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Abstract

Machine-learning models have rapidly become fundamental tools in the study of mate-
rials properties. In the past few years there has been a surge of interest in the construction
of new models and descriptors to accelerate the investigation of known materials and the
discovery of new ones, mostly in the framework provided by electronic structure calcula-
tions.

This thesis revolves around the study of descriptors for machine-learning models, capa-
ble of describing the configuration of the system, while encoding the symmetries that are
required to efficiently target properties of interest. Several cases will be treated, ranging
from systems with magnetic degrees of freedom, to models that could predict potential
energy surfaces, from models dedicated to the prediction of the electronic density, to ones
for tensor and tensor fields. All of this will be done in the spirit of accelerating ab-initio
calculations within a unified framework, denoted with the name “Jacobi-Legendre”, here
defined and meticulously investigated.

In the thesis, we will explore a model for magnetic systems, in which the spin degrees
of freedom will be placed on the same footing as the description of the position of the
atoms. We will then dedicate the core of this work to the definition and construction of
the Jacobi-Legendre framework, starting from a model devoted to the prediction of the
potential energy surface of a system. With the formalism in place, we will generalize
the descriptors to the prediction of the electron density, proving how the reached accuracy
enables to accelerate electronic-structure calculations. We will then define the formalism in
full by presenting and exploring methods for the prediction of tensors and tensorial fields.
The thesis will be concluded with a thorough study on how the use of multipolar-spherical
harmonics can be beneficial in simplifying the definition of descriptors and in exposing
limits of current approaches, while proposing new strategies based on the Jacobi-Legendre

potentials.
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Chapter 1
Introduction

In recent years, there has been a paradigm shift in the computational study of mate-
rials, with the crowning of Machine-Learning (ML) techniques as newly found essential
tools in the study of condensed matter physics, molecular dynamics and thermodynamic
properties. As for any other aspect of today daily life, ML is having a severe impact on
science, enabling to go beyond the limits of traditional coding and so to greatly reduce
the computational cost inherent the study of materials. The traditional approach involves
quantum-level accurate ab-initio theories, that accurately predict the electronic structure,
starting from the underlying quantum mechanical representation of atoms and electrons:
an extremely successful example is given by density functional theory (DFT) [1} 2], which
focuses on the study of the electronic density to infer several properties of interests, rang-
ing from energies and forces, to localized magnetic moments or phonon-dispersion curves
[3, 14]. While it is undeniable that these theories have sparked nothing short of a revolution
in the computational study of electronic structures, accurate calculations when performed
are usually characterized by an heavy computational overhead even on the most advanced
high-performance computing clusters. This becomes particularly significant for the full
characterization of known materials or for the discovery of new ones, where both the com-
binatorially complex problem of the available stoichiometries, and the characterization
of the geometry of the system, must be tackled. Indeed, the ambitious goal behind the
introduction of ML techniques in the field is to reach the same state-of-the-art-accuracy
of computationally expensive ab-initio methods, but with a fraction of the cost. Starting
from the seminal work of Blank and co-workers of Ref. [5], where a Neural Network (NN)
was used to describe a potential energy surface (PES), the field have seen an exponen-
tial expansion, both in the development of progressively more sophisticated methods and
tools, and in the application to the prediction of several properties of interest. Examples
of applications are the search of stable ternary alloys [6], the prediction of the critical

temperature |7, 8], the study of the atomization energies of molecules [9], covalent bonds
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CHAPTER 1. INTRODUCTION

[10], the PES of catalysts [11], structure predictions [12], large-scale diffusions [13], study
of the bulk and the surface phase (for example for copper [14]), Heusler compounds |15,
16|, binary alloys [17], or phase changes (e.g., of GeTe [18]), just to mention a few.

ML also provides extremely useful tools for high-throughput investigations that, with the
extensive use of shared datasets, such as the AFLOW [19] or the Materials project [20]
repositories, significantly boost the search for new materials (see, for example, the short
review of Ref. [21]): one example is given by the prediction of the thermodynamical sta-
bility (distance from the convex hull) for compounds (in a cubic perovskite geometry)

constructed from 64 elements of the periodic table [22].

ML in a nutshell Let us now introduce the the most important ingredients for the
definition of a ML model applied to the study of materials, before proceeding in present-
ing the goal of this thesis and its organization. Broadly speaking, we can say that a ML
model is composed of three main parts: the first one, the descriptors (or fingerprints),
are the way in which we characterize the system at hand, i.e., the way we encode and
represent the degrees of freedom. At the other side of the spectrum is the quantity we
want to target (or output): this can be the total energy of the system, or the forces, as
well as other properties such as the polarizability or the atomization energies. At the core
of a ML model is how the descriptors and the target are interpolated: this goes from the
simple case of a linear regression on the descriptors, to similarity kernels, to even more
complicated architectures such the ones provided by NNs. Efforts have been made in all
these cases, with the definition of several linear-model based approaches [23-25] or kernel
ones [26-29], up to deep NNs capable of tackling large and diverse datasets [30-33]. In
particular, ML model must be trained, i.e., optimized with respect to the parameters of
the model/architecture, on a dataset of choice, usually built by means of ab-initio meth-
ods. Indeed, all these architectures have some advantages and disadvantages: on the one
hand, NNs are usually considered universal approximators |34} 35| and, while sacrificing
the simplicity and immediate interpretability of linear models, given the large amount of
parameters (weights) to optimize, they allow for a large flexibility in both the degrees of
freedom of the Networks, and in the virtually unlimited choices for the construction of the
architectures. This gives a significant advantage when, in particular, the available dataset
are vast and diverse, containing a large number of systems, defined in different configura-
tions. On the other hand, however, it is not uncommon to study very specific instances of
a system where the ab-initio methods are expensive and data are not available. In such
cases, not only does the dataset contain a (much) smaller number of datapoints, but it
can also be difficult to populate: this is the scenario when a linear model, with highly
tuned descriptors could be beneficial. Indeed, if constructing linear models necessitates of

a careful design of the descriptors (in the case of NNs, this point is more shifted in the
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design of the architecture), as implied in the very definition of linearity, i.e., a descriptor
without the relevant features would be catastrophic for the performance of the model,
linear models are well-suited for smaller dataset, for which the degrees of freedom are
not easily saturated. Finally, a linear model can also benefit from specific active-learning
schemes [306, [37], where the training of the model is performed in an optimal way with
constant evaluations and selections regarding which new configurations should be progres-
sively included in the training process. Kernel methods, in contrast, are somehow the
middle ground between linear models and NNs: if, one one side, they retain an aspect
of linearity, given that usually the target is defined as a linear interpolation of kernels,
they can also incorporate high-degrees of non linearity, by means of the definition of the
kernels themselves. The trade-off is usually on the cost of evaluating the kernels, since
they usually require to compute similarity measures between the new configuration and
all the ones in the dataset (this problem has been tackled, for example, by means of the

introduction of recursive scheme for “higher-body” order fingerprints in Ref. [3§]).

Training and loss functions While we will not dive into details about the training
process or the best way to assess the performance of a ML model, it is important to define
the most used strategies and tools. In particular, to train a ML model usually involves the
minimization of a loss function, i.e., a function that describes the (dis)similarity between
the predictions of the model and the actual target. Since the loss function contains the
quantities predicted by the model itself, minimizing it is equivalent to a search of the
optimal set of free parameters (usually called weights in the context of NNs, or expan-
sion coefficients for linear models), that allow the descriptors to correctly reproduce the
targeted quantities. Clearly, there is a large selection of loss functions and optimizers in
literature, and an overview of the methods is beyond the scope of this thesis: to fix the

ideas we will mostly use the squared L? norm.

Performance assessment Another important aspect for ML models is the assessment
of the performance/accuracy. This is usually done by some metric: the most used ones
are the mean absolute error (MAE) and the root mean squared error (RMSE). They
are usually provided together, since the MAE gives more information about the average
trend of the predictions, while the RMSE is more sensitive to outliers. Another important
tool for visual inspection is the so-called parity plot, which is a scatter plot of all the
predictions against the actual data. Since a good accuracy implies a good approximation
of the target, visually this means that the more data are aligned with the 45° line, the

better the model is performing. While we will make an extensive use of parity plots and
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CHAPTER 1. INTRODUCTION

MAEs and RMSEs, it should be noted that, in the field of physical applications, these
estimators do not provide a complete picture: indeed, most of the interest lies in applying
the model to configurations that are outside the scope of the ab-initio-constructed dataset,
namely in performing molecular dynamics or in allowing for a relaxation of the system. In
this sense, only evaluating on specific tasks or properties of interest can give true insight

on the model performances.

Descriptors and the role of symmetries A fundamental property in the construction
and design of descriptors of ML models lies in the correct encoding of the symmetries of
the targets. Indeed, when describing some property of a system, the descriptors should
possess the same, and only, symmetries of the properties themselves. This is well clari-
fied by the example of translations/rotations and energies. When dealing with a system
in absence of any external fields, we can freely perform translation and rotations of the
frame of reference, without varying the energy of the system. Thus, if descriptors that
are not translationally or rotationally invariant are used, then the model has to “learn” to
map all the different orientations of the system into the same energy. This produces sub-
optimal results. In fact, not only cannot the invariance be enforced exactly by a training
procedure, but also, it requires inefficient usage of computational resources and an arti-
ficial enhancement of the dataset. Indeed, we also have to include translated or rotated
configurations. Therefore, the encoding of the correct symmetries on the descriptors is
of paramount importance in the design of ML models, and will be a central topic of this
thesis. In particular, we will consider scalars, tensors and tensorial fields. For example,
among the scalars, which are isometrically (under translation, rotation and inversion) in-
variant, energies have an ubiquitous role, and as such will be aimed by specific ML models,
called ML potentials (MLPs)[39]. These models aim to predict the PES of the system,
while also providing forces and components of the stress tensor. Another kind of target
are the tensors, which also includes vectors (forces, dipoles), and which are “covariant”
under a rotation, i.e., the components mix in a specific way. Finally we have scalar and
tensorial fields, such as the electronic density or the magnetization vector. All these cases
will be covered in depth in the thesis, and so we will postpone their analysis to subsequent
chapters.

In this thesis work, we will specifically consider descriptors for linear models (or, at
most, for kernel-based models), and we will not explicitly investigate NNs. However, al-
ready in the next chapter, we will explore the most important ideas that were born with
the advent of NNs in materials science, such as the introduction of local representation,
or the implementation of multi-body expansions. We refer to the two reviews of Refs. [40,
41], for a detailed presentation and evolution of NNs, which presents a time-ordered list of

the key ideas and tools used in the field, and the challenges faced by new generations of ar-
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THE AIMS OF THIS WORK

chitectures and descriptors. Among such challenges, shared by virtually all the ML models
available, we mention the inclusion of long-range interactions, which goes beyond the ca-
pabilities of local representations. This has been pursued, for example, in Ref. [42], which
presented the long distance equivariant formalism (LODE) that introduced a power-law
adapted atomic density, or in Ref. [43] which explicitly included electrostatic contribu-
tions in the representation. Another challenge is to describe magnetic environments, i.e.,
systems in which we have to associate vectorial degrees of freedom to the atoms. Contrary

to the case of long range interactions, this has been analyzed explicitly in this thesis and

will be explicitly tackled in Chapter [3.2]

1.1 The aims of this work

Before presenting the main objectives of this thesis work, we remark that the investi-
gation will be focused on descriptors for linear models. The reason behind this choice is
twofold. Firstly, as already mentioned, a linear model requires much stricter conditions
on the descriptors: if the correct symmetries are not implemented, or if the descriptors
lack descriptive capabilities, the linear model will catastrophically fail. This is, clearly, the
trade-off to pay for a model, which represents the simplest scenario in the ML landscape.
However, as second reason, a linear model provides an approach, which is closer in spirit
to the rationale of a physics-based one. Indeed, linear models can be interpreted and can
provide more insight by themselves, if compared to a much deeper approaches such as
the one of NNs. Moreover, the study of descriptors for linear models is not restrictive,
since descriptors that are suitable for linear regressions can be easily exported and be
used in deeper NNs architecture. Also, maybe unsurprisingly, descriptors that naturally
emerge from linear-cluster expansions are easily found also in kernel-based approaches:
historically, indeed, the discovery of these descriptors proceeded the other-way round,
from kernel approaches to applications to linear models. Thus, the scope of descriptors
for linear models goes beyond their application in linear cases.

This thesis will address three main aspects of the construction of descriptors. As will
be clarified presently, these areas are interconnected as will be shown across the thesis by
means of a shared and uniform formalism. In this sense, we could say that a “zero-th”
aspect of the thesis is indeed the definition of a unified mathematical framework, based on
the spherical harmonics in general, and the multipolar-spherical harmonics in particular.

The first analysis will be done on the study of descriptors for systems with spin-degrees
of freedom. While this topic has been addressed in previous works, we will focus here on
the formulation of descriptors, which are in the same spirit of the ones written for MLP
and used in both linear and kernel-based methods. It will also be a first example in which

the use of the multipolar-spherical harmonics will not only prove to be beneficial, but also
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CHAPTER 1. INTRODUCTION

natural.

The second topic that will be at the core of the thesis, is the formulation of a uni-
fied framework, here denoted as Jacobi-Legendre framework. While other frameworks are
available, such as the one provided by kernel and density-based representations [26, |44] and
the atomic cluster expansion [25], their shared mathematical background is the coupling
of angular momentum channels [45], with respect to the expansion of an ”atomic-density”
field. This can be appreciated in the review of Ref. [46], where the evolution of the most
common descriptors, and their relations, is shown in a phylogenetic tree. Indeed, a repre-
sentation in terms of the atomic-density, has a few advantages: firstly it allows to obtain
a linear scaling in terms of the number of atoms, contrary to the scaling of a classical
multi-body expansion, where the number of bodies determines the computational scaling
by means of a power-law. Also, it allows to reach any body-order in the representation,
by performing the appropriate couplings of an arbitrary large number of angular channels.
However, it also presents a few problems. Firstly, it does not maintain interpretability
of the terms involved, since the resulting symmetries are imposed only after all the the
channels have been coupled. In particular, it accounts for the construction of all possible
tensors from the coordinate representation, with the final contraction accounting for the
projection onto the space of interest, e.g., a rotationally invariant space. While this is not
necessarily a problem, since everything can be always, in principle, written in terms of
the internal coordinates representation, it introduces the non-trivial step of re-casting the
expressions as, at least, contractions of vectors. Another point that requires care is that
the coupling of angular momenta is not unique, but depends on the coupling scheme.
Indeed, for the last point of discussion of this thesis, we will show that having different
coupling schemes causes problems in the expansion of higher-body orders terms: specif-
ically since it is required to have at least a five-body representation to have a complete
representation (as investigate by the works in Refs. |47, |48] and proved in Ref. [49]), it is
important to investigate how different coupling schemes affect five-body terms. In doing
so, we will provide a complete representation for five-body terms, which is independent of

any coupling-scheme choice.

An internal-coordinate based framework In this thesis, we will focus on a cluster-
expansion based framework expanded in terms of internal coordinates: the internal co-
ordinates representation is the traditional way to approach the degrees of freedom of a
physical system since, among other reasons, it allows to preserve a strong and almost visual
intuition of all the terms of the expansion. We will also show that, on the one hand, this
choice does not sacrifice the linear scaling achieved by the atomic-density field, and on the

other, it introduces a new coupling scheme, which allows us to retain all the advantages of
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THE AIMS OF THIS WORK

having a direct representation in terms of internal coordinates. This aspect will be pivotal
in the last chapter of the thesis, where the construction of a coupling-scheme-independent
approach will be presented.

Not only this framework allows us to bridge the gap between the atomic-density-based
formalism and the internal-coordinate representation, but we will also show how it can be
naturally extended to represent scalar fields, tensor, and also tensor fields. In order to do
so, we will define a simple strategy to construct representations of increasing complexity,
while preserving the cluster-expansion and internal-coordinate based formalism. In par-
ticular, we will first introduce a MLP for energies, where the key ideas on the constraining
of the expansion and on a linear-scaling representation will be presented and examined
in great detail. A core point will be the formulation of a constrained and general basis
for the radial expansion of the atomic potentials (Jacobi polynomials), and an accurate
selection of the basis for the angular degrees of freedom (Legendre polynomials), so to
allow a seamless generalization of the model. We will then move to the representation for
scalar fields, which will focus on targeting the DFT electronic density. We will show how
this can impact ab-initio calculations, by accelerating them, without compromising the
accuracy of the density. Crucially, this representation will be derived completely by the
MLP, in an almost straightforward way. Finally, we will show how to target tensor and
tensor-fields. In particular, the model for tensors will be obtained with a new strategy,
made available by the construction of the model for the scalar field. After the construc-
tion of the appropriate scalar field, the tensorial components will be obtained by a simple
integration against spherical harmonics. This is a novel approach, which does not require
an explicit introduction of the Wigner-D matrices, that will be used only for the proof
of the rotational covariance of the tensorial components. The consequent construction
of a model for tensor fields will be almost trivial, obtained by following the same strat-
egy adopted to define the scalar-field model from the potential one. This is one of the
first models for tensor fields defined in the literature, and it shares the same properties
of the other models of the framework, i.e., it will be hierarchically improvable (from the
underlying cluster-expansion strategy) and interpretable (from the internal-coordinates

representation).

On the multipolar-spherical harmonics The last section of the thesis will connect
all the topics touched by the thesis, from the multipolar-spherical harmonic formalism,
used for the model on the atomic-magnetic moments, to the atomic cluster expansion (and
all the methods based on the powerspectrum and bispectrum), to the coupling introduced
for the Jacobi-Legendre potential, and based on the internal coordinate representation.
Indeed, we will prove that the multipolar-spherical harmonics are the natural formalism

at the foundation of the most used descriptors available. Not only they will be pivotal
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in deriving the atomic cluster expansion formalism in a straightforward way, but the
will also provide insight on the role of intermediate coupling channels in the expansion.
Indeed, they will allow us to demonstrate the necessity of retaining all the intermediate
channels and, in so doing, we will prove that the scheme proposed for the atomic cluster
expansion is incomplete. Finally, we will show that, instead, the coupling provided by
the Jacobi-Legendre potentials, despite being derived directly from an internal coordinate
representation, not only is linear in the number of atoms, but also provides a complete

representation for a five-body potentials.

1.2 Thesis organization

This thesis is organized as follows, with a graphical representation shown in Fig. [1.1]

Chapter 2 is devoted to a presentation of some of the most-widely used descriptors in
the literature. We will introduce descriptors devoted to representation of scalars (energies),
of tensors (dipole, polarizability, etc.) and we will conclude with an overview of models
predicting scalar fields, e.g., the electron density.

In Chapter 3 we will introduce powerspectrum-based descriptors for magnetic systems,
where the degrees of freedom associated with the spin will be defined on the same footing
of the position related ones. We will show the performance of the model when applied to
an iron-cluster toy-system, defined by transversal (Heisenberg) and longitudinal (Landau)
excitations.

Chapter 4 will introduce the Jacobi-Legendre potential (JLPs), which constitutes the
first step in the definition of the Jacobi-Legendre (JL) formalism. We will show, in depth,
how a construction over the internal coordinates of the system automatically leads to a
representation that satisfies the invariance of the energy under any isometry transforma-
tion. A major part of the section will be devoted to the definition of the radial basis,
and on how to apply constraints (e.g., the locality of the representation) directly on the
basis set. Also, the role of the symmetry under permutation of identical atoms will be
investigated in detail. We will apply the model to a challenging carbon dataset, used in
the training of the GAP17 [50] potential.

In Chapter 5 we will expand the JL framework by defining a model for the electronic
density (a scalar field). The chapter will be divided in two parts: in the first we will
introduce a general method to obtain a scalar field within the same formalism of the JLP,
and we will perform a throughough investigation of the relevant properties. The second
part will be devoted to applications, in which we will show the performance of the model
when applied to examples of a molecule, metallic solids and a 2D material. By using the
predicted densities, we will show how ab-initio calculations can be accelerated, without

compromising the final accuracies.
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In Chapter 6 we will complete the study of the JL framework, by defining the models
for tensors and tensorial fields. This chapter will be fully devoted at the presentation of
the methods, with great emphasis on how to obtain expressions for covariant quantities by
a JL formalism devised to address scalar fields. The relevance of this step will be twofold.
On the one hand, we will show a natural way to obtain the required covariance (by means
of simple integrals against spherical harmonics). On the other hand, it will fully justify
the choice of the Legendre polynomials made in Chapter 4, by showing how they are the
natural choice of basis when dealing with scalar products. The chapter will be concluded
with the presentation of one of the first models for tensor fields, which will inherit the
same properties (multi-body decomposition, locality and linearity) of all the methods of
the JL framework.

Chapter 7 will finally make manifest how the multipolar spherical harmonics are the
natural basis-of-choice when dealing with cluster-expanded potentials. Indeed, we will
show how they allow to seamlessly derive a complete atomic cluster expansion, while also
exposing the limits (incompleteness and redundancies caused by the choice of the coupling
scheme) of the original formalism, in particular for body-order terms greater than four.
The chapter will be concluded with the presentation of a JLP-based expansion for the
five-body order terms. Not only we will preserve the equivalence with a representation in
internal coordinates (despite being linear in the number of atoms), but we will also obtain
a complete expansion, while avoiding any degeneracy related to the choice of the coupling

scheme.
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Chapter 2 Descriptors Introduction

A )

N Powerspectrum
Chapter 3 é for spin-fields

Multipolar
I spherical
Chapter 4 { i JLP harmonics
Vit
Chapter 5 JLCDM JL
framework

Chapter 6

Incompleteness of
Derivation of ACE angular scheme

New coupling
ACE from Y} [11 lo I3 Iy from JLP T

myp M2 MMz My

Chapter 7

Figure 1.1: A graphical table of content for the thesis. In Ch. 2, we will present a few
well-known descriptors, so to define the mathematical background of the thesis. Ch. 3 will
be devoted to a method to treat magnetic materials, which will put the spin degrees of
freedom on the same footing of the atomic positions. The formalism will heavily rely on
the multipolar spherical harmonics. Chs. 4, 5 and 6 will be devoted to the construction of
the JL framework. In particular, Ch. 4 will define the JLP, a potential to predict the PES
of a system. Ch. 5 will introduce a model for the electronic charge density, so to target a
scalar field. Ch. 6 will define a covariant model, which will be used to target tensors and
tensor fields. Ch. 7 will revolve around the multipolar-spherical harmonics, and it will be
shown that they constitute the natural basis for multi-body methods. Specifically, we will
show the incompleteness of the original ACE-angular basis and will tie back to the JLP
by the presentation of a new coupling-scheme independent approach to five-body order
terms.
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Chapter 2

Descriptors in literature and the

formalism

In this chapter we are going to review several descriptors for scalars, tensors and scalar
fields. The main goal of this chapter is twofold. Firstly we will introduce a coherent
formalism and mathematical background for all the remainder of the thesis. The second
reason is to give an overview of the descriptors, to introduce the key ideas, motivations and
achievements. This will be instrumental to the following chapters, where we will introduce
the general Jacobi-Legendre framework, which will push the investigation up to tensorial
fields.

This chapter is essentially divided in three parts, mirroring the nature of the targets.
The first one will be devoted to presenting MLP, and the second one to the main idea
on how to introducing covariance in the descriptors, to target tensors. The last chapter
will address the construction of descriptors for the electronic density (scalar fields). Im-
portantly, a progressive construction has been followed, so that most of the relevant idea

presented for a descriptor will be re-used and adapted in the subsequent sections.

2.1 Descriptors for Potential Energy Surfaces

The work of this thesis will focus on constructing a set of machine learning descriptors
that can be easily interpreted and generalized to a vast landscape of different scenarios,
ranging from scalars, e.g., ab-initio energies, to tensors, e.g., dipoles, polarizability, end-
ing to tensor fields, e.g., non-spin-polarized and spin-polarized electronic densities. This
chapter will be devoted to introduce, and rapidly review, the most used descriptors in
literature, with the aim of building stable foundations for the subsequent main parts of
this work. Following a constructive approach, we will first present descriptors for potential

energy surfaces (PES), that target the energy of a system, to introduce the main ideas on
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Translation Rotation Reflection Identical
\ (or 1nver81(y atoms
permutations
Isometries

Figure 2.1: The figure shows the symmetries of scalars like the energy with respect to
the atomic positions. From left to right: the symmetry under translation is automatically
guaranteed by choosing an atom centered representation. The invariance under rotation
and the one under inversion must be imposed with a careful choice of the features. Please
note that, since in 3d space an inversion can always be written in terms of the composition
between a rotation and a reflection, we will use inversion and reflection almost interchange-
ably in the thesis. Finally, the energy is symmetric under the swap of two identical atoms.
All possible translation, rotations and reflections (or inversion), are generally addressed
as isometries (distances- and angles-preserving operations).

how to construct quantities that possess desired symmetries (in this case scalars). This
will be followed by a presentation on methods that aim to target tensorial quantities and
scalar fields.

We will now proceed in discussing the Behler-Parinello symmetry functions [51], and
the kernel method at the core of the Gaussian approximation potential (GAP) [26] [which
is then expanded in the smooth overlap of atomic positions (SOAP) [27]]. We will also
introduce the spectral neighbor analysis potential (SNAP)[24], and we will end this section
with the atomic cluster expansion (ACE) [25].

2.1.1 Behler-Parrinello Symmetry Functions

The work from J. Behler and M. Parrinello of 2007 [51], introduced several key concepts
that can be found in most of the subsequent works on descriptors. While the work focused
mostly on Neural Networks (NN), the concepts of atomic contributions to the energies,
cut-off function, and multi-body descriptors are the operative assumptions of the vast

majority of the most successful descriptors and, as such, will be explored here in details.
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(a) Eshort (b) €q (c) Tcut
(] (] (] (] (<} (<} o
° ° ° ° ( ® ®
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° ° ° ° ) ° o
(] (] (<] (] (] (]
° ) ° ° ) ° o
Total energy Atomic energies Cut-off radius

Figure 2.2: The figure shows the hypothesis underlying the definition of the vast majority
of current descriptors for potential energy surfaces. (a) In this work we will explore
only the short-ranged component of the energy of a system, Egor. (b) The short-ranged
energy contribution is further separated in a sum of atomic contributions, in accordance
with Eq. . (c¢) The atomic contributions are assumed to be local, accounting only for
the interaction between atoms inside an optimized cut-off sphere of radius r.. This is
implemented by introducing a cut-off function, f., as in Eq. , to make interactions
progressively less relevant as the atomic distances approach the cut-off radius, all while
preserving the continuity of the description.

The first assumption is that the energy can be partitioned in atomic contributions.

Thus, if E is the energy of a system, we assume that the partition

E = Z Ei, (21>

holds, where the sum runs over all the atoms in the system, and the atomic energy, ¢;
is the contribution due to the i-th atom. As will be showed in the remainder of this
thesis, the atomic energies are, de-facto, the main focus of the construction of machine
learning descriptors. Focusing on this atomic terms, a crucial observation is that the only
functional dependence on the system’s properties can be written in terms of distances
and angles. This is justified by the fact that, to efficiently describe a quantity of interest,
the descriptors should possess only the symmetries of the target itself. Therefore, in the
example of a scalar like the energy, the descriptors should mirror the same invariance rules
of the energy. To identify, and to correctly encode the symmetries of the targets in MLPs,
will constitute a central component of the thesis. In Fig. 2.1} the relevant symmetries
for the energy are shown: they are translations, rotations, inversions (which, together,
constitute all the possible “isometries”) and invariance under permutations of identical

atoms.

A problem that immediately arises when considering all possible distances and angles, is
the applicability of this methods to very large or periodic systems. To address this, Behler
and Parrinello introduced an optimizable cut-off distance (or radius), 7.y, for the atomic

interactions: in this way, they enforced a locality principle, namely that atoms further
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apart than the cut-off radius were not considered as interacting. To enforce smoothness
and continuity of their description at the cut-off radius, they defined the following cut-off

function

1 T i
- [COS (—ﬂ) + 1] for rj; < reut,
felrsi) = { 2 Tout (2.2)
0 for rj; > reut,
where 7;; = |r; — r;|, is the distance between the atoms i-th and j-th, located at r; and r;

respectively. A concise overview of the key ideas discussed here is shown in Fig. 2.2]

The work of Behler and Parrinello then focused on the following descriptors

atoms
G’:LI' — Z efn(rjiir‘S)QfC(fr'ji)’ (23)
J';fi
G? =27 Z (1+ Acos eijk)c e_n(r?i+r§i+rjzk)fc(rji)fc<7'ki)fc(rjk)> (2.4)
i,k
jsﬁyi,k#i

which are called symmetry functions. Here 0;;, = rj; - Ty, is the scalar product between
the direction connecting the j-th and the i-th atoms, r;;, and the one connecting the k-th
and ¢-th atoms, 1;;, namely, it contains the angular information of the three-body object
centered on the atom 4 (the directions are defined as tj; = rj;/r;;). The parameter \ takes
values A = £1. The sum for the first symmetry function, G}, runs over all the atoms in the
system that are not the central atom. It can be appreciated how G} is a sum of Gaussians
centered in 7, with width given by 7, and with an embedding given by the cut-off function,
to ensure the aforementioned smoothness. The total set of symmetry functions is then
obtained by varying the center and the width, to increase the descriptive power of the total
description. These functions are also a first example of two-body (2B) terms, since each
of the addend depends only on the distance between two atoms. The other functions, G?,
are, instead, three-body (3B) terms, since they depend on three distances and one angle,
as also mirrored by the presence of the double sum therein. The exponent ( is another

parameter that can be varied to obtain, again, more symmetry functions.

Finally, the atomic energy is assumed of the form

er = f({Gi(re,m)} AG; (. ¢, M}), (2.5)

where the function f is approximated by a Neural-Network (NN), of optimized architec-
ture, with the employed symmetry functions obtained by varying the inner parameters
n,(, A and r,. Even if the symmetry functions display a significant descriptive power,

mostly in combination with the use of NNs, they lack a few properties, such as higher-body

14 Ph.D. Thesis



DESCRIPTORS FOR POTENTIAL ENERGY SURFACES

correlations or a systematically improvable scheme, which have been explicitly addressed

in subsequent works, as we will show in the following.

2.1.2 GAP framework and SOAP

The Gaussian approximation potential (GAP) framework [26] and the smooth overlap
of atomic positions (SOAP) [27], introduced new key ideas in the field, i.e., the density trick
with its basis expansion, and the link between the investigation of higher-order correlations
and the choice of appropriate coupling of angular momenta. We will now review these
ideas. Please note that the same assumptions discussed in the previous section, namely, a
short-ranged description, separation into atomic contributions and locality of the atomic
environment, will be always implied in the following.

Explicitly, the starting point in constructing properly invariant descriptors is the atomic

density

atoms

pi(r) = Z wz,0(r — 1) fe(rji), (2.6)

where 0(r) is a Dirac-delta function, wy, are optimized
weights that depend on the atomic species of the j-th atom,
and f.(rj;) is the cut-off function, which ensures that the con-
tribution from the neighbor atoms will smoothly vanish when

approaching the cut-off boundary.

The density gives an atom-centered representation of the
pi(r) local environment, as can be appreciated by the the fact that
all the atomic positions in Eq. (2.6 are always taken with

Figure 2.3: A pictorial rep- respect to the position of the i-th atom. It is not necessary

resentation of the atomic

for the density to be made of delta functions only: indeed
density defined in (2.6

other choices of function, such as Gaussians centered in the
atomic positions can be used'} In Fig. we show a pictorial
representation of the density, where the “localizing” function is placed on top of the atoms
in the environment (in the case of a Dirac-d, it would be an infinite spike), while the colors
represent different species, determined by the weights.

The density is a function defined on the 3-dimensional space [albeit with compact
support] and, as such, depends on the position vector r. Thus, it can be expanded in a
complete basis. Let us first separate the radial and angular components of the vector r as
in
pi(r) = pilr. ), (2.7)

!This is actually done in the GAP formalism. Here, however, we will treat only the case of delta
functions, because they allow for a simpler analytical investigation.

M. Domina 15



CHAPTER 2. DESCRIPTORS IN LITERATURE AND THE FORMALISM

Vi (£) k‘ 0
. e § & 1
¢ 8w

“»
Lodt Ik 28 A% AR 8 4

m=—3 m=—2 m=—1 m =0 m=1 m=2 m=3

~

Figure 2.4: The spherical harmonics, Y, are at the core of the descriptors presented
along this thesis. Here, the first 16 real-spherical harmonics are shown (they are obtained
by the standard spherical harmonics by means of a unitary transformation, as shown in
Ref. ) The plots are polar, with blue and red indicating positive and negative values,
respectively.

so that we can expand the density in terms of radial basis of choice R,,;(r) and in spherical
harmonics Y™ (¢) [45], [53], respectively. The choice of spherical harmonics will be of
paramount importance in constructing rotationally invariant quantities, as will be shown
shortly (see Fig. for a visual representation). Note that this expansion can always
be performed, since the spherical harmonics form an orthonormal basis for the squared-
integrable functions on the sphere, namely, they form a basis of L?(5?). This allows us to

write

pi(r) =D Contm Bt ()Y, (), (2.8)

nlm

where the expansion coefficients are given by

atoms

Cinim = / dr p;(r) Ry (r) Y™ (¢ sz 1 (75 Y (83 fo(rs0). (2.9)

Please note that we are assuming that the radial functions are real, orthonormal and
complete. This last equation justifies the choice of the Dirac-delta functions, since they
allow to perform the integration in a straightforward matter, by directly inserting Eq.
in the integral above. We have obtained that the description of the local environment is
effectively encoded in the coefficients ¢;,;,. Crucially, the evaluation of the expression
Cintm depends linearly on the number of atoms in the neighborhood of the i-th atom. This

property is the reason behind the construction of the density in the first place, and will be
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shared by all the quantities that will be derived in this section. However, we still have to
address the two questions on how to construct isometrically-invariant quantities, and the
function on which to constitute the model to be used to approximate the energy in the
fitting procedure. Note that, practically, we will always truncate the expansion at some

optimized npyax (and also [.x if the angular expansion is decoupled from the radial one).

The powerspectrum The simplest possible rotationally invariant quantity that can be

built is the powerspectrum defined, in the same spirit of the Fourier’s spectra powerspec-

trum, as
Pinn't - = Z Cinlmcjn/lm = Z(_l)mcinlmcin’l—ma (210>
m m
where ¢, = (—1)™Cp1—m 18 the complex conjugate of ¢;pni,. We will now go into detail on

the proof of the rotational invariance of the powerspectrum, to solidify ideas that will be
crucial in the remainder of the thesis. The proof relies on the mixing rule of the spherical

harmonics under a rotation, that explicitly reads [45]

!
YM(RE) = Y Db (R)Y" (%), (2.11)
m/=—1

Yll

where the matrix R is a representation of the ro-
tation induced by the Euler angles R, so that Rt
represents the versor obtained by applying the rota-

tion to the original versor . Here, the matrix D!,

y

is the so-called Wigner D-matrix, parameterized by

X Dl R * . . . . . .
( ( )) R. The mixing of spherical harmonics with different
magnetic quantum number m can be easily under-
Figure 2.5: A counterclockwise 10- stood in terms of Fig. 2.5l Importantly, however,
tation around the z-axis of m/2 is the [ is unaffected by the rotation, namely, spaces of
shown. The real spherical harmonic Jifferent angular quantum number do not mix. The

Y11 is mapped into Y;_;. D-matrices are unitary, so they satisfy the relation

> Dis (R) Dy (R) = Grmyim- (2.12)

By looking at the explicit expression for the expansion coefficients ¢, of Eq. (2.9)),
we notice that they incorporate a sum of complex-conjugated spherical harmonics. By

applying a rotation to the whole system, i.e., applying the same rotation to each one of
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the spherical harmonics, we deduce the following transformation rule

R ¢ Cintm = Y Dhypr(R) Cinti (2.13)

Thus, from the definition of the powerspectrum, Eq. (2.10)), we can directly prove its

rotational invariance by noting that

6m1m2

l

Y

_ * R * Dl* o * _
Pinn/tm = CinlmCin/im — Cinlma Cin’lmg mmi1 T mme — CinlmCintim = Pinn/lm,
m m

mima m

(2.14)

where, in the last step, we re-labelled the dummy index my. Another important property
of the powerspectrum is its invariance under inversion of the atomic positions, also called
parity invariance. This can be shown by means of the addition theorem of the spherical
harmonics [45, 53], a crucial property that will be extensively used in the remainder of
this work. This theorem determines the connection between the spherical harmonics and

the Legendre polynomialsﬂ, establishing the following identity [54-56]

N N dm m (2 m (s
PZ(COS ka) = Pl(rjz‘ . rki) = 2[ n 1 Z }/l (rji)YE (I‘ki), (215)

m

where the argument of the Legendre polynomials is the dot product between the versors
r;; and ry;. This, when inserted in Eq. (2.10]), gives the alternative formulation of the

powerspectrum

atoms

Dot = 23 w0, ) elri) Ruarg) Ron(ri) P - 21). (2.16)
ik

This expression has the advantage that it manifestly shows the invariance of the pow-
erspectrum under both rotations and inversions: it depends only on distances and on the
scalar product Tj; - T;, which are all isometrically invariant. Also, it allows to make a
direct comparison with the Behler-Parrinello symmetry functions reported in the previous
section, since cos 0;;, = T'j; - Ti,;. In particular, we can appreciate how the powerspectrum is
analogous to a three-body (3B) term, since it relays on two distances and one angle. The
evaluation of this expression, however, does not scale linearly with the number of atoms
inside the cut-off sphere, since it requires the calculation of the Legendre polynomials for

each pair of atoms in the neighborhood.

2Please note that, among all the properties of the Legendre polynomials, we will make large use of the
fact that they form a complete and orthonormal basis on the interval [—1,1].
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The bispectrum The powerspectrum, depending only on the positions of three atoms
(the central one, and two neighbours), is not complete with respect to the atomic environ-
ments defined by p(r), in the sense that two different atomic environments, non connected
by rotations or reflections, can have the same powerspectrum. Also, more generally, two
different functions defined on the sphere can lead to the same powerspectrum, as explicitly

shown by taking the two functions (from Ref. [27])

:Y2+Y72+Y3+Y73’
{fl 2 E s s (2.17)

fo=Yy + Yy Y Y
For this reason, we will now define higher-body order invariant quantities, by appropri-

ately connecting expansion coefficients c¢;,;,, with different angular momentum channels.
If the connection is carried using the Clebsh-Gordan (CG) coefficients, defined as [45]

Cl1m1l2m2 = (Im[limilymz) (2.18)

then we can construct the so-called bispectrum by means of the following coupling

b,nminy := E mlmCllm1lgmgcmlllm1cin2l2m2‘ (219>

U llyly
mmimsa
The rotational invariance of these objects can be easily verified®| with the same strategy
used above, and by employing the orthogonality of the CG coefficients and their relations
with the Wigner-D matrices [45]. Explicitly, using

Z Cl[ll'}n]\flngCllllfnj\lllémg = 5L1L25M1M27 (220)
mimse
and
l l
Z 01m1l2m2DTr{L1’m1 (R)D77212m2 ZD llmllgm ? (221)

mima2

we can write

yl1l2 r17r2 = Z Cllmllgmgi/znl( )YmQ( )

mima2

5NN Dl DY ()Y (5 =
Limiloma ™~ mym/) " mam}, 1 (rl) o (r2> - (222)
mm2 mima2
_ D my /s lez S0\ Dl* m' (& o
E mm/ E llm1l2m2 (1‘1) Iy (T2) = E mm Vi by (F15 T2),

/
m1m2 m

3Please, note that, here, we prove the rotation invariance by explicit calculation, not by exploiting
representation of the SO(3) group, as has been done, for example, in Ref. |27].
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where we have implied the dependence on the Euler angles, and we made use of the fact
that the CG coeflicients are real. In going from the first to the second line we applied a

rotation R to both r; and Iy, so that the above result can be written as

Vi (Riy, Riy) = > Dl (R)VI (£1,£2). (2.23)

m/

The functions y};;g are called bipolar-spherical harmonics [45], and form a complete
and orthonormal set for the two points functions on the sphere. Comparing the result from
(2.22) with the transformation rules for the spherical harmonics in , we see that the
contraction of two spherical harmonics, ¥, and Y,["?, with a CG coefficient, C{™, , .
into the bipolar spherical harmonics, zllmzy obeys the same transformation rules of the Y;™
spherical harmonicﬁ Here, this relation allows to prove that the bispectrum is invariant

under rotation: indeed, the coupling

Im o E Ilm
pin1n2l112 - Cllm1l2m20in1l1m1cinglgmg7 (224)

mima2

projects the product of the expansion coefficients in the (I, m) space of angular momen-
tum and so, again, behaves like a spherical harmonics of indexes (I,m) under rotation.

Therefore, if we perform the further contraction

vl

b.nn1n2 — chnlmp’liz’bl’l’ulllg (225)

we are constructing an object that follows the same transformation rules that were used to
prove that the powerspectrum is invariant [please, compare with Eqs. (2.10]) and ([2.14])].

This proves that the bispectrum is indeed invariant under rotation.

Lastly, we remark that the bispectrum components acquire a phase factor of (—1)1+

under inversion. This can be easily proven by means of the transformation rule
Y (—1) = (-1)'Y"(2), (2.26)

and by noticing that each term in the bispectrum contains three spherical harmonics,
one for each angular momentum channel. Ultimately, this means that if we restrict our
analysis to components for which the sum [ + [; 4 [ is even, then the resulting quantity
is invariant under the action of any element of the orthogonal group O(3), namely, it is

isometrically invariant.

4This observation is of paramount importance and will lead the discussion for the rest of this chapter.
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Riemann’s projection R

Figure 2.6: One of the possible 1-dimensional Riemann mappings. In this example, the
real line, R, is mapped on the circumference shown. The projection is done by following
the dashed lines, with the north-pole being the fixed point of the projection.

Four-dimensional bispectrum We have already defined two invariant quantities that
can be used as descriptors, the powerspectrum and the bispectrum. However, our attention
has focused, so far, only on angular expansions of the atomic density. A way to incorporate
also the radial information, and thus remove the need to select a specific radial basis, is
to use a Riemann projection, as explicitly shown in both Refs. [26][27]. An example of
one dimensional Riemann mapping is reported in Fig. [2.6] Explicitly, by considering a
four-dimensional sphere S®, with radius 7y, we can perform the following mapping from

the 3d polar representation to a 4d one

_ ro sin Oy sin 6 cos ¢
rsin 6 cos ¢ ) ) _
) ] o sin B sin 6 sin ¢
r= | rsinfsing | —u= . , (2.27)
ro sin 6y cos #
rcosf
ro cos B

where the new polar angle 6y, being defined as 6, = 7r/rg, incorporates the radial in-
formation. Here r( is a parameter, usually set to ro = %rcut. The local density p;(r), is
analogously promoted from a function in 3-dimensional (3d) space, to a function defined
on the surface of a 4-dimensional sphere, and therefore can be expanded in hyperspherical
harmonics, U! (i) [the higher-dimensional analogous of the spherical harmonics [53]].

Explicitly,

atoms l

pi(r) — o, Z wz;6(0 — Wj;) fe(r) Z Z c UL (i), (2.28)
I

m,m/=—I
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with the expansion coefficients can, again obtained by an appropriate integration as
atoms
o= /dﬁpl( YUl (i) Z wyz, Ul (W) fo(rii), (2.29)

where dii = sin® 6 sin 0 sin ¢df,dfde, to span the whole 4-dimensional (4d) surface. It can
be shown that we can write similar contractions to that done for the 3d-powerspectrum
and bispectrum, and again obtain rotationally invariant quantities. In this way, we can

define the 4d-powerspectrum as

atoms

. [+1 ..
Pit 3= ) Comms Commt = 5,2 > wzwg, folrii) folre) CF (g - ), (2.30)
ik

mm/

where we used the generalized-addition theorem for spherical 4d-hyperspherical harmonics

2 2
Cla )= —— 3" Uk (UL, (&), (2.31)

with C} being Gegenbauer polynomials (four-dimensional analogues of the Legendre poly-
nomials) [53], evaluated on the scalar product between the two versors u and @'. We
can build an intuition around this scalar product, uj; - 4y, by computing it explicitly:
considering that the powerspectrum is invariant under rotation, we can always take the

versors to be in the form

0 sin(ﬁrki/ro) 1 - (IA']z . IA‘]ﬂ)2
0 0
flji . s and ﬁkz = . . . s (232)
sin(7rj; /10) sin(7mry;/ro)Tji - Tri
cos(mrj; /1) cos(mrk; /o)

and so the powerspectrum is invariant for any transformation that does not modify the

scalar product
ﬁji . ltlkz = COS(’R'TJ»L‘/T’())) COS(TI’T}CZ'/T())) + SiIl(’ﬂ'Tji/To) sin(ﬁrki/ro)f‘ﬁ . f'kz (233)

On the one hand, this expression shows that if the distances are left untouched, then
the scalar product is invariant under rotations and reflections of the regular 3d-space,
inheriting this property from the scalar product tj; - Tj; (this can be also deduced by
noticing that rotation of the 3d space form a subgroup of the rotations of the 4d one).
However, this expression is invariant under any possible rotation of the 4d space, meaning

that now we can perform rotations also around the new axis (the one defining the polar
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angle ) that, however, encodes the distances in the 3d-space. This implies that we have
introduced new symmetries that involve, simultaneously, rotations and distortions of real-
space distances. This can be further appreciated by the fact that the powerspectrum is
invariant under any transformation that leaves the scalar product in Eq. unchanged.
These unphysical symmetries are usually addressed by forcing the neighborhood to be
anchored to the north pole, explicitly modifying the density as

atoms

) = 8(8) + 3wz, 00 — ) () (2.34)

While this solves the problem from a practical point of view (the calculations are always
done with the central atoms at the north pole), moreover it does not break the symmetries
of the functions at play. We can go one step further, and construct also the 4-dimensional

bispectrum, as

) _ % Imm/ 1 lo
B’Lllll2 - § : Cim’mHl1m1m’1,lgmzmécim’lmlCimémQ7 (235>
’
mm
mim}
mam/,

which can, again, be proven to be invariant under any 4d rotation. The constants

Ilmm/ :
Hllmlm,1 F— 4d analogues of the CG coefficients, are defined as

!
Hllmm , = Clm

1mimf lamam), limilama

cm (2.36)

/ 7 .
1milams

As for the powerspectrum, this definition of bispectrum components is invariant also

under unphysical rotations around the new polar axis.

The powerspectrum and the bispectrum are at the core of the modern formulation
for descriptors in MLPs. They are ubiquitous, and constantly emerge from the most
disparate scenarios. This is not surprising, since they are invariants that naturally emerge
from the coupling of spherical harmonics. Indeed, they create a strong link between the
search for new rotational invariants and the study of the coupling of angular momentum
channels. The link is, at its core, established by the role of the CG coefficients in projecting
the spherical harmonics onto the correct, invariant space. Having presented the most
important descriptors for this thesis work, we will now proceed in discussing another
pillar of MLPs, namely, the choice of the interpolating function connecting the descriptors

to the targets.

The kernel method Our aim is to choose a way to reproduce the atomic energy &;,

and so is, essentially, to make a choice of functional forms. A possible approach is the
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“kernel” one, represented by an expression like

config.

ei(@) = Y aK(q,q"). (2.37)

Here the vector q contains the descriptors of the local environment of which we want to
calculate the energy, namely, the powerspectrum and/or the bispectrum. The vectors q*)
contain the descriptors for the k-th atomic environment (or atomic configuration) in the
training set. The coefficients «y, are determined by the fitting procedure, and K(q, q(’“)) is
a similarity kernel, giving a measure on how similar the environments described by q and
q®

matrix in the framework of Gaussian processes [see Ref. [57]]: this shows immediately that

are. One of the most useful interpretation of the kernel K is the one of a covariance

the kernel must be symmetric and positive definite. With the lens of the same general

framework, an analytical formula for the coefficients ay, can also be obtained [57]

config.

=Y (K+7"1)gew, (2.38)

k=1
where the matrix K contains the similarities between all the configurations in the dataset,
namely, K = K(q®,q*)), while g, is the atomic energy of the k-th configuration. The
parameter v is the regularisation constant. We also remark that we usually have access
to the total energy, and not to the atomic ones. Therefore, assuming the same coefficients

for all the local environments in the system, the expression to fit is usually

atoms config. atoms

E= Z eila) = Y Z K(q;,q®). (2.39)

Here, we made the approximation that we use the same kernels for each pair of envi-
ronments, implying that all the environment are formally equivalent. In general, this does

not hold, and we could differentiate, for example, between different species.

The Gaussian Approximation Potential (GAP) framework

We are now in position to define the the Gaussian approximation potential (GAP) [26]
framework as the one that encompasses the MLPs that are based on the 4d bispectrum
components (calculated on Gaussian local densities), and on a kernel approximation of

the energy. A first example of a kernel is given by the Gaussian one

1
K(B;,BW) = eXp{—§ > (B, = Biuyiy) /9”112]2}7 (2.40)

lla
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where B, is a vector containing all the 4d bispectrum components, By, defined in
Eq. (2.35]), and the superscript (k) indicates the k-th reference configuration in the training

set. The widths 6;;,;, are tunable parameters that must be optimized.

The Smooth Overlap of Atomic Positions (SOAP) The smooth overlap of atomic
positions (SOAP) [27], while defined inside the GAP framewok, follows a specific kernel

construction. It is based on the overlap integral S, defined as

S(o.0) = [ drployf (o) (2.41)

where, for readability, we dropped the atomic index, 7, from the local densities. Then, the

rotationally invariant kernel

n

, (2.42)

o) = [ |8t art = [ ar| [ awpte)see

is constructed, with n being a positive integer, and where the (Haar) integra]E] is performed
over all the possible rotations. This kernel is then obtained by integrating the similarity
between any two relative rotations of the environments described by p and p’. The expo-
nent n magnifies the effect of the overlap®, while the absolute value guarantees that the
resulting object is always positive. Let us explicitly consider the two cases n = 2 and
n = 3. Firstly, it holds that

S0 Bp) = Y CumCpms Db (R), (2.43)

nlm
n/l/m/m//

where we conveniently used the fact that p is real, and where ¢, and ¢, are the

expansion coefficients of p and p’, respectively. Note that the above expression holds only

if the radial basis is orthonormal, namely
/d?“ T’QRnl(T)Rn/l/ (T‘) == 5nn’5ll" (244)

From this, and by using the orthogonality of the Wigner-D matrices [45], that reads

8

we have that the n = 2 case reduces to the inner product between the powerspectra of p

5This integral can be performed by a parameterization in terms of the Euler angles.
6And, as will be shortly shown, increases the body order of the description.
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and p'. Explicitly

k0, 0) = Pantlrmrt (2.46)

nn'l

where p,,,,; is equivalent to the one defined in Eq. , up to a factor \/m .
Please note that, while the relations above hold, in the original SOAP formalism the
density is written in terms of atom centered Gaussians and not Dirac-delta functions. The
results are formally equivalent to the ones obtained here, but the actual analytical form
of the expansion coefficients, ¢,;,, changes. Analogously, it can be proven that the n = 3

cases can be written as the inner product between two bispectrum components. Explicitly

k(p,p) =) brminabiuning, (2.47)

where b and V' are proportional to the bispectrum components defined in Eq. (2.19)), for

the densities p and p/, respectively. Finally, the formalism used the scaled kernel defined

K(p.p) ;_< klp. /) )C. (2.48)
VE(p, k(o ')

The right-hand side is elevated to an integer power (, to magnify the variations of the

as

kernel with respect to changes in the atomic positions.

Potentials based on the GAP-framework have proven to be an important tool in in-
vestigating large portions of the energetic landscape of many systems of interest, with a
significant reduction of the computational costs, all while preserving ab-initio-accuracy
levels (see, for example, Ref. [58]). Not only were they capable of reaching high accu-
racy for specific systems (such as graphene in Ref. [59]), and interpolate between different
phases, but they have been successfully applied also to large systems, for example in the
case of silicon [60] and carbon [50, 58]. However, as shown in Ref. [61], there is a quite
severe trade-off between the model performance and the computational overhead. This
problem can be solved either by adopting a strategy to make the kernel calculations more
efficient (such as in the TurboGAP of Ref. [62]), or by adopting new models based on the

same descriptors, as shown in the next section.

2.1.3 SNAP

The spectral neighbours analysis potential (SNAP) [24] utilizes the 4d bispectrum
Bjjij, in a linear fit of the energy (note that an inner-product kernel is equivalent to a

linear model). In this way, the atomic energy is approximated by

g =~ SNAP(BY) = g7 4 3% - B (2.49)
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Here, (BOZZ', B%), are the coefficients to be fitted, while the vector B contains all the
bispectrum components evaluated on the environment of the i-th atom. Despite is ap-
parent simplicity and compactness (usually a SNAP model possesses 56 components for
each species involved), it proved to be a very successful model in predicting the energetic
landscape, as shown, for example, in the case of alloys and metals [17][63]. Also, by the
exploiting the linearity of the model, the forces and the components of the stress tensor

assume the simple form [note that £ =), ¢]

( atoms ;
, 0B’
F=-ViE=-5 Z or;’
i J
N o (2.50)
W = — . E=_03. . -
;rﬂ@vj 7 j—1rj®§arj
\ - - =

We remark that, despite using the 4d bispectrum descriptors, analogous formulas can
be obtained for any descriptors that describe the atomic energies by means of a linear
regression.

Among the most important extension for SNAP, we mention here the quadratic SNAP
(qSNAP, Ref. [64]), which expanded the linear regression in order to contain also quadratic
products of bispectrum components, and the “explicit multi-element extension” of the
SNAP potential (EME-SNAP, Ref. [65]) that tackled the problem of constructing a rep-
resentation for multi-element systems. While, in general, these methods enhance the
accuracy of the potential, they also largely increase the computational cost.

In the following section we will consider another model which combines the linearity
of the SNAP with the descriptive power of the kernel methods. As will be made clear,
this model will encompass both the powerspectrum and bispectrum, introducing also a

possible new class of higher-body descriptors.

2.1.4 ACE

The Atomic Cluster Expansion (ACE) [25], as the name suggests, is a MLP which is
based on the cluster expansion of the atomic energies ; with respect to an increasingly
higher number of bonds considered. Here, we will use a slightly different, albeit equivalent,
approach to the ACE formalism than the one of the original work. We will do to introduce

strategies and expressions that will be useful for the remainder of this thesis.
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The starting point for the construction of the ACE formalism is, again, the atomic

energy ¢;, which is expanded in cluster contributions as

atoms atoms atoms
(1) + Z I']Z Z ’U(3) (rji7 rki) + Z U(4) (I‘ji, | rpi) —+ ... s (251)
(7k) (7kp)s

where v(™ is a n-cluster, or n-Body (nB) potential, and 51(.1) is a constant shift. The first
sum runs over all the atoms, up to a cut-off, in the environment of the i-th atom, the
second sum runs over all the unique pairs of atoms in the same neighborhood, the third
sum over all the unique triplets, and so on. We now introduce an orthonormal basis,
{Gnim}, to expand the density, in the same spirit as the one already used in Eq. .
With basis elements defined as

Prim (¥) = Rt (1)Y;" (1), (2.52)
we obtain the expression|
Vi>vs
'+ ZZG(Z)@ rji) + Z Z al®), B, (rji)buy (1) +
N> >us n (2.53)

- Z Z V1V2V3¢V1 rﬂ)¢l/2 (I'kz)¢y3 (I'ﬂ) + ...,

jkp vivavs

where the subscript v is a short-hand for the collection of indexes v = (n,l,m). We also
assume that the nB-expansion coefficients a(™ are symmetric under index permutations,
and so we can consider only ordered summationsﬂ Crucially, in going from Eq. to
Eq. , we can notice how the summations over all the atoms are now unrestricted.
This can be achieved by means of the following trick, which is shown for the particular
case of the 3B terms: since the basis {¢,} is complete, then the cases in the sum above

for which & = j can be written as

V1 >o V12>V
Z Z 1/11/2¢V1 r]Z ¢V2 rjl Z Z [Z 51?1/2 1/1112] ¢V(rﬂ) (254)
J.k=j vive J.g=k v viv2

where the coefficients ¢} ,, are the expansion coefficients of the product of two basis func-

tion in terms of a single one. Explicitly, if the basis functions are normalized, we have the

"Please, note that, contrary to the original ACE paper, the superscripts here will indicate the body
order and not the correlation order.
8 Any ordering of choice, e.g., lexicographic ordering, can be applied here.
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expressions
G (D) (r) = Y ¢, 00(r), with ¢, = / dre;(r) gy, (r) ¢y, (r). (2.55)

This shows that, in going from the restricted to the unrestricted sum, we effectively
introduced an additional 2B terms: crucially, we can be then re-absorb them by a re-
definition of the expansion coefficients of lower-body order terms. Analogous considera-
tions can be carried out for any of the terms in the expansion above [Eq. (2.53)].

If we now take the density of Eq. (2.6), and its expansion in the basis {¢}} (note that

the density is real)
= o —r;) =D Audi(r), (2.56)
J v

then the expansion coefficients, that constitute the so-called atomic basis, read

A = /drpZ Zgbl, (rj;). (2.57)

Crucially, this step introduces the density trick in the cluster expansion, by allowing
to re-write Eq. (2.53)) as

V1 >Uo V1> >vs
+ Z (I All/ + Z aul 12] AZVl A“/Q + Z 1/1 V2V3 AZVl AU/Q AZVJ + (2 58)
1282 vivoVv3

Since the computational cost required for the evaluation of the elements of the atomic
basis scales linearly with the numbers of atoms in the neighborhood, then one of the
most important feats of the ACE expansion is the implementation of this scaling within

a hierarchically-improvable, cluster-expansion-based scheme.

Symmetries Let us analyse the symmetry of the expansion in Eq. . The symmetry
with respect to atomic permutation is naturally enforced by the summation over all the
atoms in the atomic basis, A;,, and by considering only ordered indexes v (so that the
expansion is symmetric under the exchange of atomic basis). The locality of the potentials
is enforced by choosing a radial basis, R, (r), that goes smoothly to zero at the cut-off
radius. This is usually done by defining a complete set of orthonormal functions, with an
envelope given by the cut-off function, f.(r;;).

Instead, care must be taken when considering the symmetry under rotation. Indeed,
we can enforce it by selecting, from the summations in Eq. , only the combinations
of indexes which result in a rotationally invariant quantity. The terms of the atomic basis,

Aiim, have the same formal role of the expansion coefficients ¢;,;,,, defined in the GAP
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framework. This means that we can employ the coupling scheme of the powerspectrum
and the bispectrum, for the 2B and 3B terms, respectively. This leads toﬂ

(
Bi(s) = Ainoo,
!

(3) _ m
Bmmgl § ,(_ ) Am1lm ingl—m — E Azmlm inglm>

m=—1 m=-—I
@ Z Lol I3
4 B4n1”2n3 - AinlllmlAinglzmgAin;;lgmg7 (259)
v lylals my Mg Mg
mimams

(5) Z Lol I3 Uy
B.n1n2n3n4 - Ain1l1m1 Ainglgmg Ain3l3m3 A'm4l4m4 )

b llalsly e — my Mo M3 My

\

We note the formal equivalence with the powerspectrum, p,.m, of Eq. , and
the 3B-term, B®. We also rapidly mention that the 4B term, B®, is equivalent to the
bispectrum coupling of Eq. - Indeed, we can use the well-known 3j-Wigner symbols,
proportional to CG coefficients and defined by the identity

1 Iy I3 — Mclg—rm, ) (260)
my Mg Mg m frmlama

The 3j-symbols are symmetric under any even permutation of columns, while they
acquire a phase factor of (—1)4+2+s (directly linked with the effect of the reflection of
the axis mentioned in section , under any odd permutation of columns. Since, it
holds that Y™ = (—1)™Y,”™, then, we can manifest the equivalence between BW and
the bispectrum (up to a proportionality factor) by simply re-labelling ms in —mg. One
of the most important achievements of the ACE formalism is that it paves the way to a
systematic definition of higher-body-order terms. In particular, the rotationally invariant

coupling introduced for the five-body term, B®), is performed by the coefficients

ll l2 l3 l4 m
[ ] = Z(_1> l1m1l2m20l13m314m47 (261)

my Mo M3 1My I

which, as already discussed, can be interpreted as a first projection of (l;mqlams) on the
space at (Im), a second projection of (I3mslymy4) on the same space, and a final contrac-
tion, in the same spirit of the powerspectrum coupling. While this way of proceeding is
systematic, care is required for the degeneracy of the coupling scheme, since one could

choose among different, albeit same-space spanning, couplings (see Ref. [66]).

9We remark here again that we use a slightly different super-script notation with respect to the original
ACE paper.
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Body order: 2B

Associated scalar

coupling scheme © (distances) powerspectrum bispectrum

Figure 2.7: The main ingredients of the ACE framework are shown. The core of the
formalism is the cluster expansion in a multi-body orders (the chemical potential is not
explicitly shown). Then, the focus lies in recasting the expressions in term of coefficients
of the atomic density. This is achieved by introducing self-energy terms which, depending
only on lower body orders, can be always reabsorbed by means of coefficient re-definitions.
Once the expression is written in terms of the density, everything is linear in the number of
atoms in the neighborhood. Finally, only terms that produce scalar quantities are retained,
by means of a coefficient selection based on the coupling of angular momenta: this allows
to recover expressions which are analogous to the powerspectrum and the bispectrum.

Finally, by discarding all the terms for which the sum over the principal angular mo-
mentum number, » . [;, is odd, we can enforce also symmetry under reflection, and obtain

the final expression for the atomic energy ¢;

K K
g = Za‘g ) = ZC(K) ~BZ(» ), (2.62)
K K

Here, we grouped the terms by body order K, with the definition of the K-body atomic

(K) . (). B

energies, € . Thus, the vector ¢¥) contains all the K-body expansion coef-
ficients. A graphical representation of the main point of this section are shown in Fig. [2.7]
The ACE framework has achieved great success in combining the density trick with a sys-
tematically improvable way of reaching higher body order, which generalized all previous
approaches. It achieves high performance on both organic molecules|67] and large-scale
simulations[68]. Finally, an optimized and efficient implementation has been formulated
and made available (see PACE, Ref. [69]). For all these reasons we will adopt the same

cluster-expansion foundation in defining the Jacobi-Legendre descriptors in Chapter [4]

2.2 Descriptors for Tensors

In the previous section we have investigated a few of the most important MLP, designed
to target scalar quantities, in particular the energy, of a given system. However, not all
the quantities of physical interest behave are isometrically invariant. On the contrary,

vectorial (velocities, forces, dipoles), and tensorial (stress tensor, polarizability) quantities
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are ubiquitous. Indeed, to be able to efficiently predict tensor components is a crucial
goal of any ML framework that aims to accelerating material discovery or investigation
(for example in accelerated investigation of Raman [70, 71] and infrared [72] spectra).
Therefore, lots of work has been focused on the construction of rotationally-covariant
descriptors, namely descriptors that follow the same mixing of the components of a tensor,
when a general rotation is applied.

In this section, we will first show how to cast the target in a form that clearly defines
the effect of a rotation on the targets, so that a strategy to construct the descriptors could
be easily outlined. We will then proceed in presenting a few of the most used covariant

descriptors and models.

2.2.1 Spherical decomposition

Let us begin by showing how to decompose a tensor in its spherical components, to
define the relations to enforce under rotations. A cartesian tensor of rank r (for example,
a rank 2 stress tensor W, in which we define the components in terms of the cartesian
frame of reference, as Wy, Wy, ..., W,,), can always be decomposed, by means of
an appropriate change of basis, in terms of its spherical components. These are the
components that, under a rotation of the frame of reference, follow the same transformation
rules of the analogous spherical harmonics: indeed they are identified by three labels: the
first indicating the angular quantum number [/, ranging from 0 to the rank of the tensor.
The second corresponding to the magnetic quantum number m, defined in the range
[—1,1]. The third labelling which coupling scheme has been chosen: indeed, the spherical
decomposition is usually not unique, and different combinations of cartesian components,
despite being independent (in the sense that they do not mix under rotations), can share
the same pairs (I,m). We will rapidly explore how this procedure is done, starting by the

simplest case of a vector (tensors of rank 1) [please see Refs. |54, [73] for details].

Spherical decomposition of a vector We can define the spherical decomposition of a

cartesian vector V = (V,,,V,, V) by looking at the very definition of spherical harmonics

\/gm —in), YRR = @ (263)

In complete analogy, we can define the spherical decomposition of the vector V' as

of order 1, namely

Vi (k) =

N | —

Vi = —(FV,—iV,) and Vy=1V,, (2.64)

1
V2
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that, by construction, will transform as the components of the spherical harmonic Y.

This transformation can be written in matrix notation as

V= 3 gl (2.65)

1':17?/72

where u = (u,;) is the transformation matrix [defined by Eq. (2.64))]

—1 —i 0
u=—\|1 —i 0 |. (2.66)
2
V2 0 0 2

Spherical decomposition of a tensor of rank 2 A cartesian tensor of rank 2 can be
represented by a 3x3 square matrix, M. We now use the trick of re-casting the matrix in

terms of the outer product of two vectors V and U, combined in a dyad, as
Mij = V;U] where Za] =T,Y,z. (267)

If we now perform a spherical decomposition on each of the vectors of the dyad [by
means of Eq. (2.64)] we are led to the expression

Mgy, = Vo Ug, = Z Ugyitgy; ViV = Z Ugy ity Mij, (2.68)

17]:‘T7y7z Z?]:x7y7z

which shows how we can always write the components M, ,, in terms of the cartesian

192
ones, by means of the matrix u. However, these components still do not follow the trans-
formation rules of the spherical harmonics under a global rotation. Indeed, we recall that,
as demonstrated in Eq. (2.22)), by performing a coupling via the CG coefficients we can
define quantities that are projected in the intended (I, m) space, i.e., that follow the same
transformation rule of the spherical harmonic Y;” under rotation. Therefore, the spherical

decomposition of a tensor of rank 2 is given by

1 1
Mlm - Z Z Ci?(;lngqwz' (2.69)

@1=—1g2=-1

Given the selection rules of the CG, we can see that the only cases allowed are [ =
2,1,0. As in the vectorial case, we do not have any degeneracy here, and so the spherical

components of the matrix M are uniquely defined by the pairs (I, m).

Higher-rank tensors The procedure to decompose higher-rank tensors in spherical

components follows the same recipe: introduce as many cartesian vectors as the tensor
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rank, and cast them in terms of their spherical decomposition. However, when decom-
posing tensors of rank 3 or higher, we have to choose a coupling scheme. In the example
of a rank 3 tensor, after constructing a tryad of vectors, we could decide to couple the
first two by means of a CG coefficient, and then couple with the remaining vector. Or we
could choose a completely different ordering. This implies that we have to keep track of
the coupling scheme, since the same total (I,m) can be obtained by different routes. If we
denote the rank 3 tensor by T, the spherical components of order [ = 1 (that transform

as the spherical harmonic of order 1), can be obtained in the following three ways

p

m m 1 -
(0)T1 = 20301% (Z O?gllquqlqw:s) - ﬁ Z(_l)l Ty —qums for 1,,0+1,
q3 q1q2 q1
m m 1
< (1)T1 - Z Cllqlglqg <Z ClglliQQTQI‘DQ?:) ? for 1+11 + 17
q1243 q192
A =3 O3 (Z Cf;ﬁgqum) , for 1,12+ 1,
. m12q3 q192

(2.70)
where we explicitly indicated the angular momentum coupling scheme as pre-indexes, so
that, for example, ; ;0 indicates that we are considering the space 0 resulting from the
coupling of 1+ 1 angular-momentum spaces. If, on the one hand, these three cases do not
mix (albeit they share the same (I, m)), the first case explicitly shows how a different choice
of coupling scheme generally leads to different results. Indeed the last index of T}, _qm
is not on the same footing as the first two. We remark, however, that we can usually
exploit the symmetries of the tensor T to reduce the degeneracy and obtain expressions
that could even be independent of the choice of a particular coupling scheme [please, see
Ref. [74]].

We have shown how to decompose a tensor in a manner that mimics the same transfor-
mation rules of the spherical harmonics. This is crucial for the construction of covariant
descriptors, since we can now apply the same mathematical framework that led to the
search for rotationally invariant quantities, again closely related with the transformation

behaviour of the spherical harmonics.

2.2.2 SA-GPR framework: the \-SOAP

We discuss here the symmetry-adapted Gaussian process regression framework (SA-
GPR) introduced in Ref. [28]. The proposed kernel model is based on the same formalism
of the SOAP model, and as such is called A-SOAP. We will, indeed, follow the same recipe
outlined in the SOAP section, by showing how to construct covariant descriptors, and by

introducing the covariant A-SOAP kernels.
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A “covariant powerspectrum” The main underlying assumption for the definition of
covariant descriptors is, again, the partitioning of a tensor in atomic contributions. So, if

we have a tensor T, we can write
atoms

T=)> T, (2.71)

which mirrors what has been already done for the energy. In a further analogy with
MLPs, we will also assume that the atoms that contribute to T; are the ones inside a
cut-off sphere around the i-th atom. It is important, however, to remark that not all the
atoms must be necessarily included in the sum above. If, for example, a few atoms are
deemed to have a more relevant contribution to the total tensor than others, then we can

neglect the non-relevant atoms and include only the significant ones in the sum above.

The last idea lies, again, in the introduction of the atomic density, p(r), to represent
our local environment, and its expansion in radial functions and spherical harmonics (as
shown in Eq. ) Please note that the original A-SOAP definition utilizes, again, atom-
centered Gaussians in the definition of the density, and not Dirac-delta functions. This will
not change the formal expression derived here, but it impacts the specific expression of the
expansion coefficients, c;n;,. We have already shown the invariance of the powerspectrum
and the bispectrum under rotation [see Eqs. and ] However, in proving the
rotational invariance of the bispectrum components, we also proved that the quantity in
Eq. (2.24)), reported here for readability

Im _
Pininolils = Z CllmllgmzclnlllmlC2n2l2m27 (272)

mima

follows the same transformation rule, under rotation, of the spherical harmonic ¥;". We
then already defined a covariant descriptors, which can be seen as a generalization of the
standard powerspectrum'] Finally, it is clear that this new definition also encompasses

the standard powerspectrum. Indeed, if [ = 0, then C9 = 01,1,0m,my, and we obtain

1lomimg

the powerspectrum [Eq. (2.10)] again.

Defining the A-SOAP kernels Following the same derivation used for the SOAP
kernel, one could be tempted to write the covariant kernel by a contraction of the covariant
powerspectra of two atomic environments (here represented by their atomic density p and
p'). Explicitly
l Im lm
kmlmg Z pn171L2l1l2 pnl'rzlzlllg (p/>7 (273)

ninalile

10Please, note that the powerspectrum defined for the \-SOAP is obtained by multiplying the definition

in Eq. (2.72) by (=1)b7!/V20 + 1.
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where we dropped the index ¢ for readability. This is indeed the case, and the kernel above
is a legitimate one when treating covariant targets, and a particular example of a A-SOAP
kernel. It is nevertheless interesting to outline how this kernel is constructed. We can
consider again the overlap integral of Eq. as our starting point, but now, instead
of introducing the invariant kernel of Eq. (2.42)), we can follow the same technique firstly
introduced in Ref. [75] for forces (vectors), and then extended to any tensorial quantity

in Ref. [28]. Essentially, this consists in defining the covariant kernel by means of the

- [l ®) [ arpwsn|

(2.74)

Wigner-D matrices as

kinymg( p) ‘ /d‘R D’inlmg )}S(p’ Rp,)

Indeed, it can be easily proven that this kernel satisfies the property
K (Rip, Rop') = D'(R1)K (p, p)D' (R 1), (2.75)

which is the required transformation property for a covariant kernel. In the case of a
density of the form of Eq. , or a density obtained by a sum of atom-centered Gaussians,
the integrals can be computed analytically. For the case n = 2, we obtain exactly the kernel
of Eq. , with the contraction of “covariant powerspectra”. Please note that, as done

for the invariant case, the kernels are again normalized by means of

l kinlmg(pv p/)

Koo (02 0) =
e VI (o, o) TKE s )1

(2.76)

where ||-|| is the Frobenius norm.

The model With the definition of the covariant descriptors and the covariant kernel,

we can now write the kernel model for the spherical components of a tensor T as

1 N 1 N data Oé
IR OIS 910 9D DD SEMUNYI) N

J m/= jeJ

where N is the number of atoms in the system, 777 is the contribution of the i-th envi-
ronment to the tensor, the sum over J runs over all the systems in the training set, and
where the sum over j runs over all the N; atoms in the J-th system. Finally, o}, , are
the coefficients to be evaluated/trained. The obtained model not only has the correct
transformation properties, but can also benefit from the hierarchical nature of the kernel
approach, so that higher-order kernels [in terms of the n exponent in Eq. ] can always

be computed. However, the A-SOAP kernels can get computationally heavy, in particular
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when higher-order terms are evaluated. An application of the SA-GPR framework, where
this problem was addressed, can be found in Ref. [76]. There, not only were kernels at
different cut-off radii employed to increase the accuracy of the resulting model, but also,
[ = 0 kernels (standard SOAP) were multiplied by [ > 0 ones, to increase the degree of
non-linearity while not increasing the exponent n. Indeed, the transformation properties
of a covariant object are unaffected if the object itself is decorated with a rotationally-
invariant quantity. This same strategy is behind the following model, based on the SNAP

formalism.

2.2.3 Extension of SNAP to tensorial quantities

Connecting a scalar descriptor with a covariant quantity is the approach proposed in
the recent work from Ref. [77]. The descriptors defined for this model are bispectrum
components decorated with spherical harmonics to ensure the covariant behaviour of the
total object. This approach is an evolution of the one based on the 4d bispectrum, proposed
in Ref. [7§]. There, however, the systems were aligned with an appropriate reference
configuration, to evaluate all the bispectrum components on the same footing. On the
contrary, the new approach allows to have a build-in covariance directly in the descriptors.

Indeed, the proposed expression for the tensor components is

N

N
"= Z 7= ann Bu, Y (D), (2.78)

1 Uil

where the first sum is over the N atoms in the system, and By, are the 4d-bispectrum
components, used in the SNAP model, and given in Eq. 1) Here the term ?;n(z) is
defined as

atoms

Y'(i) = Z fe(ri) Y™ (T5), (2.79)

which is manifestly covariant, being a simple sum of spherical harmonics. The function
fe is a cut-off which, in the simplest case, is a discontinuous cut at the cut-off radius.
The model is fully linear, and as such simple regression methods can be used to train the
coefficients a;;,;, and, in this sense, this approach can be seen as a covariant extension of
SNAP. Despite its simplicity and compactness the model is capable of reaching accuracies

that can approximate the ones of the more complex A-SOAP.

!1Please note that, in the fitting procedure, the bispectrum components can be divided by the number
of atoms to have normalized descriptors.
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2.2.4 A general formula for covariant descriptors

There are a few other approaches that lean toward the prediction of tensorial quantities.
We will not treat them explicitly here but, among the others, we mention the model
devoted to the prediction of orbital-related block of an Hamiltonian that can be found in
Ref. [79], or the N-body iterative contraction of equivariants (NICE) of Ref. [38]. These
methods are closely related in spirit to the A-SOAP kernel construction of Eq. (2.74).
We will rapidly outline the core of these approaches, which lies in the following general
construction for covariant quantities. Let us consider an atomic function Fj, centered on
the i-th atom, and depending on the relative positions of all atoms in its surroundings
F; = F;({r;;}) [all the descriptors presented so far are sums of terms of this form]. The

function defined as

Sl = 007 ) [ 4R DL, (RIF({ i, (2.50)

transforms as the spherical harmonics of ¥,! under a rotation of the atomic coordinates

(here, 8, is an unimportant auxiliary variable). This means that

G (8 {Rirji}) =) D (R1)G (85 {rsi}), (2.81)

m/

as proven by the following chain of identities

(8; {Rir;i}) Z VAE / dR D', (R)F;({R,Rr;})

_Zymé/ Z

l -1\ Ar-i
ZDW Dl (Ry)| DL (RTY) Fi({Rrji})

*d(RRl) g L =Dl (R1)
—Dinml(RRl)
—ZDmml (R1) ZY’”'(é)/dRDfn/m( VE({Rrji}) = Y Dir (ROG™ (8 {rsi)-
m/ mi

(2.82)

Here, in going from the first to the second line, we used the inverse of the Wigner-D

matrices

Z Dm2m1 Rl Dinlm(Rl_1> - 5m2m‘

In a formalism based on the Dirac-braket notation, similar to the one introduced in
Refs. [44, 80], we defined the function

G5 (130) = (8 | [ AR i) Fi( () 283)
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and we proved that the terms inside the square brackets transforms, under a rotation
of the atomic coordinates, as the state |Im) [please, compare with Eq. (38) of Ref. [46]].
Finally we can understand the role of the Wigner-D matrices by comparing Eq. and
Eq. . Indeed, in both cases the rotation matrices act as projectors into the desired
space. In particular, we can loosely read the function G}" as a contraction of the more

general covariant kernel of Eq. (2.74)) with a spherical harmonic.

2.3 Descriptors for Electron Density

Having explored descriptors for scalar and tensorial quantities, we close this chapter
by outlined the construction of descriptors for scalar fields, defined on 3d space (R3), such
as the DFT electron density.

Analogously to what was done for all the other descriptors above, we will consider only
atomic-scalar fields, namely functions n(r), that parametrically depend on the positions
{r;} of the atoms in a system, n(r;{r;}). As for the scalar and tensorial quantities, also
the scalar fields have a well defined behaviour under symmetry operations. Indeed, let us
consider a transformation 7', either a translation or a rotation. If we indicate by n; the

function obtained by a rotation of the system of atoms, then it must hold that

nz(r; {r;}) = n(r; {Tr;}) = n(T"'r; {r;}), (2.84)

which is the property that we must enforce on the representation of a scalar field. A

density function as defined in Eq. (2.6, satisfies this property, as can be explicitly seen by

atoms atoms

pZT Z wz,0 TrjZ fe(rji) Z wz,0 T 'r — rji)fe(rji) = pi(Tflr), (2.85)

where we exploit the fact that, if 7" is either a translation or a rotation, then & (r— Trﬂ) =
5(T‘1r —1;;). Indeed the use of an atomic density such as p; will be the starting point
for the descriptors introduced in the next section. For the remainder of the chapter, both

p(r) and n(r) will refer to the electronic density.
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2.3.1 SALTED

We present here the strategy behind the description of the electronic density adopted
in the symmetry-adapted learning of three-dimensional electron density (SALTED) [29],
which is based on the framework introduced in Refs. [81] and [82]. The SALTED de-
scriptors, in analogy to all the other descriptors discussed so far, are constructed on a
partition of the electronic density in atomic contributions. The atomic contributions are

then expanded again in a radial and spherical harmonics basis, [in the same spirit of Eqgs.

29RIERI)] as

plr) = D pilr) = 3 D Contm Bt ()Y (£). (2.86)

We already proved, in Eq.(2.13)), how the coefficients ¢;,;, transform, under a rotation
of the frame of reference, as the spherical harmonics Y;™ [please, see Eq. (2.13)]. Thus, if

ch .. are the coefficients of the rotated density, pj(r), then it holds that
Cﬁmlm = Z Di::m’ (R)Cinlm’- (287)

This means that the expansion coefficients are, indeed, covariant quantities, and, as
such, can be addressed by a SA-GPR. Thus, we can predict the expansion coefficients by
means of the covariant kernel defined in Eq. (2.74]), as

data l

Cinlm = Z Z a‘zllm/k?izm/(%ﬂjﬁzizj- (2.88)
!

j om/=-

where the sum on j runs over the reference data, and where only same species’ kernels
are allowed. Obtaining the coefficients afllm, is the aim of the fitting procedure. While
this method inherits all the versatility of the A-SOAP approach, such as the possibility to
reach higher-order kernels by means of larger n in Eq. , it also suffers from the high

computational overhead of the descriptor calculations.
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2.3.2 Adapted Symmetry Functions and SNAP

The next descriptors can be interpreted as an extension of the Behler-Parrinello sym-
metry functions, and have been introduced in the work from Ref. [83], where they were
implemented within a NN architecture. They are based on the idea of covering the real 3d
space with a uniform mesh of grid points, r,, and then evaluate the symmetry functions

centered on each of the ry. The functions utilized are

atoms

2,
Sk - Ck Z eXp(%) fc(rgi)a (289)
k

7

atoms o 2
Vk = Ck Xl: 25_’% eXp( 20% )fc(rgi)a (290)
s atoms 7“3,-7“51- _Tgi
T,” = Cy Z ot P( 52 fe(rgi), (2.91)
i k k

where C), = ((27)%20;,)7! is the normalization for the k-th Gaussian. Comparing the
scalar fields, Sy, with Eq. (2.3), we notice the similarity with the two-body functions G},
where the grid point r, is formally treated on the same footing of an atom. The vectorial
functions, Vi, and the tensorial ones, T} g , are obtained by differentiating the scalar fields.
Indeed the operation of differentiation is arguably the simplest way to obtain covariant
quantities from scalar ones (for example, the forces are obtained by differentiation of the
energy terms). These features, designed specifically for a NN, are among the first examples
of descriptors adapted to be evaluated on grid points. This allows for an introduction of
the real-3D space, R3, on the same footing of the atoms. However, because the mesh is
usually uniform in space, and because the descriptors must be evaluated for each grid
point, these descriptors carry redundancies and a large computational cost. Also, since
the functions above are derived from two-body symmetry functions, they are only one-
body in the atoms [the other one being the grid point|, and so the description is severely
degenerate, in the sense that very different atomic configurations can result in the same
fingerprints. This last problem was partially addressed by the more recent work work
from Ref. [84], where the fingerprints role was taken by SNAP components, By, from
Eq. (2.35), and again evaluated by sitting on a grid point, as graphically shown in Fig.[2.§
While this approach elevated the descriptors to be three-body in nature [three atoms and
a grid point], it was still based on a NN architecture and in an uniform, evenly spaced,
grid. Therefore most of the problematic aspects of the first method can be found also for
the SNAP-based one.
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Figure 2.8: The main recipe to construct descriptors for a scalar field defined on the 3d-
space is shown. The idea is to combine an atomic centered representation with a mesh
of grid points covering the whole space. This carries fundamental assumptions, such as
the idea of atomic decomposition of the density and of locality (enforced by the cut-off
radius), into the new description. As such, the formalism is modified by simply applying
a “promotion”, from the central atom, ¢, to the grid point ¢ (located at r,).

2.3.3 Conclusions

In this chapter, we have introduced the key ideas (atomic decomposition, locality, the
density trick, the kernel methods and the grid trick) and mathematical tools (coupling
of angular momenta, basis expansion, rotations encoded by means of the Wigner-D ma-
trices) that constitute the foundation for the rest of this thesis. Starting from the next
chapter, we will heavily employ the methods showed here, with the aim of defining de-
scriptors that describe vector fields. From Chapter [4|to the end of the thesis, we will focus
on the construction of a cluster-expansion-based machine-learning potential framework,
constructed over internal coordinates, that will be able to encompass all the cases (from

scalar to vector fields) described in this section.
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Chapter 3
Powerspectrum for vector fields

This chapter is devoted to a review of the method presented in the published work ‘A
spectral-neighbour representation for vector fields: machine-learning potentials including
spin” (in Ref. [85]), of which I am a co-author. My role in the article focused on the de-
velopment of the mathematical framework and in part of its implementation. To maintain
internal coherence with the rest of the thesis, we will follow a slightly different formalism,

albeit equivalent, than the one used in the published manuscript.

3.1 Introduction

In the previous chapter, we have introduced several MLPs for accurate description
of potential energy surfaces (PESs). However, all the descriptors shown are defined in
terms of atomic positions only, and us such are not able to account for cases in which
there is a non-position-related degeneracy in the state of the system, e.g., in the case
ferromagnetic and antiferromagnetic states, as shown in Fig. To investigate such
PESs, one could always try to equip the MLP model with ad-hoc terms describing the
magnetic interactions: this approach has been followed in Ref. [86], where a SNAP model
was trained alongside a classical Heisenberg Hamiltonian. Or as done in Ref. [87], where
a NN was constructed over a set of local spin interactions, in in terms of scalar products
between the spins, as fingerprints. In this chapter, however, our aim will be on defining
general descriptors that rely on as few assumption as possible regarding the functional form
of the interaction. Efforts in this direction have been made in Ref. [88], where the Behler-
Parrinello symmetry functions were generalized in order to carry the vectorial information
of spin-collinear PESs (with fixed length of the spins). Similarly, in Ref. [89], NN-trained
corrections were added to an Hamiltonian containing an Heisenberg and a Landau term
(the corrections were formulated again in terms of modified symmetry functions). Another

approach has been pursued in Ref. [90], where the magnetic vectors were treated on the
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A A A A

\4

Figure 3.1: Two systems with the same atomic configurations but with different magnetic
phases. Descriptors based on the atomic positions only are not able to distinguish between
the two scenarios.

same footing of the atomic position vectors by constructing higher order tensors: this was
done by means of appropriate external products in the same spirit of the Moment Tensor
Potential framework [23]. It is also important to mention the generalization of the ACE
model, aimed to encode general tensorial quantities [91], which was used very recently to
train an ACE model on non-collinear iron systems [92]. Because the ACE’s framework
encompasses all possible coupling of angular momenta, it is always possible to map the
method presented here in a low-body order expansion of a corresponding ACE potential.
However, in this work, we will keep the vectorial nature of the quantities involved (local-
semi-classical spins), and, inspired by the compactness of the SNAP potential, we will
proceed only on defining a powerspectrum formalism. This is different to what done
in the aforementioned ACE, where the vectors were described by delta functions. Our
choice, instead, will result in a compact potential which, despite the small number of
components involved, shows already a good descriptive power. Moreover, being grounded
on the mathematical formalism of the powerspectrum, our method allows enough flexibility
to be generalized to higher-order correlations by means of an appropriate kernel approach:
this has been recently done by M.-T. Suzuki and co-workers [see Ref. [93]], where the
construction introduced here is generalized to the GAP framework and to higher-body
order expansions. As a final remark, the study of the powerspectrum in this new context
allows to meticulously study properties that can be applied also to cases of atomic-position-

based potentials.

This chapter will be structured as follows: we will first introduce the methods and show
how to construct rotationally invariant quantities starting from a density representation
of a vector field. This will employ the use of the spherical decomposition of the field
and of the bipolar-spherical harmonics. We will then define the powerspectrum and will

study, in detail, its most relevant properties. This will be followed by the construction
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of a toy-model, simulating a cluster of iron atoms, to investigate the descriptive power
of the powerspectrum in fully controlled scenarios. We will prove that a linear model
that employs only the powerspectrum as descriptors is able to accurately describe a PES
characterized by an Heisenberg interaction, with elements of spin-lattice coupling, when
the training is performed on distorted ferromagnetic systems. We will then add Landau
contributions to test the limits of the model when in presence of longitudinal interactions,
and will compare the results with a GAP-based extension, capable of a natural introduction

of non-linearity in the description.

3.2 Methods

The starting point of our discussion is the general atomic density (see Eq. (2.6))

pi(r) = D wzd(r —rj), (3.1)

75i<Tcut

where the sum runs over the atoms in the cut-off sphere. The choice of the Dirac-delta
functions to describe the local environment is not unique: other approaches are possible,
such as the one used in Ref. [93], where Gaussians functions were employed (in the spirit
of the GAP framework). We now assume that we can associate a vector, v;, to each atom
in the system, i.e., we will define a vector field from the atomic density p(r). To fix the
ideas, we will explicitly consider the case of local-semi-classical spins, but this approach is
independent on the nature of the field introduced. Thus, the newly defined vectorial field,

p,(r), is written as

atoms

pi(r) = Y wgd(r—rj)v;. (32)

Tjigrcut

We now aim to choose a suitable basis for the expansion of the density. Normally, a

vector is expanded in cartesian components as
Vi = 0;4€, + V€, + V; .€,, (3.3)

however, since our goal is to construct rotationally invariant quantities in terms of an
harmonic representation, it is more appropriate to use the spherical versors (please, see
Ref [54, 73], and section [2.2.1])

1
61y = :Fﬁ(ém +ie,), and & =é., (3.4)

which transforms, under rotation, as the spherical harmonics Y}?, with ¢ = 0,4+1. This
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relation is the one already introduced in Eq. (2.64)), where the decomposition of a vector

in its spherical components was shown. Therefore, by using the matrix u of Egs. (2.65))

and (2.66)), we can writd™]
~ ~ -1 ~
Vi = Z Vjp€p = Z Yjp Z )pgUap €y

DP=T,Y,% 9= 0,£1
g
=5pp/
(3.5)
= < UV, (U_l) > ( u /é /) = U; é
E E:%P Pq E:qpp E:Lq(b
q=0,%1 P 4 q=0,%1
L. AN J
v TV
=Yg =€q

which shows how to evaluate the harmonic components of the vector v; by means of the

inverse of the matrix u. Explicitly, they read

1 :
Vjt1 = E(:ij’x + Z'Uj’y), and V0 = Vjz- (36)

Given the formal equivalence between the versors €, and the spherical harmonics Y}’
(they also form orthonormal sets), we can go a step further and directly replace the basis

versors with spherical harmonics as

. eg—Y{(8) R ~
Vi= D el — 2 Via(3) = D v (), (3.7)
q=0,%+1 q=0,%+1
where 8 is an unimportant auxiliary variable that mirrors the orientation of the frame of
reference (as such, it will undergo the same rotations applied to r). With this identification,

the density reads

atoms

pi(r,s Z sz = Tji)usq Y7 (8): (3.8)

7"J1<Tcut

We can now expand the density p, in terms of a complete set of radial functions and
spherical harmonics, in analogy to what was done in Eq. (2.8). Please note, however, that
we have two spherical harmonics, in relation to the direction of the position vector, r, and

the auxiliary variable, s, respectively. Explicitly

Mmax N

=22 Z S Contma Rt (r)Y;" (B)Y{1(8), (3.9)

n=0 [=0 m=—1¢=0,£1

12Please note that the matrix u is trivially invertible.
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with the expansion coefficients given by["%]

atoms

Cintmg = /drdé p.(r,8) Ry (r)Y,™ (v) V¥ (8 Z Wz, V¢ Rt (1) Y™ (54). (3.10)

The radial functions chosen here are the same introduced for the Spherical-Bessel de-
scriptors (firstly introduced in Ref. [94], and then expanded in Ref. [95]): we will then
identify R, (r) with the normalized functions g,_;;(r) defined in Ref.[95]. We chose these
functions for their regularity and for their smooth-vanishing behaviour at the cut-off ra-
dius. We can now use the bipolar spherical harmonics, yl{ {‘24 , defined in Eq. (2.22)), to
cast the density p, in the coupled-angular-momentum space. The procedure employs the

completeness of the CG coefficients
L1+l
CIM o
Z Z l1m1l2m2 lﬂ’n’llz’rn’2 - 6m1m’15m2m’2, (311)
J=|ly—lg| M=—J

that, when plugged into Eq. (3.9), allow to write

11+1

=>_ D Z Wintgr B (r) Vir™ (£, 8), (3.12)

nl J=|l—1| M=—J

with

w>

JM JM .8
UinlgM = E Clmlqcinlmqu and ll r,s § lmlq (

mq

). (3.13)

As already proved in Eq. (2.22)), the bipolar-spherical harmonics Y3/ 71,1, (T, 8) transform,
under a simultaneous rotation of the versors t and 8, as the spherical harmonic Y7 does.

Therefore, under such rotation, we havd"]

pi(£,8) L Z > D (R Y timasae | Rua(r) VM (8,8). (3.14)

nlJM L M’

Thus, by exploiting the relation D{},,(R™") = Di;,,(R), the rotated expansion coef-
ficients are given by
é D UWUinlJM — ZD}\]JM’ (R)umUM/, (315)
M/

13We are implying that the radial basis is orthonormal.

14Please note that, by rotating the versor # and 8, we are performing a passive rotation, namely a
rotation of the frame of reference, here indicated with R~!. This notation, inverse of what adopted in
the original paper [85], has been used here to maintain formal coherence with the rest of the thesis.
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(a) O (c)
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Figure 3.2: (a)-(b) Configurations that differ only by a simultaneous rotation of the atomic
position and of the vector field: they will lead to the same powerspectrum, as defined in

Eq. - c¢) Configuration obtained from (a) by applying a rotation on the vector field.
This will lead in general, to a different powerspectrum from the one of (a)-(b).

which, formally, is the same transformation rule for the standard coefficients, ¢;,;m, [please,
see Eq. (2.13))]. Then, by the same argument used for the coefficients ¢;p,, we can define a

rotationally invariant powerspectrum for the expansion coefficients in the coupled scheme,

UnplgM, as

e *
Dinn/ll'J = E Winl g M Wiy J g - (3.16)
M

We remark that the most important feature of this powerspectrum is the invariance
under simultaneous rotations of the atomic positions and the vector field, as graphically
shown in Fig. 3.2} this is guaranteed by the coupling of the two angular-momentum

channels, performed by casting the expansion in terms of the total angular momentum.

In the original manuscript of Ref. [85], we considered a simplified version of Eq. (3.16)),
one in which n = n’ and [ = [I: this was done not only to reduce the number of components
required, but also to deal with a real expression of the powerspectrum. It is worth inves-
tigating, however, when the powerspectrum is rea]ﬁ. If we take the complex conjugate
of the expansion coefficients w,; sy, and we use the symmetries ¥, = (—1)"Y,”"™ and
v, = (—1)%;_, (which can be easily verified from Eq. (3.6)), we get

74

* _ _1\m+t+q _
Winlgm = § znlqulmlq E ( 1) Cinl—m— qumlq -

mq mgq

= (_1)M Zcz‘nzmqq{%l—q - <_1)Z+I_J+MuinlJ—Mv

mq

(3.17)

obtained by the selection rule M = m + ¢ (imposed by the CG coefficients), and by
re-labelling m and ¢ in their opposite. Also, the last step exploits the symmetry rule

_ li+la—ll—m .
Clm oy = (—1) C ity—m, Of the CG coefficients. We can now evaluate the com-

15What follows here, is an original analysis done for this thesis, non present in the published manuscript.
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plex conjugate of the powerspectrum as

Prnirs = (=1 Pinnirs, (3.18)

and deduce that the powerspectrum is real for even [+ ', and purely imaginary otherwise.
One can then consider either different radial channels, n, or angular channels, [, being
mindful to multiply by the imaginary unit all the cases for which [+’ is odd. The role of
this phase factor will be discussed shortly.

Since the powerspectrum p;,,. is obtained by the contraction of total angular momen-
tum channels, it is worth investigating if the two components of the density, the atomic
positions and the vectors, have some independent symmetry on their own. This can be

done by explicitly studying its behaviour under parity and time-reversal.

Parity In case of the parity symmetry, all the atomic positions change sign, i.e., r;; —
—r;;. We already know that the standard powerspectrum defined in Eq. is iso-
metrically invariant, and thus satisfies this property. However, in that case, we did not
have any further coupling involved, such as the one with a vector field, treated here.
To study how the powerspectrum components transform under parity, we first notice
that the expansion coefficients c¢;,;,, as well as the coupled ones ;,,,, follow the same
transformation rules of the spherical harmonics under an inversion of the arguments, i.e.,

Y™ (—£;;) = (—=1)'Y/™(£;;). Therefore, under parity, the powerspectrum transforms as
Dinn/1? — (_1>l+l/pinn’ll’- (319>

If we compare this expression with Eq. , i.e., the one obtained by conjugating the
powerspectrum, we notice how the two transformations lead to the very same multiplicative
factor. Thus we deduce that selecting the real components of the powerspectrum, i.e., for
[4+1" even, automatically satisfies the constrains that the powerspectrum is invariant under

inversion of the atomic positions.

Time-reversal The time-reversal case can be seen as the analogous of the parity ones
where the role of the atomic positions and the spins are swapped. Indeed, here we have
that the atomic positions are left unchanged, while we invert the direction of all the
vectors at play, i.e., v; = —v;. Since the atomic positions and the vector components
are treated on the same footing in the expression of the expansion coefficients c;pimg, With
the only exception being that the spherical-vector components behaves like the spherical
harmonic of order (1, ¢), then, by the same argument followed for the parity symmetry, the

powerspectrum is always invariant under time reversal, since the emerging factor would
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always b (—1)11 = 1.

This analysis shows that the powerspectrum is always invariant under time reversal
and can be constrained to be invariant under parity. For the remainder of this chapter we
will consider only powerspectrum components such that n = n’ and [ = [’, shortened to

DintJ ‘= Pinniry for readability.

The central atom This paragraph is devoted to show why care must be taken when
the representation of the vector fields extends to the central atom of the atomic density.
Indeed, since the origin of the frame of reference is, simultaneously, a fixed point for
rotations around it, and a degenerate point for the representation in spherical harmonics,
including a value of the field, there is the potential to break the rotational invariance.
This can be easily proven in the special case of a system with just one, isolated, atom, i,
in the center of the representation (the following discussion can be easily generalized to
configurations with an actual neighborhood). In this case, the component w;,100 reads
Uin100 = Wz, Rn1(0) Z C?%lqiﬂm*(ﬁ)vi,q == \/Z—WwZiRnl(O)Ui,z: (3.20)

mq

obtained by using ¥;™*(0) = 6,01/ % CP  tms = Ot Omy—my (—1)27™ /3/20; + 1, and
v;0 = v;.. Now, since the origin is a degenerate point for the representation in spherical
harmonics, a rotation maps Ylo(ﬁ) in itself. This implies that u;,100 is always proportional
to the z-component of the vector field at the origin, and therefore, the powerspectrum
is proportional to its magnitude, being p;,10 = |um100|2. Since the magnitude of the z
component of a vector is manifestly not rotationally invariant, this proves that, when the
value of the field in the origin is included in the description, at least one component of the
powerspectrum is not invariant.

An intuitive way to look at this symmetry breaking is by considering that a vector in
the origin of the frame of reference imposes a preferential direction: the representation
acquires cylindrical symmetry in place of the spherical one. Thus, an operational way to
solve the problem, would be to evaluate the powerspectrum after rotating the frame of
reference: if the z-axis coincides with the direction of the vector in the origin, then the
powerspectrum component p;,i0 coincides with the full magnitude of the vector (which is
along z), and no directional ambiguity is present. However, the situation can be solved
also if the radial basis vanishes at the origin for all [ > 0. Indeed, as can be seen from
the Eq. above, when the radial function is coupled with the angular momentum /[,

16Please note that the proof for the invariance of the powerspectrum under both parity and time-
reversal is in stark contrast with the claim made in the preprint of Ref. [96], where it is said that the
powerspectrum is not invariant under these two symmetry operations.
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it can work as a “selector” of invariant components. Moreover, the case for [ = 0 does not
pose any problems, since the spherical harmonic Yy = 1/ V4 is a constant, and it can
be easily proven that the powerspectrum components for [ = 0 are proportional to the
magnitude of the vector v;, which is rotationally invariant. The property of R,; = 0, for
[ > 0 is indeed satisfied by the Spherical-Bessel descriptors [95], gn,—i:(7), the radial basis
chosen for this work: in fact, these functions are constructed from the Spherical Bessel

functions, j;(x), that vanish, for [ > 0, at the origin of the frame of reference.

Heisenberg-like components In this small paragraph, we will evaluate the p;,01 pow-
erspectrum components, to develop a better insight into the powerspectrum properties.

In this case, the expansion coefficients, u;,011s, are given by

atoms

1
Uino1M = E z]: ijUj7MRnO(Tji)7 (3-21)
so that the powerspectrum reads
1 atoms
Pin01 = Z Wz, Wz, Rno (i) Rno (Thi )V Vi (3.22)

ik

If, on one hand, the rotational invariance is manifest, we can also appreciate how
these components resemble the analytical form of an Heisenberg model, with the coupling
coefficients depending on the atomic coordinates. Please note that these components have
expression because the [ = 0 case washes out the information on the directionality of
the atomic bonds (the spherical harmonics are constant): then, the only way to obtain a
rotationally invariant quantities is by means of the scalar product v; - vi. However, since
the full powerspectrum includes also terms with [ > 0, then its descriptive power goes
beyond the simple Heisenberg form and, crucially, allows to couple the position degrees of
freedom with the vectorial ones.

This concludes our investigation on the properties of the rotationally invariant pow-
erspectrum for vectorial fields. We will now shortly discuss the model adopted in this

work.

The fit of the energy We opted for an approach similar to the SNAP model one, i.e.,

we considered the linear fit of the energy with respect to the powerspectrum

Nnmax N J=Il+1

E~0. Zpi = Z Z Z Onis meu- (3.23)

n=0 1=0 J=|I—1| i
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Here, we defined the two vectors, 8 and p;, containing, respectively, the coefficients
of the fit and the powerspectrum components of the i-th configuration. The sum over
n is, as usually done, truncated to an optimized npy.. It is important to stress that,
since the powerspectrum is at most quadratic in the magnitude of the vector (as can
be seen noticing that the expansion coefficients w;nimq are, at most, linear in the vectorial
components), using a linear model could be detrimental when the expected interaction goes
beyond quadratic terms. However, this can be addressed by considering, for example, a
kernel-based model (as done in Ref. [93]). We will explicitly address this issue in the next
section, and we will compare the performance of the linear model with a GAP-based one,

for a toy-model of choice.

3.3 The Physical System

In order to test the descriptive power of our powerspectrum-based linear model, we
chose to apply it to a toy model constructed over a spin-dependent Hamiltonian. The
choice was driven by the necessity of perform a controlled benchmark of the methods in
a fully parameterizable scenario, without the constraints imposed by spin-polarised ab
initio calculations (or equivalent methods). Clearly, this is far from being an exhaustive

investigation, albeit a necessary one.

, Front view The model was constructed over a rectangular
clusters of 219 atoms, with a 6 x 6 atom base, each
e, carrying a semi-classical spin, arranged in a bcc lat-
. ° % 2,0 go Zoo % ° o o tice. The system is shown in Fig. [3.3] We choose not

° s % & i%.%?o;%.‘?:og & $ , toincorporate any periodic boundary conditions, to
’ $ (%;%cgé’;ogo °°oc§’ & o test the response of the model to different kinds of
: ?, é ¢ i)o: Oﬁigooﬁ °°: o environment (bulk and surfaces) at once. The atoms
° e 8: o * ° were randomly displaced from the ideal bee lattice

to construct several datasets, of increasing degrees
Figure 3.3: The system investi- of distortion. The chosen Hamiltonian comprised an
gated: a rectangular block of 219 Heisenberg term and a Landau one, to explore both

atoms in a bec layout, constructed transverse and longitudinal degrees of freedom. Ex-

by stacking 6x6 and 5x5 squares. plicitly

H = Hy + Hy, (3.24)
where .
Z?-]
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and
H, =Y (AS}+BS!+CSf). (3.26)
The Heisenberg term, Hy, is characterized by an exchange parameter that depends on
the distance between the atoms, J(r;;), so that the model incorporates a coupling between
the spin degrees of freedom and the atomic positions (spin-phonons). Here the spins S;
are in units of A, so that S; = |S;| = M;/gepip, with M; being the corresponding magnetic
moment and pp the Bohr magneton. The sum in Hy runs over pair of neighbors < 7,7 >.

We choose the functional the following functional form for the exchange parameter J;; [97]
Jz’j (7”@‘) = Jn(l — AT’Z'j/Tn>3, with AT’Z‘j = Tij — Tn, (327)

where the distance r,, is the n-th neighbour distance in the ideal bcc lattice, and J,, is
the coupling associated to the interaction between n-th neighbours in ideal conditions.
The Landau term, Hy,, depends on even powers of the magnitude of the local spins (lon-
gitudinal contributions), and is characterized by parameters A, B and C'. We chose to
specialize our description to bee iron, with parameters taken from Ref. [98]: thus we con-
sidered an Heisenberg interaction extending to the second nearest neighbors, and with
coupling constants J; = 22.52 meV and Jo, = 17.99 meV for the first and second neighbors
respectively. Analogously, the Landau parameters have been set to A = —440.987 meV,
B = 150.546 meV and C' = 50.769 meV.

3.4 Numerical Results

In this section we will report the results obtained by training a powerspectrum model
on the iron cluster. At first, we used a simplified version of the Hamiltonian, without the
Landau contributions, i.e., containing only on Heisenberg term, H = Hpyg, in which the
lengths of the magnetic moments were fixed at 2.2 ug. We then incorporated also the

Landau term Hp, and released the constraint on the fixed lengths.

3.4.1 The Heisenberg Model with lattice-dependent coupling

constant

As first step, we directed our efforts in the construction of the training dataset. We
built a total of six training sets, divided in two groups of three sets each.
The first group, called “ferromagnetic”, has been constructed by randomly picking more
than 200 atomic spins of the system (the actual number, between 200, and 219, was also

draw at random), and orienting them along the z-axis. In this way, the system was in an al-
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most z-aligned state. We then proceeded in displacing the atomic positions from the ideal
bce structure. The three training sets of the ferromagnetic group are then distinguished
by the maximum random displacement allowed: explicitly the maximum distortion from
the ideal lattice was of 5%, 10% and 20% of the lattice constant, for the first, second
and third set respectively. This procedure was repeated till each dataset contained 100

configurations.

The construction of second group, called “random”, followed the same strategy for
the random displacement in the atomic positions, so that the dataset were characterized
by 5%, 10% and 20% maximum displacement, respectively. However, in these cases we
defined all the spins to be pointing in random directions. Also, we repeated the procedure
to have again 100 different configurations in each of the three training sets.

In order to test the predictions of the model, we crafted three test sets for each of the
six dataset used in the training. The first one was built by progressively aligning all the
spins along the z-axis. Thus, it contains 219 configurations, in which the n-th configura-
tion contains n randomly-selected spins aligned to the z-axis, while the other remained
randomly oriented. Because this dataset was primarily devised to test the prediction
across the magnetic landscape, the atoms were fixed in the ideal bec-lattice positions. In
contrast, the second and third test-sets were defined by the same atomic displacement of
the relative dataset, to better gauge the response of the model to atomic displacements.
In particular, the spins for the second test-set were selected to mirror the ferromagnetic
configuration, with 200 randomly-selected spins aligned with the z-axis, and the remain-
ing 19 randomly oriented. On the contrary, the third test set had all the spins randomly
oriented in space. This was done to explicitly test those region of the PES which were
either in the same energy range, or in a completely different one, of the energies explored

during the training process.

The ferromagnetic dataset, with 10% displacement Here we discuss the results
for the potential trained on the ferromagnetic dataset, in the case of 10% maximum
displacement. The other two cases (5% and 20%) are reported in Table . They will not
be discussed in detail, having similar performance of the 10% one.

We used a Ridge-regression fitting strategy, with an optimized regularization constant
of @ = 3.2 x 10%, and a truncation parameter for the expansion of ny.x = 4: in this
way, the resulting model was very compact, with only 35 features. The cut-off radius
was optimized to be r. = 1.4 (in units of the lattice constant). Given the limited size
of the dataset, we opted for a 5-fold cross-validation procedure, with a 80/20 split ratio
between training and validation sets. The obtained Mean Absolute Errors (MAEs) were
(4.83 +0.15) x 107 eV /atom and (6.8 £ 0.7) x 107° eV /atom, for the training and the
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“Ferromagnetic” training sets

Training Parameters MAE (10~°eV /atom)
Disp.  Nmax  Teut o Train Validation  Prediction Upper
5% 5 14 1.7x10*| 1.34£0.07 20540.14 7.3 6.9
10% 4 1.4 32x10%| 483+0.15 6.8 0.7 o6 82
20% 6 1.35 3.9x10*| 13.9£1.2 27T+ 3 61 110

“Random” training sets

Training Parameters MAE (10~°eV /atom)
Disp.  Nmax  Teut o Train Validation  Prediction Upper
5% ) 1.45 1.9x10% | 1.74+£0.04 4.74£0.3 13 4.9
10% 4 14 8.4 x103 6.5+ 0.3 123+ 0.9 250 83
20% 4 14 21x10*| 23.0£0.9 38+ 3 103 320

Table 3.1: We report here the optimized hyperparameters and performances of the trained
models. The upper table shows the cases trained on the “ferromagnetic” dataset, while the
lower table shows the ones trained on the “random” dataset, with the indicated maximum
value of the atomic-position displacement (5%, 10% and 20%). The cut-off radius, ey is
given in units of the lattice constant. The other hyperparameters are the truncation of the
powerspectrum expansion, nny.y, and the regularization constant of the Ridge regression, «.
The training and validation values are obtained form a 5-fold cross-validation procedure,
i.e., we report the mean and the standard deviation values. The “Prediction” column
reports the MAEs evaluated on the first of the test set, i.e., the one with progressively
aligned spins. The “Upper” column reports the MAEs on the same set, but calculated
only for energies > —0.01 eV /atom, i.e., energies far from the ones in the training set for
the potentials trained on the ferromagnetic dataset (upper table) and, instead, energies
close to the ones of the random dataset (lower table).

validation set, respectively. Compared to the range of variability of the training set, of
about 1072 eV /atom, we see that this errors correspond to approximately 0.1% of the
energies variability.

We then tested the prediction of the model on the first prediction set, i.e., the one
obtained by progressively aligning all the spins of the system while keeping the atoms
pinned in the ideal bec lattice positions. The resulting MAE was of 5.6 x 107* eV /atom.
The parity plot is shown in Fig.[3.4] Crucially, evaluating the MAE only for configurations
with energy above —0.01 eV /atom, i.e., the ones with energies that are the furthest from
the training set, gives a value of 8.2 x 10~ eV /atom, which is comparable with the one on
the full set. This suggests that the model is capable of achieving rather accurate results
on the full energetic landscape, even in regions which as further from the ones explored

during the training phase.
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Predicted (Hp ), Ferromagnetic training, 10%
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Figure 3.4: Predicted against actual energies for a Ridge-regression trained on the fer-
romagnetic dataset with 10% maximum atomic displacement. The actual energies are
calculated analytically from the Heisenberg model, Hy, of Eq. , where the coupling
constant exhibit also a spin-lattice coupling. The three different colours represent the
different test set that we devised to probe the accuracy of the model. The red circles refer
to the systems on an ideal bee lattice, but with progressively z-aligned magnetic moments.
The other dots represent different displacements of the atoms for near to ferromagnetic
and paramagnetic configurations, respectively. The figure demonstrates the good agree-
ment of the potential also for configurations which are energetically far from that used in
the training (blue region). Zoom-in around different energy regions are displayed in the
inserts.

An overview of the results for the other cases is given in Table [3.1; we can notice
how increasing the degree of distortion reduces the quality of the model. However, the
accuracies reached are still quite elevated across all cases, if compared to the range of
energies involved. The parity plot for the worst case (for the case of 20% maximum
distortion) is shown in Fig. |3.5(a), and confirms the good agreement between the model

and the analytic energies.
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Figure 3.5: The figures show parity plots that are analogous to the one reported in Fig. (3.4
(please, note that the axis range and labels are the same). (a) We report the parity plot
for the worst performing “ferromagnetic-trained” model, i.e., the one trained with a 20%
maximum displacement. We can appreciate how the model retains good accuracies even
when probed on energies which are far from the range explored during the training phase.
The insert shows a magnification of the highest end of the energies range, the furthest
one from the training set. (b)-(d) The parity plots for all the model training on randomly
oriented spins are shown, with increasingly value of the maximum atomic displacement.
We can appreciate how the models still performs quite accurately for the 5% and 10%
cases, but that the accuracies rapidly deteriorate, down to the failure of the 20% case. We
can also notice how the energy range explored by the training set is much more contained
that the one spanned in (a). We remark that, contrary to (a), the inserts now show a
magnification of the performance of the model in the region explored during the training.
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Random datasets Unlike the previous case, the model trained on randomized spins
proved to be less accurate in predicting the energies of the system. In fact, despite a
roughly doubled MAE on the test sets, it failed in the prediction on ferromagnetic config-
urations, with an increasing loss in accuracy with higher displacements. This can be seen
from the Table [3.1] where it is shown that the prediction on the aligning spin dataset is of
the order of 10 meV /atom, despite the accuracy shown on the test set of 0.38 meV /atom.
Also, it can be seen how the accuracy of the two model on the highest-energy structures is
lower than the one obtained from the ferromagnetic case, despite the fact that the model
trained on random configurations is indeed trained on the highest end of the energy spec-
trum. The parity plots in Fig.s [3.5(b)-(d) explicitly show how these models deviate from
the parity line, in particular when extending to unseen region of the energy landscape.
We attributed this failure to the fact that training on randomly oriented spin do not offer
the correct strategy to train the model. Indeed the atomic environments are too homo-
geneous, and thus the descriptive capabilities of the models are severely impaired. This
is indeed confirmed by the range of energies covered by the training set, also shown in
Fig.s [3.5(b)-(d): when compared to the one of the model trained on the ferromagnetic
case, we can see that, energy-wise, much fewer distinct cases are actually explored. This
is in stark contrast with the model trained on the ferromagnetic cases, which was able to

maintain high accuracy on all the predicted configurations.

3.4.2 Including longitudinal excitations via the Landau Term

We now include the Landau term Hp, to investigate the performance of the model
against the complete Hamiltonian of Eq. (3.24). In this case we studied only the model
corresponding to the ferromagnetic case, with a 10% maximum random displacement.
Importantly, since the Landau term incorporates longitudinal excitations, we selected a
randomly chosen length in the range from 1.8 up to 2.3 ug, for the randomly oriented
spins, while keeping the z-aligned ones constrained to 2.25 ug. We kept the same cross-
validation procedure, with five 80/20 splits. The test set follows the same approach of the
progressively aligning one introduced above. Here, however, we constrained the z-aligned
magnetic moments to have a fixed length of 2.25 ug, while the length of the randomly
oriented one varied in the range from{""] 1.9 ug to 2.3 up. The optimized parameters
are Npax = 4 for the expansion truncation, r.,, = 1.4 (lattice constant) for the cut-off
radius, and o = 2 x 10° for the regularisation constant. The MAEs obtained in this
case are (4.9 +0.1) x 107* eV /atom and (6.0 + 0.5) x 10~* eV /atom, respectively, for

the training and validation sets. Comparing to the model trained on the Heisenberg

1"We use a slightly different range for the test set to ensure that the predictions are in regions where
the energies are not too high with respect to the minimum energies explored.
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terms only, we obtained a value of the MAE of roughly one order of magnitude larger. As
already noted, this can be intuitively understood in terms of the dependence of the Landau
term on the fourth and sixth power of the magnitude of the spins, in contrast with the
quadratic behaviour of the powerspectrum. The MAE evaluated on the prediction set, is
of 6.0 x 1073 eV /atom, and the resulting parity plot is shown in Fig. . It is interesting
to study the two extremes of the energy ranges, one compatible with the energies explored
in the training phase and the other for the energies on randomly oriented spins. We then
evaluated the MAEs for energies less than —0.32 eV /atom and above —0.26 eV /atom, and
obtained the values 7.1 x 107* eV /atom and 1.0 x 1072 eV /atom respectively. We can
conclude that the model possesses a good accuracy in interpolating between the energies
in the range of the training set, but that the performances deteriorate when the model
is forced to adapt to unseen regions of the energy landscape, and in particular when is

tested against configurations with randomly oriented spins.

We tested our hypothesis on the limitations imposed by the quadratic nature of the
model, by combining the powerspectrum representation with a non-linear framework. In
particular, we considered a GAP [26] model, as introduced in Eq. (2.40), but adapted to
the vector-field powerspectrum. In this way, the atomic energy of the i-th atom can be

written as
Ntrain

1
gi= > b GXP{—T‘Z(I% - Pt)Q} (3.28)
k=0

where the sum is extended over all the atoms in the training set, and where p; and p;
are the powerspectrum, respectively, of the i-th atom and of the ¢-th atomic configuration
of in the training set. As extensively discussed in section [2.1.2] the GAP formalism is
based on the definition of a similarity kernel, S, which is, generally, not linear. This
allows us to describe energy contributions going beyond the quadratic order in the spin
magnitude. We remark that the approach followed here is slightly different from the
actual GAP one, since our density is still defined in terms of delta functions, contrary to
the Gaussian formulation of GAP. The parity plot obtained from the GAP model is shown
in Fig. 3.6, We can appreciate that we do not observe an increase in performance with
respect to the linear model, in the range explored by the training set. Indeed, we see that
the performance associated with the configurations having energy smaller than —0.32
eV /atom remains very close to that one of the linear model. However, the total MAE
decreases to 4.5 x 107* eV /atom (compared to 7.1 x 107* eV /atom of the linear model)
and, more importantly, the MAE for energies larger than —0.26 eV /atom is now reduced
to 5.8 x 1073 eV /atom, i.e., is halved. This is clearly showed in the figure, where the GAP
model is able to stay closer to the parity line when the linear model deviates the most.
Since, generally, one does not have the control on the orders of the spin contributions, we

conclude that using a non-linear model could improve the performance in real scenarios,
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Figure 3.6: We show here the parity plot for the true vs predicted energy from the Landau
model described by the full Hamiltonian of Eq. . The predictions are done on the
dataset with progressively aligning spins. We can notice that, despite the high accuracy
in the range explored by the training set, the linear model (represented by red circles)
strongly deviates from the parity line for the highest-end of the energies. Instead, a GAP-
adapted model, from Eq. (blue triangles), while still showing a deviation from the
parity line, manages to keep a good accuracy along all the full range of energies explored.

namely when the energies are obtained from an ab-initio method of choice.

3.5 Conclusions

In this chapter we have introduced a powerspectrum representation for vectorial fields.
We developed the methods in depth, grounding our approach in the usual hypothesis of
decomposition in atomic contributions of the energy, and of the short-ranged nature of
the interaction. We then defined a vector field representation of the atomic environment,
where the atomic positions are localized by Dirac-delta functions. Finally, relying on
the harmonic decomposition of vectors, and on the rotational properties of the bipolar-
spherical harmonics, we constructed the rotational invariant powerspectrum for a simul-

taneous rotation of the field and of the atomic positions. After a detailed investigation of
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the analytical property of the powerspectrum, ranging from its behaviour under the action
of fundamental symmetries, to the role of the vector field in the center of the frame of
reference, we constructed a toy model to freely test the capabilities of the descriptors. We
simulated a block of iron atoms placed in a bce lattice, with an underlying Hamiltonian
containing Heisenberg and Landau terms. The interaction between the spin degrees of
freedom and the lattice was enforced by position-dependent coupling constants for the
Heisenberg model. We then proceeded in constructing several datasets that could test the
descriptive power of the powerspectrum for different degrees of displacement and orien-
tation of the spins. In particular we followed a hierarchical approach, starting from the
Heisenberg model only, and then adding Landau contributions. After choosing a linear
model to build a better intuition on the advantages and limitations of the powerspectrum,
we proceeded to the training and testing phases: we concluded that, for the Heisenberg
model, the best strategy was to train the model on configurations with most of the spin
aligned to the z axis, and only a small portion of the remaining ones randomly oriented.
This allowed to obtain a model that was capable to achieve extremely high accuracies even
for configurations that were energetically very different from the ones in the training set.
We then included the Landau term. This proved to be challenging for a linear model, and
we hypothesized that this was caused by the quadratic nature of the powerspectrum, with
respect to the magnitude of the vector field, in contrast with the sixth power reached by
the Landau term. Thus, we adopted the GAP framework to induce non-linearity in the
powerspectrum. This proved to be beneficial and resulted in a more accurate model also
for energy that were far from the range explored by the training set.

One of the most important underlying features of the model was the use of the bipolar-
spherical harmonics to achieve the correct invariance under rotation. This confirms the
relevance of the multi-polar spherical harmonics as the underlying natural language to
define the powerspectrum and the bispectrum components, which was made manifest
already in the previous chapter. We will heavily rely on the multi-polar spherical harmonics
also in the last chapter of the thesis, when we will show another strategy to obtain the
ACE formalism, and we will expose its limitation for the investigation of higher-body order
terms. However, before that, we will now dive in the core of the thesis, by introducing
the Jacobi-Legendre formalism. The next few chapters will be devoted to the definition of
descriptors which are capable of predicting any quantity of choice, from scalar, to scalar
fields, reaching also tensor and tensor fields, within a coherent and generalized framework.
The construction of this framework will be tied up with the expansion in multi-polar
spherical harmonics of the last chapter, when it will guide us to a new descriptor for the

five-body terms in an ACE formalism.
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Chapter 4
Jacobi-Legendre potentials

In this chapter, we will review the MLP introduced in the published work “Cluster ex-
pansion constructed over Jacobi-Legendre polynomials for accurate force fields”, Ref. [99],
of which I am a co-author. The main aim of the work was to introduced a competitive

MLP, based on the internal coordinates representation for the atomic environments.

The idea behind this MLP was to generate descriptors that could be easily interpreted,
and that would not be based on the formalism of the coupling schemes of angular mo-
menta. Moreover, we wished to define a framework that could be naturally generalized
and extended beyond the description of scalar quantities, making it suitable also for scalar
fields, tensorial quantities and tensorial fields. In this spirit, this chapter introduces the
foundation for all the remainder of the thesis, and thus most of the definitions given here
will find full fruition when applied to the generalization proposed in subsequent chapters,

when the full framework will be explored.

As will be shown below, the core of the Jacobi-Legendre formalism, introduced here,
lies in the cluster expansion of the atomic contributions to the short-range energies of a
system, in the same spirit as the one introduced for the ACE (please see section [2.1.4).
These similarities, as well as the differences, will be investigated in detail in this chapter.
We remark, however, that the discussion that will be initiated here will culminate in
the last chapter of the thesis, where the benefits of using an internal-coordinate-based
coupling scheme will be made more manifest, in particular in relation to the five-body

order expansion.

This chapter will be structured as follows: firstly we will introduce the mathematical
framework and the main assumptions for the descriptors. This will constitute also the
main underlying assumptions for all the following chapters. Then we will proceed in
a systematic analysis of different body-order potentials, v(™, starting from an in-depth
overview of the two-body one, v®), where we will explore many of the core strategies of

this work. Our analysis will terminate at the five-body order, which will be only outlined.

M.Domina 63



CHAPTER 4. JACOBI-LEGENDRE POTENTIALS

A graphical abstract of this chapter is shown in Fig. where the core ideas behind
the Jacobi-Legendre potentials are shown. Importantly, after introducing the three-body
order expansion, we will also discuss in detail how to achieve linear computational cost with
the number of atoms in the cut-off, all without sacrificing the representation in internal
coordinates. In doing so, we will manifest the connection between the formalism proposed

here, and the approaches based on the density-trick and introduced in Chapter [2]

After a presentation of the features of the linear model, from how to compute and
take into account forces, to the loss function used, we will show a first application of the
potential, done on a well-known carbon dataset. We will conclude by showing that the
Jacobi-Legendre formalism is able to reach state-of-the-art accuracies also when dealing
with phonon-dispersion curves.

My role in the manuscript was devoted to the construction of the mathematical frame-
work and to the investigating of the formal details of the potential, while the implementa-
tion part has been performed almost entirely by the other authors, under constant sharing

of ideas on every aspect of the work.

Body order: 2B 3B 4B

Constrained distances
expansion:

?(a»ﬂ)(

n (cos(z))

Angular expansion:

By(cos(6))

Constrained distances expansion:
PP (cos(x))

Figure 4.1: We show here a graphical abstract for the Jacobi-Legendre potentials. The
main underlying assumptions is the factorization of the energy in atomic, short-ranged,
contributions. In particular, this work heavily relies on the cluster expansion of the atomic
energies in multi-body terms. Each energy contribution is then expanded in Jacobi poly-
nomials (for the distances) and Legendre polynomials (for the angles). Crucially, we will
enforce constraints on the expansion, so that only potentials encoding desired physical
features will be taken into account.
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4.1 A Cluster-Expansion based Machine-Learning Po-

tential

The starting point for our discussion is the cluster expansion of the atomic energies in
terms of internal coordinates. The main assumption adopted here is same of all the other
descriptors presented so far, i.e., the factorization of the energy in atomic, short-ranged

contributions. Explicitly, the atomic energies, ¢;, are defined by means of

body
atoms order

Eghort = Z Eiy and & = Z 5(211.), (41)

where we applied a cluster expansion for the atomic energies, with (please, compare with
eq, (2.51))

( atoms
(2 _ (2
€z, = E :Uzjzi(rji)a
(4)
atoms
(3) _ § : 3)
(k)i
atoms
@ _ 0 (4.2)
€z, = Uzjzkzpzi<rjiarkiarpiaSjkiaSjpiaskpi)a
(5kp)
atoms
L _ ) (P52 Pt ot Tt 83862 S3p5s S 0is Sos Skt Sori)
Zi — Z;ZyZpZqZi\' I kis I'pis 1'qiy 9jkiy 9jpis 95qis Okpiy Okqis 2pqi)»y
(3kpa)i

Here 5(211-) is a constant shift. By using the distances r;; and the scalar products s;; :=

rj; - I'y;, we already made manifest the choice of the internal coordinate as degrees of
freedom of our representation. Indeed, given the use of internal coordinates, the potential
is constrained to be rotationally invariant by design, in contrast with a spherical-harmonics-
based construction, where the invariance must be reached by selecting the correct coupling
schemes, i.e., by selecting only the components that belong to the rotationally invariant
space. Moreover, this choice has two important properties: on one hand, the internal
coordinates being a complete representation[r_g], it has the same descriptive power of other
complete methods. On the other, we will show that we can actually recover an expansion
in terms of spherical harmonics: this will have the double effect of re-introducing a linear

scaling (in the same fashion of the density trick) and of showing a different, more hidden,

8The internal coordinate representation is complete up to the five-body terms, becoming over-complete
for higher-body orders.
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approach to the coupling of angular momenta. This new coupling will not only preserve,
by design, the isometrical invariance of the expanded quantities, but it will also inherit
all the properties of the internal coordinates representation, specifically it will make no
reference to the order of the coupling of single angular-momentum channels. We will also
make explicit reference to the atomic species Z;, which will allow us to impose the correct
symmetries on the expanded potentials, v(™, under permutations of identical atoms.

A crucial point in the construction of the potential will be the choice of the expansion
basis for the radial and the angular variables of the potentials, which will be discussed
at length in the following sections. This choice will follow three main ideas: the first will
be to keep the formulation as general as possible, to reduce the implicit choices in the
construction of the potential (this will lead to the choice of the Jacobi polynomials). The
second will consist in maintaining consistency with the descriptions adopted by other MLP,
specifically in constructing rotational invariant quantities (which will lead to an expansion
in terms of Legendre polynomials). The last one, will be to be able to define a general
framework able to tackle non-scalar targets, such as scalar fields, tensorial quantities or
even tensorial fields. This will be clearly shown in the next chapters. We note that
defining a potential in terms of the internal coordinates has also been pursued in a recently
developed potential, designed as proper orthogonal descriptors (please, see Refs. [100,
101]).

We will now proceed in a detailed analysis of the potentials, v(™, defined in Eq. ,
in a hierarchical way, starting from the two-body ones and progressively increasing the

body order.

4.1.1 Two-body (2B) potential

While the two-body potential, U(ZQJ-)ZZ- (i), is the simplest case to investigate, it deserves
a thorough analysis aimed to introduce core concepts that will be extensively exploited
in the following sections. First of all, we remark that the class of potentials treated
here are only short-ranged ones: indeed we will assume that the potentials will smoothly
vanish for distances, rj;, larger then an optimized cut-off radius, 7ey, i.e., v(r;;) =~ 0,
for 7j; > reus. A consequence of this property is that we can always devise a continuous,
one-to-one mapping, z, so that the significant distances are mapped in the interval [—1, 1],
e, & 1 [Fmin, Teut) — [—1,1] (here we are taking into account also a minimum possible
distance, 7y, ). For the remainder of the work we will always use the “cosine” map defined

as

T = 2(7; Pmin, Teut) = COS (ﬂ'ﬁ> . (4.3)

Tcut — T'min
In the following, it will be shown that this map has some interesting properties when

combined with the choice of the Jacobi polynomials. However, we remark that different
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mappings are entirely possible. Now, since the mapping is a one-to-one, and so it is

invertible, we can define the composition

2 2 _ 2
Vg (rii) = W5y 0w @) = fg, (w50), (4.4)
_4f
where z;; := x(rj) is used as practical shorthand. If we make the further operative

assumption that the potential v is at least square integrable with respect to some weight
w(x), then it admits an expansion in an orthogonal-polynomials basis of choice [102]. Let

us suppose that {P,(x)} is such basis. Thus we can write the expansion
2 2 7.
U(zj)zi (rji) = é])z (2j0) = Y ali% Py, (4.5)

where we defined the shorthand P,j; := P,(z;;). We remark that the coefficients mirror
the dependence of the potential on the atomic species Z; and Z;: indeed, in general, we
expect a change in the functional form of the potential when considering atoms of different

species.

Constrained functions We will now show one of the main ideas of our framework,
which allows to encode desired constraints directly in the expansion of the potentials. Cru-
cially, from Eq. (4.5)), we can impose constraints on the function f by directly intervening
on the expansion coefficients. For example, the short-ranged nature of the potentials U(sz)zi
implies that the function f must vanish when f(z(rey)) = 0. This can be imposed directly

on the coefficients by evaluating
f(‘r(rCUt)> = Z anpn(x('rcut)) - 07 (46)

so that

ao = —(Po(2(reu)) ™ Y anPul@(rew))- (4.7)

Here we assumed that Py(z(rey)) is not zero: this is always possible because, the

basis being complete, at least one polynomial is necessarily not vanishing at z(rey). By

substituting ag from Eq. (4.7) back in Eq. (4.5)), we get the new expansion

[e.e]

f(x) = anPajs, (4.8)
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where we now defined the “vanishing”-polynomials

Poji

ﬁn'i =Pi— =7
! ! P0($<Tcut))

Po(x(reu))- (4.9)

This is just one example among all the possible constraints that can be imposed:
similar ones can involve any other point, i.e., by substituting z(r.,) with an arbitrary
T, or be imposed on derivatives, integrals, and any other linear operator acting on the
polynomial basis. If more than one constraint is required, this procedure can be generalized

by progressively imposing more conditions, until all of the requirements are met.

The Jacobi polynomials We introduce now the radial basis chosen for this work,
i.e., the Jacobi polynomials, {Péa’ﬂ )} [55]. The Jacobi polynomials constitute a gen-
eral class of polynomials, that, for each choice of real numbers o, > —1, defines a
complete and orthogonal basis for the square-integrable functions on the interval [—1, 1].
The pair («, ) determines the inner on the interval [—1,1], by means of the weights
w @) (z) = (1 — x)*(1 +2)?. The determination of the weights can also be interpreted as
the choice of a metric on the interval [—1,1]: in other words, portions of the interval are
magnified (stretched) by this choice. This allows, in principle, to naturally magnify re-
gions of the interval that are more relevant to the determination of the potential, neglecting
other portions where, for example the data are scarce or absent. The Jacobi polynomials
are also very general, encompassing basis functions such as the Legendre polynomials (for
a = B = 0), or the Gegenbauer polynomials (for « = = half integers). We already
saw an example of Gegenbauer polynomials in section [2.1.2] where the 4-dimesional bis-
pectrum was introduced: this solidifies our metric-based intuition, since we can recover
the same metric of the surface of a 4-dimensional hypersphere. Thus, optimizing the pair
(cr, B), allows to automatically select an adequate radial basis, with no need to make any
implicit assumption on the choice of the basis set or of the metric. An example of Jacobi

polynomial, evaluated on the cosine map defined in Eq. (4.3)), is reported on the left-side
of Fig. 4.2
Specializing the constraining procedure of Eq. (4.9)) to the expansion in Jacobi poly-

nomials, we can define the vanishing-Jacobi polynomials as

N(avﬁ) _ (O’,ﬁ) Oé,ﬁ
where we used Péa’ﬁ ) = 1, and the fact that the cosine map of Eq. (4.3)) implies z(rey) =
—1. In Fig. 1.2 we report examples of vanishing-Jacobi polynomials, as evaluated for the

cosine mapping.
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P, (cos(z)), fora=p8=1 P, (cos(z)), fora=p=1

10.0

7.5 1

5.0 1

2.5
0.0 <

725 .

—5.0 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 4.2: (Left) The figure shows the first five Jacobi polynomials for « = g = 1.
The cosine function encodes the effect of the cosine map of Eq. . Please, note that
this map constrains the polynomials to have zero derivatives at the edges of the interval
[0,7]. (Right) The figure show the first five vanishing-Jacobi polynomials, defined by
means of Eq. , for the same o and (3 of the Left figure. It can be appreciated
how the polynomials are constrained to vanish toward the right-end of the interval, which
represents the cut-off radius.

Emergence of the cut-off function An interesting feature of the combination of the
constraining procedure and the use of the cosine map, is the natural emergence of the
cut-off function defined in Eq. . Indeed, we can use the series expansion for the
Jacobi polynomials (see Ref. [55])

R&@@g:5%53("*“)(”*5)@-1wﬂu+¢y, (4.11)

=\ J n—j

and the cosine map = — cos(x) so that we can write

P cos(z)) = Z i [ O P N

where we used the identities

cos(z) — 1 = —2sin®*(z/2), and cos(z)+ 1 = 2cos*(z/2). (4.13)

Now, the definition of the vanishing-Jacobi polynomial of Eq. (4.10), requires the

evaluation of the above formula in z = 7: due to the cos(z/2) terms, the only surviving

M. Domina 69



CHAPTER 4. JACOBI-LEGENDRE POTENTIALS

contribution is the one for j = 0. Thus we can write

PLF) (cos(x)) = g(—l)"j <n j a) (Zt@ R R 2 (4.14)

+<_1>n(”‘7§5) (sin"(2/2) — 1).

where we separated the contribution for j = 0 from the rest. By using the identity
120 _ 2 . s 2(n—j)
sin”(z/2) — 1 = — cos®(x/2) Zsm (x/2), (4.15)
j=1

we can finally write

P9 (cos()) = fo(@)Q\ (cos(w)), (4.16)

which shows the natural emergence of the cut-off function f, = (cos(x) + 1)/2 = cos?(x).

Here an’ﬂ ) are functions defined by the sum

Qi (cos(x)) =
— (—U”Z:; {(—1)9‘ (n;ra> (th) cos?0=D (z/2) — (n—gﬁ)] 29 (2/2). (4.17)

Since the Jacobi polynomials encompass a large class of orthogonal polynomials, we
deduce that the crucial point of this derivation lies in the choice of the mapping. Another
important point is the fact that, if we focus only on the vanishing-Jacobi polynomials,
we do not need to take into account the cut-off function explicitly, contrary to what
is usually done for other descriptors. If this allows for simpler analytic expressions, it
has also the advantage that the derivatives are easier evaluated, and that no subsequent
orthogonalization procedure has to take place, the expansion being based on the Jacobi

polynomials, which are already orthogonal.

The 2B potential and the behaviour at the origin In conclusion, we have that the

potential can be written in terms of vanishing-Jacobi polynomials, as

Nmax Mmax
7"‘4. J— 7" .
UZ 2,(7ji) Z a’i ZZP (cos (W%)) Z a’i ZZPH?ZB ; (4.18)

Tcut T'min

with the vanishing-Jacobi polynomials, PP defined in Eq. (4.10). We will call this
expansion the 2B-Jacobi-Legendre (2B-JL) expansion. Please note that the our defini-
tion of the potentials is symmetric under swap of the indices, i.e., U(Zi)zi = U(Zi)zj. This

can be important when dealing with multi-species 2B clusters. The 2B-JL expansion is
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characterized by five hyperparameters, which are allowed to be different among different-
atomic-species clusters. The hyperparameters, along with their range of definition, are
a,f € (—1,00), Nmax € N7, reyy € (0,00) and 7pin € (—00, reyy). Given the large num-
ber of parameters to optimize, it could be necessary to perform some approximation: for
example, in many cases we found that ry;, = 0 is an adequate choice. Also, since there
is usually a large range for optimal («, ) pairs, a simpler approach consists in optimize
for a = (. It is also worth to investigate the behaviour of the potential at the origin, i.e.,

when 7j; = 0. If we put 7y, = 0, we obtain

v (0) = >~ ali% Pl(1), (4.19)
n=1

and from the identity

oo = ("1 - ("), (4.20)

n n

we can conclude that the magnitude of the potential can become quite large at small
distances. This behaviour is clearly determined by the coefficients {a,fj Zi}: however, we
can bias the choice of the hyperparameters so that we select only potentials that present
a strong repulsive behaviour at small distances. This can be easily done by visualizing the

function

T'cut — Tmin

Mmax
U(Zi)Zi (r) = Z aZiZi pleh) <cos (ﬂﬂ>) : (4.21)

n=1
with the learned coefficients. This procedure could be impaired if higher-body order terms
are allowed to influence the behaviour at small distances. However, as will be shortly
shown, we will impose further constraints to prevent this interference, and to encode the
idea that the repulsive behaviour is essentially a 2B interaction.

This is in contrast with what is usually done in literature, when a repulsive function
(usually exponential) is imposed on the small distances region of the potential, where the

data are scarce or completely absent.

4.1.2 Three-body (3B) potential

This section is devoted to the definition of the expansion of the three-body (3B) poten-
tials v®. The construction follows closely the one for the two-body potential, with a first
expansion in a product of two Jacobi polynomials, one for each distance. However, in this
case, it is necessary to consider also the angular contributions given by the scalar product
between the directions of the two bonds. These are expanded in terms of Legendre poly-

nomials (hence the name Jacobi-Legendre expansion). Indeed, guided by their expansion
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in a sum of products of spherical-harmonics (see (2.15))), they seemed to be the natural
choice for the expansion of terms, depending on a scalar product between two versors.
Not only will the use Legendre polynomials be pivotal in establishing a connection with
other descriptors, but also, their decomposition in spherical harmonics will be crucial for
the generalization of the JL expansion to scalar fields, tensors and tensor fields, as will
be shown in following chapters. Explicitly, the unconstrained expression for the potential

reads

75217 (o) plasB) piki
U(Zi)ZkZi(rjiarkiaSjki) = Z a2 247 ploi) pledh) pik (4.22)

nlngl nije noki 1
ninal

where we introduced the shorthand Plj R — Py(t; - Tk;), with P, being a the [-th Legendre

polynomial.

Constraining the potential Analogously to what has been done for the 2B case,
we want to constrain the 3B potential to vanish whenever at least one of the distances
approaches the cut-off radius. This can be done by following the very same procedure
introduced in the previous sections, which, in this case, leads to the constraints (please,
compare with the constraint )

e Z L2 plaf) (1) for all ny, I,

nlngl
TL1>1

(4.23)

Mmax

fl(i’“z =— Z ZiZeZi p A(=1) for all ny, L.

n1n2l
ng>1

The crucial point here is that the two distances are constrained independently, i.e.,
the potential goes to zero when one of the distances approaches the cut-off, independently
from the value of the other. By plugging these constraints back in Eq. , it can be
shown that the resulting expression can be obtained by simply substituting the Jacobi
polynomials with their vanishing counterpart (the polynomials defined in Eq. ) As
already mentioned in the previous section, we want to enforce the idea that the repulsive
behaviour at small distances is characterized only by a 2B interaction. For this reason, we
can further constrain the 3B potential to vanish also when at least one of the distances
approaches zero. This brings the new set of constraints (please, compare again with the
constraint ([4.7), where, instead of z(re.) we have z(0)).
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Mmax

ZjZ Zi e «, — ZjZ Zz' D o,
a7 = (PP )TN a2 B PO (1) forallng > 1, and all I,
n1>2
_— (4.24)
af{ikzi = — (PP (1)) Z afffglziégj"ﬁ)(l) for all n; > 1, and all [.
ng>2

Plugging the constraints back in the potential expansion, we finally obtain
e (@.8)5(0.5)
3 Z; 7 Zi5(0u8) 5 ki
05z i siw) = D Y antu Pl P B (4.25)

ni,ne=2 [=0

in which we defined the “double”-vanishing-Jacobi polynomials, as

P (1)
PP (1)

P (3) = POd) () — P (), (4.26)

An example of double-vanishing-Jacobi
polynomials is shown in Fig. 4.3} It is
worth mentioning that, by means of the
constraining procedure adopted, not only
does the 3B potential vanish at both edges
of the interval of definition (both at small
distances and at the cut-off radius), but

also there is a significant reduction in the

number of independent expansion coeffi- ' ' ' ' ' '
cients, from (Npay +1)*(lmax + 1) in the un-
constrained case, t0 (Nmax — 1)*(lmax + 1) in
the constrained one. As can be seen, the Figure 4.3: We show here the first five
reduction is much more significant for rel- double-vanishing-Jacobi polynomials, as de-
atively small nya. We also remark that fined by Eq. , for the same a = 8 =1
alongside the same cluster-dependent hy- chosen in Fig. (4.2). The figure shows how
perparameters of the 2B case, we now also the polynomials are constrained to go to zero
have a truncation of the angular expansion at both edges of the interval.

up to the index [,.. € N and thus each

cluster carries six hyperparameters.

Symmetries of the potential Another important aspect of the 3B potentials lies in

the ordering of the atomic numbers Z;, Z; and Z;. Specifically, the first atomic species

M. Domina 73



CHAPTER 4. JACOBI-LEGENDRE POTENTIALS

refers to the one of j-th atom, which corresponds to the first distance, r;;. Analogously,
the second species refers to the one of the atom that is considered in the second distance,
rri- Finally the last atomic species refers to the central atom. Thus, if we swap the role
of the distances in the potential, we must also swap the functional dependence: we then
deduce the symmetry rule

3 3
U(Z )ZkZ (TJ“ Tki, Sjkl) - U(Zk)Z Z; (rkzv T'ji, S]kl) : (427)

Z; 7 7

This is mirrored by the expansion coefficients a 7/ "
1n2

, since the first index, nq, refers

to the first distance, while the second index, no, refers to the second distance. Therefore it
Z; 77 InZ %
ninal — “nanil

clusters and avoid redundancies, it becomes even more relevant when the atoms j and &

must also hold that a . While this symmetry is important to define unique
belong to the same species, i.e., Z; = Z;, = Z. In this case, the expansion coefficients
become symmetric under the swap of Jacobi indexes n; <+ ng, i.e., they satisfy

Z727; Z727;
anlngl - a’ngnll (428)

This is a fundamental symmetry, that must be imposed to enforce the invariance of
the potentials with respect to permutations of identical atoms. This means that, in order

to ensure the symmetry of the coefficients, the expansion becomes

Nmax Imax

(3) o222 p (o,8)5(a.8) ki
UZZZi(Tji7rki7Sjki) = Z Apnl Pn]z Pnkz Plj +

n=2 [=0

Nmax lmax (429)
+ Z Z n1n2kl |: niji Pngkl +Pn2]z Pnﬂm PJ

n1=2 =0

no=2

ni>nsg

where we separated the same indexes contributions, ny = ny = n, from the remaining
cases, n; # ny. We can simplify this expression by defining the 3B-Jacobi-Legendre (3B-

JL) expansion

unique
(3) Z;ZyZ; (e.B)5(008) ki
UZ AV (TJ“T]W’ SJ}“) - Z a’ningkl Z (Pnuz P?’szl P)l] ' ’ (430)
ninal symim.

where the first summation runs over all the unique coefficients with respect to a symmetry
rule such as , e.g., we sum only over n; > no in the example above. Instead, the
second one runs over all the possible permutations of indexes that lead to equivalent
coefficients (the swap n; <> ny in the example above). Thus, the definition given in
Eq. reduces to Eq. when 7Z; = Z, = Z. This formalism can be easily
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Nw e w
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Figure 4.4: We graphically show the type of 3B clusters that should be considered when
dealing with a 3-species system (here in black, red and white respectively). Please note
that clusters obtained by a swap of the two atoms in the neighborhood are implicitly taken
into account by means of the symmetry rule in Eq. .

generalized to higher-body order terms: indeed, it only requires us to define the list of
symmetries that are satisfied by the expansion coefficients. Note, however, that higher-
body orders will also introduce more than one angle, and, therefore, the symmetry will

get more complicated than a simple swap of indexes.

On multi-species systems In this short paragraph, we address the problematic in-
crease in the number of clusters with the number of atomic species in the system. Indeed,
as shown in Fig. for the simple case of just three species, the number of clusters can
rapidly become intractable (also considering that all the hyperparameters are, in principle,
independent for each cluster). A possible way to mitigate this problem is to implement a
cluster selection, either based on physical knowledge, or obtained by introducing an initial
“screening” phase, focused on the determination of which cluster can be neglected without
affecting the performance of the model. Another strategy is to perform approximations,
such as label two atomic species that are expected to behave in a similar way, as the same

species. We stress that, however, there is not a good-for-all solution to this problem.

Linear scaling and connection with the powerspectrum Let us now discuss how
the choice of Legendre polynomials naturally leads to a formulation of the 3B expansion
in terms of the powerspectrum. Please note that what follows in this paragraph will be
not used in the developed version of the potential. Indeed, the role of this paragraph is
to show that a connection with other descriptors exists and that a linear scaling (with

respect to the number of atom in the atomic neighborhood) can be achieved.

Here, we will exploit the connection between the powerspectrum and the expansion in
Legendre polynomials shown in Eq. (2.16)). The first step consists in using the addition
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theorem for the spherical harmonics (from Eq. (2.15]), and reported here for readability)

l
- - Am ok (2 m(s
PilRji i) = 57— > Y)Y () (4.31)

m=—

We also define the Jacobi-Legendre-(JL-)atomic basis (analogous to the atomic basis

introduced in the ACE formalism, and strictly related to it)

(Lo L)iZ vty = D [HPn ﬂ} {H}/}Ts(fﬁ)}. (4.32)

jeZ Fr=1 s=1

Here, the indexes p and ¢ shows how many double-vanishing Jacobi polynomials and
Legendre polynomials are present in the expansion. Also, the summation runs over all
the atoms of the same species in the surrounding of the central atom ¢: thus, crucially,
the evaluation of the JL-atomic basis is linear with respect to the number of atoms in the
neighborhood. We note that, since both Jacobi polynomials and Legendre polynomials
are complete, this atomic basis could appear somehow redundant: indeed, there exist

coefficients ¢}, ,,,, such that

nijt * naji nji
n

This implies that the basis can be always reduced to linear combination of (J;Ly)57
terms (the same argument holds for the spherical harmonics). However, because the
coupling coefficients c;; . are usually evaluated by performing numerical integrations and,
more importantly, since they depend on the pair («, 3), we cannot build a look-up table.
For this reasons we decided not to perform any basis reduction. We also note that the
case (J1L1>n1l1m1 is equivalent to the ACE-atomic basis defined in Eq. (2.57), if the radial
functions are identified with the double-vanishing-Jacobi and Legendre polynomials.

With this basis choice, the 3B-atomic energy term, E(Z?’i), becomes

atoms atoms unique

3 3 AV A (a.B)35(.B) pjki
g(ZZ) = Z U(Zj)ZkZi (Tjiyrkia Sjkz Z Z n1n§l Z (Pnlyz Pnzk‘l Pj )

(k)4 i ninal symm.

atoms unique 434)
4m Bl A X (
VAV B m* m
= Z Z Z nlln;l 2l—|—1 Z <Z Pnljz ngsz (I‘ji)YE (rkl) )

Z12>7Z3 (j,k); minal symm. m=—1
]€Z1
keZs

where we firstly separated the contributions in terms of the atomic species, and then
we applied the addition theorem. Now, the only thing that prevents us from using the

JL-atomic basis of Eq. (4.32)) is the constrained summation over all the unique pairs for
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atoms. We first notice that the constraint holds only when the atomic species are the
same. Then we can leverage on the fact that performing the inner sum over the indexes
swap is equivalent to permuting j and k in the 3B-JL expansion. Therefore, we can release

the constraint on the sum by simply adding and subtracting terms like

unique unique
2225 (a,ﬁ Z77;
_Z Z Z n1ngl nl]’L nggz - Z Z anm,gl J2 0 n1n2 (435>
(j€Z); ninal Z  ninal

These can be interpreted as a “self-interaction” terms, since we can read them as if
the central atom was to interact “twice” with the same atom in the environment. The
self-interaction contributions are also discussed in the ACE formalism (see, for example
Fig. and Refs. [25] 67]) where, however, they are reduced to combination of 2B terms
and then re-absorbed in the expansion. On the contrary, our aim here is to keep a clear
separation between different body orders for two reasons: if, on one hand, different body
orders are defined in terms of different hyperparameters (specifically, a different truncation
Nmax, different cut-off radii 7., and different pairs («, 5)), on the other hand we aim in
keeping a formal link between the internal coordinate representation and the atomic-basis

one, so that it is possible to use one or the other, at needﬂ. Finally, we can write

unique
21727, Z1Z2 (3),Z1Z2
Z Z bnanI ( ininal Sin1n2 ) (436)
ZlZZQ nlngl
i ), %122 (3),212>
where we defined the coupling term, Cm i -, and the self-interaction, Sj,71 7%,

l

47
(3),Z1Z2 o L L 1,22

S(3)aZ1Z2 = 5Z122<J2L0>i721

ining ning’

: T Z27; : 71 Z>7;
The coefficients by, are defined in terms of the a, " as
o 21222
21227 !
bn11n221 1 5n1n2 5 bl (438)
+0212,0n1n,

so that spurious multiplicative factors are correctly taken into account. We note how the
coupling term is formally equivalent to the powerspectrum defined in Eq. (2.10) and,
therefore, also to the term B , in Eq. (2.59) for the ACE model. We also note that

mlnz

our selection of unique coefficients, and subsequent sum over symmetries, is equivalent

19Tf there are not many atoms in the atomic environment, the computational overhead of evaluating
the spherical harmonics and contracting them could make the linear-scaling scheme less efficient than the
internal coordinates one.
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to the lexicographic order v; > 15 used in ACE (2.59)) (please, see also Ref. [103]): we
stress, however, that this equivalence will not hold when we will introduce an analogous
expansion for the four-body term.

Crucially, in Eq. , we shifted from an expression which was quadratic in the
number of neighbors inside the cut-off sphere (as can see from the constrained sum over

all the unique pairs in Eq. (4.30)), to an equivalent expression which is, instead, linear.

Connection with “the density trick” Before proceeding with an in-depth analysis of

the four-body terms, let us strengthen the connection between the “powerspectrum-like”

0(3 2175

imingl and recovered from the enforcement of a linear scaling, and the

term, given from
powerspectrum obtained from the density trick and first introduced in Sec. [2.1.2] The
main objective is to construct a neighbor density using the Jacobi polynomials as radial
basis. The strategy is similar to the one showed in Sec. [2.1.2], where the definition of a map
from the real space, R?, to the surface of a four-dimensional space, S®, was used to define
the new density p;(r) Lmii pi(), which was subsequently used in the SNAP model [24].
Analogously, we can directly use the cosine map, defined in Eq.[£.3] to construct a neighbor
density, p;, which is defined on the domain [—1,1] ® S?, where S? is the surface of the

unitary, 3-dimensional sphere. Explicitly, we have

r—a(r) N

pi(r) pi(z,T), (4.39)

where we recall that the cosine map, x, is defined from [ryin, reut] to [—1,1], as

2(r) = cos (wm> . (4.40)

Tcut = T'min

We can now proceed with a constructive approach, by assuming that the density
pE(x,T) is given as

=L PP (@)Y (E), (4.41)

nlm

with the coefficients given by

atoms

znlm = Z Pn;!zﬁ)ym* ) (442)

and where the sum runs over all the atoms inside the cut-off sphere. These coefficients

can be easily obtained by means of the integral

1 1
Cinlm = — -3 / df / d]} w(cx,ﬁ) ('r)p;]L(x7 f.>PT(La”8) (I)Y}m*@')? (443)
NP ~1
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where we used the weight functio w@d(z) = (1—2)%(1 +2)?, and N\ is a normal-

ization constant given by the integral [55]
/ dz w @B () PO (2) PeB) () = 5, N(© (4.44)

which is explicitly computed as

NoB) — 2008+ T'(n+a+ 1)I(n+ B+ 1)
" 2n+a+pB+1 nlln+a+pB+1),

(4.45)

with I'(x) being the Gamma function. Now, it is interesting to investigate if the defined
density is indeed a localization function, with well-recognizable peaks in correspondence
of the atomic positions. This can be done by considering the | = m = 0 case, since the
angular dependence of the function is the same of the one of the Dirac-delta distributions

of Sec. [2.1.2] which are, by definition, localized. Explcitly, we can investigate the sum

atoms

Sz‘(::’ﬂ) = mOO \/— Z Z PT(I;!’L’IB : (446>

n

While a detailed analysis of this sum is outside the scope of our discussion, Fig. |4.5((top)
shows examples of truncated Sz(f: P ), evaluated over four randomly-selected atomic posi-
tions, and with o = = 2. On the one hand, the Figure reveals that the expression does
indeed define a localization function. On the other hand, it also shows the presents of
a divergence at the edges of the interval of definition. As mentioned before, this shows
how the weight, w(®? (x), can be seen as imposing a new metric on the interval, which
is analogous to the different metric adopted by the choice of the SNAP formalism over
the surface of the 4-dimensional sphere. This can be seen by plotting the same function
multiplied by the weight w(*#)(z), as shown in Fig. 4.5 (bottom): not only this procedure
regularizes the peaks’ height, which shows how the weight function is responsible for a
different metric on the interval, but also the divergences at the edges of the interval is now
disappeared. Even more, we can appreciate how the derivatives of the resulting expres-
sion vanish at the edge of the interval, a fact that can be easily shown by calculating the
derivative of w(®#) (x)SZ(S A n particular, it is easy to show that the derivative of order k,
evaluated on the right or left edge, vanish if and only if & > k or § > k, respectively. We
just mention that this property could be used as a further strategy to address the need

for an explicit cut-off function, and could give an enhanced control over the behaviour of

20Technically, we are defining a function which belongs to the space Li(aﬂ)([—l, 1] ® S?), of square-
integrable functions, with respect to the given weight. Given that the function is defined by means of its
series expansion, and given that the series is always truncated to a suitable value, we can avoid any detail
regarding the convergence of the proposed expression.
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Figure 4.5: (Top) The Figure shows a possible example of the sum from Eq. The
atomic positions are at r; = —0.6, x5 = 0.1, x3 = 0.25 and x4 = 0.8. This example is
constructed with a = 8 = 2, and only the case n = 500 is shown. It is also shown how
the density possesses peaks on the atomic position and divergences at the edges of the
domain, for z = +1.

(Bottom) The Figure shows the same function scaled by the weight w(®# (z). From the
Figure, it can be appreciated how the terms Sz(f: ) are based on an underlying metric over
the interval [—1, 1]. Indeed, not only the divergences disappeared (with the function now
smoothly vanishing at the edges), but also the peaks are on the same scale.

the derivatives at the edge of the interval.

With a well-defined neighbor density, we can now follow the same procedure discussed
in Sec. [2.1.2] and construct the powerspectrum or the bispectrum, in complete analogy
to what done for the GAP framework. Indeed, a powerspectrum can be easily defined by

means of the contraction
JL Z JL JL
Pinnnt = (_1)mcinlmcm’l—m7 (447)

m

which can be used in either a linear model or a kernel-based model.

Finally, we can compare this expression with o®

iming (NOte that, for the sake of com-
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pactness, we are not considering details regarding the atomic species), explicitly

(3) . 47
ininal m;( ) (JlL )n1lm(J1L1)n2l —-m

4 atoms (448)
i BB rma VBB —m
- 21 +1 Z(_l) Z Pnljl Y ( )Pngji }/l (rki)7
m ik
and
atoms
Pininat = D (=) CinimCiim = > (=1 Z POV 50 Pl Yy " (). (4.49)

The two expressions are almost identical, but for an unessential overall factor and for
the appearance of double-vanishing Jacobi polynomials instead of standard ones. We will
now show a method to address this difference. The underlying assumption is to assume
that the energy is obtained by a [linear combination of the powerspectrum components,

explicitly

atoms

Eshort = Z Z anlnglpijnlith (45())

i ninal
for some coefficients a,,,,; and where the first sum runs over all the atoms in the system.

This equation can be rewritten as
Eghort = Z Z O(7ji, This Tji - Thi), (4.51)
i gk

where, again, the potential v has been defined as

U(Tjw Tkis r]z rkz . Z anlngl Z mPnl;zB Ym( )P»,Ejif)y}_m(f‘kz)

ninal

20+ 1 ) (@) ki
_ Z + anmzP( ) plad) piki

nije noki

(4.52)

ninal

with the second line obtained by means of the addition theorem for the spherical harmon-

ics. Now that we have defined a potential, we can apply again the constraintﬂ

lim U(Tl,TQ, f'l . f‘g) =0 \V/I'Q, lim U(?”l, T, f‘l : f'Q) =0 Vrl, (453)
T1—Tcut T2 Teut
and
lim U(T17T2,f'1 f'Q) =0 VI‘Q, lim U(Tl,’l“g,f'l f'Q) =0 \V/I'l. (454)
r1—0 ro—0

2INote that we are not considering rmi, for practical reasons.
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These expressions are equivalent to the ones used in deriving the double-vanishing-
Jacobi polynomials. Indeed, it can be proven that applying these constraints results in an

expansion for the energy in terms of a modified powerspectrum, namely

Eshort = Z Z Zavunzlz_?;]nlinﬂa (455)

. ning>2 |

with
— m_(a7ﬁ) m/a _(0175) —_m (A
p;']n[ingl = E (_1) Pnlji YE (rji)Pnzki Yi (rkl) (456)

By comparing this expression with Eq. (4.48)), we can see that

—JL  _ 2041 (3)

ininal 47T ininal?

(4.57)

which establishes a connection between the JL formalism, in its linear-scaling form en-
coded in C%)

imingt> and density trick. To summarize, this has been achieved by constructing

a suitable neighbors density and by introducing a constraining procedure. In particular,
the construction of the density p/* allows to perform an explicit comparison with any
other method that is based on the density trick formalism. It is important to mention,
however, that the double-vanishing-Jacobi polynomials arise from the constraining proce-
dure applied to a linear model. If another model is used then the constraining procedure
could be different, and so the resulting expressions could deviate from the ones of the
JL expansion. However, this is consistent with the fact that the double-vanishing-Jacobi

polynomial were originally derived from a linear expansion.

We conclude by remarking that the formalism, which is based on the JL-atomic basis
and the one in terms of the JL-neighbors density, while being crucial in establish a link
with previous methods, will be relegated only to theoretical investigations. In the fol-
lowing, instead, we will explicitly use an internal-coordinate representation (the original
JL-expansion of Eq. keeping in mind that, if there are too many atoms in cut-off
sphere (enough to justify the evaluation of the 2[ + 1 spherical harmonics, and the 21 + 1
subsequent contractions over m), the linearised formalism could give a computational

advantage.
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4.1.3 Four-body (4B) potential

The four-body (4B) potential is expanded in complete analogy to what already done
for the 3B case. Indeed the 4B-JL expansion reads

unique

(4) . Z;ZxZpZ; —(a,8)5(a,8)5(x.6) Jjki pipt pkpi
Uzjzkzpzi(rjiarkiarpia Sjkiy Skpi) Sjpi) = § anlll?;g:‘s § an Pnzkz Pngpz P P P :
ninang .
1 lots symim

(4.58)

The range of all Jacobi indexes is always [2, nmax], and the one for the Legendre indexes
is [0, lmax])- It is worth noticing that the symmetry scheme introduced here, with the sum
over the unique coefficients, is different from a lexicographic order. Indeed, permuting two
atomic species in the definition of the potential, implies the swap of the corresponding
distances and scalar products (angles). For example, the potential defined by the swap
Z; — Zj satisfies the symmetry

(4) e 4
UZkZ ZpZ; (Tk:z; Tjis Tpiy Sikis Sjpis Skpz) T UZjZkZpZi (Tji7 Tkis Tpis Sjkis Skpis Sjpi)~ (459>

On the one hand this means that we can always impose an ordering on the atomic
number, as Z; > Z; > Z;, and, on the other, this also implies the following symmetry

relation for the expansion coefficients

ANAVAYA AVANAYA)
anznfn; f = aningngp Z, (460)

l1l3l2 111213

obtained by attributing the correct Jacobi and Legendre indexes to distances and angles,
respectively. In particular, if the atoms in the atomic environment belong to the same

species Z, we have the full chain of symmetries

aningng = (ngning = Angneni = Gningnz = An2n3ni = An3nin , (461>
l1l2l3 111312 l3laly lalyl3 I3lyl2 lal3ly

which must be taken into account in Eq. (4.58), to enforce the correct invariance under

identical atoms permutations.

Linear scaling and differences with respect to the bispectrum coupling scheme
By following the same procedure of the one shown for the 3B case, we can cast the 4B

atomic energy, e, in terms of the JL-atomic basis as

unique
4 Z Z 71727375 4),21Z273 4),217273
55 ) = bnlln;n33 (n)1n2n3 - Si(n)annS , (462)
Iy2Zy2 25 Mn2ns hials b hilaly » llals
1 2 3
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where

DLz 1 S (<1 En (L) (L) ity (D1 L)

nilimyla—ma nalzmszly —my nglamals—ms3 °
% l11213

(4.63)
Here, we used the shorthand (—1)2m := (=1)™+m2+ms and 11}, == [[o_, 47/ (2L, +

1). Again, the b2 22257 coefficients are proportional to the initial ones. The expression
L1213

for the self-energy, 554), is more involved and can be found in the SI of the original work

mimaoms

from Ref. [99]. However, we mention that it is expressed only in terms of the atomic basis
(J1Ls), (JoLo) and (J3Lo), so that the full expression is again linear with respect to the
number of neighbors inside the cut-off sphere. Crucially, this expression is obtained by
a simple re-arrangement of the terms of Eq. and, as such, one can freely navigate
between an expression in terms of internal coordinates and the one in terms of the JL-
atomic basis. In particular, it is important to remark how the coupling scheme of angular

momenta implied in the coupling term C' Fi};i;f;z?’ is not equivalent to the one used in the

% lllglg
definition of the bispectrum componentﬂ,

l l l i i i
B = Y (1 ’ 3)(JlLl)i;Llellml<J1L1>i;LZ22lgm2(JlLl)i;lz;zgmy (4.64)

b lilals mimams my Mg g3

reported here for readabilityﬁ, and in the form proposed in the ACE model (see Eq. )
Indeed, the bispectrum coupling cannot be straightforwardly re-arranged in an equivalent
expression in terms of internal coordinates. On the contrary, while the bispectrum coupling
scheme is more compact, the one introduced here has the advantage that it fully mirrors a
representation in terms of internal coordinates, which can be used at need (in the following
we will use only the representation in terms of internal coordinates, and not the linearised

one).

4.1.4 The Five-body (5B) potential

Proceeding to higher-body order terms, we investigate here how to construct the 5B-JL
expansion. The main aim of this section is to show how the internal coordinate represen-
tation contains the minimal number of distances and angles that are needed to describe

an isometrically-invariant-5B quantity. We remark that investigating a 5B potential is

22Please note that the internal coordinate representation is implicitly invariant under reflection. This
implies that the two couplings span the same space only when the only bispectrum components retained
are the ones for I; + I + I3 even.

23Note that this coupling can be obtained with the same procedure introduced in the previous section,
starting from the JL-neighbor density of Eq. (#.41)), p/~. This approach indeed leads to the bispectrum
coupling in terms of the JL-atomic basis.
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necessary, since it is proven that a 4B representation is not complete, i.e., that two multi-
atom configurations, albeit not related by an O(3) transformation, can lead to the same
bispectrum components (please, see Ref. [49] for details). Before proceeding it is impor-
tant to distinguish between the two notion of completeness that appear in this work. The
first one, used throughout this thesis, refers to a complete representation of a function in
terms of expansions over its degrees of freedom. This allows to define a basis and, being
it the notion of completeness that refers to (invariant) functions evaluated on n bodies, is
a definition concerned with the counting and characterization of degrees of freedom. The
second notion of completeness is related to the unique representation of a neighborhood
containing N atoms. For example, in the case of the the multi-body JL-expansion, our
approach is to represent the contribution of the neighborhood in terms of progressively
higher body-terms. Thus, the first concept of completeness relates to ways of representing
the single n-body term, e.g., a 3B term can be uniquely represented by 2 distances and one
angle. In contrast, the second form of completeness tries to answer the question on how
to uniquely represent the neighborhood, and more generally, the entire system. If, on the
one hand, the two notions are clearly related and indeed become equivalent for the same
number of atoms, i.e., n = N, on the other hand they are very distinct: while a 3-body
term can be described by 2 distances and one angle, a general neighborhood cannot be
uniquely defined by a sum of 3-body contributions. Indeed the work of Ref. [49] proves
that even a sum of 4-body contributions is not enough, and more recent works go in the
direction of constructing a complete representation (see, for example, the recent work of
Ref. [104]). While we mentioned the completeness with respect to the representation of the
full neighborhood of atoms, from this point forward we will consider only the first kind
of completeness and, in particular, this section will discuss an elementary hand-waving
method to prove that an isometrically-invariant-5B term can be uniquely described by 4

distances and 6 scalar products.

We can now proceed with an expansion for the 5B terms and with a discussion over

the completeness of the JL representation. The 5B-JL expansion is defined as

() _
ijZkZquZi(Tji,Tki,sz‘,Tqi,Sj/m', Sjpiyr Sjqir Skpiy Skqis qui) =

unique
B Z Zi 2y Zp Zq 2 Z Hla.B)5(B)5(a.8)5(B) piki pipi pigi pkpi Dkt HPgi
- an1n2n3n4 Pnljl PTLQk‘i Pngp’i Pn4qi ’Pll ‘Plg 'Pl3 ‘Pl4 ‘Pl{, 'PZG ?
ningngn,  l2lslalsls symm.
l112l3l4l51g

(4.65)

and, as mentioned, is expanded over 4 distances, each carrying its own set of double-
vanishing-Jacobi polynomials and 6 scalar products, addressed by the Legendre polynomi-
als. An expression that scales linearly with the number of atoms is available also for the

5B case, but it will not be explicitly discussed here. Instead we will postpone a mention
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to the linearised expression to the last chapter of the thesis, where we will compared the
implied coupling scheme with the one introduced by the ACE model.

We can now focus on the angular part of the potentia]@. To simplify the notation, let
us orderly relabel the versors as, 1y, T, T3 and r4. Since the potentials are isometrically
invariant, we can always rotate the frame of reference to align the versor r; with z-axis.
We can then perform another rotation around the z-axis (leaving the direction of the first
versor unchanged) and bring the second versor on the xz plane. Finally, if the third versor
has a negative y-coordinate, we can mirror the system with respect to the zz-plane, to
impose a positive y-coordinate. Thus, the coordinates of the versors, in terms of polar

and azimuthal angles, can be generally written aﬁ
t; = (0,0), o= (02,0), t3=(03,¢3), andty= (04, ¢s). (4.66)

The three polar angles, as well as the angle ¢3, are all defined in the range [0, 7]
(because the y coordinate of r3 is positive), while the last azimuthal angle is defined in the
range [0, 27]. Crucially, this is the minimal set of angles needed to describe an isometrically
invariant quantity defined on 4 versors.

Moving to a representation in terms of scalar products, we notice how the polar angles

are unambiguously defined by
r{-r, =cosb,, forn=23 4. (4.67)
Moreover, the azimuthal angle ¢3 is determined by inverting the expression
'y - T3 = c0s 05 cos 03 + sin 0 sin 3 cos @3, (4.68)

which allows us to obtain cos ¢3. This is enough to fully characterize ¢3 since it is defined
on the range [0, |. Please, note that all the angles considered so far are fully determined
by the scalar products 1y - 1.

A slightly different approach is required for the azimuthal angle ¢4, since its cosine
does not carry enough information to unambiguously determine its value. Indeed we need

to invert the system of equations

(4.69)

{f‘g - T4 = cos B cos 6, + sin O, sin 04 cos ¢y,

r3 - Ty = cos s cos by + sin O3 sin O4(cos ¢3 cos ¢4 + sin @3 sin @y).

By inverting the first equation, we obtain the value of cos ¢4, which can then exploited

24Please note that, concerning the radial contributions, an expansion over four distances is already a
complete representation.
25 Again, since our targets are isometrically invariant, this is completely general.
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in the second equation to retrieve the value of sin ¢4, and finally unambiguously obtain
the angle ¢4. We showed two things here: firstly, all the five scalar products r; - r; are
required to cover the minimal set of degrees of freedom defined in Eq. (4.66). Secondly,
that each new versor, with an azimuthal angle defined on the full interval [0, 27], brings
three more degrees of freedom in terms of scalar products: one for the polar angle, and two
to characterize the azimuthal angld®®, We then deduce that the representation in internal
coordinates becomes over-complete in going to a six-body description: indeed, adding a
new versor 15, will bring four more scalar products, while only three are required to fully
characterize the pair (65, ¢5). This discussion also shows that, if the described quantity
is not invariant under reflection, i.e., if ¢35 now take values in the range [0, 27], we need
to define a new degree of freedom, which carries the information on the sign of sin ¢3.
While we hypothesise that this problem could be solved by enhancing the description, for
example introducing a new Legendre expansion in terms of the quantity ] X Iy - I3, we

will not consider this case here, postponing the discussion to a future analysis.

We conclude this section by noticing that the number of scalar products is strictly
related to the number of indexes in the expansion: this brings some issues with the 5B
terms presented in the ACE formalism, which carries only four indexes. We will explore
this problem in the last chapter, where we will show, not only that at least 5 indexes are
necessary to fully characterize an isometrically invariant 5B function, but also that, using
6 indexes allows us to disentangle the representation from the choice of a specific coupling

scheme.

4.2 The Jacobi-Legendre Potential (JLP)

We can now define the complete Jacobi-Legendre potentials (JLPs), obtained by plug-
ging together Eqs. (4.18), (4.30), (4.58) in (4.1)) and (4.1)). We adopt the same formalism
introduced for the SNAP potential (see Eq. (2.49))), and symbolically write

body
order
efT(I) =ez + Y ay I, (4.70)

26Note that, to gain information on the azimuthal angle, we actually need a scalar product (continuous
quantity) and a boolean number (in this case, given by the sign of the sine of the angles). In general, this
is enough to obtain a complete representation of an angle defined over the interval [0, 27]. However, if on
the one hand we are including more information than needed (the sine is a continuous quantity, against a
boolean one), this allows to treat all the scalar products on the same footing, and thus it makes it easier
to deal with the symmetries of the expression, in particular the invariance under permutation of identical
atoms.
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where we divided the expression in different body orders, with a(ZvZ_) being the vector con-
taining all the v-body-order-expansion coefficients (which will be learned in the training
phase), and J Z(-v) being the vector containing the sums of all the v-body descriptors sub-
tended to the same coefficient. The vector J; is constructed by concatenating all of the

J™ ones.

Forces and Stress tensor Given the linearity of the JLP model, we can calculate the

forces and the components of the stress tenso@ by (please, compare with Eq. (2.50))

( Eﬁg atoms aJ (v)
atoms - _V E= Z Z ’
FILP _ Z elLP(J)) b (4.71)
orde}; aJ(v)
W:—er®VjE: ZZaZ-Z] a;j'
\ J 7j=1

In particular, from the first equation, we can also define the v-body contribution to

the forces as

atoms (v)
() ._ (v) O
FY = - Z % (4.72)
From the expressions above, it is clear that the only ingredient needed to evaluate the
forces is the use of the chain rule with the derivative of the (double-)vanishing-Jacobi and

Legendre polynomials, which are given by

( d d 1
- — P8 (cos(z)) = EP(O"B)(COS(SC)) = _M% sin(z) P (cos(x)),
d d [+1
Th@) = =R @) = =P (@), (4.73)
d —(a
P (eos(a) =
- BV (-1
— _sin(@) (a+ B +n+ l)PT(ﬁJ{l’BH)(cos(x)) —(a+B+2)=— ) :
2 PP (1)
\

From the first expression we can appreciate how the vanishing-Jacobi polynomials have
zero derivatives at the edges of the range of definition, i.e., for » = 0 and r = r.y, due to
the presence of the sine functions (as can be seen from Fig.s[4.2/and [4.3)). We notice that
the second derivative does not share this property. However, should it be important to
constrain also the second derivatives to go to zero, a possible solution could be to enforce

an additional constraint on the expansion. In the second equation above we exploited

27Please note that the definition used here for the components of the stress tensor does not contain a
normalization by the volume of the cell, and thus it appears in units of energy. If needed, dividing by the
cell volume brings the expression in the standard pressure’s units.
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the fact that the Legendre polynomials are a particular case of Jacobi polynomials (for

a = =0), allowing us to evaluate all of the derivatives within the same framework.

This concludes the characterization of the descriptors defined for the JLP. In the next
short paragraph we will outline the main aspects of the linear regression for the determi-

nation of the expansion coefficient.

Linear regression The learning process (evaluation of the expansion coefficients a(Zv_)),
1

was driven by the minimisation of the widely used loss function
L= |E = Jgal; + crl|F — Ipall; + cw |W — Jwall;, (4.74)

written in terms of the is the 2-norm ||-||,. Here the vector E represents all the energies
in the training set (usually obtained by ab-initio calculations), a is the vector obtained
by concatenating all the coefficients of the expansion, and Jg is the matrix whose rows
contain the set of descriptors for one configuration of the training set. Similarly F is the
vector of all the forces of the dataset, while Jr is again the matrix of the differentiated
descriptors, in which each row refers to a specific configuration of the training set. We
will train on each force component, so that, if the c-th configuration has N, atoms, we will
have 3N, forces associated with that configuration. Analogously, we will train on each of
the six components of the stress-tensor (6 for each configuration): the rows and columns
of the matrix Jyy, refers to the configuration and to the descriptors for the stress-tensor
components, respectively. Finally, cx and ¢y are coupling constants to be optimized. We
can slightly modify the expression above and make the coupling constants, cp and cyy,
configuration dependent. Practically, this is equivalent to slightly changing the descriptors’
definition. This could be useful, for example, when the configurations in the dataset have
a different number of atoms and/or to weight the terms in the loss functions on the same
footing. In the same spirit, we will consider per-atom energies (dividing the energies and
the descriptors by the number of atoms) and we will divide all the forces by /3N, to

bring energies and forces on the same footing with respect to the loss function.

Please note that other potentials make use of a non-linear-embedding function to target
the energies. An example is given by the ACE potential which mirrors the functional form
of a Finnis-Sinclair potential, and uses a two-targets approach (please, see Refs. |25, [105],
and [106] for a discussion on the properties of the embedding functions). Here, however, we
will follow the simplest case of a linear regression. We will investigate different embedding

functions in future works.
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Two Body Three Body Four Body

Nmax 10 6 4
limax - 5 3
Feu (A) 3.7 3.7 3.7
a=p 1 1 1
# of features 10 90 364

Table 4.1: Details of the JLP trained on the carbon dataset. In order to reduce the number
of hyperparameters, we fixed o and (8 to be equal, and ry;;, = 0. The model is relatively
compact and comprises 465 (464 plus the intercept) features. This table has been reported
from the main manuscript, Ref. [99).

4.3 Application: A JLP for Carbon

To test the performance of the JLPs, we decided to build a potential from the dataset
presented in Ref. [50], and used to train the GAP17 potential. This choice was driven by
the challenges that it presents. Firstly, the dataset contains a large variety of different
carbon phases, from amorphous and surfaces, to crystalline structures (graphene, graphite
diamond). Moreover, several phases show an high degree of non-locality (in the sense that
they present a relatively large distance for the decaying of the forces between two atoms),
which requires a careful tuning of the cut-off radius. Before fitting a JLP, we filtered the
dataset, removing all the structures with an absolute maximum force components greater
than 30 eV/A. Moreover, we also removed configurations of carbon dimers that were
present in the dataset, there included to improve the quality of two-body contributions for
the original GAP17 potential [Ref. [50]], but unessential for our purposes. In total, out of
the 4,080 configurations, we removed 37. The remaining 4,043 were split into a training
(2,830 structures) and test (1,213 structures) sets.

The fitting procedure was done simultaneously on energies, forces and stress tensor,
with the coupling coefficients optimized at cp = 0.5 and cy = 0.075, respectively. The
actual fitting procedure was carried out by means of a singular value decomposition. We
built a potential up to the 4B terms and, mirroring the locality analysis performed for
the GAP17, we fixed the cut-off radius at 3.7 A for every body-order. The optimised
hyperparameters are reported in Table 4.1 We stress that the resulting model, with its
465 total features, is arguably very compact if compared to the variety of phases in the
dataset. Also, we used the formula introduced and discussed in Ref. [107] (please see Eq.
(25) therein) for the stress tensor, in place of the one in Eq. (4.71).

The accuracy of the fitted model on the training set, reported in terms of the Root Mean
Squared Errors (RMSEs), was evaluated at 43.9 meV/atom for the energy, 0.781 eV/A
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Figure 4.6: Parity plots obtained from the predictions on the test set for the (a) energies,
(b) forces, (c) virial stress. The Mean Absolute Errors (MAEs) and Root Mean Square
Error (RMSE) are reported for each plot, alongside the error on the worst prediction.
The color code indicates the data density (number of datapoints). Figure (d) shows the
prediction when a truncated potential is used, going from only 2B terms (in red), including
also the 3B ones (in green), and up to the full 4B potential (in blue).

for the forces and 6.62 eV for the stress tensor. We found a similar accuracy for the
predictions on the test set, evaluated at 46.6 meV /atom for the energy, 0.779 eV/A for
the forces and 6.15 eV for the stress tensor. The parity plots for the predictions on the
test set is reported in Fig.|4.6(a)-(c). From the same figure we can appreciate that, despite
the relatively-compact model used here, both forces and tensor components reach an high
level of accuracy when compared with similar potentials [50} 58] [6§].

It is also interesting to investigate how different body orders contribute to the total fit
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Figure 4.7: (Left) Cumulative distributions of the forces components. Following the the
same discussion of Ref. [50], we selected the 1 eV /A as a reference point. (Right) Pair-wise
potential obtained from the JLP and Eq. . The insert shows a magnification of the
curve around the minimum, while the background histogram is the distribution of the
pair-wise distances of the full dataset.

of the JLP. This is explored in Fig. [4.6(d), where we show the parity plot (on the test set)
obtained by truncating the fit to include only up to the 2B, 3B, or the full 4B potential,
respectively@ From the figure we can see how it is necessary to include 4B contributions
to interpolate all the different phases of the dataset, in accord with what was already
concluded in Ref. [50] for the GAP17 potential. Interestingly, the 4B term allows for an
interpolation among the lowest energy phases (graphene, graphite and diamond), which
are otherwise separated in “branches”. We also observe that the inclusion of the 4B term
is probably necessary to discriminate among different atomic-local environments of the
amorphous phases.

In order to further compare this JLP with the GAP17 potential, a plot of the cumulative
distribution of the errors on the force components is shown in Fig. 4.7 (Left). A point on
the curve represents the percentage of components which are predicted with an absolute
error that is less than the indicated value. In particular, we observe around 81.97% of
the forces with an error which is less than the reference value of 1 eV/A: this can be
compared with the similar evaluation performed in the GAP17, where the same reference
value corresponded to 68.3% of force components.

Finally, we investigate the behaviour of the 2B potential, by plugging the fitted coeffi-
cients in Eq. and plotting the resulting functional form, shown in Fig. 4.7 (Right).
In the Figure, the 2B potential is compared with the histogram of pair-wise distances
of the entire dataset. We can appreciate the natural emergence of a strong short-range
repulsive behaviour, despite the lack of highly compressed structures. We remark that the
2B repulsion dictates the behaviour, at small distances, of the entire potential, because of
the constraints imposed on higher-body terms. The potential also shows a minimum in

close proximity to the first peak of the pair-distances distributions, as expected.

28This is only a truncation, the potential is not re-trained on lower order cases.
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Figure 4.8: The phonon dispersion curves for graphene (left) and diamond (right) are
shown. The red curve has been predicted with the JLP, while the black curve is from
reference DFT calculations (details in the main text).

Phonon dispersion curves Given the relative high accuracy achieved for energies,
forces and stress, we decided to challenge the JLP in the prediction of the phonons dis-
persion curves for graphene and diamond (using the phono3py package [108, [109]). As
reference, we used the curves for crystalline diamond (mp-66) obtained from Materials
Project [20], and the one for graphene from the phonon website [110], calculated by means
of density functional perturbation theory and the ABINIT code [111]. The results are re-
ported in Fig. for both graphene (left) and diamond (right), with the JLP predicted
curves are in red, and the reference calculations are in black. The figure shows how the
JLP is able to reproduce the phonon dispersion curves, with the graphene being the more
accurate between the two. We remark that perfect agreement is not expected, since the
DFT dataset used in the training phase (from Ref. [50]) was constructed with the CASTEP
code [112], and the phonons have been evaluated with finite differences. Instead, the ref-
erence was generated with the ABINIT code. Different DF'T implementations could play a
role in the difference between the two curves. Importantly, we do not find any negative
frequencies at the I' points. We can compare the phonon dispersion curves obtained here
with the similar ones reproduced by the GAP17 potential, or the more recent GAP20
(introduced in Ref. [58], please see the SI therein). The GAP20 is a potential constructed
with the same formalism of GAP17, but with a larger and more curated dataset, in par-
ticular including, among the others, structures from the work on graphene of Ref. [59).
Interestingly however, the potential obtained here, while being trained on the GAP17

dataset, has a much closer accuracy to the one of the GAP20 potential.

We also briefly discuss the newly developed ACE potential for carbon, discussed in
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the recent work of Ref. [68]. This potential is based on a much larger dataset (17,293
structures in the training set) containing a multitude of different phases, ranging from
the same ones used to train the JLP, to highly energetic or highly compressed cases. A
comparison with our JLP is not trivial, and in particular a comparison of RMSEs could
be meaningless: for example, if the whole dataset is considered, the RMSEs for the JLP
are much lower than the one of the ACE, but the JLP is not tested on more challenging,
highly energetic or highly compressed configurations. On the other hand if some of the
more challenging structures are excluded, the RMSE for the energies gets very close, while
the ACE has a halved RMSE compared to the one for the JLP for the forces, as can be
seen by the more accurate phonon dispersion curves for graphene and diamond. Still, the
JLP is trained on a much smaller dataset, and training on richer and broader scenarios
would surely improve the accuracy of the potential. Indeed, in future works, we plan to
investigate the performance of a JLP trained on a richer dataset to be able to do a more

fair comparison and to test the limits of this potential.

4.4 Conclusions

In conclusion, we presented the Jacobi-Legendre formalism for the construction of an
MLP. We showed how an approach based on the cluster expansion and on a representation
in internal coordinates could be used in defining a competitive potentials, with no reference
to any coupling scheme of angular momenta. We used Jacobi polynomials and Legendre
polynomials to expand the atomic potential in terms of polynomials formulated in terms
of distances and angles, respectively. In particular, the choice of the Jacobi polynomials
allowed for a great flexibility in the optimization of the radial basis, with a minimal set
of initial assumptions. A crucial strategy introduced in this work is the procedure used in
constraining the potentials, which can be used to enforce physically-expected behaviours
on the description. In this chapter, we only imposed the short-ranged nature of the poten-
tials, forcing them to smoothly vanish for distances larger than an optimized cut-off radius.
We also imposed a 2B interaction at short distances. However, the presented procedure,
being completely general, can be adapted to virtually any non-contradictory set of local
constraints. As an interesting by-product, we also showed the natural emergence of the
widely used cosine-cut-off function and, by leveraging on the choice of Jacobi polynomials,
we were able to bias the potential to exhibit a repulsive behaviour at short distances. Fi-
nally, we showed how to implement symmetries based on the atomic species of the atoms
in the systems, and how to achieve linear scaling with the number of atoms within the
cut-off volume, in particular, by exploiting the decomposition of Legendre polynomials in
sums of products of spherical harmonics. The same strategy led to a formal comparison

with other descriptors, such as the powerspectrum and the bispectrum.
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We then tested the JLP against the challenges posed by the carbon dataset used to
train the GAP17 potentials. The resulting model was capable of achieving highly accurate
RMSESs for energies, forces and components of the stress tensor at once, despite its relative
compactness (comprising 465 features), and the variety of phases described in the dataset.
Finally we reproduced the zero-temperature phonon dispersion curves for graphene and
diamond, obtaining satisfactory qualitative agreement.

This chapter represents the first step in the formulation of the complete JL framework,
which will be undertaken in the rest of the thesis. Indeed, starting from the next chapter,
we will show how the formalism introduced here can be naturally extended from the
prediction of scalar quantities (such as the energy) to also scalar field. One of the main
strengths of the JL expansion will be its versatility in naturally adapting to the most

disparate targets, while keeping the core of the formalism essentially unchanged.
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Chapter 5

The JLCDM for the Electron
Density

This chapter will be devoted to the introduction of the Jacobi-Legendre charge density
model (JLCDM) from our recent published work Linear Jacobi-Legendre expansion of
the charge density for machine learning-accelerated electronic structure calculations [113].
This work aimed to build a model capable of predicting the converged real-space electronic-
density, at a fraction of the DF'T computational cost. This was achieved by a scalar-field-
adapted-JL. approach, obtained from a cluster-expansion of a grid-point representation of

the electronic density.

In this spirit, the first aim of the chapter is to construct a model, which is able to
accurately predict the electronic density, to reduce the computational overhead of DFT
calculations. The second goal consists in taking the first step towards the generalization
of the JL formalism, in the direction of defining the general framework that is at the core
of this thesis. Indeed, we will show how the JL descriptors can be naturally generalized
to go beyond the description of scalars and, together with the following chapter, we will
show that the JL descriptors are, indeed, able to encompass all the quantities of interest

in the acceleration of the investigation of materials.

The chapter is structured as follows: firstly, the methods will be presented, alongside
the main strategies and ideas, which constitute the ground for the generalization of the
JL formalism. In particular, we will show that the model possesses the correct transfor-
mation symmetries of a scalar field. Then, the full Jacobi-Legendre charge-density model
(JLCDM) will be introduced, with particular care toward the preservation of the represen-
tation continuity at small distances. We will then proceed to discuss the adopted strategy
for the grid-points sample strategy in the construction of the training set: indeed, we will
show how a Gaussian sampling, with respect to the inverse of the magnitude of the density,

allows us to remove unnecessary redundancies, while retaining the information needed to
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high-quality reconstructions of the electronic density.

The accuracy of the model will then be tested on four systems of interest: benzene,
aluminium, molybdenum and 2D MoS,. In particular, we will show that the trained
JLCDM is able to predict the density of phases that were not present in the training
set. Finally, we will compare the energies and forces obtained from a non-self consistent
approach based on the JLCDM-predicted electronic density. From a comparison against
the fully converged ones, we will show that the JLCDM can approximately halve the
number of steps required to obtain ab-initio-quality performances.

My role in the work has focused on how to adapt the Jacobi-Legendre formalism,
introduced in the previous chapter to a scalar field and, specifically, to the description of
the DF'T electronic density.

5.1 Methods

The main aim for this chapter is the construction of a linear model for the electron
density, n(r), based on the JL formalism. The operative assumptions are the same of the
ones already introduced in section the first implicit assumption is that the density can
be defined uniquely by the positions (and atomic species) of all the atoms in the system
{r;}, ie.,

n(r) = n(r: {r;}). (5.1)

In order to be able to practically deal with the position vector r, we build a real-space-
grid mesh {r,}, covering the real space R®. This is the same step taken in the works of
Refs. [83] and [84]. The last assumption is that the value of the density at a grid point rg,
depends only on the atoms inside a cut-off sphere of radius r... This hypothesis, based
on a nearsightedness principle [see Refs. [114} [115]], will be formally equivalent to the
introduction of the cut-off radius for the scalar descriptors: in this way, we can identify
a local environment that determines the value of the density at the point, r,. Finally,
following the same recipe of the JLP method, we assume that we can write the electron

density in the form of a cluster expansion as,

E nZ (rg;r;) + 5 nZZ (rg;ri, ;) E nZZZk (rg;riry,r8) +..., (5.2)

(4,9 (4,3,k)

where the sums run, respectively, over single atoms, pairs and triplets inside a cut-off
sphere centered on the grid point r,. As for the JLP, we divided the electron density in
different body-order terms. In this sense, all the one-body (1B) contributions, n" (ry;r;),
depend on one atom in the neighborhood (and on the grid point), the two-body (2B)

order terms, n(2)(rg; r;,r;), depend on the position of two atoms, and so on for increasingly
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Figure 5.1: Graphical abstract of the core ideas for the construction of JLCDM models. We
used the same grid formulation already introduced in Refs. [83] 84] [see Fig.[2.§], where, by
centering the representation on a grid point r,, an atom-centered representation is adapted
to a mesh of grid points that covers the whole space. The grid-centered representation
is then expanded in a cluster expansion, similarly to what was done for the JLP. Finally,
each distance contribution is expanded in (double-)vanishing-Jacobi polynomials, while
the angular contributions are expanded in Legendre polynomials. The final formulation is
formally identical to the one introduced for the JLP in [4.70, where we simply “promoted”
the central atom to be a grid point.

higher-body orders. We also assumed that the functional form of the various terms depends
only on the atomic species of the atoms involved, similarly to the analogous hypothesis

for the potentials of the Jacobi-Legendre expansion.

Now, the strongest link with the JLP is that, if the frame of reference is translated on
top of the grid point r,, then the value of the density is invariant under any rotation of
the local environment around the origin. In this frame of reference, we have that all the
terms in the sum above must be scalars, and so that they must depend only on distances

and scalar products. Explicitly

E :”Z (Tig +§ :nZZ Tigs Tjgs Sijg) + E :nZZZk (Tigs T'jgs Thg» Sijgs Sikgs Sjkg) F- -+
(4:4) (4,3,k)

(5.3)
which is formally equivalent to the cluster expansion introduced in , in which the grid
point is used as a centre of the local environment, in analogy to the role of the central atom
in the JLP’s formalism. Note that r;, is the distance between the grid point position and
the i-th atom, and the relative scalar products are defined as s;;, = ;4 - T'j4. A graphical
abstract for this construction is shown in Fig. .1} Crucially, we notice that this cluster

expansion is consistent with the same constraints introduced in the Jacobi expansions of
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the JLP, since each addend in the sum above is required to vanish when at least one
of its distances approaches the cut-off radius. This will justify the use of the vanishing-
and double-vanishing-Jacobi polynomials when we will further expand the body terms

following the JL expansion recipe.

Transformation properties of the density Before introducing the actual expansion,
it is important to prove that the above expansion is consistent with the definition of a
scalar field. This can be done by demonstrating that the cluster expansion satisfies the
transformation rules introduced in Eq. (2.84), and reported here for readability,

np(ry; {ri}) = n(rg; {Tri}) = n(T vy {r:}), (5.4)

where nj(r; {r;}) is the density of the rotated system of atoms and where T is a gen-
eral isometric transformation (any operation that leaves distances and angles unchanged,
namely translation, rotation or inversion). In order to prove this transformation property,

we can leverage the identity
Tr;, — r, = T (ri — Tﬁlrg> : (5.5)

which states that we can move the effects of the transformation from the grid point to the
atoms, by factorizing out a global transformation. Since lengths are left unchanged by an

isometric transformation, we have that

~

Tr; —r,

~

r; — T_lrg

, (5.6)

which implies that the distances undergo the required transformation. Similarly, because

the scalar product between two vectors is not affected by a global isometry, we have

(Tri - rg> : (Trj - rg) = (ri — Tﬁlrg) : (rj — Tﬁlrg) . (5.7)

This proves that the system of internal coordinates, written in terms of the atoms and

a grid point, is indeed a good representation of the degrees of freedoms of scalar fields.
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5.1.1 The Jacobi-Legendre Charge Density Model

We can now expand the body terms of the cluster expansion of Eq. (5.3) by means
of the JL formalism (expand the dependence on each of the distances in terms of Jacobi

polynomials and on each of the scalar products in terms of Legendre polynomials), and

obtain
(a,8)
ng E a leg ,
unique
(2) .B) rijg
Nz.z; (Tig: Tigs Sijg) = nlngl ng angP
ninal symm.
unique
3) o VAVAVA —(a,8)5(a,8)5(x8) ij9 pikg pikg
nZiZjZk<TigvTjg7rkgaSijgvsikgv3jkg> = § : an11721n3 E : Pnlzg Pnzjg PnskgP P P
nina2ng 17283 symm
l1l2l3
\* )

(5.8)

The sum on the unique indexes is the same as the one introduced in Eq. (4.30), and

is necessary to enforce the correct invariance under permutation of identical atoms. We
also used the same cosine map introduced for the JLP: indeed, the vanishing-Jacobi poly-

nomials between the j-th atom and the grid point are given by

Pr(”g’ﬁ) pleh) [cos (W—T — [min )] : (5.9)
Teut — T'min
and the Legendre polynomials evaluated on the scalar product between r;, and r,, are
given by
B = Pi(Eig - £jg).

Again, the range of indexes for the Jacobi polynomials is [1, 1.y for the 1B case, and
[2, nmax) for all the others. Here, the role of the hyperparameter ry;, is more important
than in the case of the JLP. Indeed, it is not unusual for the grid points to get relatively
close to the positions of the atoms. This means that, contrary to what usually happens
for MLPs, the short-distances range is not only explored by the dataset, but it also has
a significant impact on the performance of the model. Therefore, the constraint that the
derivative of the potential vanishes at small distances (enforced by the cosine map, as can
be seen in Fig. , can be detrimental to the quality of the fit. For this reason, using
a negative ry, to push the point of zero derivative to the left, namely, to inaccessible-
negative values of r, relieves the potential from this constraint, and allows the model to
predict steep variations of the density in close proximity to the atomic positions.

Also, contrary to the JLP case, the choice of the double-vanishing-Jacobi polynomials

is not uniquely guided by the condition that the value of the density in proximity to
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an atomic position should be mainly characterized by a 1B interaction with that atom.
Indeed, for reasons that will be shortly discussed, we have to remove r;, from the cosine

map of the double-vanishing-Jacobi polynomials. Thus, for this JL expansion, we chose

P PW){ s(ﬂ)] (5.10)

Tcut

the polynomials

to expand the distance dependence of all the nB-order terms, but the 1B. The effect of
the choice of the double-vanishing-Jacobi and of the removal of ry;, is twofold. The first
consequence can be appreciated by investigating the limiting case in which ¢ = g, i.e., the

grid point is on top of one of the atoms. By taking explicitly the 2B term, we have

unique
2) (a8 "'min 5(a,B)
Nz.z; (rgg +7jgs sgyg Z nlnzl Z { ) [COS (Wrwt — )} Pl }» (5.11)

T'min
ninal symm.

which is, effectively, a 1B term (since depends only on the distance rj,) and, as such,
have already been considered in the lower-order-body contributions. By setting 7, = 0,
and by using the double-vanishing-Jacobi polynomials, one removes these redundancies
and the body orders are kept as formally separated as possible. The second consequence
consists in preserving the continuity of the expansion. Indeed, if we take the limit process

of the grid point approaching the atomic position, we have that, in general,

lim n(ZZ)Z (Tigs T'igs Sijg) 7 n(2) (O g, 1). (5.12)

rig—0

The cause for this inequality is that the direction of a zero-length vector is not well-
defined, and so the scalar product representation jumps discontinuously to 1. Again, this
discontinuity will be solved if both sides of the equation are constrained to be zero, which
is enforced by the simultaneous use of the double-vanishing-Jacobi polynomials and of an
min = 0. Arguably, the question of a zero ry;, can also arise for the simpler case of a
JLP, where, however, the role of ry;, is much less relevant, given that such small distances

regions are rarely explored by the dataset.

The hyperparameters of this model are defined in the same way as the one introduced
for the JLP, with each cluster, defined by its atomic species, carrying its own set. However,
since we removed the r;, but from the 1B case, which does not have an [,,,,, the number

of hyperparameters is always five, regardless of the body order’"]
We can then define the Jacobi-Legendre Charge Density Model (JLCDM) by the sym-

2We remark that the hyperparameters for the 2B order term are o, € (—1,00), Nmax € [1,00),
Teut € (0,00), Fmin € (—00, Teut). For higher-body-order terms, 7, is removed, but we have .y € [0, 00).

102 Ph.D. Thesis



GRID-POINT SAMPLING STRATEGY

bolic linear expansion

body
order

n(ry) = Z a® . Jo), (5.13)

where, similarly to what done in the definition of the JLP, Eq. (4.70), we have concate-
nated all the expansion coefficients of the same body-order in the vectors a(®), and all the
descriptors in the vectors J®. Crucially, the linearity of the model allows one to drastically
reduce the number of expansion coefficients to fit (usually of the order of the thousands),
with respect to Neural-Network (NN) based approaches, which requires the fit of a much
larger number of weights (of the order of the millions). Finally, the expansion coefficients
a® can be determined by minimising a loss function of choice, typically analogous to the
one showed in Eq. , but containing all the grid points that have been selected to
evaluate the density. Indeed, the strategy used for sampling the grid points will be crucial

for the performance of the model, as will be discussed in the next section.

5.2 Grid-point sampling strategy

Now that the model has been defined, we can address how to efficiently select training
points out of the millions available in the mesh. The usual approach to the mesh is
to choose a uniform drawing from a uniform, evenly-spaced, grid (we reviewed a few of
the available methods in Sec. [2.3). We will now prove that this strategy is not optimal
and carries a lot of redundancies. To make the discussion more concrete, we take an
example of benzene molecule from Ref. [116], obtained from sampling molecular dynamics
at 300K. A DFT calculation was performed on the sampled geometry, so a density in real
space, defined over 5,832,000 grid points, was obtained. The calculations were carried
out with the Vienna ab Initio Simulation Package (VASP) [117, [118], (please see the
manuscript, Ref. [113], for the details of the settings used). An example of density is
shown in Fig. (a). Crucially, a uniform grid-point mesh is sub-optimal as can be seen
from Fig. [5.29(b): indeed, most of the points are drawn from regions in space where the
density is negligible, far from any relevant contributions. Our approach, instead, aims to
select relevant points with respect to the density value. Indeed, we follow the Gaussian

probability density given by

Plr,) = —— exp <—M) (5.14)

oV 2w 202

so that points corresponding to an higher value of the density is selected with an higher
probability, than the ones where the density was negligible. Here, the Gaussian broad-

ness o, is a parameter that can be optimized. An example of this selection is reported in
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(a) DFT Charge Density e/ A° (b) Uniform Sampling
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Figure 5.2: (a) Density obtained from a VASP calculation performed on one snapshot
from the molecular-dynamics dataset of Ref [116]. (b) An example of uniform sampling
performed on the grid. Most of the points are in positions were the value of the density is
negligible and, thus, this approach carries a lot of redundancies. (¢) Example of drawing
from the density distribution of Eq. . The points are now more relevant, covering
positions where the density has significant values. (d) The actual strategy used, an overlap
of the uniform density from (b) and the Gaussian drawing from (c), devised to avoid under-
fitting of regions with small values of the density. Please note that the axis labels refers
to the grid-point mesh.
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Figure 5.3: The Figure shows the error of the model against the percentage of sampled
from the total number of grid points (in the main text). The label “targeted” refers to
the “Gaussian + uniform” sampling strategy discussed in Fig. As can be appreciated
from the logarithmic scale on the y axis, the effect of the Gaussian sampling is a faster
convergence of the error, and thus a smaller number of descriptors’ calculations.

Fig. [5.2(c). Still, to avoid under-sampling the points with small density values, we finally
considered a mixture of the Gaussian sampling with a uniform one, as shown in Fig.|5.2|(d).
This strategy allowed us to select only a few thousand points without compromising the
accuracy of the models. To show this, in Fig. [5.3] it is reported the testing error with
respect to the percentage of grid point employed in the training of a model for the benzene
molecule: it can be seen the targeted-(mixed-)sampling strategy allows to reach conver-
gence in the error already with 0.1% of the total number of grid points. Also, since the
descriptors were evaluated for each grid point, we also obtained a significant reduction of

the computational overhead.

5.3 Accuracy of the model

In order to probe the accuracy of the model, we performed several tests, on four
different systems. Firstly, we investigated the performance on a benzene molecule, from
the dataset reported above, of Ref. [116]. We then moved to aluminium and molybdenum,
to probe the performance of the model on metallic solids.

The aluminium was chosen to closely compare our model against the ones based on
neural network architecture discussed in section (from Refs. [29, 83| [84]), Instead,
the choice of molybdenum aimed to test the JLCDM on the prediction of less localized

electronic densities. Finally, we focused on two dimensional MoS,, where a model was
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Body  7recut  Mmax  lmax  Tmin a 6] o # features

Benzene 1B 2.80 27 - -0.78 7.00 0.00 90 (50%) 1572
2B 2.80 12 5 - 7.00  0.00

Al 1B 4.08 15 - 074 787 3.62 40 (40%) 120
2B 4.08 6 6 - 587 1.75

Mo 1B 404 20 - -1.09 4.02 546 30 (60%) 812
2B 4.04 12 11 - -0.08  2.38

2D MoS, 1B 4.7 18 - -093 6.72 6.97 40 (40%) 2346
2B 476 11 10 - 5.07  5.07

Table 5.1: We show here all the hyperparameters used in training the models. The
cut-off radius, r.,, and the distance, ry;,, are in A. The width o determines the width
of the sampling distribution of Eq. , while the value in parenthesis determine the
percentage of points sampled from the Gaussian distribution relatively to the total number
of selected grid points (the remaining were sampled from the uniform distribution). It can
be appreciated how the number of features is always modest (if compared to similar model
trained for neural networks), with the aluminium case being the most compact of all.

trained on 1H and 1T phases and then tested on the 1T’ phase. This allowed to probe the
transferability of the model to unseen phases. All of the optimized hyperparameters, for
each one of the systems, are reported in Table [5.1] alongside the width of the Gaussian
distribution used to sample the points. Please note that, to simplify the fitting procedure,
we constrained all the clusters of the same body-order to have the same hyperparameters.
All the models were trained up to the 2B order: while this could bring degeneracy in the
representation (in the sense that non-isometric equivalent environments could be mapped
in the same set of descriptors, and so in the same value of the density), we were able to
reach satisfactory accuracy, while not compromising the compactness of the model. For
the details on how the datasets have been constructed, and for the settings used for the

ab-initio calculations, please see the main manuscript, Ref. [113].

Benzene The model for the benzene molecule used 30 molecular-dynamics snapshots
for the training and other 30 for the test set, and was trained over 6,000 grid points. The
optimized hyperparameters are reported in Table and the resulting vanishing-Jacobi
polynomials are shown in Fig. [5.4] As already mentioned, contrary to the case of the JLP
where the short-distances range of the polynomials was not explored by the dataset, the
grid points cover all the possible distances, from r = 0 to rcy. On the one hand, this
reduces the chances of over-fitting, and therefore higher n,,,x can be used. On the other
hand, this also makes the role for the r,;, more critical: in particular we allow for r;,
to be negative, so that the derivative is not constrained to approach zero at r = 0. The
MAE and the RMSE of the model are, respectively, 2.85 x 10~* e/A*3 and 1.033 x 1073
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Figure 5.4: The figure reports the first nine vanishing-Jacobi polynomials used in the fit
for the benzene models. The cut-off radius is 7.y = 2.80 A. The two figures show the
role of 7, in shifting the curve, so that the fitted model is not constrained to be flat in
approaching the left edge (r = 0) of the interval.

e/A?’ which, compared to the maximum value of the DFT density, ~2.6 e/A3, show a
performance which is quantitatively close to the converged DFT one. This is confirmed
by the plots shown in Fig.s [5.5(a)-(b), where the difference between a fully converged
DFT density and the predicted one is portrayed. There, we can appreciate how this
difference does not present any relevant geometrical feature: we can interpret this fact as
a confirmation that a 2B description of the local environment is indeed enough for this

system.

Aluminium The training for aluminium involved only 10 training configurations and
10 test configurations. As can be seen from Fig.s [5.5{c)-(d), the de-localisation of the
electronic density allows one to have an extremely compact model, with only 120 features.
This result can be interpreted by noticing that, for aluminium, the electronic density
is less localized around the atomic position, as can be seen from Fig. [5.5(d). Indeed,
the magnitude of the electronic density does not vary much, regardless of the grid point
explored. For this reason, the model does not have to interpolate between regions with a
large value of the density and regions with a small one, and so a smaller number of features
is required. The MAE and RMSE for the model are, respectively, 4.81 x 10~* ¢/A% and
6.1 x 10~* e¢/A®, on par with similar results from much larger (in terms of number of
weights) neural-networks-based models (please see Refs. and [84]).
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Figure 5.5: (a) The difference between the electronic density of one test-benzene configu-
ration and the predicted one is shown (along the molecular plane). The lack of symmetries
in the error distribution is an indication that the degeneracies of a 2B description do not
play a significant role for this prediction. (b) The figure shows the true electronic density,
the predicted one and their difference, along the cut in the insert. It can be appreciated
how the scale of the difference is two orders of magnitude smaller than the actual value
of the density. (c)-(d)Analogous plots for the aluminium case. It can be noticed how the
density is delocalized, which can be interpreted as a justification for the compactness of
the trained model (only 120 features, as shown in Table [5.1)). (e)-(f) Analogous plot for
molybdenum. Here the errors appear localized in a region around the atoms with geomet-

rical features arising. Arguably, this features could be resolved by an higher body order
expansion.
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Molybdenum As for the aluminium case, the JLCDM for molybdenum was trained and
tested on dataset of 10 configurations each. The accuracy of the model reached a MAE of
1.97 x 1073 ¢/A3, and a RMSE of 2.82 x 1073 e/A3. From Fig.s[5.5(e)-(f), it can be seen
how the local density is much more localized around the atomic position. Indeed, contrary
to what happened in the previous two cases, the difference between the converged-DFT
density and the predicted one presents some geometrical features, such as a distinct radial
distribution and recognizable patterns along the bond directions. Arguably, these features
could be addressed and resolved by higher-order body expansions. However, given the

high accuracy already reached, we postponed this investigation to future analysis.
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Figure 5.6: (a) Parity plot of the predicted values of the true vs predicted values for the
2D MoS; model. As the density gets larger, the prediction on the 1T’ phase deviates
more from the true value. However, the agreement is still good along all the full range
considered. (b) A section of the difference between the predicted density and the true one,
taken on the plane of the Mo atoms (zy-plane in this case). (c) Value of the true density
against the difference with the predicted one. The section is taken along the solid line in
(b). The difference in the two scales still shows a good accuracy in the prediction, despite
being the less accurate prediction among the ones showed in this chapter.
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2D MoS, By investigating a two-dimensional MoS, system, we also probed the perfor-
mance of the model when applied to different phases of the same material. Indeed, we
trained a JLCDM on the 1H and 1T phases, with 10 configurations as training set, while
the test was performed on as many configurations disposed in the 1T’ phase (which is
a natural deformation of the 1T phase that occurs under relaxation [119]). We reported
the grid-points parity plot in Fig. [5.6(a), alongside with the MAE and the RMSE of
2.725 x 1073 ¢/A? and 8.080 x 103 e/A3, respectively. The parity plot shows systemati-
cally more disagreement between the true density and the predicted one on the higher-end
of the values range. Indeed, Fig. [5.6(b) shows a section for the difference DFT-predicted
densities, where we can clearly recognize a distinguished geometrical pattern in the error.
While this could surely be attributed to the different training-testing phases (primarily
considering that the 1T’ phase is a distortion of the 1T one), an higher-body order is still
expected to improve the performance of the fit. Nevertheless, by the quality of the pre-
dicted density, we can deduce that the model was able to transfer to the unseen 1T’ phase,

despite its relative compactness (the model consists in only 2,346 features, as reported in

Table [5.1)).

Comparison between fully converged energies and forces and the JLCDM pre-
dicted ones As a final test, we used the predicted density to obtain energies and forces
by means of non-self-consistent (NSC) cycles. Since VASP requires a few cycles for the di-
agonalization of the Hamiltonian to be efficiently carried out, we saw that we only needed
5 cycles (keeping the density fixed as the predicted one) to converge to accurate values
of energies and forces. This is almost half of what required by fully self-consistent (SC)
procedures, which converged after 9-12 cycles for all the systems investigated. We report
the values of the difference between the NSC values of energies and forces, and the con-
verged ones in Fig. 5.7l As expected, the worst prediction on both energies and forces
was found for the 2D MoS, system, while the best ones was for the aluminium. In gen-
eral, however, the accuracy of the energies is, at worst, of the order of meV /atom, which
rivals with the accuracy of MLP models. It is important to notice that the accuracy for
both aluminium and molybdenum is one order of magnitude higher than of the other two

systems. Analogous conclusions can be drawn for the forces.

5.3.1 Comparison with other methods

In this section we outline a qualitative comparison with the methods that have been

introduced in Sections[2.3.1jand [2.3.2, We remark that the following will not be a rigorous

treating, but a discussion on the main conceptual differences and similarities.
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Figure 5.7: Violin plots for the difference between the NSC energies (a) and forces (b)
against the fully converged ones, for all the systems studied in this chapter. The inserts
show a magnification of the results for the aluminium and molybdenum systems, which are
approximately one order of magnitude more accurate than the other two. In particular,
the accuracies on the energies of, at worst, a few meV /atom, are on par with the accuracies
reached by MLP models.

Adapted Symmetry Functions The main idea for the JLCDM is based, in part, on
the same idea behind the extension of the Behler-Parrinello symmetry function to scalar
fields, done in Ref. [83]. However, some important differences are present. The first one is

that the JLCDM, being based on a multi-body expansion, is not limited on the number of
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body that are represented by the descriptors. Indeed, since the Behler-Parrinello functions
(and their derivatives) depend only on distances, they are intrinsically 2-body. Another
important difference consist in the model itself. Whereas the work from Ref. [83] uses
a Neural Network (NN) architecture, the JLDCM is linear. This has the advantage of
making the model more interpretable and significantly more compactf’’} while preserving

similar accuracied’l]

SNAP The work from Ref. [84] uses the same core idea of the adapted symmetry func-
tions one, but with the 4-dimensional bispectrum (as used in SNAP, see Sec. and
Ref. [24]) as features. Thus, while the JLCDM can reach any body order of choice, the
4d bispectrum components are 4B features. However, the 4d bispectrum is also more con-
strained, as it includes more symmetries than required (as shown in Sec. . Moreover

the work is, again, based on a NN model.

SALTED A qualitative comparison between the JLCDM and the SALTED model of
Ref. [29], based on the \-SOAP is less straightforward. Specifically, the underlying main
idea is different. Indeed, as shown in eq. [2.86, here reported for readability

p(r) = Z pi(r) = Z D Cintm Rt (r) Y (2), (5.15)

the decomposition of the density is done in terms of a Resolution of Identity (RI) ansatz.
Explicitly, whereas the JLCDM is founded on an expansion of the density in terms of a
multi-body terms, the SALTED model expand the density in terms of an atom-centered
basis (RI basis) and then targets the coefficients with a A-SOAP model. Usually the basis is
already provided by the specific code, and so both the coefficients and the basis are readily
available. Moreover, the coefficients can be used to initialize the DFT calculations. Thus,
on the one hand, the SALTED approach requires the use of a covariant model (the A-
SOAP) to evaluate the coefficients for each atom of the system. On the other hand, the
JLCDM uses a simpler (linear) model, but has to evaluate the descriptors for each grid
point. While specific tasks could be specifically tuned for one model or the other (e.g., the
JLCDM is more efficient in providing the value of the density in single points in space,
while the SALTED is a good choice if an atom-centered decomposition is needed), it is

not yet clear if there is a clear computational advantage between the twd’}

30Comparing the size of the models, we have ~ 108 weights for a NN-based approach against, at most,
a few thousands coefficients for the JLCDM.

31Tt is important to mention that a NN model could be more suited for much larger and various datasets.

32A comparison could be made by evaluating the total number of coefficients to be evaluated with
SALTED and the number of grid points required by the JLCDM.
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5.4 Conclusions

In conclusion, we presented the first expansion of the JL formalism applied to the de-
scription of scalar fields and, in particular, specialized it to the prediction of the electronic
density. By leveraging on the construction of previous works, we showed how the model
is naturally obtained by “promoting” the central atom of the JLP to be the position of
an arbitrary point in space. We justified this choice by showing that the resulting density
satisfies the correct symmetry properties under rotation. We therefore applied the same
constraints devised for the JLP and constructed a fully interpretable (given the internal
coordinate representation) and systematically improvable model for the charge density,
here denominated with JLCDM.

We devised an improved strategy for the selection of the relevant grid points to be
used in the training phase with the aim of removing the redundancies of the grid-points
mesh, while retaining as much information as possible. The JLCDM was then tested
on four systems, to challenge it against a molecule (benzene), metallic solids (aluminium
and molybdenum) and the 2D MoS,. Not only we showed that the model was able to
reach a high level of accuracy for all the cases explored, but we also the transferability
on new phase not present in the training set, all while keeping a relatively small number
of features. Finally we compared the fully-converged energies and forces with the ones
obtained from the predicted densities. The results showed that, when compared to a full-
SC scheme, the model allowed to a halving of the DFT cycles required to reach ab-initio
accuracies.

If this chapter was devoted to extend the JL formalism from the prediction of scalar
quantities to the treatment of scalar fields, in the next chapter we will complete the
definition of the complete JL framework, including the description of tensors and tensor
fields. In this spirit, this chapter and the previous one can be seen as the formal foundations

for the reminder of the thesis.
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Chapter 6

The Full JL framework

6.1 Introduction

This chapter is devoted to the presentation of the full JL framework, extending the
expansion for scalar and scalar fields to cases of covariant quantities, namely tensors and
tensor fields. We will first introduce the Covariant-JL (CJL) formalism, which targets
the spherical components of a general tensor. The CJL will be founded on the same as-
sumptions (atomic decomposition and locality) of all the previous sections of this thesis.

Specifically, the core idea will be of constructing a scalar function, followed by encod-
ing the full information on the components of the tensor. We will then apply a similar
expansion to the one introduced in the previous section: this phase will employ a simple
“promotion” idea, in which the role of one neighbor atom is taken by a grid point, contrary
to the grid-centered representation of the JLCDM. Finally, the tensor components will be
retrieved by evaluating simple angular integrals on spherical harmonics (please note that,
we will never mention Wigner-D matrices in this derivation). Not only will the resulting
expression will be reduced to the JLP for the scalar case, but we will also prove that the
expansion consists, essentially, of JLP-like-invariant terms, decorated with appropriate
covariant contributions, obtained by projecting the spherical harmonics onto the desired
space. The resulting descriptors will be fully hierarchical and expanded in a multi-body
fashion. If the method has value in itself, since it combines the progressive expansion in
multi-body terms with a simple derivation in terms of integrals on spherical harmonics
only (contrary to the usual approaches in terms of Wigner-D matrices, shown in Sec. ,
it also complements the JLCDM for the acceleration of ab-initio calculations, since it al-
lows us to target the PAW augmentation charges. This will be technically explored in the

application section.

We will conclude the chapter by going beyond the description of tensors, with the

introduction of descriptors for tensor fields: this will be one of the main results of the
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thesis, obtained by organically combining the JLP, the JLCDM and the CJL formalisms.
This achievement, which relies on everything developed so far across the thesis, will be
the last missing piece for the definition of the full JL. framework.

[ remark that real applications of the methods of this chapter are still on-going. For this
reason, I decided not to include any partial results that still necessitate final tests. How-
ever, I wish to mention that the CJL formalism, both stand-alone or applied to the PAW
charges, is showing encouraging accuracies, at least at par with other models available in

literature.

6.2 A recipe for cluster-expanded covariant models

This section will introduce the key ideas for the generalization of the JL formalism to
tensorial quantities. In particular, we will show how the “promotion” strategy, introduced
in the previous chapter, can be slightly modified to be applied also to tensorial cases.

Our main assumption, already exploited in previous works (please see Sec. , is that
a general atomic tensor, T';, of rank [, can be separated into atomic-centered contributions.

Explicitly, we write
atoms

T =Y Ty (6.1)

where the sum runs over the atoms of the system. We remark that not all the atoms must
conform to the formula above. Indeed, if we expect only a few atomic environments to
carry significant contributions to the full tensor T';, then we can neglect all the others and

make the sum to run over the significant atoms only.

Real spherical decomposition In this preliminary paragraph we will show how to
decompose a real tensor (with no imaginary components) in terms of a decomposition
in real-spherical harmonics. Indeed, this is the case for the vast majority of tensors of
interest in the computational study of materials.

As for the spherical decomposition showed in section [2.2.1] it is always possible to
decompose a cartesian tensor into components that transform as real-spherical harmonics.
In particular, we will follow the same approach as Ref. [52], and define the real spherical

harmonics by means of the unitary transformationf]
(—=1)™V2Re[Y™(r)]  for m > 0,

Yim(r) := < Y, (r) for m =0, (6.2)
(=1)™V2Im[Y;"™(r)] for m <0,

33Please note that the following definition has an additional (—1)™ factor with respect to that of Ref.
[52].
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which can also be written in the matrix form
m(F) Z Y (). (6.3)

Here the unitary matrix U is defined as

1 — 0o

V2

U}”fbm’ — 6m0 +

[H(m) (=) + S ) + B (=) (= 1)+ b + 5mm)] ,

(6.4)
with H(m) being the Heaviside function. The procedure used to obtain the real-spherical
components of a tensor is the same as the one described in section 2.2.1], but with the
additional unitary transformation introduced by U. However, care must be taken after
performing the required couplings. Indeed, for example, the [ = 1 spherical components
of a tensor of rank 2, T}, are given bylﬂ

TljEl = [:F(Tzz - sz) - i(Tyz - sz)] ’

1
2

V2

(6.5)

~.

Tlo = (T:cy - Tyx)-

As it can be see from the 7Y component, which is left untouched by the unitary
transformation U, this term would be purely imaginary. Thus, we need to apply a further
unitary transformation by multiplying all these terms by the inverse of the imaginary
unit, —i, before proceeding with the transformation brought by U. By doing that, the
real components can be written ag>)|
(

Ty =

(Tyz - sz) (U X V)

Ty = —=(T,. — T.,) = (U X V). (6.6)

ST
-l

—_

T 1=— —
\11 /2 \/5

where the tensor T was represented in terms of a dyad, i.e., T'= U ® V. The expressions

(Tz:c - sz) = (U X V)y>

above show that the procedure produces indeed a real tensor (in this case it is a vector,
since [ = 1). In the following, we will always imply that the tensor T has already been
decomposed in terms of its real harmonic components, i.e., we will investigate only terms

in the form Tj,.

We conclude this paragraph by mentioning that the harmonic decomposition of fully

34Please note that there is no degeneracy in the partition of the angular momentum space for a tensor
of rank 2.
35We follow the convention that terms with only subscripts are real, i.e., T}, = RTlm.
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symmetric tensors undergoes a significant reduction of the components involved, as ex-
plicitly shown in Ref. |[74]. This can be already appreciated for the components shown
above: if the tensor T' was fully symmetric under (cartesian) indexes swap, then all the

[ = 1 components would have vanished.

6.2.1 Constructing a scalar field

We are now introducing the core idea of this chapter: we want to create a scalar field
from the atomic contributions T';;. In doing so, we will establish a strong link with the
construction of the JLCDM of the previous chapter. Indeed, we have already discussed how
the JL formalism can be extended to encompass also scalar fields, by formally “promoting”
the central atom to be a grid point, and then by performing a cluster expansion on the
resulting terms. In this chapter we will do something similar, where the method will be

formally equivalent to “promoting” an atom in the neighborhood of the central one.

The construction of the scalar field is done by introducing an auxziliary versor, r;,
starting from the central atom and ending in a point in real space, here denoted with ¢
and called grid point for convenience[gfl. This implies that the object will now depend on
the real space coordinates ry, namely we are indeed constructing a real-space field. The

simplest way to define a scalar field is then
!
Tia(Bgi) = > TitmYim (i), (6.7)
m=—1

where the components of the tensor can be easily extracted by integration over the solid

angle

Ty = / i T2 (1) Vien (), (6.8)

considering the orthogonality of the spherical harmonic{®’| Before proceeding, however,
let us prove that the function 7;;(t,;) is indeed a scalar field under rotation, i.e., that it

satisfies the relation
T (Rr s {fj}) T, (rg ", {Rfj}> , (6.9)

where R is a generic rotation, and where we explicitly showed the dependence of the field

36While the point must not necessarily belong to a grid mesh, keeping the same nomenclature of the
previous chapter allows to preserve a coherent language for the full framework.

37 A unitary transformation does not affect the orthogonality relations, so the real spherical harmonics
are orthogonal themselves.
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on the atomic positions, {r;}. Please, note that we used the following compact notation

P R_lrg -1

~1 .
R'ry —r; = — X
R'ry —r;

I

to indicate the normalization of rather-lengthy expressions.

Proof that 7;,(f,) is a scalar field Let us prove that Eq. holds. We can cast
the definition of the scalar field 7;; in the equivalent formﬁ

1(Tgis {Ts}) = Z fim ({2531) Yo (T42) (6.10)
m=—I
which holds since the components 77, are real. Since we want to investigate the response
of the field 7}, to an arbitrary rotation, it is useful to derive the transformation rules for
the real spherical harmonics. They can be obtained by using the definition in terms of the
unitary matrix U [see Eq. (6.3)] as

Yim(RE) =) UL, Y™ (RE) Z oD (R)Y™ (1)
- Z Uélm/Di:/m//(R)U,r;///m// lm///(r),

m/m/lm///

(6.11)

where the rotation was performed on the standard spherical harmonics by means of the
Wigner-D matrices, followed by a re-casting in terms of the real spherical harmonics by

means of the inverse of the matrix U, i.e., (U™')! , = U . Thus we can write
= "D (R)Y"(x), (6.12)
with the analogues of the Wigner-D matrices for the real spherical harmonics defined as

Epl Z Ut D, (R)UL, . (6.13)

We can now proceed in evaluating the effect of applying a rotatio R~! on the real

space vectors r,. Explicitly, we write

38We use the form to exploit the orthogonality relations of the classical spherical harmonics.

39Please, note that we use here the inverse rotation, to express everything in terms of an active rotation
on the system of atoms, instead of a passive rotation acting on the frame of reference, here represented
by rg.

M. Domina 119



CHAPTER 6. THE FULL JL FRAMEWORK

oo (R, =i }) = S T ({5 Vi (15, )

m=—1

l Ix -1 % S
Z ilm {I’J}) Z Umm/ Dm/m// (R ) Um///m// i,lm!"’ (rg - er) (614)

m'm!m!"
=D! m!!m! (R)

= [Z Epl, ”m({r]}) Yt (rg/—\Rri).

m///
In going from the first to the second equality, we have used the relation (R*lrg —r;) =

—

ﬁ_l(rg — }?iri), to apply the rotation of real spherical harmonics. By comparing the terms

inside the square brackets with Eq. (6.13]), we can appreciate that this is indeed the
expected formula for the transformation of the real-spherical components of the tensor
T;;. In other words, by construction, the real-spherical components of the tensor follows

the same transformation rules of the real-spherical harmonics, namely,

1lm {Rr]} ZRD zlm ({rj}) (6'15)

Therefore, we finally have that

Ti (erg — T {f’g}> = Z E,lm’”({Rfj}>Y;,lm”’ (I‘g - RI‘Z> =T (Fg - Rri; {Rf‘g}> )
(6.16)

m

which proves that 7;; is indeed a scalar field.

6.2.2 Cluster expansion

Having established that Eq. defines a scalar field, we can now propose a suitable
expansion by follow closely the method outlined in the the previous chapter. The first

step is to expand 7;;(t,;) in a multi-body (cluster) expansion as,
Taligs) = T (8i) + T2 i) + T (i) 4+ (6.17)

where we have generalized the procedure by dropping the rank indexes [, which will be
recovered by means of the integration described in Eq. (6.8)). Here, the nB terms T( (rgz)
consist of a sum of contributions, each depending on the position of n-1 atoms in the
neighborhood of the i-th one. Since 7;(T,;) is a scalar field, all the terms on the right-hand

side of the equation above must be scalar fields too. We then deduce immediately that

120 Ph.D. Thesis



A RECIPE FOR CLUSTER-EXPANDED COVARIANT MODELS

the 1B term must be a constant, which we assume to depend only on the atomic species
of the i-th atom, Z;, namely, 7;(1B)(fgi) = alll.

Crucially, all the nB terms, 7™B), being scalar fields, they can always be written in
terms of degrees of freedom that mirror the transformation properties of a scalar field.
This is done according to what shown in Sec. of the last chapter, i.e., by introducing
an internal system of coordinates that includes also the grid point. We then propose the

following functional forms

(6.18)
(3B) 3B
7; (rgi) = Z T](kz )(Tjiarkia Sgjis Sgkis Siki)s
(j’k)l
[
where we defined again the scalar products sgj; := g - rj;. The first sum runs over all

the atoms in the neighborhood of the i-th and, similarly, the second sum runs over all
the possible pairs of atoms in the same neighborhood. In doing so, we introduce the last
assumption for the proposed expansion, namely the locality of the representation, which
is the final ingredient to link this formalism with the one developed for the JLCDMs.
Therefore, we assume that two atoms will interact only up to an optimized cut-off radius,
reut- Here we will explicitly consider only terms up to 3B, but, crucially, the procedure can
be extended also to any higher-body order, e.g., by expanding 7;(4]3) () in sum of terms
depending on three distances and six angles. This means that also the formalism proposed
here, in line with the on for the JLP and the JLCDM, is hierarchical and systematically

improvable.

We can now leverage the dependence on the internal coordinates of Eq. (6.36]), and per-
form the same expansion in terms of (double)-vanishing Jacobi polynomials [see Egs. (4.10))
and (4.26))] for each distance, and in terms of Legendre polynomials for each angle (scalar

product), respectively. This leads to the expansion

2B) /~ s (a,8) 7
T = ST (a8

unique (619)
3B) /4 ZjZyZ; - 5) (o, ) ji kz kz

Gy, e B,
’ l1l2l3
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We can immediately appreciate how the formulas above are very close to the ones
derived in Eqgs. (4.18)) and (4.30) for the JLPs, and Eq. (5.8) for the JLCDMs. Indeed,
by looking more closely at the contributions for [ = 0 in the 2B term, and [, = [, = 0 in

the 3B one, we have

(77E0) = SR

unique 6.20
7— (3B) - 222, P( )P(aﬁ)ijz ( )
i ( 91 =l - Z Z n1n2 Z nije noki
1=l2=0 ()i TL17L2 0013 symm.

\

which we recognize as the 2B and 3B contributions of the JLP expansion [please see again
Eqgs. (4.18) and (4.30)]. Thus, we can infer that all the properties of the JLP are inherited

by this new expansion: we have the two hyperparameters, o, 5 > —1, which define the

optimal basis for the radial part, and the expansion over the Jacobi indexes is truncated

to an optimized nyax. The vanishing and double-vanishing Jacobi polynomials are defined
by means of Eqgs. (4.10) and (4.26)), and by the shorthand notation

PSZ"B) = plah) (cos (W—Tﬁ — Tmin )) , and P?E(;‘Zﬂ) : Pfﬁ’ﬁ) (cos <7ri>) ’
Tcut — Tmin Tcut

and

We remark that the double vanishing polynomials do not present any ry;,, to preserve
the continuity of the expressions, as discussed in the study of Eq. . Also, given that
our implied assumption is that the functions depend only on the atomic species, then the
selection of the unique indexes, and the subsequent sum over the symmetric expressions,
ensures the invariance under permutations of identical atoms. Finally, by comparing
directly the expansion for the JLCDM in Eq. and the one above, Eq. , we note
that the most important difference is that the first is obtained by “promoting”@ from
the JLP framework, the central atom to be a grid point. Conversely, the one here can be
thought as obtained by a promotion of one atom in the neighborhood. This observation
makes it easier to construct the two models from the JLP, showing that we are navigating
in a shared framework. As will be shown in the next section, promoting one atom in
the neighborhood instead of the central one (as done for the JLCDM), allows to greatly
simplify the evaluation of the integrals shown in Eq. .

Despite the many similarities between the expansion of Eq. , and the analogous
ones for the JLP and the JLCDM, we also have, however, a few differences. First of all,

40As done in the previous chapter, the use of this promotion idea is just symbolic, and has more to do
with an operative “substitute the 4 in the formula with ¢” than anything else.
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we will never consider the distance between the central atom and the grid point, and
thus we are left with one less Jacobi index [please, compare with Eq. (5.8)]. Also, the
truncation for the Legendre indexes will be different between polynomials that depend
on the position of the grid point, and the ones that contain only the atomic position, as
will be clarified in the next section. Finally, the introduction of the Kronecker delta, d;q,
to separate the zero-th component of the 2B term from the rest, is imposed to maintain
the continuity of the representation. This removes the jump caused by the ill-definition
of the scalar products when j — 4, in the same spirit of the removal of r;, from the
double-vanishing-Jacobi polynomials (we remark here that the double-vanishing Jacobi

polynomials smoothly vanish when the distance between the atoms tends to zero).

6.3 The components of the tensor from a scalar field

Equipped with the JL expansion, of Eq. (6.19)), we can finally evaluate the integrals in
Eq. and obtain the desired covariant model. In particular, given the linearity of the
integrals, we can integrate each of the nB terms separately. In Fig. [6.1] we graphically

show the full construction of the model. Explicitly, we want to evaluate integrals of the

form
body body
order (vB) order (B
Tin =D 747 = 3 [ @t @) Yin(e). (021

(vB

where the vB contribution to the components, T}, lm ,

are defined by the integrals on the
right-hand side. We will consider each body order separately.

1B)

1B Terms. The 1B case is trivial, since Tl.(lm is a constant. Thus, the integral reads

T;(,ll:i) = agi /drgz im rgz ZCLOZUZ /dfginm/(f‘gi) = 5;05m0v47ragi, (622)

.

=V 47T6l05m’0

where we have used the definition of the real spherical harmonics in terms of the matrix
U [Eq. , and used the fact that the 0-th component of the real spherical harmonics is
identical to the one of the complex ones, i.e., Ul , = d0. Since this term is relevant only
for the [ = 0 case, it is a spherically-symmetric contribution. In the reminder, we will
absorb the unessential coefficient v/47 in the expansion coefficients, by a re-definition of

Z;
ag’.
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jki ki
pi o PS
promotion” 73 — g

Atom centered representation ‘
grid-point in the environment 3B

Figure 6.1: We show here a visual guide for the model presented in this chapter. Our
aim is to target an atomic-related tensorial quantity, here graphically represented by the
atomic environment and an associated harmonic component of the tensor (the polar graph
emerging from the central atom). (Follow the green arrow) The first step is to construct
an adequate scalar field that encodes the components of the tensor. This can be done
naturally, by multiplying the spherical components of the tensor by the corresponding
spherical harmonics. (Follow the orange arrow) The scalar field is then described by
means of a recipe closely related to the one followed for the JLCDM models: indeed this
is formally equivalent to “promote” one atom in the environment to be a grid point. This
allows one to apply a cluster expansion to the scalar field, which implies an analogous
expansion on the tensor components. The components are then retrieved by integrating
each cluster contribution against the appropriate spherical harmonic.

2B Terms. The 2B contributions are given by the integrals

T”m /drgz im (T gi ZZ@W (61/0]3”];%3 (1-— 51/0)Pn];ﬁ)> Py, (6.23)

. /
i) nl

The first term does not contain any dependence on the spherical harmonics and thus
will lead again to a spherically symmetric term and to a factor v/4m. Instead, to evaluate
the second term, we want to expand the expression of the Legendre polynomials in terms

of real spherical harmonics. This can be done by the use of the addition theorem for
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spherical harmonics. Indeed it holds that

2 Y8 Yin(82) = 3, 1D Uiy

Lo !/
m’'m m
=Yim (rl) N ~ s
:5m’m”

Y ()Y ZY’"* Y™ (),

(6.24)
where we have used the fact that Y, is real and that the matrix U is unitary. Thus, from
Eq. (2.15)), we have that the addition theorem is preserved in the real spherical harmonics,

and reads A
’ T . .
P = D Vi (B i) Vi (£52). (6.25)

20+1

This yields the integral

7 ~ N N 47'[' “
/drnglm(rgZ)Pﬂj 2[’ T 1 ZY/ I']Z /drginm(rgi)Y/m/(rgi) = mYlm(rﬁ),

Vv
0117 0 m!

(6.26)
evaluated by means of the orthogonality of the real-spherical harmonics.

Crucially, we can appreciate how this operation contains, at its core, the very justi-
fication on the use of the Legendre polynomials in the entire JL formalism. Indeed, we
can always separate the Legendre polynomials in terms of spherical harmonics, not only
allowing us to easily compare with other descriptors in literature, but also providing the
natural tools to evaluate all the angular integrals with ease, all while not sacrificing the
interpretability of the internal coordinates representation.

We can now write the full expression for the 2B contributions to the tensor components

T;,lm as

atoms Nmax
: Zi5(ep)
T = TSy [&o SRS 4 (1= d0)ag Py Vi) | (6.27)

BiFL n

We remark that, since the case | = 0 was left untouched by the integral projection,
it is still proportional to the analogous 2B terms in JL-potentials [please compare with
Eq. . This is not surprising, since the [ = 0 term is a scalar, exactly what the JLP
targets; nevertheless it is a good check and demonstrates that we are exploring a coherent
and general framework. Importantly, the expansion coefficients do not depend on the
magnetic number m. Not only does this significantly reduce the number of coefficients
that have to be determined, but also it ensures that the expressions are precisely covariant,
since the fit does not affect the relation between coefficients of different magnetic numbers.
Please note, again, that all the unessential multiplicative factors will be absorbed in a

redefinition of the expansion coefficients.
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3B Terms: the l = 0 case. For reasons that will be clear shortly, we divide the discus-

sion on the 3B terms by firstly discussing the [ = 0 case. The integral is explicitly written

as
unique
3B YAVANA (a,8)5(a,8) % 7 %
T () / i >~ > dnins Z (PW P, PY gk PJ’“> (6.28)
47T (k)i minz l1l2l3 ymm
T Iylgls ’

If we now use the additional theorem twice, for each Legendre polynomial that depends

on the grid points, we can evaluate the integral

. i ki (477) N . .
g1ty le = )/l1m1 r]¢>}/l2m2 (rkl) dI'ginlml (rgi>}/l2m2 (rgi)
A A TR T TR

&

TV
0115 0mqmy

(47)? N . Am ki
=9 Y, m i Y, m i) — 0, ! Za
l1l2 (2l1 + 1)(2l2 + 1) § Iy 1(rj ) I 1(rk ) hle' ;7 | 1 2, +1 I
my

(6.29)

where, in the last step, we contracted the sum over m; into a single Legendre polynomial.
By inserting this expression into Eq. , we see how we have a redundancy regarding
the Legendre polynomials evaluated on rj; - T4, since they appear twice in the expression.
However, we can reduce the expression by observing that the Legendre polynomials form
a complete set for the functions defined on the interval [—1,1]. Thus, we can reduce the

product of the two polynomials by means of

Pl]1kZPl]2]CZ - Z Clllzlpljki> (630)
l

where the coefficients are given by@

20+1 [1
Clylyl = — dz P, (z)P,(x)P(z). (6.31)
-1

The actual evaluation of this coefficients is not relevant for our discussion. Instead,

we can insert this expression back into the integral of Eq. (6.28)) and, by defining new
7,7 7;

nlngl as

expansion coefficients a

Z ZrZi = \/ Z ailg’gz Clylsls (632)

nanl 2ll 1 niis

41Please note that the Legendre polynomials are not normalized, and so a factor (2] + 1)/2 must be
explicitly included.
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following which we can write the T(00)<rgz) components a

unique

Z Z Zi ( 75) ( 76) kl
100 o Z Z n1n2kll Z (Pnljz Pngkjl Pj > (633)

(4,k)i nimaly symm.

Unsurprisingly, we just re-derived the 3B term of the JLP expansion, as it can be seen
by comparing with Eq. (4.30]). This is consistent with the fact that we are dealing with a

scalar quantity.

3B Terms: I > 0 cases. We can finally consider all the [ > 0 cases of the 3B expansion.

The integral now reads

unique
(3B) VAVAYA a,8)5 ki “ i gki .
T’zlm Z Z l?%;ll;; Z <Pn1]z Pn2]€l Pj /drgif)lglj Plg2 Y2m<rgz)) : (634>
ninz symim.

" lalals

Comparing this expression with the analogous ones from the JLP, we can see how each
term is weighted by a covariant term. Indeed, this is the reason why we can consider a
different expansion truncation for the pair (l1,ly) and for I3: the pair completely encodes
the covariant behaviour, while [3 is devoted to the functional dependence on the atomic

positions only.

The calculation of the integral is done by writing both Legendre polynomials as sums

of products of spherical harmonics. This leads to integrals of the form

UG = [ Vi () Vi () Vi ) (6.39
where #GlE! - is the analogous of the Gaunt coefficients [45] |52] for the real-spherical

harmonics. An explicit calculation of this coefficients can be done by casting everything

in terms of the complex spherical harmonics. Explicitly we write

Rvalzlfj??zm?) - /Yélrm (f)Yizﬂm (f) l:m3 (f) df‘
N——

= > Ufﬁlm U s Ui, / di Y, (1)Y,2 (2) Y27 (F) (6.36)
L+ D)2L+1) lax  laml ! !
_\/ ol 1 1) O 2 Uit Gty Uy Uy

mymymg

42We have also re-labelled [ in I; to avoid confusion with the tensor component label.
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where we have used the integral, in term of Clebsh-Gordan (CG) coefficients,

e 2y +1)(2ly + 1 -
oy <r>:\/ ety Clit (03D

for the product of three spherical harmonics. We remark that the coefficients #GL2ls
can be pre-computed. Also, the terms Czlfgbo impose that the coefficients are zero unless

the sum [; + [ + I3 is even.

The full 3B terms Finally, by absorbing all the unessential factors in the definition of

the expansion coefficients, we obtain the full expansion for the 3B case

unique

VAV A (.8)5(B) ik
zlm - 510 Z Z nln;ll Z <P7L1jl Pnzki ‘Pljl Z) + (638)
(4,k); ninaly symm.
unique
VAYAYA, (f) 5 jki R l1lal o
ROED ORI ol LD SEC RN}
(4,k)i ln%nlg hilals symm. mimsg
) 1112l :
Please note that the “real” Gaunt coefficients #G!2!  convey the appropriate cou-

pling of real-spherical harmonics to reach the correct [ space.

General recipe for higher-body orders In this short paragraph we outline the pro-
cedure to evaluate higher-body order terms. Firstly, the relevant internal coordinates of
the scalar function must be identified and written in terms of an atom-centered formal-
ism. For example, in the 4B case, we would have 3 distances (one for each body) and
6 angles (due to the presence of the grid point in the environment). Then a projection
on the correct angular momentum space must be carried out, by means of an integration
against the appropriate spherical harmonic. This can be always done by expanding each
grid-dependent Legendre polynomial in sums of products of spherical harmonics, with the
aid of the addition theorem. Finally, care must be taken to eliminate all the possible re-
dundancies, such as that for the [ = 0 case of the 3B-term above, which could be reduced
to the form of a JLP-3B contribution.
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6.3.1 The Covariant JL (CJL) model

Finally, we can define the Covariant-JL (CJL) model as

atoms

%

where the body order terms are given by Eqgs. (6.22), (6.27)) and (6.38)):

,7;(,;12) = 8100moay’,
2B Z; Zi (a0, B) Z;=(a,8) ~
CZ—’z(lm) Z Z (550@ PTS,]?, (]' - 6l0) Pnjz Yzm(rji))7
JyFL n
unique
3B) 2,242 (@B)5(8) ki
< 7—;lm - 610 Z Z n1n§ll Z (Pnlji P’I’Lgkl P] )
(4,k)i nimaly symim.
unique
ZjZyZ; (c (015 ki A A
1 o 5l0 Z Z ln%n; Z (Pnljl noki P] Z RGi:Llfészn1m1 (rji)}/zzmg (rkl)> 5
(43,k)i ln%;zli 125 symm. mima
-

(6.40)
We remark once again that the coefficients of the expansion do not depend on the
magnetic quantum number m, and that, crucially, this model is hierarchical, i.e., we can
progressively reach higher-body orders to increase its accuracy. We also note that the
model is written, whenever possible, in terms of internal coordinates, since it naturally
separates the expansion into products of invariant and covariant contributions. Indeed,
while it is true that the covariant terms can still absorb part of the functional dependence
on the angles between the atoms, they are mostly devoted to discriminate between different
angular momentum space. In other words, by avoiding the mixing of the invariant and
covariant factors, one can independently optimise the terms, for example by choosing
different hyperparameters between the factor that enforces the covariant behaviour of
the expression, and the factor that is devoted to resolve the angular dependency of the
expression with respect to the atomic positions. Also, since the target is written in terms
of a decomposition in spherical harmonics, it is not possible to cast the expression solely
in terms of internal coordinates: our method naturally separates all the terms that can
be written in terms of internal coordinate (scalar) from the covariant ones. In this way, it
produces a complete and coherent representation of a covariant nB term, even encoding
the fact that the covariant properties of an object are not affected by the multiplication
by a scalar.
We stress that, since the expansion coefficients depend only on the species of the atoms

involved, atoms of the same species share the same coefficients. In this way, the amount of
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coefficients to be fitted can be drastically reduced when in the presence of several atoms
of the same species. Moreover, we recall that it is not necessary to take into account
all the atoms in the sum of Eq. , or in the multi-body expansions, i.e., if channels
connecting two or more atoms are found to have non-significant contributions, they can
be neglected from any of the terms of Eq. . Given the analytical form of the CJL,
each term can be manipulated at need, e.g., differentiated or integrated. Also, since the

CJL is fully linear, it allows the use of any linear-solver method of choice.

6.4 Applications

At the moment, we have just started to test the full possibilities of the CJL. In par-
ticular we are considering the dataset from Ref. [28], where the dipole moments, p, the
polarizability tensor, a, and the hyperpolarizability tensor [120], 3, are predicted for wa-
ter monomers, H,O, water dimers, (H,0),, and Zundel cations, H;O,". While the results
are in their early stages, and thus are not reported here, they already show promising

accuracy, at least at par with the ones reached by the models of Refs. |28 [77].

6.4.1 The PAW augmentation charges

We have also applied the CJL to the prediction of the projector-augmented-wave
(PAW) [121] augmentation charges used in the VASP code [122]. The PAW formalism
provides a way to regularize the rapid oscillations of the charge density near the atomic
positions. The main idea is that it is beneficial to have a slowly varying behaviour of the
charge density, to converge more rapidly to the ground state solution. However, the charge
density usually presents steep variations in the vicinity of the atoms. For this reason, the
density is first projected onto a well-behaved basis in the immediate atomic proximity,
inside “PAW spheres” centered on the atoms. For this representation to be approximately
equivalent to an all-electron one, an “augmentation” (or compensation) density must be
introduced, which is then defined in terms of an atomic-centered expansion. This strategy
is at the core of codes like VASP, and thus one must evaluate also the components of the
compensation density at each step of the SC cycles. This was not done in the JLCDM
formalism, where the PAW-compensation occupancies (the components of the compensa-
tion density) were not taken into account: in this sense, the JLCDM predicts only the
“smooth” part of the density, and does not mirror the correct density near the atomic
positions. Here, we prove that the CJL is complementary to the JLCDM, as it allows
to predict the compensation charges. When both methods are applied together, we can
predict the full density.

Our approach aims to target the compensation density around the i-th atom, n;(r),
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defined as
Z p'Ul'UQQ’Ul’UQ ) (64]‘>

viva,lm

where v, = (k,,l,,m,) is a convenient shorthand for the set of indexes that determine the
radial (k;) and angular (I;, m;) expansions, and where the terms i,”fw(r) are obtained by
constraining the spherical-multipole moments of n;(r), as will be discussed shortly. Please
note that we suppress the index ¢ in the right-hand side for readability. However, even
if not explicitly indicated, the origin of the frame of reference will be always placed on
top of the i-th atom. The expansion coefficients, p,,»,, are called occupancies. The only
requirement for 7n;(r) is that it must possess the same spherical-multipole moments of the

function

= Z pv1v2QU1’v2 (I‘), (642>

v1vU2

with Qu,, defined as
1

Qvlvz(r) = Z<_ ) ¢av1< )¢av2< ) (64?))

a=0
The actual form of the ¢, (r) functions is unessential for our discussion (please see

Refs. [121} [122] for details). However, they can be always written as

Pan () = Cati Rt ()Y (1), (6.44)

where we have absorbed all the m dependence in the p,,,, occupancies. This will be crucial
for the development of the method here, since the coefficients p,, ., transform, under a
rotation of the atomic positions, as the product of spherical harmonics Y}, ,,, Yi,m,. We can

now obtain the moments of Qy,q,, denoted with ¢i™, , ag*!

Jm = / Quron (1) Vi (F)dr
Q;
= 3 (1) ot / dr 2 Ry (1) Ri () / 08 Yis s (F) Vi (£) Vi ()

(. _/ \\

v~ ~~
.l 11191
_'cklkg RGmlQO

R 11121 E ok
Gmlmgm k1ko <_1) cak1l1cak2l27

«

(6.45)

where we have used the definition of Eq. ((6.35)) for the coefficients #G!!2! and we have

mimaoam’

43This function corresponds to the difference (n' —n') in the original reference, Ref. [122], Eqs. (24)-
(27).

44Please, note that the integral are performed on the augmentation spheres around the i-th atom only,
indicated by ;.
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defined the constants ¢}, ;. as the moments of the product of the two radial basis. Finally,

a function 7n;(r) that possesses the same moments as 7i(r) can be defined as

Z pvlvgqvlvggl( )Km(f‘), (646)

Im,v1v2

where g;(r) are arbitrary functions that must satisfy

/ gi(r)rtdr = 1.
0

Comparing Eq. (6.46) and Eq. (6.41)), we can make the identification

O, (1) = G, 91 (1) Vi (). (6.47)

Crucially, since n;(r) is a scalar field, we can recognize the covariant nature of the

expansion coefficients. Indeed, we can always write

ﬁz(r) = Z ( Z pk1l1m1lellm1) gl( )Y (f‘)v (648)

k1 ko mima kaloma kaloms
lylalm
where the term in brackets transforms as the spherical harmonic Y, under a rotation of

the system of atoms. For this reason, we can target the expansion coefficients

Alm . E /‘
’LklkzlllQ . pk1l1m1lellm1’ (649)

m
mima 22 2 kzlgmz

with a CJL model. From Egs. and , it can be seen that the single terms
ﬁﬁ}g kolyl, Ar€ not necessarily real but, when performing the sums over /; and I3, the only
surviving components are the real ones, so that the final expression for n;(r) is real. Thus,
we can neglect any imaginary term: it would be washed out anyway. This also implies that
we may restrict our investigation to expansions that are symmetric in the simultaneous
exchange (k1ly) <> (kaly). With this in mind, and by leveraging on the covariant nature

of "} ..., we can proceed with the construction of our CJL model.

The easiest approach is to divide our investigation in two subcases: the scalar case,
for [ = 0, and the general case [ > 0. Importantly, we will re-define the expansion
coefficients, making them absorb all the unessential factors, and write directly an expansion
for ﬁi’gl kotsl, OF £0.(6.48)). Please note that from now on we will use the shorthand notation

p = (i, k1kalyly), for all the PAW-specific indexes, to write the more compact notation

Alm . pnlm
lk1k2l112 T nll :
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Scalar case: 1 = 0. We already showed that the scalar case can be always brought in
the form of a JLP model [see Eq. (4.70)]. Thus, the proposed expansion readﬁ

unique
00 Z; Z;Zi 75(a,B) Z; 2 Zs (.B8)5(.B) Hjki
AR N 70 o L S N (PW P py )+ (6.50)
J.g#t n (4,k); ninal’ symm.

Here, all the symmetries of the coefficients have been already discussed at length in
Chapter [l However, we remark that the enforcement of the symmetries on n; and na,
imposed by means of the constrained summation on the “unique” coefficients, must be
done for each pair (ky,11). Also, since projecting onto the total space | = 0 requires [; =I5
(as can be seen from the integrals in Eq. ), the symmetry under swap k; < ko, i.e.,
N9 katts = Mo kokts,» MUst be explicitly enforced, namely, by evaluating only the terms

for kl Z ]i’g.

General case: I > 0 The general case can be written as

Al =SS an PP Vi) +

JjFi n
unique
;73,2 o,p B) jki Z R o
+ Z Z Nmmlilél’l z : nl]’t n2kl P’ Gmlmzm lima (rﬂ)Yzém@ (rk’) +..
(j7 )Z ninz symimn. mimsa

YINA

(6.51)

where, again, the symmetry rule for the swap (k1ly) <> (ko,(2), can be enforced by hand
by not evaluating redundant cases with respect to the symmetry a7 ., =2l

This full expansion allows to target the augmentation occupancies, i.e., the channels

Im
i)

predict the full electronic density. An application that employs a CJL model to describe

n'"™ and, when used in combination with a JLCDM, provides the last piece needed to
the electronic density is under work. While the study is in its final stages, a few tests
must still be carried out.

In particular, my role was in the formulation of the models, and so I will not report any
partial result here. However, I can mention that we already observed encouraging-high
accuracies on an application to the phase transition between the 1H and the 1T phases of

a 2D MoS, system, despite an expansion up to the 3B terms only.

General approach for operators We conclude this section by mentioning that, guided
by the fact that the expansion above does not have any memory of the rotation rule with

respect to the uncoupled channels /; and [, another approach can be carried out. Indeed,

45We followed the convention that the last line of the subscripts of the expansion coefficients refers to
the set of 7 terms targeted by the model, while every other index refers to the JL expansions.
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if we want to preserve the nature of the uncoupled angular momenta, we can instead

consider the full expansion [obtained by combining Eqgs. (6.45]) and (6.49))]

~lm _ E R ~l1lol ! E %
ni,]ﬂk‘QlllQ - Gmlmgmp’lfl’l)Qcklkg (_1) CaklllcakQIQ' (652)

mima @

It can be shown that, under rotation, the coefficients p,,,, transform as the product
of two independent spherical harmonics: this is because they are obtained by multiplying
the expansion coefficients of two orbital functions [as can be read from Egs. and
(6.44])]. Thus, we can target them with the double CJL expansion

Porv: = Py = Lio Tiws - (6.53)

——
CJL models

CJL

viw, into body-orders [instead of targeting the full contraction

This allows to expand p

in Eq. (6.52)] as
FE, = A+ A 5

2

where, using the expansion of Egs. (6.39)) and (6.40), we have@

(,(1B) _ p(1B)p(1B)

pvlvg — T Tive 0

(2B) __ T(lB)T(ZB) + Tz(QB)T(lB)

p’ul'vg

,v1 T 1,02 1,01 1,V (655)
B 2B 2B 1B 3B 3B 1B
pP8) = TP TN L OO | RO,

\....

This system of equations will not be investigated explicitly. Instead, it must be inter-
preted as a picture of the expected functional forms, with the Eqgs. in (6.40) working as
guidelines. Crucially, this method can be generalized to be applied to operators, e.g., in

the prediction of Hamiltonians written in terms of atomic basis.

6.5 JL for Fields

We started our construction toward a general JL framework with the definition of a
model for scalar quantities (JLP), which was then expanded, by means of a “promotion”
to a grid-centered approach, to target also scalar fields (JLCDM). Then, in this chapter,
we further generalized the model to predict also tensorial quantities. This was done by
constructing an appropriate scalar field that was expanded on the idea of promoting an

atom to be a grid point. At this point, we had full control of the harmonic components of

46Please, note that one of the body in the expansion is always fixed, being the central atom 4.
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the scalar fields, which allowed us to define the CJL. The last, perhaps natural, step is to
combine the two type of promotions, and define a model that is able to target a general
tensorial field. This can be of paramount importance in the study of materials. Like
the JLCDM, which was able to accelerate DFT calculations by predicting the electronic
density, being able to predict tensorial field allows us to target the magnetization vector,
to potentially accelerate the study of non-collinear magnetic materials. Indeed, when de-
scribing materials with magnetic properties, the simple density is not enough, and instead
we have to consider also the spin density. This is, when warranted, done by means of the
introduction of a vectorial field, called magnetization, m(r). The magnetization is usually
defined from a representation given in terms of the Pauli matrices (please see Ref. 3] for

more details)

Pauli mappin n+m, Mmg—1im ntt nt
(n(r). m) —>< . ) = ( b))
't n

mg +1my, N —m,

i.e.; to describe the system we need both a scalar and a vectorial field.

As mentioned before, we have already all the ingredients to fully expand the JL for-
malism: a Jacobi-Legendre expansion for fields (JLF) can be formally obtained from the
CJL model by following the same recipe discussed in the construction of the JLCDM from
the JLP, namely, we can formally promote the position of the central atom in Eq. (6.40),
r;, to be a grid point ry, from a mesh covering the entire space. Thus, the JLF expansion

is defined as

( atoms
a —(a,3 ~
(T}LB) Z Z (5l0an6Pnng ( - 5l0)arZLlZP£Lig )}/lm(rig)),

unique

2B) 2 : 2 : Zi Zj z : BHla.8)5(B) Hijg

m I'g - 510 nlngll <Pn1ig Pngjg P
(i7) nimnaly symimn.

unique
75 (a75 A
1 - 5l0 Z Z "1”2 Z ( nitg Png]g PUQ Z RGQLllZ?ilgm llml( >Y22m2(rj9)> )

(7,]) nin2 hilals symm. mimso
l1l2l3

(6.57)
This expansion correctly reproduces the JLCDM for the scalar field case, when [ =
0 [please compare with Eq. (5.8)]. We will conclude this section by showing that the

expansion satisfies the correct symmetries.

Given a general tensor field that depends on a point in space, ry, and, parametrically,
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on the atomic positions r;, the following identities must hold

F(ry; {tr;}) = F(t vy {r;}), Translations,
F(ry; {er}) = RF(R_lrg; {r;}), Rotations (6.58)
F(r,; {Pri}) = PF(pflrg; {r;}), Inversions/Parity.

for translations, rotations, and inversion, respectively. This is analogous to the properties
expressed in Eq. (5.4) for a scalar field, and in Eq. for a tensor one. It is more useful,
at this point, to write the transformation rules in some representation. Since we rely on a

harmonic decomposition of the field, we can write

(Fin(rg; {r; +t}) = Fip(r, — t; {r;}), Translations,
Fim(ry: {Rr;}) Z Rpl (R)Fyw(R v, {r;}), Rotation (6.59)
| Fim (rg; {—1:}) = (=1)' Fip(—14; {r;}), Inversion.

where we have used the definition given in Eq. (6.13) for the matrices D!* (R). In par-
ticular, the last property is obtained from the analogous transformation for the spherical
harmonics Y}, (—r) = =Y, (r). To prove that the JLF expansion of Eq. (6.57) follows the

correct transformation rules, let us start from the, arguably trivial, translation symmetry.

Translation symmetry All the terms in Eq. (6.57)) depend on the position of the atoms
with respect to the position of the grid point, i.e., there are only terms of the form r; —r,.

Therefore the translation symmetry is proved by noticing that

r,—(ry+t)=(r, —t) —r,. (6.60)

Rotation symmetry We can prove that the JLF expansion satisfies the correct trans-
formation rules, by focusing separately on the invariant and on the covariant blocks of
each term of the expansion. Indeed, the invariant block being in the same form of the
JLCDM, it already satisfies the correct relations between the grid points and the atomic
positions, namely, that a rotation of the atomic position corresponds to a counter-rotation
of the grid points [please, see Eq.(5.4)]. Instead, the matrices #D! ,(R) that are required
in Eq. are introduced by the covariant parﬂ. Explicitly, by considering the 3B

4TWe already have proved that the covariant terms transform, globally, as the spherical harmonic Yj,),.
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case, we can appreciate that the invariant and covariant terms as

Hla (c,8) ijg 2 :R l1lal A
Pnlzg ngng Gmlmgm llml(rlQ)YEQmQ(rJQ% (661>
~ m1m2
1nvar1ant
-~
covariant

and, since we can always write

— ——

~ A ~

Yim(Rr; —r,) = Vi (R(r; — R7'ry)). (6.62)

then the transformation rule of Eq. (6.59) is satisfied.

Inversion symmetry Also the inversion symmetry is proven by focusing only on the
covariant block. Here, we will consider only the 3B case showed in Eq. , and we will
outline the proof for all the other cases. Given the symmetry of the spherical harmonics
under inversion, we notice that, under parity, a factor (—1)“*%2 arises from the covariant
block. However, since the coupling terms, G2l “are zero unless the sum [; + I + 1
is ever[™] then the sum of the two channels /; + I, must share the same parity with the
projected angular momentum channel [, i.e., (—1)! = (=1)2+"2. This is indeed the correct
factor required by the last identity of Eq. . We only mention that the same proof
can be applied to higher body order system, where, however, one has to take into account

the parity of all the intermediate coupling steps.

6.6 Conclusions

In this chapter we concluded our discussion on the Jacobi-Legendre framework. We
showed how to target tensors, operators, and general fields, within a unified and coherent
framework. We leveraged the construction done in the previous chapter, where a scalar
field was obtained by defining a “grid-point” centered JLP. Here, instead, we used this
“promotion” on an atom in the neighborhood, and we proved that the result was, again,
a scalar field. We then applied a cluster expansion on the field, with the aim of evaluating
its projection on the correct angular momentum space, by means of simple angular inte-
grations. As a check, we also proved that the scalar case, for [ = 0, correctly reduced to
a JLP.

Crucially, this chapter finally showed the benefits of the choice of the Legendre polyno-
mials, introduced as soon as Chapter [4] for the formalism of JLP models: in particular we

heavily exploited their expansion in products of spherical harmonics, which had a pivotal

48We recall that this can be seen from the CG coefficient 011?012 in Eq. (6.36)), which vanishes unless
{1 + 15 + 1 is even.
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role in evaluating the angular integrals. A cumbersome part of the derivation was to keep
track of the relation between the complex spherical harmonics and the real ones: from
this point of view, this chapter can be used as a bridge between the two representations,
with all the transformations laid out. Indeed, it can be noted how the expressions are
written so that the two formalism can be exchanged without really changing the relevant
formulas.

Unfortunately, we were not able to report direct numerical applications, mostly due to
the fact that studies are still ongoing. Nevertheless, we proceeded to present a possible
application for the PAW formalism: this, together with the JLCDM, will allow us to
predict the full electronic density, including also the rapidly oscillating behaviour around
the atomic positions.

We closed this chapter by presenting the model for general fields, here called JLF.
We proved that the model defined is, on the one hand, hierarchical and systematically
improvable with respect to the cluster order, and on the other hand it satisfies the correct
transformation rules under the action of any arbitrary rotation and/or inversion of the
system investigated.

With both the CJL and the JLF, this chapter is crucial to fully define the JL framework,
which otherwise would have been left incomplete. We showed how to navigate between
all the different models, in going from a fully scalar one to a formalism for tensor fields.
This is the main achievement of my thesis and is fully reported in Fig.[6.2} we graphically

show there the complete JL formalism, alongside its core ideas and strategies.
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Figure 6.2: The Jacobi-Legendre framework. (From top to bottom) With the defini-
tion of the model for any general field we can now draw the graphical scheme for the full
Jacobi-Legendre framework. It starts with the JLP and the cluster expansion in terms
of vanishing- and double-vanishing-Jacobi polynomials. The expression obtained can be
expanded to the case of a scalar field, by allowing one of the atoms to be, instead, a
grid point. In the case in which the grid point takes the role of the central atom, we
obtain the descriptors for scalar fields used in the JLCDM. Instead, if we allow one of the
atoms in the neighbourhood to be the grid point, we obtain a scalar field that satisfies
simple integration rules when its harmonic components are evaluated. This drives us to
the definition of the CJL expansion for tensorial quantities introduced and explored in this
chapter. Finally, we can again perform a “promotion” of the central atom to a grid point
to obtain a model for general vector fields, decomposed in their harmonic representation,
here called JLF.
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Chapter 7

Multipolar expansion and the five

body case

In this final chapter we will present a slightly different point of view for the definition
of rotationally invariant quantities, based on the formalism of the multipolar-spherical
harmonics. We have already exploited the property of the bipolar-spherical harmonics of
Eq. in defining the bispectrum, and in Section for the construction of the pow-
erspectrum from vectorial fields. In these cases, we hinted how the multipolar-spherical
harmonics constitute a natural formalism for the treatment of multi-body MLPs. Here,
we will show that using the multipolar-spherical harmonics allows us to obtain the desired
symmetries in a seamless way, i.e., by means of a simple selection of the appropriate com-
ponents of the basis. We will proceed in explicitly deriving the expansions up to the 5B
term, here treated as the expansion of 4-point functions defined on the unitary sphere. In
particular, this last case will introduce a discussion on the choice of coupling schemes and
on the completeness of the ACE framework. By leveraging the multipolar-spherical har-
monics we will expose a limitation in the basis used in the original ACE work, which will
be used as a case study to show how the formalism can be used to derive and investigate
the expansion of multi-body functions. Finally, this chapter will also be tied with the JL
formalism, and we will show an alternative to the scheme induced by the coupling of an-
gular momentum induced by the JLP expansion. Indeed, we will obtain expressions that
not only are isometrically invariant and complete, but also, that do not depend on any
coupling scheme. We will show how this allows for a simple treatment of the invariance
under permutation of identical atoms.

The chapter will be structured as follows: we will first proceed in formally expand-
ing multi-point functions, defined on the unitary sphere, in terms of multipolar-spherical
harmonics, and we will show how to incorporate the rotational and parity invariance in

the expression. We will then re-derive the powerspectrum and the bispectrum couplings,
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as the natural coupling schemes induced by the rotationally invariant components of the
multipolar spherical harmonics. Moreover, we will show how the 4-point functions require
the explicit consideration of intermediate coupling channels, which are instead contracted
in the original ACE. With the founding formalism in place, we will derive a general expres-
sion for an ACE model, which will is complete at any body order. This will be followed
by a proof of the incompleteness of the original ACE formalism for any body-order larger
than four. Again, the proof will heavily rely on the properties of the multipolar spherical
harmonics. In particular, we will show how two different 5B potentials can be described
by the same 5B terms of the ACE framework.

We will close this chapter by tying the discussion with the 5B expansion proposed for
the JLP models. We will then present a new expansion that, in contrast to the general ACE
or other approaches that require the coupling of angular momentum channels, will not only
be complete and isometrically invariant, but also independent from any coupling scheme

of angular momenta, despite being symmetric under permutation of identical atoms.

7.1 The Multipolar Spherical Harmonics

This section will introduce a formalism for multipolar spherical harmonics, which are
implicitly used in all the descriptors based on the powerspectrum and on the bispectrum,
and in particular in the multi-body expansions of the ACE potential. The approach will
be the similar to the one adopted in Chapter [3.2] where the bipolar-spherical harmonics
were first introduced. Also, a few of the properties that will be re-derived here are listed
in Ref. [45].

7.1.1 Bipolar Spherical Harmonics

Let us consider a function F', depending on two versors r; and Ty, such that it satisfies

the expansion
F(inte) = Y fumbm Yy (F)Y) (F2), (7.1)

limilame

with the coefficients f,m,1,m, given by
Frmtoms = [ ity P, )V ()Y (52). (72)

We can now use the same procedure adopted to derive the spin-powerspectrum in
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Chapter , based on the CG orthogonality (reported here for readability)

11+1s !

z : E : l1m1l2m2 l1m 12m2 = 5m1m’16m2m’27 (73)

1=l —ly| m=—1

so that, the expansion of F' can be re-written as

F(f17f2) = Z fl1m1l2m2 (Z l1m1l2m2 l1m lom), ) anl( )sz( )

llmlml
l2m2m2

7.4
= Z Z Oll:?n/llzmlzfllmllbmlg (Z Cllmllgmgxfl:n ( )Ym2( )) ( )

Lilolm \ mim} mims

= Z lllgylllg (rl? fl2)’

lilslm
where we have introduced the terms

lll2 = Z llm1l2m2f11m112m27

mims
(7.5)
ylllg I'l, I'Q = Z llmllgmg}/rlnl( )YmQ( )

mima

We have then just performed a change of basis. This shows how the bipolar-spherical
harmonics, y;;;;, form indeed a basis for the two-points functions on the unitary sphere.

The bipolar-spherical harmonics are also orthonormal, as can be easily seen from

/drldrg yllb(rl,rz)yl,l, (I'l,I'Q)

! ’
=Y s Clim iy / diy Y (51) Y, (1) / ity Y7 (7)Y, ™" (£2)

mima ~— PR —
mhms 81111 8oy Sigt P (7.6)
- 5lll/ 67’“17”1 5l2l/ mam} Z l1m1l2m2 Cll;m;bmz (5l1l,1 5m1m/1 (5l2l,2 5m2m/2 Ot Orgu -
mimsa |
(Sll/g:nm’

This is obtained by using the orthogonality of the spherical harmonics and of the
Clebsh-Gordan (CG) coefficients. The bipolar spherical harmonics can be intuitively seen
as the basis for the expansion of the function F' in the space of coupled angular mo-
mentum (I,m). This holds since we have proved in Eq. that a bipolar-spherical
harmonic of order (I,m) follows the same rotation rules of the spherical harmonic Y;”

under simultaneous rotation of the two versors r; and rs. This was also crucial in the
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derivation of the spin-powerspectrum in Chapter . Now, if we assume that .7-"1112 =0
unless | = m = 0, then the function F' behaves like a scalar for a simultaneous ro-

tation of its arguments, which is exactly what we want for a MLP. In this cases since

Cl1m1lgm2 511125m1,—m2(_1)l1_m1/ \% 20 + 1’ we have

PN (_1>ll miy mi (4 —my (2
yﬁ% (1'17 1'2) = 611[2\/ﬁ mzl 1) 1Y21 (r1)Yh (r2)7 (7~7)
and so the expansion of the function F' reads
Fscalar 1'1, 1‘2 Z a yscalar rl; I'2> (78)

where we have defined aq; := (—1)'F°, and Ypealar =

(—1)! is irrelevant with respect to the orthogonality, and can be removed by a trivial uni-

9, (please note that the factor
tary transformation). We stress here that F' has only scalar (invariant under rotations)
components. If we compare this expression with Eq. (2.10), we immediately recognise
the powerspectrum coupling rule, here reported for readability, and adapted to the sim-
plified case of no radial contributions [as done, for example in the introduction of the

powerspectrum in Ref. [27]]

atoms
po= e = Y 3 CONPEN w09
m jk m=-I

We also note that a linear expansion of the function in powerspectrum components
is exactly the formulation of the angular terms of the 3B ACE of Eqgs. and (| -,

reported here in detail

ordered ordered
(3) ._ @3 _ § : § : )™
& = Z an1n2le1nzl Qningl Amllm inol—m
ninal ninal m=—I
ordered atoms l (7 1 O)
my/ m( m(a
E Anynsl E Rnll sz ngl(rkz) § (_1) YE (I'ji)Y; (rkz)
ninal m=—I1

Indeed, we can already anticipate that this can be interpreted as the expansion of
atomic potentials, v® [already introduced for the ACE model in Eq. (2.51)), and for the
JLP in Eq. (4.2))], in terms of the rotationally-invariant components of the bipolar spherical

harmonics, as
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U(S) (rji7 rki) = Z anlnganll(T]z> nzl(rkz>yscalar(rjurkz) (711>

ninal

which leads to the 3B-atomic energies by means of the relation™]

atoms

e = 3" v (rj ). (7.12)
jk

This explicitly shows that the bipolar spherical harmonics are the natural basis for
this expansion. In the following, we will focus only on functions that not only behave as
scalars under reflection, but are also invariant under parity (so that they are invariant
under any isometry). The case above is the only case in which this is always verified,
since the powerspectrum coupling depends only on the scalar product t; - I9, [as shown
in Eq. (2.15)]. In general, however, the invariance under inversion must be enforced, as it

will be clear in the following sections.

7.1.2 Tripolar Spherical Harmonics

Following the same argument for the bipolar-spherical harmonics, we can now take
into account a three point function F', with an expansion that reads
!
F(ty, B, 85) = Y fomay™ (1) Y7 (82) Y7 (£3). (7.13)
I3ms
lima
lomo
l3ms
By exploiting again the orthogonality of the CG coefficients, this time twice, we can

re-write the expansion as

F(r17 r27 r3 E ‘7:1112 llzlgy(lllg)llglg, (r17 r2’ r3) (714>
l1l2l1213lm
with
_ l12m12 famy

l112 ligls *— z : 13m3112m12 l1m1l2m2f2m2’

mimams3

m
| 12 l (7.15)
m 12M12 my ma m3
y(lllz)hzls (I’17 I, I'3 Z l;m3112m120l1m1l2m2}/21 ( )Y ( )Y ( )
mimams3
miz

Here, the tripolar-spherical harmonics, y(llr?lz)llglg are defined by means of a chosen

49Please, note that we are not yet explicitly investigating how to obtain the ordered indexes rule nec-
essary to enforce the invariance under atom permutations. This will be discussed in subsequent sections.
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coupling scheme. They form an orthonormal basis set for three-point functions defined
on the surface of the sphere, in strict analogy to the bipolar-spherical harmonics. For the
scheme chosen above, we have first coupled the spherical harmonics depending on r; and
ty. Then, the resulting object was coupled with the remaining spherical harmonic Y, (¥3).
The choice of a coupling scheme implies a representation degeneracy, formally equivalent
to the one obtained in Eq. for the determination of the spherical components of
a rank 3 tensor. We will now show how this degeneracy can be removed in the case of
isometrically invariant functions. However, let us first project on the rotationally invariant
space (constraining the expression to [ = m = 0): the tripolar-spherical harmonics of

interest are given by

l l l
00 N L1412+l 1 2 3 my (4 mo (4 ms3 [
Vst (B1, B2, Bg) = (1) HHb5, 0 <m1 - m3> Y ()Y (82) Y, (15),
(7.16)

where we have used the following relation between the CG coefficients and the well-known
3j-Wigner symbols [45]

mimaoms3

Lol 1
Czlf?mmzz(—l)’1““”\/21+1<1 20 > (7.17)

my Mo —Mg3

Again, we find that this coupling scheme is formally equivalent to the one introduced
for the bispectrum, in Eq. (2.19) or, equivalently, the one for B in the ACE coupling,

Eq. (2.59)), and reported here

Y llals mi Mmoo M3

[ [ l
B.(ﬁinzng, == Z < ! 2 s >AinlllmlAinglgmgAinglgmg- (718)

mimams3

Moreover, the linear expansion of the function F' now reads

A : l l l mi (3 ma (2, ms (4
Frcatar (F1, B2, 85) = 3 apyp,r, (—1)24 Y~ (Wj i 3)nll<r1m;<rzm33<r3>,
1

l1l2l3 mimams3 ma M3
(7.19)
with the expansion coefficients defined as a1, 1= F(),, ;- From this expansion, and

from the symmetries of the 3j-Wigner symbols, we can see how different coupling schemes
lead to the same expressions. Indeed, the 3j symbols are invariant under cyclic permuta-

tions of columns, and acquire the factor (—1)41+2+2 under an odd permutation, e.g.,

(11 ly 13>: <13 I 12):(_1)2(12 I 13). (7.20)
my Mo M3 ms3 M1 Mo mo M1 M3
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Here we have introduced the useful shorthand notation ), = l; + Iy + I3 to indicate
the summation over all the angular momentum channels. In terms of the choice of the
coupling scheme, this means that all the six sets of tripolar spherical harmonics (one for
each coupling scheme) are always equivalent up to a sign when projected on the rotational
invariant space. In other words, if we choose a coupling scheme that preserves the cyclic
order of the indexes we will end up with an expression equivalent to {J9° (h2) Il > While

if we change this ordering we will obtain {(—1)=:)% (his)lnals )~ HOWever, a change in the

li2l3
ordering/coupling scheme is not the only operation that introduces a factor (—1)2:. In-
deed, because of the symmetry under parity of the spherical harmonics, here reported for
readability

V(1) = (-1)Y"(8), (7.21)

we have that
y(ol?lz)hglg(_f.l’ _f2’ _f‘S) = (_1)Zly8?lg)l12l3 (fl? fg? f'g) (722)

This means that an inversion causes the atomic basis to undergo the same factor of a
non-cyclic permutation of the angular momenta in the coupling scheme. We immediately
deduce that, if F'is also invariant under parity, then its expansion will be constrained to

cases such that the sum [y + I + I3 is even. Explicitly

>, =even
Fio(B1,82,83) = ) a0, Vi (f1, B2, £5), (7.23)

l1lal3

where we have defined

scalar ll l2 l m1 mo m
Vit (B, By, B3) o= Y Y ()Y (22) Y, (E3), (7.24)
mamams mi; Mz M3

for 1 +15+13 even. Given the symmetry rules of the 3j symbols, an important by-product is
that we restricted the expansion to cases in which the coupling coefficients are independent

from any coupling scheme.

We have just proved that the expansion of a three-point-invariant function is provided
by the tripolar-spherical harmonics, which inherit the completeness and orthogonality from
the expansion in spherical harmonics. However, again, they yield a practical partition of
the angular momentum space that allows us to seamlessly select the rotationally invariant
space. In other words, an isometrically invariant function can be expanded as a linear
combination of the orthonormal basis {V;?*}, which is independent of any coupling
scheme of angular momenta, when appropriately constrained. In doing so, we have also
appreciated a connection between the parity invariance and the selection of couplings

coefficients, which are symmetric under different choices of coupling schemes.
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7.1.3 Quadrupolar Spherical Harmonics

In this section we will continue our progression and introduce an expansion for four-
point functions. This case is relevant, since it is the first example where the choice of the
coupling scheme matters, as will be shown by the explicit (and irreducible) presence of

the intermediate channel in the final expressions.

The starting point is the expansion of a four-point function F(ry, t9, I's, ) over spher-

ical harmonics

lymy

F(fy, B9, 85,80) = Y fRmaY M BV, (£2) Y (Bs) Y™ (£4)- (7.25)
lilglgly — lama
mimamsmy

As for the previous cases, by choosing a coupling scheme and appropriately introduc-
ing CG coefficients, we can re-cast the above expansion in terms of the total angular

momentum channels (I,m) as

F(f‘17 f.27 f-37 f4) = Z Z F(lgllz)llg(l3l4)l34y(l;?l2)l12(l3l4)l34 (f.l’ f‘27 f.37 f4)7 (726)

Im l1l2l3ly
l12l34

where we have introduced the quadrupolar-spherical harmonics

Im PPN
y(1112)112(13l4)134 (rh ro, I3, I'4>

. l l l A ~ N N )
=Y O Gl Ol Y ()Y () Vi (B Y, (£e). (T2

m1m2ms3maq
mi12m3q

The adopted coupling scheme can be read by the order of the indexes of the CG
coefficients, which shows which angular momentum channels are connected: firstly, we

perform the coupling between the first two channels, /1 and Iy, into li2, as can be read

l12my2
Cl1m1l2m2 ‘

l34mi34
l34, represented by Cj%™" .

from Then, analogously, we couple the third and fourth channels, I3 and I4, in
Finally, we couple l;5 and l34, so that the full expression
is projected into the desired space, [, by means of C;$m12l34m34- Clearly, the coupling
scheme here is much more relevant than in the previous case, since different coupling
schemes, albeit spanning the same space, could lead to very different expansions. We
remark that the quadripolar-spherical harmonics form an orthonormal basis for the four-
point functions, as it can be easily verified by direct integration. We now project again

into the rotationally invariant, [ = m = 0, and consider only the scalar components of the
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function F'. The relevant quadripolar-spherical harmonics read

scalar A8 oA .__ )00 A8 a4
y(1112)l(13l4)(1'17 ro, I3, 1'4) = y(lll2)112(13l4)134 (I'h Iy, I3, 1'4)
(=1)h= > (7.28)
_ __1\miz2lizma2 l12—m12 y/m1y M2y, M3y, My .
- 5l12l34 2l + 1 ( ]‘) Cl1m112m20l3m3l4m4Y21 }/lg YEg Yl4 :
12 mimomsmy

mi2

Please note that we have used the short hand Y™ := Y™ (#;), i.e., we will conveniently
label with the same conventions of versors of the function. Also, to simplify the notation,
we will re-label l15 and mqo with | and m, respectively, and we define y(sf;;a)g(l3 ) =

yg?b),(lsw. The expansion for the function Fjeaar, then becomes

L S scalar Aoa Ao
Fscalar<r17 ro,Is, 1'4) = E f(lll2)l(l3l4)y(l112)l(lgl4) (r17 Iz, T3, I'4), (729>
l1l2l3l4l

with appropriate expansion coefficients F,1,)i(1,1,)- Finally, we can appreciate how, again,
an inversion of the coordinates leads to the emergence of a factor (—1)2:. If we constrain
the expansion to the case in which the sum ), is even, then we will again obtain a suitable
basis for an isometrically invariant function.

Before proceeding with our investigation on the four-point functions, let us summarize
the results obtained so far, with the aim of applying this formalism to the ACE frame-
work. Firstly, we proved that if we have a multi-point function defined on a sphere, then
we can expand it in multipolar spherical harmonics, which constitute a natural (and or-
thonormal) basis of choice. We also saw that, in order to constrain the expressions to
be rotationally invariant, it suffices to consider only the [ = m = 0 components of the
total angular momentum of the multipolar spherical harmonics, justifying the use of this
basis. Also, to impose parity invariance, we need to discard all the spherical harmonics
with odd ), retaining only the even ones. We showed that, the more arguments that
the function has, the more important becomes the choice of a coupling scheme for the
definition of the multipolar spherical harmonics. Finally, we found that the rotationally
invariant components of the bipolar-spherical harmonics are also the symmetric ones un-
der inversion. In contrast, we had to impose the condition ), already for the tripolar
case. As a by-product, this constraint removed the dependence of the expression from a
specific coupling scheme. However, the coupling scheme becomes relevant for higher-point

terms.
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Let us apply this findings to the ACE case. We will re-derive the ACE formalism
from the point of view of a multipolar decomposition of the atomic energies, and we will
show how this approach provides insights on the incompleteness of the ACE-angular basis.
Finally, we will tie back to the discussion with the JLP formalism, and we will show that it
provides a way of defining a coupling-scheme independent expansion for the quadrupolar

case.

7.2 An ACE Framework

In general, the rotationally invariant components of a v-polar spherical harmonic, can

be written in a compact form as

Vi (R) = YV (R) = Y Hig [ [ Vi (4), (7.30)
mM k=1

where we have introduced a few useful shorthand notations to make the expressions more
readable. Here, the vector R = (f1,...%,) contains all the versors of the the system, while
the vectors I = (ly,...l,) and m = (my,...,m,) contain all the indexes associated with
the spherical harmonics. Finally, the vectors L = (Ly,..., L, 5) and M = (M, ..., M, 5)
represent all the intermediate angular momentum channels that arise from the coupling (if
any are needed). Please note that we are not explicitly indicating any particular coupling
scheme: we will not discuss the relation between different coupling schemes, we will only
assume that a coupling scheme is fixed for each v. The coefficients H!L,, are the core of
the definition of the multipolar spherical harmonics, containing the correct product of CG
coefficients need to project the expression into the space of zero angular momentum. The

examples showed in the previous sections are, explicitly,

(thz 5 s (_1)l1+m1 ¢ _y
mimg — YlilaYmi—me 2l1 T1 orv=ys,

)2 G- —(_1)134”3 Cl-ms fi =3 (7.31)
mimeoms 2[3 _|_ 1 limilams or v = o, .
(1112) L(Ila) (=DM LM for v —

(mlmz)M(m3m4) - 2L _I_ 1 limaloma ™~ I3malymy orv= 4

With these choices, the multipolar spherical harmonics form a complete and orthonor-
mal set for the rotationally-invariant v-points functions on the unitary sphere.

Let us now consider the cluster expansion of the atomic energies ; given in Eq. (2.51)),
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here reported for convenience

atoms atoms atoms
= 82(»1) -+ Z U(Z) (rji) —+ Z ’U(g) (rji; rki) + Z U(4) (I‘ji, ri;, rpi) + ... , (732)
J jk Jkp

where we have already released the constraints on the sum over the atoms, by the same
trick discussed in Section [2.1.4, We can see how the (v + 1)-body term in the sum is in
the form vV (R;;), with the definition

Rj; := (Rji, Rji) = (Tj1i: Tjais - - - Tjois Tjis By - - - Fji0),
and 7 := (j1,...,J,). This means that we can expand the potential in terms of a radial

basis for the distances and v-polar-spherical harmonics for the angles. Explicitly

l =even

VT (Ry) = ) amr

nlL

HRnka Tjni ] Scalar(Rji), (7.33)

where we have already used the components of zero angular momentum, and we have
restricted the sum to even ) ,. In this way, the potential satisfies, almost by construction,
the required transformation symmetries. Please note that, in order to have a complete
expansion, the coefficients must also depend on the intermediate angular channels L: this
was explicitly shown for the expansion in terms of the quadrupolar-spherical harmonics
[Eq. (7-29)]. We can now evaluate the (v + 1)-body contribution to the atomic energy e;,

here indicated with 61@)

El—even v
v+1 v+1 scalar R
ol AnlL nklk(Tjkz‘) i ( ji)
7 nlL k=i
(7.34)
Zl—even v atoms
= E anlL § MH E Rnklk r]kl (rjkl)

nlL k=1 Jk

where, in the second line, we have used the definition of Eq. (7-30) for V5" (R;;), and we
have distributed the sum over 7 in the products. If we now use the atomic basis introduced

in the ACE formalism, and reported here

atoms

mklkmk = Z Rnklk TW (f'jki)7 (7'35>

and define the invariant products

M. Domina 151



CHAPTER 7. MULTIPOLAR EXPANSION AND THE FIVE BODY CASE

v+1
mM =1
we can finally derive an ACE framework, directly from the multipolar spherical harmonics,
as
>, =even
U+1 Z anlLanlL . (737)
nlL

Not only is this expression completely general, but crucially, it also shows that, once
a specific radial basis is fixed, the invariant products Bz(ijl) are fully determined by the
coupling coefficients H!L, . of the v-polar-spherical harmonics. However, the formalism
proposed here is not the same as the original ACE, which will be discussed in the following

section.

7.3 Incompleteness of the original ACE representa-

tion

We can now compare the expression obtained above with the original ACE model, of
Ref [25]. We will consider only cases for v > 4, since they are the ones requiring the
explicit definition of intermediate angular momenta L, as it can be appreciated from the
last Eq. in . As such, these are also the cases in which the choice of the coupling
scheme matters. In particular, the work in Ref. [66] has been devoted to the removal of
the redundancies and degeneracies arising from selecting a particular scheme in the case
v=4.

The framework proposed above, in Eq. , is different from the proposed one in the
original ACE [25]. Indeed, by comparing the full scheme presented here with the one in
the last line of Eq. and with the coupling terms introduced in Eq. , we obtain
that the original ACE is

gl(v—l-l),ACE: Z anlBl(;JL;rl)ACE7 (7.38)

namely, the expansion coefficients are assumed to not depend on the intermediate channels

L, and the invariant products are defined in terms of the sum

1,:’}Ll+1 ACE ZBVZ;FI} ' (739)
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In the original ACE formalism, this approach is shared by all the v > 4 cases, where
all the intermediate channels are always contracted. We will now prove that this coupling
scheme is incomplete{ﬂ The crucial point of the proof is that we can trace back all
the steps from Eq. to Eq. . Thus, it can be seen that, by assuming that
the expansion coefficients do not depend on the intermediate angular momenta, we are

implicitly preforming an expansion of the form

> ,=even

’U(UH)(RJ'Z‘): Z Unl

nl

HRnklk r]k’L ] Z scalar (74())

Here, the sum over the intermediate angular momenta have been transferred over the
v-polar-spherical harmonics, since they are the only terms that maintain their explicit
dependence on the intermediate channels. Clearly, this is equivalent to using an “ACE-

angular” basis defined as

ACE : Z yscalar (741>

By construction, using this basis to expand the angular part of a potential U(U+1)(Rji>
leads directly to the original ACE formalism of Eq. (7.38)). In order to prove that this
expansion cannot describe an arbitrary potential v(**1), let us study the properties of the

ACE-angular basis.

Properties of the ACE-angular basis Firstly, let us consider the inner product

(REDET) = [ IR Ry ke (742

where

/dR - /dfl . .dfy, (7.43)

i.e., we are integrating each variable over the respective solid angle. Since the v-polar

spherical harmonics are orthonormal, the integral can be easily evaluated ag’]]

/ ACE ACE* dR Z / scalar Sca}ar* (R) dR = 5ll/ Z{IL}’ (744)
_ L

LL' <

—~
=030 1.1

0In the sense that not all the v-points functions can be described by this choice of the coupling.

51 We use the generalization of the Kronecker delta, so that dpz/ := Op,ry - 0L, L,
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where the term {IL} is 1 if the intermediate angular momenta L are consistent with the
initial channels I and the chosen coupling scheme, i.e., if they belong to the tree generated
by I, and 0 otherwise. This shows that the ACE-angular basis is orthogonal but not

normalized. In practice, the square of the normalization constant, defined as

N} =6 Y _{IL}, (7.45)

counts how many intermediate channels lead to the rotationally invariant space, from the
initial I and with the fixed coupling scheme.

Another crucial property is obtained by looking at a way to write the multipolar
spherical harmonics in terms of the ACE-angular basis. In practice, we look for expansion
Coef‘ﬁcient U}, such that

scalar Z ACE ) (746)

The coefficients are obtained by means of the integral

Uli / scalar ACE* (R) dR

. 1
/yscalar lsc[z{x}ar (R) dR = _25ll’7 (747)
N P Nl

_6”/5LL/

which holds for every well-defined multipolar-spherical harmonic{igl. This means that, in

general, we can write v-polar-spherical harmonics as

scalar [ T- 1 T
[ (R) = 0P (R). (7.48)
l

We now have all the ingredients required for the aforementioned proof.

Incompleteness of the original ACE-angular basis and the importance of the in-
termediate coupling channels We will focus only on a v-point isometrically-invariant
function, F', defined on the unitary sphere. Indeed, the radial part does not play any role
here, and the following can be easily generalized to the case of general function in space
by assuming that the coefficients depend on the relevant distances. We already know that
the function F' can always be expanded in terms of v-polar-spherical harmonics projected

on the isometrically invariant space as,

52The expansion coefficients must be components of a unitary matrix.
53This is because, for the multipolar-spherical harmonic to be defined, L must belong to the tree
generated by [.
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>, =even

Z EL scalar ) (749>

where Fr, are the expansion coefficients. It is crucial to notice that, to fully characterize
the function F', we need all the expansion coefficients, namely we cannot ignore the de-
pendence on the intermediate channels L. We can now use the property of Eq. (7.47)) and

obtain

>, =even >, =even

Z Fit~—s N2 PR = D NZ [ZEL] ACE(R). (7.50)

The expression above shows that the ACE-angular basis cannot discriminate between
functions for which the sum of the expansion coefficients in the square brackets is the

same. Equivalently, we can say that functions such that
> Fu =0, (7.51)
L

cannot be represented by the ACE-angular basis. Thus, if we sum an arbitrary function,
F, and a function that cannot be represented by the ACE-angular basis, ™!, then, the
new function G := F + F™! will have the same ACE representation of F, while being
generally different. Also, it is not difficult to construct functions for which the sum above
vanishes. For instance, this is obtained by choosing random values for the coefficients, and
then by imposing that one of them is the opposite of the sum of all the others. This is a
simple strategy to generate such a non-representable function.

The immediate consequence of this proof is that a general potential cannot be com-
pletely characterized by the expansion proposed in Eq. , i.e., washing out the de-
pendence of the expansion coefficients on the intermediate angular momentum eliminates
non-reducible degrees of freedom.

In particular, this implies that the original ACE formalism is not able to properly

describe the atomic energy terms

S Z pH( (7.52)

for v > 4, since we could add any non-representable potential [such that the property
of Eq. holds] and obtain the same value of the atomic energy. This is similar
to the discussion in Ref. [27], reported in Eq. , where it was observed that the
powerspectrum alone was not able to describe atomic environment, since different functions

may possess the same powerspectrum.
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Before proceeding to the next and conclusive section of this Chapter, we remark again
that this proof concerns the original ACE formalism, of Ref. [25]. Indeed, please note
that more recent works (see, for example Refs. |38 103]), use a complete representation,

preserving the intermediate channels that appear in the coupling.

However, even the complete representation is not without problems, as we will see in

the next section.

7.4 A 5B representation without angular-momentum

couplings

We will now discuss the problem of enforcing the invariance of the atomic energy
under permutation of identical atoms: this appears as a severe downside of the complete
expansion in Eq. (7.37). Indeed, while the ACE-angular basis is not complete, it allows for
a simple treatment of atomic permutations. This can be easily understood if we focus on
the fact that each pair ny, [, refers to an atomic basis: imposing this invariance is equivalent
to requiring that the order of the atomic basis in the products of Eq. does not affect
the atomic energy of Eq. . In other words, exchanging two (ny, [;) pairs must lead to
the same result. This can be easily imposed if the coupling coefficients are not dependent
on the intermediate angular momentum channels, as was the case for the ACE formalism.
With this assumption, the symmetry would be imposed by the only requirement that the
expansion coefficients a,; are symmetric under the swap of any (ny,l;) pairs. This leads
to an expansion in which only lexicographically ordered pairs are considered. However, in
the presence of a complete representation, where also the intermediate channels L matter,
imposing this constraint is more complicated, since exchanging two channels [, and [/, in
general, produces a different coupling scheme. This can be seen with a specific example:
if the coupling scheme is such that it first imposes the coupling between the first two
channels, l; + ls — L1o, and then the third and fourth ones, I3 + 4 — L34, then swapping
[ with [3 will cause a change in the coupling scheme, i.e., we are now to couple the first
channel with the third one and the second with the fourth. Unfortunately, in general,
different coupling schemes produce different results, albeit spanning the same space. This
problem exists already for the v = 4 case, has discussed in Ref. [66], where a selection of
only non redundant contributions was performed algorithmically, by using the generalized
Wigner symbols. Here, however, we will focus on a completely different approach, strictly

tied, again, to the JL framework. This will bypass completely the need for the coupling
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of angular momentalﬂ.

In section we have already proved that a representation over internal coordinates,
with 4 distances and 6 angles, is complete and irreducible. In particular, in Eq. (4.65),
we saw that we can write the atomic potentials in terms of double-vanishing-Jacobi and

Legendre polynomials as

unique
G Py Z Z H(a.8)5(B)5(a.8)5(B) Kiki pipi pigi pkpi pkai HPgi
v (R]Z) - aﬁ'}ggﬁ%gﬁ} Pnljl Pngki Pngpi Pn4qi ‘Pll ‘Plg 'Plg ‘F)l4 'Pl5 ‘Pl(; ?
n17M2MN3MN4 symm.
l1l2l3l4l516

(7.53)

where the sum over unique coefficients and on the symmetries has been discussed in detail
in Chapter [ We can notice that the expansion over unique coefficients is exactly what
we were looking for: it enforces the invariance of the expression, at the potentials’ level,
under the permutation of two identical atoms. We will not discuss explicitly the full chain
of equivalences for the coefficients, which consists of 24 possible ways to swap the indexes.
An example is the case in which we swap the first two atoms, the j-th and k-th ones. This

implies that the two coefficients

aninan3ng — AN2N1N3N4 (754)
l1l2l3lals5ls 111415121316

must be equal. By exchanging all the possible atoms, it is possible to obtain the complete

set of 24 equivalences.

We have already discussed, in Chapter [ how to linearize the JLP with respect to the
number of atoms in the cut-off sphere. This was accomplished by applying the addition

theorem,
: 20+1

D V()Y (i), (7.55)

to every Legendre polynomials of the expansion. We can do the same for the 5B expansion
above. We do not report the full expression, which will not add anything to the discussion.
Instead we just mention that it consists of a sum over my, ..., mg, and of products of 12

spherical harmonics. If we now factorize together all the terms that refer to the same

54Here, we mean that the coupling of different channels will not be manifest, since the expressions will
be naturally symmetric and irreducible. This is caused by the fact that the representation in internal
coordinates is done in terms of angles and distances and, in this sense, the underlying coupling scheme is
constructed in terms of the resulting angles and not on the resulting invariant properties. This makes the
treatment much simpler, since the angles are naturally invariant, while a versor-based approach requires
us to construct the invariance intentionally.
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atom, and we evaluate the sumP’]

e =3 WO(Ryy), (7.56)

Jkpq

it can be shown that the resulting expression can be written in terms of the JL-atomic
basis, already defined in Eq. (4.32)) and reported here for readability,

atoms

(Oé B) m1 m2
(J1L3 lilals Z Pn]z Y r]l)Y (rﬂ)YE (rﬂ) (757)

Pnimams

()

After some manipulation, the energy €,”’ can be written as a sum of contracted products

of four JL-atomic basis, namely

unique
5
65 ) = bninangna X
l1l2lslylsls
n1N2N3NY
l112l3l4l5l6
X J1L3) 111513 (J1L3)n 111415 (J1L3)n l2lylg (J1L3)n I3l5l6
Mt M " mams —mimams 3 —mo—mameg 4 _m3z—ms—mg
mamsmeg
(7.58)

Here the coefficients b are defined in terms of the coefficients a by absorbing unessential
factors obtained from the addition theorem of Eq. . We also defined the convenient
shorthand ) = = my+...4+mg. We can notice that the sum over the possible symmetries
has been lost from Eq. : this is caused by the summation over all possible atoms,
which is equivalent to the sum over all possible swaps of indexes, and allows us to retain
only the sum over the unique coefficients. This is in the same spirit of the lexicographic
ordering of the ACE formalism, but with the main difference that, while finding equivalent
coefficients is less straightforward, the expansion above is now complete. Crucially, not
only is the linear scaling guaranteed by the fact that the evaluation of the JL-atomic basis
of Eq. is linear in the number of atoms inside the cut-off radius, but also all the
other symmetries are enforced by construction, the representation in internal coordinates
being isometrically invariant. Indeed, we have thus bypassed the need of a coupling scheme
with all the redundancies and degeneracies. This was indirectly achieved by introducing a
more complicated atomic basis, and by increasing the number of indexes to consider to 6:
one more than that considered in the work on the generalized Wigner symbols of Ref. [66],
and 2 more than that of the ACE-angular basis approach. We can make two observations:

firstly, the evaluation of the JL-atomic basis does not require more than the evaluation

S Please note that we are following the ACE framework, in which the sum over the atoms is not
restricted. The arising of self-energy term contributions have been already analysed in Chapter
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of all the spherical harmonics and the radial basis. Indeed, the remaining operations
consist in simple products of the already computed values of the spherical harmonics. The
bottleneck is then transferred on the coupling scheme, which can, nevertheless, be tackled
in progressive contractions, with the aim of minimizing the number of calculations required.
Secondly, we argue that the presence of more indexes is not necessarily detrimental for
the expansion. Indeed, it is safe to assume that more indexes allow one to spread the
information on more basis terms, and so, arguably, a smaller truncation parameter [,
could be used. Since the overhead is mostly caused by higher values of angular momenta,
it also means that we should have a trade-off between the number of contractions and the
highest value of the angular momentum reached. While this is still an hypothesis, we will
focus our effort in investigating these speculations in future works.

In conclusion, the proposed expansion of Eq. , for the 5B-atomic energies, not
only is complete, but it does not suffer from the irreducible redundancies caused by the
choice of a coupling scheme, on one hand, and the necessity of enforcing the permutational
invariance of identical atoms on the other. While a similar expansion for the 6B is not yet
available (the representation in terms of the internal coordinates is over-complete when
all the possible angles are taken into account), we hope that the strategy introduced here,
which shifts the focus from the pure coupling of angular momenta to a more angle-based
approach, combined with the versatility of an approach based on the multipolar-spherical
harmonics, could lead to efficient approaches in the study of descriptors for isometrically

invariant quantities.
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Conclusions

Summary

This thesis focused on the study of descriptors for linear ML models applied to the
study of materials. We explored the main ideas that drive the construction of the models,
ranging from the encoding of the correct symmetries to strategies to simplify otherwise
computationally expensive methods. We presented a model for the treatment of magnetic
systems, able to bring on the same footing the atomic positions and the spin degrees
of freedom. This was tested on a toy-system characterized by spin-lattice coupling with

transversal and longitudinal spin excitations.

The central part of the thesis has been devoted for the definition of the JL framework,
which encompasses all the descriptors based on the JL formalism. Here, we showed how
the formalism is constructed, with the choice of the polynomial basis, the constraining
procedure, the enforcement of symmetries and the generalization to the description of
tensors and tensor fields. While all the descriptors are atomic, local and defined in terms
of a cluster expansion, the main aspect lies in the choice of the internal coordinates. Indeed
we proved that the choice of the internal coordinates is not restrictive. On the contrary,
we proved that the JL formalism can be written in a form that scales linearly with the
number of atoms, while preserving the natural interpretability given by a representation in
terms of internal coordinates. Thus, the central part of the thesis has been devoted to the
extension of JL. models, by presenting simple strategies for the construction of covariant
quantities. Crucially, we showed how JL models for potentials (JLP) and for the electronic
density (JLCDM) can reach high accuracy levels and could be used in accelerating DFT

calculations.

The last chapter has been devoted to showing how the multipolar spherical harmonics
constitute a useful framework in the study of multi-body descriptors, allowing for an in-
depth study of symmetries and completeness by virtue of their orthogonality relationships.
Finally, by investigating five-body order terms, we showed how an internal-coordinate
based formalism led to a complete representation, possessing all the required symmetry

properties.
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Future plans

In this final section we will discuss the next steps of our investigation, the new exten-

sions of the JL formalism and some tests and applications that will be performed.

Spin-JLP An expansion of the JL formalism will aim to include spin degrees of freedom
in a JLP. This is one natural direction for our work, combining the study on the spin-
powerspectrum of Chapter 3 and the JLP formalism of Chapter 4, in terms of an internal

coordinates representation.

Application of the JLP, pushing the limits on multi-component systems A
significant part of our future effort will be devoted to test JLPs on diverse material systems.
While this is necessary in itself, to gauge the applicability and limits, special effort will be
dedicated to study multi-component systems, in the spirit of reducing the combinatorial

scaling implied in a species-basis cluster expansion.

Introduction of long-range interaction While a discussion of long-range interactions
was beyond the scope of the thesis, it is important to test the descriptors on systems in
which the interactions are not only short-ranged. An extension of the JL formalism to
include also these cases is not yet clear, but we aim to dedicate our efforts in pursuing

such generalizations.

Application to quantum transport With the availability of a model to predict the
electronic density, a possible subsequent step is to design an application for quantum
transport. This requires the evaluation of non-equilibrium charge density of an open
system. We are working on an expansion of the JLCDM to be applied to the STESTA
code [123}124]. This should allow to accelerate quantum-transport calculations performed
within the SMEAGOL [125] code framework (that relies on STESTA), to avoid converging
the density at each step of the SMEAGOL iterations.

Application of the CJL (In production) With the covariant formalism provided by the
CJL, we are working to predict tensorial quantities of interest (such as the one provided by
Ref. |75]). The result will be important for analyzing the performance and, eventually, the

shortcomings of the formalism, in particular in comparison with other schemes available.

Prediction of the PAW-augmentation charges (In preparation) As mentioned in
the main text, the JLCDM is not enough to fully predict the electronic density of DFT

codes that rely on the PAW formalism. We are working on finalizing a project for the
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prediction of the PAW-augmentation charges by means of a CJL model, and to use them

to further accelerate DFT calculations.

Application of the JLF to spin-polarized electronic densities and magnetization
vectors An important aspect of the JL framework lies in its generalization to tensor
fields, which is still a largely unexplored territory of ML applied to electronic-structure
calculations. In this sense, we will soon start explore the acceleration of DFT calculations
in non-collinearly spin-polarized cases, expanding the JLCDM approach to some of the

most challenging, and computationally heavy, tasks of DFT codes.

Coupling-scheme independent 5B framework (In preparation) We are working to
finalize the study on the multipolar spherical harmonics applied to ML descriptors. We
will further proceed in evaluating the advantages and disadvantages of using the proposed

JLP-based linear expansion for 5B terms.
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