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NLRP3, the inflammasome and COVID-19 infection
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Summary

Severe coronavirus disease 2019 (COVID-19) is characterized by respiratory failure, shock or multiorgan dysfunction, often
accompanied by systemic hyperinflammation and dysregulated cytokine release. These features are linked to the intense
and rapid stimulation of the innate immune response. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3)
inflammasome is a central player in inflammatory macrophage activation which via caspase-1 activation leads to the re-
lease of the mature forms of the proinflammatory cytokines interleukin (IL)-1b and IL-18, and via cleavage of Gasdermin D
pyroptosis, an inflammatory form of cell death. Here, we discuss the role of NLRP3 activation in COVID-19 and clinical trials
currently underway to target NLRP3 to treat severe COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease
caused by the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) virus. It has so far infected more than 640 million
people worldwide and caused at least 6 million deaths. The most
common symptoms of COVID-19 include fever, cough, fatigue,
breathing difficulties and loss of smell or taste. One-third of people
infected with SARS-CoV-2 are asymptomatic. Of those who pre-
sent with symptoms, most people develop only mild-to-moderate
symptoms, while 14% develop severe symptoms which include
dyspnoea and hypoxia, and 5% have critical symptoms including
respiratory failure, shock or multiorgan dysfunction. People with
severe COVID-19 have symptoms of systemic hyperinflammation,
mediated by a rapid release of inflammatory molecules, especially
inflammatory cytokines such as interleukin (IL)-1b, IL-18, IL-6
and tumor necrosis factor-a, and the protein Gasdermin D
(GSDMD) which is a marker of inflammatory cell death.1

The NACHT, LRR and PYD domains-containing protein 3
(NLRP3) inflammasome is a cytosolic signalling complex

responsible for the secretion of the proinflammatory cytokines
IL-1b, IL-18, and the induction of an inflammatory type of cell
death called pyroptosis. NLRP3 activation has been positively
correlated with COVID-19 disease severity and prognosis in the
acute phase.1–3 In this review, we summarise recent findings on
NLRP3 in COVID-19 during the acute phase of the disease and
the therapeutic targeting of NLRP3.

NLRP3 in COVID-19

Inflammasomes are large inflammatory complexes mainly
found in the cytosol of monocytes, macrophages and barrier
epithelial cells that respond to pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns
(DAMPs).4 NLRP3 belongs to the NOD-like receptor (NLR) sub-
family of Pattern Recognition Receptors (PRRs) that contain the
pyrin domain and can be activated in most microbial infections,
as well as by DAMPs and environmental irritants. NLRP3 to-
gether with the adaptor ASC protein PYCARD forms a caspase-1
activating complex known as the NLRP3 inflammasome
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(Figure 1). In the absence of activating signals, NLRP3 is in a
complex with HSP90 and SGT1 in the cytoplasm. Recognition of
PAMPs or DAMPs by PRRs such as Toll-Like Receptors (TLRs)
primes the NLRP3 inflammasome by activating nuclear factor-
jB (NF-jB) and induce the expression of the pro-forms of IL-1b

and IL-18.4 A second activating signal is required to assemble
and fully activate the inflammasome complex. Phagocytosed
material such as uric acid crystals triggers the second signal,
with efflux of potassium (Kþ) or chloride (Cl�) or calcium (Ca2þ)
influx as a common feature. In addition, ATP acting via P2X7
can also activate NLRP3 via potassium effluent.5 These events
result in the release of HSP90 and SGT1 from NLRP3 and the re-
cruitment of ASC and caspase-1. Caspase-1 is activated by pro-
teolytic cleavage and in turn cleaves the pro-forms of IL-1b and
IL-18, and GSDMD, which inserts itself into the membrane to
form pores large enough to release both IL-1b and IL-18, and
promotes pyroptosis, which is indicated by the release of lactate
dehydrogenase (LDH).4

In COVID-19, upon entering cells via the surface protein
angiotensin-converting enzyme 2 (ACE2), viral-derived dsRNA
and ssRNA can be sensed by TLR3, TLR7 and melanoma
differentiation-associated protein 5 (MDA5), which via NF-jB
upregulate pro-IL-1b and pro-IL-18 that are later cleaved into
their active forms by fully activated NLRP3 (Figure 1). Upon
translation of the viral proteins, the viroporins open reading
frame 3a and the envelope (E) can cause Kþ efflux or Ca2þ influx
to activate the NLRP3 inflammasome.6 Viral N protein can also

bind to NLRP3, resulting in a direct activation.7 NLRP3 is also
proposed to be activated by a range of host-intrinsic mecha-
nisms, for example, oxidized phospholipids from oxidation of
lung surfactant phospholipids,8,9 reactive oxygen species (ROS)
triggered through the binding of complement protein C5a to the
host surface C5aR1 receptor,1,10 and ATP released from dead
cells.1

An early indication of a role for NLRP3 in COVID-19 came
from an association between LDH levels and several disease se-
verity scores.11 This was later confirmed in other cohorts.12–14

LDH release might be a consequence of the cell death seen in
the lungs and kidneys in COVID-19.1,15,16 Rodrigues and col-
leagues then provided evidence for the role of NLRP3 in COVID-
19 by demonstrating its activation in PBMCs from COVID-19
patients.2 Cleaved caspase-1 and IL-18 were detected in the sera
of COVID-19 patients and were positively correlated with dis-
ease severity, poor prognosis and other COVID-19 severity
serum markers, including IL-6 and LDH. IL-1b induces the pro-
duction of IL-6, another abundantly detected cytokine in severe
COVID-19 patients.17,18 IL-6 stimulates the release of various
acute phase proteins, such as the hepatic factors C-reactive pro-
tein and ferritin, which are associated with poor prognosis.19–21

IL-18 has been linked to ferritin production22 and is another line
of evidence for NLRP3 in severe COVID, as its level is significant-
ly higher in symptomatic patients and is increased in accord-
ance with disease severity.23 IL-1b itself has been associated
with severe COVID-19.24 At the start of the pandemic in early

Figure 1. Mechanism of NLRP3 inflammasome activation in COVID-19. SARS-CoV-2-derived dsRNA and ssRNA can be sensed by endosomal TLR3 and TLR7, as well as

by MDA5, which upregulate gene expression of components of NLRP3 and pro-forms of IL-1b and IL-18 via NF-jB. A second signal from the virus is required to oligo-

merize the NLRP3 inflammasome which then activates caspase-1 to cleave pro-IL-1b and pro-IL-18 into their mature forms. The NLRP3 may be activated by viroporins

ORF3a, E, and N proteins, or host-intrinsic mechanisms such as complement protein C5a triggered ROS, oxidized phospholipids from lung surfactants, or ATP released

from dead cells. IL-1b and IL-18 are then released from the cell through the GSDMD pore. Created with BioRender.com.
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2020, increased IL-1b in patient sera was already observed in
Wuhan patients infected with SARS-CoV-2.25 A longitudinal
study that profiled patient cytokine changes detected increased
IL-1b and IL-18 correlating with disease severity.26 Finally, the
IL-1 receptor antagonist (IL-1Ra) which blocks IL-1 has also been
associated with severe COVID-19.26–28

GSDMD has also been consistently observed in the serum of
COVID-19 patients.2,29–31 High expression of GSDMD is also
associated with the release of neutrophil extracellular traps
(NETs), a phenomenon associated with immunocoagulopathy,
and organ damage found in severe COVID-19 cases.32 Higher
serum GSDMD levels have been correlated with the requirement
for mechanical ventilation and areas of consolidation (defined
as opacities that conceal the underlying vessels and are associ-
ated with disease severity) on lung CT in COVID-19 patients,
suggesting pyroptosis in the disease manifestations.33

NLRP3 is activated to limit the infection by SARS-CoV-2 as its
inhibition with the small molecule MCC950 led to the release of
the virus by infected macrophages,34 presumably via inhibition
of pyroptosis, since that would sustain the macrophage to allow
for more viral replication.

Pharmacological blockade of NLRP3 in
COVID-19

NLRP3 is linked to many inflammatory conditions, including
atherosclerosis, Alzheimer’s disease and inflammatory bowel
disease, and many drugs used in treating these diseases are
being repurposed in the treatments for COVID-19.1 Several IL-1
signalling inhibitors have been studied for their effectiveness
against COVID-19, including a human IL-1RA (also known as
anakinra), a soluble decoy receptor and a neutralizing monoclo-
nal antibody.35

Several observational studies have shown promising results
of anakinra in reducing CRP and the need for invasive mechan-
ical ventilation (Table 1).36–45 Anakinra has also been tested in
randomized control trials (RCTs) but received mixed results.53–56

In the SAVE-MORE double-blinded trial, 594 patients with the
risk of progressing to respiratory failure were provided with
anakinra or a placebo, and 86.9% of the patients also received
dexamethasone. Of the patients who received anakinra, 50.4%
showed complete recovery with no viral RNA detected after
28 days, compared with only 26.5% in the placebo group.56

Anakinra was also independently associated with clinical bene-
fit at day 14, and reduced risk of persistent disease at day 28.

Despite the success of the SAVE-MORE trial, two later RCTs
failed to detect any difference between the anakinra and pla-
cebo group in patients with moderate-to-severe disease.53,54 On
the other hand, another smaller, not blinded trial CORIMUNO-
ANA-1 was stopped early due to a lack of significant reduction
in the need for ventilation or mortality.55 The results concluded
that anakinra did not improve outcomes in patients with mild-
to-moderate COVID-19 pneumonia. Anakinra might be benefi-
cial in patients with moderate-to-severe disease, and at risk for
progression to respiratory failure, but less effective in patients
already suffering from respiratory failure.57 Also, corticosteroids
combined with anakinra appear to improve clinical outcomes
better than anakinra alone.56

Of note, 11 patients were reported with bacterial and fungal
sepsis compared to only four in the usual care group, which is
likely associated with immunosuppression caused by broad IL-1
targeted therapy.55 Specific NLRP3 targeting might allow the
production of IL-1b by other inflammasomes and reduce the
risk of infections associated with the use of anakinra which will
block IL-1 driven by any inflammasome.35 MCC950 is a potent
and selective inhibitor for the NLRP3 inflammasome but does
not inhibit other inflammasomes such as AIM2, NLRC4 or
NLRP1.58 NLRP3 inhibition by MCC950 reduced cytokine produc-
tion and lung cellular infiltrates in influenza A virus infection in
mice, a type of infection that bears many similarities to that of
SARS-CoV-2.59 MCC950 was also shown to inhibit caspase-1 ac-
tivation and IL-1b production in an in vitro SARS-CoV-2 infection
of primary human monocytes.2 Importantly, MCC950 also
reversed chronic lung pathology in a mouse model of SARS-
CoV-2 infection.34 That study also demonstrated that NLRP3 is
activated to limit the infection by SARS-CoV-2 as its inhibition
with MCC950 led to the release of the virus by infected macro-
phages,34 presumably via inhibition of pyroptosis, since that
would sustain the macrophage to allow for more viral replica-
tion. This might mean that inhibition of NLRP3 while having an
anti-inflammatory effect might increase viral replication which
could have unwanted consequences.

Another NLRP3 inhibitor glyburide reduced SARS-CoV-2-
driven monocyte lytic death, caspase-1 activation, IL-1b and IL-
6 production in an in vitro model using human monocytes.30

Two phase II clinical trials are testing direct inhibition of NLRP3
in patients (Novartis, NCT0432053; Olatec Therapeutics,
NCT04540120). The Novartis trial utilized a specific NLRP3
inhibitor DVF890 in a total of 143 participants with mild-to-
moderate COVID-19.46 DFV890 demonstrated subtle

Table 1. NLRP3 inflammasome-targeting therapeutics in COVID-19

Drug Tested clinically Main findings

Anakinra Yes Decreased viral load after 28 days, decreased severity at day 14, and reduced risk of
persistent disease at day 28. In patients with moderate-to-severe disease, Anakinra
lacked efficacy.36–45

MCC950 No Inhibited caspase-1 activation and IL-1b production in in vitro SARS-CoV-2 infection of
primary human monocytes and reversed lung pathology in a mouse model of
infection but increased the release of virus from macrophages.2,34

Glyburide No Reduced SARS-CoV-2-driven monocyte lytic death, caspase-1 activation, IL-1b and IL-6
production in human monocytes.30

DFV890 Yes One trial found earlier viral clearance, however, very modest effects were observed in
terms of disease severity and disease outcome.46

Colchicine Yes Some studies have shown a decreased risk of mortality and rate of intubation and
increased discharge rate. However, some drug regimens failed to show an effect.
Adverse events included skin rash and diarrhea.47–52

Dapansutrile Yes Trial underway
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improvement in viral clearance on day 7, clinical status and
mortality, but failed to significantly improve the combined
APACHE II score compared to those who received standard of
care.46 The Olatec trial uses another specific inhibitor of NLRP3,
dapansutrile, and aims to access the safety and efficacy of a
NLRP3 inhibitor in patients with moderate symptoms. The out-
come of the Olatec trial has yet to come out.

Indirect NLRP3 inhibitors have also been tested in the clinic,
for example, colchicine, which is currently used to treat gout
and Adamantiades-Behçet’s disease.60 In addition to interfering
with monocyte and neutrophil chemotaxis, colchicine also in-
directly inhibits NLRP3 activation.61 Indeed, colchicine has been
tested in multiple RCTs for COVID-19.47–52 The RECOVERY
(Randomised Evaluation of COVID-19 Therapy) arm with colchi-
cine was stopped due to futility.49 Like the other NLRP3-targeted
drugs mentioned above, colchicine seemed to have minimal
effects in community-treated patients without a mandatory
diagnostic test but led to a lower rate of the composite of death
or admission to the hospital among those with PCR-confirmed
COVID-19.50 In a small trial, colchicine demonstrated a reduc-
tion in the length of both supplemental oxygen therapy and
hospitalization in patients with moderate-to-severe COVID-
19.52 Beneficial effects were also observed in other trials where
colchicine statistically significantly improved time to clinical
deterioration51 and clinical condition.48

Conclusion

Since the beginning of the pandemic, there have been numer-
ous attempts to develop therapeutics for COVID-19, and NLRP3
has been an attractive target. The pre-clinical evidence for
NLRP3 in COVID-19, the correlation with outputs from NLRP3
and disease severity, the partial success of anakinra in trials,
and a marginal benefit provided by the NLRP3 inhibitor indicate
that further studies are warranted into the targeting of NLRP3,
most likely in stratified trials, to limit the damaging effects of
inflammation occurring during COVID-19.

Supplementary material

Supplementary material is available at QJMED online.
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