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Joint Channel Estimation and Equalization in

Massive MIMO Using a Single Pilot Subcarrier
Danilo Lelin Li, Arman Farhang

Abstract—The focus of this letter is on the reduction of the
large pilot overhead in orthogonal frequency division multi-
plexing (OFDM) based massive multiple-input multiple-output
(MIMO) systems. We propose a novel joint channel estimation
and equalization technique that requires only one pilot sub-
carrier, reducing the pilot overhead by orders of magnitude.
We take advantage of the coherence bandwidth spanning over
multiple subcarrier bands. This allows for a band of subcarriers
to be equalized with the channel frequency response (CFR) at
a single subcarrier. Subsequently, the detected data symbols
are considered as virtual pilots, and their CFRs are updated
without additional pilot overhead. Thereafter, the remaining
channel estimation and equalization can be performed in a
sliding manner. With this approach, we use multiple channel
estimates to equalize the data at each subcarrier. This allows us to
take advantage of frequency diversity and improve the detection
performance. Finally, we corroborate the above claims through
extensive numerical analysis, showing the superior performance
of our proposed technique compared to conventional methods.

Index Terms—OFDM, massive MIMO, channel estimation,
linear combining, spatial diversity, spectral efficiency.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has

brought substantial improvements to 5G systems and it

continues to be a dominant technology in next-generation

networks. In particular, spatial diversity and beamforming

gains provided by massive MIMO have led to significant

improvements in capacity, spectral, and energy efficiency

compared to 4G networks [1]. In massive MIMO, multiple

users reuse the same time-frequency resources, as their

signals can be distinguished based on their channel responses.

Therefore, obtaining accurate channel state information (CSI)

at each base station (BS) antenna is crucial. Conventional

channel estimation methods, e.g. least squares (LS), rely on

the transmission of pilot sequences from each user. These

methods are favorable due to their low complexity. However,

this comes at the expense of spectral efficiency (SE) loss [2].

Hence, extensive research has been conducted to reduce

the pilot overhead, see [3]–[5] and the references therein. For

instance, (semi) blind techniques emphasize reducing the pilot

length and estimating the channel by solving underdetermined

systems of equations using iterative algorithms [3]. Moreover,

superimposed pilots share the same time-frequency resources

for both data and pilot transmission. In these techniques,

the channel is estimated by treating data as noise. This can

completely remove the pilot overhead, however, at the cost of

interference and extra computational load [4], [5]. Most works

on massive MIMO consider a narrow band channel. Therefore,

utilizing these channel estimation techniques for orthogonal

frequency division multiplexing (OFDM) would require pilots
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on each subcarrier. Meanwhile, it was shown in [6] that the

number of pilot subcarriers needs to be at least equal to the

channel length. However, this leads to a large overhead, as the

channel length varies from 7% to 25% of the OFDM symbol

duration, [7]. To alleviate this issue, the authors in [6] proposed

a technique that can reduce the required pilot subcarriers by

80%, however, the technique is limited to sparse channels.

To address the aforementioned limitations of the existing

literature, in this letter, we show that only one reference

subcarrier is sufficient for both channel estimation and data

detection in massive MIMO. It is worth noting that our pro-

posed technique is independent of channel sparsity and length.

We take advantage of multiple adjacent subcarriers being

within the channel coherence bandwidth. Thus, the transmitted

data over a band of subcarriers can be detected using only

one reference subcarrier’s channel estimate. Thereafter, the

detected data symbols are considered as virtual pilots to update

their corresponding channel estimates. Each updated channel

estimate is then used to equalize a new band of subcarriers

within the coherence bandwidth. This way, we can obtain

multiple estimates of the transmitted data symbols at each

subcarrier and average them. With this approach, we take

advantage of the frequency diversity apart from the spatial

diversity to achieve an improved performance. By repeating

this process in a sliding manner, all the data symbols and the

channel frequency responses (CFRs) can be estimated, starting

from one reference pilot.

Furthermore, we prove that in the large antenna regime,

linear combining can be performed using the channel estimate

at any subcarrier. The combined signal at a subcarrier will be

scaled by a coefficient, which depends on the channel power

delay profile (PDP) and frequency spacing between the subcar-

rier and the CFR used for combining. However, this coefficient

can take very small values leading to noise enhancement. To

avoid this issue, we define a depth factor in our proposed

sliding technique that determines the number of subcarriers

within each band to be equalized using the same CFR. This

ensures that only large values of the aforementioned coefficient

are considered. To evaluate the effectiveness of our proposed

technique, we compare its bit error rate (BER) and signal-to-

interference and noise ratio (SINR) performance with the con-

ventional techniques. For 15 MHz transmission bandwidth, the

existing techniques require over 70 pilot subcarriers, whereas

our proposed technique reduces this overhead to only one pilot

subcarrier. Moreover, our proposed technique outperforms the

linear equalizers by around 2 dB, at high signal-to-noise ratios

(SNRs), in terms of the BER performance.

Notations: Matrices, vectors, and scalar quantities are de-

noted by boldface uppercase, boldface lowercase, and normal

letters, respectively. [A]m,n represents the element on row m

and column n of A. tr{A} represents the trace of A. IM and
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0M×N are the M × M identity and M × N zero matrices,

respectively. The superscripts (·)†, (·)H, (·)T and (·)∗ indicate

pseudo inverse, Hermitian, transpose and conjugate operations,

respectively. | · |, ((·))M and E{·} are the absolute value,

modulo-M , and expected value operators, respectively. Finally,

FM is the normalized M -point discrete Fourier transform

(DFT) matrix and fM,m is the mth column of FM .

II. SYSTEM MODEL

We consider the uplink (UL) of a single-cell massive MIMO

system operating in the time-division duplex (TDD) mode.

OFDM with M subcarriers is deployed as the modulation

format, with the cyclic prefix (CP) of length MCP. MCP

is chosen to be larger than the channel length to avoid

intersymbol interference. The BS is equipped with Q antennas

and serves K single antenna users. The duration of each frame

is assumed to be within the channel coherence time, including

N number of OFDM time symbols in the UL. Hence, the

channel remains time-invariant within each frame.

The UL transmission is divided into two phases, train-

ing/pilot and data transmission. Np and Nd time slots are allo-

cated to pilot and data transmission, respectively. Thus, a given

user k transmits the time-frequency symbols Xk = [Pk,Dk],
where Pk ∈ C

M×Np represents the pilot and Dk ∈ C
M×Nd

the data symbols. Hence, the OFDM transmit signal of user k

is obtained as Sk = ACPF
H
MXk, where ACP = [GT

CP, IM ]T

is the CP addition matrix and the MCP × M matrix GCP

includes the last MCP rows of IM .

The signal is transmitted through the channel and undergoes

OFDM demodulation. Thus, the received signal from all the

users at a given BS antenna q is obtained as

Yq=FMRCP

K−1∑

k=0

Hq,kS
k+Wq=

K−1∑

k=0

diag{λq,k}Xk+Wq,

(1)

where RCP = [0M×MCP
, IM ] is the CP removal matrix,

Hq,k denotes the Toeplitz channel matrix realizing the lin-

ear convolution, which is formed by the channel impulse

response (CIR) of length L between user k and antenna q,

i.e., hq,k = [hq,k[0], . . . , hq,k[L − 1]]T, and Wq includes

the complex additive white Gaussian noise (AWGN) in the

frequency domain, with the variance σ2
w, i.e., [Wq]m,n ∼

CN (0, σ2
w). We assume the CIR between each user and the

BS antennas to be independent and identically distributed

(i.i.d.) complex random variables, hq,k ∼ CN (0L×1,Σk)
for q = 0, . . . , Q − 1 and k = 0, . . . ,K − 1. Σk is a

diagonal matrix with the diagonal elements formed by the

PDP of the channel ρk = [ρk[0], . . . , ρk[L − 1]]T, where

the normalized PDP is considered, i.e.,
∑L−1

l=0 ρk[l] = 1.

As MCP ≥ L − 1, H̃q,k = RCPHq,kACP is a circulant

matrix, with the first column formed by the zero-padded

CIR, i.e., h̃q,k = [hT
q,k,0

T
M−L×1]

T. Hence, the channel

matrix H̃q,k can be diagonalized by the DFT and inverse

DFT matrices as FMH̃q,kF
H
M = diag{λq,k}, where λq,k =

[λq,k[0], . . . , λq,k[M − 1]]T represents the CFR with the ele-

ments obtained as

λq,k[m] =
√
M fTM,mh̃q,k. (2)

To pave the way toward the derivations in the following

sections, we rearrange the received signals into the space-time

representation. By stacking the received samples at a given

subcarrier m, i.e., the mth row of Yq from all the Q receive

antennas, we obtain the Q×N space-time matrix Ym. Thus,

the input-output relationship for a given subcarrier m across

all the antennas can be represented as

Ym = ΛmXm +Wm, (3)

where the elements of the matrices Λm ∈ C
Q×K , Xm ∈

C
K×N and Wm ∈ C

Q×N are given by [Λm]q,k = λq,k[m],
[Xm]k,n = [Xk]m,n and [Wm]q,n = [Wq]m,n, respectively.

Finally, Xm , [Pm,Dm], where Pm and Dm represent the

transmitted pilot and data symbols, respectively. Correspond-

ingly, Ym , [Y
p

m,Y
d

m] and Wm , [W
p

m,W
d

m].
III. CONVENTIONAL CHANNEL ESTIMATION AND

EQUALIZATION

In this section, the widely used linear pilot-based channel

estimation and equalization techniques are described. In par-

ticular, we consider LS-based channel estimation, and two lin-

ear combining techniques, namely maximum ratio combining

(MRC) and minimum mean square error (MMSE) equalization

techniques. At the channel sounding stage, each user transmits

a pilot sequence with the length Np ≥ K over different

time slots on a given subcarrier allocated to pilot symbols

[1]. The pilot sequence of length Np for a given user k

at a given subcarrier m, pk
m, is chosen from a pilot book

Pm = [p0
m,p1

m, . . . ,pK−1
m ]T that satisfies the orthogonality

property PmP
H

m = NpIK , [8]. We consider a pilot book

where each pk
m is obtained from k cyclic shifts of the Zadoff-

Chu (ZC) root sequence of length Np. Using (3), the received

pilots from all the users at subcarrier m can be represented

as Y
p

m = ΛmPm+W
p

m. Consequently, the channel response

for all the users at a given subcarrier m can be estimated as

Λ̂m =
1

Np
Y

p

mP
H

m = Λm +
1

Np
W

p

mP
H

m , Λm + W̃m, (4)

where W̃m = 1
Np

W
p

mP
H

m.

To estimate the whole CFR, it is sufficient to allocate L

equally spaced subcarriers as pilots [6]. Let I represent the

set of subcarrier indices allocated to the pilot, and λI
q,k the

vector formed by selecting the L entries of λq,k at the pilot

subcarriers, each element of λI
q,k can be estimated from (4), as

λq,k[m] = [Λ̂m]q,k. From (2), the following relation between

CFR and CIR holds

λI
q,k =

√
MFI

Mhq,k, (5)

where FI
M is a L× L matrix formed by selecting the first L

columns of FM with the rows indexed by I. Hence, the CIR of

user k at a given BS antenna q can be estimated by solving (5)

for hq,k, i.e., hq,k = 1√
M
(FI

M )−1λI
q,k. Finally, after obtaining

the CIR, Λ̂m at each subcarrier can be reconstructed with (2).

Therefore, the channel estimation process, (4) and (5), requires

a minimum of LK pilots.

Using the channel estimates Λ̂m, and deploying a linear

combining technique such as MRC, the transmit data symbols

for all the users can be estimated as

X̂MRC
m = Γ−1

m Λ̂
H

mY
d

m = Γ−1
m Λ̂

H

m(ΛmDm +W
d

m), (6)
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where Γm is a K ×K diagonal matrix, with the kth diago-

nal element given by 1
Q

∑Q−1
q=0 |λq,k[m]|2, considered solely

to normalize the amplitude of the equalizer output. In the

literature, the effect of channel estimation noise is often

neglected and the diagonal elements of Γm are formed from

the diagonal elements of Λ
H

mΛm, i.e., the norm squared of the

channel vector for each user at a given subcarrier m. However,

in the presence of channel estimation errors, using (4), the

normalization factors on the elements of Λ
H

mΛm are obtained

as the diagonal elements of

Λ̂
H

mΛ̂m = Λ̂
H

mΛm+Λ
H

mW̃m+
1

N2
p

Pm(W
p

m)HW
p

mP
H

m. (7)

The term Λ
H

mW̃m tends to zero in the asymptotic regime,

as Q → ∞, since the channel gain and noise are independent.

However, the same is not true for (W
p

m)HW
p

m. As W
p

m

represents the AWGN, in the asymptotic regime, we have
(
Λ

H

mW̃m +
1

N2
p

Pm(W
p

m)HW
p

mP
H

m

)
→ Qσ2

w

N2
p

PmP
H

m.

(8)

Hence, taking a similar approach to [9], the channel estimation

noise can be mitigated by subtracting (8) from the normaliza-

tion factor, i.e., Γm is formed from the diagonal elements of

(Λ̂
H

mΛ̂m − Qσ2
w

N2
p
PmP

H

m).

Due to the channel hardening effect [1], in the asymptotic

regime, as Q → ∞, we have

λ
H

m,kλm,k′

Q
→

{
E{|λm,k[q]|2} = 1 if k = k′

0 otherwise
, (9)

where λm,k, of length Q, represents the kth column of Λm.

Therefore, as Q → ∞, Γ−1
m Λ̂

H

mΛm → IK .

In practical systems, the number of BS antennas is limited,

and the off-diagonal elements of Λ̂
H

mΛm, in (6), lead to a

significant amount of interference. Thus, MMSE combining,

X̂MMSE
m = ΦMMSE

m Y
d

m, (10)

where ΦMMSE
m , (Λ̂

H

mΛ̂m − Qσ2
w

N2
p
PmP

H

m + σ2
wIK)−1Λ̂

H

m,

provides an improved performance compared to MRC.

IV. PROPOSED CHANNEL ESTIMATION AND COMBINING

The linear combining techniques presented in the previous

section take advantage of the channel hardening effect and

spatial diversity gains in massive MIMO. However, it requires

knowledge of the whole CFR, and therefore, a minimum of

LK time-frequency slots are allocated to the pilots for channel

estimation. In practical systems, L can take large values,

especially as the bandwidth increases. Hence, in this section,

we study the possibility of reducing the pilot overhead to a

single pilot subcarrier. Therefore, only K time-frequency slots

would be necessary for pilot allocation, reducing the training

overhead by a factor of L.

In current standards, the subcarrier spacing ∆f is chosen to

be much shorter than the coherence bandwidth [10]. Hence,

the channel can be considered flat across the frequency band

of multiple adjacent subcarriers. This suggests that the channel

at a single subcarrier can be considered for the equalization

of its adjacent subcarriers. Moreover, the correlation between

the CFR of adjacent subcarriers can be obtained from the

following approximation [11]

|α∆m,k| ≈
√

1−
(
∆f∆m

Fc

)2

, (11)

where we define α∆m,k , E{λ∗
m,k[q]λ((m+∆m))M ,k[q]}, Fc =

1
ℓτ

is the coherence bandwidth and ℓτ is the maximum delay

spread of the channel.

Taking this into account, we consider a reference pilot in

one subcarrier and utilize its channel estimate for equalization

of the neighboring subcarriers. The detected data symbols will

be considered as virtual pilots, updating their channel estimates

and allowing for the equalization of data at their adjacent

subcarriers. We repeat this process, in a sliding manner, until

all the data and the CFR in the UL frame are estimated. Hence,

the data Xm, at any given subcarrier m, can be equalized using

(10) and (11) with the CFR at subcarrier m− 1 as

X̂MMSE
m = |Ψ1|−1ΦMMSE

m−1 Ym, (12)

where Ψ∆m is a diagonal matrix with the diagonal elements

formed by the vector [α∆m,0, . . . , α∆m,K−1]. In (12), we

consider the approximation (Λ̂m)HΛ̂m ≈ (Λ̂m−1)
HΛ̂m−1,

and the phase of α1,k to be negligible.

After obtaining X̂MMSE
m , we perform hard decision by

quantizing each symbol to their nearest quadrature amplitude

modulated (QAM) constellation point, resulting in X̂HD
m . With

X̂HD
m , the CFR estimate at subcarrier m can be updated as

Λ̂m = Ym(X̂HD
m )†. (13)

This channel estimate is then used for equalization of the

following subcarrier, m + 1, using (12). In particular, since

we now consider X̂m as the pilot, the noise mitigation term in

(8) should be corrected accordingly. That is, the term P
H

m in

Γm and ΦMMSE
m should be substituted by (X̂HD

m )†. Then the

procedure is repeated in a sliding manner until the whole frame

is equalized. If the detected symbols X̂HD
m are erroneous,

(13) provides imperfect channel estimates, and hence, the

sliding technique propagates the error to further subcarriers.

Therefore, as we will show in the later part of this section, we

propose the concept of depth that significantly improves the

accuracy of X̂HD
m , alleviating the error propagation issue.

It is worth noting that Xm can be a rank-deficient matrix.

Specifically, if the rank of Xm is lower than K, (13) fails

to retrieve Λ̂m. To solve this issue, we calculate α∆m,k for

any value of ∆m. This way, X̂MMSE
m at any subcarrier can be

detected with the same reference pilot using (12).

Proposition 1: In the asymptotic regime, it is possible

to perform MRC with the channel estimates on a single

subcarrier. In other words, the data at any given subcarrier

m can be equalized with the CFR at any other subcarrier m′.

Proof We detect the data Xm, at any given subcarrier m, by

performing MRC with the channel estimates at subcarrier m′

X̂MRC
m = Γ−1

m′Λ
H
m′Y

d
m. (14)
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Considering (9) in the asymptotic regime, as Q → ∞,

λ
H

m′,k′λm,k

Q
→

{
α∆m,k if k = k′

0 otherwise
, (15)

where ∆m = m−m′. Thus, in (14), Γ−1
m′Λ

H
m′Λm → Ψ∆m.

To obtain the exact value of α∆m,k, we substitute the CFRs

with the expression given in (2). This yields a quadratic form,

with the expectation defined as [12]

E{h̃H
q,k(M f∗M,mfTM,((m+∆m))M

)h̃q,k} = tr{AΣ̃k}+ µTAµ,

(16)

where µ and Σ̃k represent the mean and covariance matrices

of h̃q,k, respectively, and A = M f∗M,mfT
M,((m+∆m))M

. With

the parameters presented in section II, it is given that the

channel is zero mean, i.e., µ = 0M×1, and Σ̃k is a diagonal

matrix with the diagonal elements formed by the vector

ρ̃k = [ρT
k ,0

T
M−L×1]

T. Hence, (16) reduces to

α∆m,k = tr{AΣ̃k} =
√
M fTM,((∆m))M

ρ̃k. (17)

Based on this result, as long as the PDP is known, equal-

ization can be performed using (14) followed by scaling the

MRC output for each subcarrier by 1
α∆m,k

.

While Proposition 1 is sufficient in the asymptotic regime,

in practical systems, the aforementioned scaling by 1
α∆m,k

may

lead to noise enhancement and, consequently, a performance

loss. For this reason, we rely on our proposed sliding equal-

ization technique as α∆m,k is larger for the smaller values of

|∆m|. When Xm is rank-deficient, Λ̂m cannot be estimated.

Thus, we resort to utilizing the previously estimated channels

on the closest subcarrier. Furthermore, if the PDP is known at

the receiver, the scaling term α∆m,k can be calculated from

(17), instead of using the approximation from (11).

When the coherence bandwidth is much larger than the

subcarrier spacing, the correlation α∆m,k takes large values

for multiple values of ∆m. This sparks the idea of taking

advantage of the frequency diversity in addition to the spa-

tial diversity. To this end, improved SINR performance can

be achieved by performing equalization for each subcarrier

multiple times, each with the channel of a different subcarrier

within the coherence bandwidth. This improvement substan-

tially reduces the error propagation issue from (13).

While the channels from all subcarriers could be considered

for the averaging, the channels with a small correlation would

bring minimal improvement to the output. Since, the value

of α∆m,k decreases as we increase the value of |∆m|, only

channels of subcarriers within a range are considered. Hence,

we call the maximum range considered as the depth, D.

Ideally, the depth would consider all adjacent subcarriers, at

higher and lower indices. However, since the channels are up-

dated in a sliding manner, only the channel on one side of the

subcarriers is available at the time of equalization. Therefore,

the final output of our proposed technique is achieved with

two steps. We perform the first step of the proposed technique

by sliding from lower to upper subcarrier indices until the

whole frame is equalized. For the second step, the procedure

is realized again, however, now sliding from higher to lower

subcarrier indices. It is worth noting that both steps can be

Algorithm 1 Proposed sliding technique with reference pilot

at subcarrier index i.
1: Initialize: Estimate channel at reference subcarrier (Pilot),

obtaining Λ̂i using (4).

2: for ξ = [−1, 1] do

3: m′ = i {Define the anchor for closest available CFR}
4: for mdir = 1 to M − 1 do

5: m = ((i+ ξmdir))M
6: Initialize X̂m,ξ = 0K×N

7: c = 0 {Define total channels used for equalization}
8: for ∆m = 1 to D do

9: if Λ̂((m−ξ∆m))M was estimated then

10: X̂m,ξ = X̂m,ξ +Ψ−1
ξ∆mΦMMSE

((m−ξ∆m))MYm

11: c = c+ 1
12: end if

13: end for

14: if c == 0 then

15: X̂m,ξ = Ψ−1
m−m′Φ

MMSE
m′ Ym

16: else

17: X̂m,ξ =
X̂m,ξ

c

18: end if

19: X̂HD
m,ξ is obtained from hard decision of X̂m,ξ

20: if X̂HD
m,ξ is invertible then

21: Λ̂m = Ym(X̂HD
m )† and update m′ = m

22: else

23: Λ̂m is not estimated and m′ is not updated

24: end if

25: end for

26: end for

27: Obtain X̂m by averaging the two sets of result

realized in parallel as the steps are independent of each other.

The output of both steps are then averaged to obtain the final

output of our proposed technique. We distinguish each step

with the direction variable ξ ∈ [−1, 1] representing steps one

and two, respectively. Each step can be represented as

X̂m,ξ =
1

D

D∑

∆m=1

Ψ−1
ξ∆mΦMMSE

m−ξ∆mYm. (18)

The final output is then obtained as X̂m = 1
2 (X̂m,−1+X̂m,1).

Our proposed technique is summarized in Algorithm 1.

In the following section, we numerically evaluate the per-

formance of our proposed technique. We compare our solution

with the conventional LS-based channel estimation and MMSE

combining. We show that our proposed channel estimation

and equalization method, using only K pilots, outperforms

the conventional method, which requires LK pilots.

V. NUMERICAL RESULTS

In this section, we evaluate the efficacy of our proposed

technique and compare it with the conventional LS-based

channel estimation and MMSE equalization. In our simula-

tions, we consider the UL transmission of a single frame with

16-QAM and OFDM modulation, M = 1024 subcarriers and

N = 14 time symbols. The BS serves K = 7 users, where

Np = 7 time slots are allocated to each user for channel

estimation and Nd = 7 for data transmission. We use the
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Extended Typical Urban model (ETU) channel model, [13].

ETU channel model has the smallest coherence bandwidth,

i.e., Fc ≈ 200 kHz, among the 3GPP channel models [13].

Since our proposed method benefits from larger coherence

bandwidths, we chose this model to show the efficacy of

our proposed technique. Considering subcarrier spacing of

∆f = 15 kHz and transmission bandwidth of 15 MHz,

the channel length is L = 77. Hence, for the conventional

LS-based channel estimators, a total of LNp = 539 time-

frequency resources are allocated for pilot transmission while

our proposed technique requires only Np = 7 time-frequency

resources. Perfect knowledge of the PDP for each user at

the BS is assumed. These results were obtained through the

ensemble average of 5000 random trials.

In Fig. 1, we evaluate the SINR performance of our pro-

posed technique versus the number of BS antennas for D =
1, 2, 3, and without implementation of depth. When depth is

not implemented, we only consider one sliding direction where

one estimate of the data symbol at each subcarrier is obtained,

i.e., the output is obtained from X̂m = Ψ−1
1 ΦMMSE

m−1 Ym.

An input SNR of 0 dB was considered. The results in Fig.

1 show that our proposed technique can effectively average

out noise and multiuser interference as the number of BS

antennas grows large. Furthermore, our proposed technique,

without the implementation of depth, can achieve very close

performance to that of the conventional MMSE combiner.

This is while for D = 1, 2 and 3, it leads to the SINR

performance gain of around 2 dB compared to the conventional

MMSE combining. The SINR performance of our proposed

technique becomes linear only after deploying a minimum

number of BS antennas. This is due to error propagation

at the channel estimation stage in (13). This highlights the

benefit of increasing depth as it greatly improves the SINR

performance, especially when considering fewer BS antennas

or lower input SNR. Furthermore, the frequency diversity

predominantly averages out the channel estimation noise in

(4). However, as it is shown in Fig. 2, in the absence of noise,

increasing depth adversely affects the signal-to-interference

ratio (SIR). This is due to the approximation in (12). The

conventional LS channel estimation and MMSE combining

lead to infinite SIR in the absence of noise and thus, cannot

be included in the results of Fig. 2.

Finally, in Fig. 3, we analyze the BER performance of our

proposed technique when Q = 200 BS antennas are deployed.

The proposed technique with D = 3 leads to 2 dB performance

gain at large Eb/N0s compared to the conventional method.

These results show that increasing D from 1 to 3 provides

almost 4 dB performance gain.

VI. CONCLUSION

In this letter, we proposed a sliding joint channel estimation

and equalization technique that significantly reduces the pilot

overhead in massive MIMO. With the CFR estimates on a

single reference subcarrier, we showed that the data symbols

on the adjacent subcarriers can be detected with linear com-

bining. The detected data symbols are then utilized as virtual

pilots to update their corresponding channel estimates. The

updated CFRs are then used for equalization of the remaining

data symbols, in a sliding manner. With this approach, we

obtain multiple estimates of the transmitted data symbols

at each subcarrier that are averaged to provide additional

frequency diversity to the spatial diversity gains of massive

MIMO. Through extensive numerical analysis, we showed that

our proposed technique achieves improved SINR and BER

performance compared to the conventional linear combiners.
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