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Summary

As my evidence will show, innovation in medical devices results by 
and large from engineering-based problem-solving ... that does not 
in general depend upon the recent generation of fundamental new 
knowledge [108].
Edward B. Roberts

The surgical operation of total hip replacement (THR) is, after 30 years, 
regarded as a successful medical procedure. The average life of an artificial 
hip has, however, remained at about 15 years for more than a decade, at a 
time when life expectancy and the quality of life of the elderly have greatly 
improved. As a result the expectations of patients are being increasingly 
frustrated.

It is in this context that failure to carry out a thorough scientific and 
clinical evaluation of THR options just prior to the operation is no longer 
tenable. Decisive information on patient variables and pathology and on op
eration choices becomes available at this time. The universal availability of 
advanced computing power has removed the time and knowledge limitations 
on orthopaedic surgeons that formerly prevented them from accessing all rel
evant medical and non-medical data. This thesis defends the proposition that 
what is involved in selecting the correct prosthesis is essentially a data-mining 
exercise that falls into the category of classification: patient/prosthesis com
binations must be classified as accept or reject.

THR evaluation techniques divide into pre-clinical and clinical methods. 
Pre-clinical evaluations such as finite element analysis and fit-and-fill anal
ysis are quantitative engineering procedures; clinical techniques such as ra
diographic and hip scoring analyses are in the paramedical domain. These 
evaluation techniques are reviewed and shown to be capable of consider
able development using computer-assisted imaging and analytical techniques. 
Their outputs can be synthesised and made available to the surgeon in the 
time frame just prior to the operation, using a graphical user interface (GUI).

Two avenues of investigation were explored in the thesis. The first used 
the outputs from a selection of THR evaluation techniques to drive the
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decision-making process of a rule-based expert system. Some 30 explicit 
rules, proffered by surgeons, were used to simulate professional judgement 
and decision-making. As a variation on the use of explicit rules, the suitabil
ity of a fuzzy expert system was also investigated.

The second avenue was to use the versatility and power of neural net
works to unlock the information embedded in medical databases. Because 
of the dearth of Irish data two neural networks were trained on the survival 
analysis data contained in Sweden’s National Hip Register. The first network 
investigated the effect of patient-related variables on survivability, the second 
the effect of implant variables.

The major findings of the thesis are:

• Comprehensive THR evaluation just prior to the operation is feasible 
and justified.

• There is an urgent need to standardise and harmonise patient and 
prosthesis data at a time when there is a general move to computerise 
medical records.

• A rule-base expert system is the most realistic and viable short-term 
option for THR evaluation just prior to the operation. Lack of fa
miliarity with the quantitative evaluation techniques, however, made 
it difficult to arrive at a set of explicit rules on which the surgeons 
consulted could agree.

• Neural networks have formidable potential to mine historical THR 
records but this potential will remain unrealised if databases do not 
accommodate a greatly extended range of prosthesis design variables.

• Neural networks do not replace the portfolio of other prosthesis eval
uation methods (finite element analysis, fit-and-fill, hip score, radio- 
graphic analysis etc.) but rather provide a significant additional tech
nique which enhances the capability to evaluate and select prostheses.
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Abstract

The unsatisfactory record of survival of the total hip replacement (THR) 
surgical procedure can be attributed in part to the fact that candidate pa
tient/prosthesis combinations are not fully evaluated in the time period be
fore the operation. Pre-clinical and clinical evaluation techniques were re
viewed and, when harnessed to modern computing, were seen to have im
pressive analytical and imaging capabilities.

To make the output of these evaluations accessible to the surgeon in the 
time period prior to the operation a rule-based expert system was prototyped. 
This consisted of 30 explicit rules, elicited from surgeons, and driven by the 
output of three evaluation techniques: finite element analysis, fit-and-fill 
analysis and clinical hip score analysis. A variation of this approach in the 
form of a fuzzy logic expert system was also considered.

An alternative method of making information available to the surgeon 
in a timely manner is to mine the rich data contained in historical patient, 
prosthesis and other databases with a feed-forward neural network. Two 
neural networks were trained and tested on survival analysis data from the 
Swedish Hip Register.

The rule-based expert system is a realistic short-term option for THR 
evaluation prior to the operation, while neural networks have enormous po
tential in the longer term if medical databases can be improved to meet the 
challenge.
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Chapter 1

Introduction

Knowledge is the most fundamental resource of the modern economy 

and accordingly the most important process is learning [79].

Lundvall

Knowledge is not just another resource alongside the traditional fac

tors of production—land, labour and capital—but the only meaningful 

resource today. [33]

Drucker

This thesis is fundamentally about a new approach to learning, a new way 

of improving the success of a surgical procedure that has important conse

quences for the human condition. An enormous amount of current and his

torical data are available about the total hip replacement surgical procedure 

but critical and compelling time pressures made it impossible, before the ad

vent of modern computing power, for individual surgeons to interrogate and 

mine these data effectively. The first requirement is to assemble, in the form
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of a computer database, comprehensive data about prostheses1 and patients, 

and about patient/prosthesis combinations. Next a set of computer-based 

analytical and graphical techniques, which can aid the surgeon in evaluating 

possible patient/prosthesis selections, must be identified. But the essential 

challenge is to devise a computer application which can extract from the data, 

and the results of sometimes competing evaluations of these data, clear pat

terns to guide the surgeon in his decision to accept or reject a given implant 

for a particular patient.

This search for a computer application stimulated an intellectual quest 

which started with a decision-support (synthesis) model, which had sub

jective evaluation output weighting, and progressed to a rule-based expert 

system and a fuzzy expert system, and finished with the design and testing 

of two feed-forward neural networks or “connectionist” expert systems.

Knowledge is now recognised as the source of continuous economic growth 

and enhanced quality of life. The term knowledge-based economies, in com

mon usage, gives recognition to the role of knowledge and technology in 

economically advanced societies. Knowledge-intensive services such as edu

cation, communications and information are the most rapidly growing eco

nomic sectors and the share of research-intensive2 manufacturing has more 

than doubled in the last ten years [100]. Indeed, it is estimated that more 

than 50% of output in the major OECD economies is now knowledge-based. 

The advent of the new computer and telecommunications technologies has

1A prosthesis is a fabricated substitute for a diseased or missing part of the body, such 
as a limb, tooth, eye, or heart value. In this thesis it generally pertains to the head of the 
femur and the associated joint (see Figure 3.4).

2 Research-intensive sectors are sectors where a significant proportion of sales revenue 
is spent on R&D (electronics, bio-technology, pharmaceuticals etc.).
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been decisive in providing the capability for this transformation. These tech

nologies are the instruments through which information (codified knowledge) 

is stored, transmitted and manipulated.

A recent European Commission Report pointed out that the application 

of the new information technologies in the health sector conspicuously lags 

that in other economic sectors, particularly industry, and that the opportu

nities for progress in that particular sector are correspondingly greater.

Widespread implementation of the information and communications 

technologies (ICTs) in the health sector is expected in all Member 

States. This will result in improved availability and quality of health 

services and will provide support for rationalisation and improvement 

of cost-effectiveness of health service systems. A great potential for 

application is foreseen in all parts of the health sector, namely pre

vention, promotion, creative services and rehabilitation, as well as in 

social services [39],

1.1 KNOWLEDGE REQUIRED FOR HIP 

TECHNOLOGY

The part of the health sector identified for analysis and application of infor

mation and communications technologies in this thesis is the surgical opera

tion of total hip replacement. Even though this is rated as a very successful 

surgical procedure the economic and social pressures to develop prostheses 

with significantly improved performance and to institute more cost-effective 

delivery systems are unrelenting. Waiting lists are expanding almost every-
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where because longer life expectancy, combined with a lower birth rate, is 

changing the age distribution of the population. The number of first time 

hip replacements carried out world-wide in a single year is now in the order 

of ten million. In Great Britain alone the figure is 400,000 a year, and the 

number continues to rise [136]. This is compounded by the high proportion 

of patients who require revision surgery. The average life of an artificial hip 

is currently about 15 years but the variation between revision rates for differ

ent prosthesis designs and for different surgical procedures is so great as to 

render hip replacement more of an art than a science. Furthermore, the pros- 

theses in current use in the UK for hip replacement vary in cost by a factor 

of nearly ten [97]. There is absolutely no evidence that these cost differences 

are reflected in prosthesis survival times or in the subsequent comfort and 

quality of life of treated patients [92].

The different kinds of knowledge which are encountered in the art/science 

of hip replacement reflect very powerfully the kinds of knowledge which are 

important in a knowledge-based economy more generally. The most fun

damental dichotomy is between codified and non-codified knowledge. The 

latter is also referred to as tacit knowledge or know-how, and is often jeal

ously guarded by specific trades and professional elites.

Codified knowledge is that part of knowledge which constitutes informa

tion. There is a constant and concerted effort to codify as much knowledge as 

possible and elevate it to the status of information. The inexorable increase in 

the codification of elements of knowledge, which were previously tacit, is the 

hallmark of the information society or the knowledge-based economy. Infor

mation can be stored, retrieved, transmitted and organised in a rich variety
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of ways. Sources of information include digitised databases, books, scientific 

journals, working papers, images, video clips, sound and voice recordings, 

graphical displays as well as electronic mail.

With specific reference to total hip replacement, codified knowledge can 

be classified into a “know-what” component and a “know-why” component. 

Know-what refers to knowledge about facts, such as facts about the patient, 

contained in the patient database: age, height, bone condition, level of ac

tivity, medical history, and facts about femoral components, contained in 

prosthesis database: size, length of stem, material properties etc. Know-why 

on the other hand refers to scientific knowledge such as that emanating from 

engineering principles, the properties of matter and the behaviour of human 

tissues. Know-why is central to a deeper understanding of the functioning 

and the continued technological development of prostheses. This knowledge 

is arrived at by using techniques such as finite element analysis, mechanical 

testing, radiostereometric analysis and other design evaluation procedures.

Non-codified or tacit knowledge, however, is also critical to progressing 

the art/science of hip replacement. This is rooted primarily in practical 

experience and is not normally transmitted through formal channels of com

munication. This component of knowledge is referred to as “know-how.” 

In the case of hip replacement, the skill and experience of the orthopaedic 

surgeon, which are the foundation for his confidence in performing the op

eration, illustrate the centrality of this component of knowledge in complex 

medical procedures. Know-how tends to be retained by individuals and not 

transmitted to others until it is codified and transmuted into information. 

The networking of surgeons and the linkages and interactions between the



Introduction 6

repositories of the different elements of knowledge in hip replacement are in

struments for the sharing and diffusing of know-how relating to hip prosthesis 

selection.

There is a long tradition of sharing/trading tacit knowledge between ex

perts (in this case surgeons) in specialised fields but this is invariably confined 

to closely-knit groups comprising inner colleges or centres of excellence. Such 

a system operates to the detriment of the overwhelming majority of practi

tioners (and especially their patients in peripheral economies) who do not 

belong to a select inner circle. Dissemination of socially and economically 

significant medical knowledge is greatly restricted and, as a result, society’s 

return on investment in health and human betterment is sub-optimal. There 

is unnecessary experimentation and rediscovery of facts, already known to 

researchers and some practitioners, by surgeons who do not have access to 

the full spectrum of available knowledge including elements of know-what, 

know-why and more especially know-how. The current situation in the field 

of hip replacement surgery is a metaphor for failure to exploit the potential of 

information technology for the capture and diffusion of existing knowledge.

1.2 NEW APPROACHES TO THE 

CAPTURE AND DIFFUSION OF 

TACIT MEDICAL KNOWLEDGE

During the eighties several medical disciplines developed “intelligent” deci

sion support systems, based on artificial intelligence techniques, including
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expert systems. This was a major breakthrough in the accretion of knowl

edge because it enabled the codification of the critical tacit component of 

medical knowledge to the extent that it formalised the intelligent behaviour 

and the reasoning processes utilised by the world’s leading medical experts 

in their decision-making.

The initial challenge for this thesis was to design an artificial intelligence 

instrument which combines the outputs of a portfolio of quantitative evalu

ation methods in such a way as to make them available and usable by the 

surgeon in the short time-period before an operation. The methods chosen 

for the prototype application were finite element analysis, fit-and-fill anal

ysis and clinical hip score evaluation. (These methods and a number of 

others are elaborated on in Chapter 4.) The application greatly facilitated 

the generation of evaluation outputs but it provided a less than satisfactory 

answer to the relative weighting of these analytical evaluations. The decision

making process could not be adequately represented without incorporating 

a better means of weighting the results of these evaluations. This limitation 

was addressed by designing an expert system using rules which replicate the 

decision-making process of selected experts.

Rule-based expert systems, however, have only limited capacity to cap

ture solutions to very complex problems such as those common in real life 

[24], The current generation of expert systems has fallen short of the progress 

expected. Essentially, all the easy problems were quickly solved. When 

conventional expert systems ran up against highly non-linear and computa

tionally complex problems these required prohibitive amounts of computer 

power—if they could be solved at all.
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Fuzzy expert systems overcome some of the limitations of more tradi

tional expert systems by being able to encapsulate real-world uncertainty 

and imprecision as an intrinsic part of the system. They do this by incor

porating fuzzy logic and fuzzy set theory into the model. Fuzzy sets deal 

with subsets of the universe that do not have well-defined boundaries but 

fuzzy expert systems still depend on being able to formulate adequate rules 

with which to represent the system being modelled. To the extent that the 

rules extracted from experts capture the reality, the fuzzy expert system is 

a formidable instrument.

Difficulty in reaching a consensus on the rules to be used is a major limi

tation on the capacity to apply rule-based and fuzzy expert systems. NeuraJ 

networks obviate this need to explicitly enumerate a set of rules but the 

resultant trade-off is that, whereas an expert system can explain its decision

making process neural network decision-making cannot be made transparent 

to the user. The user’s confidence that the system works is largely based on 

the fact that neural networks have a proven track record.

Developments in neural networks since the mid-eighties have transformed 

the whole area of artificial intelligence. Neural network paradigms for a range 

of complex applications have emerged. More particularly, the so-called “feed

forward” neural network paradigm, which is the model used in this thesis, has 

proved extraordinarily flexible and amenable to algorithmic manipulation. 

As a result the recent surge in neural network activity appears to be gaining 

momentum.

The decision-making powers of a neural network are not embodied in a 

set of explicit rules but are implicitly built into the structure of the network
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itself through a system of values or weights given to the network’s nodes. The 

task of designing a neural network for a specific application is something of 

a black art requiring experimentation and repeated trial and error. A neural 

network must be trained using a set of examples that is representative of the 

problem space under investigation. It was critical to the current research, 

therefore, to have adequate training-set data available.

The Swedish Hip Register has catalogued about a hundred and thirty 

thousand-replacement operations that took place in Sweden between 1978 

and 1994. More particularly some eight and a half thousand of these opera

tions were for revision surgery [83]. Thus this database alone provides a fairly 

substantia] record of the survivability of hip implants, representing a variety 

of prosthesis characteristics and a range of different patient situations.

For the purposes of this thesis two neural networks were constructed: the 

first to predict the survivability of an implant based on patient variables; the 

second to predict the survivability of an implant based on implant variables. 

The main benefit of the first neural network is that, by exploiting rich his

torical data, it facilitates the prediction of the survivability of a prosthesis in 

a patient with a specific demographic profile (age, sex etc.) and pathology. 

The second neural network predicts the survivability of different implants 

and can go on to postulate the survivability of untested permutations of im

plant variables. The training and test data for both these neural networks 

were extracted from graphs in research papers reporting findings based on 

the Swedish Hip Register [1, 82, 83]. These graphs, however, did not permit a 

more comprehensive exploitation of the data which could be achieved by us

ing a combination of patient and prosthesis variables to predict survivability.
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1.3 OUTLINE OF THESIS STRUCTURE

This opening chapter described the context within which this work is be

ing carried out. Knowledge is the main currency in all aspects of modern 

economies including the health sector and, in the unfolding of this thesis, 

increasingly sophisticated knowledge-based techniques which are made pos

sible by currently available computing power, are applied to hip prosthesis 

design evaluation.

Chapter 2 outlines the research objectives of the thesis and the learning 

process through which progress was made towards a solution to the problem 

of hip prosthesis selection.

Chapter 3 describes the design issues and directions in total hip replace

ment. The relative merits of cemented as opposed to cement-less fixation 

are considered. Custom-made prostheses have in general not proven more 

reliable than standard off-the-shelf designs. Competing design criteria are 

described and discussed.

Chapter 4 reviews the pre-clinical and clinical methods currently used to 

evaluate hip prosthesis design and it prototypes a computer application which 

synthesises those evaluation methods that are amenable to quantification and 

graphical representation. This computer application gives the surgeon, in the 

time-frame before the operation, the capacity to make decisions on prosthesis 

selection with the aid of computer-assisted imaging and analytical techniques.

Chapter 5 augments and enhances the computer application, which was 

developed in Chapter 4, by adding a rule-based expert system which aims to 

build into the model, the judgement and decision-making powers of selected
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experts, when faced with the task of evaluating competing patient/prosthesis 

combinations.

Because of difficulty experienced in getting surgeons to agree on the ex

plicit rules which guide their decision-making, Chapter 6 introduces a further 

modification to the original model: a fuzzy logic expert system replaces the 

more conventional expert system.

Up to this point the thesis has concentrated on using advanced engineer

ing and medical analytical methods, together with information available in 

the surgeon’s patient and prosthesis databases, to determine the best pros

thesis for a given patient in the time-frame immediately prior to the opera

tion. But since the underlying theme of the thesis is critically about effective 

knowledge management, cognisance must also be taken of the great wealth 

of codified and non-codified knowledge which resides throughout the world 

in national hip registers. This mine of information remains to be accessed 

and exploited with the power of modern computing.

Chapter 7 deals with the application of feed-forward neural networks to 

hip prosthesis design evaluation. Section 7.2 presents the source of empirical 

data for this thesis. The training sets for the two neural networks were taken 

from graphs in research papers that utilised data extracted from the Swedish 

Hip Register so the background to this register is described. Section 7.3 gives 

details of the design, construction and operation of the two neural networks. 

The trial and error procedure for deciding the number of nodes and layers for 

each network is explained and the complex process of training the networks 

is detailed. Section 7.3.3 evaluates the performance of the two experimental 

networks.
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Chapter 8 reviews the research techniques used in the thesis and places 

them in the context of the rapidly expanding data mining category of clas

sification. It then lists the conclusions which flow from the research and 

makes specific recommendations on steps to be taken to remove the data 

limitations that are currently inhibiting the realisation of the full potential 

of neural networks in particular, and knowledge based techniques in general.



Chapter 2

Objectives and Overview of 

Research

Objectives must be reasonable. Neither surgeons nor engineers will 

ever make an artificial hip joint which will last for thirty years and at 

some time in this period enable the patient to play football [19].

Sir John Charnley

The fundamental proposition underlying this thesis is that knowledge-based 

techniques, culminating in neural networks, have an important role to play 

in matching patient/prosthesis combinations and in predicting the expected 

life of implants in patients, who undergo hip replacement surgery, by codify

ing and exploiting the empirical evidence contained in clinical, patient and 

prosthesis databases.
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2.1 RESEARCH OBJECTIVES AND 

EVALUATION METHODOLOGIES

The objectives are:

• to outline the context in which the new information and communica

tions technologies can accelerate the growth of knowledge and under

standing of total hip replacement and so extend the survivability of hip 

implants;

• to review design goals, design trade-offs and emerging design criteria 

in the field of total hip replacement;

• to critically review pre-clinical and clinical evaluation methodologies 

currently in use for hip prosthesis design and to determine which of 

these are amenable to quantification and/or graphical representation;

• to design a computer application to synthesise selected hip evaluation 

methods;

• to balance the quantification and graphical emphasis of the comput

erised evaluation model by adding a rule-based expert system to cap

ture distilled professional expertise and non-codified knowledge;

• to replace the expert system’s explicit rules with fuzzy rules, in order 

to overcome the former’s limitations;

• to evaluate the role of neural networks in hip prosthesis design and 

selection, as a complement to expert systems, and to build and validate
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a neural network using data from the Swedish Hip Register;

• to discuss the findings and to highlight limitations in the Swedish data 

for the purposes of hip design evaluation, and to indicate how these 

might be overcome.

2.2 EVOLUTION OF THESIS

The brief for this thesis was to apply artificial intelligence decision-making 

techniques to the field of hip replacement with the ultimate goal of helping 

surgeons in the complex and subjective process of selecting appropriate pros- 

theses. At first sight, the highly unstructured approach to decision-making, 

which is a feature of this area of surgical practice, gave reason to expect that 

a combination of modern computing power and rule-based expert systems 

would achieve demonstrable success. But as the work proceeded the words 

of Piet Hein, the poet philosopher, proved to be salutary:

Problems worthy of attack,

Prove their worth by hitting back.

2.2.1 Synthesis of Current Evaluation Methods

The first approach was to attempt to integrate a number of critical analytical 

methods, used at the pre-clinical and clinical stages of hip implant surgery, 

to produce evaluation ratings for a selection of prostheses, with respect to 

individual patient parameters [21].
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The three principal evaluation methods used in this thesis are: finite el

ement analysis, which is used to highlight stress levels which are portent of 

bone resorption1 and bone growth; fit-and fill-analysis, which indicates the 

stability of a patient/prosthesis combination; and clinical hip score evalua

tion which enables comparison with similar patient/prosthesis combinations 

in the past (see Chapter 4). These quantitative methods can deliver consid

erable analytical capability but tend to be specific to particular disciplines, 

to operate independently and, frequently, to be answerable only to their sep

arate areas of expertise.

The purpose of the model was to co-ordinate and combine these methods 

to produce a composite evaluation of prospective patient/prosthesis com

binations. This requires encapsulating the data from these methods in a 

decision-making mechanism where a predetermined weight is given to the 

separate evaluation outputs. A more considered approach is to incorporate 

an expert system to embody the decision-making process employed by human 

experts.

The data required to drive the evaluation methods and with them the 

decision-making capacity of the application, was stored and compiled in a 

group of databases which mirrored the structure of the problem. The effec

tiveness of the decision-making is dependent on the completeness of these 

databases.
^one resorption is the loss of bone due to disease (such as rheumatoid arthritis) or 

stress shielding. Bone grows in proportion to the stress placed on it (Wolff’s law). Any
thing which distorts the normal flow of stress through the bone is termed stress shielding.
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2.2.2 Rule-Based Expert Systems

The next stage was to add a rule-based expert system to the application. 

On the face of it, this was a straightforward task: surgeons can choose from 

a wide range of hip design variations to suit their diagnosis of an individ

ual patient’s circumstances and this has close parallels with many successful 

applications of conventional expert systems. The best-known expert system 

in medicine, developed in the 1970s, is MYCIN. The development of this 

expert system took place at Stanford University; E.H. Shortliffe, in particu

lar, played an important role in its development. The MYCIN system was 

able to assist interns in the diagnosis and treatment of a number of infectious 

diseases, in particular meningitis and bacterial septicaemia [121].

The MYCIN system has significantly influenced the subsequent develop

ment of expert systems. Even now, this expert system and its derivatives are 

sources of ideas concerning the representation and manipulation of medical 

knowledge. The MYCIN system has also given an important impulse to the 

development of similar expert systems in fields other than medicine.

The INTERNIST-I system is another example of an expert system ini

tially developed early in the 1970s. The system is still being developed by 

H.E. Pople and J.D. Myers at Pittsburgh University. Later in their research, 

Pople and Myers renamed the system CADUCEUS. One of the objectives 

of the INTERNIST/CADUCEUS project is to assist in the study of models 

for diagnosing diseases in internal medicine [87, 78].

In internal medicine several hundreds of different diseases may be dis

cerned. An intern not only has to bear in mind all the clinical presentations
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of these diseases during the diagnostic process, but must also take into ac

count possible combinations of symptoms i.e. symptoms that can be caused 

by the interaction of several diseases present in a patient at the same time. 

The number of diseases in internal medicine, and the possible combinations 

of clinical signs and symptoms, is so large that it is not possible to con

sider each in isolation. INTERNIST/CADUCEUS focuses on those diseases 

that are most likely, and the interaction between them, given the symptoms, 

clinical signs, and the results of laboratory tests obtained from the patient.

Returning to the problem of hip implant design selection, it was clear 

that an expert system could potentially be built around the rules by which 

orthopaedic surgeons make hip implant decisions. These rules would be com

plemented with rules elicited from the other scientific sources. This would 

help formalise the process of choosing a prosthesis, a process that has hitherto 

been arbitrary and unscientific for most surgeons. After interviewing a num

ber of surgeons (who were at the time co-operating with the Bio-engineering 

Unit in TCD), it became evident that it would be very difficult to arrive at 

a consensus among the orthopaedic fraternity as to a canon or set of rules 

governing the choice of a prosthesis. The Irish experience in this regard was 

somewhat atypical in so far as the range of prostheses in use is, in practice, 

limited to proven prostheses and mainly to the Charnley. There is very lit

tle research or experimentation with new designs by comparison with larger 

economies such as the US and Sweden (see Chapter 3).
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2.2.3 Fuzzy Expert Systems

The fuzzy expert system is an adaptation of the traditional expert system. 

Fuzzy expert systems are universal approximators and are well suited to 

modelling highly complex, invariably non-linear problems. They are able 

to approximate the behaviour of systems that display a variety of poorly 

understood and/or non-linear properties. Fuzzy expert systems execute at 

a faster rate than conventional rule-based systems and require fewer rules. 

They have the ability to explain their reasoning and as a result they provide 

an ideal way of addressing difficult problems. They can surmount many 

of the computational and complexity difficulties that were responsible for 

the failure of some earlier expert systems. Fuzzy logic, as conceived by its 

inventor Loth Zadeh, provides a method of reducing as well as explaining 

system complexity.

The rule-based expert system of Section 2.2.2 was replaced by an expert 

system using a set of fuzzy logic rules. The approach taken was to eval

uate the risk of failure of a prosthesis in a way similar to that by which 

project risks are assessed [24]. The acceptance or rejection of a particular 

patient/prosthesis combination was based on a calculation of risk of failure.

2.2.4 Feed-Forward Neural Networks

The rule-based expert system, and the fuzzy expert system just described, 

are both based on the formulation of explicit rules. Explicit rules have been 

difficult to formulate, however, because the field of total hip replacement has 

not yet stabilised and there is some uncertainty as to how the technology
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will develop. This is not untypical of technologies in their early stages of de

velopment [132], The absence of a dominant design has been very apparent 

in the case of total hip replacement and this may be due to the length of 

time and the number of subjects that must be looked at, in order to verify 

a new development. It is estimated that as many as 3,000 patients with a 

new device would have to be followed-up for 5 years, before that device could 

be proven significantly better—that is, enduring longer—than an alternative 

[55]. Despite the imperatives for the development of an improved prosthesis, 

progress has proceeded in an ad hoc fashion and this has not been conducive 

to productive research. Many mistakes could have been avoided if new hip 

implant technology had been implemented in an ordered fashion [81]. The 

case is made for moving away from artificial intelligent decision-making based 

on the formulation of explicit rules, and moving towards an artificial intel

ligence system which involves making the rules implicit. Hence the decision 

to pursue the neural network route.

Neural network techniques do not require an explicit statement of rules. 

Rather, they require a sufficiently large training set of examples that re

flects the behaviour over an extended historical period of the system they 

are expected to model. Neural networks learn to reproduce these training 

examples to within an acceptable level of error. This is an iterative process 

that involves repeated adjustment to the weights pertaining to the nodes of 

the network. The principle is that once the network has been trained on a 

representative set of examples it will then be able to accurately predict and 

mimic the system when new input values are presented to it.

Two neural networks were constructed as part of this thesis. The first one
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to predict survivability of an implant based on patient variables; the second 

one to predict survivability of an implant based on implant variables. The 

ideal would be a single neural network, combining both implant-based and 

patient-based variables, but such a network could not be constructed, given 

the structure of the data available to the researcher.



Chapter 3

Design Issues and Directions in 

Total Hip Replacement

Traveller, there is not path; the path you must build as you walk.

Antonio Machado

The joint replacement procedure (also called arthroplasty) involves replacing 

a painful joint with an artificial joint, called a prosthesis and is appropriate 

when a patient experiences severe, incapacitating hip pain, due to conditions 

such as osteoarthritis, rheumatoid arthritis or injury.

In a healthy hip (see Figure 3.1), the smooth ball on the end of the thigh 

bone fits easily into the end of the hip socket to form the “ball and socket” 

joint. A layer of cartilage covers the ends of these bones, serving as a cushion 

which allows the ball to glide easily within the socket.

Severe pain and decreased movement can result if the cushion of cartilage 

degenerates as a result of osteoarthritis or other diseases (see Figure 3.2). 

The joint surfaces are allowed to rub against each other, becoming rough,
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Socket (acetabulum)

Ball (femoral head)- 
Smooth cartilage

Pelvis >

Femur (thigh bone)

Figure 3.1: Healthy hip.

pitted and irritated.

The hip prosthesis (see Figure 3.3) consists of a specially designed ball 

and socket that replaces the worn hip joint. The ball and stem replace the 

worn ball of the thigh bone and a cup replaces the rough hip socket. The 

prosthesis has smooth surfaces that fit together and allow the ball to move 

easily and painlessly within the socket, much like a healthy hip.

3.1 BACKGROUND

Total hip replacement (THR) is an established surgical procedure for re

placing a degenerated hip joint with a mechanical equivalent made from 

metal and plastic, to restore function to the joint. The procedure is typi

cally elective and is indicated when the pain in the hip joint becomes severe, 

resulting in a reduction in the activity for the patient that does not resolve
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Figure 3.2: Problem hip.
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Figure 3.3: Hip prosthesis.
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with conservative treatments e.g. use of a cane, anti-inflammatory drugs, or 

modification of activities [27]. Conditions that may warrant joint replace

ment include common disorders such as osteoarthritis, traumatic arthritis, 

osteonecrosis, congenital hip disease, and rheumatoid arthritis as well as less 

common conditions such as developmental and growth abnormalities, tu

mours, hip fractures, and other arthritic conditions [27]. In addition, the 

procedure may be used to treat traumatic injury of the hip.

Although improvements in preoperative planning, surgical technique and 

prosthetic design have significantly improved the clinical results achieved 

with THR, the elapsed time between the operation and the mechanical failure 

of joint components is still unacceptably short in very many cases. Follow-up 

studies indicate that the predominant mode of failure has been symptomatic 

aseptic loosening1 of the prosthesis components in both cemented primary 

[17, 124, 93, 22, 69,1, 95], cemented revision [71, 35,123], cement-less primary 

[102, 13, 106, 3, 46, 120, 74], and cement-less revision [76, 49, 54, 36, 45, 63] 

surgery. The highest incidence of loosening occurs in revision and second re

vision cases, leading almost inevitably to further revision or re-constructive 

surgery for the patient. The high revision rates arising from aseptic loosen

ing of existing implants, combined with the increasing number of patients 

who have complex bone stock loss which precipitates loosening, is expanding 

the demand for re-constructive surgery and extending the waiting lists for

1 Aseptic loosening refers to loosening in the absence of living pathogenic organisms. 
The most likely course of events is that wear particles—polyethylene from the acetabular 
bearing surface, acrylic cement abraded from the cement-bone interface or even metal de
bris from elsewhere—collect in the joint and migrate into the cement-bone interface from 
the periphery. These small particles activate macrophages at the interface into inflamma
tory responses of local bone resorption—or lysis, thereby gradually debonding cement and 
bone.
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THR. The desire to give hip implants to younger patients who have suffered 

accidents or who have congenital hip malfunctions is also putting pressure 

on demand. In these circumstances the performance of hip joints has become 

an issue of both medical and public concern and there is general acceptance 

that the status quo is not tolerable.

Many fundamental design issues remain to be resolved. The following 

sections attempt to summarise the literature where leading exponents take 

opposing positions on some very basic design considerations.

3.2 CEMENTED OR CEMENT-LESS?

At the most basic level of whether to use a cemented or a cement-less joint 

there remains a lack of certainty. A theoretical framework for explaining 

joint loosening has not been decisively established. Since the development of 

THR, the orthopaedic research community has pursued both cemented and 

cement-less designs for achieving good long-term fixation. For the elderly 

patient, cemented THR has a low incidence of loosening and is generally ac

cepted as the standard method of treatment for reconstructing the hip. For 

the younger, more active, heavy, or bone stock deficient patient, the deci

sion as to whether a cemented or a cement-less hip joint is preferable has 

not yet been clearly determined. Current research on the loosening of ce

mented components is extensive and embraces investigations into cementing 

materials, surgical techniques and component designs [14]. Simultaneously, 

improvements in the fixation of cement-less joints are being sought through
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the development of biological in-growth surfaces,2 and press-fit designs.

It has been suggested that the choice of method of fixation should be 

decided on a case by case basis [14]. As against that there is an argument 

for using the cement-less approach for younger patients, where revisions may 

be inevitable. Sometimes in revision surgery the cement from the primary 

replacement can be very hard to remove and as a result the cemented com

ponents can be quite difficult to extract. In addition, the extra interface 

of a bone/cement/metal composite introduces additional complexity to the 

design. While bone in-growth occurs in the cement-less hip joint there is 

however a greater incidence of bone resorption. Recent applications of dual

energy X-ray absorptiometry have shown that the amounts of bone resorbed 

around cement-less stems may be quite substantial, and that the resorptive 

process continues even several years post-operatively [37, 75].

It has been demonstrated experimentally that some cement-less femoral 

stems simulate, more accurately than cemented femoral stems, the bone 

stress distribution which is characteristic of a healthy joint [56, 134], Huiske’s 

theoretical model [59] also supports this finding. The overriding criterion for 

successful cement-less stems is that they must achieve a quality of fit suffi

ciently high to limit micro-motion of the implant. The preliminary clinical 

evidence for some cement-less designs suggests that these designs are less 

prone to loosening, but may have a higher reported incidence of thigh pain 

[46, 15]. Long-term clinical follow-up is needed however, to fully establish 

the operating performance of cement-less designs, because empirical data 

currently available do not provide conclusive evidence.

2 The attachment of porous materials to living tissue by tissue in-growth.
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3.2.1 Loosening of the Prosthesis

Loosening of the joint components is first suspected when a patient reports 

pain in the joint. A radiographical study of the joint can then be used to 

detect evidence to support the loosening hypothesis. The radiographical cri

teria for indication of loose components can vary subtly between authors. 

In general, the indications are an increase in radiolucent lines (to 2mm or 

greater) between the cement and bone, cement fracture, and subsidence of 

the implant [118]. Quantification of the radiographical evidence can be car

ried out using the zonal analysis methods proposed by Gruen [44] for the 

femoral or stem component and the method of DeLee and Charnley [26] 

for the acetabular or cup component (see Figure 3.4). Although a strong 

correlation between radiographical evidence of loosening and symptomatic 

loosening exists, several authors report that false positives and false nega

tives can occur [22, 106, 63, 69, 77, 14], Eventually, if failure of the joint 

occurs, the looseness of the component can be definitely confirmed at the 

time of surgery by applying sub-physiologic loads [5].

It has not been unambiguously established whether the acetabular com

ponent loosening precedes, accompanies, or is merely an indication of femoral 

component loosening. The frequency of reported loosening depends on 

whether the replacement is primary or revision, cemented or cement-less, 

or some permutation of these of methods. Morrey [93] constructed a math

ematical model from the follow-up of several thousand cemented total hip 

replacements and showed that the incidence of stem loosening also depended 

on the age of the prosthesis. The loosening of the acetabular component was
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Figure 3.4: Artificial hip joint diagram.
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relatively rare prior to the fifth postoperative year, but increased exponen

tially after the eighth year [93]. For 333 Charnley total hip replacements, 

performed at the Mayo clinic, it was found that the probability of loosening 

increased at a linear rate with the age of the prosthesis and that there was 

no indication of an exponential increase [69]. For cemented THR in very 

young patients, Chandler [17] reported that acetabular component loosening 

occurred twice as often as femoral component loosening. Standardisation of 

the different clinical analyses is necessary, however, if the test results are to 

be effectively compared [70].

Component loosening in cemented designs may be a function of many fac

tors including surgical technique, biomechanics and biological mechanisms. 

Initially, it was presumed that insufficient loading of the host tissue was the 

primary factor, but emerging clinical evidence now suggests that joint failure 

can be induced by the presence of significant amounts of material debris in 

the joint. Schmalzried et al. [117] suggested that the femoral component 

loosening was mechanical in nature and resulted from the de-bonding and 

fracturing of the cement. The presence of small particles of high density 

polyethylene migrating along the cement/bone interface for acetabular com

ponents has led others to conclude that the mechanism for the cup failure 

may be biological in nature. Brien discovered high levels of metal in the syn

ovial fluid of cemented titanium-alloy implants [9] in cases where loosening 

had occurred, but this leaves the question unresolved as to which came first 

the loosening or the debris. The degree to which degeneration is biological as 

opposed to mechanical has not been established because the specific factors, 

which determine cemented joint loosening, remain to be clarified.
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In cement-less designs, the specifics of the loosening process are also un

certain. It has been proposed that inadequate preparation of the femoral 

canal [104], under-sizing of the femoral component [45], incomplete apposi

tion of the stem to the bone [74], insufficient stability [53], the presence of 

significant amounts of bio-material debris [135] and retained cement, in the 

case of revision surgery [63], can all contribute to the mechanical instability 

of joints.

In short, the nature and causes of loosening are very poorly understood 

and this seriously impairs the clinical development of hip prosthesis replace

ment.

3.3 STANDARD VERSUS CUSTOM 

PROSTHESIS DESIGN

The question often arises as to whether an established clinical rationale exists 

for the use of custom implant components as opposed to standard off-the shelf 

systems. Given the considerable cost and timeliness advantages of off-the- 

shelf systems what evidence is there of the clinical superiority of customised 

components? This is another area of femoral design where convincing scien

tific evidence in favour of one or other system is not available. It is conceded 

that custom manufactured femoral components may be justified in the case 

of fracture, abnormal anatomy, complicated bone stock, or revision surgery, 

but the advantages of such prostheses in more routine circumstances has been 

questioned [3, 16]. Amstutz presents clinical results with standard, off-the-
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shelf, press-fit prostheses of superior design, for an average follow-up period 

of 28 months. He argues that, given the good results obtained for relatively 

complex problems, the use of custom femoral components is not warranted. 

On the other hand, Bargar is an advocate of custom designs and argues that 

the anatomy of each patient’s femur is highly individual [5]. An interesting 

issue that may influence the future trend in this matter is the fact that cus

tom designed components increase the legal responsibility of the surgeon and 

the engineer.

In the case of standard off-the-shelf designs, the implant size is chosen by 

placing two-dimensional templates over a roentgenograph of the joint at the 

time of surgery. The accuracy of this method has been questioned [15, 26], 

but it is popular, inexpensive, and generally produces good results for sim

ple cases. Plastic trial components can also be used during the operation to 

evaluate the available sizes and to select the best implant. Careful preoper

ative planning can reduce the time spent under surgery and the associated 

amount of time the patient has to be anaesthetised. However, it is difficult to 

completely predict the complexity of the reconstruction and some decisions 

about choice from available range will still need to be made at the time of 

the operation.

Several different approaches have been tried to improve the fit of off- 

the-shelf femoral components. Many of the standard implant systems have 

an expanded range of implant sizes and THR instrumentation to provide 

a broad spectrum of prostheses for the surgeon to choose between. These 

may be based on data extracted from extensive studies of cadaver femurs 

[106, 110] and are known as anatomical shapes. More recently, modular
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components are being considered to provide further variability. Ultimately 

the complexity of the case may warrant a unique or custom design based 

on the geometry of the patient’s femoral anatomy and in that event modern 

computer-aided design and manufacturing techniques have made it possible 

to produce unique femoral stem geometries.

3.4 ISSUES IN THE DESIGN OF 

FEMORAL STEMS

This section concentrates on the femoral component used in total hip re

placement. However, many of the implications drawn apply equally to the 

acetabular component.

3.4.1 General Design Goals

The primary bio-mechanical design goals for the femoral component are a 

stable implant with no primary support point failure, well fixed in-growth 

surfaces, and physiological load transfer. Criteria for bone preservation, pros

thesis extractability, and optimal joint geometry must also be considered.

Analytical methods for quantifying each of these criteria have not yet been 

fully developed and verified. Numerical experiments which model the load 

state of the implant-bone system, through the use of three-dimensional Finite 

Element Analysis (FEA), can provide considerable insight into the ability of 

a prosthesis to achieve the desired loading configuration [61, 72], but the 

optimal load state of a femur with a stem inserted has not been identified.
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The naturaJ load state of the patient’s healthy femur can be taken as the 

baseline and, if only one hip joint is degenerated, numerical simulations on 

the normal femur provide useful data. Stauffer [124], however, points out 

that intra-medullary3 fixation is not a natural load state for the femur, and 

that the biological response to this is unpredictable. Structural analysis can 

also be performed with fully three-dimensional bone-implant FEA but this 

analysis requires very intensive computations, even with simplified models.

The quality of the bone tissue at the interface will critically affect load 

transfer characteristics and ultimately the stability of the joint. The local 

loading of the tissue and the relative motion between the bone and the im

plant are the main mechanical parameters which affect the interface stability 

[72], In addition, it is generally recognised that good compressive loads across 

the in-growth surfaces are needed to facilitate the initial biological fixation.

Extractability of the femoral prosthesis stem is an additional requirement. 

For an anatomic stem,4 extractability is generally guaranteed because under

cuts are not present in the geometry and the surgical protocol specifies the 

removal of the greater trochanter for implanting the stem. For more com

plex designs, extractability of the joint can be calculated using adaptations 

of robotic path verification algorithms [29].

3.4.2 Design Trade-OfFs

The design of the femoral component is marked by a series of trade-offs 

between conflicting design criteria. One of the best observed is the trade-off

3 Within the bone marrow.
4 An anatomic stem is a stem whose shape matches the shape of the femoral cavity.
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in cement-less THR between the strength of the stem and the level of stress 

induced in the bone. This can be tracked by monitoring the resultant bone 

deposition or absorption associated with changes in the load state of the 

bone tissue. Increasing the size of the femoral component may increase the 

resistance to fracture of the stem, but can lead to an increase in the stress in 

the bone and this in turn can lead to resorption or loosening [125]. Bobyn et 

al. [8] confirmed that increasing the rigidity of the stem increases the amount 

of stress shielding5 of the bone.

A second trade-off, and one more difficult to analyse, exists between 

achieving good proximal loads and preventing relative motion of the implant. 

Consider a prosthesis that is designed to completely fill the endosteal canal 

of the femur. Motion at the interface would be effectively limited purely by 

the geometrical constraint (this function is normally handled by the bone 

cement). If the stem is reduced, and the degree of contact between stem 

and bone surface falls below one hundred percent, equilibrium may not be 

obtained and motion of the implant may begin. The stability of the femoral 

stem will depend on the direction of the implant loads and on the mate

rial constraints at the load transfer sites. Three point contact in several 

planes can be used as an approximated criterion to determine if equilibrium 

is sustainable, but only an estimate of relevant planes is possible. In addi

tion, designing for the static bone configuration may not be very accurate 

when considering the contact tolerances necessary for biological fixation. The 

shape of the femoral cavity may not remain static over the life of the design

5Bone grows in proportion to the stress placed on it. Anything which distorts the 
normal flow of stress through the bone is termed stress shielding.
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and this can start a cycle of poor loading, bone remodelling, and relative 

motion.

Another well-recognised trade-off is between the amount of bone material 

removed at the time of surgery (to shape the femur to accept the implant) 

and maintaining the structural integrity of the femur. Bargar [5] suggests 

that the removal of the soft cancellous tissue is not so critical, but that re

moval of the harder more dense tissue should be avoided. The disadvantages 

of reaming endosteal bone listed by Bargar include: (1) weakening of the 

supporting bone, (2) creation of stress concentrations, (3) non-uniformity of 

stress transfer, and (4) the potential for undesirable long-term remodelling. 

On the other hand a marginal amount of additional reaming might improve 

the quality of the contact significantly in the case where a small bone spur 

may exist in the canal, out of the range of vision of the surgeon. Contact 

with the hard bone may have indicated the need to stop reaming when in 

fact it would be better to remove the small spur.

A more quantifiable understanding of these trade-offs is needed to improve 

the THR design process.

3.4.3 Defining the Fit of the Prosthesis

The question as to what exactly is meant by fit in the context of hip implants 

and how the fit of the femoral stem affects the mechanical strength of a hip 

joint are still largely unresearched areas. The variability of existing design 

criteria is perhaps best reflected in the fact that over sixty-two different off- 

the-shelf stems are available on the commercial market in the UK alone [97].
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The variations include: shapes ranging from anatomical to modular; surface 

treatments ranging from beaded to sintered meshing; location and extent of 

stem in-growth surfaces ranging from partial to fully coated; and stem shapes 

that vary from straight to highly curved. In addition, geometric features such 

as flutes, notches and collars vary from design to design. The material used 

can be metal alloys, ceramics, or composites. Finally, the surgical techniques 

for implanting the femoral stem can vary significantly.

From a non-technical viewpoint, the fit of an object can be defined as its 

ability to perform its intended function. Within the context of mechanical 

engineering, fit commonly refers to how closely two surfaces match and the 

concept is primarily treated as a geometric question. In the bio-engineering 

literature most authors define femoral component fit anatomically i.e. as the 

match between an implant surface and a geometric representation of the 

endosteal surface of the femur [111, 116, 3, 127, 67]. For THR, however, the 

fit of the femoral stem will ultimately be measured by how well the design 

performs in clinical practice but there is very little empirical data on how 

the geometric fit relates to complications such as thigh pain [74, 15], implant 

micro-motion [53], long term fixation and positive bone adaptation [134, 59]. 

Knowledge of how the joint biomechanics relate to the total hip pathogenesis 

needs to be improved. Quantitative relationships between quality of joint fit 

and subsequent failure have not been established.
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3.4.4 Current Limitations in Measuring Prosthesis 

Fit

The ability to acquire more knowledge about component fit is critically lim

ited by difficulties in collecting sufficient radiological information to describe 

changes in the bone-state after the implant has been inserted. The length of 

time needed to complete a clinical trial is another major complicating factor.

Although advances in computed tomography (CT) imaging facilitate an 

anatomically precise description of the patient’s hip prior to surgery, the 

ability to image the bone-joint configuration after surgery is considerably 

more limited. The image is degraded by artefacts6 which appear as starburst 

streaking7 radiating from the metallic orthopaedic hardware. In addition 

there are other technical complications referred to as beam hardening, partial 

volume effects, scatter and aliasing [111]. For titanium implants, the artefact 

issue is not too problematic, but for cobalt-chrome stems, the artefact prob

lem is a significant one. In the latter case a blurring of the bone-prosthesis 

interface makes it difficult to take measurements in critical regions.

Robertson has investigated the use of techniques to reduce the difficulty 

with artefacts [110]. Two-dimensional imaging modalities like DEXA scan

ning can provide a high quality image of the bone/implant system, but the 

associated tissue remodelling is inherently a three dimensional problem that 

needs to be tackled with three dimensional techniques. Research in the area 

of extended CT may improve the geometric contours generated but a com-

6Fragments of the implant.
7 Starburst streaking is the descriptive term given to the impression artefacts cause on 

a CT.
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pletely quantitative method for validating design choices is some way into 

the future.

With regard to the length of time needed to complete a clinical trial it 

is generally accepted that at least a 5 year follow-up is needed for femoral 

prostheses and an 8-10 year follow-up for acetabular components [93]. This 

is a long time to wait and it can be difficult to track patients over such an 

extended period. Examples of the difficulties which such a long time frame 

cause for THR research can be found in the literature [103]. Following up 

patient records can be very frustrating because very little information about 

bone changes since the time of the implant is typically recorded. Quantitative 

information is not collected until the time of failure. Substantive progress 

in identifying the mechanisms responsible for joint failure may have to await 

the availability of good post-operative, intermediate and long-term three- 

dimensional information from clinical trials. The most far-reaching follow-up 

to date is that carried out in Sweden where since 1979 all re-operations8 after 

THR have been recorded.

3.5 EMERGING DESIGN CRITERIA

Efforts to improve the current state of knowledge continue. Hospitals which 

see several hundred custom joint cases each year may construct a custom 

joint design centre, like the Dana Centre for Orthopaedic Implants at the 

Hospital for Special Surgery in New York City. If internal facilities are not

available it is possible for the surgeon to develop custom designs in association

8 Any new hip operation on a patient who has previously undergone a total hip replace
ment on the same side.
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with one of the industrial sites such as Bio-met. When the design engineer 

works directly with the surgeon in discussing the joint designs the chance of 

a satisfactory outcome is enhanced.

Notwithstanding the large number of unresolved issues that still obtain a 

number of generic rationales for designing femoral prostheses are now emerg

ing. These can be summarised [11] as: designs which give priority to bone 

(fit-and-fill); designs which give priority to the prosthesis; and designs which 

identify priority regions on the implant where loading is required. It is pro

posed to evaluate each of these rationales and to describe their theoretical 

and empirical bases. The rationales are considered for cement-less femoral 

prostheses. The addition of cement would further complicate the discussion.

3.5.1 Fit-and-Fill Method

The fit-and-fill rationale proposes that the femoral component should be 

designed to replicate the geometry of the endosteal canal of the bone, while 

allowing for eventual extractability. This approach gives priority to the bone. 

The fit of a femoral stem is generally defined as the amount of contact be

tween the surface of the implant and the surface of the canal. Fill is defined 

as the volume of space occupied by the implant as a percentage of the corre

sponding volume of canal. Subtle variations in how fit-and-fill is quantified 

exist in the literature and these can affect interpretation of the data.

When using two dimensional X-ray films, the fit is approximated at sev

eral levels on the projection data [12, 3, 44]. For volumetric studies, most 

authors [114, 126, 51] assess each quantity at several points along the longi-
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tudinal axis of the femur, using cross-sectional data as shown in Figure 3.5.

I 1 Fill

iii Fi.
Femoral Cavity

Figure 3.5: Quantification of fit-and-fill.8

There axe many reasons why the fit-and-fill approach can fail to generate 

adequate designs. One of the primary reasons is the potential geometric er

ror in constructing contours to build up the endosteal canal representation. 

The model is typically constructed from trans-axial CT scans and the pre

cise location of the endosteal canal is determined by subjective interpretation 

of “threshold” colour to delineate the boundary. A geometric and material 

phantom can be used to calibrate the data but subjective interpretation of 

where the boundary exists is still necessary. In addition, the finite discretiza

tion of the bone geometry and the polygonalization scheme used to represent 

the contour can also introduce error. Mean accuracy of measurements for 

both proximal and distal zones has been reported as 0.8mm (±0.7mm) by 

Rubin et al. [115]. When designing for intimate contact, errors of this mag

nitude can lead to poor contact between the in-growth surface and the bone.

8 A trans-axial cross section of the proximal femur with a femoral stem is shown. Severed 
approximations of the fit-and-fill have been suggested. In two-dimensional analysis, fill 
is generally defined as the percent of the endosteal area occupied by the implant cross- 
sectioned area. The fit is defined as the implant-bone line contact expressed as a percentage 
of the total implant perimeter length.
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A more practical disadvantage of contour generation is the demands it 

places on the design engineer’s time, who has to work within the limitation 

of the current partially automated methods for extracting contours. Hauser 

[52] found that contour extraction for relatively normal femurs can take 1- 

2 hours and, for more complex cases, in the order of 2-3 hours. Similar 

time demands have been reported elsewhere [38]. In most cases, the design 

engineer must adapt the data and guide the process personally, because a 

completely automated algorithm does not exist. Operator intervention time 

is of the order of 60%, so faster processors can only have a moderate impact 

on the time required.

From the mechanical perspective, the fit-and-fill method does not neces

sarily produce a design with a state of equilibrium adequate for the stability 

of the implant. For example, a femoral component is shown in Figure 3.6 

depicting two different femoral stem positions. The fit (area of contact be

tween the bone and the prosthesis) is the same for both cases, but only 

the position in Figure 3.6a will satisfy equilibrium. For this example, it is 

assumed that the contact distribution identified in a single cross-section is 

typical of that which obtains throughout the proximal femur. The distribu

tion of the contact points is just as important as the degree of contact: the 

nearer the numbers of contact points approaches complete contact around 

the perimeter of the implant the greater the stability of the design. How

ever, the contact achieved at the time of surgery, with current implantation

9Two positions of the same implant are shown for the proximal femur. The endosteal 
surface contour shown has been extracted from a proximal CT trans-axial scan. The 
criteria for fit-and-fill would be the same for each position, but criteria for equilibrium is 
better satisfied by Figure 3.6a.
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(a) 30% contact. (b) 30% contact.

Figure 3.6: Equilibrium of the femoral stem.9

methods, does not always result in what was planned for.

In revision THR, the generation of a contour can be severely impeded by 

the corruption of the reported CT value, due to the metal particles introduced 

by the orthopaedic hardware. In addition, cement debris and abnormal ge

ometry can make detection of the contour a very approximate process. This 

situation can place a heavy burden on the experience and know-how of the 

engineer. In addition, for complex revision cases, a closed contour in the 

proximal femur may not be attainable due to a shift of the bone bed, so the 

definition of fit-and-fill has to be interpreted flexibly.

The fit-and-fill approach also suffers from another important limitation. 

The load carrying capacity of the femur is described not only by the charac

teristics of the canal itself, but also by the material density and distribution of 

the bone volume that defines the canal [34, 72], A drawback of the anatomi

cal design, for femoral prostheses, is the weak correlation that exists between
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pairs of measurements taken from the endosteum11 and the periosteum12 

[98]. Despite the importance of matching the shape of the proximal femur, 

few published studies have examined endosteal geometry in sufficient detail 

for use in the design of femoral components. It has been suggested instead 

that implant designs may be based upon relationships derived from periosteal 

femoral geometry extrapolated to describe the shape of the endosteal cavity. 

The shape of the internal canal does not necessarily reflect the shape of the 

femur. It is also possible to have the same canal shape and size for two dif

ferent femurs with different bone material distribution and density. These 

different bone configurations may have significantly different behaviours in 

the loaded state. Surgical technique may also vary this relationship in terms 

of how much reaming and broaching of the cavity is carried out. Thus the 

fit-and-fill approach is insensitive to the overall construction of the femur and 

only considers the shape of the femoral cavity.

The fit-and-fill approach is now under scrutiny by the orthopaedic com

munity: Horne [57] is a particularly vocal critic. More scientific research 

needs to be conducted before the claims of a fit-and-fill approach can be 

justified.

3.5.2 Prosthesis Priority Method

The second generic rationale for designing femoral prostheses is the category 

of design that gives priority to the implant. When operating according to

11 The endosteum refers to the medullary membrane; a thin membrane lining the inner 
surface of bone in the centred medullary cavity.

12The periosteum is the thick fibrous membrane covering the entire outer surface of a 
bone except its articular cartilage.
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this philosophy, the surgeon starts with the prosthesis shape and alters the 

bone bed to fit the implant. In primary replacement, this approach generally 

satisfies the design goals (see Section 3.4.1) and minimal modification of the 

bone suffices. For more complex reconstructions, such as revision THR, the 

shaping of the bone may compromise the integrity of the bone bed: in that 

event the prosthesis priority approach may not be appropriate. It is not 

always clear where the boundary line between bone priority and prosthesis 

priority lies. However, the removal of bone can only undermine the viability 

of further reconstruction operations.

3.5.3 Load Transfer and Bone Contact Quality 

Method

A third generic rationale for the design of prostheses is the load transfer and 

bone contact quality approach. In this case, priority regions on the implant, 

where loading is desired, are identified. Investigators at the Hospital for Spe

cial Surgery in New York City have developed a cement-less hip prosthesis 

that is designed to maximise metaphyseal13 contact to give optimum load 

sharing [109]. The New York City study identified the three areas shown in 

Figure 3.7 as priority contact regions for the surface of the anatomic stem. 

The first region is located on the medial wall, wrapping around the anterior 

face and extending slightly to the posterior. This helps the implant to fit 

well within the “C” shaped region and thereby resist torsional loads. Several 

authors have emphasised the need for the stem to have adequate rotational

13Metaphysis refers to the region between the shaft and the head of the bone.
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fixation to prevent rotational loosening [106, 99, 107]. The second region 

identified is located on the lateral side and is intended to resist forces trans

mitted along the line of peak joint load. The third region is located laterally 

on the distal stem to prevent rocking due to the bending moments. The 

degree of regional contact thus obtained should satisfy the equilibrium con

ditions needed for stability, in addition to providing good contact for the 

in-growth surfaces.

This approach does not differ greatly from the fit-and-fill approach if 

complete fit-and-fill is achieved and the priority regions are well contacted. 

Typically, 100% contact is not achieved with the load transfer method at the 

time of surgery and some compromises have to be made with fixed shape 

femoral components.

What remains to be understood is how the fit of the femoral com

ponent will change under various loading conditions and where does the 

bone/implant contact take place when the joint is fully loaded. It should be 

noted that most of the preoperative planning that is currently being done 

incorporates a static bone model. Within the Cornell University-Hospital for 

Special Surgery group, theoretical models are now being developed to answer 

questions on the dynamic nature of joint loading and how the shape of the 

component affects load transfer. This is expected to lead to a better un

derstanding of successful implant design and particularly of dynamic loading 

conditions.
13 Anterior view of the femoral stem shown in a graphic representation of the proximal 

femur. The priority regions for the surface of the anatomic femoral stem are identified. 
Three zones are chosen to establish three-point contact.
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Lateral Priority Region

Medial Priority Region

Distal Lateral Priority Region

Figure 3.7: Priority regions for loading.13

3.6 DISCUSSION AND CONCLUSIONS

This chapter summarised the empirical background to the loosening of hip 

implants and then explored the complex issues and current difficulties en

countered in prosthesis design. The chapter concluded with an overview of 

some of the more progressive prosthesis design philosophies that are found 

in the literature but concentrated on the fit-and-fill technique.

To match the evolution of established prosthesis design philosophies, a 

portfolio of evaluation techniques has emerged. These techniques include a 

range of mechanical and geometric testing and computer models designed
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to predict stresses and strains in the loaded prosthesis. This testing is now 

mainly confined to the design and prototyping stage of new and re-engineered 

prostheses.

In the next chapter it is proposed to develop and test a computer applica

tion that can combine and automate a range of evaluation techniques to test 

patient/prosthesis combinations at the time the patient presents for surgery.

It is confidently expected that this additional procedure will improve the 

quality of hip prostheses for most patients over and above that achieved when 

testing is carried out on a generic rather than on an individual basis.



Chapter 4

Synthesis of Current THR 

Evaluation Methods

You should think of problem-solving paradigms as possible ingredients, 

not as complete solutions. In creating particular problem-solving sys

tems, you may never use any paradigm by itself. Instead, you will 

mix them together, developing your own blends tailored to the prob

lem domains you face [137].

Winston

The rich variety of pre-clinical and clinical evaluation methods, used mainly 

at the prosthesis design stage, is not adequately reflected in the progress to- 

date in the matching of the correct prosthesis to the individual patient. The 

proposition explored in this chapter is that the overall selection process can be 

significantly improved by developing and deploying a computer application 

to synthesise a number of these evaluation methods.

Until now evaluations have been concentrated ex-ante on prospective new
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designs of prosthesis (pre-clinical) and ex-post on evaiuating these designs 

after many examples have been inserted (clinical). In the approach being 

pursued in this chapter, an attempt is made to move the emphasis to an 

evaluation of specific patient/prosthesis combinations as an inherent part of 

THR surgical preparation and procedure. The justification for doing this 

was the conviction that a critical factor in limiting the success of THR is 

the inability of the surgeon to fully exploit and co-ordinate all the knowledge 

available to him about both patient and prosthesis.

The challenge was to harness the widespread availability of computing 

power and emerging knowledge-based techniques to make available to the 

surgeon, in the period just prior to the operation, the capacity to do a thor

ough evaluation of all the relevant data. The proposed system was intended 

to be labour-intensive rather than capital-intensive, comprising principally a 

PC, a scanner, and the associated software, and to be within the reach of 

all orthopaedic centres. Thus the evaluation methods would be accessible all 

centres and not just to larger teaching hospitals and to areas of orthopaedic 

research concentration.

The proposed computer application consists of prosthesis and patient 

consultation databases and initially three evaluation models expandable to 

five.

With respect to the data, they fall into two categories: data which axe 

specific to the individual patient/prosthesis combination, and data about 

similar patient/prosthesis combinations which have taken place historically 

and from which inferences about the likely success or failure of the present 

combination can be drawn.
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Figure 4.1: Simple representation of application structure.

With respect to the evaluation modules, they can be divided into pre- 

clinical and clinical. Pre-clinical evaluations are concerned with the mechan

ical and biological properties of implants, cements and other materials used 

in the hip operation. These evaluations have been traditionally carried out 

with generic femurs, independent of specific patient variables. Clinical eval

uations are inferences and conclusions made ex-post on the basis of physical 

and radiographic examinations of patients post-operatively. A period of at 

least 5 years is needed for satisfactory clinical trials for femoral prostheses.

The approach taken in this thesis is to bring the analytical power, and the 

benefits of both pre-clinical and clinical evaluation, to the point where they 

can operate on all the relevant data, namely just prior to the hip operation; 

and to bring the lessons to be learned from these evaluation modules closer 

to where they can have maximum impact.

A simple representation of the application structure is shown in Fig

ure 4.1.
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The next section will describe in some detail the evaluation methods cho

sen and the reasons why some other evaluation methods were not considered 

at this stage.

4.1 OVERVIEW OF POTENTIAL 

EVALUATION METHODS

Evaluation methods fall into two categories, pre-clinical and clinical.

4.1.1 Pre-clinical Methods

A range of pre-clinical testing is now widely used at the research and design 

stage to identify potential problems with the chemical and material proper

ties of proposed new implants and bone cements. Animal models, notwith

standing their relatively high cost, are used in these tests whenever feasible 

[81], When it comes to evaluating individual patient/prosthesis combina

tions, however, minimal use is made of these powerful evaluation methods. 

It must be conceded at the outset that all pre-clinical methods cannot be 

adapted for use in the short period before the operation but it can be shown 

that two pre-clinical methods are particularly suited for performing “hands- 

on” evaluation.

4.1.1.1 Fit-and-Fill (Geometric) Analysis

Fit-and-fill analysis is capable of being adapted for use in evaluating pa

tient/prosthesis combinations prior to an operation. The shape and dimen-
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sions of the prosthetic components largely determine the load-transfer mecha

nism and stress patterns in THR [60]. In a cemented THR, shape determines 

the thickness profile of the cement mantle.1 In non-cemented THR, the shape 

of the prosthesis determines the fit. Shape and dimensions are complex enti

ties in designing THR components because of natural variations in the bone 

geometry individual of patients [98]. Optimal fit was highlighted earlier as a 

design objective for prosthetic components, and many manufacturers adver

tise advantages for their products in this respect (such as anatomic shape, 

optimal fit, proximal fit, canal filling and the like). If the fit-and-fill analysis 

is carried out prior to the operation the chances of obtaining a satisfactory 

fit is substantially increased as opposed to a fit-and-fill analysis carried out 

at the design stage of the prosthesis, when calculations must be based on a 

standard femur and the wide variation in femoral dimensions (see Table 4.1) 

is not taken into account.

Fit-and-fill analysis is also a tool for pre-clinically testing the likelihood 

of bone in-growth failure occurring, due to gaps and relative motion at the 

implant-bone interface in non-cemented THR. It can also address the stress- 

bypass scenario, which develops in the bone around the femoral stem, when 

proximal load transfer is bypassed in favour of distal load transfer. This can 

lead to a situation where the proximal femur is under-stressed and becomes 

subject to strain-adaptive resorption. Geometric analysis can allow all these 

factors to be legislated for immediately before the operation.

When fit-and-fill analysis is carried out at the prosthesis design stage a 

well-established procedure exists. The design prototype is placed in a series

'The cement mantle is the cement between the prosthesis and the bone.
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of specimen femoral bones, and the gaps between implant and bone—or the 

thickness profile of the cement mantel for cemented THR are evaluated [58]. 

The data from experimentation performed by the manufacturers in the design 

stage are hardly ever published and therefore are not available to the surgeon 

performing the operation. For these and other reasons, it is very desirable 

for fit-and-fill analysis to be carried out again just prior to the operation.

The fit-and-fill process must be adapted to make it appropriate for use in 

the short time period available before the operation. This necessitates using 

and manipulating computer images of the prosthesis and the femur as op

posed to the physical items. Instead of a three-dimensional model of a generic 

femur it is necessary to use the dimensions of the actual femur. The femoral 

dimensions required to construct a computer diagrammatic representation 

of the patient’s femur (see Figure 4.2) are specified in Table 4.1. These di

mensions are read from the relevant patient’s radiographs and inputted into 

the patient database. The image of the patient’s femur is then constructed 

from these dimensions and superimposed on images of different prostheses, 

selected from the range contained in the prosthesis database. The surgeon 

manipulates the image of the prosthesis over the image of the patient’s femur 

to attain the best fit for that prosthesis.

Two measures of fit-and-fill are calculated for all the prostheses in the 

range for the patient’s femur. These measures correspond to the antero

posterior and lateral views and are combined to give an overall measure of 

fit-and-fill. The superimposed images of the prostheses and the patient’s fe

mur can then be used to perform FEA of the competing patient/prosthesis 

combinations.
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G + 1mm

Isthmus
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Figure 4.2: Diagrammatic representation of the standard dimensions of 
the femur in the anteroposterior and lateral views.

The fit-and-fill analysis just described can be automated and made much 

more user-friendly. Computed axial tomography (CAT scans) could provide 

three-dimensional images of both the prosthesis and the patient’s femur. An 

algorithm could be written to automate the fit-and-fill calculation and the 

fitting of the prosthesis to the femur could be simulated and graphically 

validated. These enhancements are feasible and desirable but outside the 

scope of the current research.
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4.1.1.2 Finite Element Analysis

FEA is a design evaluation and pre-clinical test method that is normally 

applied before prototypes of the THR components are actually made. But 

there is no reason why FEA should not be applied in the period immediately 

preceding the operation to evaluate a particular patient/prosthesis combina

tion. Given information about shapes and dimensions of bones and implants, 

elastic properties of the materials, bonding conditions of the implants and 

external loads, an FEA computer model can predict the stresses and strains 

in the loaded THR [60]. In this way, the load-transfer phenomenon can be 

documented and compared for alternative designs. The mechanical design as

sumptions and performance objectives of alternative patient/prosthesis com

binations can also be checked. In addition, stress values can be compared 

with strength data on implant materials, bone and interfaces, in order to 

estimate the probability of failure.

Constraints on time and data necessitate that the complexity of the FEA 

model used immediately preceding an operation be substantially less than 

that of models used at the design stage of a prosthesis. Initially, the FEA can 

be carried out on the two-dimensional superimposed images of the prostheses 

and of the patient’s femur already constructed in the fit-and-fill module. 

However, with advances in computing power, in FEA algorithms, and in the 

learning experience of surgeons, this gap will be substantially eliminated and 

three-dimensional images will be used.

FEA of THR was achieved only after considerable effort was devoted to 

its development: in the early years, little was known about joint loads, bone
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properties and damage accumulation processes in the materials concerned. 

FEA of biological structures has, however, made enormous progress during 

the past decade. The features of FEA methods themselves and the capacity 

of computers are now sufficiently advanced for valid FEA models. Great 

progress has also been made in the analysis of hip-joint loads and bone prop

erties. Three-dimensional FEA models are used to predict with reasonable 

accuracy, stresses, strains and even interface motions in THR structures. In 

this way, the probability of long-term failure due to accumulated damage, 

bone remodelling and absorption can be estimated pre-clinically.

The data that are required to enable the computer application to carry 

out FEA, fall into two categories: first, the dimensions of, and positional 

relationship between, the prosthesis and the patient’s femur (taken from the 

fit-and-fill analysis); and secondly the forces (estimated from the patients 

weight, height and activity level) operating on, and the material properties 

of, the prosthesis and the patient’s femur. All these data can be assembled 

for a particular patient/prosthesis combination and then formatted as an 

input file to facilitate the execution of the required FEA.

4.1.1.3 Alternative Pre-clinical Methods

There are a number of other pre-clinical evaluation methods, which are not 

easily adapted for use in the short time-frame before an operation. The 

special nature of these tests and the reasons why they are not included in 

the proposed computer application are touched upon briefly.

Mechanical testing using static and dynamic loading can test the mechan

ical behaviour of prosthetic implants in the laboratory. Different load axes
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are selected when testing strength and endurance. The laboratory bench 

test also measures fatigue. Endurance tests are also carried out for wear on 

the connections in modular prosthetic components [62] but this test is only 

needed in the design stage: the properties of an individual patient’s femur 

would not affect the outcome.

Tribological testing of the articulating surfaces is possible and several 

test benches are now on the market. Dynamic hip simulators simulate the 

motions as well as the forces on the hip joint in order to measure articular 

wear. Accurate measures of wear rates and wear particles can be made 

pre-clinically. Tribological testing, however, is not an option in the short 

time-frame before an operation: this is a destructive test that is done on 

samples and takes a long time. In any case, since the wear propensity is not 

a function of variations in the properties of individual femurs, the test is not 

relevant at this stage.

Finally, animal experimental models can be used to pre-clinically test 

devices for all failure scenarios. However, animal total hip replacement differs 

in many respects from its human counterpart—such as shape, dimensions 

and properties of bones, as well as loads—so the actual devices to be tested 

in animals cannot be used in humans. Nevertheless, particular innovative 

aspects of prosthetic components can be tested in this way. Examples of this 

are new materials for prostheses or fixation methods. In recent years, there 

has been much progress in the development of standardised models for this 

purpose [129]. Animal experiments bear no relation to individual patient 

femurs and are not an option just prior to an operation.
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4.1.2 Clinical Methods (Hip Scores)

Turning now to clinical methods that can be adapted for use in the short 

period available to the surgeon before the operation. Clinical evaluation is 

predicated upon evidence and inferences from patient data, accumulated over 

extended time periods. The data collection must be uniform and capable of 

being replicated.

The outcome of total hip replacement is measured clinically either by 

survival analysis or hip scoring methods. Survival analysis assesses only one 

attribute of hip replacement namely the proportion of THRs each year that 

do not fail, whereas hip scores assess many different criteria aimed at achiev

ing some composite measure of how well a hip replacement is functioning.

The hip scoring technique which is essentially a method of capturing 

all the richness and lessons of past experience, is something which, either 

formally or informally, must be part of all THR evaluation methodology. 

Hip scores may be based on clinical or radiological criteria, or both [94], Hip 

scoring must be conducted at regular intervals in order to chart the progress 

of the hip over time and in this way meaningful analysis can be subsequently 

carried out on the hips in the database. Before the operation, a hip score 

indicates the reasons for THR, and after the operation, the success of the 

THR is chronicled.

There are a large number of different hip-scoring systems, and most of 

them have several variations. In essence they are designed to produce an 

objective score of how a particular hip has performed post-operatively. An 

attempt is made to quantify a number of different factors, which may be
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clinical (pain, mobility, function) or radiological. These are then added to

gether to give a composite score. The great advantage of hip scores is that 

a number is generated which can be manipulated statistically. However, as 

the scores do not produce normal statistical distribution curves the validity 

of using statistical methods to analyse them is open to question. Arbitrary 

levels are set, so as to define hips that are considered to be excellent, good 

or poor. As the different hip scoring systems may produce very different re

sults, comparing results using different scoring methods can be problematic. 

Repeatability can also be a problem, even using the same hip scoring method 

for similar patients; different authors get different results.

4.1.2.1 Hip Scores Based on Clinical Criteria

A number of options were considered before finally choosing a hip scoring 

system for the computer application. Merle d’Aubigne and Postel [25] pro

posed a 0-6 scale for registration of each of the following attributes: pain, 

walking ability, walking aids and motion. This system was later modified by 

Charnley [18], who pointed out the importance of a classification system for 

describing the degree of walking impairment. Harris [50] presented a different 

scoring system for evaluating the results of hip replacement which enabled 

the status of the hip to be described with a single number in the range 0- 

100. The factors assessed in this method are pain (total score 40), function 

(total score 47), range of motion (total score 5) and absence of deformity 

(total score 8). The Harris hip score has been widely used and because of its 

widespread acceptance it was chosen for the research model (see Figure 4.3).
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I. Pain (44 possible)
A. None or ignores it (44)
B. Slight, occasional, no compromise in activities (40)
C. Mild pain, no effect on average activities, rarely moderate pain 

with unusual activity, may take aspirin (30)
D. Moderate pain, tolerable but makes concessions to pain. Some limitation 

of ordinary activity or work. May require occasional pain medicine 
stronger than aspirin (20)

E. Marked pain, serious limitation of activities (10)
F. Totally disabled, crippled, pain in bed, bedridden (0)

II. Function (47 possible)
A. Gait (33 possible)

1. Limp
a. None (11) 
c. Moderate (5)

2. Support 
a. None (11)
c. Cane most of the time (5) 
e. Two canes (2)

3. Distance that can be walked 
a. Unlimited (11) 
c. Two or three blocks (5) 
e. Bed and chair (0)

B. Activities (14 possible)
1. Stairs

a. Normally without using a railing (4) b. Normally using a railing (2) 
c. In any manner (1) d. Unable to do stairs (0)

2. Shoes and socks
a. With ease (4) b. With difficulty (2)
c. Unable (0)

3. Sitting
a. Comfortably in ordinary chair one hour (5)
b. On a high chair for one-half hour (3)
c. Unable to sit comfortably in any chair (0)

4. Enter public transportation (1)
III. Absence of deformity points (4) are given if the patient demonstrates:

A. Less than 30 degrees fixed flexion contracture
B. Less than 10 degrees fixed adduction
C. Less than 10 degrees fixed internal rotation in extension
D. Limb-length discrepancy less than 3.2 centimeters

IV. Range of motion (index values are determined by multiplying the 
degrees of motion possible in each arc by the appropriate index)
A. Flexion 0-45 degrees *1.0 C. External rotation in ext. 0-15 degrees * 0.4

45-90 degrees * 0.6 over 15 degrees * 0
90-110 degrees * 0.3

B. Abduction 0-15 degrees * 0.8 D. Internal rotation in extension any * 0
15-20 degrees * 0.3 E. Adduction 0-15 degrees * 0.2
over 20 degrees * 0

To determine the over-all rating for range of motion, multiply the sum of the 
index values ’ 0.05. Record Trendelenburg test as positive, level, or neutral.

b. Slight (8) 
d. Severe (0)

b. Cane for long walks (7) 
d. One crutch (3)

b. Six blocks (8) 
d. Indoors only (2)

Figure 4.3: Synopsis of the Harris hip score evaluation system [96].
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4.1.2.2 Hip Scores Based on Radiographic Evaluation

A second clinical technique, which is also an integral part of the pre-clinical 

fit-and-fill analysis, is radiographic evaluation. As well as diagnosing the 

condition of a patient’s femur, an important use of radiographs before the 

operation is to provide the patient’s femoral dimensions (see Table 4.1), es

sential for fit-and-fill and FEA analyses. Measurements from the radiographs 

of prosthesis loosening in the patient’s femur, taken at regular intervals af

ter the operation, in conjunction with a clinical hip score system, are an 

essential element in producing an overall measure of success for a particular 

patient/prosthesis combination (see Figure 4.5). Hip scores based on ra

diographic evaluation were not incorporated into the research model at this 

initial stage.

The standardisation of positioning of the patient and the harmonisation 

of film-focus distance and exposure rates are critical to obtaining a correct in

terpretation of serial radiographs. A close teamwork between the radiologist 

and the orthopaedic surgeon is necessary to reach this goal.

Conventional Radiographic Analysis Gruen et al. [44] are the authors 

of an established method of radiographic analysis for loosening of the femoral 

component. They divided the proximal femur into seven zones. This division 

was carried out by dividing the femoral stem into thirds (see Figure 4.4). 

Lateral to the proximal third is Zone I. Lateral to the middle third is Zone 

II. Lateral to the distal third is Zone III. Distal to the prosthesis is Zone 

IV. Medial to the distal third is Zone V. Medial to the middle third is Zone 

VI and medial to the proximal third is Zone VII. These areas are analysed
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Zone 4

Figure 4.4: The regions used in the analysis of the stem-interfaces.
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for acrylic cement fracture and a radiolucent zone at the stem-cement and 

cement-bone interface. Radiographs are evaluated chronologically to assess 

loosening as manifested by progressive changes in the width or length of 

the radiolucent zones; appearance of sclerotic bone reaction; widening of 

the acrylic cement fracture gap; and fragmentation of the cement and gross 

movement of the femoral component. This method of analysis is widely used 

for recording femoral loosening.

Clinical assessment of hip replacement is difficult and radiological assess

ment is even more so. The Gruen classification is probably the best but 

loose hips frequently demonstrate more than one failure mode. As failure is 

a dynamic and continuous process, a single radiological snapshot may well 

be misleading.

Another area of contention is the behaviour of certain geometric designs 

of hip replacement. The double tapered polished collar-less Exeter hip re

placement undergoes Gruen Type 1A failure in 70% of cases, yet the aseptic 

loosening rate after 18-20 years is approximately 2%. American authorities, 

particularly W.H. Harris, consider the Exeter hip replacement to be a failure 

because of its migration. Clinically, however, the results of the Exeter stem 

are amongst the best reported in the literature [96].

The systematic recording and evaluation of femoral loosening in pa

tient/prosthesis combinations is important when trying to assess the propen

sity for loosening in proposed combinations. However, to be successful, it 

requires the availability of a large database of cases from which to search 

for comparable examples. Such a database does not yet exist in Ireland. Its 

inclusion in Figure 4.5 is by way of a proposal on how such a radiograph
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evaluation may be incorporated into the process of THR evaluation. If the 

radiological data were to be collated from many different centres, this would 

expedite the process of setting up the database.

Alternative Radiographic Evaluation Methods There are many new 

developments in radiographic evaluation [119, 30, 37]. Because of the com

plexity and expense of these methods, they are not yet widely available 

and thus inappropriate for inclusion in an application that seeks to have 

widespread appeal. However, as these developments achieve more general 

acceptance, their inclusion in the application may become viable.

4.1.2.3 Survival Analysis

It is important for the surgeon to know and utilise historical information 

about the life span of particular prosthesis designs for various categories of 

patient. Hip survival analysis for a variety of prostheses has now been carried 

out for several decades by the Swedish National Hip Arthroplasty Register 

[1, 82, 83],

Survival analysis measures the proportion of THRs each year that do 

not fail. For each year these proportions are cumulated. The cumulated 

proportions of those surviving are calculated and plotted against years since 

operation. These calculations are done with corrections for the irregular 

nature of the sampling [28]. There are a number of problems with survival 

analysis. The three main problems relate to patients who are lost to follow

up, analysis with small numbers and the definition of failure.

Each year a number of patients with THR are withdrawn from the trial.
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These include both patients that have died and those patients who have been 

lost to follow-up. A fundamental assumption in survival analysis is that the 

group of withdrawals has the same failure rate as the group that has not been 

withdrawn. This is probably a valid assumption for the patients that die. It 

is less likely to be valid for those patients who are not followed up although 

there is some evidence to support this assumption [31]. It is essential that the 

number of patients lost to follow-up is included with the survival analysis. 

This may be shown numerically or graphically.

In survival analysis only very few patients tend to be followed up for long 

periods. Therefore, the confidence limits2 are likely to be very large at the 

end of the follow-up. Survival curves may, therefore, give a false impression 

unless they include standard errors or confidence limits. It is important that 

some indication of errors is included and these are probably best calculated 

with an error equation [105].

A fixed end-point is chosen for the analysis. This is usually revision of the 

prosthesis. Another end-point is the development of a particular radiological 

sign. The decision to revise a prosthesis depends on many factors. These 

include the fitness of the patient, the length of the waiting list and how 

aggressive the surgeon is. A revision is therefore not necessarily a good 

criterion on which to base survival analysis, even though it is easy to measure. 

Some authors have attempted to overcome this by including patients in severe 

pain; this is difficult to quantify. Survival analysis does not take into account

2 Confidence limits are the end points of a confidence interval. A confidence interval 
is a group of continuous or discrete adjacent values that is used to estimate a statistical 
parameter (as a mean or variance) and that tends to include the true value of the parameter 
a predetermined proportion of the time if the process of finding the group of values is 
repeated a number of times.
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how well the prosthesis is functioning. For example, two prostheses with the 

same revision rate would, apparently, perform equally well when investigated 

with survival analysis, even though one had a higher incidence of thigh pain 

than the other.

The statistical approach to survival analysis which is currently used re

quires a statistician and is not adaptable for use in the period just prior to 

the operation. Chapter 7 looks at the possibility of using neural networks 

to perform survival analysis for selected patient/prosthesis combinations just 

prior to the operation.

4.1.2.4 An Alternative Clinical Method

Gait analysis has now been developed to the point where it can be applied 

routinely to provide objective information about hip function and indications 

of prosthesis loosening, whereas earlier there were only subjective indications 

which could be used [2], A loose implant will provide evidence of instability 

in the force patterns at the hip joint during gait, even before the patient has 

developed clear signs of pain. Gait analysis is not widespread and thus data 

on the outcome of this technique are not readily available. Gait analysis is 

not practicable for use as an evaluation method just prior to an operation.
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4.2 COMPUTERISING THE SELECTED 

EVALUATION METHODS

A European Commission Report [39], quoted at the outset of this thesis as

serted that there is great potential for the application of the information 

technologies to the health sector. There appears to be an obvious oppor

tunity to design a computer application to automate at least some of the 

evaluation techniques discussed in the previous section. This application 

would be placed at the disposal of the orthopaedic surgeon to improve the 

selection of a prosthesis to suit a particular patient’s input variables. The 

surgeon would have the capacity to evaluate competing patient/prosthesis 

combinations prior to carrying out the operation. A very important by

product would be the automatic collection of data on the hip replacement 

operation, something that is not routinely carried out in Ireland.

At the outset the application consisted of five modules: FEA, fit-and- 

fill analysis, clinical hip score, radiograph analysis, and survival analysis. A 

weighted selection method is used to arrive at a prosthesis rating appropriate 

for the patient. Other evaluation methods can be incorporated at a later date. 

The structure of this application is represented in Figure 4.5.

The application prototype was developed using Visual Basic™2.0. The 

clinical hip score and the fit-and-fill analysis components were an integral part 

of the application. The radiographic analysis component was not fully imple

mented: an inadequate database of radiographic records meant no feedback 

was possible. A similar situation pertained to the survival analysis compo

nent. Survival analysis data is not recorded in Ireland. The FEA component
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Figure 4.5: Flow of knowledge in patient/prosthesis combination 
evaluation application.

was separate from the application. The application supplies the appropriate 

input file to the FEA package (see Section 4.1.1.2). The FEA package car

ries out the analysis and produces an output file containing the calculated 

stress values. This output file is imported back into the application, which in 

turn produces a representation of the stress patterns set up by the particular 

patient/prosthesis combination. The FEA capability, initially stand-alone, 

can be incorporated into the application at a later stage. A decision was 

also made to use two-dimensional images and modelling and to confine the 

analysis to the femoral component.
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4.2.1 Application Interface

The application presents the surgeon with a graphical user interface (GUI). 

This GUI prompts the user to enter data into the various databases. Data is 

entered into the databases in one of two ways: directly, when keying in the 

femoral dimensions of the patient and indirectly, when the results of a FEA 

for a particular patient/prosthesis combination are automatically entered 

into the database.

4.2.2 Evaluation Modules

4.2.2.1 Fit-and-Fill Analysis

The application initially measured fit-and-fill by comparing a two- 

dimensional image of different prostheses with a two-dimensional image of 

the patient’s femur. The two views used were the anteroposterior and the 

lateral views (see Figure 4.2). These correspond to roentgenograms obtained 

using a standardised technique that provides views parallel and perpendicu

lar to the plane of the femoral neck. The technique is capable of expansion to 

three-dimensional images but this adds enormously to the complexity of the 

model. The surgeon chooses the prosthesis to be evaluated from a database 

of prostheses and displays two-dimensional anteroposterior and lateral views 

of the prosthesis chosen. This is then compared with the corresponding view 

of the patient’s femur that has been constructed, based on femoral mea

surements inputted in the patient database. The femoral measurements (see 

Table 4.1) used for this exercise are those proposed by Nobel et al. [98] for 

characterising femoral specimens. The surgeon moves the image of the pa-
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tient’s femur over the image of the prosthesis, rotating it as required, to gauge 

the fit-and-fill of the prosthesis. After the surgeon has successfully oriented 

the prosthesis in the femur, the application calculates measures of fit-and-fill 

for the patient/prosthesis combination. Prostheses are then ranked accord

ing to this measure. Although fit-and-fill is of less importance in the case 

of cemented prostheses, the surgeon can still usefully judge the thickness of 

the cement mantle. The surgeon also gains important insights into the best 

method of insertion of the prosthesis into the patient’s femur.

This fit-and-fill process is predicated upon the surgeon’s expertise rather 

than on a rigid algorithm. In all cases, however, the prosthesis is checked 

first for overall compatibility, conformity of crucial measurements, and ap

proximate fit. This can substantially reduce the number of prostheses to be 

examined by the surgeon.

4.2.2.2 Finite Element Analysis

When the image of the patient’s femur has been satisfactorily placed on 

top of the image of the prosthesis, the resulting superimposed image is then 

used as the basis for FEA. An appropriate input file for the FEA package is 

prepared by the application; this includes the property values of the different 

materials used in the prosthesis, taken from the prosthesis database, as well 

as dimensions from the superimposed image.

When the FEA is completed, its output, in the form of a file, is analysed 

and interpreted by the computer application to inform the surgeon about the 

levels of stress in the proposed patient/prosthesis combination. The surgeon 

then makes a judgement on whether this is acceptable.
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Most surgeons are not, however, competent at interpreting FEA. This 

competence will only be achieved through a learning process involving dia

logue between FEA experts and surgeons which will eventually lead to the 

calibration of rules/rule-based expressions to be incorporated into expert 

system. This issue forms the substance of Chapter 5.

4.2.2.3 Clinical Hip Score Comparisons

A key component of the computer application is its ability to record clin

ical hip scores (see Section 4.1.2.1). A comprehensive database of clinical 

hip scores collected over an extended time period is essential if meaningful 

conclusions, based on historical experience, are to be drawn.

The surgeon uses the inherent resources of the clinical hip score database 

to highlight similar patients in the past and to compare their outcomes with 

their treatments. The tacit knowledge which is at the basis of the surgeons 

ability to carry out this exercise and to make judgements on the selection 

of the correct prosthesis for his current patient, remains to be unearthed. 

The elicitation of this expert knowledge in the form of rules is the subject 

of Chapter 5. For the clinical hip score component of the application to 

successfully work, the database needs to be populated with clinical hip score 

data which have been collected in a uniform, repeatable manner. This means 

strict adherence to standardised procedures.

4.2.2.4 Weighting

The initial approach to achieve an overall evaluation for a patient/prosthesis 

combination was to assign to each of the evaluation output values a pre-
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determined weight and hence to arrive at a composite evaluation. The pa

tient/prosthesis combination would be accepted or rejected on the basis of 

this aggregated value. This approach proved too simplistic as this is not a 

linear problem.

4.2.3 Databases

The construction and maintenance of up-to-date databases is critical to the 

success of the application. The surgeon needs to have confidence in the 

data contained in these databases; the data must be reliable and capable of 

verification.

There are two very different databases in use (see Figure 4.6): one for data 

on prostheses and the other for patient data. The prosthesis database, which

Databases

Prosthesis

Dimensions,
Material
Properties
etc.

Consultation

Clinical Hip Score, Radiographic 
Hip Score, Dimensions etc.

Results of Fit Results of
and Fill FEA
Analysis with Analysis
Various with Various
Prostheses Prostheses

Figure 4.6: Databases in the application.

contains information relating to the different types of prosthesis available, is 

relatively static, in that once the information about a particular prosthesis
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is keyed in there should be no need to change it. Entries are made into 

the prosthesis database only when new prostheses are added to the range. 

The prosthesis database holds all information about prostheses, materials, 

as well as their geometry. Different sizes of the same generic prosthesis have 

a different entry.

The second database is the patient database. This database records the 

patient details every time the patient has a consultation with the surgeon: 

it is updated with clinical hip scores and measurements from radiography in 

order to track the state of the patient’s hip.

The patient database is divided into two components. The first com

ponent contains the measurements of the femur highlighted in Table 4.1. 

These measurements are taken directly from anteroposterior and lateral 

roentgenograms. This measurement process is difficult to automate. Dis

cerning the boundary of the endosteal surface and allowing for necessary 

reaming are factors which must be left to surgical experience. There is an 

added difficulty of taking reproducible roentgenograms.

The second component contains the patient clinical hip score. The Har

ris hip score described in Section 4.1.2.1 was used because of its widespread 

acceptance [47]. This database is updated whenever the patient returns for 

a consultation. Both components of the patient database are time depen

dent and are updated when the patient comes for consultation (hopefully at 

regular intervals).
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4.3 CONCLUSIONS

• Significantly more emphasis should be given to the evaluation impera

tive at the time when the prosthesis/patient selection decision is made 

i.e. just before the operation. It is only then that the full facts be

come known about the patient, the appropriate surgical procedure and 

prosthesis availability.

• A portfolio of evaluation techniques, clinical and pre-clinical, is now 

available and these are capable of being put at the service of the sur

geon, using the power of modern computing.

• A computer-based decision model was designed and constructed to 

bring together the outputs of three key evaluation techniques, all of 

which utilise and operate on shared data contained in patient and pros

thesis databases. The evaluation techniques are: fit-and-fill analysis; 

finite element analysis; and clinical hip score. This portfolio can be 

expanded to include radiographic hip score and survival analysis.

• This computer application is at a relatively early stage of development 

and a number of the separate evaluation techniques require further 

refinement and automation, to make them user-friendly and attractive 

to surgeons working under severe time-constraints.

• Surgeons, on the other hand, will require training and familiarisation 

with the quantitative evaluation techniques, particularly those such as 

TEA that have their origins and widest application outside the medical 

domain.
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• A major limitation of the prosthesis/patient evaluation computer ap

plication, as proposed in this chapter, is its failure to address the issue 

of how to weight the separate evaluation outputs to arrive at a compos

ite evaluation score. The alternatives are to give fixed weights to the 

three evaluation outputs (based on the judgement of some “superior” 

expert) or to give each surgeon discretion in the allocation of weights. 

The first alternative is unacceptably rigid and fails to capture the nu

ances inherent in surgical decision-making and the second defeats one 

of the main purposes of the application which is to move the THR 

process towards a measure of standardised best practice.

• A rule based expert system is proposed in the next chapter to deal with 

this deficiency.



Chapter 5

THR Rule-Based Expert 

System

We are drowning in information, but starving for knowledge. 

John Nasibett

This chapter describes a prototype rule-based expert system that attempts 

to address the limitations of the approach to evaluation described in the 

previous chapter. The program uses ordinal scales1 to represent the quali

tative reasoning of experts. The prototype was tested on the data of half 

a dozen patient/prosthesis combinations. The results were encouraging but

some limitations were also uncovered.
1 Variables measured on an ordinal scale have order relationships. The values that can 

be taken on by an ordinal variable can be placed in a unique order. “Greater them” and 
“less than” have meaning. But the actual numerical values of ordinal variables do not 
convey any information whatsoever beyond the order itself.
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5.1 BACKGROUND

Major potential benefits accrue when a rule-based expert system is added to 

the computer application:

• The insights and judgements of the expert are added to and built into 

the decision-making process.

• The time spent by experts on trivial and straightforward cases is re

duced thus making scarce expert time available for more challenging 

work.

• The service to the patient is improved by providing a better pa

tient/prosthesis match and shortening the time required for a thorough 

evaluation.

• A rule-based expert system is a training tool for surgeons who can ask 

it to justify its decisions.

Rule-based systems are costly and time-consuming to develop. However, 

because of the scale of money involved in THR, even a modest improvement 

in the decision-making process can have considerable financial benefits and 

can also significantly reduce human suffering.

The following section describes the rule-based expert system prototype, 

outlining its major components and the programming environment. The 

descriptions are in terms of actual Prolog code to emphasise the close relation 

between the representation of knowledge in the program and THR concepts 

themselves. The reader unfamiliar with Prolog is referred to [19] for details
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of the language. However, the features of the program can be understood 

without a knowledge of the programming language.

5.1.1 Prolog as a Development Language for 

Rule-Based Expert Systems

An extensive search was made to identify an appropriate programming en

vironment for the prototype. The possibilities included Lisp, Prolog, one 

of the available “off-the-shelf” expert system shells or a “conventional” pro

gramming language such as Algol, Pascal or C. Eventually the choice fell on 

Prolog which was deemed to provide the fastest and cheapest way to write 

the prototype.

The choice was very fortunate. Prolog is a very powerful tool for symbolic 

computation and can deal efficiently with the necessary arithmetic. It is 

relatively easy, even for a new user of Prolog, to formulate the rules in a 

natural way and it is not necessary to deal with many syntax problems. 

Complex rules can be expressed quite easily in the language. Any computer- 

aware researcher can quickly use Prolog to write an interesting initiatory 

expert system without prior or special training.

With Prolog, the user is free to concentrate on issues of knowledge rep

resentation and acquisition rather than on search strategies. This allows 

rapid feedback to be presented to the experts, maintaining their interest and 

commitment.

Another factor contributing to rapid feedback is the natural program 

development style of the language. One can naturally develop a top down
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program. This feature is very important when writing rule-based expert 

systems in so far as rule-based expert systems cannot be defined in advance. 

Typically the expert does not know a priori how he thinks, and the system 

inevitably develops very much on a trial and error basis.

Another important feature of Prolog is an easy ability to incorporate 

meta-programming: it can be used to define any search strategy the user 

wishes and to write explanation facilities. This flexibility comes at a price. 

Meta-interpreters slow down the computation speed. Prolog still lacks the 

rich programming environment of Lisp, but for present purposes, its excep

tional power in building rule-based expert systems compensates for these 

shortcomings.

The knowledge contained in expert systems can, to a significant extent, be 

expressed as rules. Prolog, whose basic statements are rules, is thus a natural 

language for implementing expert systems. Prolog is a logic programming 

language. Logic provides a precise language for the explicit expression of 

goals, knowledge, and assumptions. Thus, Prolog facilitates the construction 

of expert systems that explicitly represent the knowledge of human experts.

5.2 CONSTRUCTING EXPERT

STATEMENTS FOR SELECTED 

EVALUATION FACTORS

A prototype expert system for the evaluation of hip prosthesis designs was 

developed to combine the three evaluation methods outlined in Chapter 4
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namely fit-and-fill, FEA, and clinical hip score. This was achieved by em

bedding the appropriate Prolog logic-base, which will now be described, in 

the Visual Basic™2.0 application which was described in the previous chap

ter.

Received wisdom [126] dictates that, when developing an expert system, 

knowledge engineers consult a single evaluation expert. The use of multiple 

experts often leads to discrepancies in the rules. In the field of hip prosthesis 

design, however, fit-and-fill, FEA, and clinical hip score have evolved into 

distinctive domains of expertise. Hence the researcher had to relax the con

straint on using more than one expert. This clearly has implications for the 

integrity of the system.

The first important evaluation factor considered was the fit-and-fill of the 

prosthesis in the patient’s femur. The dimensions that constitute fit-and-fill 

(shown in Table 4.1) are divided into three categories to reflect their relative 

importance when assessing fit-and-fill. In the first category are the primary 

dimensions, such as femoral head offset (A), where the margin of error is 

critical and where there is very little tolerance. Next are the secondary 

dimensions, such as canal width, measured at the isthmus (G), where there is 

more leeway in the margin of error. Finally, tertiary dimensions, as instanced 

by the canal width, taken at ±20mm vertically from the lesser trochanter (D 

and F), have the largest tolerance. Table 5.1 shows the breakdown of the 

dimensions which were first introduced in Table 4.1 and Figure 4.2.

The second evaluation factor considered is the FEA analysis output, 

which is supplied, in the desired form, to the Prolog logic-base. In prac

tice, the surgeon supplies a value which equates to his evaluation of the FEA
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Primary Secondary Tertiary
A G D
C L F
E M G + 1mm

Table 5.1: Breakdown of dimensions by the importance of their margin 
of error. (The legend for these letters is contained in Table 4.1 and 
Figure 4.2.)

for that particular patient/prosthesis combination. The rules for ascertaining 

the FEA rating from the FEA stress data could eventually be incorporated 

into an additional Prolog module.

The third evaluation factor is the clinical hip score analysis value. This is 

ascertained by taking the salient variables of the patient (age, sex, primary 

diagnosis, activity level and weight), and looking at the resultant two year 

post-operative clinical hip scores of patients with like variable values, and who 

used the same prosthesis. For a knowledge engineer with an understanding 

of the field of THR, no further explanation of such concepts is necessary. 

An understanding of the subject domain by the knowledge engineer is a 

prerequisite for communicating with the domain expert. Furthermore, the 

knowledge engineer encodes domain concepts in the expert system in a form 

that is understandable by the domain expert.

Experts use qualitative terms in considering and speaking about all three 

evaluation factors, the fit-and-fill, FEA and clinical hip score. “The prosthe

sis produced a low level of resorption, or a tight fit.” “The FEA shows an 

excellent stress profile,” etc. Even concepts that could be determined quan

titatively are usually represented in qualitative terms. The evaluation of hip 

prostheses is never likely to be reduced to simple numbers and ratios. When
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making judgements, experts are more comfortable with qualitative terms. To 

echo expert reasoning, it is imperative to model qualitative reasoning.

5.3 TRANSLATING EXPERT

STATEMENTS INTO A RULE-BASED 

SYSTEM

On talking to the experts, it became clear that a significant amount of the 

relevant expert knowledge could be expressed as a mixture of procedures and 

rules. The rules for determining the quality of fit-and-fill and the clinical hip 

score analysis rating of a particular prosthesis, involve considerable calcula

tions even after an initial screening is done to assess if the prosthesis is at all 

suitable.

The information described in Section 5.2 is sufficient to build a proto

type. The judgements and observations based on conversations with the 

experts will now be translated into a rule-based system. The initial screen

ing to determine if a particular prosthesis is worth considering is performed 

by the predicate2 ok_prof lie (Prosthesis). The top-level basic relation is 

suitability (Prosthesis .Answer), where Answer is the reply to the ques

tion as to the suitability of the Prosthesis. The code has three modules— 

f it_rating, hip_score_analysis, and f ea_analysis—corresponding to the

2In Prolog, the simplest kind of statement is called a fact. Facts are a means of stating 
that a relation holds between objects. An example is father (Joe, John). This fact says 
that Joe is the father of John, or that the relation father holds between the individuals 
named Joe and John. Another term for a relation is a predicate.
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three important evaluation factors. There is a preliminary check that 

no essential data are missing (if so the system prompts the user to en

ter the data). The answer Answer is then determined with the predicate 

evaluate (Profile .Answer), which evaluates the Profile built by the three 

modules.

Knowledge engineers stress the importance of top-level formulation: this 

means modular programming is essential. Each of the modules can be de

veloped independently without affecting the rest of the system. There is no 

commitment to any particular data structure, i.e. data abstraction is used. 

For this example, a structure profile (FitRating.HipScoreAnalysis ,FEA) 
represents the profile of the fit rating, the clinical hip score analysis rating 

and the FEA rating of a particular patient/prosthesis combination. How

ever, nothing fundamental depends on this decision, and it would be easy to 

change the sequence. Consideration of the features of these modular pieces 

follows.

5.4 SPECIFIC EVALUATION MODULES

The essential features of the fit-and-fill rating module (see Program 5.1), 

which determines a rating for a particular patient/prosthesis combination’s 

fit-and-fill, are first examined. The initial step is to determine an appro

priate profile. This is done with the predicate fit.profile, which classi

fies the patient/prosthesis combination dimensions as primary .dimensions, 
secondary .dimensions, or tertiary .dimensions and gives the percentage 

of the overall dimensional error which is attributable to each in the particular
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Program 5.1 The fit rating module.
/* The Fit Rating Module */ 
fit_rating(Prosthesis,Rating)

Rating is a qualitative description assessing 
the fit offered by prosthesis to cover the request 
for suitability. */ 

fit_rating(Prosthesis.Rating)
fit_profile(Prosthesis.PrimaryDimensions,

SecondaryDimensions,TertiaryDimensions), 
fit_evaluation(PrimaryDimensions,SecondaryDimensions, 

TertiaryDimensions.Rating).
fit_profile(Prosthesis.PrimaryDimensions.SecondaryDimensions, 

TertiaryDimensions)
requested.suitability(Prosthesis.Suitability), 
fit_percent(primciry_dimensions .Prosthesis .Suitability, 

PrimaryDimensions),
fit.percent(secondary.dimensions,Prosthesis,Suitability, 

SecondaryDimensions),
fit.percent(tertiaxy.dimensions,Prosthesis,Suitability, 

TertiaryDimensions).
fit_percent(Type.Prosthesis.Total.Value) 

findalKX, (fit(Fit .Type) , 
amount(Fit.Prosthesis,X)),Xs), 

sumlist(Xs.Sum),
Value is Sum*100/Total.
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patient/prosthesis combination. The relation draws upon the information in 

the database concerning both the prosthesis and the patient. Program 5.2, 

which uses a hypothetical situation, indicates that the isthmus is a primary 

dimension and hence demands the most exacting fit.

The profile is evaluated to give a rating by fit_evaluation. It uses 

rules of thumb to give a qualitative rating of the fit: excellent, good, etc. 

(see Program 5.2). The first f it_evaluation rule, for example, reads: ‘The 

rating is excellent if the dimensional error of the primary dimensions in the 

patient/prosthesis combination accounts for less than 40 percent, primary 

and secondary dimensions combined for less that 70 percent, and primary,

Program 5.2 Fit module’s evaluation rules and arthroplasty data. 
/* Evaluation Rules */
fit.evaluation(PrimaryDimensions.SecondaryDimensions, 

TertiaryDimensions.excellent)
PrimaryDimensions < 40,
PrimaryDimensions + SecondaryDimensions < 70, 
PrimaryDimensions + SecondaryDimensions + 

TertiaryDimensions =< 100.
fit_evaluation(PrimaryDimensions.SecondaryDimensions, 

TertiaryDimensions.excellent)
PrimaryDimensions < 70,
PrimaryDimensions + SecondaryDimensions =< 100. 

fit_evaluation(PrimaryDimensions.SecondaryDimensions, 
TertiaryDimensions.good)
PrimaryDimensions =< 100.

/* Arthroplasty Data - Classification of Fit */ 
fit(isthmus,primary_dimensions). 
fit(femoral_head_offset.primary.dimensions). 
fit(canal.width,secondary.dimensions). 
fit(canal_width_plus_20,tertiary_dimensions). 
fit(canal_width_minus_20.tertiary.dimensions) .
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secondary, and tertiary dimensions combined for less than or equal to 100 

percent of the total error.”

Two features of the code need to be explained. First, the terminology used 

in the program is the terminology of the expert. This makes the program 

(almost) self-documenting to the expert and means that he can modify it 

with little help from the knowledge engineer. Allowing people to think in 

concepts, which are specific to the domain, facilitates debugging and assists 

in using a domain-independent explanation facility. Second, the apparent 

simplicity of the evaluation rules may be deceptive. Considerable knowledge 

and experience are hidden behind these simple numbers. Choosing poor 

values for these numbers may mean severely misjudging the fit.

The clinical hip score evaluation module determines the historical perfor

mance of the particular prosthesis in patients with similar characteristics. It 

uses information taken from the clinical hip score database. This rating is 

also qualitative: a weighted sum of clinical hip score analysis factors is cal

culated by score and used by calibrate to determine the qualitative class. 

The code which implements this is shown in Program 5.3.

It should be noted that the modules both for the fit rating and, to a lesser 

extent, for the clinical hip score analysis rating, reflect the point of view and 

style of a particular expert, rather than an objective standard. Within the 

discipline there is not a consensus on the subject. Some experts tend to be 

conservative and some are prepared to take considerable risks.
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Program 5.3 Hip score analysis rating module.
/* Hip Score Analysis Rating Module 
hip_score_analysis(Prosthesis,Rating) : -

Rating is a qualitative description assessing 
the clinical hip score analysis record offered by a 
Prosthesis to support the request for suitability. */ 

hip_score_analysis(Prosthesis.Rating) 
hip_score_factors(Factors), 
score(Factors.Prosthesis,0.Score), 
calibrate(Score,Rating).

/* Hip Score Evaluation Rules */ 
calibrate(Score.bad) Score =< -500. 
calibrate(Score,medium) -500 < Score, Score < 150.
calibrate(Score,good) :- 150 =< Score, Score < 1000. 
calibrate(Score,excellent) :- Score >= 1000.

/* Arthroplasty Data - Weighting Factors */ 
hip_score_factors([(age,10),
(sex,2),
(cause,5),
(activity_level,5),
(weight,2) ]).

score([(Factor.Weight)iFactors].Prosthesis,Acc.Score) :- 
value(Factor,Prosthesis,Value),
Accl is Acc + Weight*Value, 
score(Factors,Prosthesis,Accl,Score). 
score([].Prosthesis,Score.Score).
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Figure 5.1: Structure of the Prolog component.

5.5 COMPOSITE EVALUATION OF 

PROSTHESIS/PATIENT 

COMBINATIONS

Programming the code for determining the fit-and-fill and clinical hip score 

analysis ratings was straightforward in both these cases, in that the knowl

edge provided by the experts was translated into program rules. These rules 

act on the raw input data to produce qualitative evaluations of the respective 

modules (just as an expert would). Similar rules are not yet established for 

eliciting an FEA output value. In this instance direct expert intervention is 

still required.

Constructing a module for the overall evaluation of the patient/prosthesis 

combination was, however, more challenging. The major difficulty was for

mulating the relevant expert knowledge. Experts were less forthcoming with 

general rules for overall evaluation than, for example, with rules for rating 

the fit-and-fill results, the code for which is shown in Program 5.2. They
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were happy to discuss the profiles of particular patient/prosthesis combina

tions, but were reluctant to generalise. They preferred to react to suggestions 

rather than volunteer rules.

This forced a critical re-appraisal of the exact problem to be solved. There 

were three possible answers that the system could give: approve the pa

tient/prosthesis combination, refuse it, or ask for advice. There were also 

three evaluation factors to be considered. Each evaluation factor had a qual

itative value that was a point on an ordinal scale representing a small set of 

possibilities. For example, the clinical hip score analysis rating could be bad, 

medium, good, or excellent. Further, the possible values were ranked on an 

ordinal scale.

The problem faced can be generalised: find an outcome from an unknown 

ordinal scale, based on the qualitative results of several ordinal scales. Rules 

to solve the problem would give a conclusion based on the output values of 

the evaluation modules (see Figure 5.1). When the experts were pressed with 

this formulation, they offered several rules of which the following is typical: 

“If the patient/prosthesis combination’s clinical hip score rating is excellent, 

its clinical hip score analysis rating good (or better), and its FEA analysis 

at least reasonable, then approve the operation.”

An immediate translation of the spoken rule above is

evaluateCprofile(excellent.good.reasonable),give_suitability).

But this misses many cases covered by the expert’s rule, for ex

ample, the case where the patient/prosthesis combination’s pro

file is (excellent, good, excellent) would be overlooked. The
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expression only deals with the specific profile presented to it 

(excellent.good,reasonable). All the cases for a given rule can, of 

course, be listed but it is obviously better to build a more general tool to 

evaluate rules expressed in terms of qualitative values from ordinal scales.

There is potentially a problem with using ordinal scales because of the 

large number of individual cases that may need to be specified. If each of 

the N modules have M possible outcomes, there are NM cases to be consid

ered. In general, it is not feasible to have a separate rule for each possibility. 

Not only is it a problem to enumerate so many rules but the search in

volved in finding the correct rule may be computationally prohibitive. So 

instead, a small set of ad hoc rules was defined. It was hoped that the rules 

selected, which covered many possibilities, would be sufficient to cover the 

prostheses the surgeons normally used. The structure chosen for the rules 

was rule (Conditions,Conclusion) where Conditions is a list of condi

tions under which the rule applied, and Conclusion is the rule’s conclusion. 

A condition has the form condition(Factor,Relation,Rating), insisting 

that the rating from the factor named by Factor bears the relation named 

by Relation to the rating given by Rating.
The relation is represented by the standard relation operators: <, =, >, 

etc. The previously mentioned rule is represented by

rule([condition(fit,t=>>.excellent), 

condition(success, .good) ,
condition(analysis, .reasonable)] ,give_suitability) .

Another rule reads “If both the fit rating and clinical hip score analysis
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rating are good, and the FEA analysis is at least reasonable, then consult 

your superior.” This is translated to

rule([condition(fit,‘=’.good),

condition(success,,=,.good),

condition(analysis,<=>’.reasonable)],consult_expert).

Factors can be mentioned twice to indicate that they lie in a certain range 

or a factor might not be mentioned at all. For example, the rule

rule([condition(fit,<=<’.moderate),

condition(success,’=<’.medium)], 

refuse.suitability).

states that a patient/prosthesis combination should be refused approval if 

the fit rating is no better than moderate and the clinical hip score analysis 

rating is at best medium. The FEA analysis is not relevant and so is not 

mentioned.

The interpreter3 for the rules is written non-deterministically (see Ap

pendix A). The procedure is: “Find a rule and verify that its conditions ap

ply,” as defined by evaluate. The predicate verify(Conditions .Profile) 

checks that the relation between the corresponding symbols in the rule and 

the ones that are associated with the Profile of the patient/prosthesis com

bination is as specified by Conditions. For each Type that can appear, a scale 

is necessary to give the order of values which the scale can take. Examples of 

scale facts in the database are scale (fit, [excellent, good,moderate])

3 An interpreter is the mechanism by which the code is broken down and executed.
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Program 5.4 Test data for the suitability evaluation system. 
/* Prosthesis Data */
fea_analysis(charnley_medium,excellent). 
requested_suitability(charnley_medium,40).

amount(isthmus,charnley_medium,5).
amount(femoral_head_offset,charnley_medium,4).
amount (canal.widthjCharnley.medium^) .
amount(canal_width_plus_20,charnley.medium,10).
amount(canal_width_minus_20,charnley.medium,10).

value(age,charnley.medium,20). 
value(sex,charnley.medium,10). 
value(cause,charnley.medium,49). 
value(activity.level.charnley.medium,9). 
value(weight.charnley.medium,9).

ok.profile(charnley.medium).

and scale(success, [excellent.good.medium,bad]). The predicate 

select_value returns the appropriate symbol of the evaluation factor under 

the ordinality test that is performed by compare. It is an access predicate, 

and consequently the only predicate dependent on the choice of data struc

ture for the profile.

At this stage, the prototype program was tested. Data from real pa

tient/prosthesis combinations were used, and the answers given by the 

system tested against the corresponding expert opinions. The data for 

charnley_medium is given is Program 5.4. The reply to the query 

suitability(charnley_medium,X) is X = give_suitability.

Finally, in order to help the expert to define a consistent set of rules, the 

ordinal model was considered in a broader context. A consistency check was
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added to verify the integrity of the system. Any specific rule is a boundary 

condition of the problem and it has to be consistent with its predecessors. 

The following two meta-rules were used for consistency, and each rule must 

satisfy them both.

Consistency Rule 1: If all of patient A’s factors are better than or equal 

to patient B’s factors, then the outcome of patient A must be better than, 

or equal, to that of patient B.

Consistency Rule 2: If all of patient A’s factors are equal to or between 

the corresponding factors of patients B and C, then the outcome of A must 

be equal to or between, those of B and C.

All aspects of a prototype THR decision support system are now in place. 

The system was tested and proved to function in a plausible fashion and 

now awaits site implementation and greater acceptance among orthopaedic 

surgeons.

This prototype expert system is a composite of styles and methods— 

not just a backward chaining system. Heuristic rules of thumb were used 

to determine the fit rating; an algorithm, albeit a simple one, was used to 

determine the clinical hip score analysis rating; and there is a rule language, 

with an interpreter, for expressing outcomes in terms of values from discrete 

ordinal scales. The rule interpreter proceeded forward from conditions to 

conclusion rather than backward as in Prolog. Expert systems must become 

such composites if they are to exploit the different forms of knowledge that 

already exist.
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5.6 CONCLUSIONS

• The case can now be made that a meaningful, empirically-based rule- 

based expert system prototype has been developed for THR, which can 

contribute significantly to improving the survivability of hip implants.

• Prolog has proved to be an excellent tool for developing the prototype. 

Prolog, whose basic statements are rules, is a natural language for 

implementing expert systems. The developer is free to concentrate 

on issues of knowledge representation and acquisition rather than on 

search strategies: this insured rapid feedback to the surgeon experts.

• The structure of the program was tested and validated on a range of 

common prostheses applied to a selection of patients. The data input 

for a representative patient/prosthesis combination, using a Charnley, 

is shown in Program 5.4. The data for the clinical hip score analy

sis were constructed from the results of published papers which used 

the Harris hip score [47, 80, 73]. The decision output of the program 

(give_suitability, consult_expert and refuse_suitability) for 

all the input cases listed gave answers compatible with expert opin

ion.

• It is not claimed that the program as it stands is ready to go into 

production. But with an expansion in the number of rules, additional 

modules and a fuller database, there is every confidence that it can 

deal comprehensively with the diverse patient/prosthesis combinations 

that might be presented to it in practice. However, the refinement of
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the system requires that these enhancements take place in situ which 

is not something the present orthopaedic climate facilities.

• The rule structure of the individual fit-and-fill and clinical hip score 

modules and of the overall evaluation component were shown to be 

practical and soundly based. A rule structure for the FEA evaluation 

module must await fuller automation and can then be incorporated. 

Expert system rules, however, can only be definitively established when 

the system enters production. Even at that stage, continuous fine tun

ing is of the essence as the system moves down its learning curve.

• The inherent capability to explain its decisions was a powerful and nec

essary dimension of the system as developed. An expert system tries to 

capture the tacit knowledge and expertise of eminent practitioners but 

this may require compromise in the articulation of rules. Transparency 

is therefore necessary if the rules elicited are to prove persuasive and 

to achieve general acceptance.

• Excellent domain experts are the major key to the success of any expert 

system. But experts guard this expertise which is their distinguishing 

characteristic. A rule-based expert system is likely to be resisted to 

the extent that it attempts to codify proprietary expertise. There is 

no doubt that a more recent variation on expert systems, which uses 

fuzzy logic, is closer to the way experts express their thinking. It is 

conceivable, therefore, that surgeons may be more comfortable with 

the fuzzy logic approach.
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• This refinement is pursued in the next chapter, not to challenge the 

validity and integrity of the expert system as developed in this chapter, 

but merely to see if it can be made more user-friendly.



Chapter 6

THR Fuzzy Expert System

As the complexity of a system increases, our ability to make precise 

and yet significant statements about its behaviour diminishes until 

a threshold is reached beyond which precision and significance (or 

relevance) become almost mutually exclusive characteristics.

Lotfi Zadeh

The operation and synthesis of the evaluation techniques used in the rule- 

based expert system discussed in Chapter 5 is impaired by the imprecise 

nature of the way surgeons express their assessment of particular situations. 

The experts were much more likely to express their judgement of a particular 

evaluation factor linguistically rather than numerically: a method by which 

this limitation of rule-based systems may be overcome is elaborated on below. 

The inability to formulate precise statements to describe particular situations 

has been addressed by proponents of “fuzzy expert systems.”

An additional opportunity to exploit fuzzy rules occurs in cases of incom

plete data, for example where the source data is deficient and decisions must
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be made based on uncertain, incomplete and even contradictory information. 

The fuzzy logic expert system can cope with this situation also.

The essence of the problem with rule-based systems is that the criteria 

for measuring the different evaluation factors (fit-and-fill, FEA and clini

cal hip score analysis) result in the representation of the expert’s decision 

in terms of discrete values: excellent, good, moderate, medium, bad and 

poor. In reality, the experts, rather than expressing the evaluation factors 

for a patient/prosthesis combination in these terms, preferred to use vaguer 

expressions such as “If the fit-and-fill is loose then the risk of failure is in

creased.” The problem then becomes how to specify an uncertain term like 

loose which can range from “slightly loose” to “very loose.” This uncertainty 

can be included in a fuzzy model as well as uncertainty associated with data 

limitations, for example incomplete clinical hip score data.

The uncertainty estimate for each evaluation factor is quantified by pro

jection onto a risk curve (consequent fuzzy set) to get an associated risk of 

failure. The individual evaluation factor risks are aggregated to give an over

all risk of failure for each competing combination. With the fuzzy approach, 

risk of failure becomes the selection criterion rather than finding an outcome 

from an unknown ordinal scale, based on the qualitative results of several 

ordinal scales (see Section 5.5). The risk of failure allows patient/prosthesis 

combinations to be classified as acceptable or not.

The fuzzy approach used in this chapter seeks to emulate a risk function. 

The risk for competing patient/prosthesis combinations is calculated.
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6.1 REPRESENTING UNCERTAINTY: 

THE PATH LEADING TO FUZZY 

LOGIC

In the early 1960s, researchers in applied logic were convinced that theo

rem provers were powerful and general enough to solve practical, real-life 

problems. In particular, the introduction of the resolution principle to logic 

reasoning by J.A. Robinson lead to this conviction [114]. It subsequently 

became apparent that the appropriateness of mathematical logic (as typified 

by the Prolog rule-based expert system constructed in Chapter 5) for solving 

practical problems was overrated. One of the complications with real-life 

situations is that the facts and experience necessary for solving a problem 

are surrounded by a degree of uncertainty; moreover, the available informa

tion is frequently imprecise and insufficient. Yet human experts must form 

judgements and make decisions from uncertain, incomplete and at times con

tradictory information. To be useful in an environment characterised by such 

imprecise knowledge, an expert system has to capture and exploit not only 

the highly specialised expert knowledge, but also the uncertainties that go 

with such knowledge. This observation has led to the introduction of models 

for handling uncertain information in expert systems. Research into the rep

resentation and manipulation of uncertainty has grown into a major research 

area called inexact reasoning or plausible reasoning.

Probability theory was the first point of departure for the development 

of models for handling uncertain information in rule-based expert systems.
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It was found, however, that probability theory could not be applied in this 

particular context without some qualifications. Two quasi-probabilistic mod

els were proposed: the subjective Bayesian method, which was developed for 

application in the expert system PROSPECTOR and the certainty factor 

model, which was designed by E.H. Shortliffe and B.G. Buchanan to deal 

with uncertain information in the expert system MYCIN [78].

The appropriateness of probability theory for handling uncertain infor

mation in a knowledge-based context has itself been questioned [78]. The 

twin convictions that probability theory has little to say about inherently 

imprecise notions, such as the quantifiers “most” and “few,” and that the 

application of probability theory requires “too much data,” led to the search 

for alternative formalisms for expert systems applications. Belief functions 

and fuzzy logic are two such formalisms.

Belief functions are also called the Dempster-Shafer theory of evidence. 

This theory may be viewed as a generalisation of probability theory. The de

velopment of the Dempster-Shafer theory has been motivated by the obser

vation that probability theory is not able to distinguish between uncertainty 

and ignorance as in when there is incomplete information. In probability the

ory, probabilities have to be associated with individual elemental hypotheses. 

Only if these probabilities are known are we able to compute other proba

bilities of interest. In the Dempster-Shafer theory, however, it is possible 

to associate measures of uncertainty with sets of hypotheses, interpreted as 

disjunctions, instead of just with the individual hypotheses, and nevertheless 

to be able to make statements concerning the uncertainty of other sets of hy

potheses. In this way, the theory is able to distinguish between uncert ainty



THR Fuzzy Expert System 103

and ignorance.

However, the Dempster-Shafer theory cannot be applied in an expert 

system without modification. Two basic problems preventing the use of 

the model in rule-based systems are first, its computational complexity and 

secondly, the lack of several combination functions for propagating uncertain 

hypotheses. With respect to the second problem, various ad hoc solutions 

have been proposed, none of which is really satisfactory [78].

Many of the theorems and methods needed when using probabilities in ex

pert systems require the expert to estimate probabilities, sometimes without 

recourse to relative frequencies. There is evidence that many people do not 

have an intuitive understanding of the laws of probability, and so estimates 

are likely to be very inaccurate. The research of Kahneman and Tversky 

[66] showed that people are apt to discount prior odds and accord more 

weight to recently presented evidence. Other research suggests that people 

are over-confident in their own judgements [65]. Furthermore, simplification 

of formulae can cause gross errors in computation [51].

6.1.1 Fuzzy Logic

The need for an alternative formalism to probability theory for representing 

and manipulating uncertainty led to a second point of departure and a major 

new line of research in plausible reasoning, namely fuzzy set theory and fuzzy 

logic. The great advantage of fuzzy logic over probability theory for expert 

systems appears to be the compositionality of its logical operators [64]. The 

detailed workings of fuzzy logic are fully explained in Appendices B and C.
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Part of the attraction of fuzzy logic is that it is grounded on the use 

of language. At the centre of fuzzy modelling techniques is the idea of a 

linguistic variable. Fuzzy sets are functions that map a value, that might be 

a member of a set, to a number between zero and one, indicating its degree 

of membership of that set. The fuzzy set LOOSE is a simple linguistic variable 

(see Figure 6.1) used in a rule to make a decision based on the looseness of

A Loose Patient/Prosthesis Combination

Degree of
Membership
h(x)

Volume (cubic cm)

Figure 6.1: Idea of a loose patient/prosthesis combination.1

a particular patient/prosthesis combination:

if fit_and_fill_level is loose

then operation.risk is increased.

Similar rules are formulated for the other evaluation techniques and this 

series of fuzzy rules is then aggregated to give an overall evaluation. In a 

fuzzy system all rules are fired or activated all the time. They fire in parallel 

and all rules fire to some degree. The result is a fuzzy weighted average.

^he x axis value is a measure of the space between the prosthesis and the femur.
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6.1.1.1 Approaches to Aggregating Fuzzy Rules

Fuzzy models that have a large number of rules with the same consequent 

fuzzy set (the INCREASED .RISK set) have a persistent problem: namely that 

the solution fuzzy set quickly becomes saturated. This saturation problem 

is a feature of both the more established fuzzy models i.e. the min/max 

inference technique and the additive inference technique.

LOOSE. FIT-AND-FILL INCREASED.RISK

Fit-and-Fill

ADVERSE.FEA INCREASED.RISK

Stress

HIGH.RISK

Degree of RISK

Vocabulary Consequent Solution
Fuzzy Sets Fuzzy Set Fuzzy Set

v.
Fuzzy Rules

Figure 6.2: The min/max technique.

Min/max inference technique In the min/max inference technique, the 

solution fuzzy set is updated (for conditional IF ... THEN rules) by taking 

the maximum value of the consequent fuzzy set. This means that after a few
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rules, the “high water mark” in the solution set will move quickly toward 1. 

It also means that rules whose truth is less than the current truth level of the 

solution fuzzy region, will not contribute to the solution. In risk assessment 

models this is unsatisfactory. It is important to accumulate as much evidence 

as possible. If rule [Rl] has a predicate truth of .82 then the solution fuzzy 

set HIGH-RISK contains the consequent fuzzy set INCREASED .RISK to a degree 

of .82 (see Figure 6.2). If none of the other rules has a truth greater than 

.82, none of them will affect the HIGH-RISK solution space. Defuzzification 

is the process by which a number representing the risk is obtained from 

the HIGH.RISK solution fuzzy set. The risk of the project is determined by 

a single rule and this does not seem reasonable. The cumulative effect of 

the other rules should influence the determination of risk: if any of these 

rules also has a significant truth (say .80, .68, or .52) then the evident risk of 

accepting this particular patient/prosthesis combination is much higher than 

indicated by the state of HIGH-RISK.

Additive inference technique The alternative to the min/max inference 

technique is the additive inference technique but this is equally unsatisfactory 

with respect to solving the risk estimation problem. After executing two 

rules with predicate truths of .62, .48, the solution fuzzy set is now saturated 

because the maximum truth of a fuzzy set is bounded at 1 (see Figure 6.3). 

This is a problem associated with the semantic way INCREASED .RISK is used 

in the case of a large number of rules, each of which maps a consequent fuzzy 

set to the fuzzy solution set. The defuzzification procedure is the same as 

for the min/max technique. Hence an alternative inferencing technique is
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LOOSE. FIT-AND-FILL

Fit-and-Fill

ADVERSE.FEA

Stress

Vocabulary 
Fuzzy Sets

INCREASED.RISK

INCREASED.RISK

Consequent 
Fuzzy Set

HIGH.RISK

Degree of RISK

Solution 
Fuzzy Set

---------Y----------

Fuzzy Rules

j

Figure 6.3: The additive technique.

required. Chained monotonic scaling [24] is such a method.

Chained monotonic scaling technique In the chained monotonic scal

ing technique, two major new ideas are introduced. First, the idea of deter

mining the risk associated with each evaluation factor, based on a vocabulary 

fuzzy set, and the subsequent mapping of this risk onto a risk measuring fuzzy 

set (see Figure 6.4). Since the evaluation factor fuzzy sets can have different 

profiles, this results in a highly non-linear model. Secondly, risks are accu

mulated in this model by simple addition without the problem of saturation, 

although it may be preferable to weight them by grade of membership of



THR Fuzzy Expert System 108

LOOSE.FIT-AND-FILL INCREASED.RISK

Vocabulary 
Fuzzy Sets

Consequent 
Fuzzy Set

Solution 
Fuzzy Set

v.

Fuzzy Rules

Figure 6.4: The monotonic chaining technique.
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the consequent fuzzy set. The scalable monotonic fuzzy model can handle a 

large number of rules and still maintain the important relationships between 

the underlying rules and the final risk assessment [6].

6.2 CONSTRUCTING A FUZZY EXPERT 

SYSTEM FOR SELECTED 

EVALUATION FACTORS

Developments in scalable monotonic chaining [24] and in particular its recent 

application to project risk analysis by Moody’s investors service, raised the 

possibility of a breakthrough in the capability of fuzzy systems to contribute 

significantly to the hip prosthesis selection problem. There are sufficient 

parallels in the assessment of risk associated with competing alternatives, 

albeit in different spheres of activity, to make the new technique worthy 

of further investigation. The choice of prosthesis for a particular patient 

is still treated as a problem of competing alternatives but evaluation is now 

predicated on the risk of failure. The risk of failure of each patient/prosthesis 

combination is calculated and the combination which offers the lowest risk 

of failure is chosen.

6.2.1 Model Design

Figure 6.5 represents the architecture of the model that evaluates the critical 

factors underlying the risk of failure of a particular patient/prosthesis com

bination, thus enabling the alternative combinations to be placed in order of
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risk.

Risk
Assessment
Model

Parameters

Rules

Fit-and-Fill

Survival Analysis

Flip Score

Estimated 
Prosthesis/Patient 
Combination Risk

Risk Measuring 
Fuzzy Sets

Figure 6.5: The structure of the patient/prosthesis combination 
assessment model.

The evaluation factors considered by the model developed in this chapter 

are the same as those represented in the rule-based system in Chapter 5, with 

the addition of the survival analysis factor. Other evaluation factors touched 

on in Chapter 4 could equally be included. In addition, a factor like clinical 

hip score could be deconstructed into its constituent parts and values for 

these components could be used in the model. For present purposes the core 

patient/prosthesis combination risk assessment model has four evaluation 

rules which are enumerated in Program 6.1.

Scaleable monotonic chaining fuzzy systems differ from conventional fuzzy 

systems which create and then defuzzify a solution fuzzy set. The risk spec-
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Program 6.1 Production rules.
/* Production Rules (Fuzzy Model’s Rules) */ 
if fit_and_fill_level is loose

then operation_risk is increased, 
if fea_stress_level is adverse

then operation_risk is increased, 
if survival_analysis_level is short

then operation_risk is increased, 
if hip_score_level is high

then operation_risk is increased.

ified in individual rules is mapped to an intermediate risk measuring fuzzy 

set (in this case, INCREASED .RISK shown in Figure 6.4). The result of this 

mapping is a scalar value from the domain of the risk measuring fuzzy set, 

indicating the degree of risk for this particular model factor. The mono

tonic reasoning results for each rule are added together to produce a final 

risk value. This value, a scalar, called the cummulativejrisk, is used to find 

the actual patient/prosthesis combination risk. The cummulative_risk’s de

gree of membership in a controlling fuzzy set is found (the HIGH-RISK set in 

our model). This process scales the risk. The degree of membership of the 

“high-risk” fuzzy set is the overall patient/prosthesis combination risk. In 

this model, the truth function is multiplied by 1000 to produce a risk factor 

within the range of the INCREASED. RISK domain.

6.2.2 Model Execution

The scalable monotonic chaining technique requires considerable trial and 

error once the rules (see Program 6.1) have been determined. There are two 

distinct aspects of the model which are amenable to adjustment in this way.
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They are the vocabulary fuzzy sets and the weights applied to the corre

sponding INCREASED.RISK fuzzy sets. The weights reflect the importance 

given to a particular rule. The weighting process is straightforward but te

dious. The construction of the vocabulary fuzzy sets which implements the

Program 6.2 Fuzzy sets._____________________________
/* Fuzzy Sets Definitions 
Note: The Maximum Domain Limit acts as a 
Weighted Measure for its corresponding set. */ 
fuzzy_set(fit_and_fill_level, loose, as,

0.0, 1.5, 3.0, 0.0).
fuzzy_set(fea_stress_level, adverse, at,

0.0, 24.0, 0.0, 0.0).
fuzzy_set(survival_analysis_level, short, dt,

0.0, 100.0, 0.0, 0.0). /* Greatest Weight */ 
fuzzy_set(hip_score_level, high, dt,

0.0, 10.0, 0.0, 0.0 ). /* Lowest Weight */

/* Output Fuzzy Sets */
fuzzy_set(combination_risk, increased, as,

0.0, 1000.0, 0.0, 0.0).
fuzzy_set(combination_risk, high_risk, at,

0.0, 5000.0, 0.0, 0.0).

fuzzy rules is more involved.

The shapes of the different vocabulary fuzzy sets can be seen in Figure 6.4. 

The code in Program 6.2 shows how these fuzzy sets are defined.2 These 

curves are indicative of a general approach rather thanji working prototype.

Once the shape of the vocabulary fuzzy set is decided, its other charac

teristics such as the curve slope are subject to trial and error adjustment.

2 This approach was adapted from the Prolog implementation of scalable monotonic 
chaining proposed by Pacheco (1997) [122], The variables dt, at, tp and as indicate 
linear decreasing, linear increasing, trapezoidal or triangular, and increasing s-curve fuzzy 
set types respectively (see Appendix D).
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Program 6.3 Inputs and outputs for low and high risk assessment models.
/* Input for a low risk assessment model
fit_and_fill_level: 0.8000000
fea_stress_level: 12.000000
survival_analysis_level: 40.000000
hip_score_level: 3.000000

Output for a low risk assessment model 
combination_risk: amount = 142.222244 membership = 
combination_risk: amount = 500.000000 membership = 
combination_risk: amount = 600.000000 membership = 
combination_risk: amount = 700.000000 membership = 
Cummulative Risk is 1942.222168 
combination_risk = 388.444427

0.142222 
0.500000 
0.600000 
0.700000

Input for a high risk assessment model 
fit_and_fill_level: 25.000000 
fea_stress_level: 19.000000 
survival_analysis_level: 10.000000 
hip_score_level: 1.000000

Output for a high risk assessment model 
combination_risk: amount = 944.444397 membership = 
combination_risk: amount = 791.666687 membership = 
combination_risk: amount = 900.000000 membership = 
combination_risk: amount = 900.000000 membership = 
Cummulative Risk is 3536.111084 
combination_risk = 707.222229 */

0.944444
0.791667
0.900000
0.900000
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The prototype program was tested with data which were obtained in 

conservations with surgeons and finite element analysis experts. These data 

values, though hypothetical, are therefore agreed and acceptable estimates. 

The inputs, together with the corresponding outputs, are shown in Pro

gram 6.3. Two samples are given, one refers to a low risk patient/prosthesis 

combination, the other to a high risk patient/prosthesis combination. The 

results validate the working of the model but they also confirm the necessity 

to expand the number of rules and to refine the associated fuzzy sets. Such 

a process would require a far greater acceptance of the use of fuzzy rules, 

before the committal of resources to a lengthy dialogue with surgeons could 

be justified.

6.3 SUMMARY AND CONCLUSIONS

• In order to address the reality that the expert knowledge of surgeons is 

difficult to represent by precise rules (as required by rule-based expert 

systems) this chapter explored the possibility of adapting the expert 

system of the previous chapter in such a way as to legislate for the 

linguistic and imprecise manner in which surgeons like to describe their 

professional assessments.

• Fuzzy logic is a formalism that allows this imprecision and uncertainty 

to be captured. The fuzzy approach is an unorthodox one and is not 

amenable to classical mathematical analysis and justification.

• A working prototype which exploits the versatility of Prolog has been
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developed and this is offered as a template for a more in-depth explo

ration of the fuzzy technique, as applied to patient/prosthesis combi

nation evaluation. At present such an exploration is curtailed by the 

lack of sample data with which to fine tune the program. Fine tuning 

is achieved by adapting the shape of the fuzzy sets until the output of 

the program reflects expert judgements.

• Only four rules were used in the prototype and this number would have 

to be greatly expanded in a production program. Each of the rules 

suggested can be decomposed into a number of more specific rules but 

this places a premium on having data to test and verify the system.

• The fuzzy system approach, to the extent that it is developed here, 

can only claim to demonstrate that conventional expert systems can 

be adapted to reflect the way surgeons think and express professional 

judgement.

• The rule-based expert system developed in Chapter 5 remains the most 

highly developed solution and the one most likely to be accepted for 

implementation in the short term and is also the foundation from which 

fuzzy systems will ultimately evolve.



Chapter 7

THR Feed-Forward Neural 

Network

Where is the wisdom,

That we have lost in knowledge;

Where is the knowledge,

We have lost in information.

T.S. Elliot

Chapters 4, 5 and 6 have addressed the problem faced by the surgeon: “How 

do you evaluate a particular patient/prosthesis combination at the clinical 

stage?” The techniques used in previous chapters come within the generic 

approach of pattern recognition or data mining. A pattern can be thought 

of as an instance of a model i.e. f(x) — 3x2 + x is a pattern whereas /(x) = 

0X2 + /?x is a model. Data mining involves fitting models to, or determining 

patterns in observed data [41]. So far, the approaches have concentrated 

on eliciting from surgeons rules that may help in identifying patterns in the
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data, with a view to classifying patient/prosthesis combinations as acceptable 

or not. The prototypes of these approaches proved viable and hold much 

potential once the rules have been stabilised.

There is however another approach which bypasses the need for surgeons 

to explicitly enumerate rules at the clinical stage. This is the neural network 

approach were the rules are implicitly learnt and contained in the network. 

Neural networks are analogous to curve-fitting in so far as they recognise 

patterns in historical data. Neural networks can be applied to the prosthesis, 

patient and other relevant data available to the surgeon immediately prior 

to the operation; and can also be factored into the rule-based expert system 

developed in Chapter 5. But the real power and potential of neural networks 

is realised through having access to national and international hip prosthesis 

databases. These data can be used to train a neural network to recognise 

patterns and classify patient/prosthesis combinations.

For systems that have no learning or have supervised learning,1 neural 

networks and curve-fitting are pretty much the same. Both distil functions 

from data, thereby allowing interpolation, extrapolation and generalisation. 

The main difference between the two is in the processing of input data. 

The learning techniques of neuraJ networks mean that the function can be 

automatically updated, while most curve-fitting techniques are “batch.”2 In 

curve-fitting a relatively complex system of linear equations is solved and 

when an additional data point is added the old curve must be replaced.

1 Unsupervised learning techniques for neuraJ networks (reinforcement learning) do not 
have any clear analogues in traditional curve-fitting.

2 A batch system processes data in discrete groups of previously-scheduled operations 
rather than interactively or in real time.
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Neural network techniques are best suited to situations where the number of 

data points is large and continual learning from the addition of new points 

is involved (as is the case in THR analysis). With neural networks, however, 

the problem of proving that the solution found is optimal remains unresolved.

In this chapter it is proposed to first outline the background and potential 

of neural networks. The underlying theory is outlined in Appendix E while 

some notable examples axe described in Appendix F. The fact that neural 

network design is critically dependent upon the availability of reliable and 

consistent data is highlighted by describing the process involved in neural 

network training and testing. This leads to a discussion on the inadequa

cies of the current situation with regard to national and international hip 

registers.

A detailed description and analysis of the recorded information contained 

in the Swedish Hip Register, which provides the data for this research, follows. 

This researcher did not have access to the original Swedish Hip Register data 

but to data which was extracted from graphs published in a series of research 

papers on the Swedish Hip Register [1, 82, 83]. These graphs show the effect 

of selected variables on survivability. Data on patient and implant factors 

are available separately, but not in combination. More limited data are 

available on other variables, such as surgical procedures and type of hospital, 

which influence prosthesis survivability. This inhibited a fuller exploration 

of the value of neural networks (and resulted in the construction of two more 

limited neural networks where a single comprehensive one would have been 

more appropriate), but it did not diminish the validity of the substantive 

point of the thesis that neural networks hold great potential in the field.



THR Feed-Forward Neural Network 119

Then follows the most substantive part of the chapter which describes 

the design, training and testing of two separate neural networks one with 

patient-related data sets and the other with implant-related data sets. In 

the conclusion, the positive outcomes, and the limitations, of the neural 

network approach are highlighted.

7.1 BACKGROUND

Neural networks are a new phenomenon as evidenced by the fact that many 

of the techniques used in this thesis were developed and first propagated 

within the past decade. The enormous potential of neural networks is ex

pected to increase as neural network techniques are further developed. Neural 

network techniques are permeating every sphere of computer use, and have 

made possible applications in such intractable areas as voice and handwriting 

recognition.

Artificial Neural Networks (ANNs) are simplified models of the human 

central nervous system. They are networks of highly interconnected neural 

computing elements that have the ability to respond to input stimuli and to 

learn to adapt to the environment. It is believed by many researchers in the 

field that neural network models offer the most promising unified approach to 

building truly intelligent computer systems; and, that the use of distributed, 

parallel computations, as performed in ANNs, is the best way to overcome the 

combinatorial explosion associated with symbolic serial computations when 

using von Neumann computer architectures [101].

The human neural network system provides a strong stimulus for emulat-
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ing its behaviour in ANNs. Biological networks are able to process millions of 

input stimuli in milliseconds, even though the processes are electrochemical 

in nature, and therefore propagate at relatively slow millisecond rates. This 

rate is several orders of magnitude slower than the high-speed picosecond 

operations performed in conventional serial digital computers. In spite of 

this wide divergence in signal propagation and unit processing speed, con

ventional state-of-the-art computer systems, such as vision systems, fall fax 

short of the performance exhibited by biological systems in their process

ing ability. ANNs have been shown to be effective as computational pro

cessors for various tasks including pattern recognition (e.g. speech and vi

sual image recognition), associative recall, classification, data compression, 

modelling and forecasting, combinatorial problem solving, adaptive control, 

multi-sensor data fusion and noise filtering. They exhibit a number of de

sirable properties not found in conventional symbolic computation systems 

including robust performance when dealing with noisy or incomplete input 

patterns, a high degree of fault tolerance, high parallel computation rates, 

the ability to generalise and adaptive learning.

7.2 ACQUIRING DATA SETS

The successful operation of a neural network is dependent on the availability 

of a comprehensive set of training and testing data. This section describes 

and classifies the data, pertinent to the field of total hip replacement, used 

for training and testing data sets.
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7.2.1 Purpose of Data Sets

Data sets are required to train and test or validate a neural network.

7.2.1.1 Training

A neural network is usually trained in one of two ways. The most common 

(and the method used in this thesis) is supervised training. Many samples are 

collected to serve as exemplars. Each sample in this training set completely 

specifies all inputs, as well as the outputs that are desired when those inputs 

are presented. Then we choose a subset of the training set and present the 

samples in that subset to the network one at a time. For each sample, we 

compare the outputs obtained by the network with the outputs we would like 

it to obtain. After the entire subset of training samples has been processed, 

we update the weights that connect the neurons in the network. This updat

ing is done in such a way as to reduce the error in the network’s results. A 

single pass through the subset of training samples, along with an updating 

of the network’s weights is called an epoch. The number of samples in the 

subset is called the epoch size. When the epoch size is less than the entire 

training set, it is important that the subset be selected randomly each time, 

or troublesome oscillations may occur.

The other principal training method is unsupervised training. As in su

pervised training, we have a collection of sample inputs. But we do not 

provide the network with outputs for those samples. We typically assume 

that each input arises from one of several classes, and the network’s out

put is an identification of the class to which its input belongs. The process
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of training the network consists of letting it discover salient features of the 

training set, and using these features to group the inputs into classes that it 

(the network) finds distinct.

7.2.1.2 Testing

After training the competence of the network must be tested before it is 

put into service. This process is called validation. The usual procedure 

is to separate the known cases into two disjoint sets. One is the training 

set, which is used to train the network. The other is the testing set, which is 

used to test the trained network (the training of the hip replacement survival 

neural networks is described in Section 7.3.2 and the testing of the networks 

is described in Section 7.3.3).

In many respects, proper testing is more important than proper train

ing. A very small error on the training set may mistakenly be taken as an 

indication that all is well with the network. An examination of Figure 7.1 

shows why a low training-set error can be misleading. If the model has too 

many free parameters relative to the number of cases in the training set, it 

can over-fit the data. Rather than learning the basic structure of the data, 

enabling it to generalise well, it learns irrelevant details of the individual 

cases. Naturally, we can expect the error on the testing set to exceed slightly 

that on the training set. But if the difference is large, we must suspect that 

one of the two sets is not representative of the same population, or the model 

has been over-fitted. In either case, disparity in the errors is a warning sign 

that must not be ignored.
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x = training 
o = test

Well fit model Over-fit model

Figure 7.1: Low training error need not imply good performance.

7.2.2 Search for Consistent Data Sets

An enormous amount of research, across a wide range of countries, has been 

undertaken into total hip replacement, but there is little consistency in the 

data on which that research is based because there is no international body 

with responsibility for keeping records on hip replacements and for monitor

ing how measurements are taken and how data are collected.

This situation is exasperated by the use of many alternative hip scor

ing systems which produce a variety of objective scores characterising the 

outcome of hip replacements [96]. The difficulty of taking reliable and re

peatable measurements from x-rays, even within the same hospital, further 

complicates the task of pooling the data. The harmonisation of such scoring 

systems and the standardisation of measurements requires an international 

hip register body and agreed standards guiding the introduction of new im

plants into clinical use.
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7.2.2.1 International Hip Register

The lack of an international hip register is put down to the extent of the 

resources required to set up such a body. However, in light of the cost 

of the research that is being pursued and which is rendered less effective 

because there are no overall terms of reference, this position is difficult to 

sustain. Furthermore, the economic and social cost of sub-optimal prostheses 

is immense in the medium term. For example, the general failure of the 

Christiansen prosthesis (see Figure 7.11) in Sweden is calculated to have cost 

US$20 million (€17.14 million) in total [1]. The cost of one revision due to 

aseptic loosening is put at US$12,500 (€10,715). This takes no account 

of the individual patient’s suffering. The number of people presenting for 

difficult and costly revision surgery is increasing rapidly.

7.2.2.2 Ordered Introduction of New Implant Technology

Closely allied to the use of an international hip register is the importance 

of developing and agreeing models and standards for pre-clinical and clin

ical testing prior to the introduction of new implants into clinical praxis. 

Only the United States and very few other countries have legal and regu

latory processes guiding the introduction of new implants into clinical use. 

New implants and fixation techniques are, as a consequence, usually intro

duced into clinical practice without scientific validation, thereby exposing 

many patients to health hazards. The fight for “market share” amongst 

manufacturers has resulted in various implant design modifications (multi

modularity, new plastics, different surface finishes) each claiming superior
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clinical performance, but lacking scientific validation. Designers have been 

frustrated by the existence of incompatible design goals which can create 

enormous complications [62].

Many flawed prostheses have been introduced which, with hindsight, 

could have been discovered prior to introduction had all such innovations 

been examined in an ordered fashion [81]. For example, pre-clinical tri

bologic testing would have pointed out the risks associated with the heat 

treatment of polyethylene; and fatigue testing of experimental designs could 

have detected the proclivity to aseptic loosening when using low viscosity 

cements.

Neural networks, applied to hip replacement survival prediction, have 

enormous potential to further illuminate the hidden complexities of total hip 

replacement as part of an ordered introduction of new implants, as well as 

predicting the success of particular patient/prosthesis combinations. How

ever, for the full potential of the neural network model to be realised, a 

comprehensive training data set from an authoritative hip register is an es

sential requirement.

7.2.3 Data Sets for this Research

The national hip register for hip replacement data, which has existed in Swe

den since 1979, provided the data set for this thesis. Although the data 

contained in the hip register are not as comprehensive as would be desired, 

they are sufficient to train and test the potential of neural networks and 

thereby to advance total hip replacement research. The information con-
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tained in the Swedish national hip and knee replacement registers has led 

to documented changes of THR medical practice and to the establishment 

of no less than 19 registers in Sweden covering different medical areas. The 

data used in this thesis were extracted from the findings of the Swedish Hip 

Register [1, 82, 83].

In the Swedish Hip Register, the definition and end-point for failure of 

a hip implant is revision, which is defined as the exchange of one or both 

prosthetic components or the permanent removal of the prosthesis. The 

Swedish study started on January 1, 1979. All orthopaedic departments in 

Sweden were included. Complete copies of the hospital records of all revised 

THRs were assembled and these data were computerised. Each patient was 

allocated a unique identification number thus bringing together individual 

data, such as age, sex, diagnosis and type of prosthesis used.

More than 130,000 primary THR operations were performed in Sweden in 

the period 1978-1994. In the period 1979-1994 a total of 9,965 revisions were 

performed, about one thousand of these were on patients who had received

9,965
revisions

1 revisionNo revision 
8,689 hips

2 revisions 
156 hips

>3 revisions 
30 hips

Figure 7.2: THR revision 1979-1994.
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at least one previous revision. These latter cases were excluded from the 

data set used for the current study and hence the analysis is based on the 

balance of 8,689 hip revisions. The primary THE operation for these hips 

was performed in the period 1978-1994.

All surgical units performing THR in Sweden have provided a detailed 

report of their surgical techniques year-by-year since 1978. The techniques 

used include a femoral plug, cleaning of the bone bed and pressurisation by 

means of a proximal plug. Furthermore, type of cement, cement mixing and 

application techniques, including vacuum mixing, were described. This in-

Reason Number Percentage
Aseptic loosening 6,368 79.3
Infection 633 7.3
Technical error 339 3.9
Dislocation 294 3.4
Bony fracture 91 1
Pain 33 0.4
Miscellaneous 777 8.9

Table 7.1: Reasons for revision 1979-1994.

formation makes it possible to make an evaluation of the relevance of surgical 

technique.

Prophylactic measures taken against deep infection by means of par

enteral and local antibiotics were also recorded. The type of operative envi

ronment including laminar air flow and body exhaust gowns were documented 

year-by-year for every department and in this way the relative effectiveness 

of different prophylactic measures against deep infection was monitored.

Aseptic loosening has emerged as the main problem and the immediate 

reason for revision (Table 7.1). Deep infection and technical problems axe
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becoming less significant as surgical techniques improve. Sections 7.2.3.1 

and 7.2.3.2 describe the origin of the two groups of graphs from which two 

separate data sets were obtained. Each of the data sets was subsequently 

used to separately train and test two distinct neural networks.

7.2.3.1 Patient-Related Parameters

Important patient-related factors that influence total hip replacement sur

vivability are age, sex and primary diagnosis. The graphs in Figures 7.3, 7.4, 

7.5 and 7.6 are representative of the results from the Swedish Hip Register 

showing patient-related factors which influence survivability. In the reg

ister a total of 24 graphs, divided into three groups of eight, represent the 

three different primary diagnoses (osteoarthrosis, rheumatoid arthritis and 

hip fracture). Each group of eight is comprised of four graphs representing 

the different age groups (< 55, 55-64, 65-74, > 75) for male and female 

patients respectively.

Training and testing set data were constructed from these graphs and the 

data used to train and test a neural network to predict patient survivability 

(see Section 7.3.2.1). The conclusions to be drawn from these graphs are not 

always obvious. For example, the lower survival rate in men with the primary 

diagnosis osteoarthrosis of the age group 55-64 (see Figure 7.4) compared 

with the age group less than 55 (see Figure 7.3) is an unexpected outcome.3 

The distinctive capability of a neural network is a capacity to learn from 

historical data and to adjust correctly for a range of different influences.

3It is intuitively expected that prostheses in younger patients, who lead more active 
lives, would be more likely to fail.
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Men with Osteoarthrosis < 55

Survivors (%) gg

Postoperative years

Figure 7.3: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group less than fifty five.

Men with Osteoarthrosis 55-64

Survivors (%) gg

Postoperative years

Figure 7.4: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group fifty five to sixty four.
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Women with Hip Fracture > 75

85
Survivors (%) gg

Postoperative years

Figure 7.5: Survival rate for women with the primary diagnosis hip 

fracture in the age group greater than seventy five.

An additional attribute of neural networks is their ability to predict out

comes. The graph in Figure 7.6 is truncated due to insufficient data. A 

neural network, based on adequate training and testing data, was used to 

predict values for the missing data.

The available research papers on the Swedish Hip Register limit their 

analysis of the patient characteristics that affect the outcome of THR to 

age, gender and disease type. Other patient characteristics that can affect 

outcome are weight, socio-economic status, education, ethnicity, preoperative 

function status, activity level and co-morbidity4 [138]. Thus the potential of a

4 Co-morbid conditions may have a significant impact on patient outcome after THR. 
For example, a patient who is unable to walk up a flight of stairs before THR due to hip 
disease may not show improvement after surgery due to secondary restrictions, such as 
ischemic heart disease.



THR Feed-Forward Neural Network 131

100
95
90
85

Survivors (%) 80 
75 
70 
65
60 7

Men with Hip Fracture > 75

4 6 8 10 12
Postoperative years

14

Figure 7.6: Survival rate for men with the primary diagnosis hip 

fracture in the age group greater than seventy five: the neural network 

predicted survival rate is in red.

patient-related neural network to predict survivability is capable of significant 

expansion.

7.2.3.2 Implant-Related Parameters

We now turn to non-patient-related factors that influence total hip replace

ment survivability. Critical non-patient-related parameters include type of 

implant, type of hospital and choice of surgeon. The type of implant is the 

only parameter for which graphs, based on data in the Swedish Hip Register, 

were published, and the second neural network is therefore implant-related.
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Charnley

Survivors (%)

Postoperative years

Figure 7.7: Survival rate for aseptic loosening using the Charnley 

prosthesis.

Lubinus IP

Survivors (%)

Postoperative years

Figure 7.8: Survival rate for aseptic loosening using the Lubinus 

prosthesis compared with Charnley in red.
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Exeter Matte Surface

Survivors (%)

Postoperative years

Figure 7.9: Survival rate for aseptic loosening using the Exeter matte 

surface prosthesis compared with Charnley in red.

Exeter Polished Surface

Survivors (%)

Postoperative years

Figure 7.10: Survival rate for aseptic loosening using the Exeter 

polished surface prosthesis compared with Charnley in red.
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Christiansen

Survivors (%)

Postoperative years

Figure 7.11: Survival rate for aseptic loosening using the Christiansen 

prosthesis compared with Charnley in red.

Type of Implant The Swedish Hip Register highlights significant differ

ences between various implants with respect to revision for aseptic loosening 

due to osteoarthrosis. The graphs in Figures 7.7, 7.8, 7.9, 7.10 and 7.11 are 

representative of the results from the Swedish Hip Register showing the effect 

of implant type on survivability for aseptic loosening in osteoarthrosis. The 

Charnley survival curve is plotted in red in all of the graphs to enable com

parison. There were no differences between prosthetic designs when failure 

leading to revision for infection was analysed.

The Charnley, Lubinus IP and CAD implants have been used through

out the full observation period. The performance of these implants has been 

good and no difference in survival rate is noted between any of them at the 

10 year follow-up stage. The Exeter matte surface and Muller curved pros-
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theses are in an intermediate group with a higher rate of revision. The worst 

performance is observed with the Christiansen prosthesis. More recent im

plants, however, developed in the middle of the 1980s (Spectron, Lubinus 

SP, and Scan Hip), have a very low revision rate. Improved implant design, 

cement pressurisation, femoral plugging and vacuum mixing of cement were 

increasingly used in combination with these newer implants. A significant 

improvement has been observed, leading to a reduced rate of revision for 

aseptic loosening for the Spectron as opposed to the Charnley design. One 

explanation may be that the Charnley procedure still uses the second gener

ation of cementing technique whereas the newer implants use the most recent 

techniques.

7.2.3.3 Other Non-patient-Related Parameters

In addition to patient-related and implant-related factors there are other 

variables which influence prosthesis survivability. Two such variables are type 

of hospital and skill/experience of the surgeon. The Swedish Hip Register 

contains some hospital and surgeon-related information, but this information 

was not graphed by patient group or prosthesis type and thus it was not 

possible to include it in the construction of the neural networks. A short 

description of the other parameters is included only for completeness.

Type of Hospital Records of revision rates for aseptic loosening and deep 

infection exist for different hospitals. Statistical differences were found be

tween three different types of hospital: university hospitals (tertiary hos

pitals), regional hospitals (secondary hospitals), and community hospitals
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(primary hospitals).

University hospitals reported more infections than the other two groups. 

The reason could be that these hospitals attracted special problem cases that 

demanded long-term and extensive procedures.

When comparing aseptic loosening among all the prostheses the regional 

hospitals outperformed the others in all cases except for the Christiansen 

prosthesis and the surface replacements.

Surgeon Related Factors Information on the number and type of pri

mary prostheses which 37 individual surgeons had implanted each year was 

available. These 37 orthopaedic surgeons worked mainly at one of three 

hospitals: Malmo General Hospital, Sahlgren Hospital or East Hospital in 

Gothenburg. Information on some surgeons working at community hospitals 

was also available. All the surgeons were categorised as experienced surgeons 

and performed 30 to 70 hip replacements annually.5

There were some statistical differences between the surgeons for aseptic 

loosening. Two of 33 surgeons had fewer complications for aseptic loosening 

than the others and one surgeon had more re-operations than any of the 

others. Most surgeons performed to standard.

The basis of the statistical differences was not related to the number of 

primary prosthetic operations performed per year: all of these surgeons were 

well trained and had long experience. This was reinforced by the fact that 

the number of dislocations (normally associated with surgeon error) was, 

with one exception, very small. This latter surgeon had a higher incidence

5 Due to their high failure rate, double-cups (surface replacements) and Christiansen 
prostheses were excluded, because these prostheses could distort the analysis.
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of dislocation after primary hip replacement even though he performed more 

than 200 primary operations a year.

Finally, a recent study has found that the survivability of hip implants for 

Sweden does not match the performance of centres of excellence using modern 

cementing techniques [94]. This is explained by the scope of the Swedish Hip 

Register that includes a great number of individual surgeons with different 

surgical skills and backup. However, comprehensive national statistics, such 

as those assembled in Sweden, more accurately reflect the average quality 

of medical care to the public. Average surgical results are predictably less 

impressive than outcomes from specialised orthopaedic centres.

7.3 MODEL DESIGN, TRAINING AND 

TESTING

Two distinct neural networks have been designed, trained and tested with 

the patient-related and the implant-related data sets. This is the subject of 

this section.

The process of designing, training and testing a hip prosthesis neural 

network can now be initiated. In practice two separate networks will be built 

because the manner in which the data became available to the researcher did 

not facilitate the linking of the patient and the prosthesis input variables.

The neural networks were initially constructed in Mathematica™. This 

made it possible to get a visual understanding of the problem, allowed ex

perimentation with variants of neural network architecture, and facilitated
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network performance analysis. The results were then reprogrammed in C-(—I- 

in order to speed up calculations.

7.3.1 Design of Feed-Forward Neural Networks

This section addresses the difficult problem faced in choosing a structure of 

feed-forward network.

7.3.1.1 Number of Hidden Layers

The first decision faced (in designing the networks) related to the number 

of hidden layers. There is no theoretical reason ever to use more than two 

hidden layers (see Section E.4). Furthermore, for the vast majority of prac

tical problems, there is no reason to use more than one hidden layer. Those 

problems that require two hidden layers are rarely encountered in real-life 

situations. But the question arises as to whether the theoretical requirement 

reconciles with the practical requirement i.e. are there problems where learn

ing is facilitated by having more than the minimum theoretically required 

number of hidden layers?

Experience has shown that the use of more than one hidden layer is almost 

never beneficial [84]. The problem is that training tends to slow dramatically 

when additional hidden layers are used. This is due to two effects:

1. Additional layers, through which errors must be back-propagated make 

the gradient more unstable. The success of any gradient-directed op

timisation algorithm is dependent on the degree to which the gradient 

remains unchanged as the parameters (weights in a neural network)
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vary.

2. The number of false minima is likely to increase dramatically. This 

means that there is a higher probability that after many time- 

consuming iterations, the network’s calculations will be stuck in a local 

minimum and have to escape or start over.

7.3.1.2 Number of Hidden Neurons

Choosing an appropriate number of hidden neurons was the next critical 

decision. Using too few starves the network of the resources it needs to 

solve the problem. Using too many increases the training time, perhaps to 

the extent that it becomes impossible to train the network adequately in a 

reasonable period of time. Also, an excessive number of hidden neurons may 

result in over-fitting. The network will have so much information processing 

capability that it will learn insignificant aspects of the training set, aspects 

that are irrelevant to the general population. The performance of the network 

will be excellent when it is evaluated with the training set but, when the 

network is called upon to work with the general population, it will perform 

poorly. This is because it will consider trivial features, unique to training set 

members, as well as important general features, and become confused (see 

Figure 7.1). Thus, it is imperative to use the absolute minimum number of 

hidden neurons that will make the network perform adequately.

The decision on choosing the number of hidden neurons was facilitated 

by the existence of the geometric pyramid rule. This states that for many 

practical networks, the number of neurons follows a pyramid shape, with the
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number decreasing from the input towards the output. This is illustrated 

in Figure 7.12. The numbers of neurons in each layer follow a geometric

Hidden = ^/mri

oo

Output = m

OOtttoooo
tttoooooo

input = n

Figure 7.12: Typical three-layer network.

progression. Thus, if we have a three-layer network with n input neurons 

and m output neurons, the hidden layer would have -y/mn neurons. A similar 

rule applies to four-layer networks. In this case, computation of the number 

of hidden-layer neurons is slightly more complex

r —

Nhidden \ — TTIT

m
2

(7.1)

Nhiddeni = mr.

The above formulas should be taken as rough approximations. If there are 

very few inputs and outputs, and the problem is complex, the formulas may 

underestimate the number required. For example, approximating a compli-
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cated function of one variable involves just one input and one output neuron, 

but may require a dozen or more hidden neurons. On the other hand, in the 

case of a simple problem with many inputs and outputs, fewer neurons will 

often suffice.

Finding the optimal number of hidden neurons was time-consuming. The 

procedure was to start with a number of neurons which was definitely too 

small. Choose an appropriate criterion for evaluating the performance of the 

network (see Section 7.3.3.1). Then slightly increase the number of hidden 

neurons, and train and test again. This was to be repeated until the error 

was acceptably small, or no significant improvement was noted, whichever 

comes first. When testing sets axe easily obtained, neurons may be added 

past the point of acceptable results, as the testing procedure can be relied on 

to warn of over-fitting. Otherwise, it is advisable to use the minimum number 

of hidden neurons necessary to achieve acceptable performance. Increasing 

the number beyond that minimum may cause deterioration in generalisation 

ability. The training flowchart used is shown in Figure 7.13.

It is tempting to preserve the learned weights for the next test. In other 

words, suppose that a network having five hidden neurons has been trained. 

When we add a sixth, keep the same weights for the first five. Initialise the 

weights for the new, sixth neuron to small random numbers, and continue 

training from there. The rationalisation is that we already have learned 

a lot. This is a mistake unless you are willing also to try totally random 

initialisation. Although there are some problems for which this will work, 

there are many situations in which this will rapidly lead to a false minimum. 

The optimal weights for n hidden neurons rarely are even close to being a
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Add neuron

Collect training test set

Test set error acceptable?

Initialise too few neurons

Training error acceptable?

Merge test set 
into training set

Done

Figure 7.13: Training flowchart when known cases are easily obtained.

subset of those for n -f 1 hidden neurons. If neural networks were linear, 

this would be an excellent procedure, with each addition taking a bite out 

of the error subspace left behind by its predecessors. But the profound non

linearity of these networks prevents this from happening. When a new neuron 

is added, the augmented reasoning capability usually means that the network 

should have an entirely different approach to the solution.

A lot of effort is currently being devoted to the design of self-pruning 

networks. A wide variety of methods have been proposed, but most have in 

common the simultaneous minimisation of output error and minimisation of 

the number of hidden neurons. Many of these methods define an auxiliary 

criterion based on the number of hidden neurons, or on the size of the weights
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connecting hidden neurons to other layers, or on hidden-neuron activation 

distributions. The function that is optimised is a composite of the output 

error with the hidden-neuron economisation criterion. These methods can 

be easily abused [84], They do not directly address the issue of over-fitting. 

Naturally, this issue is indirectly addressed, in that using fewer hidden neu

rons decreases the likelihood of over-fitting. However, that fact may give a 

false sense of security. Furthermore, the choice of how to weigh economy 

versus training accuracy is highly arbitrary. Self-pruning algorithms are in 

still their infancy. Developments are coming; in particular Fakhr proposes 

what seems to be a promising approach [40].

One last point should be made. It is often surprising how few hidden 

neurons are required. The tendency is invariably to overestimate the re

quirement. It is not at all unusual to have a problem with hundreds of input 

neurons and several output neurons, which only requires five or so hidden 

neurons. The best approach is start low and work up as needed. It is un

fortunate that using fewer hidden neurons often increases the likelihood of 

the learning algorithm becoming trapped in a local minimum. Additional 

weights can create new channels through which gradient descent is able to 

pursue a global minimum. In practice, though, the trade-off is rarely worth

while. Stick with the minimum number necessary to solve the problem, and 

emphasise thorough training.

7.3.1.3 Preparing Input Data

Measured variables are categorised according to the type and amount of 

information they contain. Identifying the correct type of each variable in
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an experiment is vital to the performance of the network. The principal 

categories are defined as nominal variables, ordinal variables and interval 

variables.

Nominal Variables Nominal variables are associated with named items. 

They do not have a numerical value. Measured values of a nominal vari

able do not have relationships like “greater than” or “less than.” The only 

mathematical relationships relevant to nominal variables are equality and 

inequality.

Sex type is the obvious nominal variable. Numerical data can also be 

nominal. Postal codes and telephone area codes are classic examples.

To determine whether or not a variable is nominal, it is must established if 

an ordered relationship is to be implied by means of the values of the variable. 

If this is the case the variable belongs to a higher information category.

Nominal variables were presented to the network by using as many neu

rons as there are values that the variable can take on. Exactly one of the 

neurons will be turned on according to the value of the variable. All of the 

other neurons will be turned off. This is called one-of-n encoding. The only 

exception to this rule is if the variable is binary, taking on one of only two 

possible values. In this case, one neuron is used. It is turned on for one 

value, and off for the other.

Ordinal Variables Ordinal variables are above nominal variables in the 

“amount of information” hierarchy. Variables measured on an ordinal scale 

have order relationships. The values that can be taken on by an ordinal
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variable can be placed in a unique order. “Greater than” and “less than” have 

meaning. But the actual numerical values of ordinal variables do not convey 

any information whatsoever beyond the order itself. For example, suppose 

that we measure an ordinal variable for three subjects. The measured values 

are 3, 4, 250, respectively. All we know is that the second subject measures 

greater than the first subject on this variable, and the third subject measures 

greater than both of the others. We cannot say that the third subject is 

greater than the second to a larger degree than the second is greater than 

the first. The ability to do so would imply a higher type of variable than just 

ordinal.

When rank data is used, we cannot compare differences. In a class of 200, 

suppose person A ranks 20, person B ranks 25, and person C ranks 70. It 

might be that the grade point averages of persons B and C are very close, but 

their widely differing ranks are due to a cluster of people with approximately 

that average. We simply do not know. All we can say is that A is less than 

B, and B is less that C.

For the purposes of the present research the “percentile transformation” 

method was used for presenting rank data. For each measured value in the 

ranked group, count the number of cases in the group whose values are less 

than or equal to the case being transformed. Divide by the total number of 

cases. This gives a fraction ranging from nearly zero to one. This fraction 

is usually expressed as a percentage. In this way, we remove the effect of 

the group size, standardising the measurements to a uniform range of zero 

to one.

Ordinal variables may also be presented to neural network inputs as ther-
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mometers. As many neurons are used as there are values for the ordinal 

variable, minus one. If that is too many, as would be the case when using 

percentiles, which can take on a great number of values, we use an “appro

priate” number of neurons and quantify the variable. We might, for instance, 

use 9 neurons, breaking the percentiles into “less than 10,” “10 to 19,” etc. 

Arbitrarily assign an order to the neurons and map each neuron to an ordi

nal value other than the smallest. Then, for a given input value, turn on the 

corresponding neuron and all neurons less than it. If the input is the smallest 

value, leave all the neurons off. In the above case of 10 neurons representing 

a percentile score, an input value of 35% would be represented by turning on 

the first 3 neurons.

A thermometer representation of product grades is shown in Figure 7.14. 

The four product grades require three neurons. The lowest grade, D, turns 

off all three neurons. Higher grades turn on successive neurons.

Neuron 2

Neuron 0

Neuron 1

Grade D Grade C Grade B Grade A

Figure 7.14: Thermometer representation of ordinal data.
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There is no theoretical need for turning on neurons below the one desig

nating the variable’s value. Turning on exactly one neuron could convey the 

same information. However, experience has shown that training of networks 

is usually faster with this method. It more closely corresponds to the physi

cal reality of ordinal data. Each neuron makes a contribution to a decision, 

and larger values retain the contributions of small values.

Interval Variables A higher order of measured data is achieved with inter

val variables also referred to as interval scales. These measurements share the 

property of order relationship with ordinal variables. If we have three inter

val measurements, A, B, and C, it makes sense to rank them as A < B < C 

or some other ordering. But with interval data, we can go one step further: 

we can also rank differences between measurements. We can say things like 

(C — B) > (B — A). Now, if A = 4, B = 5, and C = 250, we can genuinely 

say that C is very much larger than B, while B is only a little larger than 

A. This was not possible with ordinal data.

Variables measured on an interval scale are almost always presented to 

a neural network using exactly one neuron. The variables must be scaled 

in such a way as to be commensurate with the model’s neuron-activation 

limits. Care must be taken that the scaling is done so that the data used 

in training will be commensurate with that used in testing. It would be 

incorrect, for example, to scale the training data based on the minimum and 

maximum values in the training set, then scale a batch of test data based 

on the extremes in the test set. The scaling must be done in a universally 

applicable way.
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Probably the most common scaling method employed is simple linear 

mapping of the variable’s practical extremes to the network’s practical ex

tremes. In the unusual case of a measured value going beyond the limit, 

the value would be truncated to that limit. Let the variable’s maximum 

and minimum values expected in normal use be designated and 

respectively. Let the network’s practical limits be and Amin. For a feed

forward network with logistic activation functions, output activation limits 

would typically be 0.9 and 0.1, respectively. Inputs, of course, have no the

oretical limits, but stability is usually improved by using comparable limits. 

An observed value V is scaled to a presentable value A with a simple formula

A — r(V Vmtn) "b Amin

= rV + (Amin - rVmin) (7.2)
A —A ■

r =---------------- .
Vmax bmin

If the variable was used to train an output neuron, it is necessary to un

scale activation levels to obtain meaningful values for the variable when the 

network is used. This is done trivially by inverting the preceding formula

v = ^__ a™alI + v ■v ~ * min

= -+(v - Amin-
' I v minr \ r

(7.3)

7.3.2 Training of the Neural Networks

Two data sets were extracted from the research material outlined in Sec

tion 7.2.3 to train two separate neural networks. They reflect the effects on
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survivability respectively of patient variables and of implant variables (see 

Sections 7.2.3.1 and 7.2.3.2). Ideally these two data sets should be combined 

in a single data set where the effect of both patient and implant variables 

combined would be interpreted.

7.3.2.1 Patient-Related Neural Network

Purpose The aim of the patient-related neural network was to capture 

the richness of the information contained in the graphs described in Sec

tion 7.2.3.1. This was done by extracting a data set from the 24 graphs, 

which show the effect of patient-related parameters. This data set was then 

randomly divided into training and testing sets to be used in conjunction 

with the neural network. The patient-related neural network was able to use 

the inputted data to predict patient survivability outcomes. For example, 

to extrapolate the graph in Figure 7.6 which is truncated due to insufficient 

data. More generally it is applied to extrapolating the graphs past the length 

of time the experiment has been in progress.

In order to test the predictive ability of the patient-related neural network, 

data from one of the 14 graphs (that relating to women with the primary di

agnosis hip fracture in the age range 55-64 years) was omitted and the neural 

network trained on data from the remaining graphs. The neural network was 

then asked to predict the missing case. The result, shown in Figure 7.15, is 

a convincing indication of the capability of neural networks in this respect.
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Women with Hip Fracture 55-64

Survivors (%) 80 
75

10 12 14
Postoperative years

Figure 7.15: Survival rate for women with the primary diagnosis 

osteoarthrosis in the age group fifty five to sixty four: the survival rate 

predicted by the neural network is in red.

Construction The construction of the feed-forward neural networks was 

a matter of trial and error, guided by the discussion on hidden layers and 

hidden neurons in Section 7.3.1. The optimum structure of the patient- 

related neural network was found to have one hidden layer with three hidden 

neurons. The number of inputs in the input layer is six (see Figure 7.16). The 

first three inputs are nominal type variables and correspond to the variety of 

causes of total hip replacement (osteoarthrosis arthritis, rheumatoid arthritis 

and hip fracture) contained in the graphs outlined in Section 7.2.3.1. Only 

one of these three inputs can be activated at any one time. The fourth 

input corresponds to the sex of the patient and is a binary nominal variable: 

the patient is male or female. The fifth and sixth inputs are interval type
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variables and they represent the age of the patient and the number of years 

since the patient’s operation. These input values are scaled to take on a 

value between 0 and 1. Finally, there is a single output which is an interval 

variable, representing the percentage of patients not revised. This output is 

scaled to take on a value between 0.1 and 0.9, and not between 0 and 1. This 

is to take account of the sigmoid or logistic activation function used by the 

feed-forward network.6

Operation With the structure of the patient-related neural network deter

mined, the network was then trained to obtain a weights profile at the nodes 

that enabled the network to reproduce the characteristics of the patient- 

related graphs described in Section 7.2.3.1. The network is trained when 

the error, which is a function of the weights (see Section E.3.1), reaches sta

bility and is below a certain value. However, it is also important to avoid 

over-training, an acceptable error was taken to be 0.01.

There are certain feed-forward neural network parameters that can be 

tuned to try and ensure convergence. Fortunately, the training of the patient- 

related neural network proved straightforward. The data set was readily 

amenable to being interpreted by a neural network model. Changing the 

parameters of the neural networks produces instructive changes in the rate 

of convergence to a solution. However, the networks converged and learnt

the data set under most circumstances.
6The values 0 and 1 are not used in the input or output vectors. This is because 

the sigmoid function {f{x) — 1+^_,) asymptotically approaches the limits of 0 and 1 for 
infinite arguments. If we insisted that the actual network outputs attained the values of 
0 and 1 , we could be iterating the weights forever, and they would grow to extremely 
large values (positive or negative). To avoid this problem, we let 0.1 represent the binary 
0 state, and 0.9 the binary 1 state.
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The graphs in Figures 7.17 and 7.18 represent the first and second training 

runs respectively: only a marginal increase in the rate of convergence was 

achieved when the number of hidden nodes was increased from two to three. 

Figure 7.19 represents the third training run and shows the effect of increasing 

the learning rate from .9 to 4. The larger value of learning rate results in a 

faster convergence.

Standard Algorithm (6, 2, 1, .1, 500)
0.1 

0.08 

0.06
Error

0.04 

0.02

0 100 200 300 400 500

Iterations

Figure 7.17: Output of first training run, patient-related network: 6 

input nodes, 2 hidden layer nodes, 1 output node and learning-rate .1.
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Figure 7.18: Output of second training run, patient-related network: 6 

input nodes, 3 hidden layer nodes, 1 output node and learning-rate .1.

Standard Algorithm (6, 3, 1, 4, 500)
0.1

Error

0.08

0.06

0.04

0.02 I h ,1 .1 , 1

100 200 300 400 500

Iterations

Figure 7.19: Output of third training run, patient-related network: 6 

input nodes, 3 hidden layer nodes, 1 output node and learning-rate 4.
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Momentum Algorithm (6, 3, 1, 12, .1, 500)
0.1

0.08

0.06
Error

0.04

0.02

0 100 200 300 400 500

Iterations

Figure 7.20: Output of fourth training run, patient-related network: 6 

input nodes, 3 hidden layer nodes, 1 output node, momentum 12 and 

learning-rate .1.

The final graph, Figure 7.20, illustrates the effect of modifying the algo

rithm to add a momentum term to the weight-update equations. The math

ematics of this are laid out in Section E.3.2.2. The rate of convergence was 

increased and no further modifications of the feed-forward neural network 

algorithm were deemed necessary.
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Error

Momentum Algorithm (6, 3, 1, 12, .15, 2000) 
0.1

0.08

0.06

0.04

0.02

0 500 1000 1500 2000

Iterations

Figure 7.21: Output of fifth training run, patient-related network: 6 

input nodes, 3 hidden layer nodes, 1 output node, momentum 12 and 

learning-rate .15.

Results The patient-related neural network had no difficulty in learning 

the intricacies of the patient data set as presented to it. This confirmed that 

the network would be capable of discerning much more complex patterns and 

more comprehensive data if and when these become available. The testing 

of this neural network is outlined in Section 7.3.3.

7.3.2.2 Implant-Related Neural Network

The implementation of the implant-related neural network has many parallels 

in that of the patient-related neural network. However, the uses and potential 

applications of the implant-related neural network are considered to be far 

more exciting.
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Purpose As before, the aim of the implant-related neural network was 

to extract the fullness of information contained in the graphs described in 

Section 7.2.3.2. This was done by distilling a data set from the implant 

survivability graphs, which illustrate the effect of implant-related parameters 

on the life of the implant. This data set was then randomly divided into 

training and testing sets to be used in conjunction with the neural network. 

The implant-related neural network was able to manipulate the inputted 

data in two ways. The first was to extrapolate survivability outcomes for 

new implant designs that have only recently been fitted. The second was 

to postulate the survivability of proposed designs of implants. The implant- 

related neural network, when used in this way, has the capacity to gauge and 

anticipate the performance of proposed implants.

Construction The construction of the implant-related neural network pro

ceeded in a trial and error manner adhering as far as possible to the guidelines 

outlined in Section 7.3.1. The optimum structure of the implant-related neu

ral network had one hidden layer with two hidden neurons. The number of 

inputs and implant variables (the values of the input variables represent the 

characteristics of the prosthesis) are not as well defined as in the case of the 

patient-related neural network (see Figure 7.22) and may require adjustment 

and further experimentation as and if more and better data becomes avail

able. For the purposes of this thesis, and the testing of this new application 

of neural networks, the number of inputs and implant variables was taken to 

be eight, five binary nominal variables and three interval variables (see Fig

ure 7.22). These inputs correspond to the different classifications by which
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prostheses can be characterised as laid out by Cowley (1995) [23].

Cemented Metal femoral component, acetabular component polyethylene 

alone, or with metal backing. Components fixed into place with poly

methyl methacrylate cement. Developed in the 1960s; improved ce

menting techniques in the late 1970s.

Ceramic Prostheses with ceramic heads and/or acetabular cups. Aim is 

to reduce wear. Cemented and cement-free types. Developed in the 

1970s; more recent types have ceramic heads, polyethylene cups.

Press-fit Cement-free, metal femoral component, and metal-backed 

polyethylene acetabular cup; designed to achieve fixation by close geo

metric fit only. Developed in the late 1970s.

Porous-coated Cement-free, press-fit metal femoral component with metal- 

backed polyethylene acetabular cup, surfaces adjacent to bone coated 

with beads or mesh. The aim is to achieve fixation by bone in-growth 

into the pores in the surface coating. Developed in the early 1980s.

Hydroxyapatite-coated Cement-free, press-fit metal femoral component 

with metal-backed polyethylene acetabular cup, surfaces adjacent to 

bone coated with hydorxyapatite, believed to promote bone growth and 

form chemical bonds with the bone. Hydroxyapatite may be applied 

over a porous coating. Developed in the late 1980s; in the early stages 

of routine use.

Hybrid Cemented femoral component used with cement-less porous-coated 

acetabular cup. Aim is to reduce loosening of the acetabular compo-
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nent. Developed in the 1980s.

Fully modular Cemented or cement-free with porous or hydorxyapatite 

coatings. Modular components (such as stem, proximal sleeve, head) 

available in range of sizes and types, assemble inter-operatively to give 

best fit. Developed in the late 1980s.

Fourteen prosthesis survivability profiles (Charnley, Lubinus IP, CAD, 

Christiansen, Muller Curved, Muller Straight, Exeter Matte, Exeter Polished, 

Scan Hip Collar-less, Scan Hip Collar, Spectron Metal-Backed, Spectron All- 

Poly, PCA and Lubinus SP) are shown in Table 7.2. Eight input variables 

define each prosthesis, the seven listed in the table and an eighth, which 

was an interval variable, representing the number of years since the patient’s 

operation. Finally, as in the patient-related neural network, there was a 

single output, of the interval variable (scaled) type, and this represented the 

percentage of patients that did not have revision surgery.

Operation Having decided on the implant-related neural network’s struc

ture, the network was next trained to obtain the weights profile at the nodes 

that would enable the network to reproduce the characteristics of the implant 

survivability graphs described in Section 7.2.3.2. A network is trained when 

the error, which is a function of the weights (see Section E.3.1), reaches 

stability and is below a certain predetermined value. An acceptable error 

was taken, as before, to be 0.01. The graphs in Figures 7.23, 7.24, 7.25 and 

7.26 represent successive training runs for the implant-related network. They 

show the network error for illustrative combinations of network parameters.



THR Feed-Forward Neural Network 162

The instability of the graph in Figure 7.25 is the result of setting the learning 

parameter too high. The graph in Figure 7.26 represents the same network 

with a learning parameter of 0.1. It can be seen that the network did not 

fully stabilise until after 300 iterations.

Error

Standard Algorithm (8, 2, 1, .1, 500)

100 200 300 400 500

Iterations

Figure 7.23: Output of first training run, implant-related network: 8 

input nodes, 2 hidden layer nodes, 1 output node and learning-rate .1.
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Standard Algorithm (8, 2, 1, .1, 2000)

Error

Figure 7.24: Output of second training run, implant-related network: 8 

input nodes, 2 hidden layer nodes, 1 output node and learning-rate .1.

Results The implant-related neural network was successfully trained to 

recognise the characteristics of fourteen different prostheses. The analysis 

was based on eight input variables seven of which represented specific char

acteristics of the individual prosthesis. The remaining input variable and the 

output variable corresponded to the x and y axis values respectively, from the 

implant survivability graphs. Additional input variables can be introduced to 

the network and their effect on implant survivability measured. The testing 

of this implant-related neural network is outlined in Section 7.3.3.
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Momentum Algorithm (8, 2, 1, 12, 1, 500)

100 200 300 400 500

Iterations

Figure 7.25: Output of third training run, implant-related network: 8 

input nodes, 2 hidden layer nodes, 1 output node, momentum 12 and 

learning-rate 1.

Although the results were excellent, several reservations must be made 

about their interpretation. First, eight input variables were not enough to 

uniquely specify all fourteen prostheses. Four prostheses (Muller Curved, 

Muller Straight, Exeter Matte and Exeter Polished) had exactly the same 

implant variable profile and this does not reflect the differences between 

them. Similarly, both Scan Hip Collar-Less and Scan Hip Collar had the 

same profile. This raises the question: “Why not use more input variables 

to uniquely describe the implants?”
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Error

Momentum Algorithm (8, 2, 1, 12, .1, 500)

Iterations

Figure 7.26: Output of fourth training run, implant-related network: 8 

input nodes, 2 hidden layer nodes, 1 output node, momentum 12 and 

learning-rate .1.

This question brings to the fore the current practice of manufacturers 

who modify implants every few years, without changing their name [95]. 

This is a marketing issue which ensures continuity of brand recognition but 

invalidates the use of a prosthesis name. For example, in the Swedish Hip 

Register, the Charnley, Lubinus IP, Spectron Metal-Backed, Spectron All- 

Poly, and Lubinus SP prostheses come as both cemented and hybrid models. 

The PCA prosthesis is available in porous-coated and hydroxyapatite-coated 

models.

The variables in Table 7.2 are, therefore, only best estimates for the 

majority of implants listed. Furthermore, the success of the more recently 

developed implants might also be attributable to improved cementing tech-
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niques including cement pressurisation and a careful bone-bed preparation 

[83]. Thus operation-related variables should also be included. In view of this 

situation, further analysis of the effects of specific prosthesis characteristics 

would be superfluous.

Finally, a point on the relevance of adapting of this neural network for use 

by the surgeon in the period just prior to the operation. Ideally, this neural 

network needs to be trained on a data set whose records comprise the patient 

variables and the precise name of the implant. This would be sufficient to 

identify the best implant for a particular patient. However, since implant 

names are currently imprecise and do not uniquely specify the implant used, 

additional implant variables would have to be included to help distinguish 

between implants.

7.3.3 Testing Model Performance

7.3.3.1 Testing Neural Networks Performance

The mean square error of the outputs is the most universally accepted mea

sure of performance for neural networks. Optimisation of this measure is the 

criterion against which the success of neural network training is normally 

judged. This is not surprising because the mean square error indicator can 

claim both practical and theoretical advantages.

The performance of a neural network is invariably tested with a different 

data set to the one on which it was trained. Statistical techniques that 

estimate only a few parameters relative to the number of training samples can 

often be exempted from this restriction. Although the strictest rules dictate
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that performance measures based on the training set are unfairly biased 

toward false optimism, in practice this may not be a serious problem for many 

traditional statistical techniques. However, the rule with regard to separate 

training and testing data sets for neural networks is rarely breached. The 

relatively large number of parameters involved (many weights) means that it 

would be all too easy for the network to concentrate on unique characteristics 

of the training samples, rather than generalising on the properties of the 

population.

Mean Square Error Many statistical techniques use mean square error 

as their basic measure of performance. It is easily computed by summing the 

squared differences between what a predicted variable should be and what 

it actually is, and then dividing by the number of components that went 

into that sum. Such a measurement has great intuitive appeal probably be

cause it emphasises large errors more than small errors, a frequently valuable 

property.

More importantly, for models (statistical, neural, or otherwise) that are 

mathematically defined, the derivative of the mean square error can be far 

more easily computed than most other performance measures. This means 

that direct methods of optimising performance, such as linear regression, 

can often be easily done when the optimisation criterion is mean square 

error. Even in non-linear cases, such as feed-forward networks with non

linear activation functions, indirect methods are feasible. Optimisation of 

performance measures for which a derivative cannot be found is a far more 

expensive proposition. Finally, the mean square error lies close to the heart of
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the normal distribution. If errors can be assumed to be normally distributed, 

minimising the mean square error often corresponds to other very desirable 

optimisations. For these reasons, nearly all training algorithms for feed

forward networks (and many other models as well) rely solely on the mean 

square error as the object of their optimisation efforts.

The mean square error for neural networks, where we are concerned only 

with the output neurons, is relatively easily defined. For any input, the 

output neurons take on an activation level determined by the input and 

by the network. For that input there is a desired set of output activation. 

Suppose that we are processing case p. Let the correct (target) activation of 

output neuron j be designated as tpj, and let the observed activation be opj. 

If there are n output neurons, the error for that single presentation is

(7.4)

If there are m presentations in the epoch, the error for that epoch is

(7.5)

7.3.3.2 Calculation of Patient and Implant-Related Neural

Network Error

The data sets for both the patient and the implant-related neural networks 

were randomly divided into training and testing sets. The testing sets were 

used in the calculation of the mean squared error (see Table 7.3) for the 

respective networks. The mean squared error was small for each network.
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This proved the ability of the networks to learn the characteristics of the 

survivability graphs.

Neural Network Mean Square Error
Patient-related
Implant-related

0.014905
0.019283

Table 7.3: Neural network mean square error.

In spite of the attainment of a low mean square error by a network, the 

mean square error is still only an indication of how the network is likely to 

perform. The ultimate test for a particular network is how it performs in 

service. The portents for success are certainly evident for the patient and 

implant-related neural networks, but it is only over time that their value can 

be confirmed.

7.4 CONCLUSIONS

The neural networks which have been built are clearly capable of discerning 

the complex non-linear effect of changes in input variables on survivabil

ity. The patient-related neural network successfully interpreted the effect of 

changes in patient profiles (age, sex, pathology) while the prosthesis-related 

neural network facilitated experimentation with implant variables to opti

mise survivability. The value of these capabilities to the surgeon (if and 

when confirmed in surgical practice) is of great significance.

The construction of a single neural network, however, which combines 

both patient and prosthesis survivability variables (and where possible other 

relevant variables) would be of considerably greater value. The constraints
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on achieving this objective are inherent in data limitations rather than in 

any problem intrinsic to the training and testing of neural networks. The 

researcher did not have direct access to the raw data of the Swedish Hip 

Register, but had to rely on indirect access through two discrete sets of 

graphs, one relating to patients and the other to implants.

A second limitation of the available data further inhibited the capacity 

to build a neural network to adequately exploit the obvious potential of this 

medium. Neural networks have achieved outstanding success with problems 

which are characterised by a large number of interdependent variables. The 

implant selection process with its very large number of input variables, is 

prototypical of such a problem. Nevertheless, only eight variables could be 

reliably identified from the data available, for the design of the implant neural 

network.

This is because of incomplete specification of design variations of individ

ual prosthesis types. Generic designs, such as the Charnley, manifest many 

modifications and refinements over time and these are not, as a rule, captured 

in the Hip Register. An example of a slight modification in design having far 

reaching results is the Exeter stem: the change from matte to polished stem 

resulted in dramatically different long term results. Therefore, it is vital that 

the exact specification of the prosthesis used should be communicated to the 

neural network, if the highly non-linear relationship that exists between the 

patient/prosthesis variables is to be uncovered.



Chapter 8

Discussion, Conclusions and 

Recommendations

For every complex problem there is a solution which is neat, simple 

and wrong.

H.C. Menken

There is a time in the life of every problem when it is big enough to 

see, yet small enough to solve.

Mike Leavitt

8.1 DISCUSSION

8.1.1 Background

The surgical operation of THE is, after 30 years, a well established medi

cal procedure. Yet, paradoxically, it is becoming less satisfactory with the 

passage of time as the expectations of patients are increasingly being frus-
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trated. The average life of an artificial hip has remained at about 15 years 

over the last decade whereas, during the same time period, the average life 

expectancy and quality of life of the elderly has improved greatly, leading 

to widespread demand for hip replacements which last longer. More signifi

cantly, revision rates for different prosthesis designs, and for different surgi

cal procedures, vary enormously and unpredictably. For example, in the UK 

there are some 62 primary THRs, ranging in price from UK£250 (€360) to 

UK£2000 (€2860), and manufactured by 19 separate companies. But there 

is no attempt to establish a correlation between the price of a THR and its 

survivability: 30 per cent of prostheses introduced in the past 5 years have 

not been evaluated in peer-review journals [97].

The case has been made in this thesis for a comprehensive scientific evalu

ation of potential patient/prosthesis combinations in the time frame immedi

ately before the operation. Up to now, such evaluations have focused on finite 

element analysis and a variety of mechanical testing techniques carried out at 

the design stage of the prosthesis and, to a lesser extent, on statistically-based 

clinical evaluation after the operation. But a substantial amount of new in

formation becomes available at the time of the operation itself, principally 

the patient’s bio-data and pathology and the choice of surgical procedure 

available to the surgeon. Given recent advances in information technology 

and artificial intelligence, which enable all the different strands of data to be 

effectively co-ordinated and mined, it is difficult to defend a situation where 

a surgeon continues to select a prosthesis, largely on the basis of brand image 

and familiarity with a particular design.

The search for a more scientific, knowledge-based solution to the pros-
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thesis selection problem, faced by the orthopaedic surgeon in the time frame 

just prior to the operation, has opened up some exciting vistas. Individually 

none of the instruments developed in this thesis can claim to be a neat, one- 

size-fits-all solution but, collectively, they are a significant advance and an 

optimistic basis for closer collaboration and co-operation between the medi

cal and mechanical engineering professions. The hip prosthesis is a mechan

ical device performing an important biological function in the human body. 

Progress at this pre-eminent interface between the two professions can only 

benefit from a more intensive understanding and application of the analyti

cal and computer-based techniques which are now the bedrock of engineering 

design.

8.1.2 Concept of Pattern Classification

This thesis proposed a framework for a systems solution to the prosthesis 

selection problem. All of the approaches examined fall into the data mining 

category of classification. The construction of a classification procedure from 

a set of data with known categories (e.g. good, satisfactory, poor) has been 

variously termed pattern recognition, discrimination, or supervised learning 

(in order to distinguish it from unsupervised learning or clustering where 

the classes are inferred from the data). The data associated with a particu

lar patient/prosthesis combination are interrogated to identify patterns that 

would allow the combination to be put into a particular classification. That 

classification can range from a binary decision (to accept or to reject) to a 

multiple-class model that allows the combination to be placed in one of a
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number of classifications, as well as the possibility of rejection.

The three main historical strands of classification research are: machine 

learning, neural networks and statistics [86]. These have become the pre

rogative of different professional and academic groups, and as a result, the 

issues explored by each of the groups tend to diverge. All groups have, how

ever, had some objectives in common. They have all attempted to derive 

procedures that would be able:

• to equal, if not exceed, a human decision-maker’s behaviour, while 

having the advantage of consistency and, to some extent, explicitness,

• to handle a wide variety of problems and, given enough data, to be 

extremely general in their range of application,

• to be successfully used in a practical setting.

8.1.2.1 Machine Learning

Machine learning is generally taken to encompass automatic computing pro

cedures based on logical or binary operations, that learn a task from a se

ries of examples. Machine learning aims to generate classifying expressions 

simple enough to be easily understood. They must mimic human reason

ing sufficiently to provide insight into the decision process. Like statistical 

approaches, background knowledge may be exploited in development, but 

operation without human intervention is assumed. After a period of steady 

growth, machine learning has reached practical maturity under two distinct 

headings: (a) as a means of constructing rule-based software (for example 

in “expert systems”) from sample cases volunteered interactively and (b) as
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a method of data analysis whereby rule-structure classifiers, for predicting 

the classes of newly sampled cases, are obtained from a “training set” of 

pre-classified cases. This thesis confined itself to the subset (a) of machine 

learning (this comes down to the use of the symbol system of predicate as 

opposed to propositional logic). This is the construct underlying the chapters 

on rule-based (Chapter 5) and fuzzy expert systems (Chapter 6). The subset 

(b) of machine learning was not fully explored because it requires access to 

extensive training-set data as well as the enumeration of rules in conjunction 

with an expert. (Hence the neural network alternative is more appropriate 

for current purposes).

8.1.2.2 Neural Networks

The next category of classification procedure exploited in this research was 

neural networks. The versatility and sophistication of neural networks pro

vide the capability to circumvent the limitations of machine learning systems, 

which require explicit rules. They can also be used, of course, to draw infer

ences from historical data thus replicating the function of statistical analysis.

Neural networks provide a key to unlock information embedded in ex

tensive medical data-bases. They combine the complexity of some of the 

statistical techniques with the machine learning objective of imitating hu

man intelligence: this is done, however, at a more “unconscious” level and 

hence there is no accompanying ability to make the concepts which have been 

learnt transparent to the user. Neural networks hold considerable promise 

in further unearthing the complex relationships that pertain between pa

tient and prosthesis variables and their impact on the outcome of the THR
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operation.

8.1.2.3 Statistics

Statistical approaches to classification perform a valuable function in the 

analysis and the drawing of inferences from historical data as instanced in 

papers analysing the data in the Swedish Hip Register [1, 82, 83]. Statistical 

analysis, using advanced regression techniques, revealed the relative impor

tance of the different factors which contribute to the success of the operation.

Statistical methods were not examined in this thesis, however, because 

they are not the most appropriate for use by the surgeon in the time frame 

before the operation. Statistical approaches are generally characterised by an 

explicit underlying probability model, which provides a probability of being 

in each class rather than a simple classification. In addition, it is usually 

assumed that the techniques will be used by statisticians and, hence, outside 

specialist intervention will be required with regard to variable selection and 

transformation and overall structuring of the problem [86].

8.1.3 Comparative Analysis of the Three Approaches

In this thesis, an expert system, a fuzzy expert system and a neural network 

were constructed to solve the same problem (see Figure 8.1): the matching 

of a hip prosthesis to an individual patient. Each of the procedures provided 

significant insights but success was ultimately circumscribed by the quality 

of the input data. The problem is a difficult one and is characterised by 

a multiplicity of factors some of which are poorly understood. The data
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Hip Prosthesis Selection Problem Area

Figure 8.1: Hip Prosthesis Selection Problem Area.

available are incomplete and imprecise and the problem space is subject to 

continuous change (new and variant prostheses are being continually intro

duced). Whereas each of the three approaches has been successfully applied 

to better-structured problems, limitations became apparent when applied to 

the highly complex and ill-defined problem of hip prosthesis selection.

It is proposed to first highlight the positive features and the limitations 

of each approach, as well as its longer-term potential to contribute to the 

solution of the prosthesis selection problem. This will be followed by an 

appraisal of the relative merits of the machine learning as opposed to the 

neural network solution.
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8.1.3.1 Expert and Fuzzy Expert Systems

The expert system approach raised great hopes initially. Its rules are readily 

comprehensible to surgeons and it is possible to start on a modest scale 

and expand as the procedures become more familiar to the participants. It 

attempts to emulate the human approach to problem-solving and has been 

successfully applied in medical diagnostics and in a number of other fields of 

human endeavour. Paradoxically, it was the inability to capture the richness 

and flexibility of surgeons’ decision-making that contributed to the relative 

failure of the expert system developed in the course of this research.

1. It did not prove possible to build a modicum of common sense into the 

model to legislate for exceptional situations which can arise, such as no 

feasible solution (or a solution outside the expertise of the professionals 

directly involved).

2. The absence of a learning dimension makes expert systems unattrac

tive in a discipline and an environment where change, adaptation and 

learning are of the essence.

3. The unidimensional character of expert systems and their reliance on 

symbolic inputs to the exclusion of sensory experiences and any ele

ment of creativity is at variance with the holistic culture of medical 

diagnostics.

What then is the prognosis for machine learning in the context of the 

patient/prosthesis selection problem? First, it is proposed to outline the 

minimum conditions necessary if the prosthesis selection problem is ever to
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come within the province of an explicit rule-based solution. A comment 

will be made on the extent to which these conditions are satisfied in the 

present instance. Next an attempt will be made to list some implications and 

assumptions inherent in a machine-based solution for a medical condition, 

with a view to highlighting the logical and emotional reactions which are 

likely to arise.

The conditions necessary for the development of the system are:

1. Representative surgeons and their patients available and willing to par

ticipate in the process and prepared to submit to a very intrusive ordeal 

which runs contrary to the cherished medical code of confidentiality.

2. Experts submitting to a series of hypothetical questions with a view to 

eliciting the reasoning logic once possessed but probably lost by them 

in the process of becoming experts.

3. A supportive clinical environment and a team of medics and paramedics 

actively co-operating with an experiment which may be perceived as 

presaging fundamental changes in work practices even to the extent of 

de-skilling.

It is not surprising that the laboratory conditions experienced by the 

researcher did not fully meet with this specification. The sample of surgeons 

who co-operated was relatively small and even this co-operation was in part a 

trade-off for earlier collaboration. Medical practitioners work under extreme 

pressure in a busy hospital environment where the urgent can soon sweep 

away the most genuine good intentions to participate.
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It is now proposed to examine the implications and assumptions inherent 

in applying a rule-based expert systems to the prosthesis selection problem 

(and to any problem where the issue of human health, indeed of human life, 

is involved).

1. The solution of the expert system, though manifestly satisfactory, may 

fall somewhat short of what is capable of being achieved by human 

experts at the highest level.

2. There is an assumption, on the other hand, that human experts can at 

times make inordinately bad decisions and that at least this scenario is 

avoided when applying an expert system.

3. Ideally rate of advancement in a particular field of medicine is assumed 

to be such as to justify freezing best practice for some indeterminate 

period. This is not the case in hip prosthesis selection, which at the 

moment is in a state of flux.

4. An expert system does not know when a problem is outside its domain 

whereas a human expert knows to refer the problem on.

There are manifest causes for concern, for both patient and surgeon, in 

the implications of some of these assumptions. The human survival instinct 

is very strong and no avoidable risk, however small, is acceptable when it 

comes to matters of human health and quality of life. There is no doubt 

that expert systems have the capability to significantly improve the overall 

standard of decision-making in prosthesis selection. But this capability will
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take time and patience to reach fruition. The main challenge is to win the 

trust of patient and surgeon during the transition period.

In practice, expert systems have performed best where the depth of knowl

edge is greater than the breadth of knowledge, and where the content is spe

cific and the knowledge well understood [131]. This can not be said to apply 

at the present time in the field of hip prosthesis selection. Even the addition 

of fuzzy rules, to try and legislate for the vagueness of expert statements, 

does not overcome the essentially poorly understood nature of the area.

8.1.3.2 Neural Networks

Neural networks are flexible tools pre-eminently suitable for a dynamic en

vironment. They have the capacity to learn rapidly and change quickly as 

circumstances, data values and outcomes evolve. These attributes can be 

summarised as follows:

1. A capacity to learn. Where appropriate training data are available 

neural networks can learn from the patterns inherent in these data, 

thus obviating the need for programming by an analyst.

2. A capacity to predict future behaviour from patterns observed in his

torical data. Pattern recognition is a powerful technique for capturing 

the information in data and deriving conclusions from it.

3. Flexibility to respond to a changing environment. Although neural 

networks may take time to absorb a sudden or radical change, they are 

excellent at adjusting to constantly changing information.
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4. The rapid growth of hospital and national medical data-bases opens up 

promising potential for the application of neural networks.

5. Neural networks are computationally intensive and originally were run 

on supercomputers but their routine is now optimised to the point 

where they can be run in reasonable time on the current generation of 

personal computers.

Inevitably there are also certain limitations associated with neural net

works:

1. Not withstanding the fact that excellent results have been achieved in 

many applications neural network analysts are unable to satisfactorily 

explain the behaviour of their models. Experimentation with differ

ent parameters achieves some understanding of model behaviour and 

increases confidence in the results achieved.

2. Linked with this is the inability to explain, in the absence of explicit 

rules, the basis on which decisions are made. This has potentially 

serious ramifications in an era where patients can insist on their right to 

be informed about decisions which affect their lives and where medical 

outcomes are increasingly challenged in the courts.

3. Neural networks depend critically on the analyst’s understanding of the 

problem being modelled and on having training data which accurately 

represent the problem. Incomplete data was a serious issue for the cur

rent research and this problem is also widely reported in the literature.
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The results achieved with neural computing are only as good as the 

data used to train the system.

Comparison of Neural Networks and Rule-Based Methods

1. Rule-based systems have proved to be viable in medical applications 

where the problem can be presented in a structured way. Knowledge in 

the area of patient /prosthesis selection has not yet reached this degree 

of codification but this thesis offered some important advances in the 

formalisation of knowledge in the area.

2. The capacity of rule-based expert systems to explain their decisions 

is of immense importance in achieving recognition and acceptance by 

medical experts and in keeping medical decisions away from scrutiny 

by the law courts. It is the responsibility of the system designer, in 

conjunction with the expert, to elicit rules that are realistic and ac

ceptable to the medical profession. This characteristic of rule based 

system contrasts with the lack of transparency that exists in the case 

of neural networks.

3. The chasm, however, between the impersonal, desiccated quality of a 

decision produced by a computer, relying on quantification and sym

bolic input, and the humane approach associated with personal inter

vention by a specialist is an inordinate gap to be bridged. In practice, 

however, a medic will always be required to impart and interpret the 

decision of an expert system.
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4. Consequently, further development of rule-based expert systems is con

strained by the difficulty of gaining the trust of medical professionals 

whose multifaceted expertise has to be encapsulated in explicit deci

sion rules. Hip prosthesis selection expertise is not only predicated on 

a knowledge-base which spans the disciplines of medicine and mechan

ical engineering but also the surgeons’ own operational dexterity. This 

may prove a step too far in the case of patient prosthesis selection.

5. Neural networks, on the other hand, are an extremely powerful and 

flexible instrument capable of mining immense quantities of historical 

data and reacting to changing environments. They perform statistical 

functions better than traditional statistical methods when the form of 

the data is unknown or non-linear, or when the problems are complex 

with highly inter-related relationships.

6. Neural networks are critically dependent on the availability of good 

quality, consistently compiled data. These data are especially impor

tant when training the system and, in the case of the current research, 

incomplete data were a major constraint.

7. The implementation of a neural network from Irish hip selection ex

perience is not an option because of a dearth of data. The future for 

neural networks looks very promising, however, as many countries are 

moving quickly towards establishing national medical data-bases and 

comprehensive patient information systems, which cover all aspects of 

patient care and management. In Ireland such a system has yet to be 

realised.
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8. The neural network approach offers the best option for the immedi

ate future of carrying out a comprehensive evaluation of possible pa

tient/prosthesis combinations just prior to the operation. It’s main 

advantage, is that it obviates the need to interrogate experts about 

their choice of rules.

8.1.4 Summary

The way knowledge is captured and represented for a particular problem may 

well depend on the degree of knowledge formalisation and codification that 

has occurred in that field. This concept is illustrated in Figure 8.2 using the 

experience of this study as an example. It is a well-documented fact [133]

Evaluation Techniques Rule-Based Fuzzy Neural Network 
(FEA/Fit-and-Fill/Hip Score) Expert System Expert System

Method of Knowledge 
Representation

Figure 8.2: Knowledge refinement diagram.
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that new technologies go through a period of flux with a variety of competing 

designs on the market before a “dominant design” eventually emerges (e.g. 

motor cars, computers, video recorders etc.). During this emerging phase 

there is a great deal of experimentation and many false starts precisely be

cause the technology has not crystallised into a well-defined and mature state 

[132], The proposition is that the field of total hip replacement has remained 

in this pre-paxadigmatic condition for an inordinate time. There is reason to 

hope that continuing improvements in data mining capability, and particu

larly the recent progress in neural network techniques, will move prosthesis 

technology to a more mature and sophisticated plane.

8.2 CONCLUSIONS

• Comprehensive evaluation, just prior to the operation, of possible pa

tient/prosthesis combinations, is essential to improve the success of the 

THR operation. A portfolio of quantitative evaluation techniques for 

this purpose now exists.

• THR evaluation methods differ fundamentally and further automation 

of some of the methods (e.g. fit-and-fill analysis) is feasible and neces

sary. Expertise on the evaluation methods tends to reside in different 

professional disciplines and this has impeded their harmonious devel

opment.

• The calculation of an overall evaluation, based on the outputs of the 

separate evaluation techniques, is not a trivial problem. A simple
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weighting of the evaluation output components, to arrive at an overall 

evaluation, did not capture the complexity of the medical decision

making process.

• A rule-based expert system offers the best means of achieving the cor

rect overall evaluation in the immediate future. However, the lack of 

familiarity on the part of surgeons with the quantitative evaluations 

being used undermines medical confidence in the value of the system.

• The fuzzy expert system added some enhancements to the rule-based 

system by incorporating flexibility and allowing for an element of un

certainty in the rules elicited from the experts. But this advantage 

cannot be exploited until surgeons accept the intrinsic value and po

tential contribution of expert systems. The overall problem of gaining 

the surgeons’ confidence remains.

• Neural networks, which focus on mining historical THR records, are 

manifestly a valid and useful tool for the evaluation of THR survivabil

ity. Survivability was taken to be the most objective measure of THR 

success. The problem was formulated so that the output of the objec

tive function was the survivability of the THR. Four distinct groups 

of variables have an important influence on survivability: patient, im

plant, hospital and surgeon. This thesis dealt solely with patient and 

implant-related factors because these were the only areas for which data 

were available.
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• The modelling of patient-related factors in isolation is not of great 

practical value. Patient factors cannot be changed at the time of the 

operation and the best that can be achieved is an indication of how 

similar patients performed in the past. This can equally be done by 

traditional curve fitting. Prediction of survivability for a given type 

of patient in cases where the available historical data is truncated was 

shown to be an area where neural networks can make a valuable con

tribution.

• The modelling of the impact of implant factors on hip survivability 

was of immense practical importance because this made it possible to 

evaluate a range of prosthesis designs. The neural network was able 

to predict the survivability of different designs when it was supplied 

with different combinations of inputs, delineating the characteristics 

of individual implants. The network was trained to gauge the effects 

of these characteristics, and combinations of these characteristics, on 

survivability. This is the type of complex task for which neural net

works are pre-eminently suited. Neural networks are sensitive to subtle 

interactions that are not transparent to human observers.

• The network used eight variables to enable the neural network to dif

ferentiate between fourteen prosthesis types (see Section 7.3.2.2). The 

number of variables selected can be increased considerably and the 

neural network has no difficulty in factoring in the effects of the new 

variables.
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• This opens up the exciting possibility of being able to estimate the sur

vivability of new prostheses with speculative combinations of variables.

• The success of the separate patient and implant neural networks drew 

attention to the great potential of a neural network which could com

bine both patient and implant variables. The data required to im

plement such a network were not, at this stage, forthcoming to the 

researcher. Such a network would be particularly useful to the surgeon 

just prior to the operation because it could be constructed to provide 

information about the particular patient/prosthesis combinations being 

contemplated. The main limitation of such a network is an inability to 

explain its reasoning. However, neural networks in other fields, which 

have shown a proven ability to provide the correct answer, have been 

readily accepted by their users.

• One very obvious benefit for the patient to accrue from the use of neural 

networks is the ability to obtain reliable and timely information on the 

probable survival time of the particular prosthesis being recommended. 

This will empower the patient to make a decision on whether to proceed 

with the operation or not.

• The neural network does not replace the portfolio of other prosthe

sis evaluation methods (mechanical testing, tribological testing, finite 

element analysis etc.) but rather it provides a significant additional 

technique which enhances the capability to evaluate and select pros

theses.
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8.3 RECOMMENDATIONS

• The imperative of evaluating patient/prosthesis combinations in the 

timeframe just prior to the THR operation must be recognised. This 

is the stage where decisive new information (anatomic details, patient 

pathology, surgical options etc.) becomes available. Failure to analyse 

and evaluate all relevant data leads to sub-optimal decisions and is 

detrimental to the long-term advancement of THR as a field of medical 

expertise.

• It is recommended that the surgeon be empowered by putting at his 

disposal a range of evaluation techniques including FEA, fit-and-fill 

analysis, clinical hip scores analysis and radiological hip score analy

sis. At present the surgeon does not have the capacity or the time to 

organise or interpret the results of these evaluations because the exper

tise is distributed widely among selected engineering and paramedical 

sub-disciplines.

• The preferred way to empower the surgeon is the rule-based expert 

system which was constructed and validated in the course of this re

search (see Chapter 5). Initially this expert system can be fine-tuned 

and prototyped with the three most highly developed and automated 

evaluation techniques, namely FEA, fit-and-fill analysis and clinical hip 

score analysis. These are the techniques for which it is possible, given 

the current state of knowledge, to elicit rules which are realistic and 

acceptable to the profession.
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• It is recommended that additional evaluation techniques should be pro

gressively added to the model as these are improved and automated. 

All the evaluation components require further reseaxch and refinement. 

A neural network module can in due course be integrated into the rule- 

based expert system, but this is some way into the future since neural 

network evaluation, as of now, is predicated on a separate statistical 

population with its own characteristic surgical techniques (Swedish Hip 

Register).

• The concept of employing an expert system for medical diagnostics 

is well established and after a period of experimentation and intense 

consultation is likely to prove acceptable to the orthopaedic frater

nity. Successful medical applications of expert systems already per

meate many parts of the profession: well established examples include 

INTERNIST/CADUCEUS for diagnosing diseases in internal medicine 

and MYCIN for diagnosing blood infections.

• It is recommended that the preferred long-term deployment of the 

neural network technique is as a stand-alone or alternative evaluation 

paradigm. The neural network is a powerful data-mining technique 

in its own right, capable of incorporating patient, prosthesis, surgical 

practices, hospital regimes and other key variables and of recognising 

patterns and relationships in historical data. The integrity and the 

consistency of these data are a primary consideration but the way dif

ferent countries design and assemble their medical databases is not yet 

harmonised [83].
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• It is recommended that efforts to gain direct access to the raw data con

tained in the Swedish National Hip Register be redoubled. These data, 

despite some limitations, are consistently compiled and facilitate the 

implementation of a neural network combining both patient and im

plant variables and, ultimately, hospital and surgeon-related variables 

also.

• The range of prosthesis design variables on which data are now recorded 

should be extended in the light of experience gained in constructing and 

testing neural networks. The number of prosthesis variables which can 

potentially affect the outcome of a THR has been shown to be consid

erably greater than is currently recorded. (It is highly probable that a 

similar comment can be applied to recorded data on other orthopaedic 

implants, in particular the knee and the elbow, for which the neural 

networks developed in this thesis have compelling relevance).

• Computerisation has resulted in the proliferation of medical databases 

nationally and internationally and is giving renewed impetus to the 

theory and practice of neural networks for the mining of these data. In 

the context of the pressing medical and social demand for more rapid 

progress in THR it is important that this vital area of human concern 

should not fall further behind.
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8.4 FURTHER WORK

• All the evaluation techniques critiqued in Chapter 4, some more than 

others, require development and adaptation to keep pace with rapid ad

vances in software capability and computing power. For example, FEA 

and fit-and-fill analysis, currently based on 2-D imaging, need to be 

converted to use 3-D CAT scans (see Section 4.1.1.1); and clinical hip 

score analysis is particularly disadvantaged by data limitations. Many 

of the improvements necessary can only be achieved in operating con

ditions and through a close working relationship between the surgeon 

and the domain specialists.

• Progress in refining the rule-based expert system must go hand-in-hand 

with improvements in the evaluation techniques because the rules are 

only as good as the data on which they are based. It is estimated that 

reliable data are needed to sustain about 150 rules, as opposed to the 

30 rules prototyped in the research model. The expert system can only 

be refined and validated in realistic laboratory conditions.

• Further work on fuzzy expert systems must await the prior development 

and broad-based acceptance of a comprehensive rule-based expert sys

tem.

• The potential and the need to consolidate the neural network approach 

introduced and progressed in this thesis is obvious. The first step is to 

combine patient and prosthesis variables and then to add other vari

ables as the neural network is trained and as the data become available:
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this would yield much useful information on the complex variable in

teractions and dependencies involved in THR. A neural network easily 

accommodates this increase in complexity.

• The most crippling impediment to progress in THR research and prac

tice is the absence of agreement on how to assemble and regulate the 

content of prosthesis data-bases. This deficiency is seriously impairing 

progress and has been repeatedly highlighted in editorials and in arti

cles by a succession of eminent authorities. Disagreement exists at the 

most fundamental level. What is the best measure of THR success? 

Should failure by recognised at the onset of moderate pain [11] or when 

the necessity for revision occurs [83]?

• The standardisation and harmonisation issue must be urgently ad

dressed as considerable resources are now being allocated to the com

puterisation of hospital records. The present Labour government in 

Britain has already committed itself to the full scale computerisation 

of ail records in their National Health Service. Hopefully, such an ac

tion is imminent in Ireland.

• If progress is not made on these fundamental issues it is likely that 

THR may be further outstripped by other areas of medical technology. 

A number of countries, in addition to the UK, are now committed to 

full computerisation of their health service records. IBM has recently 

set up a dedicated research group to apply data mining techniques to 

medical data bases [85]. This decision was motivated by a turning 

point in the man versus machine epic: when an IBM parallel computer
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defeated the human chess grandmaster Kasparov. The new machine 

was capable of examining 50 billion chess positions in the three minutes 

nominally allocated for a single move. When this incredible processing 

power was harnessed to the recorded knowledge of computer scientists 

and chess champions, it created a watershed in the history of artificial 

intelligence.
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Prolog Expert System Source

This appendix contains the Prolog source code listings.

/* Suitability Evaluation 
suitability(Prosthesis.Answer)

Answer is the reply to a request by Prosthesis 
for suitability. */ 

suitability(Prosthesis.Answer) 
ok_profile(Prosthesis), 

fit_rating(Prosthesis,FitRating), 
hip_score_analysis(Prosthesis.HipScoreAnalysis), 
fea_analysis(Prosthesis,FEA),
evaluate(profile(FitRating,HipScoreAnalysis,FEA),

Answer) , !.
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/* The Fit Rating Module 

fit_rating(Prosthesis.Rating)

Rating is a qualitative description assessing 

the fit offered by Prosthesis to cover the request 

for suitability. */ 

fit_rating(Prosthesis.Rating)

fit_profile(Prosthesis.PrimaryDimensions.SecondaryDimensions, 

TertiaryDimensions),

fit_evaluation(PrimaryDimensions,SecondaryDimensions, 

TertiaryDimensions.Rating).

fit_profile(Prosthesis.PrimaryDimensions,SecondaryDimensions, 

TertiaryDimensions)

requested.suitability(Prosthesis.Suitability), 

fit_percent(primary_dimensions.Prosthesis.Suitability, 

PrimaryDimensions),

fit_percent(secondaxy_dimensions.Prosthesis.Suitability , 

SecondaryDimensions),

fit_percent(tertiary.dimensions.Prosthesis.Suitability, 

TertiaryDimensions).

fit.percent(Type.Prosthesis.Total.Value) 

findalKX, (fit(Fit.Type), 

amount(Fit,Prosthesis,X)),Xs), 

sumlist(Xs.Sum),
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Value is Sum*100/Total.

/* Evaluation Rules */
fit_evaluation(PrimaryDimensions.SecondaryDimensions, 

TertiaryDimensions.good)
PrimaryDimensions =< 100.

fit_evaluation(PrimaryDimensions.SecondaryDimensions, 
TertiaryDimensions.excellent)
PrimaryDimensions < 70,
PrimaryDimensions + SecondaryDimensions =< 100. 

fit_evaluation(PrimaryDimensions,SecondaryDimensions, 
TertiaryDimensions.excellent)
PrimaryDimensions < 40,
PrimaryDimensions + SecondaryDimensions < 70, 
PrimaryDimensions + SecondaryDimensions + 

TertiaryDimensions =< 100.

/* Arthroplasty Data - Classification of Fit */
fit(isthmus,primary_dimensions).
fit(femoral_head_offset,primary_dimensions).
fit(canal_width,secondary_dimensions).
fit(canal_width_plus_20,tertiary_dimensions).

f it (Ccinal_width_minus_20, tertiary .dimensions).

/* Hip Score Analysis Rating Module
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hip_score_analysis(Prosthesis.Rating)

Rating is a qualitative description assessing 

the hip score analysis record offered by Prosthesis to 
support the request for suitability. */ 

hip_score_analysis(Prosthesis.Rating) : - 
hip_score_factors(Factors), 
score(Factors,Prosthesis,0,Score), 
calibrate(Score,Rating).

/* Hip Score Evaluation Rules */ 
calibrate(Score,bad) Score =< -500. 
calibrate(Score.medium) -500 < Score, Score < 150.
calibrate(Score.good) :- 150 =< Score, Score < 1000. 
calibrate(Score,excellent) :- Score >= 1000.

/* Arthroplasty Data - Weighting Factors */ 
hip_score_factors([(age,10),
(sex,2),
(cause,5),
(activity_level,5),
(weight,2) ]).

score([(Factor,Weight)[Factors].Prosthesis,Acc.Score) 

value(Factor,Prosthesis,Value),
Accl is Acc + Weight*Value,
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score(Factors,Prosthesis,Accl,Score). 
score([].Prosthesis.Score,Score).

/* Final Evaluation */ 
evaluate(Profile,Outcome)

Outcome is the reply to the prosthesis’s Profile. */ 
evaluate(Profile.Answer)

rule(Conditions.Answer), verify(Conditions.Profile).

verify([condition(Type.Test.Rating)|Conditions].Profile)
scaledype.Scale),
select_value(Type.Profile.Fact),
compare(Test.Scale.Fact.Rating),
verify(Conditions.Profile).
verify([].Profile).

compare(’=’.Scale.Rating,Rating).
compare(’>’,Scale,Ratingl,Rating2)
precedes(Scale.Ratingl,Rating2).
compare(’>=’.Scale.Ratingl.Rating2)
precedes(Scale,Ratingl,Rating2) ; Ratingl = Rating2.
compare(’<’.Scale.Ratingl,Rating2)
precedes(Scale,Rating2.Ratingl).
compare(’=<’.Scale,Ratingl,Rating2)
precedes(Scale,Rating2.Ratingl) ; Ratingl = Rating2.
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precedes([R1IRs],R1,R2).

precedes ([RI Rs] .Rl^) R \== R2, precedes (Rs ,R1 ,R2) .

select_value(fit,profile(C,F,Y),C). 

select_value(success,profile(C,F,Y),F). 

select_value(analysis,profile(C,F,Y),Y).

/* Utilities */ 

sumlistds .Sum)

umlistds.O.Sum) . 

sumlist( [I I Is],Temp,Sum)

Tempi is Temp + I, 

sumlistds .Tempi .Sum) . 

sumlist( □ ,Sum,Sum) .

/* Arthroplasty Data and Rules */

rule( [condition(fit, ’>=’ .excellent),condition(success, .good) , 

condition(analysis,,>=’.reasonable)],give_suitability). 

rule( [condition(fit, ,=:> .good),condition(success, .good) , 

condition(analysis,’.reasonable)],consult_expert). 

rule([condition(fit,,=<,.moderate),condition(success,,=<,.medium)], 

refuse_suitability).

scale(fit,[excellent.good,moderate]).
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scaleCsuccess,[excellent.good,medium,bad]). 
scale(analysis,[excellent.reasonable.poor]).

/* Prosthesis Data */
fea_analysis(charnley.medium,excellent). 
requested_suitability(chamley_medium,40) .

amount (isthmus, chamley_medium, 5) .
amount(femoral_head_offset,charnley.medium,4).
amount (canal.width,chamley_medium,2).
amount(canal_width_plus_20,charnley.medium,10).
amount(canal_width_minus_20,charnley.medium,10).

value(average_time_before_first_revision,chamley_medium,20). 
value(average.time_before_second_revision,charnley.medium,10). 
value(measure_of_patient_satisfaction,charnley_medium,49). 
value(measure.of_bone_resorption,charnley.medium,9).

ok.profile(charnley.medium).
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Theory of Fuzzy Expert 

Systems

Fuzzy set theory, proposed in 1965 by Lotfi Zadeh at the University of Cal

ifornia, Berkeley, was an attempt to generalise classical set theory. Since 

then, the theory has been extended to other fields that are based on set 

theory, including logic. In classical (two-valued) logic, such as propositional 

and predicate logics, sentences take on one of two possible interpretations or 

meanings, the values true or false. This is in keeping with “crisp” set theory, 

wherein objects either belong to a set or do not belong to a set. There is no 

in-between (the excluded middle).

In classical set theory, a set is any well-defined collection of objects. The 

usual notation and definitions of sets are used. Sets with a number of objects 

(the elements or members of the set) can be listed. For example, the set of 

small numbers is listed {1,2,3,4}. Sets with an infinite number of elements 

can be described without listing (9? = {x\x is a real number }, N = {x\x
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is a positive integer or zero}, Z = {a;|a: is an integer}. If x is an element 

of the subset A we write x E A and if x is not an element of A, we write 

x & A. Sets can also be defined by their properties: (z|P(x)} axe elements 

x satisfying property P. Equal sets A and B are denoted as A = B. v4 is a 

subset of B if every element of A is also an element of B (written as A C B, 

proper subsets as A C B and A (£ B when A is not a subset of B).

Sets can be characterised through an indicator or characteristic function. 

The characteristic function of / of subset A, is defined as

{1 \{ x E A

(B.l)

0 if x 0 A

Likewise, characteristic function values can be defined for derivative sets such 

as the intersection and union of two sets:

fAnB(x) - /^(x)/b(x), (B.2)

/aciB = Ia + fB — /a/b, (B.3)

Ia&b = /a + /b — Z/a/b- (B.4)

B.l FUZZY SET THEORY

Fuzzy set theory is a generalisation of classical set theory. Definitions, the

orems, proofs and results of classical set theory, in general, hold for fuzzy 

set theory. The theory of fuzzy logic is founded on fuzzy set theory in the 

same way that classical logics are formulated from (two-valued) set theory.
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But, fuzzy logic representations try to capture the way humans represent 

and reason with real world knowledge. In real world situations, a multitude 

of inexact concepts must be dealt with: generalities (a concept applying to 

many things), ambiguities, vagueness, chance events, incomplete knowledge 

and even unbelievable or contradictory information. Representing such con

cepts with conventional set theory and logic is difficult if not impossible. For 

example, it becomes very cumbersome in classical logic to try to classify ob

jects described by expressions such as “slightly more beautiful,” “not quite 

as tall as,” “much more expensive,” “good, but not as useful,” etc.

Fuzzy sets deal with subsets of the universe that have no well-defined 

boundaries. Members of a fuzzy set can have varying degrees of membership 

ranging between 0 and 1. For somebody who is 200cm in height, membership 

in the fuzzy subset “tall people” is near 1. Whereas somebody who’s 100cm 

is more correctly nearer 0. But does a 150mm person belong to the set of 

tall people?

The characteristic function is used to formally define fuzzy sets similar to 

the way it was used to define crisp sets. Let X denote the universe of objects 

under consideration. Then the fuzzy subset ^4 in X is a set of ordered pairs

A = {(x,/j,a(x))},x E X (B.5)

where (0 < < 1) is the characteristic or membership function that

denotes the degree of membership or inclusion of £ in A A value of pi — 0 

means that x is not included in A at all and a value of pi = 1 signifies that x 

is a “full” member of A, corresponding to crisp membership values. Values
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of // between 0 and 1 are the relative degrees of set inclusion ranging between 

complete inclusion and none.

A geometrical way to view a fuzzy set is as a point in the unit cube In. 

Vertices of the cube are non-fuzzy points. Maximal fuzziness then occurs at 

the midpoint of the unit cube (0.5, 0.5, ... , 0.5) (Figure B.la).

A -A

A n -A

(a) Maximum fuzziness. (b) A fl — A.

Figure B.l: “Points as sets” geometrical interpretation of a fuzzy set.

Referring to Figure B.l, we can see how intersection and union of the fuzzy 

set A and its complement set —A are interpreted. For example in Figure B.lb 

if the fuzzy set A is defined as A = (|, |), then the complement set is 

—A = (|, f-) and intersection and union are then given by A fl —A = (|, |) 

and A U —A — (|, |) respectively.

Operations on fuzzy sets such as intersection, union, complementation 

are somewhat similar to operations on crisp sets (“—” is used to denote the
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complement set). The following relationships are also defined for fuzzy sets:

A = B iff = Hb(x), (B.6)

AC. B iff nA(x) < Hb(x), (B.7)

A\J B \ haub{x) = Ha{x) V Hb(x), (B.8)

An B : HAnB(x) = ha{x) a hb(x). (B.9)

Here V is the symbol for maximum, so /j,aub is the smallest fuzzy subset 

having both A and B as subsets. In a similar way, A is the symbol for 

minimum, so ^AnB is the largest fuzzy subset that is a subset of both A and 

B. The following relationship also holds

-A : ^a(x) = 1 - Ha(x). (B-10)

In general

An (-A) ± 0 (B.ll)

and

AU(-A) ^ X (B-12)
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since for /^(rc) = c, with 0 < c < 1

/iau-a(z) = max(c, I - c) ■/ 1, 

/'■An-A (■'*') = min(c, 1 - c) / 0.

(B-13)

(B.14)

An example of a fuzzy set is the fuzzy subset A of “small integers.” If X 

is the set of all nonnegative integers, we might define A by

(B.15)

where a: = (1,2,...). In the above example it was suggested that “we might 

define ...” since membership function definitions are subjective. They are 

a matter of personal choice. Of course, one could seek a consensus among 

a group of people as to how membership functions are defined and use the 

means of the consensus for the definitions.

As another example, let X be the set of integers in the interval [0,120] 

and x interpreted as “age.” We might then define the fuzzy subset A as “old” 

with membership values as depicted in Figure B.2. Note that the linguistic 

variable AGE can take words as values (VERY YOUNG, YOUNG, ... , 

OLD, VERY OLD) and these linguistic variables each have fuzzy membership 

functions as suggested in Figure B.2.
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Age

I-------------- 1----------------------------- 1-------------- 1
Very Young Young Middle Age Old Very Old

i i i i i

1.0/0.4'

Years

Figure B.2: The fuzzy membership function for OLD.

Some special operations defined for fuzzy sets including the following:

Dilation: Dil(vl) = [ha{x)]K (B.16)

Concentration: Con(.A) = [//^(x)]2, (B.17)
nAX

Normalization: Normf^) =------- —r-rr-maxsl/i^x)} (B-18)

Other examples of fuzzy measures include cardinality and entropy. The 

cardinality M or “size” of a fuzzy set A is defined as

n
M(A) =

i=l

For example, the cardinality of the fuzzy set of Figure B.lb is just 

M(A) = = 3 + 4 = 12'

(B.19)
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The entropy of a fuzzy set A is defined as

(B.20)

where d is (Euclidean) distance, and Anear and Afar are line segments from 

the point A to the nearest and farthest vertex in In, respectively. Again

referring to Figure B.lb the fuzzy entropy E of the fuzzy set A in the figure 

is just

Just a few examples of the many operations, definitions and theory related 

to fuzzy sets have been given here.

B.2 FUZZY LOGIC

Predicate logic is a two-valued logic, based on traditional set theory. Predi

cates define classes of objects, and objects that satisfy a given predicate are 

members of the respective class. Inferences in predicate logic are performed 

using inferring rules such as modus ponens. If P and Q are predicated and 

—> is the implication connective (read as IF ... THEN), then modus ponens 

can be summarized as

P,P ->Q
Q

(B.22)
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The formulas above the line are called the premises, and the formula be

low the line is called the conclusion of the inference rule. Similar inferring 

rules have been defined for fuzzy logic based on fuzzy relations among fuzzy 

subsets. In fuzzy logic, modus ponens is concerned with the degree of truth 

between the premise and the consequent,

pP(x),pp(x) pQ(y)

Membership in P implies membership in Q. We know P’s degree of mem

bership (truth). Therefore, we can infer Q's membership (truth).
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Fuzzy Expert System Example

The rule-based expert systems use “if ... then” rules to represent “chunks” 

of knowledge. Similar expert systems have been implemented with fuzzy “if 

... then” rules. Fuzzy expert systems are called fuzzy expert systems. They 

are often able to model common-sense reasoning better than conventional 

rule-based expert systems. The basic fuzzy expert system operates in three 

stages: converting input variable values to fuzzy set values, rule instantiation 

and converting from fuzzy set values back to “crisp” output variable values. 

The process is illustrated in Figure C.l. The method of operation of the fuzzy

Input Output
Membership Membership

Grades Grades

Values'
Rule

EvaluationFuzzification Defuzzification

Figure C.l: Fuzzy inference in a fuzzy rule expert system.
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expert system is best described by an example. The application chosen is a 

fuzzy decision support system for the trading of stocks. The member ship 

functions defined for the share price level of Company X are illustrated in 

Figure C.2 where the triangular shaped fuzzy membership values of negative

NegBig MedNeg Zero MedPos PosBig

Degree

Oversold PRICE LEVEL

Figure C.2: Membership functions for share price level in Company X.

big (NegBig), medium negative (MedNeg), zero, medium positive (MedPos) 

and positive big (PosBig) are depicted.

Fuzzification of price level is accomplished by mapping from price value 

to membership function value. For example, if the price of Company X’s 

shares is $9.00 the input grades are given by Table C.l. The mapping is

Label Grade (Value)
PosBig 0
MedPos 0
Zero 0
MedNeg 0.6
BigNeg 0.2

Table C.l: Input grades.
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illustrated in Figure C.3.

NegBig MedNeg Zero MedPos PosBig

0.6
Degree

Oversold PRICE LEVEL Overtxiught

Figure C.3: The fuzzification mapping process.

Another input variable is share position, the number of shares held (long) 

or owed (short) in inventory by Company X. The membership functions for 

share position are illustrated in Figure C.4.

The next stage of processing is rule evaluation. The fuzzy rules used have 

two conjuncts (if conditions) in the rule premise corresponding to the two 

fuzzy input variables and one output variable (action). The rules have the 

following form:

[Rl] If price_level is MedPos and share.position is PosBig 

then position.change is MedNeg;

[R2] If price.level is NegMed and share.position is Zero 

then position.change is PosBig.

A complete decision table for the rules is illustrated in Table C.2 where the 

row and column entries are the rule conjuncts and the table value is the
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NegBig MedNeg Zero MedPos PosBig

Degree

-1,000 1,000
Short POSITION

Figure C.4: Membership functions for share position in Company X.

Price Level
Position NB NM Z PM PB
PB PB PB Z NM NB
PM PB PB PM NM NM
Z PB PB PM Z Z
NM PM PM Z Z PM
NB PB PB PM z Z

Table C.2: Fuzzy decision table for share trading decision support 
system.

corresponding rule action.

The final stage of processing is defuzzification, mapping from the “then” 

part of the rule membership function to variable values—the recommended 

action of the system.

A portion of the complete fuzzy expert system is illustrated graphically in 

Figure C.5. where the two input variables are share price and share position 

and the output variable is the approve/refuse recommendation. Fuzzification 

takes place in the first stage on the left where the fuzzy values are combined
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Input
Share
Price
9.0

Input
Share
Position

Figure C.5: A portion of a fuzzy expert system.

and passed to the rules R3 and R5 in parallel. The action parts of the rules 

are then combined and defuzzified to give the recommended action to buy or 

sell shares in Company X.
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Prolog Fuzzy Expert System 

Source Code

This appendix contains the Prolog Fuzzy Expert System source code listings. 

/* RISK.PRO:

Developed by Alberto Pacheco, 1996-1997 

Modified by John Cogan, 1997-1998 

This version supports:

One-goal, one-sample-at-a-time

Linear Fuzzy Membership Representations Sigmoid Curve 

Membership Function (S-Curve Fuzzy Set) (as/ds)

Zadeh Fuzzy Set Operators 

Mapping from Membreship Degree to 

I/O Domain (member_to_domain)

Scalable Monotonic Chaining (monotonic_scaling) */
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/* Operator Definitions */ 
op(700, xfx, is), 
op(720, xfy, and), 
op(740, xfy, or). 
op(760, xfx, then). 
op(780, fx, if).

/* Main Procedure:
1) Initialization;
2) Goal with Output Variable */

main init(combination_risk), one_goal(combination_risk).

/* Initialization: Clear global working memory */ 
init(Var)

retractall(_), 
assert(sumKVar,0.0)),
nl.write(’Fuzzy Patient/Prosthesis Combination 

Risk Assessment Model’), nl, 
input_value( _, Input_Variable, Value ), 

write(Input_Variable),write(’: ’), 
write(Value),nl, fail. 

init(_):-nl,!.

/* Probes all rules with conclusion ’Var’ */ 
one_goal(Var) prove( Var is X ), fail.
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/* Reports the composite solution */ 
one_goal(Vax) output_value(Var,X),

nl, write(Var), write(’ = ’), write(X), nl.

/* Production Rules (Fuzzy Model’s Rules)

A Patient/Prosthesis Combination Risk Assessment Model 
Based on Earl Cox’s Case Study */ 
if fit_and_fill_level is loose

then operation_risk is increased, 
if fea_stress_level is adverse

then operation_risk is increased, 
if survival_analysis_level is short

then operation_risk is increased, 
if hip_score_level is high

then operation_risk is increased.

/* Fuzzy Sets Definitions 
Note: The Maximum Domain Limit acts as a 
Weighted Measure for its corresponding set. */ 
fuzzy_set(fit_and_fill_level, loose, as,

0.0, 1.5, 3.0, 0.0).

fuzzy_set(fea_stress_level, adverse, at,

0.0, 24.0, 0.0, 0.0).

fuzzy_set(survival_analysis_level, short, dt,
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0.0, 100.0, 0.0, 0.0). /* Greatest Weight */ 

fuzzy_set(hip_score_level, high, dt,
0.0, 10.0, 0.0, 0.0 ). /* Lowest Weight */

/* Output Fuzzy Sets */
fuzzy_set(combination_risk, increased, as,

0.0, 1000.0, 0.0, 0.0).

fuzzy_set(combination_risk, high_risk, at,
0.0, 5000.0, 0.0, 0.0).

/* Input Values */
input_value( 1, fit_and_fill_level, 0.8000000). 
input_value( 1, fea_stress_level, 12.000000). 
input_value( 1, survival_analysis_level, 40.000000). 
input_value( 1, hip_score_level, 3.000000).

/* Prolog Interpreter in Prolog 
Based on Dennis Merrit’s Article
"Building Custom Rule Engines," PC AI, Mar/Apr 1996. */ 

prove(ATTR is VALUE and REST) 
getav(ATTR, VALUE), 
prove(REST),
apply_fuzzy_oper(and_z). 

prove(ATTR is VALUE or REST) 
getav(ATTR, VALUE),
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prove(REST), 
apply_fuzzy_oper(or_z). 

prove(ATTR is VALUE)
getavCATTR,VALUE). 

getav(ATTR,VALUE)
if CONDITIONS then ATTR is VALUE, 
prove(CONDITIONS), 
retract(prem(Mx)), 
monotonic_scaling(ATTR,VALUE,Mx). 

getav(ATTR,VALUE)
not(if _ then ATTR is _), 
rule_transiation(ATTR,VALUE).

/* Fuzzy Rule Processing */ 
rule_translation( T, Cj )

clause( fuzzy_set(T,, _ ), !, 
input.value( _, T, X ), !, 
fuzzification( T, Cj, X ).

I* Discrete Inference Rule Processing */ 

rule_translation( T, Cj )
input_value( _, T, Cj ), !, is.true. 

rule_translation( T, Cj )
is.false, nl,write(’Error in rule_translation():

Undefined set’),nl,write(T),nl,write(Cj).
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/* Fuzzification */

fuzzification( Name, Set, X_Value )

fuzzy_set( Name, Set, Type, A, B, C, D ), 

degree_of.membership( Type, A, B, C, D,

X.Value, Membership ), 

assert( prem(Membership) ), !.

/* dt - Linear Decreasing Fuzzy Set (i,i,i,i,i,i,o)

A - Minimum Value 

B - Maximum Value */

degree.of.membership( dt. A, _, _, _, X, 1.0 ) X =< A, !.

degree.of_membership( dt, _, B, _, _, X, 0.0 ) X >= B, !.

degree.of.membership( dt, A, B, X, M)

line_eq( dt, A, B, X, M ), !.

/* at - Linear Increasing Fuzzy Set 

A - Minimum Value 

B - Maximum Value */

degree.of.membership( at, A, X, 0.0) X =< A, !.

degree.of.membership( at, _, B, _, _, X, 1.0) X >= B, !.

degree.of.membership( at. A, B, _, _, X, M )

line.eqC at. A, B, X, M ), !.

/* tp - Trapezoidal or Triangular Fuzzy Set
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— TRAPEZOIDAL — — TRIANGULAR —

A - Minimum Value A - Minimum Value

B - Left Shoulder B - Center

C - Right Shoulder C - Center

D - Maximum Value D - Maximum Value */

degree.of.membership( tp. A, X, 0.0 ) X =< A, !.

degree.of.membership( tp. A, B, X, M)

X > A, X =< B, line_eq( at,A, B,X, M), !. 

degree.of.membership( tp, _, B, C, _, X, 1.0 )

X > B, X < C, !.

degree_of_membership( tp, _, _, C, D, X, M )

X > C, X < D, line_eq( dt, C, D, X, M ), !. 

degree_of_membership( tp, _, _, _, _, _, 0.0 ).

/* as - Increasing S-Curve Fuzzy Set 

A - Minimum Value 

B - Inflexion Point 

C - Maximum Value */

degree.of.membership( as, A, _, _, _, X, 0.0 ) X =< A, !. 

degree.of.membership( as, A, B, C, _, X, M )

X > A, X =< B, M is (2.0 * ((X-A)/(C-A))**2.0), !. 

degree_of_membership( as, A, B, C, _, X, M )

X > B, X < C, M is (1.0 - 2.0*(((C-X)/(C-A))**2.0)), !. 

degree.of.membership( as, _, _, _, _, _, 1.0 ).
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/* Finds the Expected Output Value of the Fuzzy Set 

Given its Degree of Memembership 

member_to_domain( A, B,

Membership-Degree, X-Domain-Value ) - (i,i,i,o) */ 

member_to_domain( XI, X2, Memb, X )

X is ( Memb * (X2 - XI) + XI ), !.

/* Fuzzy Operators */ 

apply_fuzzy_oper( and_z ) 

retract(prem(Ml)), 

write(Ml),

retract(prem(M2)), !, 

write(’ and ’), write(M2), nl, 

min(Ml,M2,M), 

assert(prem(M)), ! . 

apply_fuzzy_oper( or_z ) 

retract(prem(Ml)), 

write(Ml),

retract(prem(M2)),!,

write(' or ’), write(M2), nl,

max(Ml,M2,M),

assert(prem(M)), ! .

/* Monotonic Scaling Chaining Model - (i,i,i) */ 

monotonic_scaling( Var, OutSet, Memb )



Prolog Fuzzy Expert System Source Code 225

fuzzy_set( Var, OutSet, XI, X2, _ ), !,

member_to_domain( XI, X2, Memb, X ), 

retract( suml(Var,Q) ),

R is ( X + Q ), 

assert( suml(Var,R) ),

write (Var) .write (’ : amount = O.writeCX), 

write(’ membership = ’).write(Memb),nl,!.

/* End of Defuzzification Method */ 

output.value( Var, X )

retract( suml( Var, cummulative.risk ) ), 

nl, write(’Cummulative Risk is ’), 

write(cummulative.risk),nl,

fuzzification( Var, high.risk, cummulative.risk ), 

retract( prem( Memb ) ),

X is (Memb * 1000.0).

/* Linear Interpolation */ 

line_eq( dt, XI, X2, X, Y )

Y is (X2 - X) / (X2 - XI). 

line_eq( at, XI, X2, X, Y )

Y is (X - XI) / (X2 - XI).

/* Fuzzy Function Primitives */ 

min( X, Y, X ) X < Y, !.
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min( Y, Y ).

max( X, Y, X ) X > Y, !.

max( Y, Y ).

/* Boolean Values */

is_true assert(prem(l.0)), !.

is_false assert(prem(0.0)), !.



Appendix E

Theory of Feed-Forward Neural 

Networks

E.l THE GENERAL NEURAL

NETWORK PROCESSING ELEMENT

Recent advances in the construction of computer based artificial neural net

works (ANNs) derives from enhanced knowledge of the biological neuron of 

the human brain [43, 42], Figure E.la is a simplified representation of a single 

neuron cell capable of a crude computation. The brain organises such cells 

into networks capable of incredible feats of learning. ANNs are an attempt 

to mimic the brain’s learning processes. Figure E.lb is an artificial neuron 

which is a computer representation of the biological neuron. Artificial neu

rons, also called units, nodes or processing elements (PEs), form the basic 

units of artificial neural networks.
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Outputs to other neurons Output

\ x,

Inputs from other neurons In,

(a) Biological neuron. (b) Artificial neuron.

Figure E.l: Neurons.

Generally speaking, output values from units will be positive numbers. 

Weights Wij can be either positive or negative (see Figure E.lb). Inputs to a 

unit are categorised according to their effect. Inputs whose connections have 

a positive weight contribute a net positive value to the overall excitation 

of the unit. Those inputs whose connections have negative weights detract 

from the overall excitation. The former type are referred to as excitatory 

connections, and the latter as inhibitory connections.

The overall excitation of a unit is its net input. The value of the excita

tion is usually calculated by summing the products of the input values and 

the weights assigned to the associated connections. For the fth unit, the net 

input is:

n

(E.l)
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The output value is written as

Xi = fiineU). (E.2)

The output value of a unit can be expressed in the form of a differential 

equation. Similar to their biological counterparts, the outputs are dynamic 

functions of time. The simplest form of the equation of importance for the 

outputs is

X{ = —Xi + /(netj) (E.3)

where /(netj) is the function referred to as the output function. We apply 

arbitrary input values to the PE so that neti > 0. If the inputs are applied 

for a sufficiently long time, the output value will reach an equilibrium value, 

when = 0, given by

Xi = Jiineti) (E.4)

which is the same as Equation E.2.

The function /(netj) can take many different forms, the simplest being 

the identity function; that is, /(netj) = netj. Equation E.3 can then be 

written as

ii = —Xi + netj. (E.5)

Integrating this differential equation in order to study the behaviour of the
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variable x as a function of time gives

Xi(t) — netj(l — e t). (E-6)

From Equation E.6, the value of x asymptotically approaches the value of 

net*.

The most useful output function is called a sigmoid. One version of a 

sigmoid function is defined by the equation

/<*)=nW <e-7>
One of the important features of the sigmoid function is that it is differen

tiable everywhere. If the output function of a unit is a sigmoid function, then 

the following relationship holds

f'ineti) = /(net,)(l - f(neU)).

If we define o* = f(neti), then we can write

f'(neti) = Oj(l - Oi). (E.8)

This equation will be useful later.

The threshold function defined below is another useful function

/(x) = <
x > 9

0 otherwise
(E.9)
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where 9 is the threshold value.

E.2 LEARNING IN NEURAL 

NETWORKS

Learning or training in neural networks involves finding a set of weights such 

that the network correctly performs the intended data-processing function. 

For some simple cases weights can be arrived at by a trial-and-error proce

dure. Consider, for example, constructing a single-unit system that computes 

the AND function of two binary inputs (see Figure E.2 and Table E.l). The

Output Layer

Middle Layer

Input Layer

X1 Inputs X2

Figure E.2: Simple network with two input units and a single output 
unit.1

unit in Figure E.2 has two weights and a threshold output function, as in
1 We wish to find weights such that, given any two binary inputs, the network correctly 

computes the AND function for those two inputs.
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Input #1 Input #2 Output
0
1
0
1

0
0
1
1

1
0
1
1

Table E.l: The AND truth table.

Equation E.9. The threshold condition can be rewritten as follows. The 

network will have an output of one if

n

(E.10)

and otherwise, the output will be zero, n refers to the number of inputs.

If we replace the inequality in Equation E.10 with an equality, the equa

tion becomes the equation of a line in the XiX? plane. If we position that line 

properly, we can determine the weights that will allow the network to solve 

the AND problem (see Figure E.3a). There are an infinite number of other 

lines that also yield weights that solve this problem.

The line in the problem just discussed is an example of a decision sur

face. The line breaks up the space into two regions, one where the points in 

the region, when used as inputs, would satisfy the threshold condition, and 

one where the points in the region would not satisfy the threshold condition.

The device in Figure E.2 is often referred to as a perceptron. Percep- 

trons were an early development in neural networks, dating from the late 

1950s. They were invented by a psychologist named Frank Rosenblatt, who 

was primarily concerned with collections of the above devices which he called 

perceptrons rather than with an individual unit. Rosenblatt favoured ran-
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*2

<> (0,1) •/(U)

*2 
I L

o (0,1)
on

• (1,1)
off

off

(0,0)

on X1
►

(1,0)

(a) Linearly separable. (b) Linearly inseparable.

Figure E.3: Linearly separable sets and inseparable sets.

dom connectivity among layers of these devices in his models of perception 

and vision.

E.2.1 Weakness of Perceptron Model

The individual unit, however, has a serious flaw that limits its use. Rosen

blatt’s former schoolmate, Marvin Minsky, along with Seymour Papert, in 

their book Perceptrons [88] expounded in great detail on the weaknesses of 

the perceptron model.

In order to explore this weakness we shall consider once again a single unit, 

as in Figure E.2. This time, however, we wish to solve the XOR problem. 

Figure E.3b and Table E.2 show the space of input points for this problem. 

There is no orientation of the decision surface (line) that will correctly
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Input #1 Input #2 Output
0 0 0
1 0 1
0 1 1
1 1 0

Table E.2: The XOR truth table.

separate the points having an output of zero from the points having an output 

of one. The linear decision surface is a characteristic of the perceptron unit. 

We say that the perceptron unit can only separate categories, or classes, if 

they are naturally linearly separable. This characteristic is considered by 

many to be a serious weakness, since many real problems, of which the XOR 

is a very simple example, do not have classes that are linearly separable.

David Rumelhart, Geoffrey Hinton, and Ronald Williams in 1986 pub

lished a seminal work, “Learning Internal Representations by Error Propa

gation” that enabled research into artificial neural networks to make a signif

icant leap forward. They developed a multi-layer feed-forward network, that 

was not restricted to linearly separable training sets, and they complemented 

this with a reasonably effective training algorithm (to determine weights for 

it). They thereby demonstrated that artificial neural networks could provide 

real solutions to practical problems.
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E.3 MULTI-LAYER FEED-FORWARD 

NETWORK

Although the problem of linear separability appeared formidable, it was rel

atively easily overcome. A solution to the XOR problem was constructed 

by using a network of the type shown in Figure E.4. In this case a hidden

9 = 0.5
l0.6 -0 2

e = 0.4 0 = 1.2

<» (0,1) • (1,1)

Output = 0

Output = 1

Outp it = 0

Figure E.4: Network made up of three layers: an input layer, a hidden 
layer comprising two units, and a single unit output layer.2

layer of units was constructed between the input and output layers. It is this 

hidden layer that facilitates a solution. Each hidden-layer unit produces a 

decision surface, as shown in the figure. The first hidden-layer unit (the one

2 All units axe threshold units with the value of 0 as the threshold in each case. The 
two hidden-layer units construct the two decision surfaces shown in the graph on the right. 
The output unit performs the logical function: (hidden unit 1) AND (NOT (hidden unit 
2))-
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on the left) will produce an output of one if either or both inputs are one. 

The hidden-layer unit on the right will produce an output of one only if both 

input are one.

The output unit will produce an output of one only if the output of the 

first hidden unit is one AND the output of the second hidden unit is zero; in 

other words, if only one, but not both, of the inputs are one.

This is a primitive form of multi-layered feed-forward network. The term 

“feed-forward” means that information flows in one direction only. The in

puts to neurons in each layer come exclusively from the outputs of neurons in 

previous layers, and outputs from these neurons pass exclusively to neurons 

in following layers.

E.3.1 Training by Error Minimisation

So far it has been possible to arrive at the weights for the network by trial- 

and-error, as in Figure E.4, which enabled the network to behave as an XOR 

function. For more complex functions, where there may be many inputs, 

hidden-layer units, and outputs, this is not feasible. A method must be 

introduced whereby the network can be trained to learn its own weights.

A method with this capability has its roots in a search technique called 

hill climbing. In the Section E.3.1.1 the training of a system comprising a 

single unit is examined. In Section E.3.2 we extend this method to cover the 

case of multiple units and multiple layers of interconnected units.
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Threshold

Bipolar output = sign(y)

Adaptive Linear Combiner

Figure E.5: Adaline.3

E.3.1.1 Adaline and the Adaptive Linear Combiner

The Adaline comprises two major parts, as illustrated in Figure E.5: an 

adaptive linear combiner (ALC), a unit almost identical in structure to 

the general processing element described in Section E.l, and a bipolar output 

function, which determines its output based on the sign of the net-input value 

of the ALC. Adaline is an acronym for ADAptive Linear Neurone.

Notice the addition of a connection with weight, wq, which is referred to 

as the bias term. This term is a weight on a connection that has its input 

value always equal to one. The inclusion of such a term is largely a matter 

of experience.

The net input to the ALC is calculated as before as the sum of the 

products of the inputs and the weights. In the case of the ALC, the output 

function is the identity function, so the output is the same as the net input.

3 The complete Adaline consists of the adaptive linear combiner, in the dashed box, and 
a bipolar output function. The adaptive linear combiner resembles the general processing 
element described in Section E.l.
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If the output is y, then

n
y = W0+ ^2 WiXi

i=l

where the Wj are the weights and Xi are the inputs. If we make the identifi

cation :ro = l, then we can write

n

y = '%2 WiXi
i=l

or in terms of the vector dot product

y = w • x. (E-ll)

The final output of the Adaline is

o=Sign(y) (E.12)

where the value of the Sign function is +1, 0, -1, depending on whether the 

value of y is positive, zero, or negative.

E.3.1.2 The LMS Learning Rule

Suppose we have an ALC with four inputs and a bias term. Furthermore, 

suppose that we desire that the output of the ALC be the value 2.0, when 

the input vector is {1, 0.4, 1.2, 0.5, 1.1} where the first value is the input 

to the bias term. We can represent the weight vector as {w0,Wi,W2,u)3,W4}. 

There is an infinite number of weight vectors that will solve this particular
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problem.

However, suppose we have a set of input vectors, {x1,x2,... ,xL}, each 

having its own, perhaps unique, correct or desired output value, d*, k — 1, L. 

The problem of finding a single weight vector that can successfully associate 

each input vector with its desired output value is no longer simple. In this 

section we develop a method called the least-mean-square (LMS) learning 

rule, or the delta rule, which is one method of finding the desired weight 

vector. We refer to this process of finding the weight vector as training the 

ALC. Moreover, we call the process a supervised learning technique, in 

the sense that there is some external teacher that knows what the correct 

response should be for each given input vector. The learning rule can be 

embedded in the device itself, which can then self-adapt as inputs and desired 

outputs are presented to it. Small adjustments are made to the weight values 

as each input-output combination is processed until the ALC give correct 

outputs. In a sense, this procedure is a true training procedure, because we 

do not calculate the value of the weight vector explicitly.

Weight Vector Calculations Before developing the LMS rule, some in

sight can be gained into the procedure by looking at a method for calculating 

the weight vector. To begin, the problem can be restated: given examples, 

(also called exemplars), (x!, dx), (x2, c^), ■ ■ • )(xL)^l)) of some processing 

function that associates (or maps) input vectors, xk, with output values, c4, 

what is the best weight vector, wmin, for an ALC that performs this map

ping? We shall assume L > n-l-1, where n is the number of inputs and there 

is one additional weight for the bias term. This assumption means that we
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cannot find the weight vector by solving a system of simultaneous equations 

because such a system is over-determined.

The answer to the question posed in the previous paragraph depends on 

how we define the word best within the context of the problem. Once we find 

this best weight vector, we would like the application of each input vector 

to result in the precise, corresponding output value. Since it may not be 

possible to find a set of weights that allows this mapping to be performed 

without error, we would like at least to minimise the error. Thus, we choose 

to look for a set of weights that minimises the mean-squared error over the 

entire set of input vectors. If the actual output value for the kth input vector 

is yk, then we define the error as

(E.13)— dk — yk

and the mean-squared error is

(E.14)
fc=l

where the angled brackets indicate the mean, or expectation, value.

Substituting Equations E.ll and E.13 into Equation E.14 shows that the 

mean-squared error is an explicit function of the weight values

f = (<4 - w • xk)2- (E.15)
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Expanding this equation we find

£ = (dfc) + wt(xkXk)w - 2(dkxl)w. (E.16)

The fact that £ is a function of the weights means that it is possible to find 

weights that minimise £. The function £(w) is plotted for the case of an ALC 

with only two inputs and no bias term. Using the following definitions

d — (dl), R = (xkx£) and p — (c4xk)

and without specifying the actual input vectors, we can construct the graph. 

The surface of the function £(w) (see Figure E.6) is a paraboloid. The

Figure E.6: A graph of the function £(w).

function has a single minimum point. The weights corresponding to that 

minimum point are the best weights for this example. A contour plot of this
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function is shown in Figure E.7. We can find the minimum point by taking

-40 -20 0 20 40

Figure E.7: A contour plot of the function £(w).

the derivative of Equation E.16. The result is the weight vector that gives 

the minimum error

wmin — R ‘ P- (E.17)

Gradient Descent on the Error Surface Given the knowledge of R, also 

called the input correlation matrix, and p, we saw how it was possible to 

calculate the weight vector directly. In many problems of practical interest, 

we do not know the values of R and p. In these cases we must find an 

alternate method for discovering the minimum point on the error surface.

To initiate training, we assign arbitrary values to the weights, which 

establishes the error, £, at a certain value. As we apply each training pattern
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to the network, we can adjust the weight vector slightly in the direction of 

the greatest downward slope.

To perform this gradient descent, the equation of the surface must be 

known in which case the weight vector can be calculated directly. This dis

cussion of the principles of gradient descent is by way of introduction to the 

next section that investigates how to approximate the process in the absence 

of complete knowledge of the error surface.

The Delta Rule Suppose we cannot specify the R matrix or p vector in 

advance, or suppose that the number of input vectors is so large as to make 

the calculations excessively time consuming. There may also be a case in 

which the distribution function of the input vectors changes as a function of 

time.

The gradient descent method can still be used by employing a local ap

proximation to the error surface which is valid for a particular input vector.

First, apply a particular input pattern, say the fcth, and note the output, 

yk- Then determine the error e*. Instead of applying other patterns and 

accumulating the squared error, this error value is used directly. As an 

approximation to the mean-squared error in Equation E.14, the local value 

of the squared error can be used for a particular pattern. That is

£ = {el) = 6- (E.18)
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Since £k is a function of the weights we can compute the gradient

6 ~ ldk- Y^wi(xi)h)j
^ i+l '

^- = -2^4-  ̂Wiix^k)] (Xi)h = -2ek{xi)k.

We then adjust the weight value, in the case uij, by a small amount in 

the direction opposite to the gradient. In other words, we update the weight 

value according to the following prescription

Wi(t + 1) = Wi(t) + T]E(Xi)k (E.19)

or in vector form

w(t + 1) = w(t) + 77e(x)fc (E.20)

where r] is called the learning rate parameter and usually has a value 

much less than one.

Equations E.19 and E.20 are expressions of a learning law called the LMS 

rule, or delta rule. By repeated application of this rule, using all of the input 

vectors, the point on the error surface moves down the slope toward the 

minimum point, though it does not necessarily follow the exact gradient of 

the surface. As the weight vector moves toward the minimum point, the error 

values will decrease. Iteration continues until the errors have been reduced 

to an acceptable value, the definition of acceptable being determined by the 

requirements of the application.
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E.3.2 Training by Back-Propagation of Error

In the Section E.3.1 describing the learning paradigm, the delta rule was used 

to calculate an approximation to the optimum weight vector that would allow 

an ALC to correctly map input vectors to output values in accordance with 

certain examples used during the training process. Extending the rule to 

multiple-layer networks requires that a non-linear output function be added 

to the units, and this fact complicates the situation. Moreover, since we have 

no foreknowledge of the correct output values for units on any layer other 

than the output layer, we have to resort to other methods to determine the 

weight updates.

This section looks at a method for calculating weight updates that is 

known as back-propagation of errors (BPN). BPN is quite expensive 

computationally, especially during the training process. Many people have 

attempted, therefore, to modify the basic back-propagation algorithm to 

speed up training. A few of these methods are examined.

E.3.2.1 The Generalised Delta Rule

In this section we extend the delta rule to multi-layered networks. Before 

performing the derivation of the generalised delta rule (GDR) the archi

tecture of multi-layered neural networks is examined with particular reference 

to the features of BPN.

BPN Architecture The standard BPN architecture appears in Fig

ure E.8. The bias units shown in that figure are optional. Bias units always 

have an output of one and they are connected to all units on their respec-
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tive layer. The weights on the connections from bias units are called bias 

terms or bias weights. Units on all layers calculate their net-input values

fk°K/

xpi xPi

Figure E.8: Typical structure for a BPN.4 * *

in accordance with the standard sum-of-productions calculation described in 

Section E.l. For the hidden-layer units

N

netpj = 12 ^xp*+9j (E-21)
i=l

4Although there is only one hidden layer in this figure, you can have more than one.
The superscripts on the various quantities identify the layer. The p subscript refers to the
pth input pattern.
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and for the output-layer units

L
netpk = J2 Wk3lPl + ^ (E'22)

where ipj is the input from the jth hidden-layer unit to the output layer units 

for the pth input pattern, and the 9s are the bias values. N and L refer to 

the number of units on the input and hidden layers respectively.

Unlike ALC, the output function of these units is not necessarily the 

simple identity function, although it can be in the case of the output units. 

As a rule, the output function will be the sigmoid function (see Equation E.7). 

Then the outputs of the units are

= fji^tpj) =
1

1 +
(E.23)

for units on the hidden layer, and

oPk = fZ(net°k) = \-n7io-- (E.24)
1 -|- e p*

for units on the output layer.

We can use the identity function on the output-layer unit, in which case 

we have

Opk — ne'tpk •

If we were to use the identity function on the hidden-layer units, then 

the network would not be able to perform many of the complex input-output
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mappings that would otherwise be possible.

When we propagate data through the network from inputs to outputs, 

we can streamline the calculation by putting all of the weight values for a 

single layer into a weight matrix. Each row of the matrix represents the 

weights on a single unit of the layer. There would then be L rows, where L 

is the number of units on the layer. If there are N inputs, there would be N 

or TV + 1 columns, the latter figure including a place for the bias weight.

Derivation of the GDR As was done with the ALC, the problem is stated 

in more formal terms. Suppose we have a set of P vector-pairs (exemplars), 

(x^yj), (x2,y2), ■ • ■ , (xp,yP), that are examples of functional mapping

(E.25)y = $(x), x e Rn, y E Rm

where x and y are N- and M-dimensional real vectors respectively. We wish

to train a neural network (i.e., find a set of weights) to learn an approximation

to that functional mapping. To develop the training algorithm we use the 

same approach that was used for the ALC in Section E.3.1, that is gradient 

descent down an error surface.

The error that is minimised by the training algorithm is

(E.26)

where

fipk — (l/pk Opk)- (E.27)
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The subscript, p, refers to the pth exemplar, op* is the output of the kth 

output-layer unit for the pth exemplar, and there axe M output-layer units. 

Equation E.26 represents a local approximation to the global error surface

p

p=l

Using the local approximation simplifies the calculation here, as it did in 

Section E.3.1.

Substituting Equation E.27 into Equation E.26, and using Equation E.24, 

we find

EP =
1
2

^2(yPk - fk(net°k))2.
fc=i

The gradient of Ep with respect to the output-layer weights, is

dEp _ t ^dfZ{net°pk) d{net°vk)
dw°kj [Vpk 0pk) d(nerpk) dw°kj '

For now we shall write the partial derivative of the output function

dfk(net°pk)
9(ne^pk)

fk(net°pk).

Using Equation E.24 we can show that

9(net°pk) .
dw°kj ^
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Finally, we can write the gradient of the error surface as

Apr
qwo ~ ~(ypk ~ °pk)fk (ne^pk)hj- (E.28)

kj

By a similar, and only slightly more complicated analysis, we can find 

the gradient of the error surface with respect to the hidden-layer weights

aip M

-Hr = -fj'inet^Xyi J2(ypk ~ °pk)fZ'(riet0pk)w0kj. (E.29)
fc=i

The derivatives of the output functions are “primed” functions instead of 

explicitly calculated, because the value of that derivation depends on the form 

of the output function. The two primary cases of interest are the sigmoid 

and the identity function. In these two cases, the derivatives of the functions 

for output-layer units are

fk(net°pk) = opk(l - opk) (E.30)

for the sigmoid, and

/*'(”<*) =1 (E.31)

for the identity function.

As each training pattern is presented to the network, the information is 

propagated forward to determine the actual network outputs. Then the error 

terms on the output layer and the gradient of the error surface are calculated 

with respect to each of the output-layer weights. Next, the gradient of the
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error surface is calculated with respect to each of the weights on the hidden 

layer. A study of Equation E.29 shows that, for any given unit on the hidden 

layer, the gradient of the error surface depends on all of the errors on the 

output layer. This dependency is reasonable, since any change on a hidden- 

layer weight will have an effect on all of the output values of the output 

layer. Here is where the concept of back-propagation enters formally: having 

calculated errors on the output layer first, these are brought back to the 

hidden layer to calculate the surface gradients there. Having calculated the 

gradients, each weight value is adjusted by a small amount in the direction 

of the negative of the gradient. The proportionality constant is called the 

learning-rate parameter, just as it was for the ALC in Section E.3.1.

The next input pattern is then presented and the weight-update process 

repeated. The process continues until all output-layer errors have been re

duced to an acceptable value.

The notation can be simplified through the use of some auxiliary variables. 

Defining the output-layer delta as

% = top* - = Wf My (E.32)

and the hidden-layer delta as

M

%=<E-33) 
*=i

Using these definitions the weight-update equations on both layers take
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on a similar from

"'£,(< +1) = (E.34)

on the output layer, and

Wji(t+1)= W^t) + Tjtfjlpi (E.35)

on the hidden layer. 77 is the learning-rate parameter, and it was assumed 

that it is the same on all units on all layers. This assumption is typically a 

good one, and is employed in this thesis.

E.3.2.2 BPN Variations

The BPN algorithm requires a large amount of computation for each itera

tion. Two ways to speed convergence are mentioned below.

Momentum The BPN algorithm can be modified by the addition of a term 

called momentum to the weight-update equations. The term will have a 

significant effect on the learning speed, in terms of the number of iterations 

required.

The idea behind momentum in a neural network is straightforward: once 

you start adjusting weights in a certain direction, keep them moving generally 

in that direction. In more practical terms, after you adjust the weights during 

one training iteration, save the value of that adjustment; when calculating 

the adjustment for the next iteration, add a fraction of the previous change 

to the new one. In terms of an equation (in this case, for the hidden-layer
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weights)

Wji(t + 1) = wji + riSpjXpi + aAwji(t) (E.36)

where a is called the momentum term, typically a positive number less than 

one, and

Awjiit) = — Wji(t — 1).

An additional modification is to set a maximum acceptable error for any 

one pattern to some number, say 0.1. A conditional statement is added to the 

program so that, if the error for an input pattern is less than this acceptable 

value, no weight updates occur during that iteration. That way, the network 

is not over learning one pattern at the expense of the others.

Competitive Weight Updates The BPN can be modified to include a 

competitive algorithm to update the weight values. From Equations E.34 

and E.35, weight changes are proportional to the delta terms; thus, we might 

reason that the unit with the largest value of delta should adjust its weighs by 

the largest amount. All other units on the layer should adjust their weights 

in the direction opposite to that winning unit. In other words, after we 

calculate the delta values on a layer, we search for the unit with the largest 

delta (we need to look for the largest magnitude). That unit is declared 

the winner of the competition, and the delta value for all units on the layer 

becomes a function of that unit’s delta.



Theory of Feed-Forward Neural Networks 254

For the hidden layer, the delta value is given by Equation E.33

M
= fjh'{net^)xplJ2SOpkwkj-

*=1

Let

£h
PJ

j = winning unit 

otherwise.

Then Equation E.35 becomes

(E.37)

+ = Vjiii) + v4jxpi (E.38)

with a similar equation for the output layer.

E.4 IMPLICATIONS FOR PROBLEM 

SOLVING

The previous sections have outlined the fundamental theoretical tenants sup

porting feed-forward neural networks. This section considers their implica

tions for problem solving.

Neural networks in general, and multi-layer feed-forward networks in par

ticular suffer from some small but annoying shortcomings. It is nearly im

possible to specify an effective neural network design or architecture based 

only on the description of a problem. Experimentation is also required. After 

a network is trained, it may be difficult to understand how it works. Worse
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still, the supposition that it will work correctly when presented with any pos

sible test must usually be taken on trust. Techniques for strict mathematical 

verification of a neural network’s performance are still in their infancy. It is 

well established, however, that these networks do perform well in practice. 

It is exceedingly rare for a network to be well trained, verified with a reason

able test set, and then to fail in practice. Performance quality is, however, 

difficult to prove at the present time. Because of this shortcoming there is a 

continual search for a powerful theorem to establish theoretically why neural 

networks work.

The current state of knowledge about feed-forward neural networks en

ables us to formulate a number of propositions.

• Firstly, neural networks approximate functions and the converse of this 

is that if a problem can be expressed as a function it can be modelled 

as a neural network. A function here is taken to be a mapping from 

the real-valued vector domain 9?n to the real numbers 5?.

The results are stated in terms of what function a network can learn. 

Each problem is posed as a definition of a function that a network is 

asked to learn bearing in mind that a multi-layer feed-forward network 

implements a function itself. Inputs axe applied to it, and deterministic 

outputs are produced. So we are asking one function, our network, to 

approximate another function, the problem. The network is said to 

be able to solve the problem if it is able to learn to approximate the 

function with ever increasing accuracy.

• Secondly, the structure of the neural network is contingent upon the
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type of function being approximated. Functions, which can be learned, 

are classified as follows:

1. Functions which consists of a finite collection of points can be 

learned by a three-layer network (one hidden layer).

2. Functions which are continuous and defined on a compact do

main can be learned by a three-layer network (one hidden layer). 

Roughly speaking, “compact domain” means that the inputs have 

definite bounds, rather that having no limits on what they can be.

3. Functions that do not meet the above criteria can also be learned 

by a three-layer network (one hidden layer). In particular, discon

tinuities can be theoretically tolerated under all conditions likely 

to be met in real life. Also, functions whose inputs are normally 

distributed random variables can be learned by a three-layer net

work under some conditions.

4. Under very general conditions, all other functions that can be 

learned by a neural network, can be learned by a four-layer (two 

hidden) network.

• Thirdly, the majority of practical functions can be approximated by a 

one hidden layered neural network.

This means that, theoretically at least, we are always reasonably safe 

using a single hidden layer. Furthermore, we should never (at least 

theoretically) need more than two hidden layers. A network having 

two hidden layers is a universal approximator.
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In practice, the need for a second hidden layer comes about in essen

tially only one way. That is when we need to learn a function that 

is mostly continuous, but has a few discontinuities. We occasionally 

are confronted with a function defined on a compact domain that is 

generally continuous, but has one or more sudden jumps where conti

nuity is lost. These piecewise-continuous functions cannot in general 

be learned easily by a network having only one hidden layer (though it 

is theoretically possible). Two hidden layers are usually required.

The most common reason why a function cannot be learned by any 

multi-layer feed-forward network is when it seriously violates the as

sumption of a compact domain. We cannot expect a function whose 

behaviour remains unpredictable as its inputs tend toward infinity to 

be approximated well by ordinary neural networks. Even so, use of 

trigonometric activation functions can create neural networks that be

have like Fourier approximators, thus circumventing even that limita

tion.

In conclusion, a multi-layer feed-forward network can learn virtually all 

functions. If there are problems, they are not due to the model itself. They 

are due to insufficient training, or insufficient numbers of hidden neurons, or 

an attempt to learn a supposed function that is not deterministic.

The learning and generalisation capabilities of multiple-layer feed-forward 

networks are astounding. In practice surprisingly few hidden neurons are 

normally required. With proper design of the network and training set, 

the training time is usually moderate. Multiple-layer feed-forward networks
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should be considered for nearly every neural network task.



Appendix F

Feed-Forward Neural Network 

Examples

There are very many examples of neural network techniques being success

fully used in medicine and in other disciplines. The cases described here 

illustrate their versatility and capability.

The wide popularity of feed-forward networks for many diverse applica

tions stems from their ability to map or represent many different functions. 

If a good set of training data is available for a particular application, it is 

likely that a single or at most a two hidden-layer feed-forward network can 

learn to master the desired tasks. Although their performance is acknowl

edged to be as good as other networks, and other non-network techniques, 

in the solution of diverse problems, neural networks require experience and 

practice to train. It also remains to be confirmed if their performance holds 

when scaled up to large networks.

Before describing ANN solutions for each of four broad categories of ap-
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plications, namely classification and diagnosis, control and optimisation, pre

diction and forecasting, and pattern recognition, a brief overview of neural 

network applications generally is offered in the next section.

F.l NEURAL NETWORK CAPABILITIES

Imaginative researchers are devising new applications for artificial neural 

networks daily. Some of the more familiar applications include:

Classification Neural networks can be used to determine crop types from 

satellite photographs, to distinguish a submarine from a boulder given 

its sonar return, and to identify specific diseases of the heart from elec

trocardiograms. Any task that can be done by traditional discriminant 

analysis can be done at least as well (and almost always much better) 

by a neural network.

Noise Reduction An artificial neural network can be trained to recognise 

a number of patterns. These patterns may be parts of time-series, 

images, etc. If a version of one of these patterns, corrupted by noise, 

is presented to a properly trained network, the network can reproduce 

the original pattern on which it was trained. This technique has been 

used with outstanding success in some image restoration problems.

Prediction A very common problem is that of predicting the value of a vari

able given historic values of that variable (and perhaps other variables). 

Economic and meteorological models spring to mind. Neural networks
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have frequently been shown to outperform traditional techniques like 

frequency domain analysis.

Artificial neural networks are most likely to be superior to other methods 

under the following conditions:

1. The input data on which conclusions are to be based are “fuzzy.” Ex

amples are human opinions and ill-defined categories subject to large 

error. This type of problem requires the robust behaviour of neural 

networks.

2. The patterns important to the required decision are subtle or deeply 

hidden. One of the principal advantages of a neural network is its abil

ity to discover patterns in data which are obscure or imperceptible to 

human researchers and which are unresponsive to standard statistical 

methods. One of the first major commercial uses of neural networks 

was to predict the credit worthiness of loan applicants, based on their 

spending and payment history. The correct decision depended on much 

more than simple factors like salary and debt level. Neural networks 

were found to provide decisions superior to those made by trained hu

mans in this type of situation.

3. The data exhibits significant unpredictable non-linearity. Traditional 

time-series models for predicting future values, such as Kalman filters, 

axe based on strictly defined models. If the data do not fit the mod

els, results may be useless. Neural networks, on the other hand, are 

eminently adaptable.
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4. The data is chaotic (in the mathematical sense). Chaos can be found in 

telephone line noise, stock market prices and in a host of other physical 

processes. Such behaviour is devastating to most other techniques, but 

neural networks are generally robust with inputs of this type.

The excellent performance of artificial neural networks is not surprising 

when one considers the solid theoretical foundations on which many of them 

rest. The standard workhorse, the three-layer (one hidden layer) feed-forward 

network, has powerful function-approximation capabilities. In particular, any 

continuous function defined over a compact subset of 3Jn can be approximated 

to arbitrary accuracy given sufficient hidden neurons. The importance of 

this result cannot be overstated. When combined with the robustness of the 

three-layer feed-forward network as regards input errors, it is a powerful tool. 

Rigorous mathematical discussion of these properties is given in [58, 7].

In summary, many artificial neural networks possess both substantial the

oretical foundations and practical utility. Any problem that can be solved 

with traditional modelling or statistical methods can most likely be solved 

more effectively with a neural network.

F.2 CLASSIFYING CELLS FOR CANCER 

DIAGNOSIS

This applications falls into the “classification and diagnosis” category of prob

lems which are ubiquitous and occur in many problem domains. An electronic 

or mechanical system that develops operational problems will have devel-
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oped one or more faults that needs diagnosing for identification and repair. 

Manufactured products must be inspected for quality and either accepted or 

rejected, a form of classification task, and so on. The example given here is 

the classification of cells in the diagnosis of bladder cancer.

The structure and other characteristics of cells observed from urine sam

ples of patients can provide an accurate indication of bladder cancer. A 

simple two-category classification scheme of “Well” and “Not Well” is suffi

cient for the cell diagnosis task when well chosen, discriminant features are 

used. Several approaches to the classification problem have been proposed, 

including the use of Selective Mapping Tree Classifiers, feed-forward net

works and others [89]. Of the methods reported, only the ANN approach 

has achieved levels of classification accuracy acceptable for clinical use. For 

example, the tree classifier system accuracy was of the order of 23% with 

other non-ANN methods reporting even poorer performance levels. The ac

curacy achieved using a simple two-layer feed-forward network is of the order 

of 96%, a significant improvement over the other approaches.

In this example, 43 microscopic images containing 597 objects were used 

to train and test the network. The images were first examined visually and 

cells were classified by experts. Of the total objects, 77 were classified as Well 

and 520 as Not Well. For the experiments, about one half of the objects were 

selected randomly for training and the balance for testing. Several descriptive 

features were selected for cell descriptors. These included: (1) the cell area, 

which ranged between 100 and 400 pixels for Well cells (larger for Not Well 

cells), (2) cell circularity, a measure of how well the cell approximated a 

circle, defined as the ratio of the cell’s area to the area of a rectangular
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box containing the cell (tt/4 for a true circle), (3) area of the cell nucleus, 

(4) circularity of the nucleus and (5) the ratio of the entire cell area to the 

nucleus. These features were used as input to the neural network which had 

five input nodes, two hidden layers, each with ten nodes, and a single output 

node. A cell was interpreted as Well if the output node value was greater 

than or equal to 0.5 and Not Well otherwise.

Each microscopic image consisted of 256x240 pixels with 256 grey levels. 

Pre-processing of the images was performed as follows: the grey-level images 

were first partitioned into 16 segments of 32x120 pixels to account for dif

ferent lighting backgrounds and shading conditions. The segments were then 

digitised and converted to binary form after determining threshold levels from 

a histogram computation and analysis of the segments. The threshold inten

sity level was chosen to separate the cytologic objects from the background 

and thereby permit object segmentation. Segmentation was performed using 

a blob colouring algorithm which assigns homogenous neighbouring pixels 

0/1 values [4]. The five-object descriptors defined above were then computed 

and fed to the neural network as an input pattern vector.

After training the network, tests were conducted on the data set and an 

accuracy of 93.4% was reported in accepting Well cells and 97.0% in detecting 

Not Well cells. This gave an average error rate of 3.5%, an acceptable level 

for clinical use. The time spent for the diagnoses was also quite acceptable. 

Pre-processing time for each image required 2.6 seconds and classification 0.4 

seconds for a total diagnostic time of 3.0 seconds. This compares favourably 

with other methods that took in the order of 32 seconds per image. Over

all, the neural network approach outperformed the other approaches by a
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significant margin.

F.3 AUTONOMOUSLY DRIVEN LAND 

VEHICLE

The second example falls into the “control and optimisation” category of 

problems which are among the more difficult applications for ANNs to mas

ter. The mapping functions that must be learned are generally very complex 

in nature and problem constraints that must be satisfied are often conflicting. 

Even so, the application of feed-forward networks to such problems has been 

moderately successful. The example described here relates to the control of 

an autonomously driven (driver-less) vehicle.

Carnegie-Mellon University converted a commercial van into a laboratory 

vehicle (Navlab I) in 1986 to act as a test bed for autonomous driving ex

periments [130, 68]. One of the control systems, an AIATNN (Autonomous 

Land Vehicle in a Neural Network) is neural net based. The van is equipped 

with several video cameras, a scanning laser range finder, a global position

ing system, an inertial navigation system and sonar sensors. It also carries 

several computers onboard.

The ALVINN automatic road following control system uses a fully con

nected three-layer BP network with colour vision inputs from a video cam

era. The input image is reduced resolution with input retina of 30x32 (also 

45x48) pixels. The hidden layer has nine units and the output layer has 45 

units. The network learns different sets of weights to follow different types
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of roads. The basic network architecture is illustrated in Figure F.l.

Figure F.l: Multi-layer network control unit for NavLab.

During operation, the image is pre-processed to enhance road contours 

and the result is fed directly to the network input. The network computes 

the steering angle directly with no reasoning about road location. The out

put nodes provide commands to steer the vehicle with varying degrees of 

angular turning; (45 different angle positions) sharp-left, varying degrees of 

left, straight ahead, varying degrees of right and far-right. During operation,
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the output is updated 15 times per second to provide real-time control of the 

vehicle while travelling at speeds of up to 55mph.

To train the network, a unique “on-the-fly” procedure is used. Images are 

inputted and processed while someone drives the vehicle down a section of 

the selected road or highway. Thus, the training set consists of “snapshots” 

of the highway images (input vector) and the angular position of the steering 

mechanism (target vector). Each image is reused in several positions during 

training. The image is transformed through lateral translations to provide 

several positions, shifted to simulate erroneous correspondence between road 

and steering angle. The appropriate commands to correct the error are also 

determined. These modified images and steering angles are all provided as 

part of the training set. This type of training gives a “view” of the road 

consistent with ideal human driving. The system also uses three-dimensional 

images from laser range finders to detect obstacles along the roadway (trees, 

cars, mailboxes, rocks).

The ALVINN project has met with good success where the vehicle has 

travelled at speeds up to 55mph for distances of 90 miles or more. It has 

also been tested successfully on various road types (dirt, paved single and 

double-lane) and under various weather conditions.

ALVINN is not the only successful ANN control system for autonomous 

vehicle driving. The Advance Research Projects Agency (ARPA) have also 

built autonomous vehicles (ALV) as well as European and Japanese organi

sations. The potential for (commercial and military) driver-less vehicle ap

plications is very great and warrants considerable interest and resources.
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F.4 PREDICTING CREDIT

WORTHINESS FOR LOAN 

APPLICATIONS

Prediction is a task every organisation must learn to do. A consumer prod

ucts company will want to know the expected growth in sales for a new prod

uct that it plans to introduce. Meteorologists need to predict the weather. 

Banks want to predict the credit worthiness of companies as a basis for 

granting loans. Airport management groups want to predict the growth in 

passenger arrivals at busy airports, and electric power companies want to 

know customer demand for power in the future, and so on. ANNs have been 

shown to be successful as predictive tools in a variety of ways—predicting 

that some event will or will not occur, predicting the time at which an event 

will occur, or predicting the level of some outcome. To predict with an ac

ceptable level of accuracy, an ANN must be trained with a sizeable number of 

examples of past patterns, together with known future outcome values. The 

training set will generally come from historical data that has been collected 

over a given time period. The ANN must then learn to generalise and ex

trapolate from new patterns to predict future outcomes. The example of this 

category of problem described here is the assessment of the credit worthiness 

of loan applicants.

Chase Manhatten Bank implemented one of the most successful applica

tions of predictive models using neural networks in 1990. The system is a 

hybrid, statistical-based network that assesses the credit worthiness of public
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corporations seeking business loans. Chase loans out some US$ 300 million 

(€257.18 million) annually to qualifying companies. Since this can be a sig

nificant source of profit (or loss), the ability to accurately forecast the credit 

worthiness of potential customers is essential.

The overall system known as Creditview performs three-year forecasts 

that assign a risk classification of good, criticised, or charged-off. The system 

also provides a detailed listing of items that significantly contribute to the 

forecast. A conventional expert system interprets the items and produces 

various comparison reports for senior loan officers. A front-end system to 

the neural network, known as ADAM, receives historical input data from a 

financial database, together with good and bad data on the customer seeking 

the loan. These data serve as part of the training set. ADAM also receives 

input on industry norms, financial data for the normalisation of specific in

dustry categories. ADAM generates candidate variables that may indicate 

the future financial condition of a company. This is compiled as profile data 

in the form of logical feature vectors that form the basis for a neural network 

model of the company in question. The neural network, known as the public 

company model (PCLM) Forecaster then produces a rating for the company. 

The combined system is illustrated in Figure F.2.

The PCLM accepts six years of past financial data for the company be

ing rated. It uses the expression produced by ADAM to predict the financial 

health of the company three years into the future. The predictions determine 

the likelihood of a company being rated as good, criticised or charge-off. In 

addition, the PCLM identifies the strengths and weaknesses in the financial 

structure of the company. Extensive reports giving comparative risk esti-
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Industry Norms

Company's Financial 
and Market Data
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Predictive patterns

PCLM
Forecaster ^Forecast

Figure F.2: Chase Manhatten Bank’s hybrid neural network credit 
rater.

mates and a text explanation of the analysis are provided to the user. Chase 

[90, 91] has tested the system extensively and uncovered a number of trou

blesome loans. The system was put in operation around 1990 and is being 

extended and enhanced to include private corporation evaluations as well.

F.5 DETECTION OF EPILEPTIC 

ATTACKS

The “pattern recognition” category of problem includes such applications as 

speech and character recognition for various languages, visual image recog

nition and classification, and various types of signal and chart analysis in

cluding electrocardiograms, electroencefelographs, electrocardiographs, and 

various graph analysis for process alarm monitoring. Pattern recognition 

applications are generally difficult to master. They are closely related to 

cognitive tasks which humans perform almost effortlessly. In this section an 

application describing the early detection of epileptic attacks is described. 

Early detection of an impending attack in epileptic patients makes it
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possible to start early reactions and treatment. The preictal1 period is not 

easily detected however, since the temporal data vary greatly from patient to 

patient and the course of the attack is also a source of variability. Because of 

the strong patient dependency, conventional statistical and AI methods have 

been very ineffective in early detection. With patient specific data available 

on prior attacks, the use of ANN technology is possible since training data 

sets can be constructed.

Patient data are collected by implanting EEG electrodes subdurally in a 

patient and recording the analogue brain wave signals over a period of time 

prior to an attack. A number of 100-200Hz signals from different locations 

are recorded graphically for analysis by an electrophysiologist and also digi

tised and stored for subsequent use in training feed-forward networks. The 

physiologist can analyse and edit the data using a graphical screen editor, 

eliminating artefacts and other irrelevant data. Further pre-processing of the 

data has been found to be effective in reducing the size of the data set. Slid

ing windows over the time series data are used to selectively sample sections 

of pattern data points. This data is used in the computation of averages, 

variances, histograms and other summary statistics. The data from different 

channels are then divided among several feed-forward networks for indepen

dent training and the outputs from these networks are then used for input to 

a final prediction network. By combining the outputs of several independent 

networks into a vector for input to a final network, researchers have been 

able to improve the response-quality of the early detection system [48]. The 

detection system is illustrated in Figure F.3.

1 Occurring before a convulsion or stroke.
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Given Interpretation

Figure F.3: System for early detection of epileptic attacks.

The success of the system was found to be heavily dependent on the qual

ity of the human data interpretations, and particularly on the pre-processing 

methods applied to the source data. The use of ANNs for early detection 

has led to more efficient analysis and has resulted in more precise and more 

stable detection. This work has helped to pave the way for the development 

of a real-time automatic detection system that is now deemed feasible.



Appendix G

Mathematica™ Source Code 

Listings

This appendix contains the Mathematica™ source code listings for patient- 

related and implant related feed-forward neural networks. All the data used 

to train and validate the neural network are included here for completeness. 

This data was randomly divided into test and validation sets for the experi

ment.

G.l PATIENT-RELATED

FEED-FORWARD NEURAL 

NETWORK

«DiscreteMathf Backpropagation ‘

ioPairsTC= ioPairs=
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{{{0.900,0.100,0.100,0.900,0.100,0.100},{0.900}}, 

{{0.900,0.100,0.100,0.900,0.100,0.153},{0.900}}, 

{{0.900,0.100,0.100,0.900,0.100,0.260},{0.888}},

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

{{0.900,0.100,0.100,0.900

,0.100,0.367},{0.872}}, 

,0.100,0.473},{0.840}}, 

,0.100,0.580},{0.800}}, 

,0.100,0.687},{0.848}}, 

,0.100,0.793},{0.736}}, 

,0.100,0.900},{0.708}}, 

,0.367,0.100},{0.900}}, 

,0.367,0.153},{0.900}}, 

,0.367,0.260},{0.884}}, 

,0.367,0.367},{0.860}}, 

,0.367,0.473},{0.844}}, 

,0.367,0.580},{0.796}}, 

,0.367,0.687},{0.740}}, 

,0.367,0.793},{0.688}}, 

,0.367,0.900},{0.644}}, 

,0.633,0.100},{0.900}}, 

,0.633,0.153},{0.900}}, 

,0.633,0.260},{0.892}}, 

,0.633,0.367},{0.876}}, 

,0.633,0.473},{0.848}}, 

,0.633,0.580},{0.804}}, 

,0.633,0.687},{0.780}},
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{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0.

{{0.900,0.

{{0.900,0.

{{0.900,0.

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0

{{0.900,0.

{{0.900,0.

{{0.900,0.

{{0.900,0.

.100,0.100

.100,0.100

.100,0.100

.100,0.100

.100,0.100

,100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

100,0.100

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.900,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

,0.100,0

633,0.793}

.633,0.900}

900,0.100}

900,0.153}

900,0.260}

900,0.367}

900,0.473}

900,0.580}

900,0.687}

900,0.793}

900,0.900}

100,0.100}

100,0.153}

100,0.260}

100,0.367}

100,0.473}

100,0.580}

100,0.687}

100,0.793}

100,0.900}

367,0.100}

367,0.153}

367,0.260}

367,0.367}

367,0.473}

,{0.752}},

,{0.732}},

,{0.900}},

,{0.900}},

,{0.896}},

,{0.884}},

,{0.876}},

,{0.860}},

,{0.848}},

,{0.844}},

,{0.844}},

,{0.900}},

,{0.900}},

,{0.892}},

,{0.880}},

,{0.860}},

,{0.832}},

,{0.796}},

,{0.772}},

,{0.752}},

,{0.900}},

,{0.900}},

,{0.896}},

,{0.884}},

,{0.860}},
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{{0.900,0.100,0.100,0.100,0.367,0.580},{0.840}}, 

{{0.900,0.100,0.100,0.100,0.367,0.687},{0.812}}, 

{{0.900,0.100,0.100,0.100,0.367,0.793},{0.780}},

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

,0.367,0.900},{0.768}}, 

,0.633,0.100},{0.900}}, 

,0.633,0.153},{0.900}}, 

,0.633,0.260},{0.896}}, 

,0.633,0.367},{0.884}}, 

,0.633,0.473},{0.860}}, 

,0.633,0.580},{0.836}}, 

,0.633,0.687},{0.808}}, 

,0.633,0.793},{0.784}}, 

,0.633,0.900},{0.772}}, 

,0.900,0.100},{0.900}}, 

,0.900,0.153},{0.900}}, 

,0.900,0.260},{0.898}}, 

,0.900,0.367},{0.890}}, 

,0.900,0.473},{0.882}}, 

,0.900,0.580},{0.874}}, 

,0.900,0.687},{0.872}}, 

,0.900,0.793},{0.870}}, 

,0.900,0.900},{0.868}}, 

,0.100,0.100},{0.900}}, 

,0.100,0.153},{0.900}}, 

,0.100,0.260},{0.884}},



Mathematica™ Source Code Listings 277

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

{{0.100,0.900,0.100,0.900

,0.100,0.367},{0.856}}, 

,0.100,0.473},{0.822}}, 

,0.100,0.580},{0.772}}, 

,0.100,0.687},{0.740}}, 

,0.100,0.793},{0.700}}, 

,0.100,0.900},{0.644}}, 

,0.367,0.100},{0.900}}, 

,0.367,0.153},{0.900}}, 

,0.367,0.260},{0.888}}, 

,0.367,0.367},{0.876}}, 

,0.367,0.473},{0.844}}, 

,0.367,0.580},{0.808}}, 

,0.367,0.687},{0.778}}, 

,0.367,0.793},{0.708}}, 

,0.633,0.100},{0.900}}, 

,0.633,0.153},{0.900}}, 

,0.633,0.260},{0.892}}, 

,0.633,0.367},{0.876}}, 

,0.633,0.473},{0.868}}, 

,0.633,0.580},{0.856}}, 

,0.633,0.687},{0.796}}, 

,0.633,0.793},{0.784}}, 

,0.900,0.100},{0.900}}, 

,0.900,0.153},{0.900}}, 

,0.900,0.260},{0.900}},
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{{0.100,0.900,0.100,0.900,0.900,0.367}.{O-SOO}}, 

{{0.100,0.900,0.100,0.100,0.100,0.100},{0.900}},

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

,0.100,0.153},{0.900}}, 

,0.100,0.260},{0.892}}, 

,0.100,0.367},{0.880}}, 

,0.100,0.473},{0.844}}, 

,0.100,0.580},{0.800}}, 

,0.100,0.687},{0.772}}, 

,0.100,0.793},{0.724}}, 

,0.100,0.900},{0.702}}, 

,0.367,0.100},{0.900}}, 

,0.367,0.153},{0.900}}, 

,0.367,0.260},{0.892}}, 

,0.367,0.367},{0.884}}, 

,0.367,0.473},{0.868}}, 

,0.367,0.580},{0.836}}, 

,0.367,0.687},{0.820}}, 

,0.367,0.793},{0.806}}, 

,0.367,0.900},{0.804}}, 

,0.633,0.100},{0.900}}, 

,0.633,0.153},{0.900}}, 

,0.633,0.260},{0.898}}, 

,0.633,0.367},{0.892}}, 

,0.633,0.473},{0.876}}, 

,0.633,0.580},{0.870}},
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{{0.100,0.900,0.100,0.100,0.633,0.687},{0.864}}, 

{■[0.100,0.900,0.100,0.100,0.633,0.793}, {0.862}}, 

{{0.100,0.900,0.100,0.100,0.633,0.900},{0.862}}, 

{{0.100,0.900,0.100,0.100,0.900,0.100},{0.900}}, 

{{0.100,0.900,0.100,0.100,0.900,0.153},{0.899}},

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.900,0.100,0.100

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

{{0.100,0.100,0.900,0.900

,0.900,0.260},{0.898}}, 

,0.900,0.367},{0.894}}, 

,0.900,0.473},{0.868}}, 

,0.900,0.580},{0.844}}, 

,0.100,0.100},{0.900}}, 

,0.100,0.153},{0.896}}, 

,0.100,0.260},{0.884}}, 

,0.100,0.367},{0.852}}, 

,0.100,0.473},{0.784}}, 

,0.100,0.580},{0.712}}, 

,0.100,0.687},{0.636}}, 

,0.367,0.100},{0.900}}, 

,0.367,0.153},{0.900}}, 

,0.367,0.260},{0.892}}, 

,0.367,0.367},{0.868}}, 

,0.367,0.473},{0.844}}, 

,0.367,0.580},{0.812}}, 

,0.367,0.687},{0.788}}, 

,0.367,0.793},{0.756}}, 

,0.367,0.900},{0.700}},
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{{0.100,0.100,0.900,0.900,0.633,0.100},{O.gOO}}, 

{{0.100,0.100,0.900,0.900,0.633,0.153},{0.900}}, 

{{0.100,0.100,0.900,0.900,0.633,0.260},{0.892}}, 

{{0.100,0.100,0.900,0.900,0.633,0.367},{0.884}}, 

{{0.100,0.100,0.900,0.900,0.633,0.473},{0.876}}, 

{{0.100,0.100,0.900,0.900,0.633,0.580},{0.860}}, 

{{0.100,0.100,0.900,0.900,0.633,0.687},{0.836}}, 

{{0.100,0.100,0.900,0.900,0.633,0.793},{0.820}}, 

{{0.100,0.100,0.900,0.900,0.633,0.900},{0.812}}, 

{{0.100,0.100,0.900,0.900,0.900,0.100},{0.900}}, 

{{0.100,0.100,0.900,0.900,0.900,0.153},{0.900}}, 

{{0.100,0.100,0.900,0.900,0.900,0.260},{0.896}}, 

{{0.100,0.100,0.900,0.900,0.900,0.367},{0.884}}, 

{{0.100,0.100,0.900,0.900,0.900,0.473},{0.882}}, 

{{0.100,0.100,0.900,0.900,0.900,0.580},{0.868}}, 

{{0.100,0.100,0.900,0.900,0.900,0.687},{0.864}}, 

{{0.100,0.100,0.900,0.100,0.100,0.100},{0.900}}, 

{{0.100,0.100,0.900,0.100,0.100,0.153},{0.898}}, 

{{0.100,0.100,0.900,0.100,0.100,0.260},{0.884}}, 

{{0.100,0.100,0.900,0.100,0.100,0.367},{0.864}}, 

{{0.100,0.100,0.900,0.100,0.100,0.473},{0.804}}, 

{{0.100,0.100,0.900,0.100,0.100,0.580},{0.772}}, 

{{0.100,0.100,0.900,0.100,0.100,0.687},{0.756}}, 

{{0.100,0.100,0.900,0.100,0.100,0.793},{0.752}}, 

{{0.100,0.100,0.900,0.100,0.367,0.100},{0.900}},
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{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

{{0.100,0.

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0,

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.900,0.

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

.100,0

,100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

367,0

367,0

367,0

367,0

367,0

367,0

367,0

.367,0

.633,0

.633,0

.633,0

.633,0

.633,0

.633,0

.633,0

.633,0

.633,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

.900,0

. 153},{0 

260},{0 

367},{0 

473},{0 

580},{0 

687},{0 

793},{0 

900},{0 

100},{0 

153},{0 

260},{0 

. 367},{0 

.473},{0 

. 580},{0 

. 687},{0 

.793},{0 

.900},{0 

.100},{0 

. 153},{0 

.260},{0 

.367},{0. 

.473},{0. 

.580},{0. 

.687},{0. 

.793},{0.

.900}},

.892}},

.884}},

.860}},

.844}},

•816}},

.784}},

.760}},

.900}},

.900}},

.898}},

.884}},

.868}},

.852}},

.836}},

.812}},

.812}},

.900}},

.900}},

.896}},

.884}},

.882}},

878}},

876}},

872}},
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{{0.100,0.100,0.900,0.100,0.900,0.900},{0.852}}};

inNumber=6
hidNumber=3
outNumber=l
outs={0,0,0}
outs [[1]]
outs[[2]]
outs[[3]]
outs=bpnStaundard[6,3,l,ioPairsTC,0.1,500] ; 
graphl = ListPlot[outs[[3]],PlotJoined->True, 

PlotRange->-[0.1,0},
PlotJoined->True,Axes->True]; 
graph2 = ListPlot[{{0,0.01},{500,0.01}}, 

PlotStyle->{RGBColor[1,0,0]},
PlotJoined->True,Axes->True] 
graphs = Show[{graphl,graph2}]
Display["c : Wgraph.ps" ,graphs]

G.2 IMPLANT-RELATED

FEED-FORWARD NEURAL 

NETWORK

«DiscreteMath<Backpropagation< 
ioPairsTC= ioPairs=
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{{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.100}, {0.9», 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.153},-CO. 898», 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.207},{0.892}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.260},{0.884}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.313},{0.88}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.367},{0.876}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.100,0.420},{0.866}},

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

{{0.900,0.100,0.100,0.900,0.100

,0.900,0.100,0.473},{0.856}}, 

,0.900,0.100,0.527},{0.85}}, 

,0.900,0.100,0.580},{0.84}}, 

,0.900,0.100,0.633},{0.836}}, 

,0.900,0.100,0.687},{0.83}}, 

,0.900,0.100,0.740},{0.82}}, 

,0.900,0.100,0.793},{0.816}}, 

,0.900,0.100,0.847},{0.812}}, 

,0.900,0.100,0.900},{0.8}}, 

,0.900,0.100,0.100},{0.9}}, 

,0.900,0.100,0.153},{0.8984}}, 

,0.900,0.100,0.207},{0.8972}}, 

,0.900,0.100,0.260},{0.8928}}, 

,0.900,0.100,0.313},{0.89}}, 

,0.900,0.100,0.367},{0.884}}, 

,0.900,0.100,0.420},{0.88}}, 

,0.900,0.100,0.473},{0.876}}, 

,0.900,0.100,0.527},{0.868}},
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{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.580>,-[0.852», 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.633>,{0.844», 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.687>,{0.832», 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.740>,{0.816», 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.793>,{0.806», 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.847>,{0.802}>, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.100,0.900>,{0.796}>, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.100>,{0.9»,

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.153>, {0.8992», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.207>,{0.896», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.260>,{0.894», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.313>,{0.8904», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.367>,{0.884», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.420>,{0.88», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.473>,{0.8744», 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.527},{0.8664}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.580},{0.86}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.633},{0.844}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.687},{0.84}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.740},{0.8352}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.793},{0.828}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.847},{0.812}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.100,0.900},{0.812}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.100},{0.9}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.153},{0.892}},
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{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.207},-C0.876}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.260},-[0.838}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.313},{0.792}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.367},{0.752}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.100,0.420},{0.7}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.100},{0.9}},

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.153},{0.898}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.207},{0.892}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.260},{0.884}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.313},{0.872}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.367},{0.86}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.420},{0.84}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.473},{0.82}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.527},{0.804}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.580},{0.7968}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.633},{0.7968}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.687},{0.7968}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.740},{0.7944}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.793},{0.78}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.847},{0.7704}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.900},{0.7704}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.100},{0.9}},  

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.153},{0.8984}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.207},{0.8944}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.260},{0.892}},
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{•[0.900,0.100,0.100,0.100.0.100,0.100,0.900,0.313>,-CO. 8888}}

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

,0.100,0.900,0.367},{0.8816}}, 

,0.100,0.900,0.420},{0.8776}}, 

,0.100,0.900,0.473},{0.8696}}, 

,0.100,0.900,0.527},{0.8584}}, 

,0.100,0.900,0.580},{0.84}}, 

,0.100,0.900,0.633},{0.836}}, 

,0.100,0.900,0.687},{0.828}}, 

,0.100,0.900,0.740},{0.82}}, 

,0.100,0.900,0.793},{0.8136}}, 

,0.100,0.900,0.847},{0.8096}}, 

,0.100,0.900,0.900},{0.7992}}, 

,0.100,0.900,0.100},{0.9}},

,0.100,0.900,0.153},{0.8992}}, 

,0.100,0.900,0.207},{0.8936}}, 

,0.100,0.900,0.260},{0.888}}, 

,0.100,0.900,0.313},{0.88}}, 

,0.100,0.900,0.367},{0.872}}, 

,0.100,0.900,0.420},{0.856}}, 

,0.100,0.900,0.473},{0.848}}, 

,0.100,0.900,0.527},{0.832}}, 

,0.100,0.900,0.580},{0.8192}}, 

,0.100,0.900,0.633},{0.804}}, 

,0.100,0.900,0.687},{0.792}}, 

,0.100,0.900,0.740},{0.7672}},
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{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.100},iO.9}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.153},{0.8992}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.207},{0.8984}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.260},{0.896}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.313},{0.8904}}, 

{{0.900,0.100,0.100,0.100,0.100,0.100,0.900,0.367},{0.884}},

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.100,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

{{0.900,0.900,0.100,0.100,0.100

,0.100,0.900,0.420},{0.88}}, 

,0.100,0.900,0.473},{0.8752}}, 

,0.100,0.900,0.100},{0.9}}, 

,0.100,0.900,0.153},{0.9}}, 

,0.100,0.900,0.207},{0.9}}, 

,0.100,0.900,0.260},{0.8976}}, 

,0.100,0.900,0.313},{0.892}}, 

,0.100,0.900,0.367},{0.884}}, 

,0.100,0.900,0.420},{0.8736}}, 

,0.100,0.900,0.473},{0.868}}, 

,0.100,0.900,0.527},{0.852}}, 

,0.100,0.900,0.100},{0.9}}, 

,0.100,0.900,0.153},{0.9}}, 

,0.100,0.900,0.207},{0.8976}}, 

,0.100,0.900,0.260},{0.8952}}, 

,0.100,0.900,0.313},{0.892}}, 

,0.100,0.900,0.367},{0.8896}}, 

,0.100,0.900,0.420},{0.888}}, 

,0.100,0.900,0.473},{0.8816}},
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{{0.900,0.900,0.100,0.100,0.100,0.100,0.900,0.527}.-CO.88}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.900,0.580},{0.88}}, 

{{0.900,0.900,0.100,0.100,0.100,0.100,0.900,0.633},{0.88}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.100},{0.9}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.153},{0.9}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.207},{0.9}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.260},{0.9}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.313},{0.9}},

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.367},{0.9}},  

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.420},{0.8936}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.473},{0.8936}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.527},{0.8936}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.580},{0.8936}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.100},{0.9}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.153},{0.8984}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.207},{0.896}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.260},{0.892}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.313},{0.8896}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.367},{0.8888}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.420},{0.8776}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.473},{0.86}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.527},{0.8512}}, 

{{0.900,0.100,0.100,0.900,0.100,0.900,0.900,0.580},{0.8136}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.100}, {0.9}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.153},{0.8968}},
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{-CO. 100,0.900,0.100,0.900,0.900,0.900,0.900,0.207} ,-[0.892}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.260},-[0.88}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.313},{0.8784}},  

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.367},{0.872}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.420},{0.8616}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.473},{0.8504}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.527},{0.8104}}, 

{{0.100,0.900,0.100,0.900,0.900,0.900,0.900,0.580},{0.804}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.100},{0.9}}, 

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.153},{0.9}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.207},{0.8984}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.260},{0.8968}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.313},{0.8952}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.367},{0.8928}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.420},{0.8912}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.473},{0.888}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.527},{0.884}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.580},{0.8904}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.633},{0.876}},

{{0.900,0.100,0.100,0.100,0.100,0.900,0.900,0.687},{0.876}}};

inNumber=8

hidNumber=2

outNumber=l

outs={0,0,0}

outs[[1]]
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outs[[2]] 
outs[[3]]
outs=bpnStandard[8,2,1,ioPairsTC.0.1,2000] ; 

graph1 = ListPlot[outs[[3]].PlotJoined->True, 

PlotRange->{0.1,0},Frame->False,
PlotJoined->True,Axes->True]; 

graph2 = ListPlot[{{0,0.01},{2000,0.01}},

PlotStyle->{RGBColor[1,0,0]},Frame->False,
PlotJoined->True,Axes->True] 

graphs = Show[{graphl,graph2}]
Display["c: Wgraph.ps" ,graphs]

G.3 BACKPROPAGATION 

ALGORITHMS

BeginPackage["Backpropagation'”]

sigmoid::usage = "sigmoid[x,opts-- Rule]"

bpnlest::usage = "bpnTest[hiddenWts,outputWts, 
ioPairVectors,opts__ Rule]"

bpnStandard::usage = "bpnStandard[inNumber, hidNumber, 
outNumber,ioPairs, eta, numlters]" 

bpnMomentum::usage = "bpnMomentum[inNumber.hidNumber, 
outNumber,ioPairs,eta, alpha,numlters] "
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Options[sigmoid] = xShift->0,yShift->0,temperature->l;

Options[bpnlest] = printAll->False,bias->False;

Begin["'Private'"] (* begin the private context *)

sigmoid[x_,opts__ Rule] := Module[xshft.yshft,temp,
xshft = xShift /. opts /. Options[sigmoid]; 
yshft = yShift /. opts /. Options[sigmoid]; 
temp = temperature /. opts /. Options[sigmoid]; 

yshft+l/(l+E'*(-(x-xshft)/temp)) //N 

]

bpnlest[hiddenWts,,outputWts.,ioPairVectors_,opts__ Rule] :=

Module[inputs.hidden,outputs.desired,errors,i,len, 

prntAll,errorlotal,errorSum.biasVal, 
prntAll= printAll /. opts /. Options[bpnlest]; 
biasVal = bias /. opts /. Options[bpnlest]; 

inputs=Map[First,ioPairVectors]; 

len=Length[inputs];
If[biasVal,inputs=Map[Append[#,1.0]&,inputs] ]; 

desired=Map[Last,ioPairVectors] ; 
hidden=sigmoid[inputs.Transpose[hiddenWts]];
If[biasVal.hidden = Map[Append[#,1.0]ft,hidden] ]; 

outputs=sigmoid[hidden.Transpose[outputWts]];
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errors= desired-outputs;
If CpmtAll .Print ["ioPairs:"] ;Print [ ] ;

Print[ioPairVectors] ;
Print[ ];Print ["inputs:"];Print[ ];Print[inputs]; 

Print [ ];Print ["hidden-layer outputs:"];

Print[hidden];Print[ ];
Print["output-layer outputs:"];Print[ ];
Print[outputs];Print[ ];Print["errors:"];
Print[errors];Print[ ]; ]; (* end of If *)

For[i=l,i<=len,i++.Print[" Output " ,i," = ",
outputs[[i]]," desired = ".desired[[i]],
" Error = ", errors [[i] ]] ;Print [] ; ];

(* end of For *)
errorSum = Apply [Plus ,errors'*2,2] ;

(* second level *) 
errorlotal = Apply[Plus.errorSum];
Print["Mean Squared Error = " ,errorTotal/len];

] (* end of Module *)

bpnStandard[inNumber_, hidNumber_, outNumber_, 

ioPairs., eta_, numlters_] :=
Module[errors,hidWts,outWts,ioP,inputs,outDesired,hidOuts, 

outputs, outErrors,outDelta.hidDelta, 
hidWts = Table[Table[Random[Real,-0.1,0.1] , 

inNumber].hidNumber];
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outWts = Table[Table[Random[Real.-O.1,0.1], 
hidNumber].outnumber]; 
errors = Table[

(* select ioPair *)
ioP=ioPairs [ [Random[Integer,1,Length[ioPairs]]]]; 
inputs=ioP[[1]]; 
outDesired=ioP[[2]];
(* forward pass *)
hidOuts = sigmoid[hidWts.inputs];
outputs = sigmoid[outWts.hidOuts] ;
(* determine errors and deltas *)
outErrors = outDesired-outputs;
outDelta= outErrors (outputs (1-outputs));
hidDelta=(hidOuts (1-hidOuts)) Transpose [outWts].
outDelta;
(* update weights *)
outWts += eta Outer[Times.outDelta,hidOuts]; 
hidWts += eta Outer[Times,hidDelta,inputs];
(* add squared error to Table *) 

outErrors.outErrors.numlters] ; (* end of Table *)
Return[hidWts,outWts,errors];
]; (* end of Module *)

bpnMomentum[inNumber_,hidNumber.,outNumber.,ioPairs.,eta. 
alpha.,numlters_] :=
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Module[hidWts,outWts,ioP,inputs.hidOuts,outputs,outDesired, 
hidLastDelta,outLastDelta,outDelta,hidDelta,outErrors, 
hidWts = Table[Table[Random[Real,-0.5,0.5], 

inNumber].hidNumber];
outWts = Table[Table[Ramdom[Real,-0.5,0.5], 

hidNumber].outNumber];
hidLastDelta = Table[Table [0,inNumber].hidNumber]; 
outLastDelta = Table[Table [0.hidNumber].outNumber]; 

errorList = Table[
(* begin forward pass *)
ioP=ioPairs[[Random[Integer,1.Length [ioPairs]]]];

inputs=ioP[[l]];
outDesired=ioP[[2]];
hidOuts = sigmoid[hidWts.inputs];
(* hidden-layer outputs *) 
outputs = sigmoid[outWts.hidOuts];

(* output-layer outputs *)

(* calculate errors *)

outErrors = outDesired-outputs;
outDelta= outErrors (outputs (1-outputs));
hidDelta=(hidOuts (1-hidOuts)) Transpose[outWts] .
outDelta; (* update weights *)
outLastDelta= eta Outer[Times,outDelta,hidOuts]

+alpha outLastDelta; 
outWts += outLastDelta;
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hidLastDelta = eta Outer[Times.hidDelta,inputs]+ 

alpha hidLastDelta; 
hidWts += hidLastDelta; 
outErrors.outErrors, numlters] ;
(* this puts the error on the list *)
(* this many times. Table ends here *)

Print["New hidden-layer weight matrix: "];

Print [] ; Print [hidWts] ; Print [] ;
Print["New output-layer weight matrix: "];
Print [] ; Print [outWts] ; Print [] ; 
bpnTest [hidWts.outWts,ioPairs,bias->
False,printAll->False];
errorPlot = ListPlot[errorList, PlotJoined->True]; 
Return [hidWts,outWts,errorList,errorPlot];
] (* end of Module *)

End[] (* end the private context *)

EndPackage[] (* end the package context *)



Appendix H

Survivability Graphs

This appendix contains the patient and implant-related survivability data 

extracted from graphs published in a series of research papers on the Swedish 

Hip Register [1, 82, 83]. These graphs show the effect of selected variables on 

survivability. Data on patient and implant factors axe available separately, 

but not in combination.

H.l 24 PATIENT-RELATED

SURVIVABILITY GRAPHS

The results from these graphs show significant differences of revision rate 

for aseptic loosening due to patient age, gender and diagnosis. The survival 

analysis illustrated here is based on revision as endpoint for failure.
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Men with Osteoarthrosis < 55
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Figure H.l: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group less than fifty five.
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Figure H.2: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group fifty five to sixty four.
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Figure H.3: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group sixty five to seventy four.
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Figure H.4: Survival rate for men with the primary diagnosis 

osteoarthrosis in the age group greater than seventy five.
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Figure H.5: Survival rate for women with the primary diagnosis 

osteoarthrosis in the age group less than fifty five.
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Figure H.6: Survival rate for women with the primary diagnosis 

osteoarthrosis in the age group fifty five to sixty four.
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Figure H.7: Survival rate for women with the primary diagnosis 

osteoarthrosis in the age group sixty five to seventy four.
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Figure H.8: Survival rate for women with the primary diagnosis 

osteoarthrosis in the age group greater than seventy five.
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Men with Rheumatoid Arthrosis < 55

85
Survivors (%) 80

75

10 12 14
Postoperative years

Figure H.9: Survival rate for men with the primary diagnosis 

rheumatoid arthrosis in the age group less than fifty five.
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Figure H.10: Survival rate for men with the primary diagnosis 

rheumatoid arthrosis in the age group fifty five to sixty four.
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Figure H.ll: Survival rate for men with the primary diagnosis 

rheumatoid arthrosis in the age group sixty five to seventy four.
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Figure H.12: Survival rate for men with the primary diagnosis 

rheumatoid arthrosis in the age group greater than seventy five.
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Figure H.13: Survival rate for women with the primary diagnosis 

rheumatoid arthrosis in the age group less than fifty five.
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Figure H.14: Survival rate for women with the primary diagnosis 

rheumatoid arthrosis in the age group fifty five to sixty four.
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Figure H.15: Survival rate for women with the primary diagnosis 

rheumatoid arthrosis in the age group sixty five to seventy four.
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Figure H.16: Survival rate for women with the primary diagnosis 

rheumatoid arthrosis in the age group greater than seventy five.
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Figure H.17: Survival rate for men with the primary diagnosis hip 

fracture in the age group less than fifty five.
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Figure H.18: Survival rate for men with the primary diagnosis hip 

fracture in the age group fifty five to sixty four.
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Figure H.19: Survival rate for men with the primary diagnosis hip 

fracture in the age group sixty five to seventy four.
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Figure H.20: Survival rate for men with the primary diagnosis hip 

fracture in the age group greater them seventy five.
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Figure H.21: Survival rate for women with the primary diagnosis hip 

fracture in the age group less than fifty five.
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Figure H.22: Survival rate for women with the primary diagnosis hip 

fracture in the age group fifty five to sixty four.
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Figure H.23: Survival rate for women with the primary diagnosis hip 

fracture in the age group sixty five to seventy four.

Women with Hip Fracture > 75

Survivors (%)

100
95
90
85
80
75
70
65
60

i —

0 5 416 8 1 0 12 14
Postoperative years

Figure H.24: Survival rate for women with the primary diagnosis hip 

fracture in the age group greater than seventy five.
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H.2 10 IMPLANT-RELATED

SURVIVABILITY GRAPHS

The implant survivorship analysis describes the probability of failure due to 

revision for aseptic loosening. None of the curves are depicted when less than 

50 hips remain at risk.
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Figure H.25: Survival rate for aseptic loosening using the Lubinus 

prosthesis.
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Figure H.26: Survival rate for aseptic loosening using the Charnley 

prosthesis.
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Figure H.27: Survival rate for aseptic loosening using the CAD 

prosthesis.
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Figure H.28: Survival rate for aseptic loosening using the Christiansen 

prosthesis.
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Figure H.29: Survival rate for aseptic loosening using the Muller 

Curved prosthesis.
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Figure H.30: Survival rate for aseptic loosening using the Muller 

Straight prosthesis.
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Figure H.31: Survived rate for aseptic loosening using the Exeter Matte 

prosthesis.
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Figure H.32: Survival rate for aseptic loosening using the Exter 

Polished prosthesis.
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Figure H.33: Survival rate for aseptic loosening using the Scan Hip 

Collarless prosthesis.



Survivability Graphs 314

Survivors (%)

Scan Hip Collar

Postoperative years

Figure H.34: Scan Hip Collar
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Figure H.35: Survival rate for aseptic loosening using the Spectron 

Metalbacked prosthesis.
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Figure H.36: Survival rate for aseptic loosening using the Spectron 

All-Poly prosthesis.
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Figure H.37: PCA
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Figure H.38: Survival rate for aseptic loosening using the Lubinus SP 

prosthesis.
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