Fermi level, as well as increasing the lattice size due to the chemical

pressure from the larger element, thereby changing the shape of the DOS. Of course,

changing the composition and strain also affects compensation and other properties, as

does disorder [45], and optimising the material for a certain application is a fine balancing
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act of the deposition conditions and post-deposition treatments.

In the context of the above paragraphs, the ideal outcome in terms of experimen-

tal deposition is MRG films with consistent controllable properties, in particular large-

magnitude easy-axis anisotropy, low damping and high-domain wall mobility with large

domain size. Much of these secondary properties can be controlled via the crystal struc-

ture: anisotropy will correlate to tetragonal strain, domain size to crystallite size and

defect density etc. Thus a desirable outcome of the MRG deposition experiments in the

context of the overall research motivation is good control over the crystal structure.

MRG has a lattice parameter a ≈ 6.0 Å which makes it suitable for deposition on

MgO. MgO is one of our preferred substrates which is available in single-crystalline form

with (001) oriented OOP. It has a cubic structure with lattice parameter a = 4.2112 Å.

Rotating 45◦ gives
√
2aMgO = 5.9555 Å, which is very close to MRG (< 1% strain) and

thus facilitates good-quality epitaxial growth. The slight compressive strain induced by

the substrate results in a larger OOP lattice parameter for MRG (volume-conserving

strain) and therefore a tetragonal strain which breaks the cubic symmetry and allows

access to lower-symmetry phenomena. This effect naturally varies with film thickness and

crystalline quality.

Mn4a Ga4b Mn4c Ru4d Mg O

Figure 3.20: Isometric and top-down views of the MRG and MgO unit cells, showing
epitaxial relation.

A huge amount of research has been performed into the effect of the deposition con-
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ditions on the qualities and exhibited phenomena of MRG. In particular, varying the Ru

and Mn content, magnetic annealing and changing the thickness. A thorough overview

can be found in the dissertation of Dr. Siewierska [46]. In this work, the temperature of

the MgO substrate was varied during deposition while keeping other variables constant:

a Ru content of x = 0.9 was chosen and films of thickness t = 20− 25 nm were deposited

via magnetron sputtering and capped with an insulating oxide layer. It was previously

observed that the structural and magnetic properties were different for sample deposited

at lower and higher temperatures and so a systematic investigation was warranted: ten

MRG samples of similar thickness were grown with substrate temperatures ranging from

Tdep = 200 ◦C to Tdep = 425 ◦C in 25 ◦C intervals. This temperature was maintained

throughout deposition before being allowed passively cool once the desired thickness was

reached and deposition stopped. Detailed sample deposition conditions are shown in Ta-

ble 3.2, for completeness and to enable reproduction of results, assuming the reader is in

possession of a similar sputtering system. It should be noted that the MRG films were

co-sputtered from a stoichiometric Mn2Ga target and a Ru target, so only the relative Ru

concentration could be varied. The thicknesses listed in the table are determined from

XRR measurements. The 2 nm Al metal capping layer oxidises in atmosphere to form the

a robust AlOx capping layer. No post-deposition treatments were performed to any of the

films.

In addition, many of the useful phenomena MRG is predicted or observed to exhibit

are second order effects (which involved spin-orbit coupling etc.) and therefore rely on the

broken inversion symmetry of the space group (a fancy way of saying the Mn sublattices

must be inequivalent or some effects will cancel), for example we cannot have (collinear)

ferrimagnetism with identical Mn sites. It is therefore important to somehow characterise

the chemical ordering of the MRG system to ensure the three elements mainly occupy

the sites they are supposed to. Heusler alloys often crystallise in the non-inverse, L21

structure with the space group Fm3̄m (#225), obtained by swapping the Mn4a and Ru4d

sites in MRG in Figure 3.20. All Mn sites are equivalent in this structure.
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Table 3.2: Detailed deposition conditions for the 10 MRG films discussed in this
chapter. Thickness listed is derived from fitted XRR data.

Sample id Tdep ( ◦C) thickness Ar Flow Op. Pressure Deposition Capping

(nm) (sccm) (mTorr) Time (s) (nm)

GA200714A 200 25.95 30 4 178.7 Al(2)

GA200527D 225 20.97 30 4 145 Al(2)

GA200527B 250 20.96 30 4 145 Al(2)

GA200521C 275 20.99 30 4 145 Al(2)

GA200521A 300 21.35 30 4 145 Al(2)

GA200515E 325 20.97 30 4 145 Al(2)

GA200518A 350 20.93 30 4 145 Al(2)

GA200518B 375 21.07 30 4 145 Al(2)

GA200518D 400 21.12 30 4 145 Al(2)

GA200521E 425 21.17 30 4 145 Al(2)

3.3.2 XRD

Each of the ten MRG samples was first2 investigated via a symmetric θ/2θ scan with the

scattering vector perpendicular to the sample surface using the non-monochromated,

Bragg-Brentano, Panalytical diffractometer, the results are shown in Figure 3.21.

There is a clear trend in the position of the MRG reflections as a function of tem-

perature. The MRG (004) peaks have large intensity and fitting Voigt profiles to them

to accurately determine the peak centre allows accurate determination of the MRG OOP

lattice parameter (parallel to the (004) axis). The fitting procedure shown in Figure 3.22

above is a way to accurately obtain the peak positions and therefore the MRG lattice

parameter c. There is also a clear trend in the peak width and disappearance of the inten-

sity oscillations for Tdep = 350 ◦C and a less obvious but still evident increase in the (002)

peak intensity with temperature. These can also be obtained from the Voigt fit, but the

intensity oscillations cannot be properly accounted for so a more thorough analysis of all

the additional parameters will be relegated to the strain fitting section, subsection 3.3.4.

It should be reiterated that the simple Voigt model will still very accurately determine

2Samples are often investigated in situ using reflection high-energy electron diffraction (RHEED) to
probe surface smoothness during growth, not shown in this work.
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Figure 3.21: XRD spectra measured on MRG samples with x = 0.9 and deposited on
MgO with varying substrate temperatures. The intensity is normalised to the noise
level around 2θ ≈ 75◦ and the angles are normalised to the position of the substrate
reflections. The MRG reflections shift to higher 2θ and have greater broadening as
the substrate temperature increases, implying a decreasing OOP lattice parameter
and more disorder. The dashed line in the second panel is a guide for the eye. The
strange plateaus left of the substrate peaks are due to the automatic attenuator
activating and all unlabelled peaks are artefacts due to the sample stage and/or X-
ray optics.
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Figure 3.22: Example of fitting Voigt profiles to the MRG (002) and (004) reflections.
Two peaks are used to account for the Cu Kα1 and Kα2 radiation with intensity
ratio 2 : 1 for this diffractometer. Additional broad Gaussians are used to fit the
background under the (002) reflection. These peaks are all present in the envelope
evident in the figures.

the peak center and thus the lattice parameter, and for less well-ordered samples without

fringing, the breadths are accurately determined as well.

The ratio of the corrected integrated intensities of the (002) and (004) peaks of MRG is

equal to the ratio of the squared structure factors and therefore depends on the positions
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and form factors of the atoms in the unit cell. We denote this ratio S002/004. The ideal

structure factors can be calculated using a program such as VESTA or manually via

subsubsection 3.1.1.4. The reduced MRG unit cells for the XA and L21 MRG lattices

are shown below in Figure 3.23, with the (002) and (004) diffraction planes marked, to

visualise why the structure factor ratios differ.

Mn4a Ga4b Mn4c Ru4d

MRG XA (004) MRG XA (002) MRG L21 (004) MRG L21 (002)

Figure 3.23: MRG reduced unit cells for XA and L21 structures, showing the (002)
and (004) diffraction planes. Note that the (004) planes contain the same atoms for
both structures, whereas the (002) planes contain Ru for the L21 structure but not
for XA.

We see that the (004) planes contain the same atoms for both structures, whereas the

(002) planes contain Ru only for the L21 structure. This already suggests that S002/004

will be larger for the L21 structure as Ru is the largest atom with the highest electron

density. To properly calculate the structure factors, the atomic form factors are first

required. The atomic form factors depend on the length of the scattering vector |Q| and
the most accurate evaluation is done by solving the relativistic Hartree-Fock wavefunctions

for every |Q|. Various calculated values for the atomic form factors can be found in

the International Tables of Crystallography, Volume C [8, §6.1.1.3]. A commonly used

approximation is a sum of four or five Gaussian profiles plus a constant, which is fit to the

calculated values, this can also be found in the reference. A Python script which uses this

approximation for the atomic form factors and then subsubsection 3.1.1.4 to calculate the

structure factors for any given lattice and reflection can be downloaded from my GitHub

[26] if the reader wants to see how the formulae are implemented in code, otherwise it
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is suggested to use a developed program such as VESTA. From these values, we can see

Table 3.3: Structure factors for ideal XA and L21 MRG lattices, as well as a “dis-
ordered” lattice between the two where half the Mn4a and Ru4d have been swapped,
calculated using VESTA.

F 4̄3m - XA Fm3̄m - L21 Mn4a-Ru4d disorder

F002 21.8 45.7 12.0

F004 157.4 157.4 157.4

S 002
004

0.019 0.084 0.006

that the “order parameter” S002/004 can give us an idea of what structure the MRG lattice

has crystallised in and to what degree the atoms are chemically disordered (atoms having

swapped positions without any structural changes). Structural disorder, among other

phenomena, can have correlated effects on the structure factors, so drawing quantitative

conclusions from this parameter along is discouraged. This parameter is plotted as a

function of substrate deposition temperature at the end of the case study.
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Figure 3.24: The trend of the OOP lattice parameter c with deposition temperature
for MgO/MRG films, obtained from the position of the peak centres of the (004)
reflections.

There is a clear linear decrease in the OOP lattice parameters in Figure 3.24. This is

common in films which experience volume-conserving substrate-induced compres-

sive strain. The epitaxial relation with the substrate squeezes the IP lattice parameters,

causing the lattice to expand in the OOP direction. Higher temperatures allow for the

formation of more dislocations and a “faster” relaxation of the tetragonal distortion. This

linear trend in practice means that we can control the OOP lattice parameter and therefore
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the degree of tetragonal distortion in MRG films simply by changing the substrate tem-

perature at deposition. Annealing, heating the substrate and sample up post-deposition,

has a similar but less pronounced effect in allowing the crystal structure to relax. For the

same temperatures, the sample is slightly more relaxed when deposited at that temper-

ature compared to one deposited at low temperature and then annealed. This variation

with temperature should allow some control over the magnetocrystalline anisotropy as

more tetragonal distortion will increase the “easiness” of the OOP magnetic easy axis. In

addition, all the previously mentioned second-order effects which are forbidden by cubic

symmetry can be destroyed or made possible at will.

The outlying peak at Tdep = 300 ◦C in Figure 3.24 cannot be explained simply by a

difference in deposition conditions. We can see from Figure 3.21 that this peak is more

asymmetric than most, so the simple symmetric peak profile used here may not have been

ideal. Additionally, due to the sensitivity of these materials to their deposition conditions,

any small changes in the atmosphere of the UHV chamber can have a relatively large

effect: it is possible there was excess oxygen in the chamber following the deposition of an

unrelated material by other researchers, for example.

3.3.3 RSM

We have seen that symmetric XRD scans yield a plethora of information about the lattice

parameter, crystalline quality and even chemical ordering, but only projected on the (001)

axis (in the OOP direction). We can infer information about epitaxy from the crystalline

quality but no direct information is obtained when the scattering vector is perpendicular

to the plane. When stated this way, the obvious solution is to measure with the scattering

vector not perpendicular to the sample plane, as in Figure 3.11 panel (c). This scan will

have an IP and an OOP component but they are not separable. To independently get IP

and OOP information, we should perform a 2D scan and an RSM, as shown in Figure 3.17

and described in subsubsection 3.2.4.2. When we have 2D information in reciprocal space,

we can take horizontal and vertical slices to separately investigate the IP and OOP lattice

conditions.

To gain IP information, a reflection with finite IP projection must be chosen. The

accessible reflections of Mn2RuxGa and MgO, calculated using the Python script described
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in subsubsection 3.2.4.2, are shown below in Figure 3.25. Given the expected values for

the MRG IP lattice parameters, this material should grow rotated 45◦ with respect to the

MgO, MRG[100] ∥ MgO[110]. The closest pair of substrate/sample peaks that satisfy this

are MRG(204) and MgO(113), which should be close enough in reciprocal space to both

be scanned in one measurement. MRG(206), with potential re-alignment to MgO(224), is

a higher-intensity reflection that could be scanned.
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Figure 3.25: Accessible, non-forbidden reflections in reciprocal space, rotated into
the scattering plane, for Mn2RuxGa on MgO. As MRG is tetragonal, H and K are
used interchangeably: (024) = (204). The size of the plotted points is proportional
to expected intensity. Geometrically inaccessible regions of reciprocal space are not
shown (towards the bottom and top right corner).

Two RSMmeasurements were performed on a number of the MRG samples, one encom-

passing the MgO(113) and MRG(204) reflections and another of the MRG(206) reflection.

The substrate is assumed to be a perfect crystal and the position of the MgO reflection

is used to normalise the axes. Despite the much lower intensity, the MRG lattice param-

eters measured from the (204) peak position are more credible due to the proximity to

the normalising MgO peak. For shape analysis however, the more intense (206) peak can
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provide better statistics. Example of data from three MRG samples with distinct Tdep are

shown in Figure 3.26 below:
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Figure 3.26: RSM scans on the (204) and (206) reflections of three exemplary MRG
samples deposited at different temperatures. Alignment was to the MgO (113) reflec-
tion in all cases. Note the excellent epitaxy, especially in samples with lower Tdep,
and the variable MRG peak shape (width and interference fringing). The dashed
lines in panel (b) correspond to the slices taken for further analysis. The dashed line
in panel (e) highlights the detector streak and is along the 2θ (constant-ω) axis. It
is due to bleed-over from the pixels in the 1D detector at high intensity.

A 3D projection of the (206) reflection from the sample deposited at low temperature

(Figure 3.26 panel (b)) is shown below in Figure 3.27. The vertical and horizontal slices are

extracted and fit with Voigt profiles to obtain values for the lattice parameter, coherence

length (finite size of coherently diffracting domains which result in broadening) and random

strain in both the IP and OOP directions. This is the typical method for analysis of

diffraction data from thin films, but from the figure, we can see that this is not adequate

for the highly-crystalline and smooth epitaxial thin films, due to the thickness fringes

which appear in the OOP direction.
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Figure 3.27: An example of fitting the IP and OOP slices of an RSM scan on the
MRG (206) peak. The data is the same as in Figure 3.26 panel (b). The slices are fit
with simple Voigt profiles and the coherence length and strain are calculated using
Equation 3.11. This is one of the highest-quality MRG thin film grown, with coherent
domains far larger than can be accurately determined by the Sherrer method and
large thickness fringes which are not at all well fit. The asymmetry also points
to some non-uniform strain, meaning both paths of Equation 3.11 are technically
invalid: the strain-fitting method must be used for these low Tdep samples.

3.3.4 Strain Profile Analysis

In order to fit the asymmetric interference fringes observed in high-quality MRG films, we

use the strain-fitting technique described in subsubsection 3.2.3.3. This involves manu-

ally integrating (or summing) the interference function Equation 3.7 with variable lattice

parameters described by the strain field and a smoothness function which effectively char-

acterises the number of atoms in the OOP direction which coherently diffract as a function

of position. Recall that a rough film implies that our interference function is the sum of

many sinusoids witih differing frequencies and so the oscillations are washed out, and

that non-uniform smooth strain results in asymmetric peaks as opposed to the Gaussian

broadening of uniform random strain.

The strain fitting method, Figure 3.28, offers a much closer match to the observed data
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Figure 3.28: Vertical and horizontal slices through the (206) reflection of Tdep =
225 ◦C MRG, as in Figure 3.26(b) and Figure 3.27. (a) Voigt profile fit to the qx slice,
yielding IP lattice parameter a, and the volume-average average strain and coherence
length ε̃x and ε(z) from the Gaussian and Lorentzian Breadths respectively. (b)
Strain-fitting function of A. Boulle (subsubsection 3.2.3.3) applied to the qz slice,
yielding the OOP lattice parameter c from the peak centre, the average strain ε(z)
from the average of the strain field, the film thickness t from the period of the fringes,
and the average roughness σ̃ from the damping of the fringes. The roughness is
somewhat analogous to the coherence length when considering the OOP direction as
the film is fully coherent across the 10s of nanometres. (c) shows the displacement
field (in arbitrary units) which yielded the fringes in panel (b) and its derivative, the
strain field.

than the “standard” Voigt profile fit, Figure 3.27, for near-perfect epitaxial thin films in

the OOP direction. This is because the samples are coherently diffracting across their

entire thickness and have smooth interfaces, resulting the thickness fringes. Comparing

the IP and OOP information obtained from the Voigt profile and strain fitting, different

but analogous information is obtained in each case. The Voigt profile, always used for IP

projections or imperfect films, yields the lattice parameter with volume averaged strain and

crystallite size. Strain fitting yields the lattice parameter, the entire strain profile (which

can then be averaged) and the thickness and roughness which are analogous to crystallite

size projected onto the scattering vector. It should be pointed out that random strain due
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to dislocations can also be included if the strain-fitting peak is too narrow, by virtue of

additional Gaussian convolution, which mathematically can conveniently be included by

adding to the Gaussian breadth of the instrumental profile, as per Equation 3.10, removing

the need for another computationally expensive convolution.

Of course, RSMs are not required to perform strain fitting, a simple 1D symmetric

XRD scan will do. The MRG (004) peaks of highly-crystalline samples often exhibit

fringing, as seen in Figure 3.22 and these peaks can be fit using the strain method, as

seen in Figure 3.29. There are no inherent downsides to using the 1D scan except for the

obvious lack of IP information compared to RSMs and RSMs are significantly more time

consuming, taking (O(N2) vs O(N)) time. However, one must be aware of the properties

of the diffractometer they use. 1D symmetric XRD scans are typically performed using the

non-monochromated, Bragg-Brentano geometry, Panalytical diffractometer. Compared to

the collimated and monochromated Bruker, this results in lower resolution, meaning the

fringes are not as discernible, and the additional Kα2 can complicate the fitting procedure.

Some diffractometers are also capable of measuring a linear q scan, as in Figure 3.11 panel

(d). By default, intensity is measured as a linear function of 2θ and the x axis is therefore

not linear when converted to q. A diffractometer capable of measuring as a linear function

of q removes this potential problem. One cannot take advantage of 1D detectors in this

case, as they necessarily measure a range of 2θ values.

The strain profiles shown here, for high-quality MRG films deposited at low temper-

ature, all have similar features. There is significant strain at the interface, a relaxed

region in the middle of the film and often additional strain at the capping layer, some-

times even greater than at the substrate interface. To further elucidate the structure

of these MRG films, we sent some to have scanning transmission electron microscopy

(STEM) measurements performed. This atomic-resolution spectroscopy technique allows

for extreme resolution mapping of the atomic order of materials as a function of thick-

ness. Two complimentary techniques that are very important and useful for our purposes

are high-angle annular dark field (HAADF) imaging and energy-dispersive X-ray (EDX)

spectroscopy. The results are shown in Figure 3.30. In HAADF, the incoherent scat-

tering of the electrons from the nuclei in the sample generate a “dark field” image, the

scattering length is very sensitive to atomic number and so therefore so is the brightness
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Figure 3.29: Fit of MgO and MRG (002) and (004) peaks from XRD spectra (Fig-
ure 3.21), using the strain fitting technique and accounting for the Cu Kα2 radiation
as these were measured using a non-monochromated diffractometer. The MRG sam-
ples were deposited at Tdep = 250 ◦C and Tdep = 400 ◦C respectively. Both peaks are
well fit with small residuals, but the lack of fringe contrast in the Tdep = 400 ◦C case
means that the fit parameters are ill-determined: a simple Voigt fit would be more
efficient in this case.

of the image, resulting in a grey-scale atom-level mapping of the structure of the material

with elemental resolution (provided they are not too similar in atomic number). EDX has

poorer spatial resolution than HAADF but stronger elemental resolution since it utilises

the characteristic X-rays of the atoms with energy-dispersive detection. This allows a

map of the composition of the material as a function of depth to be generated. For most

of these TEM-style measurements, much of the effort goes into cutting and milling the

sample to gain access to different slices throughout the depth. More information on all

these techniques can be found in Pennycook and Nellist [47, §1.5, §7] The measurements

were performed by Dr. Andrew Naden of the University of St. Andrews, Scotland.

There are a number of interesting features in the EDX data in Figure 3.30: there

is significant Mn diffusion into the Al2O3 capping layer with little counter-diffusion and

some diffusion into the substrate. In addition, there are very clear peaks in relative Ru

concentration near both the substrate and capping layer interfaces. These facts together

help to explain the strain profiles of this MRG film, which shows much larger values at

the interfaces. The Ru-rich regions are also evident in the HAADF images. The lattice
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Figure 3.30: EDX (top) and HAADF (bottom) spectra obtained on a Tdep = 225 ◦C
sample of Mn2RuxGa. A value of z = 0 corresponds to the substrate interface
while z ≈ 22 corresponds to the capping layer. distinct regions are shaded in the
EDX spectrum, while the arrows in the HAADF indicate regions of high relative Ru
concentration, resulting in brighter contrast due to Ru’s high atomic number.

parameter mapping in the HAADF, OOP along (004) and IP along (220), does not show

any very striking trends as it is difficult to directly fit atom positions from these types of

images.

3.3.5 Summary of MRG parameters from X-ray diffraction

In practice, when investigating materials using diffraction, the exact data analysis method

used is decided on a sample-by-sample basis. Using strain-fitting when appropriate and

Voigt profile fitting where possible, we modelled the data from the XRD scans (and RSM

slices) of each of the ten MRG samples in the series. The results are summarised in

Figure 3.31.

The OOP lattice parameters (c) are calculated from the 1D XRD spectra which are

generally higher resolution than the RSM scans while the IP lattice parameters (a) are

necessarily calculated from the RSM scans. The (204) peak is preferred for this as the

substrate peak is contained within the same scan (Figure 3.26) and can be used for more
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Figure 3.31: Summary of variation of MRG crystal parameters with deposition tem-
perature. (a) IP and OOP lattice parameters. (b) OOP coherence length Lz and
order parameter S002/004. (c) The rms strain in IP and OOP directions. (d) IP
coherence length Lx the interface roughness σ̃. Note the linear trends of many pa-
rameters with Tdep and the discontinuity around Tdep = 375 ◦C, where the films are
no longer continuous in the z direction. The results are explained in detail in the
text.

accurate calibration.

The IP and OOP crystal coherence lengths Lx and Lz, and the average strains ε̃x and

ε̃z, are obtained via Equation 3.11 from either the Voigt profiles or, in the case of Lz

for the high-quality films, from the Lorentzian breadth converged to by the strain-fitting

algorithm. Due to the low film thickness, the OOP coherence length is shown normalised

by thickness obtained from XRR measurements, tXRR (data not shown here). A value of

unity indicates the film is fully coherent in the OOP direction, which is the case up until a

clear threshold in deposition temperature. It is important to note that due to the inverse

relationship between measured peak breadth and crystallite size or coherence length, large

coherence lengths over a few hundred nanometres cannot be accurately resolved as they

contribute negligible broadening to the measured peak.

The surface roughness σ̃ is obtained from the strain fitting and is therefore only avail-

able when the films are high enough quality to exhibit the thickness fringes.

The clear threshold drawn in the right-hand panels of Figure 3.31 corresponds to the

point at which the films are no longer fully-coherent in the OOP direction such that LZ

155



Chapter 3. Structural Investigation by X-ray and neutron Diffraction

begins to drop and σ̃ is no longer available. Lx continues to drop and ε̃x continues to

rise through this temperature threshold. More interestingly, the order parameter S002/004

jumps to a larger value at this threshold. While initially at a small value as one would

expect from a high-quality XA MRG lattice (Table 3.3), the jump indicates chemical

and/or crystal disorder above this deposition temperature, which is the likely cause of the

changes in the other effective parameters.
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3.3.6 Rietveld Analysis on Single-Crystal Thin-Films

A more thorough way to investigate structural and chemical disorder is to perform Rietveld

analysis, which is essentially comparing the structure factors for multiple reflections. This

is a much more justifiable way to estimate the crystalline quality than the S002/004 value,

but of course takes much longer than a single symmetric XRD scan. The technique

was described in subsection 3.2.5 and its application to MRG thin films is described

here. Suitable reflections to investigate have already been visualised, in Figure 3.25, while

measuring reciprocal space maps. There are five reflections with sizeable intensity and

three peaks from the each of these families are measured for statistical purposes in case

minor misalignment would cause one orientation to have higher observed intensity than

the other, except for the (00L) peaks which have lower multiplicity. In addition, four low

intensity peak families are measured with one reflection and one very high multiplicity

family (H ̸= K ̸= L) was measured via four separate reflections. The plot of F 2(2θ) and

the chosen reflections are shown below.
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Figure 3.32: Calculated (with VESTA) squared structure factors and corrected in-
tensity for and Mn2RuxGa with x = 0.9 and lattice parameters a, b = 5.955 Å and
c = 6.04 Å. The lattice parameters are important because the irradiated volume
correction depends on the X-ray incident angle, which in turn depends on the aspect
ratio of the unit cell. The table shows a list of scans that might be performed: as
many ϕ angles (rotation around the vertical axis) are probed as possible to mitigate
possible misalignment effects.
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3.3.6.1 High-Temperature MRG

As a proof of concept, a thick (t = 100 nm, to provide high diffracted intensity) and rel-

atively relaxed MRG sample deposited at Tdep = 425 ◦C was investigated using this new

method, as described in subsection 3.2.5. A number of non-coplanar substrate peaks were

measured to determine the sample orientation in the diffractometer reference frame. The

lattice parameters were already known from XRD/RSM measurements identical to those

previously desribed in this material case study. A Python script I wrote determines the

position of all sample reflections in the diffractometer reference frame and selects a large

suitable subset to measure, based on the available time on the diffractometer tool, print-

ing out the positions and counting time for each. These can then be agglomerated into a

.job file readable by the diffractometer (via another script) and loaded up to perform all

the chosen measurements. The resulting data and its analysis is shown below. When ex-

tracting values for the squared structure factors from the observed diffracted intensity, the

order of operations is important. For this type of refinement on data from separate scans

of multiple peaks (as opposed to the original whole-pattern fitting of powder diffraction

data), the general procedure is as follows:

� Account for different counting times for different reflections.

� Perform a fit of a suitable function to the background away from the main peaks

and subtract.

� Only after removing the background can the irradiated volume correction be applied

via multiplying by the sin of the incidence angle: sin(ω). The background does not

originate primarily from the sample so should be removed prior to correcting for the

irradiated volume of the very thin sample.

� Now fit a Voigt profile to the peaks. The other instrumental corrections depend on

2θ rather than ω so can be applied to the integrated intensities.

� Apply the Lorentz/polarisation/monochromation corrections to the integrated in-

tensities to obtain the structure factors.

Similar work from which this procedure took inspiration was performed by Wadley et

al. [48] and interested readers are encouraged to read their excellent manuscripts. Our
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Figure 3.33: Rocking curves measured around a large number of reflections from an
MRG film deposited at Tdep = 425 ◦C, with Voigt profile fit. Alignment was per-
formed via measurement of four substrate reflections as described in subsection 3.2.5
and all scans were performed over ≈ 60 hrs in one weekend.

technique and ones like it exist in a no-man’s-land between powder and single-crystal

diffraction. As mentioned, in powder scans, all the possible reflections can generally be

recorded in a single 1D measurement and the pattern fitted with software such as FullProf

[6] which utilise Rietveld refinement [38]. Proper single crystal diffraction (not on thin

films) is generally recorded with a large 2D detector with the many resulting dots forming

a matrix characteristic of the atomic structure of the diffracting material. A commercial

software that could be used for analysing single-crystal diffraction data is SingleCrystal 4

by CrystalMaker [49]. Other software have been compiled by the International Union of

Crystallography online [50], and they also maintain a software “museum” going back half

a century here [51].

The averaged integrated intensities for the reflection families, corresponding to the raw
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data shown in Figure 3.33, are shown in Figure 3.35. The importance of the correction

factors, particularly the irradiated volume correction for a collimated beam and thin film

sample, are evident. The reciprocal of the peak breadth is plotted as a function of the

ratio of the sine of the incident and exit angles in Figure 3.34. The data is unremarkable

in this particular case but for the thin MRG film (discussed in the next section), the trend

is distinct so it is important to show the equivalent data for this sample.

0.0 0.2 0.4 0.6 0.8 1.0

sin(ωin)/ sin(ωout)

0.0

0.5

1.0

1.5

2.0

2.5

1/
β
ω

(d
eg
−

1
)

(002)

(004)

(204)
(224)

(044)

(315)

(026)
(335)

(444)

Breadth vs Incidence/Exit Angles

1/βω

Figure 3.34: Peak breadth (of the fit Voigt profile) as a function of the photon
incidence angle for MRG with t = 100 nm and Tdep = 425 ◦C. The breadth is roughly
constant across the range of incidence and exit angles, indicating that the breadth
primarily originates from the sample itself, through finite-size or strain broadening.
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Figure 3.36: Results of performing Rietveld Refinement on the measured structure
factors using the FullProf program. Since the lattice parameters and crystalline
structure were already known, only the scale, Ru content and the Debye temperature
factor Biso were varied in the fit. The discrepancy for the (404) peak is likely due
to problems with the fitting caused by the low incidence angle and resulting, large,
highly non-linear irradiated volume correction.

The result of Rietveld refinement using FullProf is shown in Figure 3.36. The goodness

of fit parameter RBragg is simply the residuals as a percentage of the observed intensity and

anything less than 5% is considered a good fit. The refinement yielded a stoichiometric

Ru concentration of Rux = 0.85, in agreement with the nominal composition and density

calculations. Formally, Biso is related to reduced intensity due to the thermal vibration

of atoms causing de-coherence of the diffracted photons, however it is strongly correlated

with other random isotropic disorders and is often treated as a general disorder parameter

for this reason. A Biso value around unity is unremarkable and suggests that the crystal

is ordered as expected (i.e. as defined in the FullProf input file).

So called site-swapping defects had been proposed as a mechanism to explain some

of the unusual and inconsistent observed magnetic phenomena in MRG films [52]. I at-

tempted to refine the degree of different types of disorder between the different MRG

sites, but due to the small number of reflections and unfortunate relative interaction cross

sections of the atoms3, even qualitative conclusions proved difficult to make and the data

is not shown here.

3Mn, Ga and Ru are all metals with relatively similar
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3.3.6.2 Low-Temperature MRG

Another MRG sample that was investigated was an exceptionally thin (t = 10 nm) sample,

deposited at Tdep = 225 ◦C. The technique was the same as before but less peaks were

measured and for longer counting times since there was so little diffracting volume. The

results are shown in Figure 3.37.
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Figure 3.37: Rocking curves measured around a large number of reflections from
an MRG film deposited at Tdep = 225 ◦C, with Voigt profile fit. The fits here are
not quite perfect as some of the peaks do exhibit thickness fringing, but not a huge
amount and the asymmetry is a larger obstacle to a perfect fit. The much larger
aspect ratio of this thin, low-Tdep MRG film when compared to the previous example
results in the peaks shifting to lower 2θ and ω values. Some of the peaks are cut
off by the sample/stage due to the low incidence angle and two families, (404) and
(224), are very strongly affected by the irradiated volume correction. There is also
a clear decreasing trend in peak width as ω increases.

There are two primary differences in between the high and low temperature deposited

samples. The low temperature one has a larger OOP axis as usual, and less relaxation

occurs due its thinness. This results in the reflections with an IP component shifting to
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lower incidence angles because the diffracting planes are more inclined to the horizontal

(001) plane. This has an adverse effect on the (404) peaks in particular which are almost

made inaccessible in the reflection geometry. The other interesting feature is the trend of

decreasing peak breadth with increasing ω angle, as illustrated in Figure 3.38, compared

to a more or less constant breadth for the thick, high temperature film. By plotting

the inverse of the breadth as a function of the ratio of the sin of the incidence and exit

angles, we obtain a straight line, indicating that this trend is caused by beam expansion:

for collimated beams in particular, when the incidence angle is much lower than the exit

angle in asymmetric scans, the apparent beam width is increased due to the geometry.

This is evident in this sample because of its extremely high-quality crystallinity from

being deposited at low temperature, while the previous sample has significant material-

dependent broadening which drowns out this effect.
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Figure 3.38: Peak breadth (of the fit Voigt profile) as a function of the photon
incidence angle for MRG with t = 10 nm and Tdep = 225 ◦C. The linear trend is
clear, indicating that the broadening is primarily due to collimated beam expansion.
The (002) peak has low SNR (Figure 3.37), resulting in its breadth being poorly
defined.

The goodness of fit RBragg is very low and the Ru content is as expected again. The

Debye temperature factor in this case is quite large as a result of peaks at higher 2θ values

having lower intensity. A quantitative explanation for this has not been found, but the

thickness fringing of intense peaks results in a sub-optimal fit with the Voigt profile and the

anisotropic strain profile exhibited by thin low temperature MRG could also result in a |q|-
dependent de-coherence and reduction in intensity. Here, we have successfully performed
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Figure 3.39: Intensities of the Voigt profiles fit to the raw, uncorrected data in
Figure 3.37. On the right are the averaged integrated intensities for each peak
family after applying all corrections in subsection 3.1.2, which should be equal to
the squared structure factors. The similarities of both to the calculated values in
Figure 3.32 are evident.
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Figure 3.40: Results of performing Rietveld Refinement on the measured structure
factors using the FullProf program. Since the lattice parameters and crystalline
structure were already known, only the scale, Ru content and the Debye temperature
factor Biso were varied in the fit. The (404) reflection is excluded in this case, from
Figure 3.37, we can see that the peak is measured with the X-ray beam almost parallel
to the sample surface and the peak is partially cut off with the remaining portion
extremely distorted thanks to the diverging volume correction. This unfortunately
reduces the available non-zero intensity peak families to just five.

Rietveld refinement on a t = 10 nm single-crystalline thin film, with a remarkably good fit

to the structure factor data, and obtained the Ru content and Debye temperature factor

of the material, showing that with the right techniques, laboratory diffractometers can

continue to push boundaries in metrology.
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3.3.7 Neutron Diffraction

3.3.7.1 Motivation

While MRG is a ferrimagnetic material, is has been observed that films of different crys-

talline quality or stoichiometry (higher/lower Ru content) can exhibit qualitatively differ-

ent responses of their magnetisation to external fields and currents. In particular, SQUID

(superconducting quantum interference device) and AHE (anomalous Hall effect) mea-

surements, which are sensitive to the external magnetic field produced by a material and

to the magnetism of the materials electrons at the Fermi level respectively, both exhibit

unusual pinched hysteresis curves for certain MRG samples [53, 54]. SQUID and AHE

measurements for MRG samples deposited at low, medium and high temperatures are

shown in Figure 3.41. All measurements were performed at 150K. The SNR in the
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Figure 3.41: (a) AHE hysteresis loops for three different MRG samples, note the
very pinched loop for the lower temperature sample. (b) SQUID measurements for
the MRG samples, note the small kink in the high-temperature sample. (c) The
pinched hysteresis loop and a simulated loop utilising Monte-Carlo methods and
assuming a simple spin Hamiltonian with uniaxial anisotropy. (d) Similar fitting for
the SQUID loop.
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SQUID measurements in Figure 3.41 is intrinsically low due to the ferrimagnetic nature

and resulting low net moment of the MRG films. The Hall effect measurements are elec-

trical and so depend on the polarisation of the electrons at the Fermi level, thus giving a

clearer picture. The Monte-Carlo simulations were performed by Professor Stamenov to

show that the unusual loops can indeed be fit with a simple uniaxial anisotropy model,

though not necessarily with realistic parameters.

3.3.7.2 Theory

In order to properly elucidate the magnetic structure of the films, it was decided to perform

neutron diffraction on the lowest-temperature, highest crystalline quality MRG which ex-

hibited the most pronounced pinch in the hysteresis. We applied for neutron diffraction

beam-time at the D10 instrument at the Institut Laue-Langevin (ILL) in Grenoble, one of

Europe’s premier condensed matter research facilities. A sample of thickness 25 nm, de-

posited at Tdep = 225 ◦C, and confirmed by various X-ray methods to have high crystalline

quality, was selected to be investigated. This was a highly ambitious project as 25 nm

provides very little diffracting volume for the relatively weakly interacting neutrons, but

it was thought that by focusing on particular peaks, worthwhile information could still be

obtained. The original plan of measuring three samples proved infeasible for the same rea-

son. In addition to the magnetic information, the different elemental contrast in neutron

diffraction should give more information on the crystal structure as well. The neutron

data is available, after an embargo period, from the ILL data repository [55].

The selected (monochromated) neutron wavelength at the D10 beam-line was 2.36 Å,

access to higher-order peaks via shorter wavelengths is not critical since neutrons are pen-

etrating and remove the restriction of the reflection geometry that exists for the laboratory

X-ray measurements. The nuclear scattering lengths of Mn, Ru and Ga are −3.75, 7.03

and 7.29 respectively [8, Tab. 4.4.4.1]. Mn having a negative value approximately half

the magnitude of the positive values for Ru and Ga results in some interesting structure

factors for various peaks. The neutron diffraction structure factors for a few peaks for XA

and L21 MRG are shown in Table 3.4, as in the X-ray diffraction case:

From the table, it is clear that neutron diffraction allows us to very easily tell the

different space groups of MRG apart in addition to the sensitivity to local magnetism.
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Table 3.4: Nuclear neutron structure factors for XA and L21 MRG lattices, cal-
culated using VESTA. Many of the peaks have identical structure factors (before
instrumental correction) because the neutron form factors are independent of |Q|,
unlike in the X-ray case.

F 4̄3m - XA Fm3̄m - L21

F002 0.516 43.64

F111 30.86 0.516

F311 30.86 0.516

Numerous peaks can have the same structure factors if the defining planes contain the

same atoms, the (111) and (113) planes of the cubic MRG unit cell contain alternating

Ru and Ga in the XA case but just Mn in the L21 case while the opposite is true for

the (002) peaks. Neutron atomic form factors are independent of scattering vector length

(as a good approximation) leading to numeric match-up which cannot occur in the X-ray

case since the form factors are |Q⃗| dependent then. Regarding the magnetic structure

factors, only the Mn atoms have a magnetic moment with the atoms on the 4a sites and

4c sites antiferromagnetically coupled, as in Figure 3.20. This leads to strong constructive

interference from the (002) planes in particular but weak magnetic diffraction from the

(004) planes as the moments are out of phase. The predicted total neutron structure

factors for MRG, calculated using FullProf, are shown below in Figure 3.42 for rotating

magnetic field to show the change in diffracted intensity as a function of the angle between

the scattering vector and the magnetic moments.

3.3.7.3 Results

Shown below is an excerpt from the neutron diffraction data recorded from the MRG film.

A subset of peaks and a list of all scans is included. The data is quite noisy but that

is to be expected for such a small diffracting volume. From the Gaussian profile fits to

the data, the peak areas are obtained and can be converted to structure factors via the

appropriate corrections. There is no irradiated volume correction of course so it is just

the Lorentz and polarisation corrections. The appropriate form for neutron diffraction is

given in the FullProf manual [6, eq. (3.26)] but is very similar to the forms I derived for

monochromated, collimated X-ray diffraction in subsection 3.1.2.
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assuming vacancies in the lattice for reduced content.

−2.0 −1.9
50

100

C
ou

nt
s

(a
rb

.) (002̄)

1.9 2.0 2.1

50

100
(222)

0.9 1.0 1.1

L (Miller)

50

100

C
ou

nt
s

(a
rb

.) (131)

0.9 1.0 1.1

L (Miller)

50

100

(1̄1̄1)

Family Scans

(002) 12

(111) 11

(222) 5

(113) 2

(202) 2

(311) 2

Figure 3.43: Some examples of the raw neutron data for different reflections, fit with
Gaussian profiles. The large peaks near L = 1.9 in the upper panels is due to the
substrate. The peaks are quite noisy but the SNR ratio is quite good considering the
25 nm thickness of the film. On the right is a list of all the peaks that were scanned
(excluding substrate alignment).

One of the advantages of the D10 beam-line at the ILL is its cryogenic capabilities and

neutron diffraction data was measured at a number of temperatures. Unfortunately, this
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MRG sample has a Curie temperature far above room temperature so it was not possible

to measure just the nuclear structure factors. Shown below is a subset of data measured

at the two extreme temperatures.

40 50 60 70 80

2θ (deg)

0.0

0.5

1.0

1.5

2.0

F
2

(a
rb

.)

(111)

(002)
(202)

(113)

(131)

(222)

T = 2 K

T = 300 K

40 50 60 70 80

2θ (deg)

0.0

0.2

0.4

0.6

(111)

(002) (113)

(131)

Figure 3.44: The squared structure factors (Lorentz and polarisation corrected in-
tegrated intensities) for peaks measured at T = 2K and T = 300K. On the right
are the averaged values for the room-temperature scans. These peaks are the most
suitable for combined refinement with the X-ray data in the previous section.

We see in Figure 3.44 that there is a larger diffracted intensity at lower temperatures.

This is expected due to both the de-coherence caused by thermal vibrations of the atoms

and lowering of the total magnetic moment by thermal fluctuations for those magnetic

peaks. From the neutron diffraction data, there are a number of conclusions we can

draw. The large values for the (111) and (311) structure factors imply that the MRG is

crystallised in the XA structure as expected, see Table 3.4. The large value for the (002)

structure factor cannot be due to nuclear scattering in this case and therefore implies that

the magnetic moment for the sample is primarily IP ((HK0): perpendicular to (002))

across all the temperatures measured, this IP magnetisation is an important result. MRG

films exhibit perpendicular magnetic anisotropy when measured by applying an external

magnetic field [53, 54] but this neutron diffraction data shows the magnetic moments

lie IP at zero field. In fact, this could explain some of the unusual kinks seen in the

hysteresis loops: if the magnetisation is initially IP at zero external perturbing field but is

quickly rotated OOP before slowly saturating, for example. At this end of this section, the

possible spin structure of the Mn atoms will be discussed in the context of magnetisation

data. The room-temperature neutron diffraction data, right panel of Figure 3.44, was also
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simultaneously Rietveld refined with X-ray data also recorded at room temperature, result

shown in Figure 3.45.
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Figure 3.45: Result of simultaneous Rietveld refinement on neutron and X-ray
diffraction data from the MRG sample (t = 25 nm, Tdep = 225 ◦C). The good-
ness of fit is not as impressive as for other samples demonstrated, but the refinement
was still a success. The (404) reflection in the X-ray case is again left out due to
being at too low of an incidence angle to be accurately measured.

Some important parameters for the Rietveld refinement from the 25 nm MRG thin film

are tabulated in Table 3.5. The values for the combined refinement are in the rightmost

column. The values in the leftmost column were obtained after fitting the X-ray data with

Voigt profiles and applying the relevant corrections. For the values in the central column,

the raw data for all measured X-ray peaks was simultaneously fit with Voigt profiles of the

same width: despite visibly worse fits to the data, the quality of the Rietveld refinement

is very similar.

The beauty of the combined refinement is that the X-ray diffraction data effectively

fixes the structure, Ru content, Debye-Waller factors and more, allowing the neutron

diffraction refinement to really focus on the magnetic contribution. We see sensible values

for the Ru content and Debye-Waller factor. The latter is much smaller than for the

t = 10 nm sample shown earlier and slightly larger than for the t = 100 nm sample, which

makes sense if we assume the inflation is due to anisotropic strain for thin samples. In

the end, the magnetic moments of the Mn atoms on the 4a and 4c sites were found to be

2.55 µB and −2.77 µB respectively, both along x̂. The magnetism was confined to be along

x̂ following the simulations shown in Figure 3.42. When refinement was attempted varying
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Table 3.5: Parameters from Rietveld refinement of X-ray data (col A, B) and of
combined X-ray and neutron data (col C) from the same 25 nm MRG film. The
input data for col A and B was obtained from uncoupled and coupled Voigt fits to
the measured X-ray peaks respectively, see text for details.

Voigts Coupled Voigts Combined Fits

Ru Occupancy 0.7838 0.5896 0.91

Biso 1.0981 1.6835 1.21

Scale 1.02× 10−6 1.34× 10−6 7.77× 10−4

mx4a NA NA 2.55

mx4a NA NA -2.77

mz4a NA NA NA

mz4a NA NA NA

RBragg 10.2 9.57
neutron: 15.75
X-ray: 10.09

the x̂ and ẑ components of either sublattices’ moments, the procedure quickly diverged and

returned nonsensical values for the parameters. The values obtained strictly from Rietveld

refinement come with the caveat that, as can be seen in Table 3.5, a similar goodness of

fit can be obtained with parameter converged to significantly different values. In essence,

this is due to the fact that Rietveld refinement is originally meant to be performed on

large-volume polycrystalline or powder samples rather than single-crystalline thin films.

Due to the limitations, I would not recommend emulating this method for similar thin

films.

3.3.7.4 Conclusions

For the final refinement shown in Figure 3.45, I experimented thoroughly with rotating

magnetisation OOP and changing the magnitude, as well as introducing excess Mn atoms

to the 4d sites, while changing the Debye-Waller factor and Ru content as usual. No

improvements to the fit were observed. It should be noted that changing Rux and Biso

have a similar effect and can improve the fit for some peaks while worsening others,

therefore having little effect on the overall RBragg values, in other words, the parameters

are strongly correlated which adds some uncertainty to the conclusions. However, I believe

it is safe to say this sample is magnetised IP at zero field, which is the key takeaway.
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Additional SQUID [56] data measured on another Tdep = 225 ◦C MRG sample can add

some support to these assertions, see Figure 3.46. SQUID measurements are a macroscopic

probe that obtains essentially the volume average of the magnetisation, in contrast to the

atom-resolved signal from the neutron diffraction. The remanence (zero-field) moment of
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Figure 3.46: SQUID magnetisation data measured at room temperature on the same
Tdep = 225 ◦C MRG sample that neutron diffraction was performed on. The moment
is very small and almost perfectly compensated at remanence with no hysteresis loop
evident.

the neutron sample does appear to be near zero, moreover, the saturation (maximum at

high-field) moment is very small, less than mz = 0.2 · 10−7Am2. This is also true for the

different Tdep = 225 ◦C MRG sample SQUID data shown in Figure 3.41(b), although that

sample does possibly show some hysteresis (it is hard to definitely say for such low net

moments). This macroscopic unit can be converted to one which is more comparable to

the neutron results. The approximate number of Mn atoms in the sample is simply the

sample volume divided by the unit cell volume multiplied by the number of Mn atoms in

the unit cell. From there it is trivial to convert the magnetic moment tomz ≈ 0.1µBMn−1.

This is indeed in line with the net moment in the neutron results. The neutron (large

IP moments) and SQUID (very small net moment) results can together be explained by

a small canting angle between the sublattices with the resulting net moment oriented

roughly perpendicular to the two sublattice moments. An external magnetic field, as used

SQUID or magnetotransport measurements, acts on this net moment (rather ineffectively
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due to the size), while radiation or particle based probes like neutron diffraction resolve

the comparatively large individual moments. Additional neutron diffraction results with

|~m4a| ≈ 2.55µB |~m4c| ≈ 2.77µB

|~mnet| ≈ 0.2µB

Figure 3.47: Possible spin configuration for the two MRG sublattices. A very small
canting angle results in a net moment which is roughly perpendicular to the indi-
vidual atomic moments.

finite applied fields, on high-temperature and medium-temperature MRG would be useful

in confirming and reinforcing results, however the measurements were already difficult

with the small sample volume available and gaining more neutron beam time would be

difficult.

3.3.8 Other Heuslers: Co-Ti-Si

3.3.8.1 Motivation

Co2TiSi is one of many Heusler alloys predicted to be half-metallic at the Fermi level [57].

Heusler alloys are versatile materials with the chemical formula X2Y Z where X and Y are

transition metal elements and Z is a p-block element. The four constituents sit on four

fcc sublattices. The inclusion of often magnetic d-block elements in combination with the

others often results in many unique and interesting magnetic and electronic properties. A

half-metal is a material with density of states (DOS) from only one spin at the Fermi level

[58], such that the low-bias conductance is completely spin-polarised. Half-metals have a

plethora of potential applications in next-generation devices [42]. Co2TiSi has been grown

in bulk previously [59] but rarely in thin film form.

3.3.8.2 XRD

Co-Ti-Si was deposited in the appropriate ratio on an MgO substrate by sputtering. MgO,

a common substrate for Heusler alloy materials, has a lattice parameter of aMgO = 4.211 Å.

If the corner-to-corner distance is considered, which is the distance likely to match up
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with the side of the Heusler alloy unit cell, we have aMgO = 5.956 Å. Co2TiSi has a lattice

parameter of aCo2T iSi = 5.72 Å, resulting in a mismatch of 4%. This is a substantial

number but not so large as to preclude epitaxial growth of thin films, in fact non-negligible

strain is often desired to induce tetragonality in the sample structure, allowing access to

effects otherwise suppressed by the cubic symmetry. The Co2TiSi unit cell and the relation

to the substrate is shown in Figure 3.48.

Co Ti Si Mg O

Figure 3.48: Isometric and top-down views of the Co2TiSi and MgO unit cells,
showing epitaxial relation.

The expected XRD spectrum for a vertical θ/2θ scan, for substrate and sample oriented

with their c-axes OOP, would be as in Figure 3.49, using the Bragg law to get the positions

from the lattice parameter and assuming arbitrary broadening. The relative intensities

for each material is calculated using VESTA and the relative intensities between the two

materials is estimated based on their thickness and crystalline quality.

When the XRD spectrum was measured however, there were far more reflections than

expected present in the scan. The measured data is shown in Figure 3.50:

If we assume the peaks are (00L) reflections with L even, we can calculate the OOP

lattice parameter as c = 11.23 Å, approximately double what was expected. Looking at the

literature, the stable compound Co16Ti6Si7 matches the observed lattice parameter and

has been observed by authors trying to obtain Co2TiSi [60]. The structure and epitaxial

relation for Co16Ti6Si7 on MgO is shown in Figure 3.51:
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Figure 3.49: Predicted θ/2θ scan for single-crystalline, (001) oriented Co2TiSi/MgO.
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Figure 3.50: An XRD scan of a Co-Ti-Si thin film epitaxially grown on an MgO
substrate. The large number of peaks within the 2θ range implies a large unit cell.
The peaks shown in red are were calculated from Equation 3.1 using d = 11.23/L.
This spectrum was recorded on a different diffractometer than the aforementioned
Bruker, in the Bragg-Brentano geometry, resulting in higher SNR, but poorer reso-
lution and more instrumental artefacts: the “cliff edges” to the left of the substrate
peaks in the spectrum are due to the adaptive filter of the detector, above a certain
intensity threshold, the detector switches to a strong filter to protect itself.

The excellent agreement between the measured and predicted peak positions confirm

that it is Co16Ti6Si7 which was grown. Assuming the epitaxial relation shown in Fig-

ure 3.51 is the correct one, the lattice mismatch is 5.7%, which is again quite large.

It is more likely in this case that there are some dislocations present to facilitate high-

quality epitaxial growth. Unfortunately, Co16Ti6Si7 does not have any of the interesting

electrical or magnetic properties that Co2TiSi is predicted to exhibit and this material,

though it yields an interesting XRD pattern, was not characterised further. Why was the
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Co Ti Si Mg O

Figure 3.51: Isometric and top-down views of the Co16Ti6Si7 and MgO unit cells,
showing assumed epitaxial relation.

wrong material obtained in this case? Well Co16Ti6Si7 corresponds to an atomic ratio of

Co2Ti0.75Si0.875 as opposed to Co2TiSi, so there is an excess of Co present. Growing with

a lower flux of Co atoms, if possible, could help, in addition to growing more slowly.

This is a prime example of the usefulness of a simple θ/2θ scan in material identification

and measurement of the OOP lattice parameter.
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3.4 Case Studies: MgO/Mn4N

3.4.1 Motivation

Generally when magnetic order is discussed, we think of the atomic spins as collinear

i.e. parallel or anti-parallel for ferro or antiferro/ferrimagnetism, such as in the Ising

model. However, frustrated magnetism arises when the atomic layout is such that the

energy minimum no longer has adjacent spins exactly collinear. This is often a result of

the different strengths and signs of exchange interactions between identical elements at

different distances, in particular elements like Mn whose exchange interaction is especially

sensitive to distance. In a unit cell with numerous crystal sites of different symmetries,

having more than one of these sites occupied by Mn atoms will result in some magnetic

frustration due to the different pairwise separations of the atoms, non-collinear magnetic

orientation with, for example, triangular symmetry of the spins and unusual anomalous

effects in electronic transport properties due to the Hall (deflection of electric current due

to the materials magnetism, both intrinsically through the band structure and via magnetic

scattering) and/or Nernst (Similar to Hall but the origin of the electric current is thermal

gradients) effects [61]. One material that exhibits frustrated triangular ferrimagnetism in

the bulk form is Mn4N[62]. The material was grown in thin film form by our group, and the

magnetic effects observed did not match up with the bulk magnetic structure as observed,

as discussed by Coey et al. [63]: e.g. the magnetic moment was significantly smaller in the

films compared to the bulk. So began an extensive characterisation process to elucidate

the source of the discrepancy, as detailed by Yangkun He et al. [61]. My role in the

project was primarily to perform X-ray diffraction, specifically RSMs, to determine the

lattice parameters and epitaxial relationship of the grown films with their substrates. The

investigation of this material was part of the over-arching goal of developing high-frequency

magnetisation dynamics devices. The complex non-collinear spin structure expected could

be one more possible route towards that goal.
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3.4.2 RSM

Bulk Mn4N has a cubic lattice with a N atom at the centre of an fcc lattice populated

by Mn, the space group is Pm3̄m (#221). The lattice parameter from literature is 3.86 Å

[63]. The substrate used was MgO and XRR/XRD measurements indicated good quality

crystalline growth of the Mn4N layer, with the diffraction peaks exhibiting Laue oscilla-

tions. This was somewhat unexpected due to the large mismatch in lattice parameters

(the lowest mismatch was for cube-on-cube growth: 8.3%). RSMs were very much desired

to explain the observed result. The accessible reflections of Mn4N and MgO, calculated

using the Python script described in Figure 3.18, are shown below in Figure 3.52: We can
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Figure 3.52: Accessible, non-forbidden reflections in reciprocal space, rotated into
the scattering plane, for Mn4N on MgO.

see that the (113) and (204) reflections have the highest intensity for Mn4N, as is often the

case for fcc-type lattices. If the growth was cube-on-cube such that the azimuth of the film

and substrate were coincident, the (113) reflection of the substrate is quite close to that

of the sample and could be used for alignment (possibly both could be encompassed in

one scan). If the epitaxial relation was 45◦ rotated, then the Mn4N (204) peak with align-

ment to the MgO (224) would be feasible. I first aligned to the MgO (113) reflection and
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performed a 2θ vs qz RSM scan with a range containing both substrate and sample reflec-

tions. This (educated) guess was correct with both sample and substrate peaks appearing

in the scan, shown in Figure 3.54, confirming that the growth was cube-on-cube (Mn4N

(113) ∥ MgO (113)), as indicated in Figure 3.53. The IP lattice parameter a = 3.874 Å,

Mn N Mg O

Figure 3.53: Isometric and top-down views of the Mn4N and MgO unit cells, showing
epitaxial relation.

close to the bulk value, means there is a mismatch of 8.0% with the substrate. This is

far larger than would typically be possible with elastic strain, but the small width of the

reflection implies a relatively small amount of dislocations and a similarly small spread

in lattice parameters. XRR measurements suggested that there might be an interfacial

MnO layer between the MgO and Mn4N that might explain the epitaxy. MnO has a

cubic structure identical to MgO with a lattice parameter a = 4.263 Å [64]. This is an

even larger mismatch, but the ratio of aMnO/aMn4N = 1.1 might indicate one dislocation

per 11 atoms. Alternatively, all the strain could be localised in the MnO layer in some

fashion and therefore not be evident in the Mn4N diffraction pattern. To nail down the

epitaxial relationship, TEM or a similar atomic-scale spatial measurement would ideally

be performed.

The thin film form exhibited −0.9% tetragonal strain resulting from the tensile IP

strain exerted by the substrate. This breaks the cubic symmetry and leaves us with the

space group P4/mmm (#123). In the cubic structure, the spins of the Mn sublattice on
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Figure 3.54: Reciprocal space map of Mn4N/MgO, aligned to the MgO (113) peak.
The Mn4N (113) peak was centred at q⃗ = (3.651, 7.817) nm−1, yielding lattice param-
eters a = 3.874 Å and c = 3.838 Å, with a ratio c/a = 0.99. The negative numbers
on the x-axis are simply due to the preference for measuring in grazing incidence
and the definitions of the Cartesian axes, as in Figure 3.17.

the corners of the unit cell (Wyckoff 1a site) point along the (111) direction while the

Mn spins on the faces of the unit cell (Wyckoff 3c site) point towards the corners (so the

sublattice average moment is also along (111)) in an example of triangular frustration due

to distance-dependent exchange [62, 65]. In thin film form on an MgO (001) substrate,

the tetragonal distortion is credited with changing the overall magnetic easy axis from the

(111) direction to (001). An additional magnetic sublattice is needed as the Mn on the

top faces no longer cooperate with the Mn on the side faces of the unit cell while those

on the corners swivel to point OOP [61, Figure 2]. The exact magnetic structure has not

been rigorously experimentally verified, but examination of the distance-dependence of

Mn exchange interactions from DFT [61] and comparison with bulk, doped Mn4N spin

configurations [66] suggests that this is the case. The degree of tetragonal distortion is

likely to correlate to the strength of the easy-axis anisotropy and the resulting magnetic

properties, making RSM a very powerful tool to help with investigations.
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3.5 Summary

In this chapter on diffraction, or perhaps more aptly “crystal structure investigation”, I

first introduced the basic theory of scattering for photons and neutrons. This involves

the diffraction and coherence conditions fundamental to the wave mechanics, and the un-

derlying mechanism of the scattering from electromagnetic or strong force interactions. I

discussed some of the important experimental considerations, namely the everyday instru-

mental corrections that must be taken into account for two common types of diffractome-

ter, in order to relate the observed diffraction data to the underlying crystal structure.

I discussed in detail many of the techniques I used for crystal structure investigation

over the past few years. The list is of course not exhaustive but contains many of the most

useful and commonly performed measurements, from simple one-dimensional scans to more

custom procedures which combine various techniques in the literature and apply them in

new ways. In many cases, the thin single-crystal films which I have worked on are not the

original intended subject of investigation for techniques in literature and represent a new

demonstration of the wide applicability. In particular, the semi-automated procedure for

performing measurements to enable Rietveld refinement on single-crystal films as thin as

t = 10 nm is quite remarkable given the usual large-volume powder samples that are used.

Of some note are the various Python “helper” functions which I wrote and have published

for use on my GitHub [26]. One of my goals in doing this was to help researchers new to the

field to understand reciprocal space better rather than simply going through the motions

of a strict operating procedure without properly understanding the techniques. While

this can still yield results, it stifles discovery and technological advancement as young

researchers can have incorrect assumptions about how or why some techniques work.

Demonstrations of the techniques in action and data acquired are given in the form of

case studies, with most amount of work done, and the largest set of data, for Mn2RuxGa

thin films. This material has been a focus of the Magnetism and Spin-Electronics Group

here in Trinity for a number of years, with many publications and a thesis already in the

literature [45, 53, 43, 46]. With the construction of the Trifolium Dubium deposition

and characterisation national access facility in 2019, funded by the ¿ 3.2M SFI grant

15/RI/3218, new capabilities were unlocked for thin film deposition, in particular lower-
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pressure vacuum and high sample throughput allowed for higher quality crystal structures

than ever before. The timing was not ideal with the COVID pandemic beginning shortly

afterwards... but the system was operational for the majority of 2020 and 2021, and

much of my characterisation work was on samples deposited during this period. I focused

here on the effect of substrate temperature on the quality of highly-epitaxial thin films

of MRG, a publication is currently in preparation regarding this work [54]. A brief men-

tion of Co16Ti6Si7 was given as X-ray characterisation proved very useful in determining

the structure and the data was very stark, therefore constituting a good example. The

reciprocal space mapping of Mn4N was discussed in some detail because the data proved

invaluable in determining the epitaxial relationship of the sample with the substrate. The

growth was highly epitaxial despite the large mismatch, possibly indicative of a seed layer

forming at the interface, which is not implausible considering the affinity of Mn for O in

O-containing substrates. This data was also included in a publication [61].
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Chapter 4

Backscatter Mössbauer Spectroscopy

4.1 Introduction

The performance of magnetic materials depends on their intrinsic properties, including

anisotropy, coercivity and the magnitude of their magnetic moment. These properties

depend in turn on the interatomic interactions within the material and thus the atomic

composition and crystal structure. Mössbauer spectroscopy (MöS) is a potent tool to probe

these relevant properties, especially of Fe-containing samples [1]. This technique utilises

the resonant absorption of γ-ray photons, emitted by a source1 following a radioactive

decay, to probe the energy levels of 57Fe nuclei with a startling relative sensitivity ap-

proaching 1012. We have developed a custom, highly-effective setup for this technique [3]:

The simultaneous detection of the characteristic X-rays, γ-rays and non-resonant photons,

with a single broadband detector, allows for optimal post-acquisition discrimination dis-

crimination and background correction. In this chapter the apparatus and the steps in

the data analysis will be described in detail, after some background theory is introduced.

Four distinct examples of the technique in action are described to show its effectiveness

and wide applicability, offering far more accessibility to this type of material probe than

previously available.

1A bandwidth approaching that of the nuclear emission has been achieved at a synchrotron facility, by
monochromating the very bright but broadband photon beam using pure-nuclear Bragg diffraction from
an enriched 57FeBO3 crystal heated to its Néel temperature TN [2].
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4.2 Theory

Rudolph Mössbauer discovered in 1958 [4] that excited nuclei in crystals can emit a γ-ray

with a finite probability of exciting no phonons. In this case, the recoil momentum is

imparted to the whole lattice, resulting in a negligible recoil energy due to the enormous

mass of the lattice relative to a single atom. To illustrate the importance of this phenomena

to the measurement technique, consider the first transition of 57Fe. For a free 57 a.u. 57Fe

atom emitting a 14.4 keV photon, the atom must recoil to conserve momentum with energy

ER = p2

2m
=

E2
γ

2mc2
= 2meV. If say, a 100 nm3 grain of Fe, containing roughly 8.5 ·107 atoms,

were to do the same and recoil as one body, the energy would be divided by the number of

atoms, so ER = 0.02 neV. Considering linewidths of nuclear photons are typically of the

order 1 neV, it is clear that the transitions need have some phonon-free fraction in order

to be useful.

4.2.1 57Fe Nuclear Details

A number of isotopes have suitable nuclear energy level transitions which exhibit the

Mössbauer effect [1], but only a few are practically useful; these include 119Sn and 197Au

but most notably 57Fe. The details of the energy levels of 57Fe can be obtained from the

nuclear data sheets via the online database of the International Atomic Energy Agency

[5]. The table of γ-ray emissions is reproduced in Table 4.1. The first nuclear transition

of 57Fe is a Eγ = 14.4 keV, I = 3
2
→ 1

2
decay (Figure 4.1), that has a significant phonon-

free fraction thanks to its low energy. The 98.2 ns lifetime gives a natural linewidth of

Γ ≈ 6.7 neV from Heisenberg uncertainty, so the theoretical relative sensitivity is of order

Eγ/Γ ≈ 1012.

Table 4.1: The relevant γ-ray emissions for 57Fe

∆n ∆Jπ τ1/2 E (keV) Irel Mult δ αT

1 → 0 3
2
− → 1

2
− 98.3 ns 14.41 100 M1 + E2 0.0022 8.56

2 → 1 5
2
− → 3

2
− 8.7 ns 122.1 89.3 M1 + E2 0.120 0.024

2 → 0 5
2
− → 1

2
− 8.7 ns 136.3 10.7 E2 0.137

The vector sum of the spins for the transition and thus the multi-polarity, J = |I1 ± I2|,
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Jπ En τ1/2

5/2− 136.5 (9%)
122.1 (91%)

136.5 keV 8.7 ns

3/2− 14.4 (100%)

14.4 keV 98.3 ns

1/2− 0.0 keV Stable

Figure 4.1: The first three energy levels of 57Fe, with transitions [5]. Not to scale.

can be 1 or 2. This means the transition can be magnetic dipole (M1) or electric quadrupole

(E2). The γ-ray mixing ratio, δ = 0.0022, characterises the probability for each of these

transitions as 1
1+δ2

and 2δ2

1+δ2
respectively, meaning the transition is essentially purely M1,

which simplifies analysis, giving the quantum number selection rule ∆m = 0,±1.

The Total Electron Conversion Coefficient αT = 8.56 gives the ratio of probability

for electronic versus photonic decay of an excited 57Fe nucleus. The excess nuclear en-

ergy can be imparted to s-electrons which have finite density inside the nucleus, these

1s electrons have binding energy Eb = 7.1 keV and are therefore ejected with kinetic en-

ergy Ek = 7.3 keV. 2p electrons (Eb = 0.7 keV) then fall to fill the 1s holes, resulting

in the characteristic X-rays with energy 6.4 keV. This preference for electronic decay is

why the characteristic 6.4 keV X-rays are so much more intense than the 14.4 keV γ-rays

in backscatter MöS, and why the closely related technique of CEMS (conversion electron

MöS) is often used to study purely surface 57Fe states (the electrons themselves can only

escape from a depths ranging from 10s to 100s of nm).

4.2.2 Spectroscopy

The Mössbauer effect allows for the resonant emission and absorption of the 14.4 keV γ-

ray between identical nuclei by ensuring that the effective recoil energy is smaller than the
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energy linewidth. However, should the 57Fe nuclei in an absorber experience a different

electromagnetic potential to those in the source, the nuclear energy levels of the absorber

nuclei will be shifted by an energy greater than the linewidth and resonance cannot occur.

To re-establish resonance, the energy of the emitted γ-rays must be scanned over an

appropriate energy range of order ±0.5 µeV, slightly larger than the Zeeman splitting of

57Fe in α-Fe. This can conveniently be satisfied via the relativistic Doppler effect, invoked

by oscillating the source with velocity up to v ≈ 10mms−1. The natural linewidth in these

units is Γ0 ≈ 0.14mms−1, while typical spectral features are generally of order 1.0mms−1.

4.2.3 Spectral Features

In 57Fe MöS there are three main features which are typically observed in measured

spectra[1]; these illustrated in Figure 4.2 and discussed below:

3/2 ±3/2

−1/2

3/2 ±3/2
+3/2

3/2
±1/2

+1/23/2
±1/2

−3/2

1/2 ±1/2 −1/21/2 ±1/2
+1/2

14.4 keV

57Fe∗

57Fe

Free
Atom

IS IS + QS
IS + QS +
Hyperfine

0

100

0 0 0

Figure 4.2: Typical patterns observed in 57Fe MöS, with splitting greatly exagger-
ated, adapted from [6]. IS and QS stand for isomer shift and quadrupole splitting
respectively.

� Chemical Isomer Shift (IS) refers to a constant shift in the energy levels of the

source nucleus relative to those of the absorber. Electrons residing in the s orbitals

of atoms have a finite probability density |ψs(0)|2 within the nuclear volume and

excited nuclei generally have a different radius R compared to their ground state

counterparts, and these facts affect the nuclear energy levels of the nucleus and thus
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the energy of the photon related to the transition between the levels. For distinct

source S and absorber A nuclei, there is a shift of the transition energy proportional

to (|ψs(0)S|2 − |ψs(0)A|2) δR: Chemical bonding affects the screening of s electrons,

changing their probability density within the nucleus and causing the “isomer shift”

to be non-zero. This is equivalent to the electric monopole, or Coulomb, contribution.

� Quadrupole Splitting breaks the degeneracy of nuclear energy levels with spin

J > 1
2
. Nuclei satisfying this condition have a non-spherical charge distribution,

which means that an electric field gradient, which is not spherically symmetric, will

split the energy levels of the nucleus into those with different quantum numbers

|Jz|. The magnitude of this splitting is proportional to the product of the nuclear

quadrupole moment and the electric field gradient maximum at the nucleus, the

latter of which again depends on the specifics of the chemical environment and local

crystal field.

� Hyperfine Splitting results from the Zeeman effect of an external or contact mag-

netic field at the nucleus. Zeeman splitting separates the nuclear energy levels by

their magnetic quantum number, resulting in 2J + 1 sub-levels, which means four

sub-levels for the 1st excited state of 57Fe and two sub-levels for the ground state.

This results in eight possible transitions between sub-levels of the two nuclear states

that must be considered. The magnetic dipole nature of the transition limits the

change in magnetic quantum number to δm = 0,±1, reducing the number of pos-

sible transitions to six, for all but extremely distorted local environments and high

hyperfine fields. This yields the familiar sextet that is often observed in MöS.

In any particular absorbing sample, each distinct crystallographic site that is populated

by an 57Fe atom will independently contribute to the Mössbauer signal, with the positions

of the peaks in the spectra determined by the three effects mentioned above. Even in

disordered or amorphous systems, the atomic distribution within highly local environments

can be investigated.
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4.2.4 Model

To model the data, we adapt the ab initio method of [7], where the intensity of each

line in the spectrum is represented as the normalised power absorbed by each nuclear

sub-level transition, which is equal to the square modulus of the multipole field of the

photons incident at the absorbing nucleus. The photons’ multipole field is modelled in

terms of vector spherical harmonics [8]. The eigenvectors of the Hamiltonians of the

nuclear excited and ground states, as well as the Clebsch-Gordan coefficients, enter as

the coefficients multiplying the spherical harmonics after [9]. The general Hamiltonians

for the two nuclear states are written in matrix form after [10]. Piecing together all this

information gives us a complete model for the position and intensity of each line in each

spectrum (generally a sextet but in principle the approach can handle octets as well). The

peak positions and heights are then convoluted with pseudo-Voigt profiles, the broadening

of which depends primarily on the crystal structure; alternatively they may be convoluted

with time-differential or dynamic lineshapes. A full derivation of the model is given in

the appendix section 4.A. In the usual case of a homogeneously magnetised absorber, the

formula used to represent the observed intensity I as a function of source velocity v is

denoted by the function:

I = C1 · SC(v,Γ, σ, µ, δ,Q,Bhf ,Θ) + C2 (4.1)

In Equation 4.1, Γ, σ and µ are the Lorentzian width, Gaussian width and mixing

ratio of the pseudo-Voigt profiles, respectively; δ, Q and Bhf are the isomer shift, effective

quadrupole moment and magnetic hyperfine field at the nucleus, respectively and Θ is

the polar angle describing the direction of the source γ-ray incident on the absorber with

respect to the direction magnetic hyperfine field of the absorber 57Fe nuclei. C1 and C2

are scaling constants. The function is labelled SC in this case as it corresponds to the

single crystal case. Averaged polycrystalline versions can also be used.

The parameter Θ is key to investigating the magnetic orientation within a sample. In

an 57Fe MöS sextet, the relative areas of peaks 2 and 5 within the sextet vary with Θ as

x = 4 sin2(Θ)/(1 + cos2(Θ)), where the peak area ratios are 3:x:1:1:x:3 (see section 4.A).

For magnetically isotropic absorbers, the model is integrated with respect to Θ, yielding

195



Chapter 4. Backscatter Mössbauer Spectroscopy
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Figure 4.3: A comparison of the Bhf-distribution and Q-distribution models for two
different values of the broadening parameter σ which controls the width of the normal
distribution from which the parameter values are chosen.

x = 2, so the relative peak areas of the sextet are always 3:2:1:1:2:3 regardless of sample

orientation.

For the region between perfect crystallinity and fully amorphous structure: single

crystals with substantial structural and chemical disorder, it does not make sense to use

a single value for the hyperfine parameters since the 57Fe nuclei will exist is a variety of

distinct environments. In this case we use a “Bhf-broadened” or “Q-broadened” model,

where the spectrum is represented as a sum of contributions with the hyperfine parameter

in question chosen from a continuous distribution for each contribution. The width of the

distribution depends on the degree of disorder [11]. The Bhf-broadened model yields a

broadening proportional to the velocity (since the hyperfine field increases the splitting of

all sub-levels), while the broadening due to a distribution of Q values is constant, allowing

one to visually decide which approach is more suitable (or indeed use both). A comparison

of the two sources of broadening is shown in Figure 4.3: The velocity dependence of the

Bhf-distribution is very clear in the highly broadened spectrum in Figure 4.3. In the

results section, real data which is well-explained by this model will be shown. A final

note is that the distribution need not be Gaussian: a weighted distribution based on a

space-filling model, such as the radial distribution functions that describe the variation of

interatomic spacings in amorphous materials [12, §19], could be used [13]. The distribution

of interatomic spacings is of particular interest in amorphous magnetic materials due to

the distance-dependence of the exchange interaction.
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4.3 Methods

4.3.1 Backscatter Mössbauer Spectroscopy

In traditional MöS [1], the transmission of the emitted 14.4 keV γ-rays through an ab-

sorber is measured and the resonant dips with changing velocity constitute the Mössbauer

spectrum. This linear geometry of traditional MöS is an adaptable one, where collimators,

filters etc. can be inserted in the beam path. By contrast, in our novel system, described

in detail in this section, data is collected in the backscatter geometry [14], with the source

and the detector on the same side of the absorber, see Figure 4.4.

𝐴∘

Detector

Sample

Pb Shield

𝛾-ray

Figure 4.4: Backscatter geometry with γ-ray to sample-surface angle shown. Mini-
mal (graded) Pb shielding is used to allow for the reduction of the sample-detector
distance.

The absolute signal intensity collected in the backscatter geometry is reduced relative

to that measured in the transmission geometry because the emitted fluorescence from the

absorber is generally close to isotropic in 3D space while the detector window only covers a

small solid angle so only a relatively small fraction of Mössbauer photons re-emitted by the

sample are captured. Additionally, not all excited 57Fe nuclei decay by radiative emission:

one E = 14.4 keV photon is re-emitted for roughly every 10 absorbed, see Figure 4.5. As an

example, when natural α-Fe is probed in the transmission geometry at normal incidence, a

maximum relative intensity of the Mössbauer signal of about 27% can be readily achieved.

This value may be compared to a maximum conversion of about 20% in the backscatter

geometry with angle of incidence with respect to the surface normal Aγ ≈ 45◦. However,
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the backscatter geometry enables us to exploit the entire energy range of the fluorescence

spectrum, including the re-emitted 14.4 keV γ-rays (BSMS: back-scatter MöS), the char-

acteristic X-rays (CXMS: conversion X-ray MöS) and the internal-conversion electrons

(CEMS: conversion electron MöS). The different decay products of 57Fe∗ are illustrated in

Figure 4.5, while the energy level transitions were tabulated in Table 4.1. In our system,

data is simultaneously recorded with one proportional detector over an energy range that

includes the X-ray and γ-ray energies and extends up to roughly 150 keV. One advantage

of this technique is the ability to correct for the background signal using photons that

have been detected with off-resonance energies. In a typical acquisition scenario, the off-

resonance photons can be a few times more numerous than their resonant counterparts (in

un-enriched and dilute specimens), allowing for a substantially more accurate subtraction

of the background as a function of velocity. The shape of the background depends primar-

ily on the variation of steric angles from which the source and detector “see” the sample

surface as the drive oscillates. A second advantage is the depth sensitivity provided by

the different mean free paths of the resonant γ-rays and characteristic X-rays: Fleischer

et al. [15] found that the maximum experimentally resolvable depth of resonant photons

emitted from an Fe foil was below 50 µm for the 14.4 keV γ-rays and was roughly 20 µm

for the 6.4 keV X-rays, corresponding to 3-5 times the photon absorption length at each

specific energy. As this depth sensitivity cannot be accurately computed analytically, for

any realistic sample containing multiple fluorescent and scattering species, comprehensive

Monte Carlo simulations should be performed for each specific material and measurement

geometry that is being investigated. The resolution varies substantially as a function

of the angle of incidence of the primary photons and can reach individual micrometers.

When compared with CEMS and its depth- elective version (DCEMS) (which can be per-

formed with the same acquisition electronics we use in our setup but a different detector),

depth sensitivity can be as high as 10s of nanometres. While these two electron-detecting

techniques have profound requirements for surface roughness, CXMS and BSMS have no

substantial requirements for sample surface preparation. Often macroscopically rough and

completely untreated surfaces can be measured successfully, as well as surfaces covered by

passivation layers or with polymer protection films. Finally, in contrast to transmission

MöS, thick (e.g. (t >= 0.1mm) for α-Fe) undiluted samples can be probed (to a certain
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depth) because the source γ-rays do not need to pass through the absorber.

91%

136.3

14.4

0

n=1

n=2
n=3

57Co

57Fe*

14.4 𝛾-rays  (9%)

Characteristic X-rays: 
𝐾𝛼: 6.4

Source

Absorber

•K: 7.3 (81%)
•L: 13.6 (9%)
•M: 14.3 (1%)

Auger Electrons:
•KLL: ≈ 5.5
•LMM: ≈ 0.6
•MMM:  <15 eV
•Shake-off

Conversion Electrons:Units: keV unless
specified

8%

Figure 4.5: γ-ray production with absorber excitation and decay illustrated, adapted
from De Grave et al. [16].

4.3.2 Data Acquisition

High-Vol 
PSU

Amp

ADC

Drive
Fast PSU

Function 
Gen

PC

Source

Det

Multi-Parameter Analyser

Figure 4.6: Block diagram for our backscatter setup.

In this section, the setup apparatus for data acquisition will be briefly described. A

block diagram for the system is shown in Figure 4.6.

The source of the γ-rays used to probe the first energy-level transition of 57Fe is 57Co

embedded in a Rh matrix. This matrix is engineered to maximise the phonon-free fraction
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of emissions and minimise the magnetic field and electric field gradient at the source

nucleus [17]. 57Co decays to 57Fe∗ by electron capture with a half-life of τ1/2 = 272 days

and 57Fe∗ then de-excites via emission of the aforementioned 14.4 keV γ-ray, exhibiting

the Mössbauer effect [5]. The activity of the radioactive source in our apparatus was

A ≈ 2GBq when purchased, but after roughly five years this has fallen to A ≈ 0.02GBq,

meaning significantly more time is required to obtain sufficient statistics, until the source

is replaced2.

The Mössbauer drive system consists of a FG (function generator) and a reciprocating

linear motor on which the source is mounted. The FG produces a f ≈ 25Hz triangu-

lar wave signal that drives the transducer with constant acceleration within the linear

permanent magnet motor, and a positional feedback loop corrects discrepancies, see Fig-

ure 4.9(c). The FG has “start” and “channel” digital signals which reset or increment a

counter in the MPA, respectively. The generator can use up to 4096 channels, without

impacting on the MPA’s dead time, but we typically use 512 channels, as high-resolution

velocity acquisition is rarely worth the memory space and processing time [18]. The source

oscillates at around 10mms−1 for Fe MöS (the maximum hyperfine field splitting for Fe

is around 9mms−1).

The absorber must be placed as close as possible to the source and detector to max-

imise the solid angle of the absorber’s isotropic emissions incident on the detector window,

Figure 4.4. This proximity has bearing on the necessary background and geometry correc-

tions, as will be discussed in subsection 4.3.3. Thin Pb shielding is used between the source

and detector, with suitably thick, chevroned Pb bricks surrounding the entire apparatus.

The detector is a Xe/CO2 proportional counter [19, §6] operated at a high voltage

between 1.5 kV and 2.0 kV, depending on whether maximum efficiency or resolution is de-

sired. The anode is a gold-coated tungsten wire. The Townsend Avalanche of electrons [19,

§6.I.A], following an initial ionisation by a photon, provides a built-in amplification which

allows the detection of individual photons. The magnitude of the current pulse produced

thus produced is proportional to the energy of the ionising photons. This detector type

has a relative energy resolution of 10%−15% [20], as confirmed by fitting the fluorescence

2Replacing the source has been difficult in recent years. Essentially all MöS sources were manufactured
in Russia, who stopped exporting radioactive materials prior to the Ukraine war. Additionally, old contacts
and communication pathways have moved on and broken down, respectively, over the course of the COVID
pandemic.
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spectrum of a calibration sample, see Figure 4.7(a): the various peaks come from the Fe

in the source/sample, the Xe gas and Au/W wire in the detector and the Pb shielding

around the setup. The Fitting to the fluorescence spectrum can also yield the calibration
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Figure 4.7: (a) The data summed over the velocity axis, aka the fluorescence spec-
trum, with contributions fit using Gaussian profiles. Before the geometry was opti-
mised to remove Pb. (b) The data summed over the energy axis, clearly showing
the resonance. The velocity axis is mirrored as both the upstroke and downstroke of
the triangular velocity are included, this is addressed in the next section.

factor for the energy channels, by fitting the peak positions obtained in Figure 4.7 to the

theoretical positions as defined in the X-ray data booklet [21, §1.2]. There can be further

benefits to fluorescence fitting if a sample contains other elements with X-ray edges in the

same energy region, more on that in the data analysis subsection 4.3.3

The current pulses from the detector are first amplified by a charge-sensitive pre-

amplifier with a gain of 30 dB and further amplified by a variable-gain shaping-amplifier

(with a typical gain of between 10 dB and 20 dB and shaping time between 0.1µs and

1µs). These pulses are then digitised by a fast analogue-to-digital converter (ADC) with

a maximum resolution of 8192 channels (13 binary bits), but resolution this high is not
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Figure 4.8: Energy calibration using the theoretical values for the K and L X-ray
edges of the various elements that contribute to the detector signal. The average
value is used for W/Au since at high energy the absolute energy resolution is poor
and there is no benefit to separating the peaks.

necessary given the energy resolution of the detector and we typically use only the most

significant 10 bits (1024 channels) to reduce the dead time from the Σ∆-integration in

the analogue-to-digital conversion process. The ADC provides analogue upper and lower

discrimination thresholds on the energy, which is key to minimising the dead time by

filtering out the cascade of low-energy excitations and high-energy cosmic or 40K-related

photons. The digitised pulse height, proportional to photon energy, is then passed on to

the MPA.

The custom-built MPA is at the heart of the setup and consists of a timer-counter chip

and an array of high-speed digital latches arranged into 8-bit blocks. The digital latches

are edge-triggered D-type flip-flops (Texas Instruments SN74HC574N) with maximum

switching time t ≈ 50 ns: these ICs contain 8 independent flip-flops which are individually

addressed in our circuit, hence the 8-bit block arrangement. The aforementioned FG

signals control the counter, with the 512-channel velocity signal stored in 9 bits. The

10-bit signal from the ADC, encoding the photon energy, is similarly stored. The MPA

interfaces with the PC via three IEEE-1284 standard cables [22], each nominally capable

of 8-bit parallel data transmission (up to five of these can be accommodated in principle,

providing 40-bit maximal depth). Through low-level (Assembly) coding, one can utilise an

additional three or four bits per connector that are typically reserved for legacy hardware

reasons by default (providing 60-bit maximal depth).

The system is controlled by a computer with an Intel Pentium 4 processor (2.8GHz)
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Figure 4.9: The electronics: NIM rack with drive units, amplifiers and ADCs for
two setups; overhead view of the MPA showing the connections and an oscilloscope
showing the triangular wave and drive error.

running Windows 98: the last Windows version to allow seamless hardware port access...

The MPA is controlled by custom Assembly and C code running on system interrupts

(which precede the operating system interrupts), this feature is not readily achievable

on modern operating systems. The data is read from the MPA using the IEEE-1284

connectors plugged into three (again, up to five) “Extended Capability Ports” on the PC,

which offer bi-directional parallel data transfer and direct memory access. The data for

each detector event is read directly into the CPU’s L1-cache (a small, very low-latency

and high-speed memory built into the CPU) before being buffered in DRAM and finally

written to the hard drive. A rough outline of the data flow is shown in Figure 4.10. The

described combination of equipment allows for a tested maximum acquisition speed of

order 106 cps with 4K velocity and 8K energy resolution, respectively.

The front-end interface is written in LabViewTM and runs concurrently and in parallel

to the data acquisition. The data contains the time of detection, the drive velocity at

the time of detection and the photon energy, for each photon that enters the detector.

The data is read from the hard drive and each detection event is binned by its energy

and velocity, resulting in a (typically) 1024 × 512 matrix, or histogram. The raw data

(Figure 4.11), as well as the energy and velocity averages (Figure 4.7) are displayed in real

time to ensure that the discrimination thresholds are set optimally, to determine when
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Figure 4.10: A bus diagram showing the path of the data takes after it is digitised.

sufficient data have been collected and to allow a user determination of the signal-to-noise

ratio (SNR) as data acquisition progresses.

Figure 4.11: The 3D view of the raw data from a calibration sample, showing the
low-energy region (150/1024 channels). The X-ray and γ-ray peaks are clearly visible
at approximately energy channel 20 and 90 respectively. The velocity resonances are
also clearly visible at the top of these peaks, particularly the at γ-ray energy.

204



4.3. Methods

4.3.3 Data Pre-Processing

Within each energy channel, the middle 20 velocity values are used to normalise the data.

These central values correspond to the minimum velocity of the source (bottom of the

triangular wave), where the Doppler-shifted energies are far from the resonant energies,

which are observed at intermediate velocities. This normalisation thereby emphasises

the resonant MöS signal. The minimum velocity region is illustrated in Figure 4.12(a).

The data after normalisation is shown in Figure 4.12(b). To isolate the resonant signals

of the characteristic X-rays and γ-rays from the non-resonant background, the energy

discrimination bands are manually optimised post-acquisition such that the SNR for the

individual spectra are maximised: these bands are illustrated in Figure 4.12(b). As a

general rule of thumb, the bands extend ±10 energy channels either side of the resonant

peaks at 6.4 keV and 14.4 keV, but can depend on the sample peculiarities. In particular,

Cr, Mn, Co, Ni and Cu emit Kα X-rays with energies in the range 5 → 8 keV, while the

rare-Earth elements emit L edge X-rays in the similar energy range 5 → 9 keV. Therefore,

specimens under examination which contain any of the aforementioned elements may

benefit from more aggressive energy discrimination. In addition, the Lα absorption edge

of Pb is at 10.5 keV, a value that lies between the two resonant energies. It is therefore

imperative to optimise the geometry of the setup such that the Pb shielding does not

overly contaminate the resultant spectrum. Lastly, as the detector contains Xe gas with

an anode wire of Au and W, fluorescence from these elements will also be produced, but

at higher energies than are relevant for MöS, see Figure 4.7(a). The steps for normalising

and discrimination are illustrated in Figure 4.12.

A background contribution is present in the overall signal, that varies quasi-sinusoidally

with velocity. This background signal is due to the relative motion of the source: when the

source is closer to the absorber, more photons hit the absorber and at steeper angles. The

result of this varying geometry can be seen in the sinusoidal variation of the background

with velocity in Figure 4.12(c): the isolated background signal is fit with a second-order

sinusoid and subtracted from the resonant data. The trend is also visible as the background

in Figure 4.7(b). This very natural and effective method removing the background signal

would not be possible without recording the entire continuous energy range (as opposed

to narrow energy bands) and isolating relevant energy regions.
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Figure 4.12: (a) The raw data in the low-energy region with the minimum velocity,
off-resonance region denoted. (b) The normalised data with the X-ray, γ-ray and
background energy regions denoted. (c) The three spectra obtained from this pro-
cess.

The velocity channels are converted to units of mm s−1 using data obtained from a cal-

ibration sample of natural α-Fe. The theoretical peak positions for α-Fe are well known;

fitting two straight lines to the measured peak positions as a function of the predicted po-

sitions yields the conversion, see Figure 4.13. Unique slopes must be used for the positive

and negative acceleration components of the source motion since physically different bipo-

lar transistors control aspects and they will have some manufacturing tolerances. In this

manner the centre point, or folding axis, of the velocity axis is determined with resolution

better than one discrete channel and the positive and negative acceleration spectra can be

averaged without spuriously broadening the peaks due to misalignment. The calibration

is repeated whenever the source environment is altered in any way.
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Figure 4.13: Velocity unit conversion and folding point determination using a refer-
ence sample of natural α-Fe.

4.3.4 Fitting to Theory

When the data has been fully pre-processed, the constituent X-ray and γ-ray spectra are

considered individually and the appropriate fitting model is chosen from those described

in subsection 4.2.4. The model is fit to the data using a non-linear least-squares regression

algorithm for the input parameters. The experimentalist’s algorithm of choice can be

used, but we prefer a basic iterative grid-search: The initial guess values, along with the

upper and lower limits for each parameters, are chosen based on the expected literature or

simulations for the type of material being studied. The parameters are first refined by eye.

The algorithm cycles through the parameters one-by-one. For each parameter, the sum of

squared residuals (S2
r ) between the data and the model is calculated for n uniformly spaced

values of the parameter, between the specified limits. The value which yields the best fit

(minimises S2
r ) is kept before moving to the next parameter. This process repeats until

the fit converges (i.e., until the best-fit values for the parameters do not change between

iterations) or the maximum number of allowed iterations is reached. The limits for the

parameters can then moved to better bracket the expected best-fit value and narrowed in

parameter space so there is a smaller interval between tested values for each parameter.

This type of algorithm is not guaranteed to converge to the global minimum of S2
r and

is not particularly fast compared to, for example, gradient descent algorithms [23, §10].
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However, the strict control over the parameter limits and order of regression is well-suited

to the non-empirical nature of modelling MöS, and can help ensure convergence to a

minimum which is physically sensible.

4.4 Examples of Application

In this section, the earlier-described Mössbauer data collection and analysis approach has

been applied to three unique forms of magnetic material: an amorphous CoFeB-based

ribbon, NdFeB thick films and a slab of a stony iron-nickel meteorite. These samples

have been chosen as they are examples of form factors which are either better suited to

BSMS and CXMS or simply impossible to measure in the transmission geometry. When

measuring in the backscatter geometry, only one side off a planar sample is accessible

at a time and it is important to know to what depth the sample is probed. The 50 µm

and 20 µm values mentioned in subsection 4.3.1 were estimated by Fleischer et al. [15]

as the maximum escape depths for 14.4 keV and 6.4 keV photons, with good SNR and

distinct shapes of the Mössbauer spectra, originating from an Fe foil surface layer and an

Fe-containing substrate layer respectively, at normal incidence, i.e. the signal from the

substrate could no longer be resolved with a 50 µm Fe foil deposited on top. Although

the materials investigated here all have a similar density and mass-energy absorption

length to pure Fe, the presence of additional fluorescence contributions, in conjunction

with disorder in the local Fe environments, degrades the signal. Thus the resolvable depth

of information collected from these samples is assumed to be roughly 50% less than that

estimated by Fleischer. For the average depth probed (or most probable escape depth

for a particular photon), we assume the values to be halved again so the depths probed

by the γ-rays and X-rays are approximately 13 µm and 5 µm at normal incidence. These

values can then naively be reduced by the cosine of the angle of incidence with respect

to the surface normal. More accurate estimates can, in principal, be obtained via Monte

Carlo simulations of the photon absorption and detection processes for arbitrary angle of

incidence. Here we have not performed these as no publicly available code exists and the

examples referenced by Fleischer et al. [15] are only for normal incidence and importantly

are tailored to their experimental setup which utilises two fixed-position narrow-band
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detectors, in contrast to our single moveable broadband detector. Independent simulations

would need to be performed for various incidence angles and any other changed variable

in our more versatile setup.

4.4.1 Amorphous CoFeB-Based Ribbons

Power conversion electronics typically involve magnetic-core inductors that are operated

at high frequencies up to 500 kHz. In order to minimise losses, ultra-soft magnetic mate-

rials with minimal coercivity but appreciable saturation magnetisation are desired. One

such class of materials recently shown to satisfy these conditions is melt-spun amorphous

CoFeB-based alloys [13]. The investigation of an example composition of this material

using the backscatter MöS technique is presented here.

4.4.1.1 Sample Description

The sample studied was a melt-spun ribbon of dimensions 12 µm thick by approximately

2mm wide, with the nominal chemical composition Co75.5Fe4.5B20. The ribbon was pro-

duced by repeated arc-melting of the constituents followed by injection of the molten

precursor onto a rapidly rotating Cu wheel (outer rim velocity ≈ 80ms−1) for ultra-fast

cooling. As the wheel side (WS) of the resultant amorphous ribbon, which is in contact

with the Cu wheel, cools via conduction much more rapidly than the free side (FS) cools

in contact with the quenching atmosphere, the FS can, in principal, more readily facilitate

partial crystallisation of the alloy. In preparation for MöS, a mosaic sample was assem-

bled out of l ≈ 2 cm long segments of ribbon, that were taped together using transparent

adhesive tape, as in Figure 4.14. The sample was placed in the beam path such that the

long axes of the ribbon segments were oriented perpendicular to the incoming photons

and the short axes were oriented in the source-sample-detector plane.

Backscatter Mössbauer data was collected from both sides of the ribbon and processed

as described in section 4.3. We also performed transmission MöS on the same sample for

comparison.
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Figure 4.14: The mosaic sample arranged from strips of the Co75.5Fe4.5B20ribbons,
showing the WS and FS. With respect to these pictures, the incoming photons from
the source travel to the right and into the page, while those travelling to the right
and out of the page will be captured by the detector. This information is important
to relate the measured values of Θ to actual magnetic orientation in the sample.

4.4.1.2 Results

The X-ray and γ-ray spectra obtained from both sides of the ribbon arrangement are

shown in Figure 4.15. The poor SNR is expected due to the small proportion of Fe in

the composition, in tandem with the other factors mentioned in subsection 4.3.1. The

Mössbauer peaks are very broad due to the amorphous nature of the alloys and the data

is well-fitted using a Bhf-broadened model. The average value for the hyperfine field was

Bhf = 26.3T with σBhf = 0.8T. This low value of Bhf , compared to the canonical value

of Bhf ≈ 33T for α-Fe, reflects the structural and chemical disorder of the sites occupied

by the Fe nuclei in these types of ribbon.

The spectra collected from the WS and the FS of the ribbon segments were practically

indistinguishable, suggesting that the amorphous crystal structure of the ribbon was uni-

form throughout the volume despite the different cooling rates of the opposing sides, this

uniformity is likely due to the small thickness of the ribbon.

The magnetisation orientation (m⃗) of the ribbon was anticipated to be in-plane (IP)

due to shape anisotropy, exacerbated by the high moment and ultra-low coercivity. This

assumption was tested using the collected MöS data. As described in subsection 4.2.4 ,

the angle Θ between the momentum direction of the incoming photons k⃗γ and the sample

magnetisation m⃗, is obtained from the relative peak areas within a sextet. Angles of Θx =

57◦± 2◦ and Θγ = 71◦± 5◦ were obtained from application of the fitting procedure for the

X-ray and γ-ray spectra, respectively. The angle of incidence between k⃗γ and the surface
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Figure 4.15: Mössbauer spectra from both sides of the amorphous Co75.5Fe4.5B20

ribbon. Note the velocity dependent broadening of the peaks, indicating a distri-
bution of Bhf values. The spectra from the two sides of the ribbon are practically
indistinguishable but the different relative intensities of the peaks for the different
energy photons indicates a different magnetisation direction in the areas probed by
these photons. The random noise appearance of the residuals indicates the data is
well-explained by the model.

normal was determined as Aγ ≈ 65◦ for these measurements. Assuming that the magnetic

moment m⃗ is oriented IP and along the ribbon’s long axis (vertical in Figure 4.14), Θ would

be equal to 90◦ given the orientation of the ribbon segments in the experiment; in this case

the absorption peak intensity ratios would be 3 : 4 : 1. However, the angle Θγ = 71◦ ± 5◦

determined from the γ-ray spectrum implies that m⃗ has a component, approximately 20%

of the total magnitude of the magnetisation, that is aligned along the short (IP) axis of

the ribbon segments (horizontal in Figure 4.14). The ribbon segments were confirmed to

be magnetised IP by measuring a transmission spectrum with the photons from the source

incident normally on the surface; a value of Θ close to 90◦ was obtained. The SNR for

the transmission data (Figure 4.16) is slightly improved compared to the backscatter data

at γ-ray energy (Figure 4.15). However, the additional information (depth sensitivity and

background correction) obtained in the backscatter geometry renders it still superior in

this case.

This conclusion, that the ribbon is magnetised IP with finite components along both

IP axes, is good news for the proposed application of this type of ribbon, as a finite
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Figure 4.16: Normal incidence transmission MöS data from the Co75.5Fe4.5B20 sam-
ple, with the WS γ-ray spectrum for comparison.

component of m⃗ oriented away from the easy axis is anticipated to mitigate power losses

during rotation of magnetisation in power conversion applications.

The smaller value of Θx = 57◦±2◦, obtained from fitting the X-ray spectrum compared

to that derived from analysis of the γ-ray spectrum, points to spatially inhomogeneous

magnetisation in the ribbon, recall that the X-rays and γ-rays probe different effective

depths of the order of 5 µmand 10 µmrespectively (refer back to section 4.4). This result

is consistent with the existence of a larger component of m⃗ along the short IP axis near to

the surface of the ribbon compared to that of the bulk, or perhaps reveals some component

of m⃗ in an out-of-plane (OOP) orientation near the surface. The presence of flux-closure

domains near the ribbon surface, perhaps associated with the highly amorphous surface

state or with strain, may underlie this observed change in the direction of m⃗ revealed by

the X-ray spectrum as compared to the information provided the γ-ray spectrum.

4.4.2 Nd-Fe-B Thick-Film Micro-Magnets

Nd2Fe14B-based magnets have the largest energy product among all modern commercial

magnets [24, §13.2], resulting in their widespread use in a variety of applications. The

Nd2Fe14B phase has a large, complex unit cell with six distinct Fe-occupied sites:

Fe Site k1 k2 j1 j2 c e

Occupancy 16 16 8 8 4 4

The desired “2-14” phase of NdFeB alloys is generally obtained in bulk via sintering

of powder samples with the correct stoichiometric ratio. The hyperfine parameters for
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Fe nuclei in Nd2Fe14B have been determined on a bulk, melt-spun sample in the past

using traditional transmission MöS [25], see Figure 4.17. These values can be compared

to Nd-Fe-B samples to determine if the correct phase has been obtained.
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Figure 4.17: Nd2Fe14B unit cell, and the Mössbauer spectrum for Nd2Fe14B plotted
using the hyperfine values measured by Pinkerton et al. [25] from a melt-spun bulk
alloy using the transmission geometry [25].

Thin films of Nd2Fe14B can display similar superlative properties to the bulk, but lack

the magnetic volume and the ability to project substantial stray fields when patterned

for use in, for example, NEMS/MEMS devices. Thick films (micrometric as opposed to

nanometric) of Nd2Fe14B could potentially bridge this gap and are currently investigated

for use in the aforementioned devices [26]. Thick films are very well-suited to the depth-

selective characterisation provided by simultaneous X-ray and γ-ray photon collection from

our backscatter MöS technique.

4.4.2.1 Sample Description

Mössbauer spectra were recorded from five films of 5 µm thickness in the virgin magnetic

state. The films were deposited on Si substrates via triode sputtering in a method similar

to that described by Frederico et al. [26], with a range of deposition and subsequent

annealing temperatures. Buffer and capping layers of Ta with 100 nm thickness were also
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used. After the initial measurements, the most crystalline sample was field polarised in

5.5T to observe if there was substantial difference from the virgin state. The sample

conditions are tabulated in Table 4.2.

Sample (a) (b) (c) (d) (e) (f)

Tdep RT 550◦C RT 500◦C 550◦C 550◦C(P)
Tanneal RT RT 700◦C 700◦C 700◦C 700◦C(P)

Table 4.2: The deposition and annealing temperatures of the samples, with field-
polarisation denoted by P, otherwise samples were measured in the virgin state.

Data was accumulated for approximately three weeks to obtain adequate statistics as

the activity of the 57Co source used was low, in addition to the relative thinness of the

absorbing films. Due to the low SNR, we only consider the two most populous Fe sites

when fitting the data obtained from the crystalline (annealed) samples. For those films

that were not annealed, the structural and chemical order is poor and the Bhf-distribution

model is used.

4.4.2.2 Results

The twelve spectra obtained from the six measured films are shown in Figure 4.18. For the

regression, the literature values for the hyperfine parameters were used as a starting point.

Firstly, the angle Θ, the hyperfine field Bhf , and the Voigtian broadening parameters were

refined, before releasing all the parameters to get the best possible fit. The good quality

of the fits in Figure 4.18 for the annealed samples, and the striking similarity of the data

to the spectrum in Figure 4.17, confirms that those annealed films are crystallised in

the Nd2Fe14B phase. The difference in the relative peak heights to those of Pinkerton

et al. are attributed to a different angle of incidence of the source γ-rays. Again, the

residuals confirm the success of the model in explaining the data. The key parameters

obtained from the regressions are shown in Figure 4.19. The hyperfine field monotonically

increases with increasing deposition/annealing temperature, and also noticeably increases

after field-polarisation. This is consistent with improved crystalline order with increasing

temperature.

The angle of incidence of the source γ-rays with respect to the surface normal was

Aγ ≈ 67◦ for these measurements. It is useful here to introduce a “tilt” angle Atilt =
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Figure 4.18: X-ray and γ-ray spectra from the films labelled as in Table 4.2. The
difference annealing makes to the crystal structure is obvious (top row vs lower rows),
as is the difference in peak ratios between the X-ray and γ-ray spectra, signifying
the existence of surface domains.

Aγ - Θ, where again Aγ is the angle between kγ and the surface normal, and Θ is the

angle between kγ and the magnetisation direction. The tilt angle Atilt therefore contains

information about the canting of the magnetisation away from the surface normal, a useful

figure of merit when considering perpendicular magnetic anisotropy (PMA) materials.

The measured values for Bhf and Atilt for the X-ray and γ-ray spectra for each sample

are shown in Figure 4.19. Atilt was found to be near zero for all X-ray spectra, consistent

with magnetisation that was oriented fully perpendicular near the surface of the films,

regardless of whether they had been annealed or not. In contrast, analyses of the γ-

ray spectra, originating from deeper within the film, revealed a tilt angle of 10◦ ± 4◦

for the as-deposited films and a tilt angle greater than 20◦, within experimental error,

for the annealed films. This result implies that some component of the magnetisation

within the volume of the film was oriented IP, and this IP component is larger in the

annealed film than it is in the as-deposited film. This interpretation was again reinforced by

analysis of a conventional transmission spectrum recorded with incoming γ-rays normally
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Figure 4.19: The magnitude of the hyperfine field (or central value of the distribution
for the Bhf-broadened model) and the magnetic moment orientation (the weighted
average is used for the two-phase model) are plotted. The x-axis shows increasing
Tdep and Tan, with field-polarised data appended.

incident on the as-deposited film. In this case a value of Θ = 19◦ ± 5◦ was obtained

from the fit, consistent with up to roughly 20% of the film volume possessing an IP

magnetic polarisation, leaving the majority of the film with an OOP magnetic polarisation.

The attainment of a finite tilt angle for the magnetisation in the bulk of the film (large

penetration depth derived from the γ-ray spectrum) but not near the film surface (shallow

penetration derived from the X-ray spectrum) might be explained by the presence of

flux-closure domains with an IP remnant magnetisation that formed near the substrate

interface. In contrast to the CFB ribbons of the previous section, the bulk magnetisation

here was primarily out-of-plane, so the peaks in the sextet are not well-resolved at normal

incidence, made worse by the Bhf-broadening of this sample. Measuring at oblique angles

solves this problem but the SNR is significantly reduced in transmission geometry at these

angles, see Figure 4.20. In this case, the backscatter geometry offers better SNR, at

angles where the peaks can be resolved, in addition to the aforementioned benefits.

Notably, OOP remnant magnetisation was detected in all samples, supporting the ex-

istence of a significant uniaxial anisotropy even in as-deposited films, i.e. prior to the

establishment of long-range crystalline and atomic order. This result was evidenced by

the similar values of Θ obtained from the regressions of the data from all films. Further,
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Figure 4.20: MöS spectra on a disordered NdFeB thick film measured in (a) Trans-
mission at normal incidence, (b) Transmission at an oblique angle and (c) Backscat-
ter at an oblique angle.

this result (that all films were observed to be magnetised OOP) is in agreement with mag-

netometry data obtained from Nd-Fe-B films that were sputter-deposited at a temperature

that was just below the crystallisation temperature of the Nd2Fe14B phase and were then

subsequently annealed [27].

4.4.3 Meteoritic FeNi Phase Analysis

Magnetocrystalline anisotropy is a key property of technologically useful magnetic ma-

terials. To this end, FeNi is a promising candidate material which exhibits significant

uniaxial anisotropy without rare-Earth or heavy-metal elements, when it is crystallised

in the tetragonal L10 phase (space group 123, P4/mmm) [28], known as tetrataenite.

However, the disordered-fcc A1 parent phase (space group 225, Fm3̄m) is very close in

energy to that of the L10 phase and the kinetics of formation of the desired phase is very

slow [29]. The chemical ordering within the fcc unit cell for the two phases is illustrated

see Figure 4.21. FeNi in the L10 phase can be synthetically produced [30, 31, 32] but a

large-scale method has not yet been demonstrated.

An interesting source of L10-type FeNi is extraterrestrial bodies, specifically very slow-

cooled iron-nickel meteorites. The extremely long-term cooling that such meteorites un-

dergo in the vacuum of space provides sufficient time (tens of thousands of years at the

optimal temperatures) to crystallise in the L10 phase [33]. There is also interest in such

meteorites due to their ability to “record” the magnetic fields of the early solar system

due to the fact that they have been effectively field-cooled in said magnetic fields. To
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Chapter 4. Backscatter Mössbauer Spectroscopy

Figure 4.21: The atomically ordered (L10) and atomically disordered (A1) crystalline
phases of equiatomic FeNi.

investigate this material, we obtained a sample extracted from the nickel-rich iron mete-

orite NWA 6259 [34] and employed our backscatter MöS technique to non-destructively

investigate the Fe-containing crystal phases present within it.

4.4.3.1 Sample Description

The meteoritic sample studied had dimensions of 70mm × 35mm at its widest points

and a thickness of 6mm, too thick to conduct transmission MöS. The specimen had been

cut with a diamond saw and mechanically polished on one side. It was mounted in the

usual fashion for backscatter measurements with the polished side facing the incoming

γ-rays from the MöS source. The polished face was at all times protected by a layer of

transparent adhesive tape to protect the surface from oxidation and picking up dirt or

grime from being handled. A picture of the sample is shown in Figure 4.22.

4.4.3.2 Results

FeNi has a simple (compared to Nd2Fe14B) and well-studied structure and its theoretical

hyperfine parameters are known [35] and were used as a starting point for the regression

of MöS data. In addition to the L10 tetrataenite phase and the A1 disordered phase,
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4.4. Examples of Application

Figure 4.22: The polished sample from the meteorite. The circular indentations and
other straight-edged marks are from cuts taken from this piece for other measure-
ments before we obtained the sample.
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Figure 4.23: The data obtained from the MöS measurements on the meteoritic sample
performed at difference incidence angles. The angle between the photon momentum
vector and the surface normal Aγ is denoted. The trend in total Mössbauer intensity
for the spectrum can be explained by the changing sensitivity as a function of angle,
shown in Figure 4.24(a).

a contribution from a paramagnetic (at room temperature) phase, denoted “PM”, was

included. As a paramagnetic phase, this contributes a large singlet (actually a tight doublet

but the two peaks are strongly overlapping) to the spectrum, and is included to explain

the data. This phase is thought to be an intermediate structure which populates regions

between fcc crystalline grains [29, 36], see Figure 4.23. For the analysis of the volume

219



Chapter 4. Backscatter Mössbauer Spectroscopy

fractions of the different crystal phases, we initially considered only the X-ray spectrum,

which has better SNR than that provided by the γ-ray spectrum. The relative areas of

the three contributions to the spectrum, equivalent to the relative abundances of the three

crystal phases in the probed volume of the sample were determined as: 66% ± 5% L10,

17% ± 10% A1 and 17% ± 5% PM . This value for volume fraction of the L10 phase is

among the highest reported for FeNi alloys and is the highest reported from natural (non-

synthetic) samples [32]. The angle between the incoming photons’ momentum vector

and the sample hyperfine field, averaged for the two magnetic phases, was found to be

Θ = 49◦ ± 5◦ for this measurement (Figure 4.23), which was recorded with an incidence

angle of Aγ ≈ 20◦, implying that the magnetisation is somewhat tilted in-plane (at least

20◦) close to the surface in the region probed by the X-rays.

The fits of the model to the X-ray and γ-ray MöS spectra collected from the NWA 6259

specimen gave slightly different values for the relative phase contributions, consistent with

a depth dependence of the composition. To investigate this possibility more systematically,

measurements were repeated with different incidence angles of the incoming photons, with

the results shown in Figure 4.21.
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Figure 4.24: (a) Calculated (dashed lines) and experimentally measured (points,
from Figure 4.23 angular dependence of relative MöS sensitivity of X-rays and γ-
rays, Equation 4.9 was used to calculate the dashed lines, see section 4.B. (b) The
angular dependence of the phase contributions.

The volume fraction of the L10 phase was found to decrease significantly as the inci-

dence angle Aγ was increased, while the volume fractions of the PM and A1 phases both

increased, shown in Figure 4.24. At small values of Aγ, the source γ-rays arrive at an
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orientation that is nearly perpendicular to the sample surface, thus penetrating further

into the material and providing lower surface sensitivity. From the results shown in Fig-

ure 4.24, it can be concluded that the L10 phase is less prevalent near the surface region

compared to its concentration in the bulk, while the opposite is true for the PM phase,

with the A1 phase exhibiting near constant prevalence as a function of depth within the

specimen. This observed gradient in the contributions of the constituent phases may have

been caused by the mechanical and thermal stresses near the surface arising from the spec-

imen preparation procedures of cutting and polishing. These stresses are considered to

have compromised the L10 atomic order near the surface, with the PM phase being pref-

erentially formed over the A1 phase. This observation implies that a distinctly different

crystal structure has been formed.

4.5 Summary

Backscatter Mössbauer spectroscopy with simultaneous recording of the entire fluores-

cence spectrum shows immense promise as a tool to investigate a wide range of material

properties, such local atomic order, magnetic orientation and the presence of different Fe-

containing phases. This technique provides an intrinsic depth sensitivity by virtue of the

two different mean free paths of the resonant photon energies: the 14.4 keV re-emitted

γ-rays and the 6.4 keV conversion X-rays. The applicability of backscatter MöS to samples

with varying thicknesses and degrees of crystalline order has been confirmed, and advan-

tages over transmission MöS have been established, in cases where the transmission and

backscatter geometries are both feasible. Essentially any iron-containing sample can be

non-destructively investigated with this approach, making this technique very attractive

as a probe in modern magnetic materials science as well as in the earth and planetary

sciences. Our experimental setup has been largely custom-built and programmed in-house

at a fraction of the cost of a single commercial multi-parameter analyser. It has been

shown that this multi-parallel-acquisition MöS technique provides a viable alternative to

other spectroscopic techniques to investigate a number of key material properties, for a

variety of sample geometries.

The here-described electronics and software can and have also been utilised to perform
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Chapter 4. Backscatter Mössbauer Spectroscopy

conversion electron MöS (CEMS) (see, for example, the supplementary material of Borisov

et al. [37]), where the electrons themselves are detected rather than the photons, yielding

a truly surface sensitive technique. The high speed and low dead time of the acquisition

electronics are of even higher importance in this case due to the much larger number of

electrons in the detector cascade.

4.6 Future Work

A very-rarely used methodology to decrease linewidths below the natural Lorentzian ones

is time-differential MöS, where the 122.1 keV γ-rays emitted by the source, see Figure 4.1,

are detected using a scintillation detector, signalling the occupation of the 14.4 keV energy

level in the source 57Fe nuclei. Subsequent detections of the resonant fluorescence photons

from the sample can then be assigned a time delay value, since the occupation of the

14.4 keV energy levels in the source. When processing the data, detected photons can be

discriminated based on their time delay, thus improving the SNR [38]. We have recently

added additional flip-flop latches to the our MPA to provide the additional bandwidth

necessary to incorporate this extra data while maintaining the established acquisition

speeds and dead time.

4.A Full General Hamiltonian Model

To describe the energy sub-levels of two states and their respective transition probabilities,

it is useful to construct a full Hamiltonian model of the states. In the case of 57Fe MöS, the

two states are the ground and first excited states of the 57Fe nucleus. The relevant terms

for describing Mössbauer spectra relate to the hyperfine interactions, namely the Coulomb,

magnetic Zeeman and electric field gradient interactions at the emitting/absorbing nuclei;

or the electric monopole, magnetic dipole and electric quadrupole terms.

H = HC +HM +HQ

The former results in the Isomer Shift and equally shifts all peaks in the spectrum, making

it simply an additive term in the model. The other, important terms can be written, after
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4.A. Full General Hamiltonian Model

[10]:

HQ =
eQVzz

4I (2I − 1)

[
3I2z − I(I + 1) + η

(
I2x − I2y

)]
HM = −γµNBhf (Iz cos(θ) + sin(θ) [Ix cos(ϕ) + Iy sin(ϕ)])

Where the angles θ and ϕ are the polar and azimuthal angles describing the orientation

of the magnetic field with respect to the electric field gradient V⃗ , the chosen quantisation

axis. I is the nuclear spin, Q is the electric quadrupole moment, η is the electric field

gradient asymmetry and Ix,y,z are the angular momentum operator matrices.

~BhfΘ

Φ

θ

φ

Vx

Vy

Vz

Bhf

Θ

θ = φ = Φ = 0Vx

Vy

Vz

Figure 4.25: Diagram showing the meaning of the angles in the model for the general
case, and the simple case which is usually adequate to describe the data for 57Fe MöS.

The ground state of 57Fe has spin I = 1/2 and therefore a spherically symmetric

nucleus and no electric quadrupole moment, only the magnetic dipole term contributes.

Substituting for simplification A = eQVzz

4I(2I−1)
, α = γ 3

2
µNBhf , β = γ 1

2
µNBhf and writing in

matrix form after e.g. Edmonds [39] or Sakurai [40]:

H1/2(β, θ, ϕ) =

 −β
2
cos(θ) −β

2
e−iϕ sin(θ)

−β
2
eiϕ sin(θ) β

2
cos(θ)

 (4.2)

223



Chapter 4. Backscatter Mössbauer Spectroscopy

H3/2(A,α, θ, φ, η) =
3A− 3α

2
cos(θ) −

√
3α
2
e−iϕ sin(θ)

√
3Aη 0

−
√
3α
2
eiϕ sin(θ) −3A− α

2
cos(θ) −αe−iϕ

√
sin(θ)

√
3Aη

√
3Aη −αeiϕ

√
sin(θ) −3A+ α

2
cos(θ) −

√
3α
2
e−iϕ sin(θ)

0
√
3Aη −

√
3α
2
eiϕ sin(θ) 3A+ 3α

2
cos(θ)

 (4.3)

Where the Euler formula, eix = cos(x) + i sin(x) is utilised.

The peak positions in a Mössbauer spectrum correspond to the differences in energy

between the hyperfine split ground and exited states, which are simply the differences in

the eigenvalues Es(m) of the Hamiltonians Hs

∆E = −δIS +

1
2∑

mg=− 1
2

3
2∑

me=− 3
2

[Ee(me)− Eg(mg)] (4.4)

4.A.1 Line Intensity as Absorbed Power from Multi-pole Field

Following the method of [7], the measured intensity of each peak in the Mössbauer spec-

trum is related to the normalised power absorbed by each transition, equal to the square

modulus of the electromagnetic field vector of the source γ-rays |E|2 = E · E∗. The elec-

tromagnetic multi-pole field can be expanded in terms of the spherical harmonics, after

[8]:

E(Θ,Φ) =
∑
l

∑
∆m

(−i)l+1
[
aE(l,∆m)

(
X∆m

l × r
)
+ aM(l,∆m)X∆m

l

]
(4.5)

As mentioned in subsection 4.2.1, the transition we are interested in is purely M1 so

the first term in Equation 4.5 can be neglected, l = 1 and ∆m = 0,±1 so:

E(Θ,Φ) = −
1∑

∆m=−1

[
aM(l,∆m)X∆m

1

]
where the vector spherical harmonics are given by

X∆m
1 =

1√
2
L̂Y ∆m

1 (Θ,Φ)

with the angular momentum operator and quantum-mechanical spherical harmonic oper-
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ator given by [8]:

L̂ =
1

i
(r̂ × ∇̂) = i

(
Θ̂

1

sin(Θ)

∂

∂Φ
− Φ̂

∂

∂Θ

)

Y ∆m
1 (Θ,Φ) = (−1)∆m

√
3

4π

(1−∆m)!

(1 + ∆m)!
P∆m
1 (cos(Θ))ei∆mΦ

Lastly, P∆m
1 are the associated Legendre polynomials whose three relevant terms are

P 1
1 (x) = −

√
1− x2 P 0

1 (x) = x P−1
1 (x) =

1

2

√
1− x2

Substituting all of the above expressions back into Equation 4.A.1, shortening aM(l,∆m)

to a∆m, and simplifying (first on paper then confirming via computer using the Python

package SymPy [41]), we obtain:

E(Θ,Φ) =
1

4

√
3

π

[(
a1e

iϕ + a−1e
−iϕ
)
Θ̂

+
(
a1i cos(Θ)eiΦ − a0i

√
2 sin(Θ)− a−1i cos(Θ)e−iΦ

)
Θ̂
]

Noting that the cross terms are zero Θ̂ · Φ̂ = 0 (orthogonal unit vectors), the absorbed

power is then:

|E|2 = 3

16π
|Θ̂|2

[
|a1|2 + a1a

∗
−1e

−2iΦ + a−1a
∗
1e

−2iΦ + |a−1|2
]

+
3

16π
|Φ̂|2

[
|a1|2 cos2(Θ)− a1a

∗
0

√
2 cos(Θ) sin(Θ)eiΦ − a1a

∗
−1 cos

2(Θ)e2iΦ

− a0a
∗
1

√
2 cos(Θ) sin(Θ)e−iΦ + 2|a0|2 sin2(Θ) + a0a

∗
−1

√
2 cos(Θ) sin(Θ)eiΦ

+ a−1a
∗
1 cos

2(Θ)e−2iΦ + a−1a
∗
0

√
2 cos(Θ) sin(Θ)e−iΦ + |a−1|2 cos2(Θ)

]
If we now note that |Θ̂|2, |Φ̂|2 = 1 (unit vector magnitude is one) and also assume

the property of the magnetic dipole field coefficients a1a
∗
2 = a2a

∗
1, we can simplify the

expression to:

|E|2 = 3

16π

[
|a1|2

(
1 + cos2(Θ)

)
+ 2|a0|2 sin2(Θ) + |a−1|2

(
1 + cos2(Θ)

)
+ 2a1a

∗
−1

(
2 cos(2Φ)− cos2(Θ)e2iΦ

)
− a1a

∗
0

√
2 sin(2Θ) cos(Φ)

+ a0a
∗
−1

√
2 sin(2Θ) cos(Φ)

]
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where we make use of the Euler formula eix + e−ix = 2 cos(x) and the trigonometric

formula 2 sin(2x) = sin(x) cos(x). This can further be compacted to:

|E|2 = 3

16π

[(
|a1|2 + |a−1|2

) (
1 + cos2(Θ)

)
+ 2 sin2(Θ)

(
|a0|2 + a1a

∗
−1 cos(2Φ)

)
−

√
2(a1a

∗
0 + a0a

∗
−1) sin(2Θ) cos(Φ)

]
(4.6)

This formula gives the normalised power absorbed by each transition when we sub in

the respective values for the a coefficients and the polar angles of the source γ-rays Θ and

Φ. The more simplified the better because having fewer computations involved makes it

faster to compute, which is very important for regression.

4.A.2 The Field Components a

After [9], the coefficients multiplying the spherical harmonics are written

a(l,∆m) =
∑

∆m=me−mg

(
V⃗e[me] · V⃗ ∗

g [mg] · ⟨Iglmgm | Ieme⟩
)

where the sum is over values for me and mg which yield the correct ∆m. The three terms

are the components of the eigenvectors of the excited and ground state Hamiltonians

HI |VI⟩ = EI |VI⟩, and the Clebsch-Gordan coefficients which couple them, respectively.

Again, we only consider the M1 transition, so l = 1 and ∆m = 0,±1. The Clebsch-Gordan

coefficients can be converted to a usable form using the relations in [39] or [42]

⟨Ig1mg∆m | Ieme⟩ =
〈
1

2
1mg∆m

∣∣∣∣ 32me

〉
= (−1)mg+

1
2

√
4

3

〈
3

2

1

2
me −mg

∣∣∣∣1∆m〉

and can then be read from one of the many published tables, for example, [43].

The a coefficients are finally (noting the sign of mg in the table):

a1 =

√
1

3
V⃗e

[
1

2

]
V⃗ ∗
g

[
−1

2

]
+ V⃗e

[
3

2

]
V⃗ ∗
g

[
1

2

]
a0 =

√
2

3
V⃗e

[
−1

2

]
V⃗ ∗
g

[
−1

2

]
+

√
2

3
V⃗e

[
1

2

]
V⃗ ∗
g

[
1

2

]
a−1 = V⃗e

[
−3

2

]
V⃗ ∗
g

[
−1

2

]
+

√
1

3
V⃗e

[
−1

2

]
V⃗ ∗
g

[
1

2

] (4.7)
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4.A. Full General Hamiltonian Model

Table 4.3: Normalised Clebsch-Gordan coefficients for the I = 3
2
→ 1

2
M1 transition

in 57Fe, with Θ dependence for each transition appended.

me −mg ∆m CG 3(CG)2 I(Θ)

+ 3
2 + 1

2 +1 1 3 1 + cos2(Θ)

+ 1
2 + 1

2 0
√

2
3 2 2 sin2(Θ)

− 1
2 + 1

2 −1
√

1
3 1 1 + cos2(Θ)

+ 1
2 − 1

2 +1
√

1
3 1 1 + cos2(Θ)

− 1
2 − 1

2 0
√

2
3 2 2 sin2(Θ)

− 3
2 − 1

2 −1 1 3 1 + cos2(Θ)

Each of the components of V⃗e and V⃗g are vectors of length four and two respectively.

The products as written thus have eight components corresponding to all possible transi-

tions. The components corresponding to ∆m = 2 of course always being zero because we

have only considered terms in the expansion with ∆m = 0,±1.

The procedure to obtain the intensities for each line is to:

� Calculate the eigenvalues of the Hamiltonians and find the differences between sub-

levels to get the line positions.

� Calculate the eigenvectors and sub into the equations for a in Equation 4.7.

� Sub the expressions for a into the expression for the absorbed power Equation 4.6

to get the intensity for each line.

� Define a sum of six peak profiles whose positions and intensities have just been

calculated and whose breadth depends on the local crystalline and atomic order. We

generally use pseudo-Voigt profiles but have the capacity to utilise time-differential

or dynamic lineshapes.

� Add a background and scaling factor.

The final model has the form

I = A · f(v,Γ, σ, µ, δ,Q,Bhf , θ, ϕ, η,Θ,Φ) + C

where the broadening terms Γ, σ and µ are the Lorentzian width, Gaussian width and

mixing ratio of the peaks. The other terms are all defined above.
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Chapter 4. Backscatter Mössbauer Spectroscopy

If, as is usually the case in the higher symmetry crystal singonies, the quadrupole field

angles and azimuthal emission angle can be ignored such that θ, ϕ, η,Φ = 0, the intensities

only depend on the Clebsch-Gordan coefficients and polar emission angle Θ as tabulated

in Table 4.3. For magnetically isotropic samples, we integrate over all directions so Θ also

drops out and the Clebsch-Gordan coefficients alone describe the relative peak intensity,

resulting in the famous 3 : 2 : 1 ratio from outer to inner peaks.

It is essential to consider different magnetic orientations when interpreting Mössbauer

spectra obtained with different angles of incidence of the source photons. Three char-

acteristic cases are: uniaxial magnetisation (assumed out-of-plane), planar uniform mag-

netisation, and 3D isotropic magnetisation. In the latter case, the peak ratios are always

3 : 2 : 1 as mentioned. For uniaxial magnetisation, the angular dependence in Table 4.3

gives the intensity variation. For samples that are isotropically magnetised in-plane (nega-

tive uniaxial anisotropy) all magnetic moment vectors will be perpendicular to an incoming

γ-ray at normal incidence, but for oblique angles of incidence, we must integrate over the

distribution of magnetic moment directions:

IIPavr =
2

π

∫ 2π

0

1− (cos(x) sin(Θ))2

1 + (cos(x) sin(Θ))2
dx (4.8)

The calculated intensities are plotted against the angle of incidence measured from the

sample surface normal in Figure 4.26. The “magic angles” Θ = 54.74◦3 and Θplanar = 61.9◦

denote the angles where the peak intensity ratios are 3 : 2 : 1 for uniaxial out-of-plane and

planar uniform magnetisation.

3This magic angle, equal to arccos
(
1/
√
3
)
, often arises in nuclear angular momentum coupling scenar-

ios, for example the “magic angle spinning” technique in NMR spectroscopy [44].
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Figure 4.26: Irel of peaks 2,5 as the angle between the source γ-rays and the surface
normal increases, for various magnetic orientations.

4.B Angular Dependence of MöS Sensitivity

The MöS sensitivity as a function of angle can be approximated by integrals of sinusoidal

functions over a suitable conical spread of incident photon angles δ:

Sx(θ) = 0.4+

∫ 2δ

−2δ

sin4(θ − θ′)
√

cos(θ − θ′)D(θ′) dθ′

Sγ(θ) =

∫ 2δ

−2δ

√
cos(θ − θ′)D(θ′) dθ′

where D(θ) =


1
2δ

|θ| ≤ δ

0 otherwise

(4.9)

This was shown in Figure 4.24 and explains the trend in total Mössbauer peak area as a

function of the angle of incidence seen in Figure 4.23.
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[14] F. Wagner, “Applications of Mössbauer scattering techniques,” Le Journal de Physique

Colloques, vol. 37, no. C6, pp. C6–673, 1976. [Cited on page 197]
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Conclusions

We wished to establish a complete physical picture of a spintronics material, primarily for

THz oscillation applications. In this picture, the computational model is the paint brush

while the experimental investigations provide the paint.

I developed models of increasing complexity to describe the complex dynamics of a

compensated ferrimagnetic half-metals, similar to Mn2RuxGa. This culminated in the

current model, which is still in early stage, which takes inspiration from Ehrenfest dy-

namics, wherein the conduction electrons are treated fully quantum-mechanically while

the localised atomic spins and nuclei are treated classically. This model, in principle, al-

lows for the simulation of phenomena such as electron-magnon scattering and a provides

a well-motivated basis for studying the interplay of electron transport and magnetic dy-

namics. The results presented included magnon, phonon and plasmon spectra. There is

still much of the phase space to be explored, especially regarding the interactions of these

quasi-particles.

To continue providing paint for the picture, I took over the mantle of probing the

crystal structure of Mn2RuxGa and potential new materials. This is particularly impor-

tant as we installed a new UHV thin-film deposition platform just as I started my Ph.D.

studies, the films deposited there had distinct properties to those that came before, often

being significantly better ordered. Some of the key experimental results were the investi-

gation of epitaxy in high-quality Mn2RuxGa films and how that affects the strain-profile

in the film, and neutron diffraction measurements which indicated the ground state mag-

netic orientation of the high-quality Mn2RuxGa was not necessarily the same as the older

examples.

Another brush was the Mössbauer spectroscopy setup that I helped to develop with

my supervisor. This is not a new technique but our novel energy-dispersive (multi-

dimensional) approach allows for a lot of extra information to be obtained “for free”,

so to speak. Being limited to Fe-containing and preferably t > 100 nm materials, the

technique is not so relevant for Mn2RuxGa, but is useful for investigating other potential

new ZMHM materials. Examples of three very morphologically distinct materials were
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shown, indicating the versatility of our setup to probe the local chemical and magnetic

order of suitable materials.

At this stage the physical picture is sufficiently complete that we can interpret a num-

ber of experimental quasi-static properties, such as the magnetisation, conductivity and

Hall effect, as a function of applied magnetic field (magnitude and direction), and fit and

determine the values of the relevant effective Hamiltonian parameters. Looking from the

opposite angle: the results of complex DFT-style computations can also be mapped onto

the effective Hamiltonian parameters, to aid in our modelling and understanding of the

electron, spin and nuclear quasi-particle dispersions, as well as the ultrafast demagnetisa-

tion and precessional dynamics (as evidenced in the AOS of this class of materials).
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