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Abstract—Orthogonal time frequency space (OTFS) modula-
tion has recently emerged as a potential 6G candidate waveform
which provides improved performance in high-mobility scenarios.
In this paper we investigate the combination of OTFS with non-
orthogonal multiple access (NOMA). Existing equalization and
detection methods for OTFS-NOMA, such as minimum-mean-
squared error with successive interference cancellation (MMSE-
SIC), suffer from poor performance and high complexity. Moti-
vated by this, in this paper we propose a low-complexity method
for equalization and detection for OTFS-NOMA. The proposed
method uses an equalizer based on the least-squares with QR
factorization (LSQR) algorithm and a novel reliability zone (RZ)
detection scheme which estimates the reliable symbols of the
users and then uses interference cancellation to remove multi-
user interference (MUI). We present numerical results which
demonstrate the superiority of our proposed method, in terms of
symbol error rate (SER), to the existing MMSE-SIC benchmark
scheme. Additionally, we present results which illustrate that a
judicious choice of RZ thresholds is important for optimizing the
performance of the proposed algorithm.

I. INTRODUCTION

The sixth generation (6G) of mobile networks is expected to

support communications in high-mobility environments such

as high-speed rail, vehicle-to-everything (V2X) and unmanned

aerial vehicle (UAV) communications [1]. Orthogonal fre-

quency division multiplexing (OFDM) has been the waveform

utilized in the 4th and 5th generation of wireless networks.

However, it is well-known that in high-mobility scenarios,

OFDM performs poorly due to the Doppler effect [2]. In recent

years, a new waveform called orthogonal time frequency

space (OTFS) has been proposed to address this drawback of

OFDM in time-varying channels. In contrast to OFDM, which

transmits data symbols in the time-frequency domain, OTFS

places the data symbols in the delay-Doppler domain [3].

OTFS uses a transformation to spread each information symbol

over the time-frequency plane. This means that the symbols

are all equally affected by the time and frequency selectivity

of the channel which converts the time-varying channel to a

time-invariant one in the delay-Doppler domain.

For a multi-user OTFS system, the multiple access (MA)

technique utilized is an important consideration. The methods
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proposed thus far in the literature can be broadly categorized as

orthogonal multiple access (OMA) or non-orthogonal multiple

access (NOMA). In OTFS-OMA, users are multiplexed either

in the delay or the Doppler domain and only one user can

occupy a given resource block [4]. However, the users suffer

from multi-user interference (MUI) due to the Doppler spread.

The resulting MUI can be mitigated by inserting guard bands

between the users, as was done in [5]. However, this leads to

a spectral efficiency (SE) loss [6].

An alternative approach is OTFS-NOMA, where the users

are allowed to occupy the same resource block and are

multiplexed in either the power domain or the code domain.

A multi-user detection (MUD) scheme such as successive

interference cancellation (SIC) is then used to detect the user

symbols [7]. NOMA is a well-known technique which can

provide improved SE compared to OMA. A number of OTFS-

NOMA schemes have been proposed in the literature in recent

years which use either power-domain [8], [9] or code-domain

[10] multiplexing. In this paper, we focus on power-domain

OTFS-NOMA.

With regard to the existing work on power-domain OTFS-

NOMA, the authors of [8] considered a single high-mobility

OTFS user multiplexed with multiple low-mobility OFDM

users. However, this system model is restricted to a single

OTFS user and hence cannot accommodate multiple high-

mobility users. The authors of [9] addressed this issue and

proposed an OTFS-NOMA scheme which utilizes a rectan-

gular pulse shape where multiple users overlap in the delay-

Doppler domain and are multiplexed in the power domain.

However, the system proposed in [9] used minimum-mean-

squared-error (MMSE) equalization in combination with SIC

for equalization and detection. The problem with this scheme

is that direct implementation of MMSE for equalization is

prohibitively computationally complex and thus impractical

for real-world scenarios.

As of yet, to the best of our knowledge, there is no

low-complexity equalization and detection method for power-

domain OTFS-NOMA. In addition, the low-complexity equal-

ization and detection method of [11] for single-user OTFS

is not directly applicable to a NOMA scenario due to the

presence of MUI. In this paper, we address these gaps in the

literature with the following contributions: (i) we propose a

low-complexity receiver for a 2-user downlink OTFS-NOMA



system where both users deploy OTFS and are multiplexed

in the power domain; (ii) we propose an iterative method for

equalization and detection which uses the LSQR algorithm

to equalize the channel and an RZ detector to detect reliable

symbols from both users; (iii) our proposed method uses a

novel symbol-wise interference cancellation process which

considers MUI as well as inter-Doppler interference (IDI) and

inter-symbol interference (ISI). We present numerical results

which show that the proposed method provides symbol error

rate (SER) performance gains of up to 6 dB over MMSE

equalization with SIC. Additionally, we present numerical

results which demonstrate that detection performance can be

improved further by optimizing the choice of thresholds within

the RZ detector.

The rest of this paper is organized as follows. Section II

describes the system model for a 2-user OTFS-NOMA sys-

tem. In Section III, the proposed equalization and detection

algorithm is presented. Section IV presents numerical results.

Finally, Section V concludes the paper.

Notations: Superscripts (·)T and (·)H denote transpose and

Hermitian transpose, respectively. Bold lower-case characters

are used to denote vectors and bold upper-case characters are

used to denote matrices. x[n] denotes the n-th element of the

vector x. The function vec(X) vectorizes the matrix X by

stacking its columns to form a single column vector, and ⊗
represents the Kronecker product. The p×p identity matrix and

p×q all-zero matrix are denoted by Ip and 0p×q , respectively.

Finally, j =
√
−1 represents the imaginary unit.

II. SYSTEM MODEL

For ease of exposition, in the following sections we describe

the system model and the proposed detector for the case of a

2-user OTFS-NOMA system; however, note that the proposed

method is generalizable to any number of users. We consider

a downlink OTFS-NOMA system where both users occupy

the same delay-Doppler domain resources and are multiplexed

in the power domain. For User i ∈ {1, 2}, let the M × N
matrix Xi contain the MN quadrature amplitude modulation

(QAM) data symbols placed in the delay-Doppler domain. The

elements of Xi are assumed to be independent and identically

distributed (i.i.d.) complex random variables. Additionally,

a normalized (unit-energy) square QAM constellation is as-

sumed for each user.

The delay-time domain transmit signal of User i can be

expressed as Si = AcpXiF
H
N , where FN is the N -point

unitary discrete Fourier transform (DFT) matrix in which the

(l, k) element is 1√
N
e−j 2π

N
lk and Acp = [Jcp, IN ] is the CP

addition matrix (here Jcp is composed of the last Ncp rows

of IN ). After parallel to serial conversion, the time-domain

symbols for User i can be written as

si = vec(Si) = (FH
N ⊗Acp)xi. (1)

The users are then multiplexed in the power domain and

their signals are superimposed before transmission. The su-

perimposed transmit signal is given by s =
√
p1s1 +

√
p2s2,

where pi is the power allocation coefficient for User i and

p1+p2 = 1. After digital to analog conversion, the continuous-

time signal s(t) is transmitted through the linear time-varying

(LTV) channel. The received signal at the receiver for User

i ∈ {1, 2} can be written as

ri(t) =

∫ ∫

hi(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + ωi(t), (2)

where hi(τ, ν) =
∑Pi−1

p=0 hi,pδ(τ − τi,p)δ(ν − νi,p), is the

delay-Doppler channel impulse response (CIR) for User i,
which consists of Pi channel paths, and ωi(t) is the complex

AWGN with variance σ2
i . The parameters hi,p, τi,p and νi,p

represent the channel gain, delay and Doppler shift, respec-

tively, associated with path p of User i’s channel. The power

delay profile (PDP) of the channel of User i is given by

λi = [λi(0), . . . , λi(0)] and is assumed to be normalized such

that
∑Pi−1

p=0 λi(p) = 1. Each channel path gain is modeled

as a complex Gaussian random variable with mean zero and

variance λi(p).
The received signal is then sampled with sampling period

Ts and the discrete received signal samples can be expressed

as

ri[n] =
L−1
∑

l=0

hi[n, l]s[n− l] + ωi[n], (3)

where hi[n, l] is the CIR for User i’s channel at time instant

n and delay l. The discrete-time received signal for User i
can be written in matrix form as ri = His + ωi, where

ωi is the MN × 1 complex AWGN vector and Hi is the

MN×MN time-domain channel matrix of User i constructed

from the CIRs. The received signal is then demodulated and

converted back to the delay-Doppler domain by performing

an N -point DFT operation across the time-domain samples.

Thus, the received signal is given by yi = (FN ⊗ Rcp)ri.
This can alternatively be written as yi = Gixsup+wi, where

Gi = (FN ⊗ Rcp)Hi(F
H
N ⊗ Acp) is the effective channel

matrix, xsup =
√
p1x1 +

√
p2x2 is the superimposed delay-

Doppler symbol vector and wi = (FN ⊗Rcp)ωi is the noise

vector. In this work, we assume that the users are ordered in

ascending order of their average signal-to-noise ratio (SNR),

i.e., SNR1 < SNR2, where SNRi =
p1+p2

σ2

i

.

III. PROPOSED EQUALIZATION AND DETECTION

TECHNIQUE

The proposed method is inspired by the method proposed

in [11] for single-user OTFS which utilized an iterative LSMR

based method with RZ detection and interference cancellation.

However, if the method in [11] is applied directly to OTFS-

NOMA with SIC to detect the signals of User 1 and User 2,

we can expect poor performance due to the MUI present in

the system. Therefore, in the proposed method, we perform

SIC at a symbol level rather than a packet level. This allows

for the decoding of symbols from both users as soon as

they become reliable and also allows for the incorporation

of MUI cancellation to improve the detection performance.

The proposed algorithm uses an iterative process in which the

LSQR algorithm is used to equalize the channel and an RZ



Algorithm 1 LSQR Algorithm

1: Input: G, y and σ2

2: Initialize: b =
(

y
0

)

, A =
(

G
σI

)

, β0 = ‖b‖, u0 = b/β0,

α0 = ‖AHu0‖, v0 = AHu0/α0, w0 = v0, φ̄0 = β0,

ρ̄0 = α0, x0 = 0MN×1

3: for u = 1 : U do

4: βu = ‖Avu−1 − αu−1uu−1‖
5: uu = (Avu−1 − αu−1uu−1)/βu

6: αu = ‖AHuu − βuvu−1‖
7: vu = (AHuu − βuvu−1)/αu

8: ρu = ‖[ρ̄u−1 βu]‖, cu = ρ̄u−1

ρu

, su = βu

ρu

9: θu = suαu, φu = cuφ̄u−1

10: τu = φu

ρu

, µu = θu
ρu

11: φ̄u = −suφ̄u−1, ρ̄u = −cuαu

12: xu = xu−1 + τuwu−1

13: wu = vu − µuwu−1

14: if ||y −Gxu|| ≤ ǫ, break

15: end for

16: Output: x̃ = xu

detector is used to detect the reliable symbols of both User 1

and User 2 within each iteration. Interference cancellation is

then used to remove ISI, IDI and MUI from the undetected

symbols of both users, which improves the detection quality in

subsequent iterations. In the next subsection, we give a brief

overview of the LSQR algorithm.

A. LSQR algorithm

The proposed method uses the LSQR algorithm, which is

listed in Algorithm 1, to equalize the channel. LSQR is a well-

known iterative algorithm for solving equalization problems of

the form y = Gx+w, where x is the transmitted vector, y is

the received vector, G is the sparse channel matrix and w is

the complex AWGN noise vector with variance per dimension

σ2 [12]. At iteration u, LSQR constructs the vector xu in the

Krylov subspace

K(GHG,GHy, u) = span{GHy, (GHG)GHy, . . . ,

(GHG)u−1GHy}
which minimizes the norm of the residual, ||y−Gxk||. At each

iteration, the LSQR procedure consists of 2 stages: Golub-

Kahan bidiagonalization and QR decomposition [12]. In lines

4 – 7, the Golub-Kahan bidiagonalization process is used to

form the vectors uu, vu and the constants αu, βu which form

the following bidiagonal least-squares problem

min
wu

||Buwu − [β0, 0, 0, . . . , 0]
T||,

where Bu is a (u + 1) × u matrix with elements

[α0, α1, . . . , αu−1] on the main diagonal and

[β1, β2, . . . , βu−1] on the first subdiagonal and β0 is

initialized as ||y||. This bidiagonal least-squares problem

can then be solved at low computational cost using the QR

factorization of Bu. Lines 8 – 13 of Algorithm 1 show

Re

Im

T Vi(T )

(di, di) (3di, di)

(3di, 3di)(di, 3di)(−di, 3di)

(−di, di)(−3di, di)

(−3di, 3di)

(−3di,−di) (−di,−di) (di,−di) (3di,−di)

(3di,−3di)(di,−3di)(−di,−3di)(−3di,−3di)

Fig. 1. Illustration of the unreliable zone Vi(T ) in the case where User i
employs a 16-QAM constellation.

a simple recursive method for obtaining this solution as

outlined in [13]. The iterative process continues until either

the norm of the residual reaches a pre-determined tolerance,

ǫ, or the maximum number of iterations U is reached.

LSQR can also be regularized by including the noise

variance per dimension σ2 as a damping parameter to improve

the semi-convergence property of the algorithm. After several

iterations, LSQR provides performance similar to MMSE but

with lower complexity [12]. Once LSQR is used to obtain the

estimate of the transmitted signal, the proposed algorithm uses

an RZ detector to obtain the reliable symbols of each user. In

the next subsection, we describe the RZ detector.

B. Reliability zone detector

Here, we first introduce some relevant notation. Each User

i ∈ {1, 2} uses Ai-ary QAM modulation, where the QAM

symbol constellation is defined as

Ai = {u+ vj : u, v ∈ {(2a− 1)di :

a ∈ {−
√

Ai/2 + 1, . . . ,
√

Ai/2}}},
where di is half the distance between adjacent QAM constel-

lation symbols of User i. Next, we define the unreliable zone

with respect to this QAM constellation as

Vi(T ) = {u+ vj |u, v ∈ Ui(T )}, (4)

where

Ui(T ) =

√
Ai/2−1
⋃

a=−√
Ai/2+1

Ui,a(T ) (5)

and

Ui,a(T ) = {u | 2adi − T/2 < u < 2adi + T/2},
where T is a pre-defined threshold which determines the size

of the unreliable zone. To demonstrate, the shaded areas in

Fig. 1 shows an illustration of the unreliable zone Vi(T ) for

a 16-QAM constellation.



In the detection process, decisions are made in a symbol-

by-symbol manner. If a symbol xi[n] is outside Vi(Ti), then it

is deemed reliable and can be quantized to the nearest symbol

in Ai. If xi[n] is inside Vi(Ti) then it is deemed unreliable

and no quantization takes place. The detected reliable symbols

can then be used for interference cancellation.

C. Proposed equalization and detection algorithm

In this subsection, we describe the proposed algorithm for

equalization and detection of the OTFS-NOMA signal at User

i’s receiver - this is detailed in Algorithm 2. Each iteration of

the proposed method begins by using the LSQR algorithm

to equalize the channel and obtain a new estimate of the

superimposed transmitted symbol vector via

x̃sup = LSQR(Gi,y
(k)), (6)

which can be seen on line 5 of Algorithm 2. Next, two sub-

vectors are formed from x̃sup, which can be seen on lines 6

and 7. The vector x̃1 containing the elements of x̃sup whose

indices are in N1, which is the set of undetected User 1

symbols, is given by

x̃1 = ((x̃sup[m])m∈N1
)/
√
p1. (7)

Since the RZ detector can only make decisions on User 2

symbols once the corresponding User 1 symbols have been

detected on a previous iteration, the vector x̃2 contains the

elements of x̃sup whose indices are in N2, the set of undetected

User 2 symbols, and D1, the set of detected User 1 symbols.

Therefore, x̃2 is given by

x̃2 = ((x̃sup[m])m∈{N2∪D1})/
√
p2. (8)

The RZ detector identifies the reliable symbols of both users,

i.e., those on which we will make a decision in this iteration.

The index sets of reliable symbols for each users, R1 and R2,

are given by

Rj = {n ∈ Nj : x̃j [n] /∈ Vj(T
(k)
j )}, ∀j ∈ {1, 2}, (9)

which can be seen on line 8. After the reliable symbols are

identified, they are quantized to the nearest QAM symbol and

are stored in the empty vectors x̃1,q and x̃2,q via

x̃j,q[r] = Qj(x̃j [r]), ∀r ∈ Rj , ∀j ∈ {1, 2}, (10)

where the function Qj(x̃j [r]) quantizes the reliable symbol

xi[n] to the nearest symbol in Aj (line 9). No decision is

made on the unreliable symbols and they are not quantized.

The quantized reliable symbols are used to remove interfer-

ence from the received signal vector via

y(k+1) = y(k) −Gi(
√
p1x̃1,q +

√
p2x̃2,q). (11)

The quantized symbols are also stored in the estimated symbol

vectors x̂1 and x̂2 (line 11). After canceling the interference

from the detected symbols of both users, the algorithm updates

the sets N1 and N2 of undetected symbols, and the set D1

of detected User 1 symbols based on the state of the output

vectors x̂1 and x̂2. The thresholds for the RZ detector for

Algorithm 2 Proposed Algorithm for symbol detection at

User i receiver

1: Input: User index i, Channel matrix Gi, received symbol

vector yi, power allocation fractions p1 and p2, starting

thresholds T
(1)
1 and T

(1)
2

2: Initialize: y(1) = yi, x̂1 = x̂2 = x̃1,q = x̃2,q = 0MN×1

3: Define N = {0, . . . ,MN − 1}, N1 = N2 = N , D1 = ∅
4: for k = 1 to K do

5: x̃sup = LSQR(Gi,y
(k))

6: x̃1 = ((x̃sup[m])m∈N1
)/
√
p1

7: x̃2 = ((x̃sup[m])m∈{N2∪D1})/
√
p2

8: Update users’ reliable symbol index sets via

Rj = {n ∈ Nj : x̃j [n] /∈ Vj(T
(k)
j )}, ∀j ∈ {1, 2}

9: Quantize reliable symbols:

x̃j,q[r] = Qj(x̃j [r]), ∀r ∈ Rj , ∀j ∈ {1, 2}
10: Remove interference:

y(k+1) = y(k) −Gi(
√
p1x̃1,q +

√
p2x̃2,q)

11: Store detected symbols in output vectors:

x̂j = x̃j,q[r], ∀r ∈ Rj , ∀j ∈ {1, 2}
12: Reset: x̃1,q = 0 and x̃2,q = 0

13: Update: N1 = {n ∈ N : x̂1[n] = 0}, N2 = {n ∈ N :
x̂2[n] = 0}, D1 = {n ∈ N : n /∈ N1}

14: Update thresholds: T
(k+1)
1 = T

(1)
1 (1 − k+1

K−1 ), and

T
(k+1)
2 = T

(1)
2 (1− k+1

K )
15: if Ni = ∅, break

16: end for

17: Output: x̂i

each user are then reduced geometrically within each iteration

in line 14. This ensures that the algorithm converges within

K iterations and that all User i symbols are detected. Since

this is at User i’s receiver, the algorithm stops when all of

the User i symbols are detected, i.e., User 1 will detect all of

its symbols before it detects all the User 2 symbols and can

therefore stop once x̂1 has no entries equal to zero.

D. Computational complexity

In this subsection, the computational complexity of the

proposed method is compared to that of the MMSE-SIC

benchmark, in terms of the number of complex multiplica-

tions. Direct implementation of MMSE equalization involves

the inversion of an MN × MN matrix and hence has

a computational complexity of O(M3N3). Each iteration

of the LSQR algorithm has a computational complexity of

O(MN log2(MN)) [12]. In the worst-case scenario Algo-

rithm 1 performs LSQR K times, each with U LSQR iter-

ations. Therefore, the computational complexity of Algorithm

1 is O(UKMN log2(MN)). In practice, the typical values

of K and U are in the order of tens and the typical value of

MN is in the order of thousands. Thus, UK << M2N2 and



MMSE-SIC [16] (User 1)

Proposed (User 1)

Fig. 2. SER performance comparison between the proposed detector and a
detector using MMSE-SIC, with different SNR levels, for the case where each
user is allocated a 4-QAM constellation.

Fig. 3. SER performance comparison between the proposed detector and a
detector using MMSE-SIC, with different SNR levels, for the case where each
user is allocated a 16-QAM constellation.

our method can achieve orders of magnitude computational

complexity improvement over MMSE-SIC for OTFS-NOMA.

IV. NUMERICAL RESULTS AND DISCUSSION

This section presents numerical results to showcase the

effectiveness of the proposed OTFS-NOMA equalization and

detection algorithm. As a benchmark, an OTFS-NOMA system

using MMSE equalization and SIC for detection is con-

sidered, which is referred to as MMSE-SIC. Monte Carlo

simulation is used to average the results over 105 random

channel realizations. A carrier frequency of fc = 5.9 GHz,

a transmission bandwidth of 4.95 MHz and a delay-Doppler

grid size of M = 64 and N = 16 are considered. For power

allocation, we use the average-SNR-based fractional transmit

power allocation (FTPA) scheme outlined in [9]. Additionally,

we consider a fixed SNR difference of 15 dB between the

users, i.e., User 2 has an average SNR that is 15 dB higher than

that of User 1. For each user, we consider a starting threshold

Fig. 4. SER performance comparison between the proposed detector and a
detector using MMSE-SIC, with different maximum Doppler shifts, for the
case where each user is allocated a 16-QAM constellation.

Fig. 5. SER for User 2 using Algorithm 1 for different values of the User 1
starting threshold.

of T
(1)
i = 2di. The Tapped Delay Line C (TDL-C) model with

a delay spread of 300 ns [14] is used for the channel model.

We consider a range of maximum Doppler shifts from 500 Hz

to 2500 Hz, which corresponds to velocities of approximately

90 km/h to 450 km/h at a carrier frequency of 5.9 GHz.

The Doppler shifts are generated using Jakes’ model [15].

For the LSQR algorithm, a maximum number of iterations

of U = 15 and a tolerance of ǫ = 10−2 are considered, which

are commonly used values for LSQR in related literature [11],

[16]. For Algorithm 1, we consider a maximum number of

iterations of K = 10 to limit the computational complexity.

Fig. 2 shows the SER of both users under the proposed

equalization and detection method, compared to the bench-

mark MMSE-SIC scheme, for different signal-to-noise ratio

(SNR) conditions. For these simulations each user’s symbols

are taken from a 4-QAM constellation, i.e., A1 = A2 = 4
and the user velocity is fixed at 200 km/h, which equates to

a maximum Doppler shift of approximately 1000 Hz. It can

be seen from Fig. 2 that for both users, the proposed method

outperforms the MMSE-SIC method, especially at high SNR.



For User 1, the proposed method provides an SNR gain of

3 dB at an SER of 10−3 over MMSE-SIC. For User 2, the

proposed method provides significant performance gains as

MMSE-SIC performs very poorly, especially at high SNRs.

This is due to the fact that, as the SNR increases, MMSE

equalization becomes closer to zero-forcing equalization and

the interference is amplified by the matrix inversion.

Fig. 3 shows the SER of both users under the proposed

equalization and detection method, compared to the bench-

mark MMSE-SIC scheme, for different SNR conditions, for

the case where each user’s symbols are taken from a 16-QAM

constellation. As with the 4-QAM results, the user velocity is

fixed at 200 km/h. It can be seen from Fig. 3 that for both users

the proposed method outperforms the MMSE-SIC method

also for the 16-QAM scenario. For User 1, the proposed

method provides an SNR gain of 6 dB at an SER of 10−2

over MMSE-SIC. For User 2, the proposed method provides

significant performance gains over MMSE-SIC, which once

again performs poorly due to the noise amplification caused

by the matrix inversion.

Fig. 4 shows the SER of both users under the proposed

equalization and detection method, compared to the bench-

mark MMSE-SIC scheme, for different values of maximum

Doppler shift, for the case where each user’s symbols are

taken from a 16-QAM constellation. Fixed SNRs of 20 dB and

35 dB are considered for User 1 and 2, respectively. It can be

seen that the performance gains of the proposed method over

MMSE-SIC actually improves in high Doppler environments,

as the performance of MMSE-SIC deteriorates significantly

at higher maximum Doppler shifts. This is because as the

Doppler spread increases, the channel matrix is more likely to

be ill-conditioned [11]; hence, the matrix inversion involved

in MMSE equalization may not be robust and can introduce

significant equalization error.

The performance of the proposed algorithm is dependent on

the effectiveness of the interference cancellation process which

is in turn dependent on the thresholds of the RZ detector.

With this in mind, we have studied the effect of the choice of

starting threshold on the performance of our proposed method.

To demonstrate this, Fig. 5 shows the SER of User 2 as a

function of the starting User 1 threshold T
(1)
1 , normalized by

d1. The results in this figure are for a fixed SNR of 35 dB and

a velocity of 200 km/h. It can be seen from Fig. 5 that the User

1 threshold has an effect on the detection performance of User

2 detection, and that, somewhat counter-intuitively, a tighter

(conservative) User 1 threshold degrades the performance of

User 2. This is because using tight starting thresholds means

that fewer User 1 symbols are detected during early iterations

and their MUI is still present in the system when the User

2 symbols are being detected. This highlights that the overall

detection performance for both users’ symbols is sensitive to

the choice of the initial RZ thresholds, and that these should

be chosen carefully to obtain the best performance.

V. CONCLUSION

This paper has presented a novel low-complexity receiver

for downlink OTFS-NOMA. The proposed method uses an

iterative process which deploys the LSQR algorithm to equal-

ize the channel, RZ detection to detect symbols from all users

within the iterations and interference cancellation to remove

MUI as well as IDI and ISI. Numerical results demonstrate

the superiority of the proposed method, in terms of SER per-

formance, with respect to an MMSE-SIC benchmark scheme.

Furthermore, it has been demonstrated that the performance

of the proposed algorithm is sensitive to the choice of starting

thresholds, which need to be designed carefully. This motivates

future work on developing a systematic approach to choosing

these starting thresholds.
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