
Case-Based Plan Recognition in Computer Games

Michael Fagan and Pádraig Cunningham

Department of Computer Science
Trinity College Dublin

Ireland
{Michael.Fagan, Padraig.Cunningham}@cs.tcd.ie

Abstract. In this paper we explore the use of case-based plan recognition to
predict a player’s actions in a computer game. The game we work with is the
classic Space Invaders game and we show that case-based plan recognition can
produce good prediction accuracy in real-time, working with a fairly simple
game representation. Our evaluation suggests that a personalized plan library
will produce better prediction accuracy but, for Space Invaders, good accuracy
can be produced using a plan library derived from the game play of another
player.

1. Introduction

Graphics in computer games have now reached a standard where most users are more
than satisfied with the quality on offer, and it is difficult to differentiate a new game
title by the graphics alone. Game designers are turning to Artificial Intelligence (AI)
to produce a more interesting and more realistic gaming experience. The main way
that AI can help game design is by supporting the development of more realistic non-
player characters (NPCs). A first objective in this direction is to support adaptive
behaviours where the NPCs do not do the same stupid thing all the time. A
fundamental requirement for this is for the NPC to have some model of the player’s
behaviour that will allow the NPC to anticipate and thus adapt to the player’s actions.
In AI terms, it would be useful for the NPC to be able to perform plan recognition.

In this paper we present a prototype plan recognition system called COMETS that
uses the case-based plan recognition idea [4]. The idea is to have the NPC observe the
player’s behaviour and identify plans or patterns that recur. Then the NPC can
identify future executions of these plans and anticipate what the user will do next. In
the case-based plan recognition (CBPR) methodology the observed plans are stored in
a case-base (plan library) and the player’s behaviour is constantly compared to the
case-base to identify the onset of the execution of a recognized plan.

For this initial evaluation we use the classic Space Invaders game. Space Invaders
(SI) has been chosen because it is a straightforward example of a game where the
player executes plans. While COMETS does produce good predictions for Space
Invaders there is no scope within the SI game to react to this information so in future
work we need to apply these techniques in other games to exploit the full potential.

In the next section we present a brief overview of research on plan recognition
before presenting in sections 3 and 4 the representation of plans used in COMETS.

 2

Section 5 presents an evaluation of the prediction power of COMETS that considers the
impact of case-base size and the provenance of the cases on prediction accuracy. The
paper concludes in section 6 with a discussion of some directions for future work.

2. Plan Recognition

Plan Recognition (PR) is the process whereby an agent observes the actions of
another agent with the objective of inferring the agent's future actions, intentions or
goals. Several methods for plan recognition have been explored. The most notable are
deductive [1], abductive [2], probabilistic [3] and case-based [4]. PR approaches may
also be classified according to whether the PR process was intended [1] or keyhole
[5]. If the observed agent cooperates to convey his or her intentions to the recognising
agent, as in natural language dialogue systems [6], then the PR process is said to be
intended. Whereas if the relationship between the observing and the observed agents
is non-interactive then it is termed keyhole PR [7][8].

In some PR systems the plan library is handcrafted by the system designers and
often must be complete (see for example the work by Kautz [1]). Building complete
plan libraries is a tractable knowledge acquisition task only when the domain
complexity is low. In real-world scenarios this is not often the case and constructing
complete plan libraries may be out of the question. Furthermore, it is often the case
that extraneous plans are included which bloat the plan library with irrelevant
information that impacts on the efficiency of the recognition mechanisms.

In recent years efforts has been made to automate the process of building the plan
library using Machine Learning (ML) techniques [9][10][4]. Constructing the plan
library in this fashion allows the plan library to be personalised, tailoring it to reflect
the idiosyncrasies of an individual’s behaviour. This is one of the real attractions of
the CBPR idea where the plan library can be built from actual data rather than by
hand-crafting cases/plans. Since CBPR is in the lazy learning spirit of CBR the plan
library can initially be seeded with generic cases with personalised cases being added
as more plans are observed.

3. States and Actions

Plans comprise states and actions that enable state transitions. In systems such as
STRIPS [12] or PRODIGY [11] a state of the world is represented by a conjunction of
first order predicates. An action may only be executed if its preconditions are matched
by the state of the world. This idea is simplified in COMETS so that a state is an atomic
concept. There are three possible states that make up the state set:

{Safe, Unsafe, VeryUnsafe}

The states are an abstraction of what is going on in the game and the player is defined
to be in one of these states depending on what conditions are satisfied in the game at
that point. These conditions may be likened to the first order predicates that encode

 3

the state of the world in PRODIGY [11] or in Kerkez and Cox's CBPR system [4]. The
three states are shown in Fig. 1. On the left the player is ‘safe’ behind a bunker; in the
centre the player is ‘unsafe’ in the open but not under fire; on the right he is in the
open under fire and so ‘very unsafe’. This state-based representation of SI that is used
in COMETS is very simple; while it does capture the progress of the game in general
terms, some detail is lost.

Fig. 1. The three states in the COMETS view of Space Invaders are; Safe, Unsafe and
VeryUnSafe.

Like all planning systems, state transitions are brought about in COMETS by actions.
In STRIPS-like planning systems [13] an action may only be performed if its
preconditions are satisfied by the player's/planner's state. If the predictions are met
then the action can be performed and the action’s effects are realised. These
preconditions and effects define an action. However, since COMETS is observing
rather than managing the planning process there is no need to worry about all this
detail. All COMETS has to do is record what happens as a sequence of state-action
pairs.

As is the case with the states, there is a predefined set of actions called the action
set. The action set consists of 5 player actions and one exogenous event. An
exogenous event is any event, the system can account for, that occurs in the world that
is out of the control of the player. For example, an exogenous event is generated when
the player is the target of enemy fire. The action set is as follows and the resulting
transitions are shown in Fig. 2:

{fire, hide, emerge, dodge, suicide, exogenous}

So a crucial component of COMETS is the ability to ‘watch’ the game and abstract
what happens into a plan expressed as a sequence of state-action pairs. This
abstraction process involves interpreting the raw game data into a more meaningful
format. Sensory inputs include the position of the player, the position of the enemies,
the presence of a threatening attack etc. The player's current state is calculated using
this information. This state is stored in the state register. Each time the content of the
state register changes an action will have occurred; e.g. a transition from Safe to
VeryUnsafe results from an emerge action. In this game representation there is only
one action that can produce each state transition with the exception of the transition
between Unsafe and VeryUnsafe that can result from suicide and exogenous actions.
This simplicity makes the recording of the player’s actions a light-weight process.

 4

Fig. 2. The state transition diagram for the representation of SI used in COMETS; the arcs
represent actions and the nodes represent states.

4. Plans

Plans in COMETS are an ordered sequence of state-action pairs. Plans are assumed to
be linear in nature [11][13], i.e. it is assumed that operations may not execute
simultaneously. A single SI game is a complete plan. However, the plan recognition
process operates on sub-plans that are four steps long (see Fig. 3), the idea being that
if game play matches the first three steps in a sub-plan we can guess that the fourth
step in this sub-plan will be the player’s next action.

Safe
emerge

Unsafe
fire

Unsafe
hide

Safe
emerge

Unsafe
suicide

VUnsafe
dodge

Sub
Plans

Safe
emerge

Unsafe
fire

Unsafe
hide

Safe
emerge

Unsafe
hide

Safe
emerge

Unsafe
suicide

VUnsafe
dodge

Unsafe
fire

Unsafe
hide

Safe
emerge

Unsafe
suicide

Fig. 3. Sample sub-plans from COMETS.

 5

4.1. Building the Plan Library

One of the benefits of using CBR for plan recognition is that the plan library can be
built automatically by observing actual game play. Kerkez and Cox build their plan
library dynamically, as the stacking agent is observed executing new plans in the
blocks world. In COMETS, the plan library is built after the player has played the game
for three sessions. These sessions yield several plans corresponding to the games
played in those sessions. A plan of length n contains n-(k –1) sub-plans of length k. If
we view the plan segment of length 6 in Fig. 3 as a complete plan it consists of 3 sub-
plans of length 4. However, all three of these are not of interest. We are only
interested in those that turn up systematically. The length 4 as the best length for sub-
plans was arrived at after some examination of recorded game play. 3 is too short, and
results in too many false matches. While 5 is too long and would not yield enough
matches.

To build the plan library, the recorded passages of game play are scanned for
frequently followed sub-plans. Each sub-plan is assigned a support value that is a
count of the number of occurrences of that sub-plan in the plans. Sub-plans with
support values above a threshold (currently 5) are candidates for inclusion in the plan
library. The plan library's quota of sub-plan's is filled with the sub-plans with the
highest support values.

4.2. Storing and Retrieving Sub-plans

Since the process of plan retrieval happens continuously while the game is being
played, it needs to be computationally efficient. As an example, let us consider a
scenario where the player executes the plan segment shown in Fig. 3. After the
Safe/emerge state-action pair is observed the retrieval mechanism must consider as
candidates all sub-plans which start with this state-action pair. This set of sub-plans is
called the conflict pool. When the next state-action (Unsafe/fire) is observed all sub-
plans that do not match this are deleted from the conflict pool and all sub-plans that
start with this are added to the conflict pool. At this stage the conflict pool will
contain all sub-plans with first two steps Safe/emerge - Unsafe/fire and also sub-plans
with first step Unsafe/fire.

COMETS continues like this, adding and deleting sub-plans from the conflict pool
until a single sub-plan is found that matches three steps of game play. The player is
recognised to be executing this sub-plan and the 4th action from that sub-plan is
predicted to be the player’s next action.

To support all this, sub-plans are organised in the plan library using an indexing
structure based on an integer encoding of their initial state-action pair. The plan
library is in fact a hashtable and sub-plans are stored in bins indexed by a common
initial state-action pair. (This is based on the techniques used by Kerkes and Cox [4]).

In summary, COMETS ‘recognises’ the execution of a sub-plan when it matches
three consecutive steps of game play and it is the only candidate to match on three
steps. The evaluation in section 5 shows that the policy for managing the plan library
has important implications for this uniqueness constraint. We might expect that

 6

expanding the plan library to include poorly supported sub-plans will damage
retrieval performance and the evaluation shows this to be the case.

Fig. 4 shows a screen shot of the prediction mechanism in operation. The upper
text region on the right shows the sequence of actions as observed by COMETS. Below
that, the predictions are shown. Each prediction displayed is the final state-action pair
from a sub-plan whose first three steps matched the game play. In this example
COMETS is doing very well having made three predictions, all three of which are
correct.

Fig. 4. COMETS observing a Space Invaders Game: The sequence of state-actions is shown on
the right with the predictions from COMETS shown below that.

5. Evaluation

In this section we look at the accuracy and frequency of predictions coming from
COMETS as the size of the plan library varies. We also look at the impact of
personalized plan libraries on accuracy. The measure of the system's accuracy is the
proportion of successfully predicted actions in the set of predictions.

5.1. Prediction Accuracy v’s Plan Size

The CBPR system was trained over three game sessions as described above. A
further three game sessions were used to test the accuracy of the resulting plan library.
These accuracy tests were repeated for plan libraries varying in size from 10 to 80.

 7

Fig. 5 compares these accuracy figures with the accuracy of randomly generated
predictions.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80

Plan Library Size

A
cc

ur
ac

y

CBPR
Random

Fig. 5. The accuracy of the CBPR system for different plan library sizes is plotted along side
the accuracy of a system performing random prediction.

Fig. 6 shows the change in the prediction rate of the CBPR system as the size of the
plan library increases. This is the proportion of user actions for which the system is
able to produce predictions. Using a plan library of just 10 sub-plans, the CBPR
system will produce predictions in response to 12% of the user’s actions. It is
important to note that these predictions may be wrong and Fig. 5 shows that a little
less than 50% of these are in fact correct. Looking at both graphs, we see that a
prediction accuracy of 69% is achievable with a plan library of size 30 with a
prediction rate of 7.5%.

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80

Plan Library size

Pr
ed

ic
tio

n
R

at
e

(%
)

Fig. 6. As the size of the Plan Library grows the frequency of predictions falls.

 8

The prediction rate drops as the size of the plan library increases. This is because,
with more sub-plans in the library, the chance of matching on three steps of more than
one plan increases; i.e. there may be more than one matching plan in the conflict pool.
The current implementation has no means of resolving this conflict so no prediction is
made.

The other point to notice in the graphs is the drop-off in accuracy as library size
goes from 30 to 60 (Fig. 5). This might be viewed as a form of overfitting where the
simpler model represented by the library of 30 cases generalizes better to the player’s
behaviour. The accuracy rises again above 60 cases but at that stage the prediction
rate has fallen to 3%.

This evaluation shows that CBPR can produce predictions with reasonable
accuracy in real time. In order to determine the actual ‘best’ size for the plan library
we would need to have some idea of the relative value/cost of good and bad
predictions. Clearly, this has no meaning in the context of the SI game as the game
does not allow for any adaptive behaviour on the behalf of the NPCs.

5.2. Accuracy for non-Personalized Case-Bases

The other question we consider in the evaluation is that of the origin of the plan
library (see Table 1). In the evaluation in section 5.1, the training data and test data
were produced by the same player, so the library is personalized to that player. It is
important to know if the accuracy depends on this, or if reasonable accuracy can be
achieved using a plan library produced from someone else’s game play (or using a
generic plan library). To assess this, three other plan libraries of size 20 were
produced from three other players, two intermediate players and a novice. The
prediction accuracy for the target player using the plan library from the novice player
fell to 39%. But the intermediate players’ libraries kept the accuracy up at 56%. This
suggests that a personalized library is best but a generic library can be expected to
produce fairly good results. This good result with non-personal cases may depend
heavily on the constrained nature of the SI game where good players are inclined to
be executing the same plans because of the limited potential for variation in game
play.

Table 1. This table shows the accuracy of the predictions for a Target Player using a plan
library built from his own play and plan libraries built from the play of others.

Plan Library Accuracy
Target Player 61.6%

Intermediate A 56.4%
Intermediate B 56.7%

Novice 39%

 9

6. Conclusions and Future Work

Our experience with COMETS suggests that CBPR can be used to predict a player’s
behaviour in a computer game. Not only can CBPR be the basis for adaptive
behaviour in computer games, but it also lends itself well to personalized adaptive
behaviour.

The performance of the existing system could be improved with a more
sophisticated policy for selecting sub-plans for inclusion in the plan library. At
present the only criterion is to select the sub-plans with the greatest support in the
training data, provided the support is above the threshold of 5. Our evaluation shows
that this allows for plans that contradict one another. There is no benefit in having two
sub-plans that match on their first three steps so presumably the one with the weaker
support should be deleted. There is scope for considerable research on library
maintenance questions such as this.

It is also clear that a lot of useful game information is not captured by the simple
plan representation in use in COMETS. We have done some work on a more
sophisticated representation based on interval temporal logic [2] and the benefit of
this more complex representation needs to be evaluated [13].

Before we can take this research much further, we need to move to a game
environment that will allow for adaptive behaviour from the NPCs. Questions about
library maintenance policies and library size depend on how the predictions are used
and on the utility of predictions and the cost of errors. Are frequent less accurate
predictions useful? Or are rarer but more accurate predictions better? There are also
interesting questions about the use of generic versus personalised plan libraries that
can only be answered in a game environment that allows adaptive behaviour.

 We must also recognise that the good coverage we get from a case-base of 30
sup-plans may depend on the constrained nature of the Space Invaders game. A more
complex game environment may require a much larger case-base to get reasonable
coverage. In a more complex environment a generic case-base may also be much less
effective and it may be more important to personalise the case-base to the player to
get good performance.

References

1. Kautz., H., A Formal Theory of Plan Recognition and its Implementation, Reasoning About
Plans, Allen, J., Pelavin, R. and Tenenberg, J. ed., Morgan Kaufmann, San Mateo, C.A.,
1991, pp. 69-125.

2. Ferguson, G. and Allen, J.F., Events and Actions in the Interval Temporal Logic, Journal of
Logic and Computation, Special Issue on Actions and Processes, Vol. 4, No. 5, October,
1994, pp. 531-579.

3. Charniak, E. and Goldman, R., A Bayesian Model of Plan Recognition, Artificial
Intelligence Journal, Vol. 64, pp. 53-79, 1993.

4. Kerkez, B. and Cox, M., Incremental Case-Based Plan Recognition Using State Indices,
Cased-based Reasoning Research and Development: Proceedings of 4th International
Conference on Case-Based Reasoning (ICCBR 2001), Aha, D.W., Watson, I., Yang, Q. eds.,
pp. 291-305, Springer-Verlag, 2001,

 10

5. Cohen, R., Song, F., Spencer, B. and van Beek, P., Exploiting Temporal and Novel
Information from the User in Plan Recognition, User Modelling and User-Adapted
Interaction, Vol. 1, No. 2, 1981, pp. 125-148.

6. Allen, J. F., and Perrault, C. R., Analyzing Intention in Dialogues, Artificial Intelligence,
Vol. 15, No. 3, 1980, pp. 143-178.

7. Albrecht, D. W., Zukerman, I., Nicholson, A. and Bud, A., Towards a Bayesian Model for
Keyhole Plan Recognition in Large Domains, Proceedings of the 6th International
Conference on User Modelling, 1997, pp. 365-376.

8. Albrecht, D. W., Zukerman, I., and Nicholson, A., Bayesian Models for Keyhole Plan
Recognition in an Adventure Game, User Modelling and User-Adapted Interaction, Vol. 8,
1998, pp. 5-47.

9. Lesh, N., Rich, C. and Sidner, C., Using Plan Recognition in Human-Computer
Collaboration”, Proceedings of the 7th International Conference on User Modelling, 1999,
pp. 23-32.

10. Bauer, M., Acquisition of User Preferences for Plan Recognition, Proceedings of the 5th
International Conference on User Modelling, 1998, pp.936-941.

11. Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., Blythe, J., "Integrating Planning
and Learning: The PRODIGY Architecture, In Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 7, No. 1, 1995.

12. Fikes, R. and Nilsson, N., STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving, Readings in Planning, Allen, James, Hendler, James, Tate, Austin, ed.,
Morgan Kaufmann, San Mateo, C.A., pp. 88-97, 1990 also in Artificial Intelligence, Vol. 2,
1971, pp. 198-208.

13. Fagan, M., Anticipating the Player's Intentions: A Case-based Plan Recognition
Framework for Space Invaders, M.Sc. thesis, University of Dublin, Trinity College, Dublin,
Ireland, 2002.

