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Abstract

Reinforcement Learning (RL) enables an intelligent agent to optimise its performance in a

task by continuously taking action from an observed state and receiving a feedback from

the environment in form of rewards. RL typically uses tables or linear approximators to

map state-action tuples that maximises the reward. Combining RL with deep neural net-

works (DRL) significantly increases its scalability and enables it to address more complex

problems than before. However, DRL also inherits downsides from both RL and deep learn-

ing. Despite DRL improves generalisation across similar state-action pairs when compared

to simpler RL policy representations like tabular methods, it still requires the agent to ad-

equately explore the state-action space. Additionally, deep methods require more training

data, with the volume of data escalating with the complexity and size of the neural network.

As a result, deep RL requires a long time to collect enough agent-environment samples and

to successfully learn the underlying policy. Furthermore, often even a slight alteration to

the task invalidates any previous acquired knowledge.

To address these shortcomings, Transfer Learning (TL) has been introduced, which

enables the use of external knowledge from other tasks or agents to enhance a learning

process. The goal of TL is to reduce the learning complexity for an agent dealing with an

unfamiliar task by simplifying the exploration process. This is achieved by lowering the

amount of new information required by its learning model, resulting in a reduced overall

convergence time.

TL approaches can be divided in Task-to-Task (T2T) and Agent-to-Agent (A2A) trans-

fer. In T2T, an agent with expertise in a specific task partially or totally reuses its learning

model or belief to address a different novel previously unobserved task. In A2A, an agent

transfer part of its knowledge to a target agent addressing an equally defined task, hence

with the same state-action domain and alike reward model. Based on the timing of transfer,

A2A can be further classified into online and offline. In online transfer, a novel agent may

continuously access knowledge from another agent throughout its entire learning phase. On

the other hand, in offline transfer, sharing happens exclusively at initialisation time.
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State-of-the-art approaches in online A2A TL follow teacher-student paradigm, in which

expert agents transfer their expertise to novices during training through advice-sharing

following the teacher-student paradigm. Knowledge transferred can influence either the

action decision process of an agent or the learnt weight of an action. Having an optimal

teacher to provide advice under the teacher-student framework leads to state of the art

performance. In fact, effective transfer relies on the degree of expertise of the teacher. As

the student improves its policy, the advice provided by the teacher may become outdated

and may overwrite better policies learnt by receiving agents, i.e., a certain advice provided

by the teacher although initially helpful, might prevent the agent from exploring better

actions. To mitigate the outdated advice shortcoming, previous work introduced advising

strategies to regulate the transfer process assuming that an expert agent is used as the

source of advice.

This thesis proposes Expert-Free Online Transfer Learning (EF-OnTL), a novel frame-

work for experience sharing. It enables online transfer learning in multi-agent systems

enabling mutual online knowledge exchange between the learning agents by selecting the

most suitable source of transfer at each time. As a result, each target agent receives a

customised stream of knowledge tailored to its specific knowledge gaps. Thus, agents are

expected to improve their performances by reducing the exploration phase, leading to faster

convergence times. EF-OnTL is a novel framework for online transfer learning as it facilit-

ates the reciprocal exchange of knowledge across multiple agents without the need for a fixed

expert, unlike existing methods that share actions as advice. Furthermore, in EF-OnTL,

the target’s performance is not capped at the teacher’s expertise.

Without the presence of a fixed known expert, successful transfer relies on agents cor-

rectly and fine-grainedly estimating their confidence in the knowledge samples that they do

have. To this effect, this thesis also introduces a new epistemic uncertainty estimator State

Action Reward Next-state Random Network Distillation (sars-RND): an estimator based

on full RL interactions. Compared to a state-visit counter, sars-RND enables fine-grained

estimation during the training phase by taking into account additional information.

We evaluate EF-OnTL across 4 different benchmark environments. First, in three

standard RL benchmarks environments of increasingly complexity: Cart-Pole, Multi-Team

Predator-Prey, Half Field Offense, and a real-world simulated environment Ride-Sharing
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Ride-Requests Simulator. EF-OnTL has demonstrated better or equal performance com-

pared to the benchmark TL baselines. We have observed that the degree of improvement

correlates with the complexity of the environment addressed. In simpler environments, the

improvement is relatively modest, while in more complex ones, the improvement is signific-

antly greater.
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1. Introduction 1

1 Introduction

Reinforcement Learning (RL) is a branch of machine learning that collects a set of algorithms

which enable an intelligent agent to learn an optimal behaviour in an unknown task via

trial and error [6]. Initially, RL was primarily used in academic settings to demonstrate

the feasibility of learning a small unknown task through tabular representation or linear

approximators.

However, with the latest advancements in deep learning, RL has seen a sharp increase, as

shown in Figure 1.1, where the number of RL publications has grown fourfold between 2017

and 2019, and this growth trend has continued thereafter. The figure shows the publication

trend of RL-based research work when looking for "Reinforcement Learning" through Google

Scholar search engine.

In the latest years, RL has been used to control agents in a variety of tasks, game-based or

real-world tasks. Examples of applications include, robotics [11–13], financial [14, 15], asset

management/allocation, large-scale optimisation such as, traffic [16–18], 5g networks [19,

20], medical decisions support [21–23], and natural language processing [24, 25].

Despite the remarkable results collected in the aforementioned fields, RL still struggles

to be efficiently used in certain real world applications for a variety of reasons, including

the complexity of the application domain, settings characterised by non-stationarity, and

the continuous evolution of the environment. Next Section further discusses the main issues

behind RL applicability.
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2 1. Introduction
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Figure 1.1: RL research work published over the latest years (2000 - 2022) and available through
Google Scholar search engine.

1.1 Motivation

RL enables an intelligent agent to learn an optimal decision policy in an unknown task by

evaluating its current status. Agent’s optimal policy can be defined as a sequence of actions

that lead the agent from an initial state to a final state while cumulating the highest possible

reward. Such policy is learnt through interactions with an environment. Agent observes

the current state, samples an action by following its policy, and finally receives a feedback

that expresses how good was the action taken alongside the next observation [6]. States

and actions are well defined over observation space and action space, while reward has a

dual impact on agent’s policy, making it more challenging to model. Reward expresses the

immediate return of a single action taken by the agent based on the current environment

state. However, the agent also needs to learn the long-term effect of a certain action through

cumulative reward. For instance, an action might yield a low immediate reward but in the

long term might lead the agent to achieve the best possible cumulated reward as the state

is followed by other states that yield high rewards [6].

A major challenge intrinsic to RL is the trade-off between exploration and exploita-

tion [6]. During exploration, an agent samples an action randomly and observes the out-

come. Exploration enables the agent to discover new state-action pairs that might yield a

higher cumulative return. On the other hand, exploitation enables the agent to consolidate

its belief by bootstrapping its current policy. The success of an agent lies in achieving the
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balance between these two stages.

An intuitive family of RL algorithms are the Temporal-Difference (TD) learning meth-

ods. In these methods, updates to the agent’s policy are based on the difference between

the estimates at two successive time points [6]. For TD based RL algorithms, policy can be

represented through a table where entries are defined over states and actions.

One of the major shortcoming of RL algorithms is the lack of generalisation and flexibility

as policy maps state to actions without providing a way of modifying it [6], i.e., expanding

observation or control space after a policy is learnt. Instead, if a change in the task is

required, the agent will need to start the learning from scratch. Furthermore, when moving

towards real-world applications, the state-space complexity increases and two problems arise:

• the increasing complexity of state-space makes tabular methods and linear approxim-

ators obsolete and moves the research towards the combination of RL with non-linear

approximators [6], such as Neural Network (NN);

• the combinatorial complexity of state-action space introduced a need to bootstrapping

knowledge to facilitate the exploration process with ad-hoc instructions, aiding agents

in converging towards a successful policy.

The coupling of NN and RL enables the applicability of RL to more complex tasks, and

allows a generalisation of the state-space based on past collected experience. As a result, an

agent does not need to explore all the possible state-action combinations to infer an optimal

policy, as it selects actions based on past information collected across similarly encountered

states [6]. The combination of NN and RL shaped a new family of RL algorithms: Deep

Reinforcement Learning (DRL).

DRL improves RL thanks to its ability of generalising and approximate state-action

space, however, it also inherits deep learning weaknesses.

The deep learning component in DRL makes the algorithm data hungry as it requires a

significant amount of agent-environment interaction to learn effective policies. Furthermore,

the architecture underneath might be wide and complex. Thus, a NN needs substantial

amounts of data to tune layer after layer and to capture patterns. Furthermore, given the

amount of data and the number of updating steps to be done on the network, DRL requires
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a long time to learn a successful policy. Moreover, a change within the task definition

invalidates all the acquired knowledge and requires the agent to learn again from scratch.

To overcome these issues, Transfer Learning (TL) offers a method of enhancing the

traditional learning process with external knowledge. TL is a versatile and very broad

concept, allowing the integration of external knowledge in various ways within the RL

framework. Typically, the flow of transferred knowledge goes from a source agent, which

provides advice or knowledge, to a target agent, which learns the task by leveraging the

shared information from the source agent. Some applications of TL include:

• using a learnt policy in a novel task [26–37];

• distilling policies from multiple tasks into a single master policy able to achieve similar

performance [34–36];

• pre-training an agent with selected experiences prior to allowing the agent to interact

with the environment online [38–40];

• enhancing the exploration phase by letting an expert agent act as a teacher to a

novice [41–51];

• mitigating the exploration cost by enabling real-time knowledge sharing across mul-

tiple agents [52, 53].

In RL the types of knowledge or objects that can be transferred to expedite the learning

process, and thus reducing the learning time, depends on the specific transfer objective. For

instance, when an expert agent is available to provide on-demand guidance to a novel agent,

object transferred is usually an action that is expected to yield a high cumulative reward.

Furthermore, the object transferred could be a feedback, given from expert supervisor to

the novel agent, which augments the standard reward returned by the environment. The

provided signal reflects the expert’s estimation of the expected return for a specific action

in a given step, based on their knowledge and experience.

In tasks that no agent has previously encountered, there are no experts capable of

providing feedback or tutoring novel ones. However, in situations where multiple agents are

addressing the same task, they can share selected knowledge, leading to a reduction in the

exploration cost for each individual agent.
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1.1.1 Multi-Agent Systems

Multi-Agent System (MAS) consists of multiple intelligent agents interacting with an envir-

onment while simultaneously learning a policy [54]. These agents can learn independently

or collaborate with others in either a centralised or decentralised manner. Depending on

the environment’s space and the number of agents involved in the task, the communication

may be limited to a certain number of agents, taking into account factors such as their

distance and communication cost [55–58]. In a centralised setting, each agent shares in-

formation during training and contributes towards the update of a common policy [59–62].

When learning independently, each agent optimises its policy merely upon its collected ex-

periences and without any additional interactions with other agents [7, 63]. Independent

learning mitigates scalability and communication issues as the learning is distributed and

independent, thus reducing the need for synchronisation processes across agents.

On the other hand, Multi-Agent Reinforcement Learning (MARL) algorithms that en-

able agents to collaborate achieve usually better performance in multi-agent system at a

higher communication cost to collaborate, i.e., by sharing data to be used by a common

learning process [62, 64–67] or policy parameters to be merged into a centralised one [68, 69].

In real-world scenarios, the n-to-1 communication cost in centralised approaches makes

them unsuitable. The time and resources required for agents to communicate and process in-

formation centrally result in impractical and lengthy training times to achieve a satisfactory

policy.

Communication in Expert-Free Online Transfer Learning (EF-OnTL) relies on n-to-

n interactions among agents, potentially posing a weak link due to the complexity and

resource-intensive nature of such communication requirements.

This thesis assumes fault-free transmission between agents, disregarding potential break-

downs in communication channels to ensure seamless data exchange and collaboration

among all system components. Furthermore, in practice, communication may be restricted

to neighbouring agents, significantly reducing the overall communication cost and the like-

lihood of breakdowns in the transmission channels. Finally, should communication disrup-

tions occur, whether due to faulty agents or unreliable transmission channels, EF-OnTL is
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6 1. Introduction

designed to ensure that each agent retains the ability to continue its learning task autonom-

ously.

1.2 Research Questions

Sharing advice in the form of action from a source agent with an optimal policy, which

guarantees the best possible options in any situation, enhances the performance of a target

agent and encourages the fulfilment of a goal. However, overriding the policy of a target

agent might not be the best option when it is not guaranteed that source has an optimal

policy or when no expert is available.

In fact, when a suboptimal agent acts as source of advice, it might limit the target

performance on the long term as the provided advice might not lead the target agent to an

optimal decision.

Generally, RL is applied to unknown tasks, and therefore, it is not very common to have

an agent with a policy that achieves a satisfactory level of performance, let alone an oracle

agent that consistently outperforms a learning agent at any step of training. However,

if multiple agents are learning the same task simultaneously, they can share knowledge

with each other as they learn, thus improving their performance and leveraging their local

expertise.

Ilhan et al. [52] have shown a reduced training time by enabling the sharing of actions

in MAS where no-expert is available. When an agent seeks guidance, other agents provide

action-advice based on the target’s state and their individual knowledge.

However, on top of communication and synchronisation cost, overriding the target’s

policy by forcing it to follow an action suggested by others might not be the best option

and could result in delaying the target to converge.

To prevent external agents interfering with a target agent exploration process, this thesis

investigates the impact of transferring selected agent-environment interactions in MAS.

Agents are homogeneously defined over state and action space with same goal. Furthermore,

agents have equal capacity and ability to learn a policy within the given task. When

transferring online, no general expert can be identified during the learning cycle. In these
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settings, overriding the policy of an agent might result in a delay in the learning process.

Thus, following the intuition of pre-training a learning model with selected pre-collected

agent-environment tuples, which has already shown a reduced overall training time [38–40],

this work enables the share of experience batches from a temporary teacher. Once teacher is

identified, the remaining agents have their own knowledge gaps. As a result, target agents

need to isolate incoming experience that is expected to fill their current policy gap.

Therefore, this thesis investigates the transfer of agent-environment interactions as a

means to enhance the overall system performance in MAS, i.e., reducing training time and

improve agents performance. Specifically, the research questions are:

• RQ1 - Can, and if so to what extent, online transfer learning through sharing of

experience across homogeneous agents with no fixed expert contribute to improving the

system performance?

• RQ2 - What criteria can agents use to identify the suitable agent to be used as source

of transfer?

• RQ3 - What criteria should an agent use to filter incoming knowledge?

To fulfil the research aims, the main objectives of this thesis are the following:

• develop a common methodology that enables the selection of an agent, to be used as

source of advice, from multiple candidates that has learnt an established policy;

• Investigate multiple criteria that an agent could use to filter incoming knowledge and

identify the tuples expected to bridge the gap between the target policy and that of

another agent;

• investigate the performance impact of transferring agent-environment tuples to a tar-

get agent while varying the frequency and the quantity of shared tuples across diverse

environments.

With solid and well-defined research questions to guide this research work and having

identified the primary objectives that drive this thesis, the following section introduces the

significant contributions that have resulted from this study.
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1.3 Thesis Contribution

The main contribution of this thesis is EF-OnTL, an expert-free transfer learning frame-

work for online experience sharing between agents in multi-agent context. EF-OnTL enables

RL-based agents to reduce exploration complexity and hence learn more quickly by sharing

knowledge gathered in different parts of the system. Transferred object consists of a sub-

set of experiences, which are past agent-environment interactions, specifically represented as

(st, at, rt, st+1) tuples. During each transfer iteration, an agent is selected as source of trans-

fer based on Source Selection Criteria (SS), and a portion of its collected agent-environment

interactions is transferred to other agents. Finally, a target agent samples a batch of shared

tuples according to a collectively defined Transfer Content Selection Criteria (TCS) criteria

computed across source and target agent.

This thesis relies on two criteria to identify worthy experience to transfer, uncertainty

and expected surprise. Uncertainty is independent from the learning form used and aims to

analyse the epistemic confidence of an agent. Assuming that all agents use a common uncer-

tainty estimator methodology, the discrepancy between source and target uncertainty, can

then be used as metric to identify relevant tuples. Therefore, to estimate epistemic uncer-

tainty from a certain agent-environment tuple, this thesis introduces State Action Reward

Next-state Random Network Distillation (sars-RND) an extension of Random Network Dis-

tillation (RND) [70]. On the other hand, expected surprise [71] is defined over target agent

and is approximated through Temporal Difference error (TD-error).

EF-OnTL, the online transfer learning framework introduced in this thesis, represents

a novel approach by enabling the reciprocal exchange of knowledge among multiple agents

without the need for a fixed expert. This mutual exchange of knowledge uniquely positions

it apart from current state-of-the-art methods that facilitate online transfer learning, which

generally do not support such dynamic knowledge exchange. Furthermore, while the sharing

of experiences is a common practice in offline transfer learning, online contexts generally

prefer the sharing of actions.

In contrast to traditional action-advice methods that rely on a fixed expert, where the

transfer is typically focused on either the source or the target, EF-OnTL introduces a
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more adaptive and responsive transfer mechanism. The knowledge assimilated by an agent

through EF-OnTL is precisely tailored to its specific knowledge gaps, as the algorithm

dynamically balances between the source’s expertise and the target’s needs.

Without the presence of a fixed known expert, successful transfer relies on agents cor-

rectly and fine-grainedly estimating their confidence in the knowledge samples that they

do have. To this effect, this thesis also introduces a new epistemic uncertainty estimator

sars-RND : an estimator based on full RL interactions. Compared to a state-visit counter,

sars-RND enables fine-grained estimation during the training phase by taking into account

additional information.

1.4 Evaluation

EF-OnTL impact has been evaluated across 4 different environments of increasing complex-

ity:

• Cart-Pole − to evaluate its impact in a simple minimalistic environment with inde-

pendent agents [10];

• Multi-Team Predator-Prey (MT-PP) − to evaluate its impact into a collaborative but

yet competitive MAS where predators are divided into two teams and a single team

is enable to collaborate through experience sharing [72];

• Half Field Offense (HFO) − a complex environment with continuous action space

where agents have to collaborate to fulfil their team’s goal [73];

• Ride-Sharing Ride-Requests Simulator (3R2S) with real-world data − a simulation of

a real-world case study replicating the ride-requests served by yellow and green taxi

within the Manhattan area [9]. This environment is unique as long term reward is

stronger than immediate and it is hard to establish the quality of an action. Fur-

thermore, the reward function only captures partially the performance of an agent.

Thus, an action might seem counterproductive in the short term but might lead the

agent to cover more ride-requests while optimising the vehicle usage. The simulator is

built upon Simulation of Urban MObility [74] (SUMO) to replicate the same network

infrastructure and simulate realistic traffic patterns.
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As a preliminary case study, this thesis investigates the offline transfer learning scenario

in two environments: MT-PP and 3R2S. Offline transfer has a reduced set of challenges to

be addressed when compared to online TL. The transferred object consists of a sub-set of

uncertainty-labelled agent-environment tuples collected by trained agents during their train-

ing phase. Subsequently, a new set of agents, referred as target agents, spawn and sample a

batch of selected experiences from the given buffer before starting their RL training phase.

The primary objective of this study is to evaluate the feasibility of positive transfer assum-

ing the availability of an expert and examining the relation between quality of experience,

based upon uncertainty, and the transfer outcome.

After demonstrating the feasibility of positive transfer from expert agent, the focus of this

thesis shifts towards EF-OnTL in the online scenario, where no fixed expert is available. To

address the limitation of RND in the online scenario, sars-RND is introduce. Subsequently,

an extensive evaluation study is conducted on Cart-Pole and MT-PP environments to val-

idate whether the findings from offline TL hold when transitioning to the online setting.

The experiments assess various criteria for filtering incoming knowledge on the target agent

and investigating the impact of selecting the source of transfer based on different criteria.

Finally, the effectiveness of EF-OnTL is validated against to selected baseline methods on

more complex and real-world scenario, HFO and 3R2S.

To benchmark the impact of EF-OnTL, this thesis compares the proposed method

against the following TL baselines:

• No-Transfer − where agents learn independently without knowledge sharing;

• Online Confidence-Moderated Advice Sharing (OCMAS ) [52] − where agents share

action-advice. The most uncertain agent seeks guidance from others by asking for an

action-advice. Consequently, the advice seeker takes the action by majority voting.

This baseline is used to compare the impact of overriding target’s policy with actions

versus sharing selected experience through EF-OnTL;

• Requesting Confidence-Moderated Policy (RCMP) [42] − where an expert agent is

available on-demand to guide a novel agent during its exploration phase. Target agent

estimates its epistemic confidence to decide whether to ask for advice. This baseline

is used to assess the impact of transferring from imperfect learning agents, selected
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dynamically through EF-OnTL, versus fixed expert agents.

While OCMAS and No-Transfer work as upper and lower limit to benchmark EF-OnTL

against, OCMAS should achieve similar level of performance. Although, OCMAS has a

greater communication cost as it requires all the agents to synchronise at each decision-step

to verify whether an agent is the one with lowest uncertainty within the group.

1.5 Dissemination

As part of the dissemination process, the findings of this research were presented in various

venues.

Starting with Castagna et al. [1], presented at the 11th internation workshop on Agents

in Traffic and Transportation (ATT 2020) at ECAI 2020 conference, and its extended journal

version Castagna et al. [2], published in AI Communication. These two publications serve as

motivation work and groundwork to investigate the optimisation problem of mapping ride-

requests to vehicles while enabling ride-sharing and TL. Specifically, we had 200 vehicles

utilising RL agents to learn, which gave rise to intuition that we need a knowledge exchange

mechanism for agents to enhance each others learning since all were learning to accomplish

the same task. Furthermore, our research aimed to develop a scalable solution that could

allow for the dynamic allocation of vehicles and could be resilient to minor changes in the

road-network and demand patterns. This problem sparked our interest towards TL to enable

the transfer of piece of knowledge or entire policies to new agents to adapt to novel scenarios.

Castagna and Dusparic [75] in 2022, published in the proceedings of the 14th Interna-

tion Conference of Agents and Artificial Intelligence (ICAART), discussed the preliminary

evaluation on experience sharing in an offline context, Chapter 3 is almost based on this

publication.

The publication that mostly fully encompasses final contributions of this thesis is Castagna

and Dusparic [4], published in the proceedings of the 26th European Conference on Artificial

Intelligence (ECAI 2023). The core contribution of this thesis, EF-OnTL, and presented a

subset of the evaluation reported in Chapter 6.

Another publication related to TL but not specifically EF-OnTL, resulted from my PhD
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internship in the Intelligent Automation team at the Huawei Ireland Research Center. This

collaboration led to a research paper, Cengis et al. [5], published in the proceedings of

the European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML PKDD 2023). This paper demonstrates a continual learning

approach to facilitate policy adaptation in wireless networks with an expanded control space.

1.6 Roadmap

To summarise, this chapter introduced TL as a means to mitigate some of the weaknesses

typical of DRL models, i.e., the lack of generalisation and extensive training time required to

adequately explore an environment and learn an effective policy. In detail, EF-OnTL enables

the sharing of selected experiences among a set of imperfect agents that are learning a

certain task simultaneously. The following chapters of this thesis are structured as follows:

in Chapter 2, a comprehensive exploration into the background of RL and TL is given,

presenting open challenges and the latest research work in these areas. Subsequently, before

introducing the design details of EF-OnTL, Chapter 3 shows a feasibility study, an offline

transfer context, by presenting preliminary results to assess whether experience sharing

can effectively improve target performance. Further, Chapter 4 introduces and discusses

EF-OnTL while providing details about the design choices made in its development. Then,

Chapter 5 intricately examines the foundational technologies that underpin EF-OnTL, and

provides an insightful analysis of the simulators employed to comprehensively evaluate its

capabilities. To follow, Chapter 6 introduces the evaluation objectives and the evaluation

studies. It meticulously analyses the findings in relation to the research questions posed in

the thesis. Finally, Chapter 7 concludes this thesis by summarising its contributions and

outlining open challenges that need to be addressed in future work.
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2 Background and Related Work

This chapter is organised in three main sections, each covering a specific aspect of the

background work addressed in this thesis. Firstly, Section 2.1 presents the background

of Reinforcement Learning (RL) and deep RL introducing also the challenges and potential

limitations when applied to complex tasks. Then, Section 2.2 reviews transfer learning to

overcome the limitations of deep RL. Finally, Section 2.3 concludes the chapter by clarifying

the concept of uncertainty in RL and reviewing the techniques used to estimate uncertainty

in RL.

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is a stochastic sequential control process used to model

decision-making [76] based on the Markovian property which states that the probability of

going from the current state at time t to another at time t+1 is independent by the history

of previous visited states: P (st+1|st, st−1, . . . , s0) = P (st+1|st).

A MDP is defined as a 5-tuple (S,A, T,R, S0).

• S − is a collection of states that could be visited. S could be finite or not;

• A − is a set of actions and can be either finite or not;

• T − T : P (st+1|st, at) defines the transition probabilities between states, specifically,

the probability that an action at leads to st+1 from a given state st;

• R − R(st, at, st+1) expresses the immediate reward for transitioning from st to st+1

through at;

• S0 − starting state set is the set of possible starting states.

Based on the observed state, a MDP can be classified as Fully-Observable, when the
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state representation passed to the agent is accurate and reliable [6]. Partially-Observable

Markov Decision Process (POMDP), when an observation is an estimation of the current

state [77].

As a MDP is a sequential decision process, the action-decision process over a sequence

of consecutive time steps can be defined as Horizon (H) [6]. Based on the length of H, a

MDP can be categorised into three categories: 1) finite-horizon tasks, where the number of

action-decision is fixed to a certain number of time steps; 2) indefinite-horizon tasks, where

the number of time steps are upper limited by a certain fixed value; and 3) infinite-horizon

task, in which interaction is continuous and does not terminate.

For horizon of length n, it exists an associated Discounted Reward (Rn). Rn is the sum

of immediate rewards rk, received at time step k, weighed by a discount γ ∈ [0, 1], hence:

Rn =
∑n−1

k=0 γ
krk. γ regulates the impact of future reward versus the greedy reward received

at the current time step.

When γ is close to 0, the immediate reward holds more significance, and the influence

of future rewards diminishes significantly. As a consequence the decision process prioritises

greedy choices. On the other hand, when γ is close to 1, future rewards weigh more into

the decision process and lead to prioritise a long-term planning that aims to maximise the

overall return.

A MDP provides a mathematical framework to model tasks that require sequential

decision-making. Among the requirements to define a task as a MDP is the availability

of both the transition function T and the reward function R that define how the envir-

onment responds to the actions taken by an agent. However, transition function is often

unknown. To overcome this limitation, RL enables an agent to learn the transition function

by randomly interacting with the environment.

Figure 2.1: Single step of Reinforcement Learning process [6].

PhD Thesis Alberto Castagna



2.1 Reinforcement Learning 15

RL is a cyclic four-step process shown in Figure 2.1. These four steps are repeated at

every time step t:

1. Observation − an agent observes the surrounding environment and along with its

internal state maps it to the current state st;

2. Action Selection − the agent selects an action at to take based on perceived state;

3. Actuation − the agent takes a step within the environment by executing at sampled

earlier;

4. Evaluation − an agent observes the updated observation of the state st+1 alongside

a signal rt+1 that expresses how good was the action at taken from state st.

RL can be categorised as model-based and model-free [6]:

• model-free− it enables an agent to learn a policy just upon the experience (st, at, rt, st+1)

collected by interacting with the environment;

• model-based − it enables an agent to learn a model of the environment, including the

transition dynamics and the reward function, and use that model to plan actions and

maximise the expected reward from the taken action. Hence, model-based learns by

planning [6].

This thesis focuses on model-free RL.

Learning in RL can be represented as value-based and policy-based. Value-based RL

uses agent-environment interactions to update a single value, e.g., table entry, representing

the state-action combination. When exploiting its internal policy, an agent selects the best

action as the one with highest value across all actions for the current state. On the other

hand, in policy-based RL, an agent uses experience to optimise hidden parameters of a

function that maps states to actions through probabilities. Over time, an agent updates

these parameters to maximise the expected reward via gradient-based optimisation methods.

For a certain state, an agent will then follow an action with maximum probability.

Actor-Critic methods combine both policy and value representations. These algorithms

are composed by two parts: an actor, which maps states to actions and is used to select an

action from a state; and a critic, which provides an estimation of the state-value, represent-

ing the expected discounted cumulative reward obtained by following the policy from the
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observed state [78].

During the learning process, an agent needs to balance two phases: exploration and

exploitation. While exploring, the agent samples random actions to visit new state-action

combinations. On the other hand, exploitation enables the agent to strengthen its belief by

leading the agent to follow its policy. At the initial stage of the learning phase, an agent

follows merely a trial-and-error approach. Over time the probability of taking random

actions decreases in favour of exploiting the learnt behaviour.

One of the ways to exploring new state-action pairs is by following an ϵ-greedy action

selection [6], i.e., an agent samples an action by following its policy with a 1− ϵ probability

and a random action otherwise. ϵ slowly decays to 0 over time reducing the probability

of exploring in favour to exploiting. ϵ anneals by the ratio between the difference across

starting ϵ (ϵstart) and ending (ϵend) and the total number of episodes that the agent will

undertake, hence ϵstart−ϵend
episodes . Generally, ϵ is initialised to a value close to 1 and decays

towards 0, e.g, 0.95 to 0.05.

For a MDP with low-dimensional state and action space, RL can be expressed using a

tabular representation where rows and columns are defined over possible states and actions.

Their intersections are updated based upon the value returned by the environment with

Eq. 2.1. This family of RL algorithms is called tabular methods and one popular method is

Q-learning [79].

Q(st, at) = (1− α)Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)

)
(2.1)

Learning rate α weights the impact of new knowledge (rt + γmaxaQ(st+1, a)) against the

current agent knowledge (Q(st, at)). α is defined in the interval of [0, 1]. When α is 0,

the knowledge of the agent is not influenced by incoming information. On the other hand,

setting α to 1 the agent fully overrides its knowledge with the newly information retrieved.

γ is the discount factor and is defined within the [0, 1] interval. It weighs the impact of

immediate reward and future rewards.

Given a state and an action, its Q-value (Q(s, a)) is updated by a value computed over

the received reward at time t and the maximum possible Q-value from the following state.
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RL has demonstrated significant potential in tackling various tasks in different domains,

including robotics [80–83], game playing [84, 85], optimisation tasks [16, 86]. However, there

are a number of open challenges that limit the applicability of RL. The following section

introduces the open challenges in RL.

2.1.1 Reinforcement Learning - Challenges

RL has proved to be a viable approach to learn a successful policy in tasks where feedback

is available to judge single-step action. However, a number of challenges remain, some of

which are outlined below:

• Exploration-Exploitation trade-off − Exploration and exploitation are fundamental

processes for RL and a right balance is required to achieve a nearly optimal policy.

The agent needs enough exploration to visit action-state combinations and to observe

their outcome. On the other hand, the agent needs to exploit its policy to strengthen

the learnt knowledge by taking the sequence of actions, expected to be optimal, and

to observe the long term horizon outcome. A right trade-off is required depending

on the ongoing learning phase. At the beginning, an agent is expected to prefer

exploring than exploiting while eventually exploitation takes the lead. Balancing

these two phases is challenging as it depends on the complexity of state-action space

combination.

• Reward Function Design − A reward function, or reward model, supports a RL-agent

to learn a policy by providing feedback after a single-step interaction. In the long-

term, an agent is expected to learn a policy that maximises the long-term cumulative

reward. Thus, a reward model plays a crucial role towards the definition of optimal

policy. While these functions are usually well defined in games and benchmarking

environments, i.e., OpenAI Gym [87], when it comes to real-world, it is very likely

that a reward function is not available. For instance, in a ride-sharing enabled mobility

on-demand system, the reward model could prioritise the revenue maximisation, could

punish long delays due to re-routing and enabling ride-sharing or could support the

vehicle utilisation. Depending on the desired goal, the reward function should be

designed to lead the agent towards the accomplishment of the primary goal while
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having a fair trade-off on the secondary goals. Thus, designing a proper reward

function demands careful attention and deep knowledge of the addressed task [88].

• Sparsity of Rewards − Sparse-reward tasks provide feedback to an agent very infre-

quently, and in a lot of cases only upon the accomplishment of a goal. Consequently,

for most state-action pairs, the agent will not receive any feedback. To expedite the

learning process, it may be better to enhance the reward model by providing earlier

feedback.

• State-Action Dimensional Complexity − Complexity of a task is directly influenced

by its state and action space [88]. A larger set of actions, requires the agent to explore

an increased number of state-action combinations.

• Lack of Generalisation - RL optimises a policy to a specific task. A change within any

of the MDP tuple is very likely to invalidate some or even all acquired experiences.

Furthermore, agents must learn a generalised policy allowing for various environment

configurations. For instance, considering a mobility on-demand context where a RL

agent controls a vehicle aiming to maximising the number of passengers served. In

this scenario, the agent needs to learn a policy that can effectively adapt to different

demand patterns, ensuring optimal performance across a diverse range of request

distributions and traffic conditions.

• Exploration Cost − On top of the exploration-exploitation trade-off, exploring towards

a real-world task can be dangerous and expensive. When exploring actions in a real-

world a physical agent requires certain time to fulfil an action and observe the outcome,

introducing a delay, [88]. Furthermore, safety concerns need to be taken into account

when performing arbitrary actions. A failure might lead the agent to damage its

system or external entities [89].

• Partial-Observability and Non-Stationarity − Real-world sensors might provide in-

formation that are not fully reliable because of environment conditions or malfunc-

tioning [88]. Furthermore, real-world systems are often influenced by external factors

or stochastic elements [88]. Therefore, the transition dynamics of the environment

might change over time leading the task to be non-stationary.

Tabular representation for RL limits the applicability to domains with low-dimension
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state-action spaces due to the combinatorial complexity. However, discretisation functions

are often combined with tabular RL to enable the handling of high-dimensional and continu-

ous state-action spaces. As a result, the combinatorial complexity is lowered and tables can

be used to fit the state-action combinations. Nevertheless, that might still not be sufficient

to learn a successful policy for complex tasks, for example, a self-driving car.

Tabular RL lacks generalisation across similar state-action pairs as each update within

the model is uniquely related to a specific action and state combination. To overcome

the generalisation limit, intrinsic in tabular representations, researchers have focused on

combining Neural Network (NN) and RL.

2.1.2 Neural Networks

An Artificial neural network is a learning model inspired by a human brain. The first tracked

attempt towards their development is dated back to 1943. Warren McCulloch and Walter

Pitts [90] proposed a model of a neuron and demonstrated how multiple neurons could

be interconnected to perform simple logical operations. However, the wider development

and use of NNs started from 1986 when Rumelhart, Hinton and Williams [91] introduced a

function to update an internal representation by back-propagating errors. From early 2000s,

NNs have gained popularity due to their successful applications in various topics, including

classification, clustering, patter recognition and prediction across multiple sectors [92].

NNs are composed of interconnected layers, with each layer containing a specific number

of neurons. Each neuron computes a linear function as follow:

y = w ∗ x+ b (2.2)

The bias term b is a constant value that allows the neuron to have an effect even when

the input signal x is 0. w is a scalar value that weighs x and y is the output of the neuron.

w and b are adjusted during the training process based on the output of the network. The

output of a layer is defined as collection of individual neuron outputs belonging to that

specific layer.

The output of a layer is processed through an activation function to introduce non-
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linearity and enable the network to learn complex relationships. Some of the most common

are ReLU [93], TanH [94], Sigmoid [95] and SoftMax [96]. Each activator applies a function

and decides whether a neuron output is active or not. For instance, the ReLU activation

function clips any negative value to 0 and leaves any positive input unchanged.

A NN is a sequence of layers and activation functions. Commonly the computational

flow follows a sequential direction from first layer to the second and so on to the output

layer. That is known as forwarding step. Computation can be divided into multiple streams

at any point of the network and layers might be connected in different ways according to

specific needs.

There are multiple type of layers available based on their inner function. Linear or Dense

layer using Eq. 2.2, Convolutional layers, that are used to process multi-channel input such

as images and finally, Recurrent layers, that enable a model to retain additional information

by building an inner memory for past events.

Defining the internal NN structure is the first step towards deploying a NN to tackle a

task. Although, defining the architecture along with the activation functions is not enough

to design a learning model. All parameters inside the layers need to be adjusted during a

training process to learn some high level features and to generate the desired output.

The process of updating the parameters based on the training data is known as back-

propagation [91]. Back-propagation enables a NN to learn from the error produced by the

model. Back-propagation consists of computing the loss between predicted output and the

true outcome. The network error is computed through a loss function, such as Mean Squared

Error (MSE) defined at Eq. 2.3.

MSE =

∑n
i=1(yi − ŷi)

2

n
(2.3)

ŷi is the true outcome and is compared against the network output yi.

The computed error is propagated backward through the network, from last layer to

the first, to update the parameters using an optimisation algorithm, e.g., Adadelta [97],

Adam [98] or RMSprop [99].

When a NN has 3 or more hidden layers, it is generally classified as deep NN [93]. Having
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multiple hidden layers enables the learning of more complex representations. Thus, deep NN

have established a new state-of-the-art performance across multiple fields such as speech

recognition, visual object recognition, object detection, drug discovery and genomics [100].

The rapid advancement in deep learning and NN enabled researchers to shift from RL

to Deep Reinforcement Learning (DRL). DRL is the result of merging deep NN with RL

enabling the tackling of increasingly complex tasks that were previously intractable due to

the constraints of combinatorial state-action spaces [101].

2.1.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) mitigates the challenges of RL by using a deep NN

to learn the mapping between states and actions. DRL enables the learning of an optimal

policy in tasks with high-dimensional state-action spaces and furthermore, it generalises

across similar states and actions. In DRL, an artificial network is used to learn the mapping

between states and actions. Therefore, the agent in Figure 2.1 is equipped with a NN that is

used to learn the high-level features that are used for the action decision process. Figure 2.2

shows the agent-environment interaction with a NN.

Agent

Environment

action at

reward
 rt

state st

rt+1

st+1

Figure 2.2: Single step DRL process with deep NN.

2.1.3.1 Value-based Methods

Value-based DRL methods use a NN to approximate a value function used to select the

best action to take given a state. One of the first algorithms is Deep Q-Network (DQN),
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an evolution of Q-learning where tabular representation is replaced by an artificial neural

network.

The first DQN version consists of a single deep NN used to approximate the value

function, presented in 2013 by Mnih et al. [101], to solve seven Atari games using raw pixels

as input. The use of a single online NN to estimate the value from the next state (Q-value)

and select the optimal action resulted in instability during the learning process. Although

the algorithm achieved state-of-the-art results in six out of the seven games tested, the

training process was not stable. Instability is caused by the correlation between consecutive

observations and non-stationarity of the environment. In 2015 Mnih et al. [102] overcame

the instability issue by introducing an experience replay buffer, to break the correlation of

consecutive observations, and a target network.

An experience replay buffer consists of storing n agent-environment interactions and

randomly sampling a subset during training. Furthermore, an experience replay buffer

improves sample efficiency by allowing an agent to reuse previously visited interactions

multiple times without requiring redundant sampling of the same action within the same

state.

The target network shares the same structure of the online network and its parameter are

periodically updated based on the online parameters of the network. Two methods, namely

hard-copy and soft-copy, are used to update the target network. In the hard-copy method,

the parameters of the online network are copied to the target network after every n learning

iterations. On the other hand, in the soft-copy method, the target network’s parameters

are slowly updated towards the value of the online network parameters during each learning

iteration. This update is controlled by a parameter τ , which regulates the strength of the

update. While online network is optimised, the target network is frozen. Having a target

network to estimate the Q-values from next state reduces the correlations with the Q-values,

on the current state, estimated by the online network and therefore helps achieving a stable

learning process [102]. DQN loss function (L) using two networks is reported in Eq. 2.4,

where Q(s, a) is the Q-value obtained using the online network while Q̂(s, a) is the target

estimation.
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L = MSE
(
Q(st, at), (r + γ max

at+1∈A
Q̂(st+1, at+1))

)
(2.4)

Despite the improvements brought by the use of a target network and experience replay

buffer, DQN remains computationally demanding to find an optimal policy. Additionally,

while experience replay improves sample efficiency, it relies on random sampling, which

may result in insufficiently capturing the crucial experiences. The uniform probability of

selecting each tuple means that significant experiences that hold a high impact on learning

might not be adequately processed by the underlying learning model.

Furthermore, DQN suffers overestimation bias as it uses the maximum Q-value over all

possible actions in the next state (γ max
at+1∈A

Q̂(st+1, at+1)). Selecting the maximum Q-value

can lead to overestimation of the Q-values where the true Q-values are high [103].

To overcome the aforementioned issues and thus to improve the learning stability of

DQN, Double DQN, Prioritised Experience Replay and Dueling networks have been intro-

duced.

Double DQN modifies Eq. 2.4 by using the online network to select the next action

at+1 while taking its associated Q-value from the target’s. Thus, Q̂(s, a) is estimated as

Q̂
(
st+1, argmax

at+1∈A
Q(st+1, at+1)

)
. Using the online network to select the next action and

taking the Q-values estimated by the target network overcomes the overestimation bias [103].

Prioritised Experience Replay improves the random sampling of experience replay

buffer by assigning a weight to each visited agent-environment interaction. Thus, experiences

that surprise the most will have a higher probability to be sampled. In the context of

Temporal-Difference (TD) learning models, surprise is commonly defined as the TD error.

As the learning progresses, the surprise values are updated based on the training loss.

By prioritising selected experiences that held more information for the learning model,

prioritised experience replay leads to accelerated learning and improved performance for the

agent [104].

Dueling Q-network modifies the architecture of DQN by forking computation stream

into two branches as shown in Figure 2.3. The underlying idea is to estimate the intrinsic

value V (s) of being in a certain state s and the advantage A(s, a) of taking a certain

Alberto Castagna PhD Thesis



24 2. Background and Related Work

...
Q(s,a1)

Q(s,an)

...
A(s,a1)

A(s,an)

V(s)

...
Q(s,a1)

Q(s,an)

DQN

State

State

Dueling DQN

Figure 2.3: DQN architecture at the top and dueling DQN architecture at the bottom.

action a from s. The decomposition of Q-values into state-value and action advantages,

allows the agent to identify states that are valuable and to learn the advantage brought by

each action. The decoupling improves the learning efficiency and stability by enabling more

efficient exploration and exploitation of the environment. However, forking the architecture

into two streams is not sufficient to decouple the two estimators. To ensure that the model

will learn the decoupled representations of V (s) and A(s, a), the mean value of advantages

has to be zero. Such constraint need to be included within the loss function, usually done

through advantage normalisation, to ensure that the model focuses on the relative differences

between actions. For dueling Q-network, the Q-values can be defined as the sum between

normalised advantage and state value as reported in Eq. 2.5 [105].

Q(s, a) = V (s) +A(s, a)− 1

|A|
∑
ai∈A

A(s, ai) (2.5)

2.1.3.2 Policy-based Methods

Policy-based methods focus on learning a policy, which is a mapping function from states

to actions. The learning model outputs a probability distribution over actions from a given

state. When exploiting the policy, an agent takes the action with highest probability in
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a certain state. The distribution is given by the output layer and therefore is affected by

the network parameters. Policy-based methods enable the agent to explore based on the

probability distribution defined over the actions from states.

Policy-based methods are generally optimised using policy gradient methods. The gradi-

ent (∇J), computed with Eq. 2.6, identifies the direction in which parameters should be

optimised to maximise the expected cumulative reward.

∇J = E[Q(s, a)∇ log π(a|s)] (2.6)

Policy-based methods can be divided into Off-policy and On-policy based on how they

handle the collected agent-environment interactions. On-policy methods, update the learn-

ing model based on most-recent gathered experiences collected by the latest version of the

policy. A batch of samples is collected, used for updating the policy, and then discarded.

The constraint of using collected experience only once can be a limitation of on-policy

methods given that they cannot improve sample efficiency with a replay buffer.

2.1.3.3 Actor-Critic Methods

Actor-Critic combines value-based and policy-based methods. These algorithms are com-

posed by two components, an actor which is learning a policy, and a critic, estimating a

value function. The two most common Actor-Critic algorithms in DRL are Proximal Policy

Optimisation (PPO) [7] and Deep Deterministic Policy Gradient (DDPG) [8].

PPO is an actor-critic on-policy algorithm that updates the policy gradient using the

trust region policy optimisation method. The trust region method ensures that the prob-

ability ratio (rt), defined as the ratio rt(θ) between the probabilities of selecting a certain

action under the new updated policy πθ and the old policy πθold (rt(θ) = πθ(at|st)
πθold

(at|st)), lies

within a certain interval. This constraint prevents sudden changes between the updated

and old policies, ensuring stable and controlled policy updates.

A common approach to enforce the interval constraint on rt(θ) in PPO is by using the

clipped version defined in Eq. 2.7. This function is used to compute the clipped loss LCLIP

during the training process[7].
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LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(2.7)

Ât is an estimator of the advantage function at time t that expresses how good was a

certain action taken in a given state. The first term inside the min (rt(θ)Ât), is to encourage

the policy πθ to take actions that maximises the expected return. However, as (rt(θ)Ât)

might lead the updated policy to shift too much from the old one, the second term constrains

rt(θ) within an ϵ-interval. Here, ϵ is the clipping factor, which ensures that the updates to

the parameters θ are kept within a controlled range during training, ensuring stability in

the learning process.

The PPO clipped version objective function balances between improving the policy and

preventing sudden changes that may lead to instability or divergence. While the PPO actor

is updated using a surrogate function, i.e., Eq. 2.7, the critic is updated by MSE between

the predicted state-value and the true discounted rewards obtained from the collected agent-

environment data. Figure 2.4 shows PPO architecture with actor and critic networks.

Environment

PPO

Critic NN

at
Trajectory

Buffer

st,at,rt,st+1

V(s)

rt(θ)

At

rt

^

LCLIP(θ)

Actor NN

st

st

Figure 2.4: PPO architecture [7].

DDPG is an actor-critic off-policy method used for tasks with continuous control space.
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Both actor and critic are implemented through a deep model. Actor is used to estimate an

action that maximises the estimated expected reward from a certain state. Critic estimates

the state-action value used to evaluate the actor performance. The output of the actor is

the mean value of a Gaussian distribution that is used to generate the action to take from a

given state. To ensure exploration, action sampling is enriched by a noise value N sampled

by a distribution: µ(st) = µ(st|θµt ) + N . First part of the sum is the output of the actor

for state st and with the current network parameters used to compute the mean. DDPG is

off-policy as it uses an experience replay buffer to gather experience and sample afterward

a batch of tuples to break the correlation between consecutive samples and improve the

learning stability [106].

Although DDPG is a popular algorithm for continuous control tasks, there are improved

versions that might be more suitable for different tasks requirements.

State

Actions

Parameters

Actor Critic
State

Actions

Parameters

V(s,a)

Figure 2.5: Parameterised Action Deep Deterministic Policy Gradient (PA-DDPG) [8] Actor-Critic
architecture.

In scenarios where a single action controls multiple underlying parameters, which are

often defined within a continuous domain, Parameterised Action Deep Deterministic Policy

Gradient (PA-DDPG) [8] extends DDPG for such tasks with parameterised action space.

PA-DDPG actor has two output layers and selects simultaneously a discrete action and the

parameters needed to parametrise the chosen action, as shown in Figure 2.5. The critic

computes state-action value from visited state and the outputs from the actor network [8].
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2.1.4 Deep Reinforcement Learning - Challenges

DRL enables an agent to tackle more complex tasks and perform as well as traditional

RL methods when applied to simple tasks. Therefore, DRL overcomes the state-action

dimensional complexity and mitigates the lack of generalisation by generalising across similar

state-action tuples. However, DRL leaves unsolved the other RL weaknesses, introduced

earlier in Section 2.1. The unsolved challenges that remain to be addressed are the following:

1) exploration-exploitation trade-off; 2) reward function design; 3) sparsity of rewards; 4)

lack of generalisation, across similar but different tasks; 5) exploration cost; 6) partial-

observability and non-stationarity.

Furthermore, the use of deep NN to learn the state-action mapping introduces two

additional challenges to DRL.

• The capacity of a deep NN learning model is influenced by the number of parameters

present within it. Increasing the number of neurons and layers expands the model

ability to learn a wide range of features. Although, it is important to note that

while larger networks are capable of addressing more complex problems, an agent

may not need that much capacity for a certain task. In general, larger NN require a

larger amount of data compared to smaller networks in order to achieve similar level

of performance for a given task. Hence, a trade-off is required to ensure sufficient

granularity while keeping the total number of neurons as low as possible. In addition

to network width and depth, the choice of layer types used within the network also

impact the network size. Different layers require different amount of parameters to

be optimised during the learning phase.

• Deep NNs are generally known to be data-hungry as they require enormous amount of

data to optimise the inner parameters. Furthermore when coupled with RL, impact of

new knowledge is usually scaled by the learning rate and that amplifies the neediness

of data.

To address the limitations of DRL, one effective approach is to grant the learning agent

access to an external source of knowledge. This process is known as Transfer Learning (TL)

and, when applied to DRL, some of its benefits are the following:
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• TL improves the sample efficiency by transferring crucial experiences across multiple

agents;

• TL improves the generalisation lack by re-using policies across similar tasks;

• TL lowers the learning complexity related to deep models by adapting previous ac-

quired policies;

• TL lowers the exploration cost by guiding the exploration of an agent.

The next section delves into the state of the art of TL applied to DRL to overcome its

limitations.

2.2 Transfer Learning

TL is a branch of Machine Learning (ML) that focuses on the reusability of knowledge

acquired in various contexts, tasks, or by different agents. When applied to RL, it can reduce

the learning time to learn an effective policy by enabling knowledge reuse. The broad idea

behind TL applied to RL is to optimise resources consumption, i.e., computation power and

time required to learn a policy, by re-using existing knowledge rather than learning from

tabula rasa and updating the knowledge by re-sampling agent-environment interactions.

In TL, the communication can be conceptualised as a one-way channel from a source

agent to a target agent. The goal of TL is to use source knowledge to speed-up the learning

process of a target by reducing, and in some cases removing, the exploration complexity.

Transferring knowledge from source to target can result into two possible outcomes.

Positive transfer occurs when the target agent shows an improvement upon some metrics

compared to tabula rasa learning. On the other hand, negative transfer occurs when the

use of external knowledge delays or hinders the learning process of the target agent. This

negative transfer might happen when the transferred knowledge is outdated or when the

source and target task are defined on incompatible MDPs.

Transferring in RL can be divided in two categories: Agent-to-Agent (A2A) and Task-to-

Task (T2T). In A2A TL, both the source and targets agents address tasks defined over the

same MDP. Thus, no mapping is needed to transfer knowledge from one agent to another.

On the other hand, T2T TL occurs when the source and target tasks are defined over
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different MDPs. In T2T, a mapping function is required to enable the transfer of knowledge

across the tasks or different agents.

2.2.1 Task-to-Task Transfer Learning

Transferring from a known source task to a previously unseen task is a pillar concept towards

the development of a lifelong learning model where an agent has to adapt throughout time

to fit an evolving task. For instance, a task might evolve on the control space by expanding

the action space.

The objective of T2T TL is to fill the lack of generalisation typical of RL approaches.

When applied to DRL, the high data dependency is reduced and the training time, required

to learn an effective policy, is reduced.

The complexity of transferring across tasks results from their MDPs discrepancy. Tasks

might differ by the state and action domains, the environment dynamics T or the reward

model [107]. As examples of these challenges,

• Ss ̸= St − Two tasks can have a different representation of the same state-space [26,

27, 29, 30, 39, 108, 109], e.g., graphical representation vs raw feature vectors, or even

different sensors. A policy may need to be resilient to sensors failure or upgraded

sensors.

• As ̸= At − Over time a task may need to adjust the control space dimension. As a

result, tasks might have a different set of actions available to the agent. [26, 27, 30, 34–

36]. As an example, As ⊂ At or At ⊂ As or As ∩At ̸= ∅.

• Rs ̸= Rt - Two tasks can share the same state-action space but have distinct reward

structures or even divergent ultimate objectives [26–32, 37, 110].

• Ts ̸= Tt - Two tasks defined within the same domain can differ in their probability

transition function T . Consequently, an action from a particular state may result in

a different next state for each task.

An effective approach for T2T knowledge transfer involves leveraging an existing learning

model for a new task. Thus, the model can be utilised partially or entirely for the new

task [26–37].
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When it is not possible to re-use the model but sampled agent-environment interactions

are available or provided by a human demonstrator, a mapping function can be defined to

map incompatible features of source and target task [39, 109–113]. Thus, samples gathered

in one task can be adapted and re-used in a novel task to pre-train a learning model. Another

application of T2T TL is when a task can have multiple different representation forms for

the current state, a latent space can be learnt to enable cross-modal input [108].

2.2.2 Agent-to-Agent Transfer Learning

Multiple agents addressing the same task, or tasks defined over the same MDP, are generally

defined as homogeneous agents. An example of a system with multiple homogenous agents

are multi-agent systems where multiple agents interact with the same environment to achieve

a shared goal. This section overviews challenges and methodologies to enable knowledge

transfer across homogeneous agents.

The primary objective of A2A transfer learning is to expedite the learning process for an

agent by integrating external knowledge, thus reducing the overall learning time compared

to learning without additional input. To achieve this objective, A2A TL aims to minimise

exploration complexity and enhance the overall performance of the system.

A common trait observed in A2A TL is the use of external expertise to influence the

learning or action decision process of a target agent, as opposed to adapting an existing

optimal model as in T2T. The external input can be provided by either a human or an

artificial agent, and the knowledge provided can be integrated into the exploration process

or can be used as initial phase prior to exploration.

An approach to categorise A2A work is by analysing the shared object, which can be in

the form of the following:

• Action - an agent provides on-demand advice to an exploring novel agent. Advised ac-

tion overrides the target policy and ideally leads the novel agent towards the expected

objective [41–45, 48, 50–52, 114, 115].

• Feedback - an expert provides feedback, in the form of a reward signal, on decisions

made by a target agent during its learning process. The expert signal extends the
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environment reward and is used by the target agent to update the policy [112].

• Q-values - when agents are based on a TD learning model, expert agent provides

Q-values to a target agent. These values are then integrated into the action decision

process of the target agent to influence the final decision [46, 47, 49, 50, 116].

• Experience - a target agent receives agent-environment interactions obtained by a

source agent. Such experience can be used to pre-train the target learning model

before exploring, or to extend the standard RL exploration phase [38, 53, 117–122].

Moreover, a learning model can still be entirely re-used and potentially fine-tuned as

suggested for T2T TL.

The majority of A2A TL research work is based on the teacher-student framework ini-

tially proposed by Torrey and Taylor [45]. In this framework, a teacher guides a student

agent during the learning phase, and their interaction is often constrained by a budget.

2.2.3 The Teacher-Student Framework

The teacher-student framework presented by Torrey and Taylor [45] considered two homo-

genous agents: a teacher and a student. The teacher is regarded as an expert who has

already learnt a successful policy for a certain task. On the other hand, student has no

prior knowledge about the problem and requires an exploration phase. During the learning

phase of the student, the teacher is available on-demand to provide action as advice, assist-

ing the student in achieving an optimal policy. Despite the initial use case of the framework,

the teacher-student paradigm has been adapted for imitation learning, where student learns

to imitate expert policy, e.g., Hester et al. [38] and Taylor [112], or to provide on-demand

support to novices during exploration without providing action as advice [43, 50, 51, 117].

The goal of teacher-student framework is to accelerate the learning of a novice agent

by reducing the exploration complexity. As a result, teacher-student framework is generally

coupled with action-advice, where teacher supports on-demand a novice agent by suggesting

an action to take in certain states, [41–45, 48–52]. However, instead of overriding the

target policy, the action-decision process can be influenced by providing advice in form of

Q-values [46, 47, 50]. Finally, advice can also be provided in the form of an experience

batch [116].
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Within the teacher-student framework, as the communication between the two agents

is generally limited by a budget, one of the initial challenges is to devise a strategy that

maximises the positive impact of advice while respecting the budget. An effective strategy

should focus on identifying and prioritising situations in which the student is in pivotal need

of advice. Some of the initial strategies designed to regulate the teacher-student interaction

include:

• Importance Advising - aims to identify states that are more important towards the

achievement of a goal by analysing the impact of specific actions. For a state, its

importance is measured as difference between the maximum and minimum impact

brought by available actions. Such advising strategy has been proposed by Torrey

and Taylor [45] and adopted in a few approaches [48, 112];

• Reward Shaping - teacher continuously provides a reward signal on the actions chosen

by the student following its policy. This additional signal extends the reward returned

by the environment and aims to promote policy imitation [112];

• Mistake Correction - the teacher constantly monitors the student and provides advice

when the action chosen by the student differs from the action expected by the teacher

policy. Such technique requires the teacher to have an optimal policy [45, 112];

• ϵ-decay Probability - probability of giving advice is reduced as the agent explores by

a small ϵ value [43, 44, 51];

• Early Advice - student utilises the full allocated budget by receiving guidance during

the first n steps of learning where it is expected to be in the greatest need [45, 112];

To improve the budget utility and aiming to effectively identify situations where advice

can significantly impact the development of the target policy, Taylor et al. [41] proposes

Predictive Advising aiming to lower the high communication cost of Mistake Correction by

enabling the source agent to predict the action sampled by the target agent during the

learning process. Da Silva et al. [48] enables transfer from an agent that has successfully

completed an episode. As a result, all target agents benefit from the full trajectory followed

by the source agent, which led to the accomplishment of the episode. In addition, other

sophisticated advising strategies may rely on state-visit counter [46, 48, 49], confidence of

student and teacher [42, 47, 52, 114–116] and agent performance [49, 53]. Finally, when the
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source agent is an expert with optimal policy, the budget utility can be further increased

by re-using previous advice across similar states as proposed by Zhu et al. [43].

Table 2.1 summarises the related work based on the Teacher-Student paradigm categor-

ised by the following features:

• Advice Source − regardless of the form of advice, advice can be provided by a human

operator (human) or by an intelligent agent. An agent that has already encountered

the task can be considered as an expert agent (EA). On the other hand, if the agent

has not yet converged for the given task it is considered as an imperfect agent (IA),

e.g., agents that learn simultaneously the same task. Lastly, advice can be given by

a supervised model (classifier).

• Advice Type − indicates the form of the advice shared. This can vary between one

or multiple actions (a), experience or demonstration (e), scalar reward used by target

agent to complement the reward returned by the environment (reward) and finally

network output logit, Q-values in case of TD-learning method, (Q).

• Advising Policy − indicates the advising strategy followed by the agents, which can be

one of the following: importance advising (ia), reward shaping (rs), mistake correc-

tion (mk), ϵ-decay probability (ϵp), early advice (ea), predictive advising (pa), sharing

successful episodes (se), target confidence (t-conf) (evaluated on target agent), source

and target confidence (st-conf) (evaluated on both target and source agent), based

on state-visit counters (svc), based on TD-error (td-error) and performance-based

metrics defined over state (pms).

Finally, for some advising policy may be not applicable (na), i.e., when transfer hap-

pens on initialisation of new agents and knowledge is used to pre-train a model [50].

• DRL − reports whether the framework is applied on a DRL algorithm or only tabular.

• Re-using Advice − indicates whether the target has some memory to retain the advice

received to increase the budget utility.

• MARL − reports whether the framework is applied in a multi-agent context.

The majority of the teacher-student algorithms, reported in Table 2.1, provides advice

in form of action. Furthermore, action is the form of transfer preferred when the source is an

experienced agent [41–43, 45]. When the source agent is not optimal, advice is provided in
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Table 2.1: Summary of work based on the Teacher-Student paradigm.

Reference
Advice Advice Advising

DRL
Advice

MARL
Source Type Policy Reuse

Taylor et al., 2014 [41] EA a
ea, aa, ia,

✓ ✗ ✗
mk, pa

Da Silva et al., 2020 [42] EA a t-conf ✓ ✗ ✗

Zhu et al., 2020 [43] EA a ϵp ✓ ✓ ✗

Norouzi et al., 2021 [44] classifier a ϵp ✗ ✗ ✓

Torrey and Taylor, 2013 [45] EA a ea, ia,mk ✗ ✗ ✗

Zhu et al., 2021 [46] IA Q svc ✓ ✗ ✓

Liang andLi, 2020 [47] IA Q st-conf ✓ ✗ ✓

Da Silva et al., 2017 [48] IA a, e ia, svc, se ✓ ✗ ✓

Taylor et al., 2019 [49] IA Q pms, svc ✗ ✗ ✓

Liu et al., 2022 [50] IA a,Q na ✓ ✗ ✓

Subramanian et al., 2022 [51] IA a ϵp ✓ ✗ ✓

Ilhan et al., 2019 [52] IA a st-conf ✓ ✗ ✓

Taylor andBorealis, 2018 [112] human reward rs ✗ ✗ ✗

Chen et al., 2020 [116] human e t-conf ✓ ✗ ✗

form of Q-values that are combined on target side to influence the action-decision process [46,

47, 49].

The teacher-student paradigm achieves state-of-the-art performance when transferring

from expert agents to novices, and the effectiveness of the transfer depends on the quality

of expert policy. Advisor must not provide advice that is out of date or leads to worsening

of target agent learning experience. Therefore, teacher must have an optimal policy that

cannot be outperformed by other agents in any way.

Recent developments on the teacher-student framework aimed to relax the optimality

constraint by establishing metrics and methodologies to identify when an exploring agent is

in need of advice.

Liu et al. [50] adapt the framework to work online with non-optimal teachers and an

increasing number of agents. Existing agents distil their knowledge into novel agents that

join later on, resulting in less experienced agents benefiting from others. Similarly, Norouzi

et al. [44] use a subset of collected demonstration to train a centralised super-entity. The

central-entity benefits from experience gathered by all the agents and can be queried to

provide advice in specific states. Despite quality of advice being improved over time, this

learning paradigm results in an additional cost to gather the RL experience and to train the

underlying model.
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Da Silva et al. [42], and Chen et al. [116] rely on agent’s epistemic uncertainty to decide

whether an agent has adequately explored a certain state. The use of confidence has a two-

fold advantage, firstly it enables the agent to prevent redundant advice leading to an overall

better use of the allocated budget, and secondly it enables a student agent to outperform the

teacher by allowing target agent to potentially learn actions better than source of advice.

Despite the better budget utilisation by estimating the confidence on student side, these

methods do not assess the advisor proficiency. Ilhan et al. [52] and Liang and Li [47]

provide both target and sender with a confidence estimator model that allows for confidence

comparison between the two agents. As a result, the target agent can still benefit from an

imperfect agent as advisor while lowering the possibility of being negatively impacted by

following the advice in states where the target has higher uncertainty than the teacher.

Finally, establishing standardised criteria, including confidence, state visit counters, and

performance-based metrics, facilitates the comparison of learning progress among multiple

agents in diverse states. Comparing the learning progress of each agent enables bi-direction

advice transfer across learning agents, each agent can benefit from knowledge gathered by

the other agents [46–49, 52].

2.2.4 Experience Sharing in Agent-To-Agent Transfer Learning

Feeding samples to neural network as a pre-trained stage is an established approach to boost

the learning performance of a novel model across different fields, e.g., computer vision [123–

125] and natural language process [126, 127].

RL models have been using similar strategies to perform an addition pre-training step

before letting the agent explore [128–131].

More generally, there is a recent trend in RL on the transition from online to off-

line RL [40, 132–134]. While in online RL an agent collects data by interacting with the

environment, agent trained in offline RL relies on available data collected by using an un-

known policy. Although this thesis does not focus on offline RL, there are some overlapping

challenges needed to be addressed with the sharing of experience from one agent to another.

For instance, predicting the impact of specific agent-environment interactions on a target
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agent, as well as exploring the trade-off between the quantity of tuples provided to a novel

agent and its resulting impact on performance.

To follow, this thesis provides a summary of relevant work in A2A TL based on experience

sharing in Table 2.2. The category of Online TL differentiates whether the transferred

experiences are used in an offline context, like a pre-training step, or online to enhance a

learning process.

Table 2.2: Summary of experience sharing work in A2A TL.

Reference
Experience Selection

DRL
Advice

MARL
Online

Source Policy Reuse TL
Hester et al., 2018 [38] human na ✗ ✗ ✗ ✗

Gerstgrasser et al., 2022 [53] IA td-error ✓ ✗ ✓ ✓

Wang and Taylor, 2017 [115] classifier t-conf ✓ ✗ ✗ ✗

Wang and Taylor, 2018 [114] classifier t-conf ✓ ✗ ✗ ✓

Nair et al., 2018 [117] human na ✓ ✗ ✗ ✗

Vecerik et al., 2017 [118] human na ✓ ✗ ✗ ✗

Rajeswaran et al., 2017 [119] human na ✓ ✗ ✗ ✗

Cruz et al., 2017 [120] human na ✓ ✗ ✗ ✗

Gabriel et al., 2019 [121] human na ✓ ✗ ✗ ✗

Gao et al., 2018 [122] IA na ✓ ✗ ✗ ✗

Most of the TL work based on experience sharing focuses on transferring agent-environment

interactions collected from a human demonstrators to be used as a pre-training step for a

RL agent [38, 117–121]. Wang and Taylor and Borealis [114, 115] use pre-collected agent-

environment interactions to train a classifier that provides on-demand action-advice to a

learning agent. The decision to follow the advice is based on the confidence provided by the

source of advice. Wang and Taylor [114] also enable continuous improvement of the classi-

fier by collecting further online demonstrations from uncertain states. Finally, Gerstgrasser

et al. [53] enable experience sharing across multiple agents by sharing agent-environment

interactions with high TD-error to all the agents.

2.2.5 Research Gaps and Design Challenges

Based on the discussions in the previous two sections, the application scope of the teacher-

student framework [46–49, 52] is evolving towards an online scenario where learning agents

have a dual roles as both students and teachers. This bi-directional transfer allows for

dynamic and effective learning process by enabling agents to fill their knowledge gap. In
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fact, when multiple agents address simultaneously a task, it is highly probable that they will

quickly develop expertise in narrow and specific areas of the system. Therefore, by sharing

their knowledge with one another, it is possible to lower the average policy training time.

However, sharing knowledge is a very delicate process and negative transfer is very likely to

happen when teacher is less than optimal.

In order to design a successful online teacher-student framework in multi-agent systems

requires a number of key challenges to be addressed. First, as all agents are learning, there

must be a careful balance between the communication cost associated with the transfer

process and the potential influence that the shared knowledge may have on the target

agent. The system must be able to identify suitable teachers, from whom the target agent

will benefit by gaining new knowledge. Consequently, as the goal of transfer learning is

to maximise the positive impact of external knowledge, the system must be able to filter

relevant advice that is expected to bring a positive impact to target agent, and update the

target policy accordingly.

Therefore, the following challenges must be taken into account:

• Identify suitable teacher - the system must be able to dynamically filter any potential

candidate from which the target agent will benefit by transferring knowledge.

• Balance communication cost and transfer influence - while ultimately the goal of

transfer learning is to maximise the positive impact brought by the external know-

ledge, it is also essential to consider and limit the communication cost involved. In

an online scenario, synchronising all of the agents to check whether the target agent

will eventually benefit by an advice is unfeasible as both sender and receiver need to

synchronise for each action-selection process.

• Identify relevant knowledge - the system must select the form of shared advice and

decide whether is relevant for the target agent’s current level of knowledge. As an

example, a more experienced teacher that is transferring knowledge might not bring

any support to a student by suggesting an action that would already be selected by

the target policy anyway.

• Policy update based on received knowledge - the impact of shared knowledge and the

method of integrating it into an agent policy may vary depending on the type of
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advice exchanged among the agents. For instance, an action could both override the

target policy or could increase the likelihood of the action being selected by the agent

by influences its weight.

To address these challenges, this thesis proposes Expert-Free Online Transfer Learning

(EF-OnTL) an online sharing framework based on the teacher-student paradigm where

teacher is dynamically selected, based upon some fixed criteria, across available learning

agents. The advice is replaced by a batch of agent-environment interactions collected by

the teacher. Target agents filter the incoming batch to sample a sub-set of tuples that are

expected to improve their policy.

2.2.6 Baselines

Based on the analysis of the TL approaches presented in Section 2.2.3 and Section 2.2.4, it

can be concluded that expert-based teacher-student frameworks positively impact the target

agent due to the reliable pool of knowledge available to be leveraged.

This thesis shows EF-OnTL impact against two action-advice based baselines: 1) On-

line Confidence-Moderated Advice Sharing (OCMAS ) [52] - an online confidence moderated

action-advice sharing that adapts the teacher-student framework to multiple learning agents.

The agents synchronise at each step and the most uncertain agent relies on others to select

the appropriate action to take by majority voting. The majority voting along with the

uncertainty comparison mechanism ensure that advice is provided in situations where the

seeker is really in need of advice and reduce the budget utilisation when compared to clas-

sical teacher-student methods. 2) Requesting Confidence-Moderated Policy (RCMP) [42] -

provides action-advice support to a learning agent by relying on an expert agent. RCMP

lowers advice frequency as the target agent gradually increase its confidence by exploring the

environment. RCMP has demonstrated state-of-the-art performance while reducing commu-

nication costs, in comparison to a traditional action-advice strategy for the teacher-student

framework. The consequence of this, however, is that effectiveness of RCMP is strictly

related to the quality of teacher used to provide guidance. Advice is moderated by target

uncertainty regardless of teacher confidence in a certain state. Therefore, by overriding the

actions chosen by the student policy, the teacher may restrict the student performance and
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prevent exploration for better solution.

2.2.7 Relationship of Transfer Learning to Collaborative Multi-Agent Rein-

forcement Learning

In an online context, multiple agents, which interact in the same environment, are enabled

to transfer part of their knowledge through TL, which enables these agents to share and

leverage a portion of their accumulated knowledge.. Similarly, Multi-Agent Reinforcement

Learning (MARL) is typically applied to multi-agent scenarios where multiple agents in-

teract with a single instance of an environment. As a consequence, MARL introduces a

collaborative framework, wherein each agent develops its individual policy to address its

specific goals while taking into consideration both actions and behaviours of agents in the

proximity.

To provide a more precise contextual position of TL and EF-OnTL, in this section we

discuss similarities and differences between TL and MARL. MARL is a subfield of RL that

addresses scenarios where multiple agents interact within a shared environment. The goal

of MARL is to enable multiple agents to learn concurrently by learning a policy that takes

into account the behaviours of other agents. Generally, in MARL each agent has its own

policy and RL approaches that can be used in MARL can be organised into three categories:

• Independent Learners (IL), each agent acts independently by taking decisions based

on the state returned by the environment. The policy is updated based on its own

experience and all the other agents are treated as part of the environment. As example,

Q-learning [82], DQN [101] and PPO [7] can be used to learn independent policies;

• Centralised Training with Decentralised Execution (CTDE), agents’ policy are trained

jointly in a centralised manner using shared information. However, during execution,

each agent makes independent decision based on its own policy without any need for

information from other agents. For instance, Multi-Agent Deep Deterministic Policy

Gradient [61] (MADDPG) is an extension of DDPG to enable centralised learning

in multi-agent context. In MADDPG, each agent selects an action based on its in-

dependent actor network, while the critic is centralised. Centralised critic allows for

the evaluation of the joint actions of all agents facilitating the learning of cooperative

PhD Thesis Alberto Castagna



2.3 Uncertainty in Reinforcement Learning 41

behaviour across agents.

• networked agents, agents communicate one to the other during training to learn to

take joint actions that maximise the global reward while learning an independent

policy. As example, QMIX [59] and Value Decomposition Network (VDN) [60] define a

global Q-function as a composition of single agents’ Q-function. The global Q-function

evaluates the impact of the join actions taken by the agents and is used during the

training phase to induce collaborative behaviours on the single agent policies. As a

result, the Q-function of a single agent is influenced by the actions of other agents.

While the objective of MARL is to encourage agents to learn cooperative behaviours

through interaction and information exchange, EF-OnTL aims to improve the overall system

performance by enabling agents to learn independent policies while sharing batch of agent-

environment interactions to transfer a subset of knowledge that is expected to improve the

target policy. Furthermore, while MARL allows agents to have different reward models

and objectives, EF-OnTL is not specially designed to transfer between agents with different

goals. To enable the transfer across agents with different reward models, a mapping function

is required to map the experiences and rewards from one agent to another.

2.3 Uncertainty in Reinforcement Learning

In RL there are two types of uncertainties, aleatoric and epistemic. Aleatoric uncertainty

comes from the environment and is generated by stochasticity in observation, reward and

actions, epistemic uncertainty comes from the learning model and indicates whether the

agent has adequately explored a certain state. In RL, uncertainty has been largely used to

identify unfamiliar states and hence to enhance overall agent exploration [70, 135–139]. Most

recent TL frameworks follow this insight by relying on epistemic uncertainty to determine

whether an agent requires guidance or not [42, 49, 117].

One feasible way to approximate agent epistemic uncertainty within a specific task is by

counting the number of visits per each state. In fact, Taylor et al. [49], Da Silva [48] and

Nourouzi et al. [44] estimate uncertainty from state-visits counter. Zhu et al. [46] improve

the estimation by relying on state-action pair. However, state-space might be continuous or
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very large making the naive counting unfeasible. Thus, state-visits could be approximated

by Random Network Distillation (RND) [70]. Despite RND originally being introduced

to encourage exploration, it has already been exploited as uncertainty estimator for TL-

RL [52]. RND consists of two networks, a target with unoptimised and random initialised

parameters and a main predictor network. Over time, the target network is distilled within

the predictor and uncertainty is defined as prediction error between the two outputs.

Other sophisticated models can be used to estimate the epistemic uncertainty. Wang et

al. [115] propose uncertainty estimation through neural network, decision tree and Gaussian

process. NN is also used by Da Silva et al. [42], where the agent learning model is expanded

by replacing control-layer with an ensemble later used to approximate agent uncertainty.

Despite the different underlying technique used to estimate uncertainty, all the afore-

mentioned methods rely uniquely on visited state and thus, might lack crucial information

needed to estimate uncertainty in states where the goal is close but not yet achieved. For

instance, in sparse reward environment and tasks with continuous control space, action

must be taken into account when estimating the intrinsic agent uncertainty when they are

far from optimality. While taking into account actions explored along states might not be

necessary when bootstrapping expert knowledge, it is important to discriminate between

sampled actions over states when transferring from learning agents.

2.4 Summary of Background

A Markov Decision Process (MDP) is a mathematical framework to model tasks that require

sequential decision making. MDPs are based on the Markovian property, which states that

the probability of transitioning from one state to the next depends solely on its current state

and it is independent of its past states.

Reinforcement Learning (RL) is a machine learning framework that enables an intelligent

agent to learn the transition function of a MDP through continuous interaction with the

environment. RL is a cyclic four-step process composed by: 1) Observation ; 2) Action

Selection; 3) Actuation; and 4) Evaluation. This cycle enables a RL agent to learn a policy

by updating its knowledge based on the new sampled evidence.
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One of the major limitations of RL lies in the representation used to learn the mapping

between states and actions. The state-action combinatorial complexity limits the applicab-

ility to domains with low-dimension state-action space.

Deep Reinforcement Learning (DRL) partially overcomes RL limitations by using a

Neural Network (NN) to learn the high-level features that are used for the action decision

process. Furthermore, the use of NNs enables an agent to generalise across similar visited

states reducing the complexity that arises from the exploration of state-action space to

collect new evidence. Despite the exploration cost being mitigated by the capacity of NNs

to generalise across similar states, this along other RL limitations remain unsolved.

Transfer Learning (TL) can partially overcome the DRL limitations as follow:

• TL improves the sample efficiency by including external expertise within a DRL agent;

• TL allows for policy re-use across similar tasks;

• TL lowers the learning complexityy by partially or fully adapting previous acquired

policies;

TL enables part of knowledge to be transferred from one agent, named source, to another

to improve the learning phase of a target agent. Depending on the objective of TL, the form

of knowledge transferred can vary, i.e., action, agent-environment interaction, reward and

policy. Other factors that influences the designing of a TL framework are the availability of

an expert or a trained policy and the access to pre-collected experiences.

To provide support to a learning agent, the predominating framework used is the Teacher-

Student paradigm, where an experienced teacher provides advice to a novel agent. In the

teacher-student framework, the advice generally influences the action-decision process, i.e.,

action or Q-values, or the weight of learnt state-action pair, i.e., reward.

The teacher-student framework proposed by Da Silva et al. [42], Requesting Confidence-

Moderated Policy (RCMP), has demonstrated state-of-the-art performance. In this ap-

proach, a target agent explores the environment and estimates the epistemic uncertainty for

the states it visits. If this uncertainty falls below a predefined threshold, the target agent

seeks advice from an experience teacher, which provides an action to be followed by the

target.
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The teacher-student framework can be extended to multiple learning agents where the

roles of teacher and student are swappable over time. For instance, Ilhan et al. [52] propose

Online Confidence-Moderated Advice Sharing (OCMAS ). In this approach, an uncertain

agent asks other agents for an action-advice. Finally, the advice seeker follows the final

action based on majority voting of the suggested actions.

Wang and Taylor [114] propose a TL framework where the teacher, an external entity

trained on previously stored agent-environment interactions, provide action as advice to a

learning agent. Furthermore, in uncertain states, the teacher can request for additional

demonstrations to improve the quality of the advice given. Gerstgrasser et al. [53] propose

a TL framework where the tuples that exhibit high TD-error within a specific agent are

forwarded to all the learning agents.

This thesis focuses on the transferability of knowledge across homogeneous learning

agents by introducing EF-OnTL. The objective of this thesis is to investigate the impact of

experience sharing against the teacher-student framework. EF-OnTL is compared against

two action-advice baselines: OCMAS [52] to compare the impact of action-advice against

experience sharing by EF-OnTL; and RCMP [42] to benchmark EF-OnTL capability against

an action-advice baseline from experienced teachers. In the RCMP version implemented in

this thesis, the single optimal teacher is replaced by multiple trained agents to prevent any

bias coming from the use of a single non-optimal teacher. Consequently, the action followed

by a target agent is picked by majority voting on the actions provided by the teachers.

EF-OnTL enables agents to share collected experience autonomously to promote con-

tinuous improvement of a multi-agent system. Similarly, Multi-Agent Reinforcement Learn-

ing (MARL) algorithms are designed to enhance the learning of multi-agent systems by

enabling the agents to learn cooperative behaviours. MARL enables collaboration among

learning agents through Centralised Training with Decentralised Execution (CTDE) and

networked agents. In CTDE, the agents collaborate during their training process to enable

the learning of complex and collaborative policies. For instance, in the multi-agent variant

of Deep Deterministic Policy Gradient (DDPG), known as MADDPG, the critic is central-

ised and shared across all the agents. The centralised critic takes in input the state-action

of each agent to estimate the Q-value of the joint actions.

PhD Thesis Alberto Castagna



2.4 Summary of Background 45

In networked agents, communication among between agents plays a crucial role in co-

ordinating their actions and making collaborative decisions. As example of networked

agents, QMIX [59] and Value Decomposition Network (VDN) [60] combine the Q-values

of independent agents to learn a global Q-function that considers the states and actions of

each agent.
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3 Preliminary Studies

This chapter serves as a feasibility study towards the development of Expert-Free Online

Transfer Learning (EF-OnTL). While the objective of EF-OnTL is to facilitate online Trans-

fer Learning (TL) among multiple agents learning simultaneously, the content of this chapter

focuses on TL in the offline context. In comparison to EF-OnTL, the challenges addressed

by experience sharing in offline TL are relatively reduced, as, in this context, the source

of transfer is a nearly optimal agent. This situation implies that the target agent should

benefit from the knowledge provided by the teacher due to the difference in the exploration

time.

Through this offline evaluation, our aim is to investigate and observe the implications

of offline TL in environments where we plan to assess the online approach. The evaluation

of this preliminary stage is carried out in two distinct environments: 1) a Single-Team

Predator-Prey (ST-PP) scenario, in which experiences, selected based on their associated

uncertainty, are transferred to a new agent; and 2) Ride-Sharing Ride-Requests Simulator

(3R2S), a setting where experiences are transferred across agents operating with diverse

demand patterns

The remainder of this chapter is structured as follows: the architecture used for the

experiments is detailed in Section 3.1; the environments used to benchmark the transfer

of experience are presented in Section 3.2. To follow, the impact of experience sharing

in offline TL is analysed in Section 3.3. Lastly, Section 3.4 evaluates Random Network

Distillation (RND) as an uncertainty estimator model, highlighting its limitations when

used in an online context like EF-OnTL, and introduces State Action Reward Next-state

Random Network Distillation (sars-RND) to overcome the identified shortcomings.

Alberto Castagna PhD Thesis



48 3. Preliminary Studies

3.1 Proximal Policy Optimisation Architecture

This section introduces the architectural design for the Deep Reinforcement Learning (DRL)

algorithm implementation used to learn the agent’s policy. For the preliminary experiments

on offline experience sharing, we extended the classical Proximal Policy Optimisation (PPO)

algorithm [7] to enable learning from external experience.

PPO clipped version, introduced earlier in Chapter 2, has been used to carry out the

preliminary experiments to assess the impact of experience sharing in Multi-Team Predator-

Prey (MT-PP) and 3R2S.

Unlike off-policy algorithms that use two different policies to sample and optimise, PPO

assumes that the samples used to optimise a policy are collected by the current version of

the very same policy. To enable the use of external experience in PPO, the model needs to

be expanded as depicted in Figure 3.1.

The learning stage of the expanded PPO model is divided in two parts. Firstly, the

learning model is optimised based on part of the transferred experiences. The agent samples

B tuples from the transfer buffer, ensuring that each tuple’s uncertainty is below a predefined

threshold. The selected tuples are then used to populate an experience buffer, which is finally

used to perform a few steps of gradient descent optimisation. Secondly, the agent interacts

with the environment without relying any longer on the external transferred knowledge and

updates its policy based on the sampled experience.

While the expanded version of PPO used for the preliminary experiments requires the

use of a transfer buffer, there are no changes within the internal model architecture shown

in Figure 2.4. For the preliminary experiments conducted in two environments, ST-PP

and 3R2S, the PPO models’ architecture for both actor and critic networks, as well as the

learning parameters, are reported in Table 3.1. The learning parameters specify the number

of policy updates performed over each mini-batch and the clipping ratio used for the clipped

PPO.

However, for TL applications in an online setting like EF-OnTL, we transitioned from

using PPO to alternative models. This transition is necessary due to the nature of PPO

being an on-policy method, which makes it unsuitable for mixing external information with
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Figure 3.1: PPO extended model.

Table 3.1: PPO parameters setup for preliminary experiment.

Parameter ST-PP 3R2S
actor

Input Layer Linear(18, 64) Linear(26, 128)

Hidden Layer(s) Linear(64, 64)

Linear(128, 128)
Linear(128, 128)
Linear(128, 128)
Linear(128, 64)

Output Layer Linear(64, 5) Linear(64, 5)
Activation Tanh Tanh

critic
Layer Linear(18, 64) Linear(26, 128)

Output Layer Linear(64, 1) Linear(128, 1)
Activation ReLU ReLU
Optimiser Adam Adam

Learning Rate 1e-3 1e-4
Betas (.9, .999) (.9, .999)

#epochs 10 10
Clipping ratio .2 .2

Mini-batch Size 32 32

the data sampled by the current policy. On-policy methods presume that the experience

used to update the policy is sampled using the current policy version. However, in offline TL,

the optimisation steps conducted on external knowledge are carried out prior to updating

the model based on the sampled experience.
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3.2 Benchmark Environments

To evaluate the impact of experience sharing in an offline TL scenario, we used two bench-

mark environments: ST-PP, introduced in Section 3.2.1 and 3R2S, introduced in Sec-

tion 3.2.2.

3.2.1 Predator-Prey

Predator-Prey is a task originating from biology where certain species hunt other indi-

viduals for survival [140]. Different versions are available and this thesis uses a grid-world

implementation based on an existing mini-grid environment compatible with OpenAI gym

APIs [141].

Figure 3.2: 9x9 predator-prey grid with one predator and two prey.

The configuration used for this study consists of a 9x9 obstacle-free grid with a single

predator and two prey, as shown in Figure 3.2, where the predator is illustrated as a filled

triangle and the prey as a pierced triangles. The orientation of each entity matches the

direction of the triangle.

The objective of a predator is to catch all the prey available within the grid. To accom-

plish such a goal, a predator has 5 possible actions to take:

1. hold − the predator stays within the same cell and does not change its rotation;

2. forward − if the facing cell is empty, the predator moves from the current cell to the

next;

3. rotate left − the predator orientation is changed by −90◦;
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4. rotate right − the predator orientation is changed by +90◦;

5. catch − the agent catches the object in the facing cell. A catch succeeds if and only

if the object within the consecutive cell is a prey.

The control level for a prey is analogous to that of the predator, with the exception

of the catch action. Prey escapes predator by sampling random actions with the following

probability distribution: hold with a probability of 10%, rotate ±90◦ with a probability of

25%, and forward with a probability of 40%.

3.2.2 Ride-Sharing Ride-Requests Simulator

3R2S consists of a mobility on-demand scenario that enables ride-sharing while serving

real-world ride-requests. Ride-requests are replicated by a real-world taxi request dataset

obtained from the Manhattan area [9].

While the demand pattern is replicated from the Manhattan yellow cab dataset, traffic

patterns and road network infrastructures are simulated through the open-source Simulation

of Urban MObility [74] (SUMO) simulator. SUMO is largely adopted because of its realistic

and fully customisable simulation for urban mobility scenarios and provides high granularity

in modelling urban transportation elements.

A screenshot taken from the SUMO platform is shown in Figure 3.3. The upper image

displays the Manhattan road infrastructure, while the lower one shows an intersection with

a single taxi vehicle and its perceived requests that could potentially be picked-up. The red

or green coloured bars intersecting the road lanes in proximity of an intersection represent

the status of the traffic lights at the intersection. The vehicles are divided into two groups:

traffic vehicles, represented in blue, which are travelling around to simulate traffic patterns;

and taxi vehicles, which are coloured in yellow. Finally, the passenger requests are depicted

as a stylised top-view human shape and coloured in red.

The problem of matching ride-requests and driver while enabling ride-sharing can be

described as a fleet of vehicles travelling around a certain area to maximise the number of

satisfied requests while optimising the constrained resources by enabling car sharing. In this

scenario, there is a one-to-one mapping in which each agent is uniquely associated with a
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0 1000m

(a) Ride-sharing enabled taxi cabs are depicted as yellow boxes and ride-requests as red circles.

TA
X

I

0 10m

(b) Close view of an intersection with its traffic lights. Taxi cabs are depicted in yellow, regular vehicles in
blue, and potential passengers are shown in red.

Figure 3.3: SUMO simulator screenshots.

single taxi vehicle, and each taxi vehicle is exclusively controlled by an agent.

From a single agent perspective, the goal is to maximise the amount of ride-requests

served throughout its life time while minimising the cumulated delay for the vehicle and any

on-board passenger. Control is distributed at vehicle level and there is no communication

nor coordination between agents.

In the request dispatcher system, each request is broadcast to the fleet as it occurs and

remains active for 15 minutes. If the request is not engaged within this time frame, it expires

and is registered as not served.

A request is considered engaged when a vehicle begins to drive towards the pickup point

to pick up the passengers. As a constraint, the estimated time for the vehicle to reach the
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request point must fall within the request window time. However, the actual driving time

could be longer due to varying traffic conditions compared to the initial estimation. Once

the passengers are boarded, they are either travelling towards their destination or detouring

to pick-up additional requests to be served in ride sharing by the vehicle.

The state of an agent is composed of internal vehicle status alongside the perception

of the agent on the closest requests that could potentially be served. At a specific time,

given a certain vehicle and a specific request, the request is eligible to be served by the

vehicle if there is enough room in the cab to accommodate the incoming passengers and the

estimated travel time to reach the pick point of the request is compliant with the request

expiration time. Internal observation is composed of current position, updated in real-time,

and destination with number of empty seats that can be used to welcome new passengers.

The destination of a vehicle is updated at the end of an event, i.e., vehicle arrives to pick-

up or drop-off location. On top of that, a vehicle may decide to take a detour to pick

additional passengers while travelling towards a certain drop-off location. This evaluation

step is allowed whenever the vehicle is further from the current destination point and has

at least a free seat. A representation of the state of a vehicle and its perception is reported

in Figure 3.4a.

In the experiments carried out for this research, agent perceives up to 3 closest requests,

as depicted in Figure 3.4b. Consequently, control space consists of 5 actions: 1) parked

- vehicle stays idle for a predefined amount of time; 2) drop-off - vehicle drives towards

its destination until it reaches the drop-off point, and offload the passenger(s) there; 3-5)

pick-up - agent updates its destination to match the origin point of the selected request

and drives towards it and passengers are on-boarded when it arrives. Note that agent can

decide to pick one of the three available requests and as a result, agent has three different

pick-up options, resulting in 3 available actions for pick-up. All vehicles within the fleet

are synchronised under a global clock and action decision process follows a FIFO queue.

Considering the nature of the task, an episode begins as vehicles enter the simulation and

terminates when all taxis have left after successfully driving all the passengers on-board,

and with no pending requests left to be served.

As introduced earlier, the reward scheme is designed to incentivise vehicles to accomplish
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observed feature

#passengers [int]

origin (x,y) [float, float]

destination (x,y) [float, float]

detour_time to_pick [float]

detour_time to_drop [float]

observed feature

#passengers [int]

origin (x,y) [float, float]

destination (x,y) [float, float]

detour_time to_pick [float]

detour_time to_drop [float]

internal feature
position (x,y) [float, float]

destination (x,y) [float, float]

free seats [int]

Closest requests

...

(a) Perception schema Ride-Sharing Ride-Requests Simulator (3R2S).

(b) Internal vehicle state and agent’s observation over the 3 closest requests that could be engaged by the
vehicle.

Figure 3.4: Vehicle internal state and perception.
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as many requests as possible within the constraints of limited resources, while minimising

the accumulated delays of vehicles and passengers. Therefore, reward is generally based

on the elapsed SUMO steps from the beginning of an action to the decision time for the

subsequent action. First, when it is not possible to fulfil an action, agent receives a penalty

of −1. Second, when agent decides to remain parked, it receives a negative reward Rp

defined over the elapsed parked time as defined in Eq. 3.1, where x is set to 1 with empty

vehicle and 5 otherwise.

Rp =
−x

x+ elapsed_time
(3.1)

Third, on drop-off reward Rd is defined by Eq. 3.2 if the request has been served in ride-

sharing. noRStime is an estimation of the time that the same vehicle would have taken to

fulfil the ride-request with similar traffic condition without enabling ride-sharing. noRStime

is the estimated travel time needed to travel from the current position to a target location

based on the current state of the network. When the request is not served in ride-sharing,

Rd is set to 5.

Rd = max
(
− 1, 5− elapsed_time− noRStime

noRStime

)
(3.2)

Last, on pick-up, reward Rup is defined as reported by Eq. 3.3 where x is set to 1 with

empty vehicle and to 2 otherwise. elapsed_time captures the time spent to drive towards

the pick location from the moment of the assignment of the request.

Rup =
x

x+ elapsed_time
(3.3)

To emulate a real-world scenario, this thesis utilises ride-request data generously provided

by Guériau and Dusparic at [86]. NYC taxi trips [9] from 50 consecutive Mondays between

July 2015 and June 2016 in Manhattan are aggregated and divided based on time-base

schedule resulting into 4 datasets: morning, afternoon, evening and night. In this thesis, all

experiments are based on the morning peak slot (from 7 to 10 am) and the evening (from 6

to 9 pm). A depiction of the different demand trend and ride-requests imbalance is reported
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Figure 3.5: Observed demand imbalance in New York Taxi dataset [9] trips between morning (7-
10am) and evening (6-9pm) peak hours in the south part of Manhattan on Tuesday, February 2nd

2016.

in Figure 3.5. In the Reinforcement Learning (RL) context agents need to generalise across

different demand patterns and thus having different demand set with imbalanced zones are

crucial to evaluate the generalisation aspect.

To facilitate effective policy learning for the agents, the training is structured into 10

epochs, each containing 10 episodes of single-vehicle training. In a given episode, an agent

can serve the unmet requests that previous vehicles could not fulfil within that specific

epoch. At the beginning of a new epoch, the demand set is fully restored. This strategy

emulates a scenario of concurrent exploration by multiple vehicles without any competition

among them in serving customers.

All the experiences gathered during training are processed by a single learning process.

Consequently, all the agents contribute to the same learning process, optimising the util-

isation of accumulated knowledge and accelerating the learning process. In cases where a

vehicle fails to perform an update or is unavailable to serve requests in a particular location,

the others can continue seamlessly. Once training is completed, the acquired knowledge is

propagated to all vehicles within the fleet. Furthermore, this allows new vehicles to join the

fleet without requiring additional training efforts.
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3.3 Impact of Experience Sharing in Offline Reinforcement

Learning

The objective of this offline TL study is to analyse the impact of experience sharing and

comparing it against the teacher-student framework presented in Chapter 2. This study

serves as an introductory step towards the development of EF-OnTL in an online sharing

context. In this offline experience sharing scenario, the set of challenges to be addressed is

reduced as there is no source selection process as the source of transfer is a trained agent.

Specifically, the aim of this study is threefold:

1. identify and study how pivotal parameters influence the outcomes of transfer, i.e.,

source uncertainty and quantity of transferred tuples;

2. assess and quantify the extent of positive transfer achieved through the sharing of

external experiences;

3. compare experience sharing influence against action-advice based teacher-student

baselines that provide tailored action to take in critical situations.

The following experiments, demonstrating the impact of experience sharing in an offline-

TL context, are based on the PPO model presented in Section 3.1. The method and the

baselines are applied to the ST-PP environment and 3R2S.

The experience transfer buffer is provided by an external agent that has already en-

countered and solved the task. The sharing of experience and the integration process within

the target learning model happens at initialisation time. The target agent receives a buffer

with tuples labelled by source agent’s uncertainty and samples a subset of the available

collected knowledge. To estimate confidence, source agent is equipped with a RND model

that enables the agent to approximate its epistemic uncertainty while learning the task. The

source agent stores all the tuples visited during training along with the associated epistemic

uncertainty estimated by the uncertainty model.

Compared to online TL, this offline experience sharing method has a reduced com-

plexity as it assumes the existence of a pre-identified teacher agent, which is certainly more

qualified than the novel target agent. To benchmark the impact of sharing experience as pre-
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training phase, the offline transfer approach is compared against no-transfer, where a target

agent does not utilise external knowledge, and action-advice based teacher-student frame-

work following various advising strategies, i.e., advice at the beginning (BS: adv_at_begin),

confidence based ϵ-decay [44] (BS: confidence_based_e-decay) and mistake correction (BS:

mistake_correction). In BS: confidence_based_e-decay, a target agent asks for advice fol-

lowing an ϵ-decay probability and when its more uncertain than the teacher in the visited

state.

(a) Average rewards per different threshold with pre-
training over 5, 000 agent-environment interactions.

(b) Average rewards per different threshold with pre-
training over 10, 000 agent-environment interactions.

Figure 3.6: Comparison of offline experience sharing in ST-PP across different filtering thresholds.
Results are shown as average learning curve across 50 independent simulations.

Figure 3.6 shows two different graphs with the average rewards over 3, 000 episodes of the

pre-training enabled algorithm across different filtering thresholds and a no transfer baseline.

Figure 3.6a enable an agent to sample 5, 000 interactions during the pre-training step, while

Figure 3.6b the pre-training budget is doubled to 10, 000. These experiments use three fixed

thresholds: 0.05, 0.02 and 0.015, and two adaptive thresholds based on the content of the

buffer available: mean and median. The mean threshold enables a target agent to sample

tuples with an uncertainty level lower than the average uncertainty computed across all

interactions in the buffer. On the other hand, the median threshold enables a target agent

to sample tuples with an uncertainty level below the median uncertainty of all interactions.

These experiments show that pre-training a learning model with external experience

coming from a trained agent successfully improves the performance of a target agent. The

positive impact appears to be unmatchable by a no transfer agent. In fact, while jumpstart
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may not be consistent across the TL enabled agents, there seems to be an asymptotic

improvement brought by the pre-training phase that enables the target agent to keep a

higher level of performance from the beginning to the last episode. Finally, although there

are minor differences based on the filtering threshold selected, the predominant feature,

from these graphs, is the quantity of shared experiences.

Intuitively, the more information is provided to a novel agent, the better it is expected to

adapt and learn the task. However, the results provided by Figure 3.6 empirically contradict

this intuitive assumption by showing an opposite trend. In fact, in Figure 3.6a, all the

thresholds show an improvement against no transfer, while in Figure 3.6b, the impact given

by the selected threshold is milder, and a few scenarios show no improvement at all or even

negative transfer when compared against no transfer.

To follow, the threshold that enabled the TL target agent to achieve higher overall

performance and the mean threshold are compared against the TL baselines to compare the

impact of transferring agent-environment interactions against action-advice based baselines.

(a) Average rewards per different algorithm type with
pre-training over 5, 000 agent-environment interac-
tions.

(b) Average rewards per different algorithm type with
pre-training over 10, 000 agent-environment interac-
tions.

Figure 3.7: Comparison of offline experience sharing in ST-PP against the teacher-student frame-
work.

Figure 3.7 shows two different graphs for the total reward over 3, 000 training episodes.

The leftmost graph shows the TL algorithms with a budget up to 5, 000 while the rightmost

graph depicts the experiments with a budget up to 10, 000.

These comparisons suggest that experience-based TL can compete against action-advice

Alberto Castagna PhD Thesis



60 3. Preliminary Studies

based baseline. Specifically, three main findings arise, as follows. Firstly, providing action

as advice by taking into account the confidence measure of both source and target allows

for a better budget utilisation and it leads to better performance when compared to BS:

mistake_correction and BS: adv_at_begin. Secondly, despite the remarkable jumpstart

exhibited by the BS: confidence_based_e-decay compared to no transfer within the initial 50

episodes, the 0.015_threshold agent achieves a similar level of rewards in a shorter number of

episodes. Furthermore, the interactions processed as a pre-training step are general and not

tailored to overcome a specific situation. On the other hand, the advice provided by action-

advice based baseline are specific to overcome a certain situation. Thirdly, while the filtering

threshold plays a role into influencing the target agent performance, the predominant feature

driving the transfer outcome is the amount of transferred interactions.

As second part of the initial offline evaluation phase, transfer of experience is applied

to the 3R2S environment while varying the underlying demand pattern. Therefore, the

following scenarios are evaluated:

• Train & test 7-10am − agent is trained and tested on the same set of requests, the

morning peak hours. This is considered as a baseline as in this scenario there is no

transfer;

• Train & test 6-9pm − agent is trained and tested on the evening peak hours. This is

a transfer-free baseline;

• Train 7-10am test 6-9pm − agent is trained on the morning peak hours and tested

on the evening demand set. In this baseline a policy trained on a demand set is

tested onto another to assess the capability of a policy with no experience sharing to

generalise across different demand patterns;

• TL-enabled test 6-9pm − agent is trained and tested on the evening demand set.

However, this scenario enables TL as the agent accesses a transfer buffer containing

the experiences collected during a training of the morning peak hours to perform a

pre-training step.

These scenarios evaluate whether and to what extent the transfer of experiences among

agents, defined within the same domain but based on different underlying data, can result

in positive transfer to a target agent.
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Table 3.2: Performance metrics across all 4 evaluated approaches in 3R2S environment.

Scenario %Served requests %RS σ pass dt (km) Dr

Train & test 7-10am 93 93 76.61 140 9.4
Train 7-10am test 6-9pm 77 99 21.65 87 9

Train & test 6-9pm 76 99 19.35 87 9.11
TL-enabled test 6-9pm 79 93 41.12 82 5.23

The averaged results are presented by Table 3.2 while Figure 3.8 shows the distribution

across the fleet and requests. In detail, it reports the waiting time distributions for requests

in (a), passengers distribution in (b), and mileage distribution in (c) across the fleet.

The first improvement resulting of sharing experience in the 3R2S environment is repres-

ented by the increase of served requests, as reported in Table 3.2. When an agent samples a

subset of pre-collected experiences to pre-train its learning model, (TL-enabled test 6-9pm),

it enables a fleet to satisfy an additional 3% of ride-requests when compared to a similar

agent that does not utilise external knowledge on same demand set, (Train & test 6-9pm).

Despite the additional served requests, the average distance travelled (dt) is lowered by 5

km per vehicle, 82km against 87km, when compared to a no-transfer agent (Train & test 6-

9pm). Furthermore, passenger metrics improved as well, by lowering the detour ratio (Dr).

Dr is defined as the ratio between the estimated driving distance from the pick-up to the

drop-off location with no detour and the actual travelled distance by the vehicle while the

passengers are onboard. Finally, passengers distribution (σ pass) in the TL enabled scen-

ario, (TL-enabled test 6-9pm), is unbalanced compared to no-transfer scenarios tested on the

same dataset, (Train & test 6-9pm) and (Train 7-10am test 6-9pm), as variance is almost

doubled, 41.12 against 19.35 and 21.65, respectively.

In the TL-enabled test 6-9pm, the average waiting time is increased by less than 1 minute,

as a result of serving additional passengers. However, as shown in Figure 3.8a, only a few

requests have an increased waiting time above 15 minutes and those are very likely the cause

of the increased waiting time.
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(a) Distribution of waiting time over the requests.

(b) Distribution of passengers served per vehicle.

(c) Distribution of distance travelled across the fleet.

Figure 3.8: Evaluation metrics in the 3R2S environment across 4 different scenarios.

3.4 Random Network Distillation Considerations

The preliminary experiments have shown that scalar estimate of agent epistemic uncertainty

influences the performance of a target agent when transferring external experiences.

Therefore, this section discusses Random Network Distillation (RND), introduced in

Section 2.3. RND is a two-network model used to approximate agent epistemic uncertainty

on visited states. Consequently, this section highlights RND shortcomings when used as

uncertainty estimator in an online TL scenario. Finally, this section presents sars-RND ,

our proposed extension of RND, to overcome the intrinsic RND limitations.

Before jumping into RND limitations, this section evaluates RND estimation capability

based on the amount of encoded features compared between the two networks. The encoder

size matches the number of neurons used within the output layer.

While a bigger encoder size enables the estimator to be more sophisticated, it might

lead to overfitting when estimating the output of the other network and, consequently,
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when estimating the uncertainty. On the other hand, a smaller encoder size does not allow

for a sufficient number of features to be compared between the two networks. To define the

size used within this thesis, Figure 3.9 presents a RND sensitivity analysis while varying the

encoder size on the MT-PP problem. In detail, the figure shows the maximum uncertainty

registered within the first 1, 000 episodes. Encoder size identifies the number of features that

are used to compute the Mean Squared Error (MSE) between the frozen random network

and the optimised one. A general trend observed from the graph is that uncertainty is

sharply decreased within the first episodes and thereafter anneals towards a small value

close to 0.

Regardless of the chosen encoder size, the uncertainty model presents a descending

trend. A higher number of features makes the estimator more sensitive to newer states

while a lower number generalises too much across different states. Therefore, for all the

experiments presented in this thesis, the encoder size is set to 1, 024 as a balanced trade-off

which provides sufficient granularity to generalise across similar states while allowing the

model to react to new or infrequently visited states.

Figure 3.9: Uncertainty estimator with different encoder size for RND model in MT-PP.

In Section 3.3, we demonstrated that RND can be successfully used to identify mean-

ingful agent-environment interactions that result in increased performance to a novel agent.
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The tuples processed by the target agent are selected based on a threshold level. Given the

observed decreasing trend registered in Figure 3.9, the tuples processed by the target agent

are very likely to be collected within the latest training episodes of the source agent. This

hypothesis is supported by the experiments with a smaller transfer budget shown in Fig-

ure 3.6a, where a lower threshold (0.015) increases the chances that a shared tuple is sampled

from the latest part of the training process. Similarly, increasing the threshold (0.02 and

0.05) reduces the probability of sampling from the latest part of training and as a result, it

gradually deteriorates the performance. However, when doubling the transfer budget, from

5, 000 to 10, 000, this hypothesis is not true as the lower threshold that was performing the

best earlier is now the worst among the three.

The deterioration of performance with an increased budget might be due to the environ-

ment that leads predator to visit very often similar states that hold little or no information

while taking different actions. Given the sparse reward function and the high probability

that an agent is in a state with no information, there might be many tuples transferred that

are related to these situations that add no value to the agent’s knowledge. For instance, in

the MT-PP game screenshot provided by Figure 3.2, the predator is in a not useful state.

The predator, filled triangle in cell (6, 3) from the top-left corner, will transition to a same

perceived situation with any of the available actions (hold, forwards, rotate right, rotate

left and catch). As an agent perceives a 3x3 grid-based on the next consecutive cell of the

controlled predator, there is no way of perceiving anything different from empty cells by

taking a single step in this specific setup.

When transferring agent-environment interactions, based on uncertainty, from an exper-

ienced agent that has already completed the training phase, the redundant visits to states

with little information may not be a problem. In fact, this issue can be mitigated by select-

ing tuples based on uncertainty, thereby prioritising recent experiences, and by regulating

the transfer budget allowing for a limited number of redundant visits. Nevertheless, when

transferring in an online TL scenario, adjusting the budget in an ad-hoc manner will not

alleviate the issue. The source agent will not have completed its training process yet, and

consequently, it will not have sufficiently visited the successful state-action combinations.
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3.4.1 RND and sars-RND Comparison

RND has proven to be a valid uncertainty estimator model to be used within an offline TL

context where tuples are selected from agents that have completed the full training pro-

cess. However, when applied in an online context, RND lacks additional information that

should be taken into account when selecting experiences to share from imperfect agents.

This limitation arises because RND estimates confidence based solely on observed states,

assigning high confidence to states the agent frequently visits regardless of the action taken.

Consequently, it might fail to accurately estimate the confidence for states where the agent

has rarely, or even never, explored a successful state-action combination that lead to the

goal fulfilment.

To overcome the limitation of RND, which estimates epistemic uncertainty solely from

visited states, this thesis proposes sars-RND . sars-RND is an extension of RND that reduces

the estimation bias by introducing additional information in the uncertainty estimation.

sars-RND estimates epistemic uncertainty from a full RL tuple (st, at, st+1, rt+1). As a

result, sars-RND is expected to estimate a higher uncertainty in never encountered states

while generalising across similar agent-environment interactions.

To show the limitation of RND and demonstrate the effectiveness of sars-RND , we test

both models within the MT-PP benchmark environment. In this scenario, we let the agents

visiting two states, shown in Figure 3.10, while sampling various actions to analyse the

uncertainty curves generated by the two models.

State 1 State 2
Figure 3.10: Two states in MT-PP environments.

To ensure a fair comparison, the two estimator models share the same architecture

except for the input layer. sars-RND input layer is composed by a few extra neurons to

accommodate action, reward and next state. To assess the uncertainties, agents take a fixed
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action hold for 250 steps to strengthen the prediction across both estimators. Afterward,

action sampled is changed to a new action rotate left for a shorter number of steps (25).

Finally, agents resample hold for another 25 steps. The uncertainty trends are reported in

Figure 3.11.
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Figure 3.11: RND and sars-RND uncertainty curves, with their 95% confidence interval, while
sampling different actions in MT-PP environment.

Overall, both RND and sars-RND uncertainty curves follow the same decreasing trend,

as shown in Figure 3.11. The estimated uncertainty is high during the first steps and de-

creases asymptotically to 0 as the agents visit the states. However, by evaluating uncertainty

in a narrowed interval as shown in Figure 3.11, RND keeps a flat trend while sars-RND

registers a spike in uncertainty on the change of the action, firstly, at step (250), when action

a0 is replaced by a1 and secondly, at 275 when a0 is resampled. Second spike is smother

compared to first as sars-RND recognises the already seen interaction. We observe that

both for states under examination, state 1 and state 2.
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Figure 3.12: Zoomed in normalised uncertainties curves, with their 95% confidence interval, while
sampling different actions in MT-PP environment.

This artificial study confirms that sars-RND offers a fine-grained estimation of uncer-

tainty by considering both the executed action and the visited state. In contrast, RND is

not sensitive to variations in the action taken. Moreover, the observed decreasing trend,
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reported in Figure 3.11, suggests that sars-RND generalises effectively, as it can recognise

familiar states even when sampling different actions. Consequently, the uncertainty estim-

ated for never encountered states is expected to be higher than that for previously seen

states.

Based on the experiments presented in this section, we conclude that sars-RND stands as

a more suitable choice for online transfers in comparison to RND. The ability of sars-RND

to estimate epistemic agent uncertainty from a full RL agent-environment interaction effect-

ively overcomes the limitation of RND, while maintaining a comparable trend that gradually

approaches 0 over time. Consequently, sars-RND is the model used with EF-OnTL in the

online TL experiments EF-OnTL.

3.5 Conclusion

The evaluation study, presented in Section 3.3, on offline experience sharing based on the

use of confidence measure establishes the foundation for the development of EF-OnTL for

online experience sharing across multiple learning agents.

The evaluation results in MT-PP reveal that using agent confidence as a transfer decision

metric can lead a target agent to improved performance. This trend is also confirmed by the

action-advice based baseline BS: confidence_based_e-decay, as this approach enabled the

target agent to achieve superior performance compared to other teacher-student framework

baselines. Moreover, the sharing of batches of experiences has resulted into unmatched

performance improvements for a target agent, outperforming action-advice baselines.

From MT-PP results it stands out that the quantity of shared information holds a

stronger impact on a target agent compared to the filtering threshold used to select incoming

experiences. Nevertheless, in an offline context, the threshold used for experience selection

on the target side still contributes to facilitating positive transfer.

However, when transitioning from an offline to an online context and enabling the trans-

fer across learning agents, relying on a fixed value to decide the tuples to be used by a target

agent introduces a potential limitation as agents’ confidence grow over time. Additionally,

while tuning the transfer threshold can positively affect a target agent policy, this process

Alberto Castagna PhD Thesis



68 3. Preliminary Studies

is tedious, requiring numerous trials due to the high sensitivity of the outcome to this para-

meter, as observed in the experiments in MT-PP. Consequently, a pillar requirement for

EF-OnTL is to enable the share of experience while removing the need for a hard-defined

threshold.

When moving from offline to online experience sharing with EF-OnTL, we examine

whether the counter-intuitive effect observed with the quantity of shared experiences remains

valid.

Finally, given the promising outcomes observed during offline experience transfer between

agents with different underlying demand patterns in 3R2S, we assess whether these findings

are confirmed in an online experience sharing scenario.
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4 EF-OnTL Design

This chapter presents the main contribution of this thesis, Expert-Free Online Transfer

Learning (EF-OnTL), a novel online experience sharing framework that enables online trans-

fer learning between agents in multi-agent systems with no fixed expert.

Section 4.1 motivates the design choices underlying EF-OnTL. Section 4.3 presents

the EF-OnTL architecture. Section 4.4 introduces the necessary notation and presents the

algorithm. Section 4.5 presents the transfer core engine, used to handle the knowledge trans-

fer, by introducing both the teacher and the transfer content selection criteria. Section 4.6

presents the uncertainty estimator model used alongside EF-OnTL and, finally, this chapter

ends with a summary in Section 4.7.

4.1 Motivation

Chapter 2 presented multiple Transfer Learning (TL) approaches differing by both the

transferred object and the level of expertise possessed by the source of the transfer.

To summarise, when it is guaranteed that a dedicated expert is fully available to su-

pervise novel agents, the most effective way to reduce the policy training time by inject-

ing external knowledge into a novel target agent is to guide the target agent following the

teacher-student framework with tailored advice, i.e., action or Q-values. The advice directly

impacts the action decision process of the target agent.

On the other hand, when the provided advice is suboptimal, the target agent performance

is capped by the degree of expertise of the source agent. In fact, the source’s knowledge will

eventually limit the capability of target agent to learn an effective policy. As a result, when
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incorporating suboptimal advice within the action decision process, the risk of negative

transfer overweights the potential benefit of TL.

To overcome the need of an optimal expert and enable TL across imperfect agents, this

thesis presents EF-OnTL. EF-OnTL objective is to identify a subset of gathered experiences

to be transferred that supplements and enhances the target learning process rather than

overwrites it. Experience consists of agent-environment interactions that are visited by a

source agent during its exploration process. As a result, through EF-OnTL, target agent

enhances its own local standard Reinforcement Learning (RL) policy with external curated

experience.

4.2 EF-OnTL Notation and Definitions

Prior to presenting in detail EF-OnTL, this section introduces the essential notation and

definitions on which EF-OnTL is based. These concepts simplify the framework under-

standing and facilitate comprehension of the remaining chapter.

• N − number of RL-based agents available during a simulation;

• a set of Agents A = {A1, . . . , AN};

• a set of Learning Processes LP = {LP1, . . . , LPN}, which are mapped to agents using

the following function f1 = (Ai, LPj) ∈ A× LP ↔ i = j, such as an agent has one

and only one LP ;

• a set of Uncertainty Estimators UE = {UE1, . . . , UEN}, which are mapped to agents

using the following function f2 = (Ai, UEj) ∈ A× UE ↔ i = j, such as an agent has

one and only one UE;

• a set of Transfer Buffers TB = {TB1, . . . , TBN}, which are mapped to agents using

the following function f3 = (Ai, TBj) ∈ A× TB ↔ i = j, such as an agent has one

and only one TB;

• B − a scalar value Transfer Budget that defines the exact number of experiences to

be processed by a target agent during a single transfer step;

• TF − Transfer Frequency defined as number of episodes that occur between two

consecutive transfer steps;
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• SS − Source Selection Criteria (SS) used to select source of transfer;

• TCS − Transfer Content Selection Criteria (TCS) used to filter relevant knowledge

to be transferred.

The notation and definitions provided above lay the base of EF-OnTL framework. These

elements serve as a solid foundation for the architecture presentation and algorithm descrip-

tion presented in the following sections.

4.3 EF-OnTL: Architecture Design

EF-OnTL is a transfer learning framework for multi-agent systems that overcomes the need

for an a priori determined experienced teacher by dynamically selecting a temporary expert

at each transfer step based on the current performance of the agents, according to commonly

defined metrics. EF-OnTL aims to improve the performance of individual agents through

experience sharing. The selected agent is used as a source of transfer and some of its

collected experience is made available to others. Subsequently, a target agent can filter and

sample a batch of experiences to be integrated into its learning process and finally update

its policy. The transferred batch contains agent-environment interactions sampled by the

selected teacher and labelled with source’s epistemic uncertainty (ut): (st, at, rt, st+1, ut).

EF-OnTL is independent of the underlying RL algorithm used and thus, it can be exploited

on a range of RL methods, both tabular and neural network-based ones.

Figure 4.1 depicts EF-OnTL system architecture that can be divided into three main

components:

• RL Agent − It is the underlying RL algorithm used by the agent to learn a policy to

address a task. Such model enables the agent to sample an action from a certain state.

After taking the step, the agent forwards the observation, RL agent-environment

tuple, to the learning model underneath that will be eventually updated.

• Transfer Core Engine − The Transfer Core is used to establish a connection with

other agents and the main role is to filter the incoming experience that is tailored to

the current policy of the agent. Transfer Core is detailed in Section 4.5.

• Uncertainty Estimator Model − The Uncertainty Estimator is used by the agent to
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Ef-OnTL Agent

Environment

State

Next State & Reward

Learning Process
ActionUncertainty Estimator

Model

Interaction

Uncertainty

Transfer Buffer

Interaction

Interaction

Surprise

Other Agents

Uncertainty

Transferred Batch

Buffer

Transfer Core
Engine

Figure 4.1: EF-OnTL agent components diagram.

approximate epistemic uncertainty. State Action Reward Next-state Random Network

Distillation (sars-RND) is covered in Section 4.6.

The data processed by an EF-OnTL agent come from two distinct sources: an environ-

ment accessed online in a traditional RL manner, and other EF-OnTL agents. Beyond the

traditional update of the learning process, the interactions sampled from the environment

are fed into the uncertainty estimator model, which estimates the epistemic uncertainty re-

lated to each tuple. Subsequently, each tuple, along with its estimated uncertainty, is stored

in an internal buffer, named Transfer Buffer. This process is repeated iteratively until the

transfer time is reached.

When transfer is initiated, the transfer core engine mutually exchanges the internal

transfer buffer with other agents. Each interaction contained within the transfer buffers

is then fed into the learning process, to estimate the surprise value, and the uncertainty

estimator model, to estimate the uncertainty. Based on these two metrics, a source agent

is selected and a subset of tuples is filtered to shape the transferred batch. Finally, the

learning process is updated based on this transferred batch.
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4.4 EF-OnTL Framework

This section delves into the online experience sharing workflow followed by EF-OnTL agents.

The agent exploration and learning process is independent, except during the transfer step.

When the transfer begins, a common agent is selected as the source of transfer, and the

reaming agents filter a subset of the incoming experiences to update their learning process

based on the selected tuples.

Algorithm 1 introduces high level procedure followed by agents for sharing experience

one to another throughout their simultaneous exploration processes.

Algorithm 1 Expert-Free Online Transfer Learning
1: Given: A, LP, UE, TB, B, TF, SS, TCS, f1, f2, f3
2: for ep in Episodes do
3: for all Ai ∈ A do ▷ follow normal policy
4: get state sti for Ai at time t
5: sample an action ati based on LPi

6: perform a step and observe oti = (sti, a
t
i, r

t
i , s

t+1
i )

7: estimate uncertainty ut
i = UEi(o

t
i)

8: push (oti, ut
i) to TBi ▷ FIFO queue

9: optimise UEi on oti
10: optimise LPi

11: end for
12: if ep % TF is 0 then ▷ start transfer-step
13: select source agent As by SS
14: for all At ∈ (A \As) do ▷ transfer from As to At

15: apply TCS over TBs and sample B tuples
16: optimise LPt with the sampled tuples
17: end for
18: end if
19: end for

First, line 1 defines the EF-OnTL parameters. Then, agent takes a standard RL step at

lines 3− 6, i.e, agents retrieve observation from an environment, sample an action based on

their learning process and finally take a step within the environment.

Afterward, the related UEi estimates i-th agent’s epistemic uncertainty uti over the

observed agent-environment tuple (sti, a
t
i, r

t
i , s

t+1
i ), then UEi model is updated based on new

sampled evidence and the uncertainty-labelled tuple is published to the associated transfer

buffer TBi as shown in lines 7− 9. When TBi is at full capacity, new labelled interactions

replace the oldest tuples following a FIFO scheme. Learning process LPi is then updated

based on the underlying RL algorithm used, lines 10− 12.

Alberto Castagna PhD Thesis



74 4. EF-OnTL Design

Lines 14 − 20 show a transfer step. Firstly, at line 15, source is selected among the

agents w.r.t. Source Selection Criteria SS. Secondly, remaining agents, i.e., targets, apply a

filtering function TCS over source transfer buffer and then sample a batch composed by a

fixed number B of tuples, line 17. Finally, at line 18, each target agent updates its learning

process based on the obtained batch.

While the above provides a full description of the algorithm, for further clarity, Figure 4.2

summarises EF-OnTL workflow, at a single TL time-step t, for the simplest scenario with

only 2 agents.

Yes

Select (As, TBs)
by SS

Get
o1

t=(s1
t, a1

t, r1t, s1
t+1)

Estimate
u1

t=UE1(o1
t)

Push
(o1

t, u1
t) to TB1

ep % TF is 0 Share TB1
Yes

No

Get
o2

t=(s2
t, a2

t, r2t, s2
t+1)

Estimate
u2

t=UE2(o2
t)

Push
(o2

t, u2
t) to TB2

ep % TF is 0 Share TB2
Yes

No

Update LP1
with B tuples

Sample B
tuples by
TCS(TBs)

No
As==A1

Update LP2
with B tuples

Sample B
tuples by
TCS(TBs)

As==A2

Yes

No

EF-OnTL
A2

EF-OnTL
A1

Figure 4.2: EF-OnTL simplified workflow in a two agents scenario.

In detail, the source agent As and the related source transfer buffer TBs are globally se-

lected, as the SS metrics, further presented in Section 4.5.1, do not consider the target agent

to identify the source of transfer. Consequently, when implementing multiple EF-OnTL

agents, the source selection process can be either centralised or decentralised, based on spe-

cific needs. However, both implementations are equivalent given the SS metrics. When

EF-OnTL is applied on more than two agents, all the agents share their transfer buffer one

to another.

To further zoom into EF-OnTL process, this section proceeds by showing the sequence

of operations within an EF-OnTL agent, providing insights into how an EF-OnTL agent
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operates internally. The internal agent perspective aims to provide a fine-grained analysis on

how each sub-modules within EF-OnTL is used and interacts one to the other throughout

the learning and transferring stage. To enable a detailed internal view, the diagram in

Figure 4.3 divides the agent into fine-grained sub-modules.

Learning
Process LP

Uncertainty
Estimator UE

Uncertainties

Surprises

Transfer
Buffer

ot and
uncertainty ut

Interactions in TBs

Batch Received

Transfer Core
Engine Other Agents

EF-OnTL
Agent

Interface

State st

st

Observation ot: (st, at, rt, st+1)

ot

Reward rt

 Next State st+1

Get state

Action at

RL step

Updating
Uncertainty

Step

Transfer Time
Buffer TB Get Transfer Buffer

Transfer
Step

Init Transfer

Environment

at

External TB

Source Buffer TBS

alt

[else]

[Agent is Source]

Source Selection
process (Sec. 4.5.1)

Transfer Content
Selection (Sec. 4.5.2)

Figure 4.3: EF-OnTL agent sequence diagram.

There are 3 main sequence blocks that can be identified:

1. RL step − describes the RL agent-environment interaction, lines 4 to 6 in Al-

gorithm 1. Agent uses its learning process LP to sample an action based on the

observed state provided by the environment. After taking that action, agent ob-

serves the reward returned by the environment along with the next state. Finally,

the full observed tuple (ot), that will eventually be used to update the underlying

learning policy, is passed to the Learning Process.

2. Updating Uncertainty step − ot is forwarded to the Uncertainty Estimator Model,

which approximates the epistemic uncertainty (ut) and updates the underlying model

as shown in line 9 of Algorithm 1. Finally, (ot, ut) is pushed to the associated Transfer

Buffer.
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3. Transfer Step − When the time to transfer comes, as per line 14 in Algorithm 1,

an agent initialises the transfer by sending its transfer buffer to the Transfer Core

Engine. The Transfer Core Engine collects the transfer buffers from other agents

and decides whose the suitable agent that should act as teacher, as shown at line 15

of Algorithm 1.

When an agent is chosen as source of transfer, the knowledge transfer process ter-

minates for that agent, and it is not influenced by external knowledge. On the other

hand, if the selected teacher is an external agent, the transfer begins. Both the

Uncertainty Estimator Model and the Learning Process are used to estimate the un-

certainties and surprises for each tuple within the Source Transfer Buffer. Afterward,

the Transfer Core Engine filters and samples a certain number of tuples that are used

to update the Learning Process. Finally, the transfer step terminates and the control

is returned to the agent.

During a transfer step there are the two selection processes, source selection and transfer

content selection, that are not captured in detail within this diagram. Next section focuses

on the Transfer Core Engine presenting these two filtering functions and the criteria used

to select source of transfer and relevant knowledge.

4.5 Transfer Core Engine

The Transfer Core Engine is the internal part of EF-OnTL agent that manages the transfer

step. Its role is to interface with other agents to exchange the transfer buffers and to

select relevant knowledge to be used to update the RL learning process. The details of its

architecture are shown in Figure 4.4.

The Transfer Core Engine has two objectives: 1) identify the As, the agent used as source

of transfer; 2) filter the relevant incoming knowledge to update the Learning Process. The

remainder of this section focuses on these two modules: Section 4.5.1 presents the metrics

used to select As alongside the related transfer buffer TBs. Then Section 4.5.2 presents TCS,

the selection criteria applied by the target agent to select relevant knowledge.
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Figure 4.4: Detail of EF-OnTL Transfer Core diagram.

4.5.1 Source Selection

In TL approaches where an expert is readily available for unidirectional knowledge transfer,

as the one described in Chapter 3, the source selection task is not required. However,

in EF-OnTL, given the continuous online transfer across multiple agents, source selection

becomes crucial to achieve positive transfer and to dynamically assign roles at the beginning

of each transfer step.

One of the key challenges in EF-OnTL is to identify the most suitable agent among

multiple candidates with similar expertise, as shown at line 13 of Algorithm 1, which allows

other agents to benefit from the sharing of the source’s knowledge.

To identify the transfer source from a set of candidates, this work assumes that agents

can communicate one to the other with no limitations and at a fixed cost; in reality the

communication cost and range will be limited confining the communication to a subset of

agents.

As discussed in Chapter 2 for Agent-to-Agent (A2A) TL, the source selection decision

process can rely on confidence or uncertainty metrics defined on target and sender, per-

formance based metrics, or can be based on completion of an episode. The ultimate choice

depends upon the transfer objective.

The majority of experience-based TL work does not consider the source selection prob-

lem, as demonstrations are assumed to be coming from agents that have already finished

their training. The closest work related to EF-OnTL are Online Confidence-Moderated
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Advice Sharing (OCMAS ) [52] and Wang and Taylor [114, 115]. OCMAS is an online

action-advice based TL where the problem of source selection is replaced by majority vot-

ing as the final advice is the result of majority voting over a set of incoming action-advice.

Wang and Taylor [114, 115] use uncertainty to select the external entity that should provide

action-advice. In EF-OnTL, agents use uncertainty and cumulative reward to select the

source of transfer. Instead of providing a single action-advice to a target agent selected by

majority voting or provided by an external entity, EF-OnTL provides to a target agent a

subset of experiences to overcome the knowledge gap between the target and the source

policy. This thesis studies two different methods to select the transfer source within the

Transfer Core Engine:

• Average Uncertainty (U)− it selects source of transfer as the agent with lowest average

uncertainty ui on the tuples stored within its transfer buffer TBi. Formally, that

means that the source agent As is selected accordingly to Eq. 4.1.

As ← minN
i=0(ui)

ui =

∑|TBi|
t=0 uti ∈ TBi

|TBi|

(4.1)

• Best Performance (BP) − it relies on performance achieved by agents over a pre-

defined window of most recent episodes and it is inspired by Taylor et al. [49]. As

performance measure, EF-OnTL uses average cumulated reward over episodes’ finite-

horizon undiscounted return (Ri). As is selected out of average sum of rewards re-

turned by the environment over episodes from initial to goal state with a finite number

of steps. Eq. 4.2 reports the formula used for the source selection, where E is the

number of evaluated episodes and τ ei represents the length of the e-th episode for the

i-th agent.

As ← maxNi=0(Ri)

Ri =

∑E
e=0

∑τei
t=0 r

e,t
i

E

(4.2)
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The two SS criteria, U and BP, address the challenge of identifying a suitable agent to

act as the source of transfer from a set of candidates, enabling dynamic roles for a transfer

step. While these metrics are generally used to establish whether an agent is in need of

advice in specific circumstances, EF-OnTL uses these metrics for selecting the source of

transfer, which allows the sharing of a batch of experiences aiming to overcome the gap

within a target policy.

In Chapter 6, both techniques described by Eq. 4.1 and Eq. 4.2 are evaluated in a

mutually exclusive manner. This evaluation aims to identify the performance impact of

the two techniques to establish whether one prevails over the other in certain conditions or

scenarios.

4.5.2 Transfer Content Selection

Once the appropriated source of transfer is identified, the target agent has to accurately

select the specific knowledge relevant to its own learning process, as shown in line 17 of

Algorithm 1. Therefore, this section introduces TCS to prioritise certain tuples based on

their score over a set of measures.

To simplify the readability, this section discusses the simplest case with two agents,

which, at each transfer step, are referred to as source agent As and target agent At. Exper-

ience worth to be transferred is identified through two criteria, expected surprise as in [53]

and uncertainty as in [114, 115].

Gerstgrasser et al. [53] use Temporal Difference error (TD-error) to select agent-environment

tuples that surprised a certain agent, and consequently, these tuples are forwarded to all

other agents by injecting the tuples into their replay buffer. However, this approach could

potentially limit the capability of other agents to store and learn from more specific know-

ledge, as certain tuples might not have the same impact on multiple different policies. Wang

and Taylor [114, 115] use the uncertainty to provide action as advice from a centralised entity

and to decide whether to optimise the central entity with further demonstration collected

online.

In EF-OnTL, expected surprise [71], is defined on the target Learning Process and is ap-

proximated through TD-error. Despite expected surprise is not used as much as uncertainty
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or confidence to filter relevant knowledge in other TL work, we propose it as transfer criteria

in this thesis based on its proven usefulness as selection criteria for prioritising experience

selection in prioritised experience replay [104].

In EF-OnTL, uncertainty is estimated by an uncertainty estimator model UE with a

standardised architecture. Both source and target agent have access to their own estimator,

respectively UEs and UEt that are updated based on their local experiences. Consequently,

their estimated uncertainties can be compared to select relevant tuples to be transferred. In

detail, given (ois, uis), where ois is an agent-environment tuple visited by As at time i and uis

is its associated epistemic uncertainty, then At estimates current uncertainty u
ois
t over the

interaction ois sampled by As. Hence, uo
i
s

t = UEt(o
i
s). The discrepancy between these two

estimations, delta confidence (∆−conf ), can be defined as ∆−conf= u
ois
t − uis. Note that

u
ois
t is an epistemic estimation at the time of transfer and changes over time.

Based on these two criteria, i.e., surprise and uncertainty, At receives a personalised

batch of experiences that aims to fill shortcomings in its policy. We define multiple filtering

functions for incoming knowledge as follow:

1. rnd ∆-conf − transfer Randomly based on threshold determined by Delta Confid-

ence. By choosing this technique, an agent randomly samples B tuples with an

associated ∆−conf higher than the median value computed across all tuples.

2. high ∆-conf − transfer based on Higher Delta Confidence. Agent sorts in decreasing

order the incoming tuples by the ∆-conf and selects the top B entries.

3. loss & conf − transfer based on Higher Loss and Confidence combined. While previ-

ous filters are defined only over uncertainty, this one also considers expected surprise.

To balance the different scales, uncertainty and surprise values are normalised within

a [0, 1] interval and then weighted equally. Finally, target agent sorts the incoming

tuples by the computed value and then selects the top B tuples with the highest

values.

The three TCS, rnd ∆-conf , high ∆-conf and loss & conf , enable a target agent to filter

the incoming knowledge facilitating dynamic transfer content selection. As a result, each

target agent can select a subset of the incoming experiences that is expected to improve

its current learning process. In Chapter 6, all the three TCS criteria are evaluated and
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compared in a mutually exclusive manner. The comparison aims to identify the performance

impact of filtering the incoming experience based on different selection criteria to establish

whether one prevails over the other in certain conditions or scenarios.

4.6 Uncertainty Estimator Model

This section presents the uncertainty estimator model used within EF-OnTL to support

the source selection decision process and the filtering of relevant knowledge to be integrated

within the learning model of the agent.

As discussed in Section 2.3, generally, in RL, the epistemic uncertainty of an agent is

approximated from the observed state returned by the environment. In simple scenarios a

state-visit counter can be used to approximate the uncertainty. On the other hand, when it

is impossible to keep track of all the different visited states, neural network-based models,

as Random Network Distillation (RND) [70], can be used as approximators of state-visit

counter. RND uses two neural networks, referred as target and predictor, to approximate

the epistemic uncertainty through Mean Squared Error (MSE) of the networks’ output.

Over time, the predictor is optimised to predict the target output and the uncertainty is

expected to decrease accordingly.

Uncertainty Estimator Model

Reward

State

Input

Next
State

Action
MSE

Uncertainty

Target Network

Predictor
Network

Figure 4.5: sars-RND architecture.

When used in an online TL scenario, RND is expected to lack crucial informations that

are necessary to estimate the epistemic uncertainty of an agent, i.e., action taken and the
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updated state. To address this, sars-RND , shown in Figure 4.5, an estimator model based on

RND and expected to overcome the limitations of the base model is introduced. sars-RND

extends RND by estimating uncertainty from a RL tuple (sti, a
t
i, r

t
i , s

t+1
i ), composed by state,

action, reward and next state.

By taking into consideration the additional features, sars-RND is expected to provide

a more accurate estimation throughout the learning phase when compared to RND. The

extra inputs of sars-RND are expected to provide a more accurate estimation by enabling

the agent to discriminate situations where the goal is closer but not yet explored because

the action that lead to the accomplishment of the goal has never been explored.

Section 3.4, has demonstrated sars-RND superiority in estimating the agent epistemic

uncertainty in an online scenario when compared against RND.

4.7 EF-OnTL Design Summary

In most Transfer Learning (TL) frameworks, knowledge is typically transferred from an

optimal fixed expert to learning agents. However, if the source of advice is suboptimal,

the capability of a target agent to learn an optimal policy might be constrained by the

suboptimal policy. To overcome this limitation and enable TL across multiple learning

agents, in this chapter we presented EF-OnTL. EF-OnTL is an online experience sharing

framework that facilitates TL among multiple learning agents by transferring a buffer of

agent-environment interactions.

EF-OnTL expands the architecture of a traditional RL agent by incorporating an un-

certainty estimator model (UE), a transfer buffer (TB), and a transfer core engine for each

agent. The UE is used to estimate the epistemic confidence of an agent. Subsequently, the

observed agent-environment interaction labelled with uncertainty is stored in the transfer

buffer. Finally, the transfer core engine handles the communication with other agents and

finalises the transfer process.

To enable online experience sharing, the transfer core engine in EF-OnTL must address

two challenges: 1) identifying a suitable temporary expert to act as the source of transfer,

and 2) selecting the relevant experiences that contribute to the target policy.
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For source selection, EF-OnTL defines two Source Selection Criteria (SS): Average Un-

certainty (U) and Best Performance (BP). U selects the source of transfer as the agent with

the lowest average uncertainty within the transfer buffer, while BP selects the source agent

based on the average cumulated reward over episodes’ finite horizon undiscounted return.

To filter experiences relevant to a specific target agent, EF-OnTL defines three Trans-

fer Content Selection Criteria (TCS) based on two criteria: expected surprise and delta

confidence (∆-conf ). Expected surprise is approximated by the Temporal Difference error,

and it is used to select tuples that are expected to surprise a target agent. On the other

hand, ∆-conf is defined as the difference between the uncertainty of the target agent and

the uncertainty of the source agent. Consequently, the three TCS used in EF-OnTL consist

of transfer Randomly based on threshold determined by Delta Confidence (rnd ∆-conf ),

transfer based on Higher Delta Confidence (high ∆-conf ), and transfer based on Higher

Loss and Confidence combined (loss & conf ).

The criteria used by EF-OnTL to select the transfer source and relevant knowledge are

not new within the TL community. For instance, uncertainty has been used to identify

the source of transfer [114, 115] and to identify the situation where an agent is in need of

advice [52], while the idea of using performance based metrics are inspired by Taylor et

al. [49]. Similarly, the surprise concept has been used by Gerstgrasser et al. [53]. However,

to the best of our knowledge, EF-OnTL is innovative in applying these criteria to address

the combined challenge of dynamically selecting the source of transfer and dynamically

determining the content transferred to each individual target agent. Moreover, uncertainty

has been primarily utilised to decide whether to provide an one-time advice.

To promote positive TL outcome, State Action Reward Next-state Random Network

Distillation (sars-RND) is introduced and used as UE in this thesis. sars-RND is a model

that enables an agent to estimate epistemic uncertainty from an agent-environment inter-

action. Based on the uncertainty and on other commonly defined metrics, i.e., expected

surprise and cumulative reward, agents can dynamically select a source of transfer and filter

the experiences from an incoming transfer buffer. This selection process aims to identify a

batch of experiences that are expected to improve the target’s policy.
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5 Implementation

This chapter discusses the hardware and software technologies used for conducting the

research presented within this thesis. Section 5.1 introduces the libraries and the hardware

used to run the experiments, collect the data and process the results. Then, Section 5.2

covers the design of the Reinforcement Learning (RL) algorithms used for the evaluation.

Finally, this chapter ends with Section 5.3 that discusses the implementation details of the

main contribution of this thesis, Expert-Free Online Transfer Learning (EF-OnTL).

5.1 Technology for Experiments

This section presents the necessary libraries used to carry out the experiments presented in

this work.

All algorithms and experiments are developed in Python 3. The neural networks are

implemented using PyTorch version 1.13.1+cu117 to enable the models run on a GPU with

CUDA. Performance and results are stored as CSV files and visualised in real time through

TensorBoard V. 2.12.0. Finally, data are processed and analysed using Pandas V. 1.5.3,

NumPy V. 1.23.0 and graphically displayed through Matplotlib V. 3.4.0.

5.1.1 Hardware

The results presented in this thesis have been collected on two distinct machines. The first

machine used to carry out the experiments is a consumer-oriented laptop, specifically a Dell

XPS model. Its hardware configuration details are reported in Table 5.1.

The second machine used is a custom rack setup with multiple GPUs. The hardware

and software details are provided in Table 5.2.
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Table 5.1: Laptop hardware specs used for experiments.

Parameter Value
CPU Intel i7-9750H @ 2.60GHz
GPU NVIDIA GTX 1650 Mobile

NVIDIA-SMI Driver 470.182.03
CUDA Version 11.4

RAM 2×8 GiB DDR4 @ 2667 MHz
OS Ubuntu 20.04.5 LTS

Table 5.2: Server hardware specs used for experiments.

Parameter Value
CPU Intel Xeon(R) Gold 5220R @ 2.20GHz
GPU 4× RTX 3070

NVIDIA-SMI Driver 530.30.02
CUDA Version 12.1.1

RAM 1535 GiB
OS Ubuntu 20.04.6 LTS

Finally, Table 5.3 specifies which device has been used for each step of the experiment-

ation pipeline on each benchmark environment. First column, Benchmark, indicates the

environment, second column, Debug, indicates the hardware used to implement and per-

form preliminary experiments and, last column, train & test, reports the machine used to

collect the presented results. The machine used can vary between the custom rack (server),

and the consumer-oriented laptop (XPS ).

Table 5.3: Details of simulations.

Benchmark Debug Train & Test
Cart-Pole XPS server
MT-PP XPS server
HFO XPS XPS
3R2S XPS server

The neural networks implemented are relatively simple, further details are provided in

Section 5.2, the computation cost mainly results from sampling the agent-environment trans-

itions and by back-propagating the losses on the multiple networks. As such, to replicate

the experiments presented within this thesis, GPU is not mandatory as the true bottleneck

are the CPU capabilities, although, having a configuration similar to the server mentioned

above helps to parallelise the computation and lower the overall time needed to collect the
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results. For instance, to complete a training and testing phase in the Multi-Team Predator-

Prey (MT-PP) environment takes around 7 hours on the XPS laptop, which is more than

doubled on the server.

5.2 Deep Reinforcement Learning Algorithms

This section outlines the architecture design for the deep RL algorithms used to learn

the agent’s policy. For the EF-OnTL experiments in this thesis, there are 2 RL algorithms

used: dueling Deep Q-Network (DQN), discussed in Section 5.2.1, and Parameterised Action

Deep Deterministic Policy Gradient (PA-DDPG), discussed in Section 5.2.2. Additionally,

for the MT-PP benchmark environment we defined an encoder to process the multichannel

state. The encoder is presented as stand-alone as it has been used for both learning the

agent’s policy and in the uncertainty estimator model. The implementation of the encoder

is detailed in Section 5.2.3.

5.2.1 Dueling Deep Q-Network

Dueling Deep Q-Network is the model chosen to replace Proximal Policy Optimisation

(PPO) model, due to the on-policy limitation of PPO, and to enable the sharing of ex-

perience. This model has been used in tasks with a discrete action space, i.e., Cart-Pole,

Multi-Team Predator-Prey (MT-PP) and Ride-Sharing Ride-Requests Simulator (3R2S).

Dueling DQN, depicted in Figure 2.3, decouples the learning of a state-value function and

the advantage of selecting a certain action. As a result, dueling DQN improves the estima-

tion of the Q-values when compared to standard DQN.

Table 5.4 reports the setup used in Cart-Pole, MT-PP and 3R2S. Betas is a decaying

parameter used within the Adam optimiser and the Policy Update Step defines the quantity

of mini-batches used to update the online network before copying the weights of the online

network into the target network.

Dueling DQN is designed for environments with discrete action spaces and is not suit-

able to handle continuous action space. Therefore, to enable the learning of a policy in
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Table 5.4: Dueling DQN parameters setup.

Parameter Cart-Pole MT-PP 3R2S
Input Layer Linear(4, 128) Linear(135, 256) Linear(26, 256)

Hidden Layer(s) Linear(128, 64) n.a.
Linear(256, 128)
Linear(128, 64)

Advantage Layer Linear(64, 2) Linear(256, 5) Linear(64, 5)
Value Layer Linear(64, 1) Linear(256, 1) Linear(64, 1)
Activation ReLU ReLU ReLU
Optimiser Adam Adam Adam

Learning Rate 1e-4 1e-5 1e-4
Betas (.9, .999) (.9, .999) (.9, .999)

Gamma .999 .999 .999
Mini-batch Size 32 32 32

Policy Update Step 1,000 10,000 2,500

environment with continuous control space, i.e., Half Field Offense (HFO), in this thesis we

use an off-policy based method described in the following section.

5.2.2 Parameterised Action Deep Deterministic Policy Gradient

Parameterised Action Deep Deterministic Policy Gradient (PA-DDPG) [8] is an extension

of Deep Deterministic Policy Gradient (DDPG) and is an off-policy based RL algorithm.

PA-DDPG enables an agent to learn a policy in an environment with parametrised action

space, i.e. Half Field Offense (HFO), where an agent selects a discrete action along with

the parameters required to parametrise the chosen action.

The PA-DDPG architecture shown in Figure 2.5 consists of an actor with a 2-stream

output to select both discrete action and parameters, and a critic network to estimate the

Q-value for a state and an action.

The details of the PA-DDPG network used in the HFO experiments are reported in

Table 5.5. Both the actor and the critic share the same configuration for the hidden layers.

The input layer of the critic consists of the aggregation of three components: 95 neurons

for the state, 4 neurons for the discrete action selection, and 7 neurons for the parameters

of the actions. In total, the input layer processes 106 values.
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Table 5.5: PA-DDPG parameters for HFO

Parameter HFO
actor

Input Layer Linear(95, 1024)

Hidden Layers

Linear(1024, 512)
Linear(512, 256)
Linear(256, 256)
Linear(256, 128)
Linear(128, 128)

Output Discrete Action Layer Linear(128, 4)
Output Parameters Action Layer Linear(128, 7)

Activation leaky relu
critic

Input Layer Linear(106, 1024)

Hidden Layers

Linear(1024, 512)
Linear(512, 256)
Linear(256, 256)
Linear(256, 128)
Linear(128, 128)

Output Layer Linear(128, 1)
Activation leaky relu
Optimiser Adam

Learning Rate 1e-3
Betas (0.9, 0.999)

Target Policy Update soft
Policy Update τ 1e-3
Mini-batch Size 32

5.2.2.1 Multi-Agent Parameterised Action Deep Deterministic Policy Gradient

In the multi-agent implementation of PA-DDPG, the architecture is similar to the single-

agent PA-DDPG with once crucial difference, the critic is centralised. The centralised critic

takes as input the state-action pairs of each agent and estimates the state-value of the joint

actions.

While the hidden and output layers of the critic remain unchanged from the parameters

previously presented in Table 5.5 for the single-agent PA-DDPG, the input size is multiplied

by the number of agents that share the centralised critic.
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5.2.3 Multi-Team Predator-Prey Encoder

For Multi-Team Predator-Prey (MT-PP), the observation of an agent is defined as a 3-

channel array encoding the type of object within a cell, the orientation and the team-

membership. The orientation of an object and its team membership are meaningful only

for predator and prey.

Table 5.6: Preprocess encoder for MT-PP.

Parameter Value
1stlayer Conv1d(3, 7, k=1)
2ndlayer Conv1d(7, 15, k=1)
3rdlayer Flatten(out_dim=-2)

In this thesis, the experiments provided are based on an encoder to pre-process the

multi-channel observation and to flatten it into a single dimension array, Table 5.6 reports

its configuration. The encoder uses a 1D convolution with a kernel size of 1 to capture local

patterns and dependencies within the input. The choice of a kernel size of 1 is because there

are no relationships between neighbouring cells in the grid.

5.3 Expert-Free Online Transfer Learning Implementation De-

tails

EF-OnTL is extensively detailed in Chapter 4, where both the architecture and the work-

flow are thoroughly described to facilitate the transferring of experiences among agents.

The EF-OnTL code is accessible at the following link: https://github.com/acastagn/EF-

OnTL. In summary, beyond the core RL process, EF-OnTL incorporates three additional

components:

1. a copy of State Action Reward Next-state Random Network Distillation (sars-RND),

class UE in the SARSrnd file available in the repository, to estimate the agent’s

epistemic uncertainty. Each agent has associated a dedicated copy of sars-RND that

needs to be updated solely on the experiences coming from the related agent;

2. a transfer buffer, class buffer in the transferBuffer file available in the reposit-

ory, to store the uncertainty labelled experiences in form of a seven-element tuple
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(st, at, rt, st+1, dt, ut);

3. Transfer Core Engine, file transferCoreEngine in the repository, to enable the sharing

of experience and the execution of the two processes needed to select the source and

the content to be transferred.

EF-OnTL is designed to enable multiple agents to transfer experience in a distributed

manner. However, for sake of simplicity, some operations can be executed in a centralised

manner to reduce the implementation complexity, i.e., Source Selection Process. The goal

of this task is to select a source of transfer which is globally selected for all the agents. As

the selection of source is not influenced by any external factor, the execution of this task

can be executed in a centralised manner by an external entity to reduce the communication

across agents.

Regardless of the Source Selection process implementation, the following step, Transfer

Content Selection, must be distributed on the agent side as this step is based on the target

agent. To estimate the surprise values for the Transfer Content Selection, the learning

process of an agent must enable the estimation of the Temporal-Difference (TD)-error for

an agent-environment interaction. In addition, the learning process has to allow for taking

a training step based on an external buffer passed as parameter.
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6 Evaluation

This chapter presents the evaluation study performed on Expert-Free Online Transfer Learn-

ing (EF-OnTL). EF-OnTL enables knowledge transfer across multiple agents by sharing

experience as a batch of agent-environment interactions. EF-OnTL enables a target agent

to receive, filter and process a subset of the transferred experiences which is expected to

expedite the convergence of its policy.

The remainder of this chapter is organised as follows. The evaluation objectives for

EF-OnTL are introduced in Section 6.1, along with the baseline approaches and associated

evaluation metrics. The benchmark environments are detailed in Section 6.2. Subsequently,

the evaluation is organised into three sections and is presented in Section 6.3. Section 6.3.1

compares EF-OnTL with the baseline methods. Section 6.3.2 examines the impact of dif-

ferent transfer settings in EF-OnTL. Section 6.3.3 assesses the adaptation capabilities of

EF-OnTL when transferring across tasks with heterogeneous dynamics. Lastly, Section 6.4

summarises the evaluations presented in the chapter.

6.1 Evaluation Objectives

This section, outlines the core objectives, denoted as O1 to O9 underlying the experiments

conducted and presented within this thesis:

O1 − The first objective of evaluation is to assess whether EF-OnTL improves convergence

time compared to a no-transfer baseline, in which agents do not share any information

and learn independently. Achieving quicker convergence is the fundamental goal for

any experience-based offline Transfer Learning (TL) framework aiming to outperform

a transfer-free baseline. To assess speed convergence, in all benchmark environments
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we also implement a no-transfer baseline where agents learn independently, more

details are provided in Section 6.1.1, which will be used to compare EF-OnTL. The

convergence time will be analysed through the comparison of the learning curves

defined on the cumulated reward over an episode or a specified interval;

O2 − The second objective evaluates whether and to what extent EF-OnTL improves the

agents’ performance when compared to a no-transfer baseline, in which agents do not

share any information and learn independently, therefore the baseline used in this

objective is the same as in O1, but we compare the performance against a different

metric. When imperfect agents are used as a source of transfer, the convergence

speed alone may not be adequate to analyse the transfer impact. Furthermore,

by transferring agent-environments interactions, the effect of transfer on a target

agent may be delayed. This objective aims to determine whether EF-OnTL, through

online experience sharing, enables agents to achieve overall better performance after

convergence when compared to transfer-free agents. The performance improvements

will be analysed by comparing the performance achieved by agents at a fixed episode,

while following their policies.

O3 − The third objective evaluates whether EF-OnTL achieves comparable performance

when compared to a TL scenario following the teacher-student paradigm. In the

baselines used, the source of transfer influences directly the action-decision process

of a target agent by providing an action as advice. The goal of this objective is to

determine if EF-OnTL can be a valid alternative to the teacher-student framework,

with the additional advantage of not having to have identified a fixed teacher a-priori.

For this comparison, we implement two action-advice based baselines, presented in

Section 2.2.6: one based on experienced agents, and the other based on imperfect

agents. To compare EF-OnTL against the TL baselines, we report both training

performance over episodes and performance achieved at a fixed episode.

O4 − The fourth objective analyses whether and to what degree EF-OnTL transfer effect-

iveness is influenced by Source Selection Criteria (SS) used to identify the source of

transfer. When there are multiple agents that could act as a source of transfer there

is a need for a process to identify the suitable source of knowledge. This objective
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aims to study the impact of selecting the source of transfer based on different cri-

teria, as presented in EF-OnTL design chapter in Section 4.5.1. The experiments

will be carried out across multiple scenarios in two different environments: Cart-Pole

and Multi-Team Predator-Prey (MT-PP). The setup of these experiments will vary

the SS while keeping the other criteria fixed.

O5 − The fifth objective analyses whether and to what degree EF-OnTL transfer effect-

iveness is influenced by Transfer Content Selection Criteria (TCS) used to filter the

knowledge on target side. While EF-OnTL system identifies a common source of

transfer, the target agents, pulling batch of experiences from the source, will require

different interactions specific to their learning status. To assess the impact of utilising

various criteria for filtering incoming knowledge on a target agent side, this objective

analyses the impact brought by TCS, as presented in EF-OnTL design chapter in

Section 4.5.2. Similarly to O4, the experiments will be carried out in multiple scen-

arios across two different environments: Cart-Pole and MT-PP. The setup of these

experiments will vary TCS while keeping the other transfer parameters fixed.

O6 − The sixth objective analyses whether and to what extent EF-OnTL transfer effect-

iveness is influenced by the number of interactions selected by a target agent within

a single transfer step. While the number of interactions transferred within a single

transfer step is not related to the transfer budget B used to filter the incoming know-

ledge on the target side, this objective studies if there is a correlation between the

transfer outcome and the quantity of tuples sampled on a target agent side. The

experiments used for this analysis will be carried out in multiple scenarios across two

environments: Cart-Pole and MT-PP. The setup of these experiments will vary the

budget B while keeping SS and TCS fixed.

O7 − The seventh objective studies the extent of applicability of EF-OnTL, based on com-

plexity of the environment. Reinforcement Learning (RL) can be used to learn a

policy in various environments of different complexity, i.e., dimensions of the com-

binatorial state-action space, delayed and sparse rewards, and complex underlying

dynamics. The seventh objective aims to identify the capabilities and limitations

of EF-OnTL in relation to the complexity of different environments. EF-OnTL
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will be analysed into four different environments of increasing complexity: Cart-

Pole, MT-PP, Half Field Offense (HFO), and Ride-Sharing Ride-Requests Simu-

lator (3R2S). These environments are detailed in Section 6.2.

O8 − The eighth objective evaluates the adaptation capability of EF-OnTL to environ-

ments with heterogeneous dynamics. Note, however, that adaption to different

dynamics was not and is not considered explicitly in the design of EF-OnTL,

any further than the adaptation capabilities of underlying RL algorithm used, i.e.,

Deep Q-Network (DQN) and Parameterised Action Deep Deterministic Policy Gradi-

ent (PA-DDPG). However, in order to assess the boundaries of EF-OnTL applic-

ability, and establish directions for future work, we perform evaluation in which we

use EF-OnTL to transfer knowledge not just to the same environment dynamics as

in previous experiments, but to those with different underlying dynamics. Specific-

ally, we analyse various transfer scenarios within the 3R2S environment, enabling

transfers across agents specialised in different demand trends.

O9 − The ninth objective evaluates performance comparing to centralised multi-agent

learning. While EF-OnTL operates in a decentralised manner with reduced com-

munication, making it distinct from multi-agent learning, we still intend to assess

them purely in terms of performance. Such an evaluation would be useful, especially

in scenarios where either approach might be suitable from an architectural point of

view. This evaluation will be conducted through a comparison with Multi-Agent

Reinforcement Learning (MARL) baselines, more detail in Section 6.1.1. The exper-

iments will carried out in two different environments: MT-PP and HFO, using two

different RL paradigms.

6.1.1 Baselines

To assess EF-OnTL impact, this thesis compares EF-OnTL against different baselines:

1. no-transfer − each agent is equipped with an independent copy of the learning model

that is updated only using its own experience;

2. Online Confidence-Moderated Advice Sharing (OCMAS) [52] − this baseline is dis-
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cussed in detail in Section 2.2.6, but here we repeat its main characteristics. In

this approach, each agent owns a copy of the learning process, which is optimised

based on the experiences collected by that specific agent. Additionally, agents fol-

low the teacher-student framework to share knowledge and rely on Random Network

Distillation (RND) to estimate their confidence level within a state.

At each time step, every agent shares the state that they have visited with the rest

of the agents to estimate their uncertainties. When an agent is the most uncertain in

its visited state, the transfer process begins. Other agents provide an action-advice

to the most uncertain agent. The final action decision is made through majority

voting based on the received advice. Transfer is constrained by a budget set for each

agent. This budget limits the number of times that an agent follows the received

advice. Despite this limitation, agents maintain continuous interaction, sharing their

explored states and evaluating their associated uncertainties.

3. Requesting Confidence-Moderated Policy (RCMP) [42] − this baseline is discussed

in detail in Section 2.2.6, but here we repeat its main characteristics. A target

agent is guided by an external group of expert teachers, referred as jury, following

the teacher-student framework. The advising strategy is based on comparing the

uncertainty level of a target agent against a predefined threshold and the advice

shared is in form of action. The communication is restricted by a budget and, in

this implementation, the target agent selects the action to take as the most frequent

action suggested by the jury.

4. MARL − the MARL approaches used in this thesis are the multi-agent adaptation

of PA-DDPG [8] and QMIX [59], both described in Section 2.2.7. The selection of

the MARL algorithm used is based on the learning paradigm used by EF-OnTL.

The multi-agent PA-DDPG variant is used in HFO. Here, a centralised critic learns

a global action-value function based on the joint actions taken by the agents. In the

MT-PP environment QMIX is used. QMIX enables the agents to aggregate their

independent Q-functions to influence the learning model of a certain agent based on

other agents’ actions.

Intuitively, based on its design, EF-OnTL is expected to improve over no-transfer
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method and perform similarly as OCMAS . RCMP is expected to be an upper limit

for EF-OnTL due to the availability of pre-trained agents.

6.1.2 Metrics

The evaluation metrics commonly used within the TL context are generally defined on

the reward. These metrics assess the impact of transferred knowledge by measuring the

difference in rewards between the TL approach and a baseline. In this thesis, we assess the

following:

1. asymptotic improvement − it measures the performance gap that there might be on

the learning curves of two agents;

2. performance at fixed time − it measures the performance achieved by an agent after

a certain number of episodes. Performance are expressed through cumulated reward

as well as environment-specific metrics;

3. transfer cost − it measures the number of interactions or action-advice transferred

to a single agent;

Although these metrics are widely used to assess the impact of TL, they offer a com-

prehensive understanding of the training stage of a TL-enabled agent versus an agent with

no external support. In EF-OnTL, the impact of transferring external knowledge as agent-

environment experiences is expected to be delayed when compared to other form of advice,

i.e., action-advice. Therefore, in this thesis, where we required, we also introduce additional

metrics specific to the environment we are analysing. Finally, to ensure a robust evalu-

ation and minimise random bias, the results are presented as an aggregation of multiple

independent simulations collected under different initialisation seeds.

6.2 Evaluation Environments

To assess EF-OnTL performance against the baselines, this thesis evaluates the approaches

across 4 different environments of increasing complexity: 1) Cart-Pole, 2) MT-PP, 3) HFO

and 4) 3R2S with real-world data. This section motivates the environments used in this

research and presents their implementation details needed to reproduce the experiments.
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6.2.1 Cart-Pole

Cart-Pole is a simple and popular task widely adopted in the field. Due to its simpli-

city, Cart-Pole is a good option for validating the correctness of RL implementations and

contributions.

Figure 6.1: Cart-Pole environment [10].

The Cart-Pole problem consists of an unstable pole placed vertically on top of a moving

cart [142]. At initialisation time, the pole is balanced but subjected to gravity forces. The

goal consists of preventing the pole from falling by moving the cart along the x-axis while

keeping it within certain boundaries. Figure 6.1 shows a capture of the Cart-Pole problem

used for the experiments this thesis.

Observation consists of 4 values, cart position [−4.8,+4.8], cart velocity (−inf,+inf),

pole angle [−24◦,+24◦] and pole velocity (−inf,+inf). Cart is moved left or right by an

agent through 2 discrete actions and receives a positive reward of +1 for every step that

the pole is balanced, therefore acquiring a reward of 1 in every time step, until the pole

collapses and the episode terminates.

The Cart-Pole environment used within this research is based on the implementation by

Open-AI Gym [10]. To enable multiple agents visiting a Cart-Pole problem simultaneously,

the environments is initialised 5 times in parallel.

As the agents interact one to the other in OCMAS and EF-OnTL, agents are synchron-

ised at the end of each episode to ensure that transfer happens between agents of similar

performance.
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6.2.2 Multi-Team Predator-Prey

This version of predator-prey is an advanced configuration built upon the environment in-

troduced in Section 3.2.1. Such a task has been widely used to study multi-agent algorithms

and contributions to the field of MARL. A screenshot of the game is available at Figure 6.2.

There are a total of 8 predators, shown as filled triangles, and 4 prey, shown as pierced

triangles. Predators and prey are evenly distributed in two different colour-based teams.

Figure 6.2: Screenshot of Multi-Team Predator-Prey (MT-PP).

The environment dynamics and goal are simple, predator chases prey while prey tries to

survive the longest by evading the predator. Both predator and prey can be controlled by an

intelligent agent and the number of agents involved can be fully customisable. Furthermore,

the grid is fully customisable in size and layout as well as the agents sensors. The results

shown in this thesis assume that predators are controlled by RL-powered agents while prey

follow a random policy to escape the chasers.

MT-PP consists of two teams that compete to catch prey faster than the other team.

At initialisation time, teams are balanced and spread over the grid, thus they have same

amount of resources, predators and prey. An episode terminates when a team has no prey

left to be captured.

The predator reward model is based on the action taken by the agent and the observed

outcome. This is reported in Table 6.1. The actions that change the position or orientation

of the predator have an associated reward of −0.01. For the catch action there are multiple

possible outcomes: when a prey is caught a reward of ±1 is given to the agent. This reward
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is positive when both predator and prey belong to the same team and negative otherwise;

On the other hand, when the catch fails, a reward of −0.5 is given to the agent. Finally, a

reward of −0.25 is given to an agent for the hold action.

Table 6.1: Multi-Team Predator-Prey (MT-PP) reward model.

Parameter Value
catch same team prey +1

catch opponent team prey −1
failed catch -.5

hold -.25
other actions -.01

In the configuration used within this research, the grid is composed by 12×12 accessible

cells shaped as a obstacle-free square delimited by a wall. Each agent perceives a 3× 3 grid

centred over next consecutive cell. Thus, the observation is composed of a 3-dimensional

3 × 3 matrix. First channel describes object type, varying between: void, wall, predator

and prey. Second channel identifies the team membership: None, in case of an empty cell

or wall, red and green. Third channel indicates the orientation of the perceived object. The

orientation of an object is determined by a global orientation system, independent of the

observing agent’s orientation. It can be categorised as up, down, left, right, or none in the

case of an empty or wall cell.

In the experiments reported within this thesis, predators are given precedence to select

and take actions on prey. Consequently, in situations where a predator selects catch action

when facing a prey, the prey becomes unable to escape.

Moreover, the priorities among predators are randomly assigned during initialisation,

regardless of team membership, and remain fixed throughout each episode. Consequently,

if the actions taken by two predators are conflicting, e.g., by occupying the same empty cell

that are both facing from different sides, only the predator that moves first will succeed in

the subsequent step, while the other will remain in its original position.

This specific MT-PP setup is extremely interesting as different kind of multi-agent situ-

ations and interactions arise. As per Ferber at [54], it is possible to observe competitive

interactions, between the two teams as their goals are mutually incompatible, and collabor-

ative interaction within a team, as all the agents that belong to a team aim to accomplish
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a common goal.

As evaluation metrics, on top of the reward, this thesis reports the observed probability

of winning a match and capturing a prey assigned to the same and opposite team.

6.2.3 Half Field Offense

HFO is a multi-agent environment based on a simplified game of soccer where agents need

to collaborate to score a goal. Collaborative interaction further complicates the task that

already has sparse reward function, continuous state and parametrised control space. Thus,

having a single poor performing agent within the team will likely result in capping the team

performance. Task is episodic and an episodes terminates when one of the following events

occurs: 1) a goal is scored; 2) ball is out of bounds; 3) a defender or the goalkeeper gets

possession of the ball; 4) episode reaches the time limit.

Figure 6.3: Screenshot of HFO game.

The setup used in this work is a 3 vs 2 situation consisting of 3 offense players and 2

for the defense. The defense consist of a goalie and a single defender. Figure 6.3 shows a

screenshot of the HFO setup used in this thesis. At the beginning of an episode, all players

are initialised in the rightmost half of the pitch. Offense players are positioned in proximity

to the midfield line, the defender is placed just outside the penalty box, and the goalie is

located between the sticks. Initially, ball control is given to the offense team, while the other

team tries to intercept the ball. In this work, offense players are powered by RL agents,

while the others are played by HELIOS baseline [73].

Offense players are controlled by RL agents through the mid-level control space 1. As a
1There are three levels of control with different complexity available for an agent: high, offering only
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result, there are four available actions:

1. kick_to(x, y, speed) − the player kicks the ball to the specified coordinates and with

the provided speed;

2. move_to(x, y) − the player goes from the current position to the specified point

using the maximum running speed;

3. dribble_to(x, y) − the player dribbles the ball to the specified coordinates. If the

player controls the ball it tries to avoid the opponent and tackle otherwise;

4. intercept − based on the ball velocity, the player moves to intercept the ball.

(x, y) coordinates used to specify a target point are normalised within [−1,+1] interval

while speed ranges in [0, 3] interval. When selecting an action, an agent must pick the

discrete action alongside any relevant continuous parameters necessary to parametrise the

selected action.

HFO state provides information on the controlled player, the ball, the team mates and

the opponent team players. In the setup used in this thesis, the observation for each agent

consists of 95 features. For readability, HFO state is detailed in Appendix at Sec. A.

The performance of players is assessed by tracking the number of goals they score within a

set range of episodes. When a goal is scored, the environment returns a positive reward (+1)

to all players on the scoring team, regardless of any individual contribution to the goal.

The high quantity of observed features and the continuous control space make the HFO

environment an interesting benchmark for assessing TL frameworks, in particular EF-OnTL.

The Neural Network (NN) underlying the learning process may gain significant advantages

from the transferred experiences in this context.

6.2.4 Multi-brain Ride-Sharing Ride-Requests Simulator

The multi-brain version of 3R2S is built upon the environment introduced in Section 3.2.2.

While Manhattan is geographically concentrated in a limited area and could potentially

be managed by a single policy replicated across all vehicles, in our environment setup, we

discrete actions; low, where actions are defined on continuous parameters, and mid, offering intermediate
control complexity between the two.
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divided the zone into different sub-areas to investigate the impact of transferring across

multiple policies, each tailored to an unique non-overlapping zone. Each policy is trained

on a distinct subset of data, making it interesting to observe the transfer learning effects

induced by EF-OnTL.

The multi-brain implementation of 3R2S consists of four brains, each trained on an

independent and non-overlapping sub-area of Manhattan. The division of these zones is

established by clustering the origins and destinations of ride-requests available during the

morning peak hours from 7 − 10am. Cluster centroids are identified using K-means [143],

with the Manhattan distance is employed as the distance measure for estimating cluster

membership.

Morning Origins Morning Destinations

Evening Origins Evening Destinations

Figure 6.4: Ride-requests membership over the 4 clusters identified by K-means [143].

The clustering of requests origin and destination shown in Figure 6.4 demonstrates the

distribution of membership across the four clusters during both morning (7 − 10am) and

evening (6− 9pm) demand sets. Although this clustering approach is designed to achieve a

balanced division of zones and mitigate demand imbalances, each brain will have different
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opportunities to collect training data due to the different area covered by each brain.

When an agent needs to take an action, it employs the policy from the respective brain

determined by hard cluster membership based on the current vehicle’s position. When

enabling online TL across agents, despite the state-domain space visited by each agent will

be unique to that agent, each brain will receive part of knowledge from the other zones.

6.3 EF-OnTL Evaluation

This section presents EF-OnTL evaluation experiments across the four environments to

validate whether the promising results on experience sharing in an offline context, shown in

Chapter 3, are maintained when transferring online across learning agents.

Firstly, Section 6.3.1 compares EF-OnTL against the identified baselines to address the

evaluation objectives O1, O2, O3, O7 and O9. The baselines used are no-transfer, RCMP ,

OCMAS , and Cooperative Centralised Learning (CCL). These evaluation objectives ap-

praise the positive transfer impact of EF-OnTL and compare the improvements against

the TL baselines and MARL CCL to assess whether EF-OnTL could be a more advantage-

ous choice for enhancing agents’ performance in a multi-agent context. To provide a robust

evaluation for these studies three scenarios of different complexity are utilised: Cart-Pole,

MT-PP, and HFO.

Secondly, Section 6.3.2 presents the EF-OnTL studies to address the evaluation object-

ives O4, O5 and O6, presented in Section 6.1. These objectives aim to study the impact

of various transfer parameters in EF-OnTL such as the Source Selection Criteria (SS), in-

troduced in Section 4.5.1, the TCS, introduced in Section 4.5.2, and the transfer budget.

The benchmark scenarios used for these studies are the Cart-Pole and MT-PP benchmark

environments, presented respectively in Section 6.2.1 and Section 6.2.2.

Thirdly, Section 6.3.3 reports the experiments in the 3R2S environment with real-world

demand pattern. These experiments evaluate the evaluation objective O8 to appraise the

generalisation ability of EF-OnTL powered agents across different scenarios.
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6.3.1 EF-OnTL and Baselines Evaluation

This section answers RQ1, identifying if and to what extent EF-OnTL improves the system

performance. To provide a better understanding and to position EF-OnTL performance, this

section uses the evaluating objectives O1 and O2, by comparing the performance achieved

by EF-OnTL against a no-transfer baseline, O3, by comparing EF-OnTL against action-

advice based teacher-student baselines, OCMAS and RCMP , and O9, by comparing the

EF-OnTL performance against the multi-agent baselines, QMIX and Multi-Agent Deep

Deterministic Policy Gradient [61] (MADDPG). Furthermore, this section analyses the

generalisation capability of EF-OnTL by investigating its TL effectiveness across multiple

environments of varying complexities, aiming to evaluate the objective O7.

EF-OnTL and the baselines are tested in four different benchmark environments: Cart-

Pole, discussed in Section 6.2.1, MT-PP, discussed in Section 6.2.2, HFO, discussed in

Section 6.2.3, and 3R2S, discussed in Section 6.2.4.

Table 6.2: Summary table of the RL approaches implemented in each benchmark scenario.

Environment EF-OnTL no-transfer OCMAS RCMP QMIX MADDPG
Cart-Pole ✓ ✓ ✓ ✓ ✗ ✗

MT-PP ✓ ✓ ✓ ✓ ✓ ✗

HFO ✓ ✓ ✗ ✓ ✗ ✓

3R2S ✓ ✓ ✓ ✓ ✗ ✗

Table 6.2 reports the methods employed in each benchmark environment. Due to specific

limitations of certain environments, some of the baselines were not applicable. We further

discuss this matter later in the subsequent sections. Table 6.3 provides a summary of

the transfer settings used to evaluate EF-OnTL. For the 3R2S, epochs and episodes are

separated by a period.

In the subsequent sections, we analyse the impact of EF-OnTL versus the baselines in

each benchmark environment.

6.3.1.1 Cart-Pole

In the Cart-Pole benchmark environment, as introduced in Section 6.2.1, a total of 5 agents

are concurrently trained. Every agents start a new episode at a synchronised timestep,
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Table 6.3: EF-OnTL parameters on benchmark environments.

Parameter Cart-Pole MT-PP HFO 3R2S
N 5 4 3 4
TF 200 300 400 5

TB Capacity 10, 000 100, 000 25, 000 10, 000

SS U U U U

TCS high ∆-conf high ∆-conf high ∆-conf high ∆-conf
Budget B 5, 000 500 100 100

Ep. Start Transfer 600 2, 500 2, 400 1.5

Max Timestep 400 200 500 n.a.
Max Episode 1, 800 8, 000 20, 000 9.9

in order to facilitate the inter-agent transfer. The sharing of experience is enabled from

episode 600 and a batch of experiences is shared every 200 episodes thereafter. The transfer

of knowledge is postponed until the 600th training episode as, in the initial stage, agents

lack sufficient knowledge to estimate their epistemic confidence. Furthermore, transferring

knowledge in the first episodes would add little value to the target policies.

Evaluation in the Cart-Pole benchmark environment analyses the cumulative reward

achieved by agents across training episodes. Figure 6.5 shows episode count on the x-axis

and the cumulative episode reward on the y-axis. In this benchmark environment, the multi-

agent baseline is omitted as each agent interacts exclusively with its copy of the environment

and therefore, there is no context of joint actions.

In Figure 6.5, EF-OnTL demonstrates improved performance over the no-transfer baselines

starting from episode 1, 400. Prior to that episode, the learning curves of EF-OnTL agents

and the no-transfer approach overlap, achieving, on average, similar performance level. The

RCMP achieves very high levels of reward during the initial episodes, from 0 to 100. The

increased reward is given by the lack of confidence on the target agents that lead to a receiv-

ing continuous guidance thorough advice. However, following the initial spike, the learning

curves exhibits a declining trend until episode 600. Thereafter, the increased confidence

of the target agents hinders advising, resulting in stationary performance with limited im-

provements. Lastly, OCMAS shows a noticeable performance gap compared to no-transfer

between episodes 1, 100 and 1, 400, ultimately matching the performance by the conclusion

of the training episodes.

Alberto Castagna PhD Thesis



108 6. Evaluation

0 200 400 600 800 1000 1200 1400 1600 1800
Episode

0

50

100

150

200

250

300

350
Pe

r E
pi

so
de

 R
ew

ar
d

RCMP
OCMAS

no-tranfer
EF-OnTL

Figure 6.5: EF-OnTL (transfer based on Higher Delta Confidence (high ∆-conf ), budget: 5, 000
and SS : U) compared against RCMP , OCMAS and no-transfer in Cart-Pole.

6.3.1.2 Multi-Team Predator-Prey

The second environment used to benchmark EF-OnTL against the baselines is MT-PP,

detailed in Section 6.2.2. In MT-PP four agents, each controlling a predator within the

same team, are concurrently trained in a multi-agent scenario. Similarly as in Cart-Pole,

the sharing of experience is delayed until the 2, 500th episode and transfer happens every

300 episodes thereafter until episode 7, 500.

Since agents are concurrently trained to achieve their team goals, in this environment

we also compare EF-OnTL against QMIX, a MARL baseline.

To evaluate the performance of the implemented methods in MT-PP we first report the

learning curves in Figure 6.6. The x-axis denotes the episode counter from 0 to 8, 000 and

the y-axis denotes the average reward scored by agents. The last 500 episodes are used to

test the methods as the learnt policy is sampled in a deterministic way.

Both OCMAS and RCMP show considerable positive transfer within the first initial epis-

odes where transfer is enabled. Specifically, OCMAS demonstrates a noticeable performance

improvement between episodes 2, 500 and 2, 600 upon enabling transfer. Similarly, RCMP ,
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Figure 6.6: Learning curves of EF-OnTL (high ∆-conf , budget: 500 and SS : U) compared against
no-transfer, OCMAS , RCMP and QMIX in MT-PP.

thanks to the expert teacher, achieves positive rewards in the first 200 episodes, while oth-

ers techniques experience severe negative rewards due to random exploration. Although,

RCMP trend resembles what observed in Cart-Pole, where, after a remarkable jump-start,

the learning curves assumes a flat trend. In contrast, EF-OnTL does not display an immedi-

ate improvement due to the enabling of transfer; instead, the effect of transfer is distributed

over time and eventually it demonstrates a trend similar to that of OCMAS .

Among all the techniques evaluated, QMIX records the lowest level of reward. Such

lower performance is a consequence of the training setup, where the two teams that are

benchmarked against each other are trained in a competitive scenario.

In the QMIX multi-agent learning framework, agents experience a delay in the learning

phase due to the complexities involved in learning the joint state-action value function.

Therefore, the opponent teams, composed by independent agents, who do not rely on joint

state-action value function, learn to adapt their strategies more quickly. As a result, the

opportunity for the QMIX team to develop an effective policy is lower.

While QMIX certainly encourages collaboration among agents, such joint learning can

be a drawback in competitive scenarios. In contrast, EF-OnTL decouples the learning and

transfer phases. In the evaluation carried out on MT-PP, EF-OnTL leads to better results.

This is because the external knowledge, with the exception of cases involving negative
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transfer, does not delay an agent’s learning process.

The MT-PP environment provides additional metrics that enhance the comprehension of

the ongoing dynamics. In addition to the reward, this environment offers evaluation metrics

such as the average number of successful prey caught in an episode (Avg. Catch) and the

win probability (Win [%]). The performance against these metrics are shown in Figure 6.7,

providing a comprehensive perspective over 500 test episodes spanning from episode 7, 500

to 8, 000. The figure presents box plots for each assessed technique and is divided into three

sections. The leftmost section shows the average reward achieved by agent in an episode,

the middle section shows the average number of prey caught, and the rightmost section

shows the probability of winning an episode.
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Figure 6.7: EF-OnTL and baselines evaluation metrics on 500 test episodes in MT-PP

Both OCMAS and EF-OnTL show an improvement over no-transfer method across all

the three metrics. On the contrary, RCMP agents score a lower average reward in the

test episodes while having a winning probability and an average catch aligned with the

other two TL techniques. The negative reward is given by the different strategy learnt by

RCMP agents. In fact, while EF-OnTL and OCMAS agents learnt to pursue prey across

the grid, RCMP agents prioritised the catch action which leads to higher cost when not

successful, and sometimes results in incorrectly catching other team’s prey. Finally, these

results confirm that QMIX agents are penalised, in this benchmark environment, by the

additional step to evaluate the joint actions.

6.3.1.3 Half Field Offense

The third environment used to benchmark EF-OnTL against the baselines is HFO, detailed

in Section 6.2.3. In HFO the offense players, powered by RL agents, are those whose per-
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formance we are evaluating. The defense player and the goalkeeper are played by HELIOS

baseline [73].

In HFO, EF-OnTL target agents are enabled to receive 100 selected interactions from

episode 2, 400 to episode 20, 000. Transfer occurs every 400 episodes and the interactions

on target side are filtered by high ∆-conf while the source of transfer is selected by Average

Uncertainty (U).

All the RL agents are based on the PA-DDPG model presented in Section 5.2.2. EF-OnTL

is compared against a no-transfer baseline, where agents act independently, MADDPG, and

the expert action-advice based baseline RCMP . The TL method OCMAS is not implemen-

ted due to the client-server architecture of HFO, which delays the training of the agents due

to continuous communication to establish whether to provide an advice or not. OCMAS ,

fully discussed in Section 2.2.6, requires each agent to forward the visited state to all the

other agents. As a consequence, the maximum number of intra-agent communications, cal-

culated as the product of the number of agents (3), the number of episodes (20, 000), and

the maximum timestep (500), totals to 30, 000, 000.

To evaluate the performance of the offense team, which is controlled by RL agents, this

thesis assesses the goal probability recorded within a specific number of episodes. The prob-

ability is determined by counting the number of goals scored in a fixed interval. Whenever

the offense team scores a goal, the episode terminates. During the learning phase, the goal

probability is estimated using the most recent 100 episodes. On the other hand, the goal

probability during evaluation is estimated over a span of 500 episodes, during which play-

ers take deterministic actions and no transfer is allowed. The deterministic evaluation is

conducted every 500 episodes, where agents leverage their latest knowledge.

Figure 6.8 reports the results. The x-axis denotes the training step and the y-axis

denotes the goal probability, in the range of [0, 1]. During evaluation, the training step of

the x-axis indicates the version of the policy used by each agent. The results are organised

into two graphs, the upper row reports the goal probability during training, while the lower

row shows the goal probability on the test set.

Similarly to what we observed previously for the other benchmarks, EF-OnTL success-

fully improves the performance of the offense team compared to the no-transfer method.
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Figure 6.8: EF-OnTL(high ∆-conf , budget: 100 and SS : U) compared against no-transfer, RCMP
and multi-agent PA-DDPG in HFO.

Furthermore, the positive effect of EF-OnTL becomes noticeable during the second-half of

the training phase. Sharing a restrained number of selected experiences across agents driven

by EF-OnTL, it enables the offense team to achieve up to 2.5 times higher scores compared

to no-transfer agents. In particular, from episode 14, 000, the goal probability in training

and testing for EF-OnTL diverges from no-transfer method and MADDPG, which requires

nearly the double amount of episodes to achieve comparable performance.

In HFO the exploitation of expert knowledge plays a crucial role and RCMP achieves

outstanding results since an early stage of training. In training, during the first 500 episodes,

the target agents receive substantial advice being fully driven by the experts. The advice has

a positive impact even on evaluation as agents powered by RCMP have a goal probability

of 50% from episode 7, 000 onward. Certainly, the exploitation of external expertise is

unmatchable by EF-OnTL method with the transfer setting used within this study.

Figure 6.9 reports the average budget used by RCMP powered agents, with a threshold

set to 10−4, along their median uncertainties registered throughout the training phase.

The ensemble architecture used to approximate uncertainty for PA-DDPG is on the critic
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Figure 6.9: RCMP analysis in HFO with uncertainty trend and budget consumption.

network which outputs a single value and as such, it is impossible to predict a range and

hence to normalise the estimated uncertainty as done previously in Cart-Pole and MT-PP.

In fact, the RCMP uncertainty curve decreases sharply within the first hundreds episodes

and then ranges within a narrow interval making it not trivial to find the right threshold

given the tight median uncertainty interval. In fact, around 60% of times, the budget is

used up to 10, 000, by the end of the simulation.

To conclude, even though RCMP demonstrates remarkable performance from the early

stages of training, by the end of the 20, 000 episode, the performance gap between RCMP

and EF-OnTL is drastically reduced. The growing trend of EF-OnTL suggests that even-

tually it could potentially catch up to the performance of RCMP . However, it is evident

that when an expert is available, RCMP remains the preferable choice. On the other hand,

EF-OnTL remains a viable alternative in scenarios where an expert is not available up front.

6.3.1.4 Ride-Sharing Ride-Requests Simulator

The fourth and last environment used to benchmark EF-OnTL against the baselines is

3R2S with the multiple brains configuration, detailed in Section 6.2.4. In this version of

the environment, the four RL-agents control a non-overlapping zone of the Manhattan area.

Consequently, each vehicle uses the policy provided by the brain of the zone where it is

located to select the appropriate action.
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In the 3R2S environment, as detailed in Section 3.2.2, the training consists of 10 epochs,

with each epoch composed by 10 episodes. In EF-OnTL, the sharing occurs in total 17 times.

In each transfer step, target agents filter up to 100 selected interactions. The transfer is

delayed until the beginning of the second epoch and it is enabled every 5 episodes thereafter.

Although within the environment there are multiple agents that interact with the same

copy of the environment and learns concurrently, no MARL scenario has been evaluated

in this setup as there is no direct collaboration between the agents. However, we further

examine different settings of the environment in Section 6.3.3.

To assess the performance of the 200-vehicle fleet, we analyse several commonly used

measures adopted by related work [18, 86, 144–146]. These include the distribution of

waiting times for passengers before they board a vehicle (waiting time), the total number of

successfully served requests (satisfied requests), and specific vehicle-related metrics. These

vehicle metrics report the distribution of passengers across the fleet (passengers distribution),

the cumulative distance travelled by the vehicles in kilometres (mileage), and the proportion

of distance travelled by vehicles while unoccupied (% distance travelled empty) or engaged

in ride-sharing (% distance travelled in RS ).

The performance of EF-OnTL is compared against both no-transfer and the TL baselines,

OCMAS and RCMP . The outcomes across the evaluated metrics are visualised using box-

plots, as presented in Figure 6.10.

Enabling TL in the multi-brain 3R2S environment results in a slight decrease in the total

number of satisfied requests by the fleet compared to the no-transfer approach, although, the

difference in the number of satisfied requests is negligible. The EF-OnTL approach appears

to be more consistent across different simulations in the total number of served request.

While EF-OnTL exhibits comparable waiting times and passenger distribution to the no-

transfer approach, the mileage recorded by vehicles is slightly reduced. This difference is

likely attributable to the lower number of satisfied requests, which could suggest a reduced

inclination towards ride-sharing. This affirmation is further supported by the increased

distance travelled by the vehicles while being empty.

Based on the observed results from the evaluated TL-enabled techniques, it can be

concluded that TL induces to negative transfer in this benchmark environment. However,
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Figure 6.10: EF-OnTL compared versus no-transfer, OCMAS and RCMP in the multi-brains 3R2S
benchmark.

EF-OnTL has a lower negative impact due to the transfer of experiences compared to the

other TL baselines. Interestingly, both EF-OnTL and OCMAS exhibit a similar perform-

ance profile in this study. In contrast, despite relying on expert agents trained within the

same zone, RCMP exhibited the most pronounced negative transfer effect. However, it is

important to note that the difference in performance between these approaches is relatively

moderate, and this evaluation did not consider factors like convergence time or the time

required to learn an effective policy.

6.3.1.5 Conclusion

This section presented an evaluation of EF-OnTL against the identified baselines in four

different environments: Cart-Pole, Multi-Team Predator-Prey (MT-PP), Half Field Offense

(HFO) and, the multi-brain implementation of 3R2S.

Based on the evaluation objectives O1 and O2, the presented evaluation shows the ef-

ficacy of EF-OnTL in contrast to no-transfer, where agents do not share any information.

Specifically, in the Cart-Pole and HFO environments, EF-OnTL displays a quicker conver-

gence time, with the improvement being milder in Cart-Pole and more pronounced in HFO.

Additionally, EF-OnTL agents exhibit superior performance in HFO and MT-PP. While
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the disparity in HFO is considerable, the enhancement is less pronounced in MT-PP.

With regard to the evaluation objective O3, EF-OnTL has shown comparable transfer

effect to those of OCMAS across the Cart-Pole, MT-PP, and multi-brains 3R2S benchmark

environments. However, OCMAS requires ongoing communication between agents to assess

their confidence in visited states, such process is essential for determining whether an advice

is necessary for a particular agent. This requirement makes OCMAS inapplicable to the

HFO environment.

Notably, in the Cart-Pole, MT-PP, and multi-brains 3R2S scenarios, EF-OnTL even-

tually surpasses the expert-based TL baseline, RCMP . In the case of HFO, EF-OnTL

exhibits an upward trajectory, suggesting the potential to eventually match the perform-

ance of RCMP .

Among the implemented TL techniques, RCMP demonstrates a significant jump-start

in performance due to the use of expert teachers. However, as time progresses, the influence

of the expert teacher tends to restrict the performance potential of the target agents. This

phenomenon is particularly evident in the Cart-Pole and MT-PP environments, where the

rewards curve shows an initial surge but then plateau over time. In the Cart-Pole, MT-PP

and multi-brains 3R2S environments, EF-OnTL has eventually outperformed the expert-

based TL baseline, RCMP . In the case of HFO, EF-OnTL has demonstrated an uprising

trend, suggesting the potential to eventually match the performance of RCMP .

The low performance of RCMP has to be attributed to the threshold used for receiving

advice on a target agent. Interestingly, RCMP demonstrated exceptional performance in

the HFO environments, where the uncertainty estimator model is defined on the critic. In

contrast, when the ensemble used to approximate uncertainty is based on the network used

for action selection, the uncertainty seems to be limited to certain fixed values, especially

for deterministic actions. An in-depth analysis on the threshold sensitivity of RCMP is

reported in the Appendix in Section C.

In the MT-PP and HFO environments, a MARL algorithm has been implemented for

the evaluation objective O9 and compare its performance against EF-OnTL. Specific-

ally, the joint state-action value is learnt through QMIX in the MT-PP environment and

through MADDPG in the HFO environment. Generally, MARL has shown lower perform-
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ance across the team due to the learning of joint action values, which introduces a delay.

As a result, in the HFO environment, MADDPG requires approximately twice the number

of episodes to achieve a similar performance as EF-OnTL.

To conclude, regarding objective O7, EF-OnTL has proven successful in three of the four

evaluated environments, achieving a positive transfer outcome. We have observed a trend

in the improvement given by the complexity of the task undertaken. However, in the 3R2S

environment, both EF-OnTL and the other TL baselines have resulted in negative transfer.

6.3.2 EF-OnTL - Transfer Criteria Evaluation

The studies presented in this section address the research questions RQ2 and RQ3, intro-

duced earlier in Section 1.2. Therefore, this evaluation aims to empirically demonstrate how

different selection criteria may impact the performance on EF-OnTL algorithm.

In the following study a total of 18 EF-OnTL settings are compared by varying different

transfer parameters within the algorithm:

• Source Selection Criteria (SS) − to answer RQ2, which relates to finding a valid

strategy for selecting a suitable agent to be used as a source of transfer, this sec-

tion shows experiments to evaluate the evaluation objective O4. SS is presented in

Section 4.5.1 and can vary between Best Performance (BP) and U . BP selects the

agent that achieved better performance, measured by higher average reward, within

the latest episodes, while U selects the agent with lower average uncertainty within

its transfer buffer.

• Transfer Content Selection Criteria (TCS) − to answer RQ3, which addresses the

establishing criteria that should be used by an agent to filter the incoming knowledge

to improve its performance, this section shows experiments to evaluate O5. TCS is

presented in Section 4.5.2 and can vary between transfer Randomly based on threshold

determined by Delta Confidence (rnd ∆-conf ), transfer based on Higher Loss and

Confidence combined (loss & conf ) and high ∆-conf . rnd ∆-conf and high ∆-conf

use only the epistemic uncertainty as filtering criteria while loss & conf takes into

account the surprising effect of a tuple on the target side.
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• Transfer Size − to evaluate O6, the evaluation focuses on determining whether and

to what extent the quantity of interactions transferred through EF-OnTL impacts the

performance of the system.

The combinations of the aforementioned parameters results into 18 different EF-OnTL

configurations. These 18 EF-OnTL scenarios are tested across two benchmark environments,

Cart-Pole and MT-PP. For each setting of EF-OnTL, a total of 20 independent runs are

collected to obtain a robust evaluation. In the subsequent sections, we first analyse the

impact of the transfer parameters in the Cart-Pole environment and then in the MT-PP

environment.

6.3.2.1 Cart-Pole

The evaluation in the Cart-Pole environment analyses the cumulative reward achieved by

agents across training episodes. Figure 6.11 shows the episode count on the x-axis and the

cumulative episode reward on the y-axis. To facilitate the evaluation of O4, the curves are

organised into two different graphs based on the SS employed within EF-OnTL to select

the source of transfer. The graph in the top row illustrates EF-OnTL scenarios where the

source of transfer is selected using U .Conversely, the graph in the lower row shows scenarios

using BP for selecting the source of transfer.

To provide a comprehensive overview and to facilitate the evaluation of O4, O5, and

O6, the results from the Cart-Pole benchmark environment, reported in Figure 6.11, are

presented also in a further comparative manner. This includes analysing the curves ac-

cording to the TCS used to filter the incoming experiences on a target side, as depicted

in Figure 6.12, and analysing the curves according to the employed transfer budget B, as

shown in Figure 6.13.

Across all 18 EF-OnTL scenarios, the observed results demonstrate agents achieving

comparable performance irrespective of the transfer settings. Although the learning curves

exhibit substantial similarity, slight differences emerge from episode 1, 200 onward, by which

point agents have already learnt to balance the pole for a few consecutive steps.

Firstly, in Figure 6.12a, the impact of selecting incoming knowledge by rnd ∆-conf

demonstrates a consistent influence on the target policy regardless of the chosen SS and B.
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Figure 6.11: EF-OnTL learning curves in Cart-Pole with different parameters. In the top chart the
source of transfer is selected by U , the agent with lower average uncertainty within the transfer
buffer while, in the bottom one the source is selected by BP, the performance achieved by the agent
within the latest episodes.

In fact, rnd ∆-conf is the only TCS method that does not benefit from an increased budget

of 5, 000. Conversely, EF-OnTL agents exhibit superior performance with high ∆-conf , as

depicted in Figure 6.12b, and loss & conf , as seen in Figure 6.12c, when B set to 5, 000.

Despite the results suggesting that filtering for 5, 000 agent-environment interactions

on the target side in each transfer step leads to an overall performance improvement,

an intriguing finding emerges when the lowest budget of 500 is utilised. Specifically, the

high ∆-conf approach demonstrates lower volatility in returns when considering both sources

of transfer techniques, BP and U , as depicted in Figure 6.13a. This quality is highlighted

in contrast to loss & conf , even though the leading scenario within the most recent 500

episodes fluctuates between the two methods.

In conclusion, none of the 18 scenarios prevails significantly over the others. Among
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Figure 6.12: EF-OnTL learning curves organised by TCS used by a target agent to filter incoming
knowledge in Cart-Pole.

these scenarios, rnd ∆-conf generally exhibit the mildest impact on the overall system

performance. While high ∆-conf and loss & conf demonstrate comparable performance

using different source selection techniques, the EF-OnTL configuration that emerges as the

preferable choice is the SS: U , B: 5, 000, and selection of tuples via high ∆-conf . This

particular configuration consistently yields higher rewards from episode 1, 400 onward, as

illustrated in Figure 6.13c.

6.3.2.2 Multi-Team Predator-Prey (MT-PP)

The evaluation in the MT-PP environment analyses both the cumulative reward achieved by

agents across the training episodes as well as additional metrics specific to the environment.

The overall reward trend observed in MT-PP is similar to what observed in the Cart-Pole
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Figure 6.13: EF-OnTL learning curves organised by the transfer budget B in Cart-Pole.

environment, where despite the different transfer settings all configurations followed a similar

trajectory. Therefore, to maintain the flow of the section, we present the results once, based

on the SS used for selecting the source of transfer. Additional graphs are provided in the

Appendix at Section B. Figure 6.14 displays the learning curves, the x-axis denotes the

episode count and the y-axis denotes the cumulated reward. These learning curves overlap

extensively, making it challenging to discern significant differences.

On top of reward, MT-PP offers additional metrics that help the comprehension of the

learnt behaviour. These metrics, number of successful prey caught and the win probability,

are shown in Figure 6.15, which presents a comprehensive view of 500 test episodes, 7, 500

to 8, 000. The graphs are divided into two distinct blocks. The upper block showcases

EF-OnTL configurations based on U as the source selection criteria, while the lower block

depicts EF-OnTL configurations utilising BP for selecting the source of transfer. Each block
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Figure 6.14: EF-OnTL learning curves in MT-PP with different parameters. In the top chart the
source of transfer is selected by U , while, in the bottom chart the source is selected by BP.

contains rows representing different evaluation metrics. The top row displays the average

agent reward, the middle row represents the number of prey caught by the team, and the

bottom row reports the win probability for the team. The configurations utilising a transfer

budget B of 500 are reported in the leftmost column, those using B of 1, 500 are placed in

the middle column and finally, those with a budget of 5, 000 are placed in the rightmost

column.

Overall the criteria used to select the tuple clearly impacts the performance in a similar

trend. high ∆-conf allows for the better performance while loss & conf is slightly below

and finally rnd ∆-conf is generally the lowest. The only scenarios in which such trends are

not confirmed is with a budget B of 5, 000 and U as SS. With such settings, loss & conf

reports the highest performance across all the 3 metrics.

Contrary to what we observed in Cart-Pole, where processing more experiences resulted
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Figure 6.15: Evaluation metrics on the final 500 episodes in the MT-PP environment across the
18 EF-OnTL configurations.

in improved performance for the target agents, in MT-PP transferring 5, 000 tuples within

each transfer step leads to an overall decrease in performance. For instance, when using

TCS as high ∆-conf and selecting the source of transfer using U , the impact of transfer

diminishes as the budget B increases.

We believe that an increased budget could potentially lead to a deterioration in per-

formance, similar to what we observed in the preliminary results with an elevated transfer

budget. Essentially, the performance decline could be given by the dynamics of the environ-

ment, which force a learning agent to visit states with minimal or no information, regardless

of the action taken. The probability of encountering these situation is reduced as the agent

Alberto Castagna PhD Thesis



124 6. Evaluation

learns to explore the surroundings more effectively. Consequently, selecting the source of

transfer based on U is prone to selecting an agent whose transfer buffer mainly consists of

interactions from these low information states. In this context, transferring a substantial

volume of interactions could result into a deterioration of the system performance.

To conclude, in the MT-PP benchmark environment, enabling dynamic selection of

the source agent using U consistently results in improved performance for the transfer

enabled team. Moreover, choosing tuples based on the difference between source and target

uncertainties, denoted as high ∆-conf , consistently leads to superior outcomes.

6.3.2.3 Conclusion of EF-OnTL - Transfer Criteria Evaluation

This section has presented a targeted study on EF-OnTL, aiming to evaluate the objectives

O4, O5, and O6. These objectives have been defined to guide the assessment of different

transfer configurations within two benchmark environments: Cart-Pole and Multi-Team

Predator-Prey (MT-PP). In total, 18 distinct configurations of EF-OnTL have been tested.

O4 addresses RQ2 and it evaluates whether and to what extent EF-OnTL is influenced

by the Source Selection Criteria (SS). Similarly, O5 addresses RQ3 and it evaluates whether

and to what degree Transfer Content Selection Criteria (TCS) influences EF-OnTL transfer

effectiveness. Finally, O6 study the relation between the transfer budget B and the transfer

outcome.

These evaluation study resulted into an interesting observation. From the experiments,

selecting the source of transfer by U has led to slightly better performance in the MT-PP

environment. That cannot be confirmed by the Cart-Pole scenario, but that might be

because of the reduced action space combined with non-sparse reward function.

Contrary to the SS, the experiments have highlighted the need of establishing a criteria to

filter the incoming knowledge on a target side, and therefore have highlighted the importance

of RQ3. In fact, sampling by rnd ∆-conf has registered overall the lowest performance. On

the contrary, loss & conf and high ∆-conf has shown comparable performance. However, in

the Cart-Pole environment, the high ∆-conf approach has demonstrated a lower volatility

in return when compared to loss & conf .
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Lastly, the transfer budget B has shown a contradictory trend depending on the evalu-

ated environment. An increased budget has led to an improvement in the Cart-Pole scen-

ario, whereas it has yielded the opposite outcome in the MT-PP environment, where a lower

budget has resulted in higher performance returns. The positive transfer effect observed in

Cart-Pole with an increased transfer budget may be attributed to the binary action decision

and the non-sparse reward function.

6.3.3 EF-OnTL Adaptation to Heterogeneous Dynamics

This section evaluates objective O8, assessing the adaptability of EF-OnTL in environments

with heterogeneous dynamics. To evaluate this objective, three different scenarios were

designed to assess the impact of EF-OnTL in the 3R2S environment. In two of these

scenarios, the agents are exposed to different dynamics.

Table 6.4 presents the three scenarios used in this evaluation. The two scenarios with

heterogeneous dynamics are Single-Agent Mixed Train Data and Multi-Agent Same Train

Data. Multi-Agent Same Train Data, where the heterogeneity arises by the non-overlapping

zones, and this has already been discussed in Section 6.3.1.4. The heterogeneity is due by the

non-overlapping zones. On the other hand, in the Single-Agent Mixed Train Data scenario,

two agents are trained during the morning peak hours while the others on the evening peak

hours. Even though agents in both scenarios operate within unique ride-request demand

settings, EF-OnTL enables the processing of experiences from agents subjected to different

dynamics and therefore learning a different policy.

Table 6.4: 3R2S: EF-OnTL setup across the three evaluated scenarios.

Scenario ID
Train Test Number

Multi-Agent
Demand Set Demand Set of Agents

Single-Agent Same Train Data
Morning Evening 4 ✗

Sec. 6.3.3
Single-Agent Mixed Train Data Morning

Evening 4 ✗
Sec. 6.3.3 Evening

Multi-Agent Same Train Data
Morning Evening 4 ✓

Sec. 6.3.1.4

In addition to these two scenarios, Single-Agent Same Train Data is included to assess

whether EF-OnTL can achieve positive transfer when transferring across agents in tasks
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with common dynamics, similarly to what was observed in the Cart-Pole scenario in Sec-

tion 6.3.1.1.

The Single-Agent Same Train Data and Single-Agent Mixed Train Data scenarios presen-

ted in this section involve four agents interacting with independent copies of the environ-

ment. These two scenarios differ in terms of the requests used by the agents to learn their

policies. In Single-Agent Same Train Data, all agents are trained using data from the morn-

ing peak hours (7− 10am), while in Single-Agent Mixed Train Data, two agents learn from

data collected during the morning peak hours, and the other two agents learn from data

collected during the evening (6 − 9pm). In both scenarios the EF-OnTL settings matches

the one used for the multi-agent scenario and are specified in Table 6.3.

In this evaluation, we included Single-Agent Mixed Train Data to investigate the effect

of transfer across agents addressing different demand sets. To provide a comprehensive

analysis and assess whether transferring between agents learning on different demand sets

leads to similar results as the preliminary studies presented in Chapter 3, we also considered

the scenario Single-Agent Same Train Data, in which agents are enabled to transfer while

learning to serve ride-requests from the same demand set.

While the ride-requests used for training the policies in the two scenarios are sourced

from different datasets, the test requests are all drawn from the same dataset on the evening

peak hours.

In both scenarios, EF-OnTL is compared against no-transfer method. The results of

Single-Agent Same Train Data are reported in Figure 6.16, where agents are trained on the

morning peak hours and tested on the evening. On the other hand, the results of Single-

Agent Mixed Train Data are reported in Figure 6.17, where the agents tested are those that

are trained and tested on the evening peak hours while enabling the sharing with other

agents which are trained on the morning hours.

In the Single-Agent Same Train Data scenario, the agents exhibit a different behaviour

although both EF-OnTL and no-transfer share the very same reward model. It appears that

no-transfer agents have likely learnt to maximise the number of requests served through

ride-sharing. On the other hand, EF-OnTL agents prioritise requests with more than one

passenger, even if it means avoiding ride-sharing. As a result, the distribution of passengers
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Figure 6.16: Single-Agent Same Train Data - train on 7− 10am test on 6− 9pm.

per vehicle is higher for EF-OnTL than for the no-transfer method, while the distance trav-

elled in ride-sharing and the number of satisfied requests are slightly lower. In conclusion,

the difference in the number of served requests is negligible, and the choice of the method

preferred depends on the desired behaviour.
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Figure 6.17: Single-Agent Mixed Train Data - train on both 7 − 10am and 6 − 9pm and test on
6− 9pm.

In the Single-Agent Mixed Train Data scenario, where transfer occurs between agents
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trained on different demand sets originating from the same geographical area, it appears

that EF-OnTL has enhanced the generalisation ability of the agents. This improvement has

led to an increase in the number of requests served compared to the no-transfer method.

Although the additional requests have resulted in extra distance travelled in ride-sharing,

the total distance travelled has not increased compared to the no-transfer scenario.

In relation to evaluation objective O8, we observed that EF-OnTL enabled a fleet of 200

vehicles to achieve an improvement in the total number of requests served when transfer-

ring knowledge between agents serving during both the morning and evening peak hours.

This improvement in total served requests aligns with what we previously observed in the

preliminary results chapter, as presented in Section 3.2.2, where the increase in terms of

satisfied requests was approximately 3%. Furthermore, when examining the roles of the

transfer sources in the Single-Agent Mixed Train Data scenario, we noted that these roles

remained relatively stable over time, with one agent being the primary source of transfer in

most instances.

The Single-Agent Mixed Train Data has demonstrated that enabling the transferring

across agents that are learning from different demand set leads a fleet to serve a higher

number of requests.

While EF-OnTL was not originally designed for enabling this type of transfer, future

research should focus on adapting and facilitating transfer between agents specialised in dif-

ferent dynamics. State Action Reward Next-state Random Network Distillation (sars-RND)

has proven unsuitable for selecting the transfer source in these scenarios, as one agent con-

sistently serves as the source of transfer most of the time. In contrast, EF-OnTL should

promote varying roles among agents to enhance overall performance.

6.4 Summary

This chapter has presented the evaluation objectives, the baselines and the benchmark

environments used to assess EF-OnTL.

We compared EF-OnTL against multiple baselines. Firstly, no-transfer, to measure the

improvement against common RL agents that do not share any information. Secondly,
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two TL baselines, OCMAS and RCMP , to compare EF-OnTL versus two action-based

teacher-student methods. Thirdly, we compared centralised MARL algorithms, QMIX and

MADDPG, and EF-OnTL in terms of performance.

EF-OnTL and the baselines are evaluated across four different benchmark environments

of increasingly complexity: Cart-Pole, MT-PP, HFO and a real-world simulated environ-

ment 3R2S. Table 6.2 reports the baselines implemented in each environment.

In the 3R2S environment we designed three different scenarios to observe EF-OnTL

effect while allowing the transfer across tasks subjected to different underlying dynamics.

To address the research question RQ1, we observed that EF-OnTL can effectively im-

prove the agents performance involved in a multi-agent system. However, in the Single-Agent

Same Train Data scenario of the 3R2S environment, EF-OnTL has resulted into decreased

performance, as shown in Figure 6.10.

The decline in performance, however, may be attributed to the different dynamics of

the studied scenario as each agent visits ride-requests originated within a restricted and

unique geographical sub-area of the Manhattan borough. Nevertheless, EF-OnTL led to

an increased number of requests served when enabling the transfer across agents trained on

different demand sets originating from the same area as shown in Figure 6.17.

When compared against OCMAS and RCMP , EF-OnTL has proven to be a viable al-

ternative without disrupting the exploration process of a target agent. However, in complex

environments, if an optimal expert is available to provide on-demand advice, it should be

the preferred choice. Nevertheless, if the teacher is not optimal, EF-OnTL should be fa-

voured, as the target agent may be constrained by the suboptimal expertise of the teacher.

On the other hand, the MARL baselines, QMIX in MT-PP and MADDPG in HFO, have

shown an higher convergence time, possibly because of the MARL extra step to learn the

joint state-action values function.

To address the research questions RQ2 and RQ3, this thesis has evaluated multiple

transfer settings in the Cart-Pole and MT-PP benchmark environment. The evaluation

focused on the transfer impact given by SS, TCS and transfer budget B.

We observed overall that U , for selecting the source of transfer, and high ∆-conf , for
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selecting the transfer content, led to better overall performance in both environments. How-

ever, while it was not possible to establish a single criterion for RQ3 in Cart-Pole, the

experiments have demonstrated that randomly selecting tuples to be integrated into the

target learning process had no significant impact on the final performance.

From the experiments, we could see that each transfer parameter had a different effect

depending on the environment encountered by the agents. In Cart-Pole, which has a binary

action selection process and a dense reward model, the budget B demonstrated the most

significant impact on resulting performance. We observed a greater improvement with a

larger budget, B. On the other hand, in MT-PP, which features a sparse reward model and

agents frequently revisiting states with no useful information, we observed better overall

performance with a smaller budget.

In the end, we noticed that selecting both the source of transfer and the experiences to

be integrated into the target learning process based on uncertainty estimation worked better

overall. The dynamic identification of the experiences is based on the comparison between

the source and target uncertainties to prevent sending redundant information that have

already adequately being explored by the target agent. While using U and high ∆-conf

gave more consistent results, how well EF-OnTL performs ultimately depends on all the

transfer parameters and the specific addressed task.
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7 Conclusion

This thesis has introduced Expert-Free Online Transfer Learning (EF-OnTL), a novel online

experience sharing framework designed to facilitate Transfer Learning (TL) in multi-agent

systems where no fixed expert is available. In this chapter, we provide a brief summary

of the achievements of this thesis in Section 7.1 and discuss its limitations in Section 7.2.

Finally, in Section 7.3, we conclude this dissertation by proposing future research directions.

7.1 Thesis Contribution

This thesis has focused on the challenging problem of enabling dynamic transfer learning in

online scenarios, particularly in situations where traditional fixed expert models are absent

to advise Reinforcement Learning (RL) agents. The main goal of this thesis has been to

study and design an online transfer learning framework based on experience sharing. The

main contribution of this thesis is EF-OnTL, an expert-free transfer learning framework de-

signed for online experience sharing among agents in a multi-agent environment. EF-OnTL

enables dynamic teacher selection, allowing the system to choose the most suitable agent to

be used as source of transfer at every transfer step, and dynamic transfer content selection,

enabling target agents to select the most valuable experience to enhance their policies.

To enable these dynamic selection processes, this thesis also presents State Action Re-

ward Next-state Random Network Distillation (sars-RND), a method designed to enhance

Random Network Distillation (RND) as an uncertainty estimator in online contexts.

In the design of the TL framework, this thesis has identified and addressed a set of

research questions.

Firstly, RQ1 - can, and if so to what extent, online transfer learning through sharing
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of experience across homogeneous agents with no fixed expert contribute to improving the

system performance? Secondly, RQ2 - what criteria can agents use to identify the suitable

agent to be used a source of transfer? Thirdly, RQ3 - what criteria should an agent use to

filter incoming knowledge?

This thesis began with a feasibility study to analyse the impact of experience sharing

in a reduced set of challenges given by an offline transfer learning context. Consequently,

acknowledging the early results, this thesis introduced Expert-Free Online Transfer Learning

(EF-OnTL). EF-OnTL stands as a transfer learning framework tailored for multi-agent

systems that effectively eliminates the need for a pre-defined expert teacher by employing

a dynamic selection process. This process chooses a temporary expert at each transfer step

based on the real-time performance metrics of the agents, such as average cumulated rewards

in recent episodes and average uncertainty in recent experiences.

The chosen temporary expert serves as the source of transfer, sharing a portion of its

collected experience with the other agents, which are designated as target agents. These

target agents filter and sample a batch of experiences from the transferred buffer to be

integrated into their own learning processes. To prioritise certain experiences, a target

agent relies on metrics like uncertainty and expected surprise. Uncertainty is compared

against the source agent’s uncertainty, while the expected surprise is estimated as the loss

of the underlying deep learning model.

The state-of-the-art approaches enabling transfer across homogeneous agents are mostly

based on fixed expert agents, where already trained agents provide advice to novel learning

agents. Furthermore, the criteria used to decide whether to provide advice or not are often

based on a single-side, either the source or target of transfer.

The teacher-student framework can be adapted to enable the transfer across learning

agents, as demonstrated by Ilhan et al. [52]. However, agents need continuous interaction

to establish whether an advice is needed or not.

EF-OnTL overcomes the need for a fixed expert agent and the need for continuous

interaction by transferring a batch of experiences aimed at improving the learning model of

a target agent. Furthermore, the experiences transferred are sampled on criteria defined for

both source and target agents.
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In conclusion, the answers to our posed research questions are as follows:

• Can, and if so to what extent, online transfer learning through sharing of

experience across homogeneous agents with no fixed expert contribute to

improving the system performance? − Compared to a traditional RL scenario

where agents do not share any information, EF-OnTL has successfully shown the

capability to improve the agents’ performance when applied to multiple homogeneous

agents or multi-agent systems. While expert-based action-advice TL approaches can

potentially limit the performance of target agents, EF-OnTL prevents such negative

impacts on a target agent’s performance. This is achieved by eliminating the require-

ment for an expert agent and enabling dynamic teacher selection at each transfer

step.

The extent of improvement shown by EF-OnTL is closely associated to the complexity

of the task being undertaken by the agents, a trend that has been similarly observed

among other TL baselines. In the Half Field Offense (HFO) benchmark environment,

EF-OnTL enables the offensive team to double the number of goals scored when

compared to independent RL agents. Additionally, EF-OnTL achieves comparable

performance to expert-based TL systems. However, it is worth noting that EF-OnTL

typically requires nearly double the amount of time to converge to a similar level of

performance.

• What criteria can agents use to identify the suitable agent to be used as

source of transfer? − in this thesis we have investigated two different criteria

to select the source of transfer for EF-OnTL, Average Uncertainty (U) and Best

Performance (BP), that agents can use to identify a suitable agent to be used as

source of transfer within a transfer step. U selects as source of transfer the agent with

lowest average uncertainty across the experiences stored in its transfer buffer. On the

other hand, BP selects as source of transfer the agent with highest cumulated reward

within the most recent episodes interval.

Based on the experiments presented in this work, the most effective criterion used by

agents in EF-OnTL to dynamically select the source of transfer is U . Nevertheless,

we have observed that the criteria used for selecting the source of transfer may have
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minimal impact on the final performance in certain tasks, such as Cart-Pole. Further

investigation is necessary to determine whether this limited impact is attributed to

the simplicity of the Cart-Pole task.

• What criteria should an agent use to filter incoming knowledge? − in this

thesis we have presented three different criteria that agents could use to sample rel-

evant experiences to be integrated into their learning processes, transfer Randomly

based on threshold determined by Delta Confidence (rnd ∆-conf ), transfer based

on Higher Delta Confidence (high ∆-conf ) and transfer based on Higher Loss and

Confidence combined (loss & conf ). These criteria are based on ∆-conf, which ex-

presses the difference between the target and source uncertainty, and expected sur-

prise, defined solely over target agent and approximated through temporal difference

error. rnd ∆-conf enables an agent to randomly select the experiences from tuples

with a ∆-conf higher than the median value computed across all tuples. high ∆-conf

enables an agent to sort in decreasing order the incoming experiences by the ∆-conf

and to select the top entries to be integrated within its learning model. loss & conf

enables an agent to balance expected surprise and uncertainty. To balance the differ-

ent scales, uncertainty and surprise values are normalised within a common interval

and weighted equally. Finally, agent selects the tuples with the highest values to be

integrated within its learning model.

Selecting the experience to be integrated by rnd ∆-conf has demonstrated the lowest

overall impact on the system performance. On the other hand, loss & conf and

high ∆-conf have both shown a better performance improvement. However, selecting

the experiences by high ∆-conf , and thereby comparing the uncertainties of sender

and receiver agent, has consistently led to a performance improvement.

Given the pivotal role of uncertainty, the final performance of the presented framework

depends on the capacity of the estimator model used to approximate the agent’s epistemic

uncertainty. In this thesis, we have presented sars-RND , an extension of RND, designed

to overcome the limitations of RND in estimating the epistemic uncertainty of a learning

agent. To summarise, RND estimates uncertainty based solely on the visited state. We

believe that the state alone is insufficient for estimating the uncertainty in a learning agent
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since it does not provide information about the action taken. sars-RND extends RND by

including into the estimation the action, the next state and the reward observed. Based on

the comparison presented in Section 3.4.1, sars-RND successfully identifies different actions

while recognising previously visited states and allowing for an uncertainty trend similar to

that of RND.

Finally, while sampling the experiences by high ∆-conf certainly provided more consist-

ent results, the final performance given by EF-OnTL is dependent of the combination of the

transfer settings parameters, which need to be carefully evaluated based on the addressed

task.

In the current state of the art, experience sharing is mostly used in offline transfer

learning as a phase prior to the exploration. However, this thesis has demonstrated that

combining independently collected experience with external sources may be beneficial to the

learning agents.

When an agent with deep expertise, either human or artificial, is available to guide the

exploration of learning agents, action-advice transfer methods may be preferred as these

ensure a higher return over a reduced time frame. However, having an expert dedicated to

this mentoring task is expensive. Thus, combining both expert-based and online experience

sharing may allow to keep the same level of performance while lowering the expert-related

costs.

However, given the impracticality of having an oracle agent, the expert agent, specifically

human, may limit its choices to a subset of familiar actions. This constraint narrows the

target agent’s learning opportunities. In contrast, sharing raw experience is less likely to

invalidate the learning phase of an agent. In fact, in the event of negative transfer, the target

agent may take slightly longer to converge, but its performance will not be compromised.

7.2 Limitations

While the results of this thesis are promising, there are several limitations to consider.

The training time for policies is increased when compared to agents that do not transfer

any information. This increase in training time is not caused by the dynamic selection of
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source and experiences during each transfer step but rather by the optimisation step of the

uncertainty estimator model.

The sars-RND model is updated after each visited tuple, which involves back-propagation

of gradients. While a single back-propagation step is relatively fast, over millions of interac-

tions, it introduces a noticeable delay. To address this, back-propagation could be delayed

and aggregated over a small batch of samples, but this would result in a delay in updating

uncertainties.

The impact of experience sharing in EF-OnTL requires substantial time to be observed

when compared to action as advice. When sharing action-advice it is possible to assess

whether the transfer is leading a target agent towards positive transfer or not. This assess-

ment requires the monitoring of the behaviour exhibited by the target agent. On the other

hand, in EF-OnTL, with the sharing of experiences, it is hard to discern whether a certain

behaviour is due to the transferred knowledge or self-exploration of an agent. From a human

perspective, the sharing of experience is a black box where it is nearly impossible, or at least

more complicated, to appreciate the value of the advice when compared to one-shot action.

In addition, our results have shown that EF-OnTL can occasionally lead to negative

transfer with certain transfer settings. When implementing EF-OnTL from scratch, it can

be challenging to determine whether the transfer will result in a positive or negative outcome

until the simulation is completed. In contrast, when transferring from an experienced agent

through the teacher-student framework, which relies on action-advice, it allows for faster

estimation of whether the transfer will lead to a positive or negative outcome.

7.3 Future Work

When considering transfer learning among homogeneous agents, experience sharing is of-

ten not the primary choice. Instead, many TL frameworks, following the teacher-student

paradigm, opt to enable agents to share actions as advice. In this context, EF-OnTL has

demonstrated that enabling dynamic sharing of selected batches of experiences is a viable

alternative to the traditional action-advice based teacher-student framework.

The effectiveness of the teacher-student framework is often dependent on the availability
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of an expert agent to provide guidance, and it often necessitates extensive experimentation

to fine-tune the algorithm parameters.

In contrast, EF-OnTL does not rely on a fixed expert agent to be effective. It has

been designed with a forward-looking perspective, envisioning a future where transfer is

self-regulated, aiming to eliminate the need for intricate parameter adjusting.

With this direction in mind and considering the observed results, we believe that having

fixed criteria for selecting the source of transfer and determining the interactions to be

integrated into the learning process may not be optimal. As a future work direction, we

propose enabling dynamic criteria selection to choose both the source of transfer and the

interactions to be integrated into a target agent’s learning process. We believe that using

multiple criteria based on the system’s status could further enhance the system performance.

An additional research direction concerns the investigation of dynamic adjustment of

the transfer budget B and its impact on the final performance, when compared to a fixed

budget. Furthermore, our experiments did not consider the frequency of transfer, so a

necessary step for the future development of EF-OnTL is to assess the effect of increased

transfer frequency with a smaller budget against lower transfer frequency with an increased

budget.

In addition to EF-OnTL, this thesis introduced sars-RND to extend the RND model

used for estimating epistemic uncertainty. In the future, we plan to refine sars-RND by

reducing its input to state-action pairs and assess the impact that this adjustment might

have on both the estimation of epistemic uncertainty and the transfer effect.

Finally, the findings of this thesis could be integrated into other RL methodologies that

necessitate the prioritisation of specific samples. An intriguing application would be the

adaptation of EF-OnTL to shape a dataset for offline RL tasks. Subsequently, it would

be insightful to train an agent prioritising certain tuples, deemed to be the most beneficial

for learning. Comparing the performance of this approach against other sampling methods

from the dataset may result in enhancing the learning outcomes.
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Appendix

A Half Field Offense (HFO) State

For the experiments carried out in this research, perceived states consists of 95 values. From

the manual available online [147]:

• 0 Self_Pos_Valid [Valid] Indicates if self position is valid.

• 1 Self_Vel_Valid [Valid] Indicates if the agent’s velocity is valid.

• 2-3 Self_Vel_Ang [Angle] Angle of agent’s velocity.

• 4 Self_Vel_Mag [Other] Magnitude of the agent’s velocity.

• 5-6 Self_Ang [Angle] Agent’s Global Body Angle.

• 7 Stamina [Other] Agent’s Stamina: Low stamina slows movement.

• 8 Frozen [Boolean] Indicates if the agent is Frozen. Frozen status can happen when

tackling or being tackled by another player.

• 9 Colliding_with_ball [Boolean] Indicates the agent is colliding with the ball.

• 10 Colliding_with_player [Boolean] Indicates the agent is colliding with another

player.

• 11 Colliding_with_post [Boolean] Indicates the agent is colliding with a goal post.

• 12 Kickable [Boolean] Indicates the agent is able to kick the ball.

• 13-15 Goal Center [Landmark] Center point between the goal posts.

• 16-18 Goal Post Top [Landmark] Top goal post.

• 19-21 Goal Post Bot [Landmark] Bottom goal post.

• 22-24 Penalty Box Center [Landmark] Center of the penalty box line.

• 25-27 Penalty Box Top [Landmark] Top corner of the penalty box.

• 28-30 Penalty Box Bot [Landmark] Bottom corner of the penalty box.
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• 31-33 Center Field [Landmark] The left middle point of the RoboCup field (note that

this is not the center of the HFO play area).

• 34-36 Corner Top Left [Landmark] Top left corner HFO Playfield.

• 37-39 Corner Top Right [Landmark] Top right corner HFO Playfield.

• 40-42 Corner Bot Right [Landmark] Bottom right corner HFO Playfield.

• 43-45 Corner Bot Left [Landmark] Bottom left corner HFO Playfield.

• 46 OOB Left Dist [Proximity] Proximity to the nearest point of the left side of the

HFO playable area. E.g. distance remaining before the agent goes out of bounds in

left field.

• 47 OOB Right Dist [Proximity] Proximity to the right field line.

• 48 OOB Top Dist [Proximity] Proximity to the top field line.

• 49 OOB Bot Dist [Proximity] Proximity to the bottom field line.

• 50 Ball Pos Valid [Valid] Indicates the ball position estimate is valid.

• 51-52 Ball Angle [Angle] Agent’s angle to the ball.

• 53 Ball Dist [Proximity] Proximity to the ball.

• 54 Ball Vel Valid [Valid] Indicates the ball velocity estimate is valid.

• 55 Ball Vel Mag [Other] Magnitude of the ball’s velocity.

• 56-57 Ball Vel Ang [Angle] Global angle of ball velocity.

• 8T Teammate Features [Player] One teammate feature set (8 features) for each team-

mate active in HFO, sorted by proximity to the agent.

• 8O Opponent Features [Player] One opponent feature set (8 features) for each oppon-

ent active in HFO, sorted by proximity to the player.

• 1T Teammate Uniform Nums [Unum] One uniform number for each teammate active

in HFO, sorted by proximity to the agent.

• 1O Opponent Uniform Nums [Unum] One uniform number for each opponent active

in HFO, sorted by proximity to the player.

• +1 Last_Action_Success_Possible [Boolean] Whether there is any chance the last

action taken was successful, either in accomplishing the usual intent of the action or

(primarily for the offense) in some other way such as getting out of a goal-collision

state.
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Where xT means that there are x value for each teammate and xO x values for each

opponent.

B EF-OnTL - Transfer Criteria Evaluation in Multi-Team Predator-

Prey (MT-PP)

This section presents the expanded results obtained by Expert-Free Online Transfer Learning

(EF-OnTL) while varying the transfer settings in the MT-PP. The evaluation matches

the results shown in Figure 6.14. However, here we show the learning curves compared

by the Transfer Content Selection Criteria (TCS), shown in Figure 7.1, used to filter the

experiences on a target agent and by the budget B used within a transfer step, shown in

Figure 7.2.
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Figure 7.1: EF-OnTL learning curves organised by TCS used by a target agent to filter incoming
knowledge.
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Figure 7.2: EF-OnTL learning curves organised by the transfer budget B in MT-PP.
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C Requesting Confidence-Moderated Policy - Analysis

This section investigates the low performance registered by the Requesting Confidence-

Moderated Policy (RCMP) method. In particular, it explores the motivations behind the

negative transfer in Cart-Pole and includes an analysis of threshold sensitivity in the MT-PP

environment.

C.1 Cart-Pole

In the Cart-Pole benchmark environment, as shown in the evaluation graph in Figure 6.5,

RCMP demonstrates an initial jump-start in performance from the beginning up to episode

200. Subsequently, there is a brief decline in performance, followed by a gradual increase in

the reward starting from episode 500 onward.

The notable jump-start is a result of the continuous provision of advice from the expert

teachers. However, the subsequent drop in performance can be attributed to a lack of advice

caused by an inadequate allocation of the budget, as shown in Figure 7.3. This issue arises

due to the threshold used to trigger the advice process.
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Figure 7.3: Budget utilisation of OCMAS and RCMP in the Cart-Pole environment. This graph
complements Figure 6.5.

The normalisation process applied to maintain a consistent scale for uncertainty, along

with the binary action decision, results in the ensemble used as an uncertainty estimator

showing low granularity in uncertainty estimation. Uncertainty falls into three possibilities

based on the agreement among the five heads: 0 when all heads agree, 0.2 when a single

head disagrees, and 0.3 when two heads disagree with the others.
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C.2 Multi-Team Predator-Prey

In the MT-PP benchmark environment, we observed a more balanced budget utilisation

throughout the episodes, as shown in Figure 7.4. Due to the discrete action decision process

involving multiple actions, the uncertainty estimated by the ensemble allowed for a sufficient

range of values to ensure a fair budget allocation.
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Figure 7.4: Budget utilisation of OCMAS and RCMP in the MT-PP environment. This graph
complements Figure 6.6.

In the MT-PP environment, we have studied the performance of RCMP in relation to

the selected threshold that initialise the advising process. For comparison, we present the

learning curves, the MT-PP metrics, including the average number of preys caught from the

opposite team, and the budget utilisation.

The results are reported in Figure 7.5, where we evaluated five different threshold levels:

0.01, 0.02, 0.03, and 0.05. The results presented in the thesis, and that are shown in

Figure 6.6, are based on a threshold of 0.02.

A lower threshold leads the agent to be guided for longer, resulting in a higher cumu-

lative reward during the training. However, the final performance in the tracked metrics

are significantly lower. For instance, with a threshold of 0.01 we observed an overall higher

cumulative reward until episode 7, 000, as shown in Figure 7.5a. Eventually, this lower

threshold led to a deterioration of performance in the tracked metrics, as shown in Fig-

ure 7.5b. It is possible that the target agents have learned to prioritise the catch action,

which leads to catching the wrong prey and negatively impacted their overall performance.

Increasing the threshold to 0.05, results in lower budget utilisation, as shown in Fig-

ure 7.5c. Consequently, the learning curve during the initial episodes, up to episode 4, 000,

is lower compared to a more balanced threshold like 0.02. Nevertheless, the final tracked

metrics remain comparable between the two thresholds. The main difference is that a
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Figure 7.5: RCMP performance in the MT-PP benchmark environment with different thresholds.

higher reduces the prioritisation of the catch action and therefore prevents the capturing of

adversarial prey.

From the analysis presented in this section, it is evident that RCMP necessitates sig-

nificant experimentation to investigate the correlation between transfer outcomes and the

threshold used by target agents.
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Acronyms

3R2S Ride-Sharing Ride-Requests Simulator

A2A Agent-to-Agent

BP Best Performance

CCL Cooperative Centralised Learning

CTDE Centralised Training with Decentralised Execution

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-Network

DRL Deep Reinforcement Learning

EF-OnTL Expert-Free Online Transfer Learning

HFO Half Field Offense

high ∆-conf transfer based on Higher Delta Confidence

H Horizon

IL Independent Learners

loss & conf transfer based on Higher Loss and Confidence combined

MADDPG Multi-Agent Deep Deterministic Policy Gradient [61]

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent System

ML Machine Learning

MDP Markov Decision Process

MSE Mean Squared Error
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MT-PP Multi-Team Predator-Prey

NN Neural Network

OCMAS Online Confidence-Moderated Advice Sharing

POMDP Partially-Observable Markov Decision Process

PA-DDPG Parameterised Action Deep Deterministic Policy Gradient

PPO Proximal Policy Optimisation

RCMP Requesting Confidence-Moderated Policy

RL Reinforcement Learning

RND Random Network Distillation

rnd ∆-conf transfer Randomly based on threshold determined by Delta Confidence

ST-PP Single-Team Predator-Prey

sars-RND State Action Reward Next-state Random Network Distillation

SS Source Selection Criteria

SUMO Simulation of Urban MObility [74]

VDN Value Decomposition Network

TD Temporal-Difference

TCS Transfer Content Selection Criteria

TL Transfer Learning

T2T Task-to-Task

U Average Uncertainty
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