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Abstract—Orthogonal time frequency space (OTFS) modula-
tion has recently emerged as a potential 6G candidate waveform
which provides improved performance in high-mobility scenarios.
In this paper we investigate the combination of OTFS with non-
orthogonal multiple access (NOMA). Existing equalization and
detection methods for OTFS-NOMA, such as minimum-mean-
squared error with successive interference cancellation (MMSE-
SIC), suffer from poor performance. Additionally, existing it-
erative methods for single-user OTFS based on low-complexity
iterative least-squares solvers are not directly applicable to the
NOMA scenario due to the presence of multi-user interference
(MUI). Motivated by this, in this paper we propose a low-
complexity method for equalization and detection for OTFS-
NOMA. The proposed method uses a novel reliability zone (RZ)
detection scheme which estimates the reliable symbols of the
users and then uses interference cancellation to remove MUI.
The thresholds for the RZ detector are optimized in a greedy
manner to further improve detection performance. In order to
optimize these thresholds, we modify the least squares with QR-
factorization (LSQR) algorithm used for channel equalization to
compute the the post-equalization mean-squared error (MSE),
and track the evolution of this MSE throughout the iterative
detection process. Numerical results demonstrate the superiority
of the proposed equalization and detection technique to the
existing MMSE-SIC benchmark in terms of symbol error rate
(SER).

I. INTRODUCTION

The sixth generation (6G) of mobile networks is expected to
support communications in high-mobility environments such
as high-speed rail, vehicle-to-everything (V2X) and unmanned
aerial vehicle (UAV) communications [1]. Orthogonal fre-
quency division multiplexing (OFDM) has been the waveform
utilized in the 4th and 5th generation of wireless networks.
However, it is well-known that in high-mobility scenarios,
OFDM performs poorly due to the Doppler effect [2]. In recent
years, a new waveform called orthogonal time frequency
space (OTFS) has been proposed to address this drawback of
OFDM in time-varying channels. In contrast to OFDM, which

S. McWade was with the School of Electrical and Electronic Engineering,
University College Dublin, Belfield, Dublin 4, D04 V1W8 Ireland. He is now
with the Department of Electronic and Electrical Engineering, Trinity College
Dublin, Dublin 2, D02 PN40 Ireland (email: smcwade@tcd.ie). A. Farhang
is with the Department of Electronic and Electrical Engineering, Trinity
College Dublin, Dublin 2, D02 PN40 Ireland (email: arman.farhang@tcd.ie).
M. F. Flanagan is with the School of Electrical and Electronic Engineer-
ing, University College Dublin, Belfield, Dublin 4, D04 V1W8 Ireland
(email:mark.flanagan@ieee.org).

This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland (SFI) under Grant number
17/RC-PhD/3479, Grant number 17/US/3445, Grant number 19/FFP/7005(T)
and under the US-Ireland R&D Partnership Programme Grant Number
SFI/21/US/3757.

transmits data symbols in the time-frequency domain, OTFS
places the data symbols in the delay-Doppler domain [3].
OTFS then uses a transformation to spread each information
symbol over the whole time-frequency plane. This means that
the symbols are all equally affected by the time and frequency
selectivity of the channel which converts the time-varying
channel to a time-invariant one in the delay-Doppler domain.

A number of OTFS equalization and detection schemes have
been proposed in the literature in recent years. The majority of
these methods can be categorized into either low-complexity
linear equalizers [4]–[6] or non-linear message-passing-based
equalizers [7]–[9]. However, such methods assume a scattering
environment in which the channel impulse response is sparse
in the delay-Doppler domain. Under more realistic channel
conditions, the low-complexity linear schemes are no longer
applicable as the assumptions they make about the channel
no longer hold. Additionally, message-passing-based detectors
become prohibitively complex due to the large number of
scatterers [10]. An alternative approach was proposed in [10]
which utilized a least-squares minimum residual (LSMR)
based channel equalizer and a reliability-based dynamic de-
tector. However, the system model in [10] only considers a
single-user scenario and it is not applicable to the multi-user
scenario that is of interest in this paper.

For a multi-user OTFS system, the multiple access (MA)
technique utilized is an important consideration. How best
to multiplex users in the delay-Doppler domain is an open
question and there have been numerous recent works which
propose different methods [11]–[13]. These methods can be
broadly categorized into orthogonal multiple access (OMA)
or non-orthogonal multiple access (NOMA). In OTFS-OMA,
users are multiplexed either in the delay domain or the
Doppler domain, and only one user can occupy a given
resource block [13]. However, the users suffer from multi-user
interference (MUI) due to the Doppler spread, which degrades
performance. MUI can be mitigated by inserting guard bands
between users, as was done in [11]. However, this use of guard
bands leads to a spectral efficiency (SE) loss [12].

An alternative approach is OTFS-NOMA, where the users
are allowed to occupy the same resource block and are
multiplexed in either the power domain or the code domain.
A multi-user detection (MUD) scheme, such as successive
interference cancellation (SIC), is then used to detect the user
symbols [14]. NOMA is a well-known technique which can
provide improved SE over the corresponding OMA system as
well as potentially higher connectivity as the number of users
supported by a NOMA system is not limited by the number
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of physical resources available. A number of OTFS-NOMA
schemes have been proposed in the literature in recent years
that use either power-domain [15], [16] or code-domain [17],
[18] multiplexing. This paper focuses on power-domain OTFS-
NOMA.

With regard to the existing work on power-domain OTFS-
NOMA, the authors of [15] considered a single high-mobility
OTFS user multiplexed with multiple low-mobility OFDM
users. However, this system model is restricted to a single
OTFS user and hence cannot accommodate multiple high-
mobility users. The authors of [16] addressed this issue and
proposed an OTFS-NOMA scheme which utilizes a rectan-
gular pulse shape where multiple users overlap in the delay-
Doppler domain and are multiplexed in the power domain. The
results presented in [16] show that OTFS-NOMA achieves
higher spectral efficiency than the equivalent OTFS-OMA
system. However, the system proposed in [16] used minimum-
mean-squared-error (MMSE) equalization in combination with
SIC for equalization and detection. The problem with this
scheme is that direct implementation of MMSE equalization
is prohibitively computationally complex and thus impractical
for real-world scenarios.

As of yet, to the best of our knowledge, there is no
low-complexity equalization and detection method for power-
domain OTFS-NOMA. In addition, the low-complexity equal-
ization and detection method of [10] for single-user OTFS
is not directly applicable to a NOMA scenario due to the
presence of MUI. This paper addresses these gaps in the
literature with the following contributions:

• We propose a novel iterative method for equalization and
detection of a downlink OTFS-NOMA system which,
within each iteration, uses a proposed modified LSQR
(mLSQR) algorithm to equalize the channel, an RZ
detector to detect reliable symbols from both users, and
interference cancellation to improve detection on subse-
quent iterations.

• Our proposed modified LSQR algorithm, in addition
to equalizing the channel, also computes the post-
equalization MSE of the users’ symbols, in contrast to the
conventional LSQR algorithm. We derive an exact closed-
form expression for this MSE as well as a low-complexity
approximation which capitalizes on the properties of the
delay-Doppler channel in OTFS systems.

• We use a novel, greedy approach for optimizing the RZ
thresholds within each iteration. This is in contrast to
other RZ schemes which use heuristic thresholds [10],
[19]. Our method works by tracking the post-equalization
MSE after interference cancellation and optimizing the
RZ thresholds in each iteration to minimize the MSE.

Additionally, we present numerical results which com-
pare the SER performance of the proposed equalization and
detection method with the existing MMSE-SIC benchmark
[16]. We also compare the performance of our optimized RZ
threshold design to a pre-determined threshold design. The
presented results demonstrate the superiority of our proposed
method, especially for the NOMA user with the smaller power
allocation. A preliminary version of this work was described

in [20], which showed the advantage of this general approach
but did not include the derivation of the post-equalization MSE
(or its low-complexity approximation), and also did not show
how this MSE could be utilized to optimize the RZ thresholds
in each iteration.

The rest of this paper is organized as follows. Section II
describes the system model for a 2-user OTFS-NOMA sys-
tem. In Section III, the proposed equalization and detection
algorithm is presented. Section IV describes the modified
LSQR algorithm which equalizes the channel and computes
the post-equalization MSE. Section V presents the process
for optimizing the thresholds of the RZ detector. Section VI
presents numerical results. Finally, Section VII concludes the
paper.

Notations: Superscripts (·)T and (·)H denote transpose and
Hermitian transpose, respectively. Bold lower-case characters
are used to denote vectors and bold upper-case characters are
used to denote matrices. The function vec{X} vectorizes the
matrix X by stacking its columns to form a single column
vector, and ⊗ represents the Kronecker product. The p × p
identity matrix and p × q all-zero matrix are denoted by Ip
and 0p×q , respectively.

II. SYSTEM MODEL

For ease of exposition, in the following sections we will
describe the system model and the proposed detector for
the case of a 2-user downlink OTFS-NOMA system; how-
ever, note that with appropriate modifications, the proposed
method is applicable to any number of users. We consider
a downlink OTFS-NOMA system where both users occupy
the same delay-Doppler domain resources and are multiplexed
in the power domain. For User i ∈ {1, 2}, let the M × N
matrix Xi contain the MN quadrature amplitude modulation
(QAM) data symbols placed in the delay-Doppler domain. The
elements of Xi are assumed to be independent and identically
distributed (i.i.d.) complex random variables. Additionally,
a normalized (unit-energy) square QAM constellation is as-
sumed for each user.

In this work we consider OFDM-based OTFS modulation
with rectangular pulse shape. In the first stage of OTFS mod-
ulation, the inverse symplectic fast Fourier transform (ISFFT)
is used to map the delay-Doppler data symbols in Xi to the
time-frequency domain. The ISFFT can be implemented by
performing an M -point DFT operation on each of the columns
of Xi followed by an N -point IDFT operation on each of the
rows of Xi. The time-frequency signal matrix of User i is
therefore given by

Di = FMXiF
H
N , (1)

where FN is the N -point unitary discrete Fourier transform
(DFT) matrix in which the (l, k) element is 1√

N
e−j

2π
N lk.

Next, cyclic prefix OFDM (CP-OFDM) modulation is used to
convert the time-frequency signal to the delay-time domain.
The OTFS transmit signal matrix is therefore given by

Si = AcpF
H
MDi, (2)
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where Acp = [Jcp, IN ] is the CP addition matrix (here Jcp is
composed of the last Ncp rows of IN ). Using (1), the delay-
time domain transmit signal can be rewritten as

Si = AcpXiF
H
N , (3)

and thus OFDM-based OTFS reduces to an N -point IDFT
operation on the rows of Xi [21]. After parallel to serial
conversion, the time-domain symbols for User i can now be
written as

si = vec(Si) = (FH
N ⊗Acp)xi. (4)

The users are multiplexed in the power domain and their sig-
nals are superimposed before transmission. The superimposed
transmit signal is given by

s =
√
ρ1s1 +

√
ρ2s2, (5)

where ρi is the power allocation coefficient for for User i, and
ρ1+ρ2 = 1 (these power allocation coefficients are determined
using an appropriate power allocation scheme, such as that
used in [16]). Without loss of generality, in this paper, we
consider the user indices to be ordered in descending order of
their power allocation coefficients, i.e., ρ1 > ρ2.

After digital to analog conversion, the continuous-time sig-
nal s(t) is transmitted through the linear time-varying (LTV)
channel. The received signal at the receiver of User i ∈ {1, 2}
can be written as

ri(t) =

∫ ∫
hi(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + ωi(t) (6)

where

hi(τ, ν) =

Pi−1∑
p=0

hi,pδ(τ − τi,p)δ(ν − νi,p),

is the delay-Doppler channel impulse response (CIR) for
User i, which consists of Pi channel paths, and ωi(t) is the
complex AWGN with variance σ2

i . The parameters hi,p, τi,p
and νi,p represent the channel gain, delay and Doppler shift,
respectively, associated with path p of User i’s channel. The
power delay profile (PDP) of the channel of User i is given
by λi = [λi(0), . . . , λi(Pi − 1)] and is assumed to be
normalized such that

∑Pi−1
p=0 λi(p) = 1. Each channel path

gain is modeled as a complex Gaussian random variable with
mean zero and and variance λi(p). Since the PDP is considered
to be normalized, the average received SNR of User i is given
by SNRi =

ρ1+ρ2
σ2
i
. We assume perfect knowledge of the User

i channel at the receiver of User i, as previously considered
in [16].

The received signal is then sampled with sampling period
Ts. The sampling period is assumed to be short, as is often
the case in practical systems, such that the path delays can
be considered as integer multiples of the sampling period,
i.e., τi,p = li,pTs, where li,p ∈ [0, . . . , L − 1]. However, the
Doppler shifts cannot be considered to be integer multiples of
the Doppler spacing and thus, we consider fractional Doppler
shifts in this paper. The discrete received signal samples can
then be expressed as

ri[n] =

L−1∑
l=0

hi[n, l]s[n− l] + ωi[n], (7)

where hi[n, l] =
∑Pi−1
p=0 hi,pe

j2πνi,p(n−l)Tsδ(l − li,p) is the
CIR at time instant n and delay l. The discrete-time received
signal can be written in matrix form as

ri = His+ ωi, (8)

where ωi is the complex AWGN vector and Hi is the
MN×MN time-domain channel matrix of User i constructed
from the CIRs. The received signal is then demodulated and
converted back to the delay-Doppler domain by taking an N -
point DFT operation across the time domain samples. Thus,
the received signal is given by

yi = (FN ⊗Rcp)ri. (9)

This can alternatively be written as

yi = Gixsup +wi. (10)

where Gi = (FN ⊗ Rcp)Hi(F
H
N ⊗ Acp) is the effective

channel matrix, xsup =
√
ρ1x1 +

√
ρ2x2 is the superimposed

delay-Doppler symbol vector and wi = (FN ⊗Rcp)ωi is the
noise vector.

III. PROPOSED EQUALIZATION AND DETECTION
TECHNIQUE

Each user needs to equalize the channel and detect its
own symbols at its own receiver. One way to do this is to
use MMSE equalization in combination with SIC, as in [16],
which we refer to as MMSE-SIC. MMSE equalization operates
by pre-multiplying the received vector yi in (10) by the MMSE
equalization matrix given by

WMMSE,i =
(
(GH

i Gi + σ2
i I)

−1
)
GH
i . (11)

More specifically, User 1 uses WMMSE,1 to equalize the
channel and then detect its own data symbols while treating
the User 2 data symbols as noise. On the other hand, User
2 uses WMMSE,2 to equalize the channel and first detect the
User 1 symbols, treating its own symbols as noise. User 2
then removes the User 1 signal from the received signal, uses
WMMSE,2 to equalize the channel and then detects its own
data symbols [16]. MMSE equalization is impractical for real-
world applications due to the MN ×MN matrix inversion in
(11), which has a computational complexity of O(M3N3).
This is clearly unrealistic for practical applications where
M and N can be large. Additionally, while low-complexity
implementations of MMSE equalization exist, they assume
ideal pulses and a small number of channel scatterers, and
thus are not applicable to practical scenarios [10].

The proposed method is inspired by the method proposed in
[10] for single-user OTFS which utilized an iterative LSMR-
based method with RZ detection and interference cancellation.
Note that if the method in [10] is applied directly to OTFS-
NOMA with SIC to detect the signals of User 1 and User 2,
we can expect poor performance due to the MUI present in
the system. Therefore, in the proposed method, we perform
SIC at a symbol level rather than a packet level as is done
in the MMSE-SIC approach. This allows for the decoding
of symbols from both users as soon as they become reliable
and also allows for the incorporation of MUI cancellation to
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Fig. 1. Illustration of the unreliable zone Vi(T ) in the case where User i
employs a 16-QAM constellation.

improve the detection performance. The proposed algorithm
uses an iterative process in which the mLSQR algorithm is
used to equalize the channel and an RZ detector is used
to detect the reliable symbols of both User 1 and User 2
within each iteration. Interference cancellation is then used
to remove ISI, IDI and MUI from the undetected symbols of
both users, which improves the detection quality in subsequent
iterations. The proposed mLSQR algorithm, which equalizes
the channel and also computes the post-equalization MSE, will
be explained in detail in Section IV. In the next subsection,
we describe the RZ detection process.

A. Reliability zone detector

Here, we first introduce some relevant notation. Each User
i ∈ {1, 2} uses Ai-ary QAM modulation, where the QAM
symbol constellation is defined as

Ai = {u+ vj : u, v ∈ {(2a− 1)di :

a ∈ {−
√
Ai/2 + 1, . . . ,

√
Ai/2}}},

where di is half the distance between adjacent QAM constel-
lation symbols of User i (the value of di is chosen so as to
ensure a unit-energy constellation Ai). Next, we define the
unreliable zone with respect to this QAM constellation as

Vi(T ) = {u+ vj |u, v ∈ Ui(T )}, (12)

where

Ui(T ) =

√
Ai/2−1⋃

a=−
√
Ai/2+1

Ui,a(T ). (13)

and

Ui,a(T ) = {u | 2adi − T/2 < u < 2adi + T/2},

where T is a pre-defined threshold which determines the size
of the unreliable zone. To demonstrate, the shaded areas in

Algorithm 1 Proposed Algorithm for symbol detection at
User i receiver

1: Input: User index i, Channel matrix Gi, received symbol
vector yi, power allocation fractions ρ1 and ρ2

2: Initialize: y(1) = yi, x̂1 = x̂2 = x̃1,q = x̃2,q = 0MN×1

3: Define N = {0, . . . ,MN − 1}, N1 = N2 = N , D1 = ∅
4: for k = 1 to K do
5: [x̃sup, γ] = mLSQR(Gi,y

(k), σ2
i )

6: x̃1 = ((x̃sup[m])m∈N1)/
√
ρ1

7: x̃2 = ((x̃sup[m])m∈N2∩D1)/
√
ρ2

8: if i = 1
9: Select threshold T1 by solving (40)

10: Select threshold T2 by solving (44)
11: else if i = 2
12: Select threshold T1 by solving (48)
13: Select threshold T2 by solving (40)
14: end if
15: Update users’ reliable symbol index sets via

Rj = {n ∈ Nj : x̃j [n] /∈ Vj(T (k)
j )},∀j ∈ {1, 2}

16: Quantize reliable symbols:

x̃j,q[r] = Qj(x̃j [r]), ∀r ∈ Rj ,∀j ∈ {1, 2}

17: Remove interference:

y(k+1) = y(k) −Gi(
√
ρ1x̃1,q +

√
ρ2x̃2,q)

18: Store detected symbols in output vectors:

x̂j = x̃j,q[r], ∀r ∈ Rj ,∀j ∈ {1, 2}

19: Reset: x̃1,q = 0 and x̃2,q = 0
20: Update: N1 = {n ∈ N : x̂1[n] = 0}, N2 = {n ∈ N :

x̂2[n] = 0}, D1 = {n ∈ N : n /∈ N1}
21: if Ni = ∅, break
22: end for
23: Output: x̂i

Fig. 1 shows an illustration of the unreliable zone Vi(T ) for
a 16-QAM constellation.

In the detection process, decisions are made in a symbol-
by-symbol manner. If a symbol xi[n] is outside Vi(Ti), then it
is deemed reliable and can be quantized to the nearest symbol
in Ai; the resulting symbol is denoted by xi,q[n] = Qi(x[n]).
If xi[n] is inside Vi(Ti) then it is deemed unreliable and no
quantization takes place. The detected reliable symbols can
then be used for interference cancellation.

B. Proposed algorithm

In this subsection, we describe the proposed method for
equalization and detection of the OTFS-NOMA signal at the
receiver of User i ∈ {1, 2}. This method is described in
Algorithm 1. Each iteration begins on line 5 of Algorithm 1,
where the LSQR algorithm is used to equalize the channel and
obtain a new estimate, x̃sup, of the superimposed transmitted
symbol vector via

[x̃sup, γi] = mLSQR(Gi,y
(k), σ2

i ). (14)
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Additionally, our proposed modification to the LSQR algo-
rithm calculates the post-equalization MSE (denoted by γ)
over all of the symbols of both users. The exact workings of
the mLSQR algorithm and the role of the MSE γ in optimizing
the RZ detector’s thresholds will be explained in detail in
Sections IV and V, respectively. In lines 6 and 7, two sub-
vectors are formed from x̃sup. The vector x̃1 contains the
elements of x̃sup whose indices are in N1, which is the set of
undetected User 1 symbols. Since the RZ detector can only
make decisions on User 2 symbols once the corresponding
User 1 symbols have been detected on a previous iteration,
the vector x̃2 contains the elements of x̃sup whose indices are
in N2, the set of undetected User 2 symbols, and D1, the set of
detected User 1 symbols. In lines 8 – 14, Algorithm 1 selects
the thresholds, T1 and T2, to be used in the RZ detector. The
exact process for selecting the thresholds will be explained in
detail in Section V. Decisions are then made on the reliability
of the estimated symbols in x̃1 and x̃2 via the RZ detector in
line 15.

In line 16, the reliable symbols are quantized to the nearest
QAM symbol and are stored in the empty vectors x̃1,q and
x̃2,q. In line 17, the quantized reliable symbols are used to
remove interference from the received signal vector via

y(k+1) = y(k) −Gi(
√
ρ1x̃1,q +

√
ρ2x̃2,q). (15)

The quantized symbols are also stored in the estimated symbol
vectors x̂1 and x̂2 (line 18). After canceling the interference
from the detected symbols of both users, the algorithm updates
the sets N1 and N2 of undetected symbols, and the set D1 of
detected User 1 symbols, based on the state of the output
vectors x̂1 and x̂2. Since this is at the User i receiver, the
algorithm stops when all of the User i symbols are detected,
i.e., User 1 will detect all of its symbols before it detects all
the User 2 symbols and can therefore stop once x̂1 has no
entries equal to zero.

Clearly, the performance of the RZ detector and the in-
terference cancellation depend heavily on the thresholds T1
and T2. To the best of the authors’ knowledge, in all existing
works in the literature which use RZ detection, the thresholds
are pre-determined and are reduced geometrically in each
iteration [10], [19], [22]. However, in the NOMA context the
performance of a user can be significantly affected by the MUI
from the other user (especially for the user with lower power
allocation). Hence, it is beneficial to optimize the thresholds T1
and T2 to improve the detection performance. Consequently,
we use a greedy approach in which T1 and T2 are optimized
within each iteration; for this, the post-equalization MSE, γ,
is needed. The conventional LSQR algorithm of [23] does
not provide this, and therefore a modified LSQR algorithm
is proposed in the following section.

In this paper we focus on the 2-user case as this allows
for greater simplicity and clarity in our analysis. However,
while Algorithm 1 is presented for the case of 2 users, it
can be modified in a straightforward manner to deal with
the case of J users where J ≥ 2, as follows. First, the
sets Nj = {n ∈ N : x̂j [n] = 0} and Dj = N\Nj are
defined for each User j ∈ J , where J = {1, 2, . . . , J}.
Second, Line 7 in Algorithm 2 is replaced by a loop which

sets x̃j = ((x̃sup[m])m∈Nj∩Dj−1)/
√
ρj for each j = 2 to

J . Finally, Lines 8-14 in Algorithm 1 are replaced by a loop
where, for each j ∈ J , threshold Tj is determined by solving
(40) if j = i, by solving (44) if j > i, and by solving
(48) if j < i. Here, the references to (44) and (48) refer to
these optimization problems with appropriately modified user
indices.

IV. MODIFIED LSQR ALGORITHM

In this section, we present our proposed modified version
of the LSQR algorithm, which is listed in Algorithm 2. We
begin by summarizing the basic operation of the conventional
LSQR algorithm, which remains unchanged in Algorithm 2.
Then we describe the proposed modification which computes
the post-equalization MSE. Two methods are presented for
computing this MSE, an exact method and a low-complexity
approximation.

A. Conventional LSQR algorithm

LSQR is a well-known iterative algorithm for solving equal-
ization problems of the form y = Gx + w, where x is the
transmitted vector, y is the received vector, G is the sparse
channel matrix and w is the complex AWGN noise vector
with variance per dimension σ2 [24]. At iteration u, LSQR
constructs the vector xu in the Krylov subspace

K(GHG,GHy, u) = span{GHy, (GHG)GHy, . . . ,

(GHG)u−1GHy}

which minimizes the norm of the residual, ||y − Gxk||.
LSQR can also be regularized by including σ2 as a damping
parameter. After several iterations, LSQR provides perfor-
mance similar to MMSE but with lower complexity [24].
At each iteration, the LSQR algorithm uses Golub-Kahan
bidiagonalization and QR decomposition to obtain the estimate
xu [24]. The authors of [23] proposed a simple recursive
method for updating this estimate within each iteration. The
iterative process continues until either the norm of the residual
reaches a pre-determined tolerance, ϵ, or the maximum number
of iterations U is reached. The conventional implementation
of LSQR does not compute the post-equalization MSE on the
symbols in xu which is necessary to optimize the thresholds
of the RZ detector. In order to obtain the MSE, we propose to
modify the LSQR algorithm to compute this directly within
the LSQR process. In the following subsections, we present
two methods for computing the MSE, an exact method and a
novel low-complexity approximation.

B. Exact MSE computation

We note that LSQR is algebraically equivalent to applying
the conjugate gradient (CG) method to the normal equation
GHGx = GHy [25]. Therefore, we can adapt the method
used in [26] for computing the post-equalization signal-to-
interference-plus-noise ratio (SINR) of the CG method to
LSQR.

LSQR computes xu at each iteration using a simple recur-
sion. However, similar to the CG method in [26], xu can also
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Algorithm 2 Modified LSQR Algorithm
1: Input: G, y and σ2

2: Initialize: b =
( y
0

)
, A =

(
G
σI

)
, β0 = ∥b∥, u0 =

b/β0, α0 = ∥AHu0∥, v0 = AHu0/α0, w0 = v0,
ϕ̄0 = β0, ρ̄0 = α0, x0 = 0MN×1, L1 = τ1

ρ̄0ϕ̄0
IMN,

L0 = 0MN×MN , τ0 = 1 and ϕ̄u = ρ̄u = 1 for u < 0
3: for u = 1 : U do
4: βu = ∥Avu−1 − αu−1uu−1∥
5: uu = (Avu−1 − αu−1uu−1)/βu
6: αu = ∥AHuu − βuvu−1∥
7: vu = (AHuu − βuvu−1)/αu
8: ρu = ∥[ρ̄u−1 βu]∥, cu = ρ̄u−1

ρu
, su = βu

ρu
9: θu = suαu, ϕu = cuϕ̄u−1

10: τu = ϕu

ρu
, µu = θu

ρu
11: ϕ̄u = −suϕ̄u−1, ρ̄u = −cuαu
12: xu = xu−1 + τuwu−1

13: wu = vu − µuwu−1

14: Compute Lu using (21)
15: if ||y −Gxu|| ≤ ϵ, break
16: end for
17: Compute ψ[n] and ν[n]2, ∀n using (22) and (23)
18: Compute γ[n] = ν[n]2

ψ[n]2 , ∀n
19: Output: x̃ = xu and γ

be computed using an LSQR equivalent equalization matrix
which depends on the iteration index u. The LSQR equivalent
equalization matrix at iteration u is defined as LuG

H, and xu
can be written as

xu = LuG
Hy. (16)

If Lu is known, then the MSE on each symbol in xu can be
calculated. In the following, we derive a recursive method for
computing Lu using variables which are already calculated
within the LSQR process. From [26], note that the normal
equation residual, ξu, can be recursively calculated as

ξu = ξu−1 − τuA
HAwu−1, (17)

where A =
(
G
σI

)
. This can also be calculated as [26]

ξu = ϕ̄uρ̄uwu − µ2
uϕ̄u−1ρ̄u−1wu−1. (18)

We then substitute ξu from (18) into (17) to obtain

ϕ̄uρ̄uwu =µ2
uϕ̄u−1ρ̄u−1wu−1 + ϕ̄u−1ρ̄u−1wu−1

− µ2
u−1ϕ̄u−2ρ̄u−2wu−2 − τuA

HAwu−1

(19)

Next, we rewrite line 12 of Algorithm 2 as wu−1 = (xu −
xu−1)/τu which can then be substituted into (19) to obtain
the following recursion for xu:

xu =xu−1+(
τuρ̄u−2ϕ̄u−2(1 + µ2

u−1)

τu−1ρ̄u−1ϕ̄u−1
IMN − τu

ρ̄u−1ϕ̄u−1
AHA

)
× (xu−1 − xu−2)

+
µ2
u−2τuρ̄u−3ϕ̄u−3

τu−2ρ̄u−1ϕ̄u−1
(xu−2 − xu−3) .

(20)

Using (16), we can obtain the recursion for Lu as

Lu =Lu−1+(
τuρ̄u−2ϕ̄u−2(1 + µ2

u−1)

τu−1ρ̄u−1ϕ̄u−1
IMN − τu

ρ̄u−1ϕ̄u−1
AHA

)
× (Lu−1 − Lu−2)

+
µ2
u−2τuρ̄u−3ϕ̄u−3

τu−2ρ̄u−1ϕ̄u−1
(Lu−2 − Lu−3) ,

(21)

where we initialize L1 = τ1
ρ̄0ϕ̄0

IMN, Lu = 0MN×MN for
u ≤ 0, τ0 = 1 and ϕ̄u = ρ̄u = 1 for u < 0.

The matrix Lu can now be used to compute the MSE. Let
B = LuZ, where Z = GHG. The post-equalization channel
gain on element n of xu is given by

ψ[n] = B[n, n]. (22)

The variance of the interference-plus-noise on element n of
xu is given by

ν[n]2 =
∑

m,m ̸=n

|B[n,m]|2 + C[n, n]σ2, (23)

where C = BLH
u . The MSE of element n of xu is therefore

given by

γ[n] =
ν[n]2

ψ[n]2
. (24)

While this method provides the exact MSE of each symbol
at iteration u of the LSQR process, it is computationally
complex due to the MN ×MN matrix multiplication in (21)
which requires (MN)2 complex multiplications. In the next
subsection, we propose a approximation to this MSE which
has a significantly lower computational complexity.

C. Low-complexity approximation

In practice, it is impossible to estimate the channel gains at
each individual time sample n, i.e., all of the values of h[n, l].
Thus, we assume that the channel is varying sufficiently slowly
that it has an approximately constant CIR over each OFDM
symbol within an OTFS block. Under this condition, G is
approximately a block circulant matrix with circulant blocks
(BCCB) [21]. Therefore, G can be diagonalized via

ΛG = (FN ⊗ FM )G(FN ⊗ FM )H. (25)

The matrix AHA inherits the BCCB structure of G. Therefore,
we can obtain the diagonalization of AHA as

ΛA = (FN ⊗ FM )AHA(FN ⊗ FM )H.

By using the properties of BCCB matrices [5], we can alter-
natively obtain ΛA as

ΛA = (ΛG
∗ΛG + σ2I).

Note that L1 is initialized as a diagonal matrix and hence
Lu retains the BCCB structure of the AHA for u > 2.
Additionally, since L1 is a diagonal matrix, it is invariant under
diagonalization, i.e,

ΛL1
= (FN ⊗ FM )L1(FN ⊗ FM )H = L1.
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This means that the entire recursion can be performed in
the diagonalized domain. The recursion for ΛLu can now be
formulated as

ΛLu =ΛLu−1+(
τuρ̄u−2ϕ̄u−2(1 + µ2

u−1)

τu−1ρ̄u−1ϕ̄u−1
IMN − τu

ρ̄u−1ϕ̄u−1
ΛA

)
×
(
ΛLu−1

−ΛLu−2

)
+
µ2
u−2τuρ̄u−3ϕ̄u−3

τu−2ρ̄u−1ϕ̄u−1

(
ΛLu−2 −ΛLu−3

)
.

(26)

where we initialize ΛL1
= τ1

ρ̄0ϕ̄0
IMN and ΛLu

= 0MN×MN

for u < 1. Since this recursion only involves diagonal
matrices, it can be performed with low complexity.

We can now use ΛLu
to calculate the approximate MSE. We

calculate the diagonalizations of B and C as ΛB = L̃ΛG
∗ΛG

and ΛC = ΛG
∗ΛGΛLu , respectively. The reverse of the

diagonalization process in (25) can then be used to calculate
approximations of B and C as

B̃ = (FN ⊗ FM )HΛB(FN ⊗ FM )

and
C̃ = (FN ⊗ FM )HΛC(FN ⊗ FM ).

Since B̃ and C̃ are BCCB matrices, their respective rows are
simply shifted versions of each other. Therefore, under this
approximation, each symbol experiences the same MSE and
the subscript n can be dropped from (22) – (24). The post-
equalization channel gain is simply given by

ψ̃ = B̃[1, 1], (27)

and the variance of the interference-plus-noise is given by

ν̃2 =

MN−1∑
m=2

|B̃[1,m]|2 + C̃[1, 1]σ2. (28)

Therefore, the approximate MSE on each symbol is obtained
as

γ̃ =
ν̃2

ψ̃2
. (29)

In the context of the considered OTFS-NOMA system, we
apply mLSQR in line 5 of Algorithm 1 to obtain in the k-th
iteration the estimate of the transmitted superimposed symbol
vector, x̃sup and the post-equalization MSE for User 1 and
User 2, which is given by

γ̃
(k)
j =

ν̃2

ρjψ̃2
,∀j ∈ {1, 2} (30)

We then use this calculated MSE to optimize the thresholds
of the RZ detector in a greedy manner, as described in detail
in the following section.

It is important to note that the proposed modifications to the
LSQR algorithm do not change the computational procedure
of LSQR; instead, the modifications use terms that are already
calculated in LSQR to obtain the post-equalization MSE. As
such, the proposed modifications do not affect the numerical
stability of LSQR.

V. RZ DETECTOR THRESHOLD OPTIMIZATION

In this section, we describe how the MSE calculated by
the modified LSQR algorithm can be used to optimize the
RZ thresholds for each user. Our proposed method works by
tracking the evolution of the MSE on the symbols of User
1 and User 2 as Algorithm 1 progresses. The key idea is to
choose optimal values for the RZ thresholds T1 and T2 in
each iteration k which minimise the “pre-decision” MSE, i.e.,
the mean-square value of the error seen by the RZ detector at
iteration k + 1.

In lines 15 and 16 of Algorithm 1, at iteration k, the RZ
detector makes a decision on whether the received symbols
of each user are unreliable or reliable and then quantizes the
reliable symbols to the nearest QAM symbol in that user’s
constellation. Therefore, there are 3 possible outcomes of the
unreliable zone detection. Symbols are either correct, incorrect
or undetected, each such event having its own associated
probability which depends on the thresholds, T1 and T2, and
the user’s MSE values, γ̃k1 and γ̃k2 .

Next, we derive expressions for the probability of each
outcome above in the context of each user’s symbols. To
derive the probability of each outcome for a generalized Ai-ary
QAM system, we first derive them for a

√
Ai-ary PAM system

by adapting the closed-form expression for the probability of
error of a 2-user NOMA system derived in [27]. For the User
1 symbols, the decision is being made on the superimposed
symbols which contain contributions from the symbols of User
1 and User 2. First, the following functions are defined (c.f.
[27]):

qa(j, l, T1, γ̃1) = Q

d((2j − 1)− (2l − 1)
√

ρ2
ρ1
)− T1

2√
γ̃1/2

 ,

qb(j, l, T1, γ̃1) = Q

d((2j − 1) + (2l − 1)
√

ρ2
ρ1
)− T1

2√
γ̃1/2

 ,

qc(l, T1, γ̃1) = Q

d(1− (2l − 1)
√

ρ2
ρ1
) + T1

2√
γ̃1/2

 ,

qd(l, T1, γ̃1) = Q

d(1 + (2l − 1)
√

ρ2
ρ1
) + T1

2√
γ̃1/2

 ,

where Q(x) = 1
2erfc(

x√
2
) denotes the Gaussian Q-function.

The probability of correct symbol detection per dimension for
User 1, denoted by PC,PAM,1, is then given by (31), shown at
the top of the next page, where the threshold used is T1. For the
probability of incorrect detection, we adopt a nearest-neighbor
approximation, i.e., it is assumed that if an incorrect symbol
is detected, it is always a nearest neighbor in that user’s QAM
constellation (this assumption becomes very accurate at high
SNR). The probability of incorrect detection per dimension
for User 1, denoted by PE,PAM,1, is given by (32), where
the threshold used is T1. User 2 symbols are only fed into
the RZ detector once the corresponding User 1 symbols have
been detected on a previous iteration. Thereafter, the decisions
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PC,PAM,1 = 1− 2(
√
A1 − 1)

A1

√
A1/2∑
l=1

[qa(1, l, T1, γ̃1) + qb(1, l, T1, γ̃1)] , (31)

PE,PAM,1 =
2

A

√
A1/2∑
l=1

[
(
√
A1 − 1) (qc(1, l, T1, γ̃1) + qd(1, l, T1, γ̃1))− (

√
A1 − 2) (qa(2, l, T1, γ̃1) + qb(2, l, T1, γ̃1))

]
(32)

PC,PAM,2 = 1− 2(
√
A2 − 1)√
A2

Q

(
d− T2

2√
γ̃2/2

)
, (33)

PE,PAM,2 =
2√
A2

(
(
√
A2 − 1)Q

(
d+ T2

2√
γ̃2/2

)
− (
√
A2 − 2)Q

(
3d− T2

2√
γ̃2/2

))
(34)

are no longer being made upon a superposition of both user
symbols. Consequently, the probability of correct detection per
dimension of User 2 is given by (33), where the threshold used
is T2. The probability of incorrect detection per dimension of
User 2 is given by (34). The probability of correct detection,
incorrect detection, and non-detection at User i ∈ {1, 2} can
then be obtained, respectively, as

Pc,i = (PC,PAM,i)
2, (35)

Pe,i = 2PE,PAM,i, (36)

Pu,i = 1− Pc,i − Pe,i, (37)

The next subsection describes how these probability expres-
sions can be used to optimize the thresholds at each user’s
receiver.

A. Design of threshold Ti at User i receiver

In this subsection we describe the process for choosing the
threshold Ti at the receiver of User i in each iteration of
Algorithm 1. We begin at iteration k = 1 where it can be
seen from (27), (28) and (29) the MSE of the User i symbols
after mLSQR equalization is given by

γ̃
(1)
i =

1

ρiψ̃2

(
MN−1∑
m=2

|B̃[1,m]|2(ρ1 + ρ2) + C̃[1, 1]σ2

)
.

(38)
This can be rewritten as

γ̃
(1)
i = Ω

(1)
i +Ψ

(1)
i,u +Wi. (39)

where Ω
(1)
i = ρ1

ρiψ̃2

∑MN−1
m=2 |B̃[1,m]|2 is the MSE due to the

undetected User 1 symbols, Ψ(1)
i,u = ρ2

ρiψ̃2

∑MN−1
m=2 |B̃[1,m]|2

is the MSE due to the undetected User 2 symbols and Wi is
the AWGN component of the MSE. After the detection and
interference cancellation process in lines 15–17 of Algorithm
1, the MSE due to undetected User 1 symbols will be reduced
by a factor depending on the probability of non-detection of
User 1 symbols in iteration 1. Therefore, we can express
the remaining MSE of the undetected User 1 symbols at

iteration k = 2 as Ω
(2)
i = Ω

(1)
i P

(1)
u,1 . Generalizing this

argument, at iteration k, we express the remaining MSE of
the undetected User 1 symbols as Ω

(k)
i = Ω

(k−1)
i P

(k−1)
u,1

and we define the remaining MSE of the undetected User 2
symbols as Ψ

(k)
i,u = Ψ

(k−1)
i,u P

(k−2)
u,2 . Since Wi is unaffected

by the interference cancellation process, it sets a limit on
the minimum achievable probability of error. Therefore, the
User i receiver should choose a threshold at iteration k which
achieves this minimum minimum achievable probability of
error. We note that, via (36), (32) and (34), Pe,i can be
expressed as a function of 2 variables, i.e, γ̃i and Ti. Hence,
the User i receiver chooses the threshold Ti at iteration k such
that

Pe,i(γ̃
(k)
i , Ti) = Pe,i(Wi, 0). (40)

Since the remaining User j symbols (j ̸= i) impart MUI on
the remaining undetected User i symbols, User i must select
the threshold Tj which minimizes γ̃(k)i . We now describe the
exact optimization process at each user’s receiver.

B. Optimizing T2 at receiver of User 1

The MSE of User 1 will be reduced by the correctly detected
symbols from the previous iteration and increased by the
incorrectly detected symbols. Hence, the MSE of User 1 at
iteration 2 will be comprised of the remaining interference
from the undetected User 1 symbols, the interference from
the undetected User 2 symbols, the AWGN and the MSE due
to interference cancellation error multiplied by the probability
of error of User 1. Therefore, the MSE for User 1 at iteration
2 is given by

γ̃
(2)
1 = Ω

(1)
1 P

(1)
u,1 + E1Ω

(1)
1 P

(1)
e,1 +Ψ

(1)
1,u +W, (41)

where Ei = 4d2i is the average energy of an interfering symbol
due to the event of interference cancellation error of User i
under the nearest-neighbour approximation. This is multiplied
by the probability of error of User i and by the remaining MSE
due to undetected User i symbols to account for the reduced
number of symbols can be incorrectly detected as Algorithm
1 progresses. Using (37), we can express (41) as

γ̃
(2)
1 = γ̃

(1)
1 − Ω

(1)
1 P

(1)
c,1 + (E1 − 1)Ω

(1)
1 P

(1)
e,1 , (42)
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∂

∂T1
P

(k)
c,1 =

2− 4(
√
A1 − 1)

A1

√
A1/2∑
l=1

[qa(1, l) + qb(1, l)]

×

 (
√
A1 − 1)

A1

√
πγ̃

(k)
1

√
A1/2∑
l=1

exp
−

(d((4l − 2)
√

ρ2
ρ1

− 2) + T1)
2

4γ̃
(k)
1

+ exp

−
(d((2− 4l)

√
ρ2
ρ1

− 2) + T1)
2

4γ̃
(k)
1


(50)

∂

∂T1
P

(k)
e,1 =

−2

A1

√
πγ̃

(k)
1

×

√
A1/2∑
l=1

(√A1 − 1)

exp

−
(d((2− 4l)

√
ρ2
ρ1

+ 2) + T1)
2

4γ̃
(k)
1

+ exp

−
(d((4l − 2)

√
ρ2
ρ1

+ 2) + T1)
2

4γ̃
(k)
1


+(
√
A1 − 2)

exp

−
(d((4l − 2)

√
ρ2
ρ1

− 6) + T1)
2

4γ̃
(k)
1

+ exp

−
(d((2− 4l)

√
ρ2
ρ1

− 6) + T1)
2

4γ̃
(k)
1

 (51)

∂

∂T2
P

(k)
c,2 =

2− 4(
√
A2 − 1)

A2
Q

 d− T2

2√
γ̃
(k)
2 /2

 (
√
A2 − 1)

A2

√
πγ̃

(k)
2

exp

(
− (2d+ T2)

2

4γ̃
(k)
2

) (52)

∂

∂T2
P

(k)
e,2 =

−1

A2

√
πγ̃

(k)
1

(
(
√
A2 − 1) exp

(
− (2d+ T2)

2

4γ̃
(k)
2

)
+ (
√
A2 − 2) exp

(
− (T2 − 6d)2

4γ̃
(k)
2

))
(53)

Generalizing this argument, we can formulate an expression
for the MSE of User 1 on iteration k + 1, which is given by

γ̃
(k+1)
1 = γ̃

(k)
1 − Ω

(k)
1 P

(k)
c,1 + (E1 − 1)Ω

(k)
1 P

(k)
e,1

−
(
Ψ

(k)
1,u

(
P

(k−1)
c,1 + P

(k−1)
e,1

)
+Ψ

(k)
1,d

)
P

(k)
c,2

+ (E2 − 1)
(
Ψ

(k)
1,u

(
P

(k−1)
c,1 + P

(k−1)
e,1

)
+Ψ

(k)
1,d

)
P

(k)
e,2 .

(43)

where Ψ
(k)
1,d = Ψ

(k−1)
1,d +Ψ

(k−1)
1,u

(
P

(k−2)
c,1 + P

(k−2)
e,1

)
P

(k−1)
u,2 −

Ψ
(k−1)
1,d

(
P

(k−1)
c,2 + P

(k−1)
e,2

)
is the remaining interference

power from the User 2 symbols for which the corresponding
User 1 symbols have been detected.

The probability of User 1 symbols being undetected is
initialized as P

(0)
u,1 = 1. We also initialize Ψ

(−1)
1,d = 0 as

no User 1 symbols have been detected before the algorithm
begins. The MSE for User 1 on iteration k+1 is a function of
the probability terms in (35) and (36), which are themselves
functions of T2. All other terms are constants which can be
updated recursively. The User 1 receiver can now choose the
optimum value T2 at iteration k to minimize the MSE of User
1 at iteration k + 1 .

At each iteration k, the receiver of User 1 solves the
optimization problem

min
T2

γ̃
(k+1)
1 (44a)

s.t. T2 ≥ 0. (44b)

To solve this optimization problem, the derivative of γ̃(k+1)
1

with respect to T2 is set equal to zero. Since only P
(k)
e,2 and

P
(k)
c,2 in (43) are functions of T2, the derivative of γ̃(k+1)

1 with
respect to T2 is given by

∂

∂T2
γ̃
(k+1)
1 =

(
Ψ

(k)
2,uP

(k−1)
d,1 +Ψ

(k)
1,d

)
×(

(E2 − 1)
∂

∂T2
P

(k)
e,2 − ∂

∂T2
P

(k)
c,2

)
.

(45)

Using ∂
∂xQ(x) = − 1√

2π
e−x

2

, the derivative of P (k)
c,2 and P (k)

e,2

can be expressed as (52) and (53), respectively. The User 1
receiver then solves ∂

∂T2
γ̃
(k+1)
1 = 0 using the Brent-Dekker

method [28] to obtain the solution to (44a), which is the
optimized T2 at iteration k of Algorithm 1.

C. Optimizing T1 at User 2 receiver

As with User 1, the MSE of User 2 will be reduced by
the correctly detected symbols from the previous iteration and
increased by the incorrectly detected symbols. However, in
contrast to User 1, the RZ detector of User 2 only makes
decisions on the User 2 symbols whose corresponding User 1
symbols have already been detected. Therefore, the MSE of
a User 2 symbol is also affected by the incorrect detection of
the overlapping User 1 symbol. Given this, at iteration 2 of
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Algorithm 1, the MSE of the User 2 symbols which are being
fed into the RZ detector can be written as

γ̃
(2)
2 =γ̃

(1)
2 − Ω

(1)
2 P

(1)
c,1 + (E1 − 1)Ω

(1)
2 P

(1)
e,1

+
ρ2
ρ1
E1P

(0)
u,1P

(1)
e,1 +W,

(46)

where the fourth term of (46) accounts for the MSE due
to directly overlapping User 1 symbols that are incorrectly
detected. Generalizing this argument, we can formulate a
general expression for the MSE of User 2 at iteration k + 1,
which is given by

γ̃
(k+1)
2 =γ̃

(k)
2 − Ω

(k)
2 P

(k)
c,1

+ ((E1 − 1)Ω
(k)
2 +

ρ2
ρ1
E1P

(1)
u,1 )P

(k)
e,1

−
(
Ψ

(k)
2,uP

(k−1)
d,1 +Ψ

(k)
2,d

)
P

(k)
c,2

+ (E2 − 1)
(
Ψ

(k)
2,uP

(k−1)
d,1 +Ψ

(k)
2,d

)
P

(k)
e,2 .

(47)

Similar to the case of the User 1 receiver above, we can now
formulate the optimization problem to be solved at iteration
k, i.e.,

min
T1

γ̃
(k+1)
2 (48a)

s.t. T1 ≥ 0, (48b)

This optimization problem is solved in a similar manner to
(44a). Since only P (k)

e,1 and P (k)
c,1 in (29) are functions of T1,

the derivative of γ̃(k+1)
2 with respect to T1 is given by

∂

∂T1
γ̃
(k+1)
1 =

(
(E1 − 1)Ω

(k)
2 +

ρ2
ρ1
EP

(1)
u,1

)
∂

∂T1
P

(k)
e,1

− Ω
(k)
2

∂

∂T1
P

(k)
c,1

(49)

The derivatives of P (k)
c,2 and P

(k)
e,2 can be expressed as (50)

and (51) respectively. The receiver of User 2 then solves
∂
∂T2

γ̃
(k+1)
1 = 0 to obtain the solution to (48a), which is the

optimized T1 at iteration k of Algorithm 1.

Computational complexity

In this subsection, the computational complexity of the
proposed method is compared to that of the MMSE-SIC
benchmark, in terms of the number of complex multipli-
cations. Direct implementation of MMSE equalization in-
volves the inversion of an MN × MN matrix and hence
has a computational complexity of O(M3N3). Each iter-
ation of the conventional LSQR algorithm has a compu-
tational complexity of O(MN log2(MN)) [24]. The low-
complexity MSE calculation in the proposed mLSQR algo-
rithm (described in Subsection IV-C) can be performed with
a single M -point FFT operation and a single N -point IFFT
operation and therefore has a computational complexity of
O(M log2(M)) + O(N log2(N)), which is negligible com-
pared to the complexity of the LSQR computation. Hence, the
proposed mLSQR algorithm has a computational complexity
of O(MN log2(MN)). In the worst-case scenario, Algorithm
1 performs mLSQR K times, each with U mLSQR iterations;
therefore, the computational complexity of Algorithm 1 is

Fig. 2. Normalized approximation error of the proposed low-complexity MSE
computation.

O(UKMN log2(MN)). In practice, the typical values of K
and U are in the order of tens and the typical values of M
and N can be as high as M = 512 and N = 128 [4], [7].
Thus, UK ≪ M2N2 and our method can achieve orders
of magnitude computational complexity improvement over
MMSE-SIC for OTFS-NOMA. It should also be noted that
optimizing the thresholds allows for Algorithm 1 to converge
faster at high SNR than a naive threshold design, as the
thresholds are not unnecessarily large and the algorithm can
detect more symbols at earlier iterations.

VI. NUMERICAL RESULTS AND DISCUSSION

TABLE I
SIMULATION PARAMETERS

Delay bins (M ) 64
Doppler bins (N ) 16

Carrier frequency (fc) 5.9 GHz
Subcarrier spacing 15 kHz
Modulation scheme 4-QAM, 16-QAM

Channel model TDL-C [29]
Delay spread 300 ns
User velocity 90− 450 km/h

Algorithm 1 iterations (K) 10
mLSQR iterations (U ) 15
mLSQR tolerance (ϵ) 10−2

This section presents numerical results to showcase the
effectiveness of the proposed OTFS-NOMA equalization and
detection algorithm. As a benchmark, an OTFS-NOMA system
using MMSE equalization and SIC for detection is consid-
ered, which is referred to as MMSE-SIC. Additionally, the
performance of the proposed algorithm using the optimized
thresholds outlined in Section V is compared to the proposed
algorithm with naive (conventional) threshold design. For the
naive threshold case, we consider a starting threshold of
T

(1)
i = 2di for each user which is then reduced geometrically

within each iteration as T (k)
i = T

(1)
i (1 − (k/K)) (this was

the threshold adaptation strategy adopted in [10], [19], [22]).



11

Fig. 3. Comparison of the SER performance of User 1 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different SNR levels, for the case where each
user is allocated a 4-QAM constellation.

Fig. 4. Comparison of the SER performance of User 2 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different SNR levels, for the case where each
user is allocated a 4-QAM constellation.

Monte Carlo simulation is used to average the results over 105

random channel instances.
A carrier frequency of fc = 5.9 GHz, a transmission

bandwidth of 4.95 MHz and a delay-Doppler grid size of
M = 64 and N = 16 are considered. Additionally, we
consider a fixed SNR difference of 15 dB between the users,
i.e., User 2 has an average SNR that is 15 dB higher than
that of User 1. The Tapped Delay Line C (TDL-C) model
with a delay spread of 300 ns [29] is used for the channel
model. We consider a range of maximum Doppler shifts
from 500 Hz to 2500 Hz, which corresponds to velocities of
approximately 90 km/h to 450 km/h at a carrier frequency
of 5.9 GHz. The Doppler shifts are generated using Jakes’
model [30]. For the mLSQR algorithm, a maximum number
of iterations of U = 15 and a tolerance of ϵ = 10−2 are used,

Fig. 5. Comparison of the SER performance of User 1 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different SNR levels, for the case where each
user is allocated a 16-QAM constellation.

Fig. 6. Comparison of the SER performance of User 2 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different SNR levels, for the case where each
user is allocated a 16-QAM constellation.

which are commonly used values for LSQR implementation
in the related literature [10], [25]. Additionally, the (low-
complexity) approximate MSE computation method outlined
in subsection IV-C is used in the mLSQR algorithm for all
simulations. For Algorithm 1, we consider a maximum number
of iterations of K = 10 to limit the computational complexity.
For power allocation, we use the average-SNR-based fractional
transmit power allocation (FTPA) scheme outlined in [16]. The
scheme works by considering the average SNR of each user as
a fraction of the sum of the SNR of both users. The transmit
power of User i is given by:

ρi =
SNRi

SNR1 + SNR2
.

To compare the low-complexity MSE computation outlined
in Section IV-C to the exact method outlined in Section IV-B,
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Fig. 7. Comparison of the SER performance of User 1 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different maximum Doppler shifts, for the case
where each user is allocated a 16-QAM constellation.

we demonstrate the approximation error of the low-complexity
method. We define the normalized approximation error as

eγ =
1

MN
E

{
MN−1∑
n=0

|γn − γ̃|2
}

(50)

Figs. 2 shows eγ at different velocities with an SNR of 15 dB.
For this simulation, a small scale example is considered, where
M = N = 4, due to the computational complexity of the
exact MSE computation method. As can be seen in Fig. 2,
the approximation error is very small at low velocities, which
demonstrates the validity of the low-complexity method when
the channel matrix structure is close to BCCB. As expected,
the error becomes larger as the velocity increases, as the
assumption of a BCCB channel matrix becomes less valid.
However, the approximation error is still relatively small and
the low-complexity approximate MSE calculation is still useful
for choosing the user thresholds.

Fig. 3 shows the symbol error rate (SER) of User 1 using the
proposed equalization and detection method compared to the
benchmark schemes for different signal-to-noise ratio (SNR)
conditions. For these simulations each user’s symbols are taken
from a 4-QAM constellation, i.e., A1 = A2 = 4, and the user
velocity is fixed at 200 km/h, which equates to a maximum
Doppler shift of approximately 1000 Hz. It can be seen from
Fig. 3 that for User 1, the proposed method outperforms the
MMSE-SIC method, providing an SNR gain more than 2 dB
at an SER of 10−3. Additionally, optimizing the RZ detector
thresholds provides further performance gains over the naive
threshold design benchmark. Since User 1 has a larger power
allocation, it is less affected by MUI due to the disparity in
the user power levels. Hence, optimizing the the RZ thresholds
provides smaller gain than for User 2.

The performance gains of the proposed algorithm primarily
come from the proposed iterative detector based on using
reliability zones and interference cancellation. At each iter-
ation of Algorithm 1, user symbols are only decoded if they

Fig. 8. Comparison of the SER performance of User 2 using Algorithm 1
with optimized thresholds, Algorithm 1 with naive thresholds, and MMSE
equalization with SIC, with different maximum Doppler shifts, for the case
where each user is allocated a 16-QAM constellation.

are deemed “reliable” by the RZ detection scheme outlined
in Section III-A. The interference cancellation process then
removes only these reliable symbols from the superimposed
symbol vector, producing a superimposed symbol vector with a
lower interference level in each iteration with high probability.
This in turn aids detection and interference cancellation in
the next iteration. The proposed method gains additional per-
formance improvements by optimizing the thresholds which
determine the “unreliable zone” for the RZ detection scheme.
By optimizing the thresholds to minimize the user MSE at the
next iteration, we allow for more interference to be removed
at early iterations than the naive conservative threshold design
case. This improves detection of the unreliable symbols further
and in turn improves the SER performance.

Fig. 4 shows the SER of User 2 using the proposed
method compared to the benchmark schemes for different
SNR conditions for the 4-QAM case. It can be seen from
Fig. 4 that the proposed method significantly outperforms the
benchmark schemes. The proposed method with optimized
RZ thresholds provides performance gains of many orders
of magnitude over the MMSE-SIC scheme and also over the
naive threshold design benchmark scheme. This is because
the naive threshold design with tight starting thresholds means
that fewer User 1 symbols are detected during early iterations
and their MUI is still present in the system when the User
2 symbols are being detected. Optimizing the thresholds to
minimize User 2 MSE allows for more MUI to be removed at
early iterations and improves the accuracy of User 2 symbol
detection. Additionally, the proposed method provides signifi-
cant performance gains over MMSE-SIC which performs very
poorly, especially at high SNRs. This is due to the fact that,
as the SNR increases, MMSE equalization becomes closer to
zero-forcing equalization and the interference is amplified by
the inverse matrix involved in the equalization process.

Fig. 5 shows the SER of User 1 using the proposed
equalization and detection method compared to the benchmark
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schemes for different SNR conditions, for the case where
each user’s symbols are taken from a 16-QAM constellation
(A1 = A2 = 16). For these simulations, the user velocity
is fixed at 200 km/h, which equates to a maximum Doppler
shift of approximately 1000 Hz. It can be seen from Fig. 3
that for User 1, the proposed method outperforms the MMSE-
SIC method, providing an SNR gain of 6 dB. Additionally,
optimizing the RZ detector thresholds provides an SNR gain of
2 dB at an SER of 10−2 over the naive threshold design bench-
mark. Fig. 6 shows the SER of User 2 in OTFS-NOMA using
the proposed method compared to the benchmark schemes
for different SNR conditions for the 16-QAM case. It can be
seen that the proposed method outperforms the benchmark the
MMSE-SIC scheme for User 2 in the 16-QAM case as well.
In addition, optimizing the RZ detector thresholds provides
a significant performance increase over the naive threshold
design benchmark scheme.

Fig. 7 and Fig. 8 show the SER of User 1 and User 2,
respectively, under the proposed equalization and detection
method, compared to the benchmark MMSE-SIC scheme,
for different values of maximum Doppler shift, for the 16-
QAM case. It can be seen that the performance gains of
the proposed method over MMSE-SIC actually improves in
high Doppler environments, as the performance of MMSE-
SIC deteriorates significantly at higher maximum Doppler
shifts. This is because as the Doppler shift increases, the
channel matrix is more likely to be ill-conditioned; hence,
the matrix inversion involved in MMSE equalization may
not be robust and can introduce significant equalization error.
Additionally, the optimized RZ threshold design offers a
significant performance improvement over the naive threshold
design for both users. This confirms the benefits of optimizing
the RZ thresholds, especially for the user with the lower power
allocation.

VII. CONCLUSION

This paper has presented a novel receiver for downlink
OTFS-NOMA. The proposed method uses an iterative process
which deploys the LSQR algorithm to equalize the channel,
RZ detection to detect symbols from both users within each
iteration, and interference cancellation to remove MUI as well
as IDI and ISI. The proposed modifications to the LSQR
algorithm calculates the post-equalization MSE information
needed for optimizing the RZ thresholds. An exact method
was presented for computing the MSE as well as a low-
complexity approach which takes advantage of the proper-
ties of the delay-Doppler channel in OTFS. By optimizing
the thresholds, we are able to remove more MUI from the
system at early iterations and are therefore able to improve
detection performance on subsequent iterations. Numerical
results demonstrate the superiority of the proposed method,
in terms of SER performance, with respect to an MMSE-
SIC benchmark scheme and with respect to a corresponding
scheme with naive, pre-determined RZ threshold design.
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