
A Unified Security Framework for Networked Applications

Joerg Abendroth
∗

Distributed Systems Group
Trinity College, Dublin

Joerg.Abendroth@cs.tcd.ie

Christian D. Jensen
†

Informatics & Mathematical Modelling
Technical University of Denmark

Christian.Jensen@imm.dtu.dk

ABSTRACT
Various security models have been proposed for different
types of applications and numerous types of execution envi-
ronments. These models are typically reinforced by adding
code to the application, which authenticates principals, au-
thorises operations and establishes secure communication
among distributed software components (e.g., clients and
servers). This code is often application and context-specific,
which makes it difficult to integrate an application with
other each other.

In this paper we propose a new unified access control
mechanism that supports most of the existing security mod-
els and offers a number of additional controls that are not
normally provided by security mechanisms. Moreover, the
proposed mechanism integrates well with existing program-
ming paradigms for distributed application, e.g., client/server
technology and component based programming. This means
that it can be seamlessly integrated with most existing dis-
tributed applications. We have implemented the proposed
mechanism in a framework, that can be instantiated to im-
plement different security models and policies. We present
a qualitative evaluation that demonstrates the framework’s
ability to support a wide range of security policies and a
preliminary performance evaluation of the framework.

Keywords
access control, active software capabilities, policy models

1. INTRODUCTION
A large number of different security models are proposed

in the reviewed literature [1, 10, 6, 3, 22].
These models are generally formulated to reflect the re-

quirements of a particular application domain. Mandatory

∗This work is sponsored by a research grant from IONA
Technologies PLC.
†This work was completed while the author was working at
Trinity College, Dublin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC2003, Melbourne, Florida, USA
Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

access control models are used by the military, while discre-
tionary access control models are often considered adequate
for academic institutions and home computers. A mixture
of mandatory models (e.g., role-based access control) and
discretionary models are often used in industry.

It is often possible to support different security models
with the same basic security mechanisms. However not all
models can be accommodated by all security mechanisms,
e.g., it is impossible to support a mandatory access control
model with a simple capability-based access control mecha-
nism [13, 8]. In many cases, the security model is designed
with great care, but the supporting access control mecha-
nism and security infrastructure are simply designed to sat-
isfy the requirement of the particular model. This means
that there has been little effort to design a flexible security
mechanism that can support multiple security models. Typ-
ically, minimalism of mechanism is the only approach taken
to provide a flexible infrastructure and providing sufficient
support for complex security models is left as an exercise
to the application programmer. However, developing pow-
erful security mechanisms is a highly specialised task that
should be performed by adequately skilled developers with
the support of good development tools.

Recent developments in software engineering, such as the
integration of legacy applications and component-based pro-
gramming, often require the re-engineering of large applica-
tions or components that may have been developed with
different security models in mind. This introduces the prob-
lem of mapping security events from one model to another,
e.g., a client that relies on Kerberos tickets [14] may have
to interface with a server that implements role-based access
control (RBAC) through X.509 [20] attribute certificates.
Finally, the web has become the principal mediator of busi-
ness information, and companies are increasingly providing
restricted access to internal business data and processes,
typically through web-portals [26]. The web portal must
provide clients with a simple and flexible security mecha-
nism that can mediate access to legacy applications that
implement a variety of different security models developed
for different application domains.

In this paper we propose a new unified security mech-
anism, called active software capabilities, which combines
the ideas of proxy-based security [19, 17, 9] and active ca-
pabilities [28] to achieve adaptability without the need to
rewrite application code. Security proxies are downloaded
at runtime from a security server, which is associated with
the object server that manages the resource that the client
wishes to access. The security server can either be an ex-

ternal server, like the ticket-granting server in Kerberos,
or it can be co-located/integrated with the object server.
The client proxy establishes a secure communication chan-
nel with a server proxy that runs on the object server. The
client proxy uses this channel to forward the necessary cre-
dentials to the server proxy. These credentials can be simple
data structures, e.g., usernames or certificates, but they can
also be encoded in an executable policy object, which corre-
sponds to an active capability [29, 28]. The policy object
is signed by the security server and evaluated by the server
proxy. Downloading client and server proxies at runtime al-
lows transparent mapping of security events and credentials
from one security model to another, e.g., an identity certifi-
cate can be transformed into a role membership certificate
with the help of an external RBAC server and without mod-
ifying the code of the client and the server. The ability to
encode credentials as executable content facilitates the de-
velopment of flexible security policies, i.e., the definition of
a security policy is limited only by the expressive power of
the scripting language used to encode the policy object.

We have implemented the active software capability mech-
anism and a number of different security policies in a frame-
work written in Java. The framework uses an unmodified
version of the lookup server provided by JINI [18, 30] to
implement the external security server. This means that
applications written for JINI can use our framework with-
out modification. Moreover, the flexibility and adaptability
of the proposed mechanism allow it to interface with exist-
ing security protocols and security infrastructures, e.g., to
use existing public key infrastructures (PKI), which means
that the framework can be seamlessly integrated in most
organisations.

The framework has been evaluated by implementing a
number of different security proxies that enforce different se-
curity policies without requiring modifications to the client
application. These policies demonstrate that the framework
can be instantiated to enforce a large number of different
security policies. We have also performed a preliminary per-
formance evaluation, which indicates that the overhead in-
troduced by the mechanism is relatively small and that the
division of responsibilities between client proxy and server
proxy may be used to offload work from the server to the
client, thus improving the scalability of the system.

The rest of this paper is structured as follows: Section 2
presents related work in the areas of proxy-based security
and active capabilities. The design of the unified security
framework is presented in Section 3. Section 4 describes
our implementation of the framework, Section 5 presents
our evaluation of the framework and Section 6 describes our
conclusions and directions for future work.

2. RELATED WORK
The active software capability framework combines ideas

from proxy-based security and active software capabilities.
Related work in each of these areas is presented in the fol-
lowing.

2.1 Active Capabilities
The active capability model was developed at the Uni-

versity of Illinois at Urbana-Champaign [29, 28]. It is an
extension to the traditional capability model [7, 15], which
replaces a fixed set of permissions with a script that is eval-
uated by the server in order to determine the access rights of

the caller. This allows additional controls to be imposed at
runtime, such as limiting the time of day when a resource can
be accessed or only allowing access when the server system
load is below a certain threshold. However, active software
capabilities have to be managed explicitly by both client
and server, and all calculations related to the access control
decision is performed by the server. Active software capa-
bilities extend the existing active capability model with a
client proxy, which allows us to offload work from the server
to the client, e.g., collecting and refreshing certificates, thus
improving scalability of the system.

2.2 Proxy-Based Security
The active software capability model is inspired by work

on hidden software capabilities in the SIRAC project at IN-
RIA Rhône-Alpes [9, 12]. Hidden software capabilities sep-
arate security from the functional aspects of an application,
by delegating management and exchange of capabilities to
protection interfaces interposed between client and server.
However, hidden software capabilities define a fixed set of
permissions that cannot be modified without replacing the
protection interfaces.

The functions of the client proxy are similar to the re-
stricted proxies proposed by Neumann [19]. However, their
work mainly focused on providing accountability in the secu-
rity infrastructure, which we implement through administra-
tion policies. Another difference is that we do not require the
client (restricted) proxy to be the only way to gain access.
If a specific implementation wishes to handle the protocol
correctly, without using the dedicated proxy and benefiting
from the adaptability offered by active software capabilities,
it is possible to bypass the client proxy and contact the ob-
ject server. This demonstrates that the security depends on
the policy objects and the certificates and not on particular
pieces of code.

Related to our idea of using credentials to simplify the
access control decision is the certificate-based access con-
trol system for widely distributed resources [27]. The Ak-
enti framework distinguishes between three certificate types,
which are used by the server for the access control decision.
The active software capability framework uses credentials
in the form of active objects, which means that our policy
definition is more flexible.

Finally, previous work done on flexible management for
security policies [31, 16] has been of great influence. How-
ever, their framework still requires that a specific infrastruc-
ture exists, i.e., a policy editor can distribute the evaluation
tokens via the policy server. Independent management of
two separate domains, e.g., two companies in a virtual en-
terprise, becomes impossible. A further advantage of our
framework is the flexibility of the actual policy object im-
plementation.

3. ACTIVE SOFTWARE CAPABILITIES
FRAMEWORK

To describe the active software capabilities (ASCap) frame-
work we first present the idea of policy objects and then
introduce the abstract layer model to explain the design in
detail. Thereafter a process overview is also given.

3.1 Idea of Policy Objects
The aim of the ASCap framework is flexibility. The cen-

tral idea is to achieve the notion of policy objects, which are

no longer embedded in the object server access control com-
ponent, but is an object delivered by the client. A policy
object is cryptographically protected and originate from a
trusted source. The client has the freedom to chose the most
convenient policy, while the object server has the control
which subset of all policies are allowed for a certain request.
In cases where great flexibility is required an object server
might allow any policy of the trusted source, therefore en-
abling it to introduce new policies after installation of the
framework. Only the ASCap proxy on the client side would
need to acquire the new policy objects and send them to the
object server.

3.2 Design and Process Overview
In order to define our framework, we have identified four

layers, which depend on each other as shown in Figure 1.

Security Model

Security Policy

Security Mechanism

Security Protocol

Figure 1: Unified security framework

The security model defines the underlying principles and
the scope of the security policies.

The security policy specifies rules that must be enhanced
by the access control mechanism layer.

The security mechanism combines the basic security mech-
anisms of the underlying system and the basic security in-
frastructure to enforce the security policies defined by the
security policy layer.

The security protocol is the lowest layer available. Its main
tasks are establishment of secure communication and au-
thentication. The security protocol layer needs to be able
to support the policies and mechanisms defined above.

The framework must provide a flexible and adaptable se-
curity mechanism that can support manifold security models
and policies. Moreover, it should be able to employ differ-
ent security protocols and interface with existing security
infrastructures.

It is widely accepted that capability-based security mech-
anisms are more flexible than their ACL-based counterparts,
so we have chosen to base our mechanism on capabilities [15].
This mechanism is described below.

Active Software Capabilities extend the active capabilities
model [29, 28], where a small program, or script, is stored in
the ASCap and executed by the server. The result of execut-
ing the active capability program indicates whether access
should be granted or not. The ASCap model extends the
basic active capability model with the notion of a proxy [24],
which provides adaptability on the client side as well as on
the server side. An overview of the ASCap framework is
shown in Figure 2.

Before a client can access a server it must download an
ASCap from an ASCap proxy provider, this can be either
the actual server or a separate entity. Once downloaded,
the ASCap can be stored on disk for later invocations of
the same server (a timestamp and time of validity can be
included in the ASCap in order to facilitate timely revoca-
tion). This step is shown in Figure 2–1. Both the client and

4

1 2

5

3

request
ASCap

ASCap

Client and server instantiate proxiesClient obtains Active Software Capability

Client

Client Client

Client

Server evaluates operation, parameters and
proofs according to policy and replies to client

Client collects credentials from external servers Client sends {operation, policy, credentials} to server

Server

Server

security

Server

object

object

Server
object

Figure 2: Overview of the ASCap framework

server must instantiate their respective proxies, as shown
in Figure 2–2. Figure 2–3 illustrates that the client ASCap
proxy may request further credentials from external security
services. These credentials could be identity certificates in
an ACL-based model, a role membership certificate in an
RBAC model or a proof of payment in an e-Commerce ap-
plication. Finally, as shown in Figure 2–4, the client invokes
the server through the ASCap proxy. The ASCap proxy
adds a policy object and any additional credentials to the
operation and parameters that are supplied by the client.
Ultimately the server invokes the policy object, passing the
operation, parameters and certificates to it. The policy ob-
ject returns a simple yes/no answer, which is used to allow
or disallow access to the server.

Security Model Layer
This is the most abstract security layer, and it has received a
lot of interest from the research community. Security mod-
els such as mandatory security, discretionary or ACL-based
models require certain properties or mechanisms from the
lower layers. New security models may be developed which
require different properties from the lower layers. The goal
of the ASCap framework is to provide support a wide variety
of different and compound security models. This is achieved
by providing lower layers, which flexibility is embedded al-
ready in the design.

Security Policy Layer
In the ASCap framework, security policies are defined by
policy objects, which may examine both the parameters and
the credentials provided by the ASCap as well as external
server variables, e.g., the time of day, system load, etc. The
policy object is stored either directly in the ASCap, or the
ASCap contains a reference that allows the server to access
the policy object from a trusted repository. Credentials can
be simple values, certificates or data of any formal structure.

The use of separate policy objects ensures the adaptabil-
ity of our framework. In the simplest form, the server proxy
will do all required verification, request credentials and eval-
uate the policy according to supplied parameters. In this
setup the client needs to hand the ASCap all authentication
tokens.

It is important to note that at the current state a policy
object can take any form that can be programmed in Java.
We are investigating different policy description languages in

OPERATION, POLICY OBJECT, CREDENTIAL 1, . . . CREDENTIAL N

Figure 3: Structure of an active software capability

order to identify appropriate abstractions for a policy speci-
fication language that can then be compiled into Java policy
objects. However the main contribution of this framework
is to provide flexible lower layers, namely the policy distri-
bution mechanism.
To design our framework we have identified three classes of
policy objects:

Simple Policies: Only parameters supplied by the client
are considered by the policies, e.g. a username pass-
word combination.

Parametered Policies: Both client and server need to pro-
vide parameters, e.g., security domain name. The pol-
icy object will either compare the parameters or in
another way decide if access should be granted, e.g. a
user and password, which is related to a security do-
main - this means that non-interference [21, 4] policies
should be possible, by having the server check whether
a client of a higher security level is currently using the
same server.

External Server Policies: One or more of the parame-
ters do not derive directly from the server or client,
but is requested from an external server. This might
require additional authentication, which will be dis-
cussed later. Policies including a protected certificate
repository like a Kerberos ticket granting server [25],
role membership certificates, current network load or
objective checks on the clients status and identity.

We would like to emphasise that the external server poli-
cies enable our security framework to instantiate different
security models and architectures without modifying client
or server. Simple policies can be used to implement a pure
capability system. By requiring a role certificate an RBAC
system can be formed. Combining simple policies with ex-
ternal server id certificates, it instantiates an identity-based
capability system, which is able to support multilevel secu-
rity policies [8]. Moreover, external server policies are not
limited to one external server, which allows decentralised
administration of the security framework.

Security Mechanism Layer
The ASCap proxy itself is a proxy object, which is sent by
the object server to a security server upon service registra-
tion. This enables a proxy-based approach to security [19,
9, 2]. The client downloads the ASCap proxy from the secu-
rity server and instantiates it. Prior to accessing the object
server, the ASCap proxy will collect all necessary creden-
tials. Only if it can acquire these will the access request, in
the form of an ASCap, be sent to the server. This reduces
the number of failed client invocations to the server. The
structure of the ASCap is shown in Figure 3.

Generally, the ASCap will be signed by the ASCap proxy,
which is done to ensure accountability. The policy and/or
credential objects may be encrypted in order to prevent the
client from learning the details of the policy.

Security Protocol Layer
A security protocol which is flexible and secure enough to
provide a reliable transport layer for various setups is needed.
We have chosen to extend a simple session setup protocol,
which assumes that the public key of the object server is
known to the ASCap proxy. A shared key secure channel
is opened during the session initialisation. This is required
if in later phases an auditing server is used and a session
identification connected to the clients real id is necessary.

4. IMPLEMENTATION
The implementation of the ASCap framework defines one

passive entity: the active software capability, and three ac-
tive entities: the client, the object server and external secu-
rity servers.

The ASCap proxy connects the client to the server and
implements the application security model in the interfaces
between program components, i.e. outside the code that
implements the functional requirements of the application.
The client and server are traditional client/server programs
that implement the functional requirements of the applica-
tion. Finally, the external security services are required to
support different security policies within the same frame-
work.

Client
A client application can be any application that supports the
ASCap interface. No additional security code needs to be
added to the application. The ASCap interface is currently
based on JINI [30, 18], so most applications that use JINI
automatically fulfil this requirement.

Invocations are made to the server through the ASCap
proxy, which may request additional credentials from exter-
nal security servers before the actual server is invoked.

Object Server
The server runs a default proxy that accepts ASCaps from
the clients, extracts operations, parameters, policy objects
and credentials from the ASCap. The proxy evaluates the
policy object, passing all the other elements as parameters.
If the policy object returns a positive indication, the server
object is then called with the parameters provided in the
ASCap. Once the policy object has been instantiated, all
subsequent calls from the same client use that instance, so
the overhead is reduced to a single method call.

The implementation of this caching mechanism uses a
hash table. The policy name acts as the keyword, which
allows the required credentials and allowed commands to be
accessed.

The server grants access once it has verified that the cre-
dentials are correct and that the command is permitted by
the policies.

External Security Servers
External Security Servers are, like all external servers, an ad-
ditional component that can be added to create the desired
security framework. They are not part of the functional re-
quirements of the client, but enable other services to be used.
For that purpose, the external servers can provide the clients
with different credentials after performing their checks. For
example, this can be used to implement an RBAC1 system,
by letting the client proxy request a role membership cer-

tificate from an external role server. The role hierarchy and
evaluation of inherited membership can also be evaluated at
the external role server.

5. EVALUATION
In this section, we first give a short reasoning about the

security and demonstrate the flexibility of the framework
by showing how to implement a pure capability system and
how to reuse the setup to implement an ACL based sys-
tem. We then give a detailed description of our implemen-
tation of a system, that implements RBAC2 [22]. Finally
we present our preliminary performance evaluation of the
developed prototype. A security evaluation is currently pre-
pared and would be too complex to include in this paper.
The main point is, that the security in the ASCap frame-
work relies on the correct handling of the session protocol. A
valid ASCap will yield to access, but may depend on exter-
nal security servers, which are part of the trusted computing
base.

5.1 Discretionary Access Control Setups
These are the two simplest access control policies. The

server needs to verify the provided certificates.

5.1.1 Simple Capability-Based Setup
We first demonstrate how a simple capability-based mech-

anism can be instantiated within the proposed framework.
Possession of a capability is a necessary and sufficient re-
quirement to grant access to a protected resource, which
means that a simple policy is sufficient. We have chosen a
cryptographically secured simple policy (cf.3.2 Security Pol-
icy Layer) where the capability is stored by the client and
is valid for a limited amount of time. The corresponding
system is shown by the black part in Figure 4. The client
retrieves a cryptographical protected credential, sends it in
the ASCap to the object server, which verifies the correct-
ness via a PKI chain.

Client

certificate
identity.

possible PKI verification chain

Server

Object

ASCap issuing server

ASCap

cert.
identity

cred.

Authorisation

Authority

Certification

Server
protected
crypt.

credential

Figure 4: Simple capability-based setup with exten-
sion to an ACL-based setup in grey

5.1.2 Simple ACL-Based Setup
The capability-based setup can be extended into an ACL-

based setup, where the client obtains an identity certificate
from an external certification authority. The policy object
contains a reference to the relevant ACL for the particular
service. The ACL could be stored in the policy object itself,
but that would require a short lifetime for the policy object
in order to allow quick revocation of access rights. Since

the policy object is included with the ASCap proxy, this
means that the lifetime of the ASCap proxy must also be
short. The extension to an ACL-based setup is shown by
the grey part in Figure 4. The client collects an identity
certificate and a cryptographical protected credential from
the authorisation server. It sends both in the ASCap to the
object server, which verifies it via the PKI chain.

5.2 Role-Based Access Control Setup
By changing the ASCap proxy to use external server poli-

cies the system behaves differently, but the application code
does not need to be changed. Below is a detailed descrip-
tion of an RBAC2 system, which implements a basic RBAC
system with additional constraints.

RBAC2

behaviour

Policy Server 2

Role Certificate

Certificate

External External
Policy Server 1

System Load

Figure 5: Overall system
behaviour

Public, Financial

Required Credentials:

Allowed Commands:

RBACBankAFinW:

System Load Certificate
Role Certificate FinWorker signed by CA BS3,

Figure 6: Policy Object
RBACBankAFinW

To instantiate this system the policy object would require
two credentials from external servers. Each external policy
server will influence the overall system behaviour. In Fig-
ure 5 credentials of two external servers are used, one with
RBAC behaviour, and the other checking the system load.
Together they result in an RBAC2 behaviour.
The policy accordingly would look like that shown in Fig-
ure 6. The client fetches the two credentials and the server
only has to verify the signature. The same behaviour would
be achieved by sending an executable policy object, which
queries the system load at the server. The difference occurs
when the processing takes place.

The detailed access cycle is shown in Figure 7, which is
described below:

RBAC

5 request

6 send

7 send result

for policy
1decide

proxy
ASCap

2 request certificate

certificate
4 send

behaviour

certificate

3 authentisation

external policy server

CLIENT

ASCap

system state

credentials,..

external policy server

server

system state

object server

Figure 7: Access Request Cycle

Once the client issues an access request the ASCap proxy
internally checks if the request is not denied by hard-coded
rules. Then an appropriate policy is identified (Figure 7–1)
and collection of credentials is started. The first (Figure 7–
2) will be from an external policy server, which acts as the

role server. The client must invoke a proper authentication
with this server (Figure 7–3) and will receive a crypto-
graphically secured certificate stating its role membership (
Figure 7–4). Additionally a second external policy server
must be queried, which issues a cryptographically secured
system state certificate (e.g. system time or current load,
Figure 7–5). This certificate needs to be short lived due
to the nature of rapid system state changes. The ASCap
proxy sends both certificates collectively inside the ASCap
to the object server (Figure 7–6). At the object server,
validity of the certificates is checked by verification of the
PKI chain leading to the credentials. After executing the
access request the result will be sent back to the client (
Figure 7–7).

5.3 Performance Evaluation
We have measured the cost of instantiating the frame-

work and initialising an active software capability in order
to evaluate the overhead imposed by the framework.

The measurements of Figure 8 were made on a Pentium III
300, 128MB Ram, Linux 2.2.18, JVM 1.3.1-b24 mixed mode.
The times are in milliseconds. We measured the time at the
client application, and it corresponds to the time taken from
the call to the ASCap proxy until the result of the access
request is delivered back to the application. The 1st access
column shows loading of the ASCap proxy relevant classes
and including context switching. Subsequent accesses mea-
sure the real access request time required by the framework.

The first measurement (Null Invocation) compares the
performance of the basic framework to SSL. In this setup
no access control is done. After session initialisation, our
framework is approximately 10% faster than a normal SSL
connection. This is mainly attributed to the fact that we use
AES [5] instead of Blowfish [23], which is used by SSL. Ses-
sion initialisation primarily involves sampling randomness
to be used by the cryptographic library.

In the further RBAC3 setups with 1, 5 and 10 credentials
are shown. This emulates security models, which take one
or more external servers, where the behaviour of the exter-
nal servers influence the overall security model. Finally, the
same measurement is repeated for a RBAC2 setup, where
1 credential and system load-checking on the server side is
required.

1

2

4

3

Total time for client application

ASCAP proxy

Client

server

RBAC

Figure 9: Traditional
RBAC setup

4

1

2

3

Total time for client application

server

RBAC

ASCAP proxy

Client

Figure 10: ASCap
RBAC setup

The ASCap setup allows us to improve scalability by of-
floading work from the server to the client, e.g., the task of
collecting credentials. We performed an experiment shown
in Figures 9 & 10 to investigate the impact of shifting this
workload from the server to the client. A traditional RBAC
setup requires a form of database or storage of RBAC mem-
bership at the server. A client will only need to send its

authenticated identity and the access control decision is per-
formed entirely by the server. For comparison reasons we
have stored the information in an external RBAC server. In
our ASCap client-based setup, the client retrieves the role
membership certificate, packs it into the ASCap object and
sends it to the server. The server in this scenario will only
verify the credentials.
The total time seen by the client application increases by
more than 50% compared to the traditional setup. This
is due to an unfortunate effect of Java serialisation/de--
-serialisation that we are currently working on eliminating.
In a working environment, the client will cache the received
role membership certificates and on each subsequent request
gain 51ms. This means that the cost of retrieving, decod-
ing and re-encoding the membership certificate is amortised
if the client invokes the server 5 times with the same role
membership certificate.

As expected, the RBAC server call takes the same time
(36ms) regardless of who is doing it, while the work on the
server increases by 40% (91ms simple verification to 164ms-
36ms=128ms retrieval and verification) in the traditional
setup compared to the ASCap setup. An additional advan-
tage of the ASCap client-based solution is that at large-scale
cases the workload and resource usage is distributed over the
clients. Bottlenecks at the object server caused by resource
constraints are avoided, e.g., a reduced number of network
sockets (to clients and external security servers) are needed.

6. CONCLUSIONS AND FUTURE WORK
In this paper we examined the problems arising from inte-

gration of applications and software components that have
not all been developed for the same security model. We
identified the need for flexible security mechanisms and pro-
tocols that can accommodate the most commonly used se-
curity policies within a single framework.

We proposed a new security mechanism based on active
software capabilities, and demonstrated how this mechanism
is able to support a wide range of discretionary and manda-
tory access control policies. Security policies are enforced
by verification on the object server, while the overall system
semantics can be modified by external security servers and
ASCap proxies that are instantiated at runtime indepen-
dently of the application code. This allows us to construct
a framework that can support multiple security policies for
different objects at the same time by mapping principals and
credentials from one security model to another, as described
in the web-portal scenario.

We presented our design and implementation of the basic
security mechanism and showed how the mechanism can be
extended to support different security policies. We are cur-
rently developing a complete security framework for multi-
policy security based on these extensions. We wish to in-
tegrate this framework with a web-portal service in order
to verify that the framework facilitates mediation between
clients and servers in different contexts. Having a fully func-
tional and flexible multi-policy framework will allow us to
proceed in further research in security policy interaction [11],
as well as to do automatic proxy generation for high level
policy specifications.
Finally, an important property of the ASCap framework is
the notion of interface based protection programming. This
means that specialised security professionals can define the
security model and specify policy objects, which are then

Operation 1st access (ms) subsequent accesses (ms)
Null invocation 1043 339
SSL - 372
RBAC3 1 credential 1091 413
RBAC3 5 credentials 1230 522
RBAC3 10 credentials 1324 614
RBAC2 (system load at server) 1419 560

Figure 8: Measurements of different ASCap setups

Scenario 1)Total time 2)RBAC call 3)client call 4) server processing
ASCap (Figure 10) 440 37 160 91
Traditional RBAC (Figure 9) 214 36 211 164

Figure 11: Times measurements for Figures 9 & 10

used by application programmers, thereby improving the
overall security of the system.

7. REFERENCES
[1] D. Bell and L. LaPadula. Secure computer systems:

Mathematical foundations and model. Report MTR 2547
v2, MITRE, November 1973.

[2] M. Burnside, D. Clarke, T. Mills, D. Devadas, and
R. Rivest. Proxy-based security protocols in networked
mobile devices. In Proceedings of the ACM Symposium on
Applied Computing, March 2002. (to appear).

[3] D. Clark and D. Wilson. A comparison of commercial and
military computer security policies. In IEEE Symposium on
Security and Privacy, pages 184–194, 1987.

[4] C.O’Halloran. A calculus of information flow. In ESORICS
90, pages 147–159, 1990.

[5] J. Daemen and V. Rijmen. Aes proposal: Rijndael, 1998.
[6] D. Denning. A lattice model of secure information flow.

Communications of the ACM, 19(5):236–243, May 1976.
[7] R. S. Fabry. Capability–based adressing. Communications

of the ACM, 17(7):403–412, July 1974.
[8] L. Gong. A secure identity-based capability system. In

Proceedings of the IEEE Symposium on Security and
Privacy, pages 56–63, 1989.

[9] D. Hagimont, J. Mossiere, X. R. de Pina, and F. Saunier.
Hidden software capabilities. In International Conference
on Distributed Computing Systems, pages 282–289, 1996.

[10] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection
in operating systems. Communications of the ACM,
19(8):461–471, 1976.

[11] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In J. Peckham, editor, SIGMOD
International Conference on Management of Data, pages
474–485. ACM Press, 1997.

[12] C. Jensen and D. Hagimont. Protection reconfiguration for
reusable software. In Second Euromicro Conference on
Software Maintenance and Reengeneering, pages 74–81,
Florence, Italy, March 1998.

[13] P. A. Karger and A. J. Herbert. An augmented capability
architecture to support lattice security and traceability of
access. In IEEE Symposium on Security and Privacy, pages
2–12, 1984.

[14] J. Kohl and C. Neuman. The kerberos network
authentication service (v5). RFC 1510, Digital Equipment
Corporation/ISI, September 1993.

[15] H. M. Levy. Capability-Based Computer Systems. Digital
Press, Bedford, Massachusetts, 1984.

[16] D. A. Marriott, M. S. Sloman, and N. Yialelis. Management
policy service for distributed systems. Technical Report

DoC 95/10, Imperial College, London, 1995.
[17] D. B. Marvin M.Theimer, David A.Nichols. Delegation

through access control programs. In 12th International
Conference on Distributed Computing Systems, pages
529–536, 1992.

[18] S. Microsystems. Jinitm architecture specification, version
1.2, December 2001.

[19] B. C. Neumann. Proxy-based authorisation and accounting
for distributed systems. In Proceedings of the 13th
International Conference on Distributed Computing
Systems, pages 283–291, May 1993.

[20] T. S. S. of ITU. Information Technology — Opens Systems
Interconnection — The Directory: Authentication
Framework X.509. International Telecomunication Union,
1993. Standard international ISO/IEC 9594–8 : 1995 (E).

[21] Ryan and Schneider. Process algebra and non-interference.
In Proceedings of The 12th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1999.

[22] R. S. Sandhu, E. J. Coyne, and H. L. F. and Charles
E. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[23] B. Schneier. Description of a new variable-length key, 64-bit
block cipher (Blowfish). Lecture Notes in Computer
Science, 809:191–204, 1994.

[24] M. Shapiro. Structure and encapsulation in distributed
systems: The proxy principle. In Proceedings of the 6th
International Conference on Distributed Computer
Systems, pages 198–204, 1986.

[25] B. C. N. J. G. Steiner and J. I. Schiller. Kerberos: An
authentication service for open network systems. In Winter
1988 USENIX Conference, pages 191–201, Dallas, TX,
1988.

[26] I. Technologies. The iona iportal application server.
Technical report, IONA Technologies, 1999.

[27] M. Thompson, S. M. W Johnston, G. Hoo, K. Jackson, and
A. Essiari. Certificate-based access control for widely
distributed resources. In Proceedings of the Eighth USENIX
Security Symposium, pages 215–228, 1999.

[28] W. L. Tin Qian. Active capability: An application specific
security and protection model. Technical report, University
of Illinois at Urbana-Champaign, 1996.

[29] T. D. Tock. An extensible framework for authentication
and delegation. Master’s thesis, University of Illinois at
Urbana-Champaign, 1994.

[30] H. Wong. Developing Jini[TM] Applications Using Java
2[TM]. Addison Wesley Longman, 2001.

[31] N. Yialelis and M. Sloman. A security framework
supporting domain based access control in distributed
systems. ISOC Symposium on Network and Distributed
Systems Security, 1996.

